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ABSTRACT 

Previous research on automated fault detection and diagnostics (FDD) for HVAC systems has shown promising 

benefits like earlier detection and more accurate isolation of common faults.  While most researchers, equipment 

manufacturers, and policymakers agree that HVAC system FDD is important and has the potential to reduce significant 

energy waste due to faulty system operation, widespread adoption of these tools has been slow.  An automated fault 

detection and diagnosis system has been developed for packaged (rooftop) air conditioners based on the 

VOLTTRONTM monitoring and controls framework developed by the Department of Energy.  The system implements 

a virtual-sensor-based FDD methodology capable of isolating common rooftop unit faults such as improper refrigerant 

charge level, heat exchanger fouling, liquid-line restrictions, and compressor valve leakage.  A fault impact evaluation 

component has also been implemented in order to determine the relative impact that faults have on system 

performance.  This is accomplished using virtual sensor outputs and manufacturers’ performance map reference 

models for performance indices such as cooling capacity and COP.  This system has been implemented using low-

cost electronics components and was tested using a 5-ton RTU in a laboratory environment. 

In this work, a high-level overview of the automated rooftop unit (RTU) FDD system structure will be presented 

detailing how individual software agents interact along with a description of the computational and network 

requirements of the system.  Alternative system architectures will also be discussed in comparison to the hybrid system 

presented.  A review of the FDD algorithms is also presented that details the virtual sensor implementations along 

with the methodology to detect, diagnose, and evaluate different faults.  Finally, the performance of the FDD system 

will be demonstrated using laboratory test data collected for a 5-ton RTU that utilizes a micro-channel condenser.  The 

goal of this research is to produce a field ready FDD tool for RTUs that can be used to show the benefits of FDD in 

real systems.  Ultimately, the software implementation (using Python) and hardware designs of all the systems 

components will be released under an open source license in an effort to reduce the engineering effort required by 

equipment manufacturers interested in a complete AFDD solution. 

1. INTRODUCTION 

1.1 RTU AFDD Background 
Studies have shown that packaged commercial air conditioning equipment (commonly called rooftop units, RTUs) 

tend to be poorly maintained and significant energy may be wasted due to unnoticed or unrepaired equipment faults.  

One often cited review of FDD technologies for building systems estimates between 10-30% additional annual energy 

may be caused by repairable faults (Katipamula and Brambley 2005).  While uncertainty about the prevalence of 

different faults still exists, previous field studies have shown that RTUs may benefit from automated FDD in 

particular (Jacobs 2003; Cowan 2004). Moreover, statistical analyses by Li and Braun (2007c) and Yuill (2014) 

estimate that FDD can provide positive value by reducing operating costs and improving in-field equipment 

diagnostics. These results have led to continued academic and institutional research interest in the area of equipment 

and building system FDD. 

Manufacturers have been slow to translate FDD research and technologies into new equipment for a few reasons: 

 FDD systems must be low-cost and easy to install, 
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 uncertainty with respect to economic benefit/savings potential still exists, especially in regards to prevalence 

of different faults, 

 and there has been a lack of integration and interoperability with other building technologies. 

In order to address these issues, a complete automated FDD system has been designed that implements a previously 

developed automated FDD approach using virtual sensors (Li and Braun 2007, 2009). The system is able to monitor 

operation of an RTU continuously and detect and diagnose multiple faults, even when multiple faults affect system 

operation simultaneously.  In addition, a methodology to estimate the total impact on equipment performance has been 

implemented using the virtual sensors and reference models for normal system performance. 

What follows is a technical description of the FDD system that has been developed for RTUs.  The remainder of this 

section gives a high level overview of the system architecture and the open-source monitoring and control platform 

utilized to implement the system in software.  In Section 2, a high level description of the automated FDD algorithms 

as well as a description of the low-cost system hardware is presented, along with references to the original work for 

more details.  In Section 3, results collected from applying the AFDD system to a RTU in a laboratory setting are 

presented.  Finally, in Section 4, the completed work is summarized and possible future work is proposed. 

1.2 Overview of AFDD Architecture 
Two hurdles that limit the adoption of FDD as a retrofit for existing RTUs and for integration in new RTUs are the 

lack of sensors and peripheral communications installed in equipment.  It is difficult to detect problems with the typical 

data that is typically available.  Additionally, it is difficult to alert building owners and facility managers about 

problems in a timely and effective manner.  With this in mind, a dedicated FDD module has been developed that can 

be integrated within or in parallel with existing RTU controllers.  The system addresses the need for sensors by adding 

low-cost measurement electronics and enables external communications by adding standard internet connectivity 

hardware.  A schematic outline of the system architecture in relation to a typical RTU controller is shown in Figure 1. 

 
Figure 1. Overall architecture of VOLTTRONTM enabled RTU AFDD system as an additional module of 

current RTU control units. 

It should be noted that integrating a dedicated FDD module in existing RTU controllers is not the only possible solution 

for detecting and diagnosing equipment faults.  An alternative solution, commonly called in-field FDD, uses devices 

that can be temporarily installed on equipment to aid field technicians in determining problems.  A significant 

advantage of these diagnostics tools is that the cost can be distributed to many different RTUs since they can be 

generally applied.  However, designing a tool that can be generally applied to many different RTUs while still having 

sufficient fault detection sensitivity and false alarm rejection is challenging (Yuill and Braun 2013).  In addition, in-

field FDD requires inspection of actual RTUs in order to detect and diagnose faults but previous studies have 

concluded that RTU inspection may be infrequent (Jacobs 2003; Cowan 2004; NMR Group 2015).  Finally, the cost 

of sending service technicians into the field is significant in comparison with monitoring the health of equipment using 

electronics. 

From its conception, the automated FDD (AFDD) system has been developed with the potential for existing as a 

passive, standalone system within the RTU controller.  This means it was essential to incorporate all basic components 
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of an AFDD product: a sensor measurement and data acquisition (DAQ) module, a fault detection module, and a fault 

diagnosis module.  This involved both hardware design and extensive software development to implement the AFDD 

methods and algorithms.  Rather than using propriety tools and code, the RTU AFDD system leverages open-source 

software exclusively, most importantly the VOLTTRONTM monitoring and control platform (Somasundaram et al 

2014, Akyol et al 2015).  The VOLTTRONTM platform, developed by the US Department of Energy, facilitates 

communication between software agents and other physical devices and resources with a primary focus on building 

systems and technologies.  The role VOLTTRONTM plays in the RTU AFDD system is to act as a message broker 

between AFDD services so that development, operation, and management may be organized hierarchically. This 

modularity offers the flexibility to modify, add, or completely swap out individual subcomponents depending on 

system requirements and RTU configuration. 

2. IMPLEMENTATION DETAILS 

2.1 Description of FDD Methodology and Software Implementation 
Many automated FDD approaches have been previously proposed for RTUs (Rossi and Braun 1996; Armstrong et al 

2006; Li and Braun 2007a; Najafi et al 2012; Katipamula et al 2015; Hjortland and Braun 2016a). The system 

described in this work implements a virtual sensor based methodology originally described by Li and Braun (2007a; 

2007b).  A virtual sensor uses low-cost sensor measurements with a mathematical model to estimate quantities that 

are difficult or expensive to measure directly.  Several virtual sensors developed previously were implemented that 

can be used to detect and diagnose common faults, including: 

 improper refrigerant charge levels, 

 reduction in evaporator airflow caused by fouled evaporator coils, 

 reduction in condenser airflow cause by fouled condenser coils, 

 loss of compressor volumetric efficiency caused by compressor valve leakage, 

 and liquid-line restrictions. 

One major advantage of the virtual sensor approach is the ability to diagnose faults in the presence of multiple 

simultaneous faults.  This is important since many faults may cause system performance to degrade over time if regular 

maintenance is not performed.  In addition to detecting and diagnosing common faults, the cooling capacity, electrical 

power input, and COP of the system can be estimated using virtual sensors when the system operates. 

One differentiating quality of the method implemented in this work is that faults are diagnosed using virtual sensors 

that are sensitive only to certain faults. This approach is what enables the diagnosis of multiple faults that occur 

simultaneously, which other methodologies were unable to do (Rossi and Braun, 1996).  The virtual sensors 

implemented include: 

 a virtual refrigerant charge sensor originally proposed by Li and Braun (2007b) and improved by Kim and 

Braun (2013) based on an empirical relationship between refrigerant charge level and suction superheat, 

liquid-line subcooling, and evaporator inlet thermodynamic quality, 

 a virtual evaporator airflow rate sensor based on an evaporator coil energy balance using entering and leaving 

refrigerant-side and air-side sensor measurements (Li and Braun 2007b), 

 a virtual condenser airflow rate sensor based on a condenser coil energy balance using entering and leaving 

refrigerant side and air-side sensor measurements (Li and Braun 2007b), 

 and several virtual refrigerant mass flow rate sensors that can be used to diagnose compressor valve leakage 

and liquid-line restrictions (Li and Braun 2007b; Kim and Braun 2016). 

Using other virtual sensors along with direct sensor measurements at different system state points, virtual cooling 

capacity, electrical input power, and COP sensors were implemented.  These sensors can be used along with empirical 

models developed to estimate the normal performance of the system at different ambient conditions in order to 

determine the overall impact of faults.  Using these impact estimates, more sensible maintenance and service decisions 

can be made by considering the cost to performe service and the additional utility cost to operate the system. 

The empirical and mathematical models for the different virtual sensors were implemented using several open-source 

numerical computing libraries in the Python programming language (Hjortland 2016b).  These models were 
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incorporated into VOLTTRONTM compatible agents within a low-cost computing device.  This software also included 

data acquisition functionality to interface with sensors required to monitor system operation. 

2.2 Hardware Design and Initial Prototype Details 
Due to the limited availability of sensors installed on existing RTUs in production and the relatively modest computing 

resources available, additional electronics hardware has been designed for implementing the aforementioned AFDD 

algorithms.  The system designed can be considered standalone – these electronics can be installed on a typical RTU 

and with the proper initial configuration, an effective AFDD system can be utilized by building operators without any 

other sensor requirements or hardware.  While this system could seemingly be applied as a retrofit, it was primarily 

designed from the standpoint of being embedded by equipment manufacturers during the production process. 

In order to implement the virtual-sensor-based AFDD algorithms, several refrigerant-side and air-side temperature 

measurements (shown in Table 1) are required.  To measure these temperatures, a low-cost buffered analog-to-digital 

thermistor circuit was designed (the hardware designs can be found with the source code, Hjortland 2016b).  The 

thermistors selected for the application can be easily surface-mounted to the RTU refrigerant circuit in the locations 

required.  In comparison to other types of temperature sensors (thermocouples, RTDs, etc.) thermistors offer a good 

combination of accuracy, reliability, and cost.  When using thermistors, the highly nonlinear relationship between 

temperature and internal resistance must be considered during the design process.  While there are different ways to 

address this problem, each with their own tradeoffs, a more expensive (yet still relatively inexpensive) analog-to-

digital converter (ADC) with a higher resolution was selected for this application. 

Table 1. Description of required refrigerant-side temperature sensors used for RTU AFDD methods. 

Symbol Type Description 

𝑇𝑒𝑟𝑖  10 kΩ Thermistor1 Evaporator Refrigerant Inlet Temperature 

𝑇𝑠𝑢𝑐 10 kΩ Thermistor Compressor Refrigerant Suction Temperature 

𝑇𝑑𝑖𝑠 10 kΩ Thermistor Compressor Refrigerant Discharge Temperature 

𝑇𝑐𝑟𝑠 10 kΩ Thermistor2 Condenser Refrigerant Saturation Temperature 

𝑇𝑐𝑟𝑜 10 kΩ Thermistor Condenser Refrigerant Outlet Temperature 

𝑇𝑐𝑎𝑖 10 kΩ Thermistor Condenser Air Inlet Temperature 
𝑇𝑐𝑎𝑜 10 kΩ Thermistor Condenser Air Outlet Temperature 
𝑇𝑒𝑎𝑖  Temp/RH Chip Evaporator Air Inlet Temperature 
𝜑𝑒𝑎𝑖 Temp/RH Chip Evaporator Air Inlet Relative Humidity 
𝑇𝑒𝑎𝑜 Temp/RH Chip Evaporator Air Outlet Temperature 
𝜑𝑒𝑎𝑜 Temp/RH Chip Evaporator Air Outlet Relative Humidity 

1 In some applications, a compressor suction pressure measurement is available.  When this is the case, the 𝑇𝑒𝑟𝑖  
sensor is not required since the evaporating temperature can be calculated using two-phase property relations. 

2 In some applications, a compressor discharge pressure measurement is available.  When this is the case, the 𝑇𝑐𝑟𝑠 
sensor is not required since the condensing temperature can be calculated using two-phase property relations. 

It should also be noted that pressure measurements can be used to calculate the evaporator refrigerant inlet temperature 

and condenser refrigerant saturation temperature since the refrigerant at these points is a two-phase fluid. Systems that 

already have these pressure sensors installed for control purposes do not need to install additional temperature sensors 

which reduces the additional instrumentation costs for AFDD.  It is also worth noting that pressure sensors may be 

required for systems with micro-channel condensers.  On these systems, locating a consistent and reliable saturation 

temperature point over the expected equipment operating range is not trivial task. 

The RTU AFDD methodology requires a calculation of the enthalpy of the entering and leaving evaporator air in order 

to determine if the evaporator coil is fouled or airflow has been reduced.  Measuring enthalpy directly is not possible, 

so the temperature and relative humidity at these points is measured instead (described in Table 1).  In the initial 

design, two solid-state sensors that measured both the dry-bulb temperature and relative humidity were used.  Unlike 

the analog thermistor circuits described previously, these sensors provide a digital output using the I2C 

communications protocol. Besides using these sensors for the virtual evaporator airflow (VEAF) sensor, the entering 

evaporator air drybulb temperature and wetbulb temperature are used as inputs in reference models of normal 

performance also used by the AFDD algorithms. 
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An overall schematic view of the temperature, pressure, and relative humidity sensors used by the RTU AFDD system 

is shown in Figure 2.  In comparison with the sensors typically found on RTUs, significantly more sensors are required.  

The additional sensor sensors enable the ability to diagnosis simultaneous faults and estimate impacts of faults on 

cooling capacity and COP. 

 
Figure 2. Locations of temperature (T), pressure (P), and relative humidity (ϕ) sensors used by RTU AFDD 

system.  System using only refrigerant-side temperature measurements is shown on left; system using 

refrigerant-side pressure measurements is shown on right. 

Besides sensors and signal conditioning circuitry, the RTU AFDD data acquisition system requires a computational 

engine that is able to monitor the sensor outputs and perform the required mathematical transformations to the data 

and communicate the results with the VOLTTRONTM message bus.  Typically, in HVAC applications, a low cost 

microcontroller is used for data acquisition purposes.  Most microcontrollers by themselves do not have the type of 

communications abilities that are required by the VOLTTRONTM communication protocol.  While with enough time 

and effort, this could be implemented in some microcontrollers, an alternative type of device was selected to perform 

the required data analysis and communications. 

The BeagleBone Black is a low-cost, open-source, community supported development platform with a TI SitaraTM 

ARM® Cortex A8 microprocessor that is capable of running the Linux operating system.  In other words, the 

BeagleBone Black is a computer with all essential components (microprocessor, RAM, hard drive, etc.) on a single 

circuit board.  The first role of the BeagleBone Black in this application is to provide analog and digital interfaces 

between the data acquisition software and the required sensors installed on the RTU.  Compared to other 

microcontrollers and microprocessors, application development using the BeagleBone Black is easier since many of 

these low-level hardware and software interfaces are provided out of the box.  The second role of the BeagleBone 

Black is to support a run-time environment for the central VOLTTRONTM application as well as the embedded RTU 

AFDD software agents.  The BeagleBone Black is not the only system capable of this; other development platforms 

are available with similar functionality.  Development using the BeagleBone Black was selected since the TI SitaraTM 

microprocessor is widely available.  Because of this, any work done with the prototype platform is almost directly 

translatable to any future (potentially lower cost) platform using a similar chipset. 

The RTU AFDD electronics system designed was implemented using actual components, shown in Figure 3. The 

hardware selected for the prototype is considered to be typical and widely available.  The system implemented is 

relatively low-cost when compared to similar data acquisition applications within the HVAC market – the final system 

could be built for approximately $120 USD.   With consideration for economies of scale and optimized manufacturing 

process, significant cost reduction should be possible.  While the through-hole prototyping system shown in Figure 3 

can be readily manufactured, a printed circuit board design was also developed. 
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Figure 3. RTU AFDD system through-hole prototype implementation using pre-fabricated prototyping electronics 
boards. 

3. LABORATORY TESTING RESULTS 

In order to test the performance of the fault detection and diagnostics system, a RTU with 5-ton rated capacity was 

installed in psychrometric chambers at Ray W. Herrick Laboratories.  The system was installed with a two-stage scroll 

compressor, a finned-tube evaporator, a finned-tube condenser, and used R410A as the working fluid.  The system is 

shown in Figure 4 installed in the psychrometric chambers. 

 
Figure 3. 5-ton RTU used to test automated fault detection and diagnostics system installed in psychrometric 

chambers. 

In order to test the performance of the AFDD system, the RTU was operated under a range of operating conditions, 

described in Table 2.  This included both wet coil and dry coil tests under outdoor ambient conditions ranging from 

20.56 °C (69 °F) to 42.22 °C (108 °F).  In order to test the performance of the AFDD system at diagnosing refrigerant 

charge faults, the system charge level was adjusted to values ranging from 60% (40% undercharge) to 120% (20 

overcharge).  The ability to diagnose reductions in evaporator and condenser airflow (simulating fouling) was tested 

by adjusting the indoor blower and outdoor fan control inputs to prescribed levels.  Two levels of airflow were tested 

for each fan: normal and reduced.  Finally, combinations of all three faults were tested simultaneously at the different 

ambient conditions. 
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Table 2. Test conditions for RTU with finned-tube condenser and fixed orifice expansion device for low stage 

cooling operation in psychrometric test chambers. 

Test Variable Test Values 
Compressor Stage [-] LOW HIGH 

Indoor Dry Bulb  [°C] 26.67 26.67 

Indoor Wet Bulb   [°C] 13.89, 20.56 13.89, 20.56 

Outdoor Dry Bulb  [°C] 20.56, 27.78, 35.00, 41.22 20.56, 27.78, 35.00, 41.22 

Charge Level1   [%] 60, 70, 80, 90, 100, 110, 120 60, 70, 80, 90, 100, 110, 120 

Indoor Fan Torque2  [%] 30, 60 50, 90 

Outdoor Fan Speed3  [%] 40, 70 70, 100 

1 Charge is measured relative to the recommended charge according to the manufacturer’s nameplate data. 
2 Indoor fan torque is set according to a nominal flow rate of 1350 CFM for low stage operation; 2000 CFM for 

high stage operation. 
3 Outdoor fan speed is set using the manufacturer’s default value for low and high stage operation. 

The accuracy of the VRC model for each stage of operation is shown in Figure 4 over the range of ambient conditions 

and fault scenarios tested. The virtual refrigerant charge sensor required empirical data to tune the model parameters.  

These parameters were tuned using an automated training algorithm without the use of psychrometric chambers 

(Patil et al. 2016).   In both stages of operation, the prediction accuracy was mostly within 10% of the measured charge 

levels.  Moreover, the root-mean-square error (RMSE) was approximately 6.20% for both stages operation.  It should 

also be noted that the relative accuracy remains approximately unchanged over the range of refrigerant charge levels 

tested and minimal bias exists as a function of outdoor ambient temperature. 

 
Figure 4. VRC sensor prediction accuracy for RTU with finned tube condenser and fixed orifice expansion 

device applied to both stages of operation under different ambient conditions. 

Figure 5 shows the accuracy of the virtual charge sensor as well as the calculated fault probability for tests cases with 

normal airflow rate levels.  Good agreement between the predicted charge level and the measured charge level was 

observed for these test cases.  The charge fault probability was calculated using a statistical methodology originally 

described by Rossi and Braun (1997).  Essentially, this assumes that two Gaussian distributions can be used to 

represent the expected and observed refrigerant charge levels.  The degree that these two distributions overlap is 

analogous to the probability that the observed charge level is equal to the expected charge level.  This probability is 

then calculated by integrating the area contained by both distributions. Also shown in Figure 5 is the calculated 

probability of a charge fault being present in each case.  The results shown in Figure 5 show that the FDD system is 
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able to identify refrigerant charge faults with probabilities greater than 95% when the actual charge level deviates 

±15% from normal. 

 
Figure 5. Prediction accuracy of VRC sensor applied to charge level vaults showing charge fault probability 

for each test case.  The data show that the FDD system is able to identify faults with high confidence when 

actual charge is ±20% of the normal charge level. 

It is important that the FDD system is able to accurately identify faults when there are multiple simultaneous faults 

affecting the system.  Figure 6 shows the performance of the charge fault diagnostics for several combinations of 

improper refrigerant levels, indoor airflow levels, and outdoor airflow levels.  In these results, tested under 27.78 °C 

(82 °F) outdoor temperature, refrigerant charge faults were correctly identified with probabilities greater than 95% in 

all cases where the charge level deviated by at least ±20%.  It is also noteworthy that the VRC sensor tends to predict 

refrigerant charge faults with greater probability when the impact on system capacity of the faults increases.  This 

indicates that when significant refrigerant charge faults affect the system, the FDD system is able to identify them. 

 
Figure 6. Total capacity impact of refrigerant charge faults at 27.78 °C (82 °F) outdoor ambient temperature.  

The points are colored based on the fault probability determined for each test case, indicating faults that have 

larger impacts are identified with greater probability. IDF indicates the indoor fan torque setting; ODF 

indicates the outdoor fan speed setting. 
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Similar results for test conditions at 35.00 °C (95 °F) and 41.22 °C (108 °F) outdoor temperature are shown in Figure 7 

and Figure 8 respectively.  In these results, refrigerant charge faults were correctly identified with high probabilities 

in test cases where the refrigerant charge deviated by ±10%.  It should also be noted that refrigerant charge faults 

tended to have large impacts on the total capacity of the system at the higher outdoor temperatures. 

 
Figure 7. Total capacity impact of refrigerant charge faults at 35.00 °C (95 °F) outdoor ambient temperature.  

The points are colored based on the fault probability determined for each test case, indicating faults that have 

larger impacts are identified with greater probability. IDF indicates the indoor fan torque setting; ODF 

indicates the outdoor fan speed setting. 

 
Figure 8. Total capacity impact of refrigerant charge faults at 41.22 °C (108 °F) outdoor ambient temperature.  

The points are colored based on the fault probability determined for each test case, indicating faults that have 

larger impacts are identified with greater probability. IDF indicates the indoor fan torque setting; ODF 

indicates the outdoor fan speed setting. 

The probability of an evaporator airflow fault has been calculated for each test case in order to test the effectiveness 

of the FDD system at identifying evaporator fouling faults.  This probability was calculated using the previously 

described method using the virtual evaporator airflow rate sensor.  The results in Figure 9 compare test cases at 

27.78 °C (82 °F) ambient conditions where evaporator airflow was normal and reduced to simulate a fouling fault.  

Fault cases that had reductions in evaporator airflow resulted in high fault probabilities, which can be used to identify 
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faults.  The results illustrate that evaporator fouling can be identified even in the presence of other faults, like low 

refrigerant charge. 

 
Figure 9. The FDD system is able to identify test cases with low evaporator airflow using the statistical fault 

detection and diagnostics method.  Test cases without reductions in evaporator airflow were not identified with 

high fault probabilities. IDF indicates the indoor fan torque setting; ODF indicates the outdoor fan speed 

setting. 

The probability of a condenser airflow fault has been calculated for each test case in order to test the effectiveness of 

the FDD system at identifying condenser fouling faults.  This probability was calculated using the previously described 

method using the virtual condenser airflow rate sensor.  The results in Figure 10 compare test cases at 27.78 °C (82 °F) 

ambient conditions where condenser airflow was normal and reduced to simulate a fouling fault.  Fault cases that had 

reductions in condenser airflow resulted in high fault probabilities, which can be used to identify faults.  The results 

illustrate that condenser fouling can be identified even in the presence of other faults, like low refrigerant charge. 

 
Figure 10. The FDD system is able to identify test cases with low condenser airflow using the statistical fault 

detection and diagnostics method for test cases under 27.78 °C (82 °F) outdoor ambient temperature.  Test 

cases without reductions in condenser airflow were not identified with high fault probabilities. IDF indicates 

the indoor fan torque setting; ODF indicates the outdoor fan speed setting. 
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4. CONCLUSIONS AND FUTURE WORK 

Previous research on automated fault detection and diagnosis (AFDD) for building systems has shown that identifying 

problems that cause degradation in system and equipment performance is technically feasible and has the potential to 

significantly reduce energy consumption.  However, manufacturers have faced hurdles such as high instrumentation 

costs, lack of integration with other building system equipment, and uncertainty in regards to savings that has 

prevented technologies from seeing market adoption.  In this work, an AFDD system for packaged rooftop air 

conditioning equipment has been described.  The AFDD algorithms have been described as well as the open-source 

software implementation of the system.  Additionally, low-cost electronics hardware has been designed to implement 

the data acquisition, communications, and computational requirements of the system.  All hardware designs and 

VOLTTRONTM compatible software agents have been made publically available (Hjortland 2016b).  It is envisioned 

that this work can be adapted by future researchers as well as equipment manufacturers to reduce initial engineering 

and development effort. 

Extensive psychrometric chamber testing has been conducted in an effort to assess the performance of a FDD system 

designed for rooftop units.  Testing was performed under a wide range of outdoor and indoor ambient conditions while 

also injecting combinations of improper refrigerant charge, evaporator airflow reduction, and condenser airflow 

reduction faults.  A statistical method for determining the probability of a fault being present in the system was able 

to identify improper charge levels, evaporator airflow reduction and condenser airflow reduction.  Additionally, tests 

with multiple faults also showed good fault isolation, especially when impacts on total capacity and COP were 

significant.  This indicates that the FDD system is able to identify problems that may cause significant additional 

energy consumption.  Field study on actual equipment is still necessary to demonstrate the performance of the RTU 

AFDD system in real-world scenarios.  Using the described system, wide-spread field demonstration is much more 

attainable. 
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