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ABSTRACT 
 

R32 was selected as the alternative for R410A for mini-split air conditioners/heat pumps in Japan and have already 

phased out R410A in residential market. Recently several new alternatives for R410A have been proposed in order 

to achieve more close capacity to R410A and mitigate high discharge temperature issue of R32 as well as to reduce 

energy consumption. We selected R32 from among the candidates a few years ago; however it is important to 

continue comparing it to new candidates in search for an even better choice. 

We carried out the drop-in tests of the new refrigerant R32/R125/R1234yf (67/7/26) by comparing its COP and 

especially pressure loss to those of R410A, R32/R1234ze(E)(70/30), and R32, using residential mini-split type air 

conditioner. We conducted the drop-in tests by two types of method, actual measuring and especially simulated 

calculation. Adjusting compressor suction superheat and the amount of refrigerant charged into the system. 

Moreover, we measured the performance of the system with changing compressor speed in the wide range by 

variable frequency drive. Furthermore, we compared electricity consumption at the constant capacities, and analyzed 

the results precisely by loss analysis. 

As a result, we found that the COP of R32/R125/R1234yf (67/7/26) is better than R410A in many conditions and 

it achieves very close capacity to R410A, but COP at the same capacity is not as high as R32. The reason is that 

pressure losses are increased by adding R125 and R1234yf to R32. It was clarified, comparing losses with R410A, 

R32/1234ze(E) (70/30), and R32. 

From the above, we confirmed that R32 is still the best choice at present. However, we will continue searching for 

a better alternative. 

 

Key words: GWP, COP, Refrigerant, Heat pump system, R410A, R32/R1234ze, R32/R125/R1234yf, R32 

 

1. INTRODUCTION 
 

In late years the demand for mitigating global warming impact and energy conservation increased significantly, 

and we chose R32 as a new refrigerant for reversible heat pump systems. However, it is expected that the demands 

for air conditioning will continue to increase in the future, thus minimizing climate impact in CO2 equivalent in the 

whole lifecycle of an appliance is essential. Based on this, many researchers of the air conditioning industry and 

academia continue searching for new refrigerants. The reason why we chose R32 was that its GWP (Global 

Warming Potential) is 1/3 as small as that of R410A, required refrigerant charge is smaller, it has excellent thermo-

physical properties to achieve better performance of the reversible heat-pump systems, and .We judged at that time it 

was the best refrigerant among candidate refrigerants from the viewpoint of safety and economy. Because there is no 

concern about fractionation, R32 is easy to manage, furthermore it is attractive even from the viewpoint of recovery 

and recycle. 
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On the other hand, various refrigerants mixed with R32 have been born from many studies, and there are some 

which have been declared to be superior in the aspect of GWP and performance.
 [1]～ [3]

 

At this time, new refrigerant R32/R125/R1234yf (67/7/26) was reported as high efficiency refrigerant.
[4]

 This 

contains three types of refrigerant which are based by 67wt% R32.  We charged the refrigerant into a mini split air-

conditioner and compared which refrigerant enables achieving the highest performance. 

In this paper, we defined those HFO mixed refrigerants as follows. 

 

 Blend A: R32/R1234ze(E) (70/30) 
 Blend B: R32/R125/R1234yf (67/7/26)  

 

1.1 Properties of the Refrigerants 
Table 1-1 shows the properties of four refrigerants which were charged into the test system in this experiment. 

They are HFC refrigerants, R32 and R410A, while HFO mixed refrigerants R32/R1234ze(E) (70/30) (called as 

Blend A here) and R32/R125/R1234yf (67/7/26) (called as Blend B here). Showing in Table 1-1, Blend A has 

temperature glide of 4.4K during phase transition between vapor and liquid. Though Blend B also has temperature 

glide, it’s not as large as Blend A’s, and it remains 0.9K. Temperature glide affects the system performance, because 

the temperature gap between refrigerant and air shrinks. It is expected that Blend B may have better performance 

than Blend A. 

Following to the temperature glide evaluation, we compared the theoretical COP (Coefficient of Performance) a 

cooling operation cycle. Calculation conditions were Condensing Temperature Tc=45°C, Evaporating Temperature 

Te=10°C, Suction pipe Temperature Ts =15°C, Condenser outlet Temperature Tc.out =40°C, and Compressor 

Adiabatic Efficiency η=70%. The results are shown in Table 1-1 below. Regarding the pressures equivalent to those 

representative temperatures, we chose the pressure that has the same mean temperature between the bubble point 

and the dew point for the blends.  

Calculating theory COP requires Refrigerating effect. On the other hand, the larger refrigerating effect per this unit 

mass wr, the larger refrigeration capacity tends to become in case of constant compressor speed. In actual, since a 

compressor sucks gas of amount equivalent to the cylinder volume, system cooling capacity are affected by volume 

capacity which is refrigerating effect per suction volume. 

Meanwhile, there is a very important factor Pressure Loss at constant capacity in the next row. Since this is the 

parameter which reduces the performance of system by raising actual discharge pressure and reducing suction 

pressure of compressor, the method how to calculate the factor is very important and is detailed in the following 

subsection. In addition, when the impact of pressure loss on the performance of a system is considered, it’s 

important to convert the pressure loss to the work WP.loss. It can be calculated as required work to recover the 

pressure loss by compressing vapor adiabatically. 

In Table 1-1, comparing Pressure Loss Ploss of each refrigerant, one with R410A is the largest prominently 

Table 1-1: Calculated Properties of Refrigerants Charged to the Test System 
Refrigerant R32 

(Pure) 

R410A 

 =R32/R125 

(50/50) 

Blend A 

=R32/R1234ze(E) 

(70/30) 

Blend B 

=R32/R125 

/R1234yf 

(67/7/26) 

Global Warming Potential: GWP (AR4) 675 2088 <500 698 

Temperature Glide:TGL [K] @ 10℃ 0.0 0.1 4.4 0.9 

Discharge / Suction Pressure: Pd / Ps [MPa abs] 2.795 / 1.107 2.730 / 1.445 2.366 / 1.233 2.605 / 1.0393 

Refrigerating effect wr [kJ/kg] 248.0 (100.0%) 163.9 (66.1%) 210.4 (84.8%) 192.4 (77.6%) 

Compressor Work: ws [kJ/kg] 54.0 (100.0%) 36.5 (67.6%) 45.4 (84.2%) 42.2 (78.2%) 

Coefficient of Performance: COP = wr  / ws 4.593 (100.0%) 4.493 (97.8%) 4.629 (100.8%) 4.555 (99.2%) 

Specific Volume in Suction vs [m
3/kg] 0.0343 (100.0%) 0.0248 (72.1%) 0.0349 (101.7%) 0.0297 (86.5%) 

Volume Capacity  = wr / vs [kJ/ m3] 7228(100.0%) 6625(91.7%) 6029(83.4%) 6482(89.7%) 

Pressure Loss at constant capacity: Ploss [% of kPa] (100.0 %) (165.0 %) (141.3 %) (143.7 %) 

Work equiv. to Pressure Loss at constant capacity: 

WP.loss [% of W]  ( ∝ vs
2  / wr

3 ) 
(100.0 %) (180.0 %) (169.4 %) (160.2 %) 

Discharge Temperature Td [℃] 84.1 69.5 69.1 73.3 

*Calculation Conditions: Tc = 45℃, Te =10℃, Suction line Temp.: Ts =15℃, Condenser Outlet: Tc.out =40℃,  

Compressor Adiabatic Efficiency: ηcomp =70%, in Cooling Operation.  

Saturation temperature of the blend is mean temperature of bubble point and dew point.  

Properties of refrigerants’ are calculated with NIST REFPROP Version 9.1. 
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among these refrigerants. Pressure Loss Ploss of Blend A and Blend B exceeds 140% vs R32 in pressure value. But 

when focusing onto WP.loss [W]; Work equivalent to Pressure Loss, that of Blend A and Blend B reaches than 160% 

vs R32. All of blends have larger pressure loss than R32. It is because refrigerant effect wr of R32 is significantly 

larger than R125, R1234ze(E) and R1234yf. 

Regarding discharge temperature, R32 has the highest value in this property table. However, since R32 has 

superior performance to the others in pressure loss and other aspects, discharge temperature in the actual operation 

does not relatively rise as high as the other refrigerants. And it would not be a significant issue in case of proper 

system design. Thus R32 is expected to be the best performance refrigerant from these thermo-physical properties 

and other properties in the Table 1-1. 

 

1.2 Calculation of Pressure Loss in each Refrigerant 
As mentioned in foregoing subsections, pressure loss is the one of the key factors which dominate the system 

efficiency. Moreover, the Work WP.loss required to recover Pressure Loss Ploss at a constant capacity is the most 

important factor which indicates how small the pressure loss of refrigerant would be. In this section, the way how to 

calculate the work to compensate pressure loss is explained. 

At first, Pressure Loss Ploss by fluid flowing inside of pipe, of which length is L[m] and diameter is d[m], is 

written as bellow (1). Equation about capacity, mass flow rate, and specific volume are also given in (2) and (3). 

 

 ∆Ploss= f ∙
L

d
∙
q
mr

2

2ρ
 (1) 

 q
mr

= 
Φ0

wr
 (2) 

 vs=
1

ρ
 (3) 

 
Uniting these equation (1), (2), and (3), 
 

 ΔPloss= (f ∙
L

2d
∙Φ0

2) ∙ (
vs

wr
2
) (4) 

 
For this pressure loss Ploss , estimating the value of work WP.loss to raise pressure to the pressure before loss by 

compressing adiabatically. 
 

 ΔWP.loss=qmr∙ ∫ dh

P2

P1

  

 =q
mr

∙ ∫ v∙dP

P2

P1

 (5) 

 
When the pressure change width from P1 to P2 is sufficiently small in adiabatic compression, the change width in 

the compression work due to the change in the specific volume v can be negligible as shown in Figure 1-1. And as 

here the specific volume v is assumed to be equal to the specific volume at suction side pressure vs of compressor, 

the equation (5) simply can be converted into equation (6). 

 

Thus this equation (6) can be written as follows equation (7) substituting the 

equation (2) and (4) 

 

 ΔWP.loss= (f ∙
L

2d
∙Φ0

3) ∙ (
vs

2

wr
3
) (7) 

 

The part in anterior parenthesis in equation (7) is determined by the 

 ΔWP.loss=qmr∙vs∙∆Ploss (6) 

 
Figure 1-1: Adiabatic 

compression on p-v diagram 

P

vv1v2

P1

P2

Ploss

P vk= C
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specifications of an air conditioner, while the part in posterior parenthesis is determined with the properties of 

refrigerant. When comparing the performances of refrigerants, if the capacity is fixed as constant and specifications 

of an air conditioner is the same, it is enough only to take the term of the part in posterior parenthesis into account. 

Thus, a refrigerant with smaller specific volume and larger refrigerating effect per mass has smaller pressure loss 

and better energy efficiency.  

 

2. TEST SYSTEM FOR ACTUAL MEASUREMENT 
 

2.1 System Outline 
Figure 2-1 shows the outline of the system used for the series of the testing. It is a mini-split type air conditioner 

with a nominal cooling capacity of 7.1 kW. The indoor unit and the outdoor unit are connected with 7.5 m standard 

length pipes. This system requires 1.55 kg amount of R32 refrigerant as indicated in Table 2-1. 

The Compressor (Comp.) is capable of changing the revolution speed with a Variable Frequency Drive (V.F.D.). 

The Expansion Valve (Exp. Valve) employed is electrically controlled to change the opening to adjust the mass flow 

rate entering the evaporator from the condenser, and to adjust the superheat at the compressor suction. The Four-way 

Valve (4-Way Valve) enables to switch cooling and heating operation by switching condensation/evaporation in the 

indoor and outdoor heat exchangers. In the diagram, the solid lines inside of the Four-way Valve indicate the flow 

directions in cooling operation. The gas discharged from the compressor flows into the outdoor heat exchanger, 

where the gas is cooled down and condenses into liquid state. Then, the liquid is expanded, and lower the 

temperature of itself at the Expansion Valve. After that, the liquid is heated up and vaporized into gas in the indoor 

heat exchanger, and the gas from the indoor heat exchanger returns to the compressor to be compressed again. 

During the tests, measuring capacity of this system was conducted with a facility using the Air-enthalpy method 

(Psychrometric Type) which is described by ISO 5151-2010. Also, we measured temperature and pressure by T-type 

thermocouples and pressure gages at the discharge and suction of the compressor as well as the inlet and outlet of 

the heat exchangers. At the midpoints of the heat exchangers, only temperature was measured. 

 

Table 2-1: Charged Amount of Refrigerant in the Test System 

 R32 R410A Blend A Blend B 

Optimized Refrigerant Charge Mref [kg] 1.55 kg (100%) 1.88 kg (121%) 1.7 kg (110%) 1.7 kg (110%) 

 

Table 2-2: Test Conditions 

Operating 

mode 
Capacity Indoor Ambient Outdoor Ambient 

DB(℃) WB(℃) DB(℃) WB(℃) 

Cooling Nominal (7.1 kW) 27 19 35 24 

 
Figure 2-1: Test System Diagram 
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2.2 Test Conditions 
Table 2-2 shows the test conditions on cooling more based on ISO 5151-2010. Before measuring the performance 

of the test system with each refrigerant, we adjusted amount of refrigerant at the optimum for the condition. Several 

times of trials with different charge were made to find the optimum amount of refrigerant for the COP. The results 

of refrigerant’s amount are described in Table 2-1. Moreover, we adjusted the opening ratio of the expansion valve 

to achieve the highest COP. In this way, we could compare the systems optimized for each refrigerant. 

 

3. DROP-IN TEST RESULTS FOR WIDE CAPACITY RANGE 
 

As described previously, the tests were conducted in cooling mode for four refrigerants, and the test data were 

acquired and compared each other. 
 

3.1 COP trend comparison in the wide capacity range 
Figure 3-1 shows the COP comparison of each refrigerant in capacity trend. This is the system performance 

measured with changing the compressor speed, to enable the comparison of COP values at various capacities. 

At first, in the whole capacity range, it was found that R32 achieved the best COP in this study. Regarding R410A 

and Blend B, as capacity increase, COPs tend to relatively lower vs R32. The capacity increases more, refrigerant 

mass flow rate increases more, and the loss originated from pressure loss also increases. Thus the superiority of R32 

is apparent in higher capacity as much as refrigerant properties indicate. 

Meanwhile, because the pressure loss gets smaller due to smaller mass flow rate, the differentials of COP 

between refrigerants in case of smaller capacity were assumed to become smaller. However, when operating with 

Blend A, the differential did not shrink as much as others. This is the result that the temperature gap between 

refrigerant and air couldn’t be smaller, and this is considered to be caused by the larger temperature glide of Blend A, 

4.4K. 

From the above, it could be mentioned that pressure loss becomes serious issue when in larger capacity, and 

temperature glide becomes issue too when capacity is smaller. Therefore, generally adding lower capacity 

component to base components negatively affects in COP in refrigeration cycle due to larger pressure loss. If it 

causes glide, the negative impact appears significantly in low load condition in heat exchanger such as low capacity 

operation or high COP operation. 

 

4. DROP-IN TEST RESULTS AROUND THE RATED CAPACIY 
 

 In this chapter, we explain how the drop-in tests were conducted and how the test results were analyzed. In 

addition, we conducted the drop-in tests using the system simulation software, and compared two types of “drop-in” 

tests by actual measurement and by simulation, in which we clarified the differential between constant speed and 

variable speed about compressor. 

 

4.1 The method of the Drop-in Test 
At first, the definition of the conducted “drop-in” test is necessary before the explanation of the results. In case of 

conducting the drop-in test to full optimized test of a refrigerant, following are listed as adjustable items.  

 

  

Figure 3-1: COP trend comparison of each refrigerant for Capacity. 

80%

90%

100%

110%

120%

130%

60% 70% 80% 90% 100% 110%

C
O

P
 v

s 
R

3
2

 @
ca

p
a

ci
ty

=
7

2
5
6

W

Capacity [W]

T1 Condition

R32

R410A

Blend A

Blend B



 

 2409, Page 6 
 

16
th
 International Refrigeration and Air Conditioning Conference at Purdue, July 11-14, 2016 

a) Refrigerant amount (Sub-cool degree) 

b) Expansion valve open ratio (Superheat degree) 

c) Compressor speed 

d) Fan speed 

e) Heat exchanger preferences(Heat conducting pipe’s diameter、a number of Paths, etc.…) 

f) Compressor preferences (size of cylinder, motor,) 

g) Diameter of connection pipes 

h) etc. 

 

However, even b) Expansion valve open ratio and c) Compressor speed were unadjustable in the most drop-in tests 

performed in the past, since they employ capillary tube or a fixed orifice as expansion device, and a fixed speed 

compressor. In the worst case, even charge amount was not optimized. Such drop-in tests do not give correct results 

about potentials of refrigerants. 

When comparing the performances of the system using vapor compression cycle, a proper subcool at inlet of 

expansion valve and a proper superheat at the compressor suction are required to expand refrigerating effect wr and 

the temperature differential between a condenser and an evaporator is kept narrow sufficiently. If the amount of 

refrigerant becomes excessive, a heat transfer area for saturated vapor in a condenser decreases and condensation 

pressure rises. This makes the compressor consumption rise. Meanwhile, shortage of refrigerant makes refrigerating 

effect shrink, and the system capacity decreases. 

 In addition, the refrigerant should be completely vaporized by reaching to the suction for reliability of compressor 

and also for the performance. In order to maximize the performance of the system, the liquid refrigerant should be 

evaporated into vapor in the evaporator sufficiently as far as evaporator performance would not fall. 

After having replaced a refrigerant to another refrigerant, we carried out a performance comparison tests as 

maximizing COP by adjusting a) Refrigerant's amount and b) Expansion valve open ratio. Furthermore, we adjusted 

c) Compressor speed to match its capacity to the rated capacity, and compared COP. And we call it “Drop-in test” 

here. 

 

4.2 Outline of Simulation 
Figure 4-1 is the outline of refrigeration cycle on the simulation. 

This is the system simulation software which 

was developed by Dr. Kiyoshi Saito laboratory 

of Waseda University. Its software’s name is 

“Energy Flow +M Core System.”
 [5]

 

As shown in Figure 4-1, Heat exchangers are 

divided into two rows of windward row and 

leeward row. This helps calculating clearly 

about the wind flow direction for the 

refrigerant flow. To the outlet of evaporator, 

we connected connecting pipe and suction pipe 

in order to calculate the influence of pressure 

loss accurately. 

And We Placed PID controller to adjust the 

superheat at the outlet of evaporator in order to 

give target open ratio to expansion valve. 

Moreover, if it is necessary to adjust the 

capacity, it can be controlled to the target 

capacity automatically by PID controller. 

 

 
Figure 4-1: Outline of Refrigeration cycle on the simulation 

2
1
0
8

c
o
m

p
re

s
s
o
r

2

1C
o

m
p

re
ss

o
r

2
1
0
9

E
E

V

2

1 Exp
an

sio
n

 
2126 fin tube
heat ex 1DDPS

2

1

3

4

Condenser 

2126 fin tube
heat ex 1DDPS

2

1

3

4

Condenser 

2126 fin tube
heat ex 1DDPS

2

1

3

4

Evaporator 

2125

2

1

Reversing
 valve

4

3

4way valve

2117
AirvSPTXinlet

1

Outdoor air

2117
Air vSPTX inlet

1

Indoor air

9009

A-B-C

EVA_Q

9008

A+B-C

Q_CON

9010

A*B/C

COP

9002
PID controller

+

-

Exp. valve 

9002
PID controller

+

-

Comp 

2126 fin tube
heat ex 1DDPS

2

1

3

4

Evaporator 

2137
 Tube 1DDPS

2

1 θ

Connecting 

2137
 Tube 1DDPS

2

1 θ

Suction 

Refrigerant
Air
Value

EF+M Core System Ver.1082

2013 Waseda UNIV. Saito lab.



 

 2409, Page 7 
 

16
th
 International Refrigeration and Air Conditioning Conference at Purdue, July 11-14, 2016 

 

4.3 Results of Drop-in test by Actual Measurement 
Figure 4-2 shows the results in case that the compressor speed was constant as 78rps, and in case that the system 

cooling capacity was equal by adjusting the compressor speed. 

As a result, the comparison in constant compressor speed 78rps gives the data that the refrigerants except for R410A 

have COPs near R32.  

Although vapor compression refrigeration cycle has the characteristics that condense pressure rise and evaporation 

pressure lower as capacity increases. This expansion of pressure gap results in increase of compression work and 

decline of COP. Thus a comparison with the equal capacity is necessary for a correct comparison of refrigerant. 

 

 

4.4 Results of Drop-in test by Simulation 
Figure 4-3 shows the comparison of each refrigerant for capacity by simulation. It can be found that the 

simulation gave the result approximately as same as actual measurement. The plotted data surrounded by the circle 

has the same compressor speed 78rps. 

At first, we conducted inverse simulation at the R32 base point. This made both of COPs by measurement and by 

simulation fitted each other by adjusting the coefficients of pressure loss in evaporator and suction pipe, the wind 

volumes through the condenser and the evaporator, and the volumetric efficiency and adiabatic efficiency of 

compressor. 

Next, we checked the COP when changing the capacity widely, for example, at 83% capacity using R32. From 

both of the COPs at 83% capacity, we found that the simulation could give the proper result. 

The data plotted in Figure 4-3 were calculated in the condition equal to the condition in which Figure 4-2 were 

actually measured. The results of calculation seem to be approximately equal to the results of measurement. 

The performance of other refrigerants seem to become around 2% higher than actual measurement when regarding 

COPs of other refrigerants to R32 basement data 78rps. In this simulation, as we did not change the compressor 

efficiency, it is speculated that the influence resulted in residuals. When raising compressor speed in the refrigerant 

except R32 in particular, a difference of COP in the case of actual measurement grows larger. 

For example, in Blend B, relative COP which was at 90% in the case of actual measurement remains in 95% by 

the simulation for R32, and simulation gives better performance than the actual measurement. This is assumed to be 

caused by, for example, influences of compressor oil or differences of distribution of air volume in evaporator, etc. 

 

5. LOSS ANALYSIS IN EACH REFRIGERANT 
 

5.1 Calculation Method 
Figure 5-1 and Figure 5-2 shows the results of loss analysis in case of each refrigerant during cooling operation at 

the rated nominal capacity. We measured compressor input, indoor fan input, and outdoor fan input during operation. 

Regarding compressor input, it can be divided into two types of input; the one necessary for “Theoretical Adiabatic 

Compression Work” and the other for “Compression Loss”. 

 
Figure 4-2: COP trend comparison of each 

 refrigerant for Capacity by actual measurement. 

  

Figure 4-3: COP trend comparison of each  

refrigerant for Capacity by simulation 
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First, the former “Theoretical Adiabatic Compression Work” is divided into four parts in this analysis. When 

considering enthalpy transition during compression, the four parts are below, in order of increasing vapor pressure: 

･”Suction pipe Pressure Loss” is from suction pressure to evaporating pressure. 

･”Evaporator Loss” is from evaporating pressure to saturation vapor pressure for evaporator’s intake air. 

･”Theoretical Compression input in ideal condition” is from the saturation vapor pressure for the evaporator’s 

intake air temperature to the saturation vapor pressure for the condenser’s intake air temperature. This is 

inevitable work as far as the temperature gap between air and refrigerant exists. 

･”Condenser Loss” is from saturation vapor pressure for condenser’s intake air to condensing pressure. 

･”Others” is the unanalyzed factors 

Second, regarding the latter “Compression Loss”, 

･“Compression Loss” is the loss for the whole compression, and determines compressor efficiency, including 

Motor Loss here. h in this box means compressor efficiency ,which contains electric loss of V.F.D. 

Last, as mentioned above, system input consists of three types of input;   

･“Indoor Fan Input”, “Outdoor Fan Input” 

The above seven categories add up as the whole input of the system in this analysis. 

 

5.2 Result of Analysis 
Figure 5-1 and Figure 5-2 shows the loss analysis for actual measurement and simulation in each refrigerant. It can 

be recognized that evaporator loss and compressor loss increased 3-5% when using the refrigerants except R32. This 

phenomenon takes place both in actual measurement and in simulation. Meanwhile there was less influence onto the 

condenser.  

For example, in case of actual measurement of Figure 5-1, in terms of Blend B, suction pipe loss increased as 

1.8%, evaporator loss increased 4.9%, and condenser loss increased 1.3%. These losses affected compressor loss and 

it increased as 3.1% coinciding with increase of whole compression work. 

Meanwhile, compression efficiency of blend B was 0.7% better than that of R32. Though compression efficiency 

generally can be worse by decrease of compressor’s suction pressure, compression efficiency of blend B rose with 

overturning it. 

 
Figure 5-1: Comparison of Loss Analysis in case of each Refrigerant 

during Cooling Nominal Capacity (7256 W) Operation by actual measurement 

(Indoor DB/WB: 27℃/19℃, Outdoor DB: 35℃) 
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Figure 5-2: Comparison of Loss Analysis in case of each Refrigerant 

during Cooling Nominal Capacity (7256 W) Operation by simulation 

(Indoor DB/WB: 27℃/19℃, Outdoor DB: 35℃) 

 

Though the reason of this rise is now known at this time, this rise could have concerning with condenser loss. 

Condenser loss in actual measurement increased 1.3% from 19.3% of R32 to 20.6% of Blend B in Figure 5-1. On 

the other hand, Condenser loss in simulation increased only 0.2% from 19.9% of R32 to 20.1% of Blend B in Figure 

5-2. About other refrigerants, this phenomenon could not be found. 

By the way, in spite of this advantage for blend B, as the ratio of whole compressor input exceeded 90% of whole 

system input, the decline of compression efficiency which was caused by drop of suction pressure affect to system 

input seriously. It is assumed that degradation of evaporator performance was caused by the influence of pressure 

loss and temperature glide.   

Moreover, it is speculated that the decline of compressor suction pressure made compressor efficiency lower.  

 

6. CONCLUSIONS 

 
The following results were revealed during our examination: 

・COP of Blend B has increased 4% from that of R410A, however it couldn’t reach as 11% to that of R32.  

・As for GWP, Blend B has a similar value to R32, however, as the amount of refrigerant which the refrigeration 

cycle system requires increases approximately +10%, the actual climate impact of refrigerant in CO2 equivalent 

increases +10%.  

・In case of judging the performance of refrigerant in system from refrigerant property, it is effective to consider 

“work” equivalent to “pressure loss”. And it is proportional to a square of specific volume vs and inversely 

proportional to a cube of refrigerating effect wr. 

・When it comes to comparing performance of refrigerant in system, the simulation of refrigeration cycle is very 

effective to evaluate it. 

・Evaluation of Refrigerant’s performance in system should be carried out at a constant capacity, not at a constant 

compressor speed. This is because of the series of evaluations both by actual measurement and by simulation. 
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・This is because as the kind of refrigerant and compressor speed affects compressor efficiency in actual 

measurement, compressor performance have to be evaluate properly for accurate comparison. Moreover, the 

influence of compressor oil for compression efficiency and heat conductance of heat exchanger is necessary to be 

considered due to more accurate simulation. 

・In search for the refrigerant of which GWP is lower or of which efficiency is better than R32 , we will conduct 

evaluation of refrigerant performance. 

 

NOMENCLATURE 
 

GWP Global Warming Potential  (kgCO2) 

TGL Temperature Glide  (K)  

Pd  Discharge Pressure  (MPa abs) 
Ps Suction Pressure  (MPa abs) 
wr Refrigerating Effect   (kJ/kg) 

ws Compressor Work   (kJ/kg) 

COP Coefficient of Performance (= wr  / ws )  (–) 

vs Specific Volume in suction  (m3/kg) 

 Volumetric Capacity (= wr  / vs )  (kJ/ m3) 

Ploss Refrigerant Pressure loss   (% of kPa) 

WP.loss Work equivalent to Pressure Loss  (% of Watt) 

ref Amount of refrigerant charge   (kg) 

Td Discharge Temperature   (℃) 

Tc Condensing Temperature  (℃) 

Te Evaporating Temperature  (℃) 

Ts Suction Temperature  (℃) 

Tc.out Condenser outlet Temperature  (℃) 

hcomp Compressor Efficiency  (℃) 

DB Dry Bulb Temperature  (℃) 

WB Wet Bulb Temperature  (℃) 

Wloss Inputs for Works or Losses required to operate system  (% of Watt) 
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