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ABSTRACT 

 
An experimental study of convective condensation of steam in a large, inclined, finned tube is presented.  This study 

extends previous work in the field on inclined, convective condensation in small, round tubes to large, non-circular 

tubes with low inlet mass flux of vapor.  The steel condenser tube in this study was designed for use in a power-plant 

air-cooled-condenser array with forced convection of air.  The tube was cut in half lengthwise and covered with a 

polycarbonate viewing window to allow simultaneous visualization and heat transfer measurements.  The half tube 

test section had inner dimensions of 214 mm x 6.3 mm and a length of 10.72 m.  This study investigated heat transfer 

results for a mass flux of steam of 6.8 kg/m2-s over a range of inclination angles.  The angle of inclination of the 

condenser tube was varied from 0.3o (horizontal) to 13.2o downward flow.  The experiments were performed with 

uniform crossflowing air with velocity of 2.0 m/s.  Both dropwise and filmwise condensation were observed on the 

tube wall, and depth of the condensate river at tube bottom was seen to decrease with an increase in inclination angle.  

Average steam-side heat transfer coefficient was shown to increase with an increase in inclination angle.  However, 

average steam-side heat transfer coefficient was much lower than the predictions of both vertical flat-plate Nusselt 

condensation, as well as Kroger’s correlation for condensation in air-cooled condensers.  Overall, the results suggest 

that an improvement in steam-side heat transfer performance can be achieved by varying the tube inclination angle.  

Pressure drop results are presented in a companion paper. 

 

1. INTRODUCTION 
 

This study investigates an inclined, flattened tube with internal convective condensation in both dropwise and filmwise 

modes, with a focus on air-cooled condenser (ACC) applications for power plants.  Each of these physical aspects and 

phenomena have been studied individually, but never in this combination.  Due to the large, flat surface area of the 

condenser and the low vapor velocity of the steam, the classical film condensation model presented by Nusselt (1916) 

serves as a lower bound for heat transfer.  Nusselt’s model assumes laminar film condensation and gravity-driven 

flow, and yields a mean heat transfer coefficient (HTC) over a flat plate of: 

 

 ℎ̅ = 0.943 [
𝑖𝑓𝑔𝜌𝑓(𝜌𝑓 − 𝜌𝑔)𝑔𝑘𝑓

3

𝑊𝜇𝑓(𝑇𝑠𝑎𝑡 − 𝑇𝑤)
] (1) 

 

For flow through ducts, heat-transfer correlations are more commonly used, however.  The correlations by Shah (1979), 

Soliman et al (1968), Traviss et al (1972) and Chato (1960) are among the most-commonly used of these.  However, 

all of these are for round tubes.  The correlation of Chato is most applicable to this investigation, because it models 

separated flow at low mass fluxes.  Chato predicted that heat transfer through the laminar condensate layer would be 

negligible compared to that along the condenser wall.  Therefore, heat transfer will decrease as the thickness of this 
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layer increases.  Chato also applied his model to an inclined tube, where it showed an increase in HTC as the tube was 

inclined downward from the horizontal, but a decrease in HTC upon reaching a critical inclination angle. 

 

Several more-recent studies have investigated downwardly-inclined condensation in short, cylindrical tubes.  Lips and 

Meyer (2012), Noie et al., (2007), and Lyulin et al. (2011) have shown that HTC at first increases for an increasing 

inclination angle in downward flow.  After reaching a critical angle, HTC then decreases steadily until vertical 

downward flow is reached.  In their study with R134a in an 8.38mm diameter tube, Lips and Meyer showed that the 

optimum inclination angle for HTC occurred between 15o and 30o.  Noie et al. studied an inclined thermosiphon with 

a diameter of 14.5mm and water as the working fluid.  They found a similar result with 15-60o as the optimum angle.  

Lyulin et al. studied low mass flux of condensing ethanol in a 4.8mm tube, and found a maximum HTC between 15 

and 35o inclination.  In a more recent study, Olivier et al. (2015)  expanded on the study of Lips and Meyer (2012) to 

conclude that for low mass flux and quality, HTC and void fraction reach a maximum at 10-30o inclination in 

downward condensing flow.   

 

In a slight departure from the above studies, Wurfel et al., (2003) used a larger, 2cm tube with n-heptane in shear-

dominated flows, and found that HTC increased with increasing inclination angle,  reaching a maximum at vertical 

downward flow.  In a complete departure, Akhavan –Behabadi et al., (2007) found that HTC decreased for all 

downward inclination angles.  They used R134a with high mass fluxes, but in a microfin tube.   

 

In an analytical analysis, Kröger (2004) developed a correlation specifically for inclined ACC condensers: 

 

 𝑁𝑢𝑐 = 1.197(𝑠𝑖𝑛𝜑)0.1755 (
𝜌𝑐
𝜇𝑐
)
0.5

(
𝜇𝑔

𝜌𝑔
)

0.5

𝑅𝑒𝑔𝑖
0.325 (2) 

 

The previous work by Wang and Du (2000) clarifies these mixed results by presenting experimental results for a range 

of small-diameter tubes at a range of mass fluxes and qualities.  Their results showed an increase in HTC for increasing 

inclination in smaller tubes.  For larger tubes, HTC only increased at low qualities, and HTC averaged across all 

qualities decreased.  Overall, the experimental investigations have produced mixed results, showing that the effect of 

inclination is moderated by other variables, most notably tube diameter, vapor quality and mass flux.   In general, for 

large tubes, and low quality and mass flux, condensation heat transfer coefficient has been shown to at first increase 

with increasing inclination angle, then decrease after reaching a critical angle.  

 

Other authors have provided further insight by measuring related parameters in inclined tubes.  Cheng et al. (2015) 

used a numerical model to predict film condensation in a flattened ACC tube for tube inclination angles varying from 

5 to 85o.  They predicted that the maximum depth of the condensate river at the tube bottom would vary from 2.1 to 

0.8 mm, corresponding to an increase in the tube inclination angle.   

 

In order to clarify these mixed results for the specific application of large, flattened-tube air-cooled condensers, this 

study aimed to measure steam-side heat transfer coefficient at multiple downward inclination angles and explain those 

results with the aid of visualization.  

 

2. EXPERIMENT DESCRIPTION 
 

2.1 Facility 
The concept of the investigation was to measure the internal, convective, condensation heat transfer on the surface of 

one of the tubes from an ACC array.  The tube was cut in half lengthwise to allow visualization of the flow pattern 

through a transparent wall while simultaneously measuring heat transfer and pressure drop.  The tube was placed in a 

structure that could rotate from the horizontal position (0o inclination) to vertical (90o inclination) to experimentally 

determine the effect of inclination on heat transfer, pressure drop and flow regime.  Air flow was provided by 134 

small axial fans that allowed variation of the velocity of air and measurement of its effect.   

 

This complex approach came with certain compromises.  The most obvious was the addition of the transparent wall 

for visualization.  It reduced by half the flow area for vapor and condensate.  However, the quantity of vapor and 

condensate were also reduced compared to a full tube, so the mass flux and flow regimes remained unchanged.  

Another compromise was the accuracy of determining the local heat transfer coefficient on the steam side.  The local 
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HTC was based on wall temperature measurements.  The T-type (CuCo) thermocouple probes used have limited 

accuracy and the measurement was complicated by the difficulty in reading actual wall temperature.  The secondary 

determination approach was also problematic in that it was based on the assumption that the air side was well known.  

 

The experimental facility is presented in Figure 1 schematically and with accompanying photograph. 

Boiler 1

24 kW

Boiler 2

27 kW

Condensate
Pump

Condensate 

Receiver

Inlet 
Heater

Gate Valve

Scale

Inlet Gauge 
Pressure

 

 

Figure 1: Schematic drawing and photograph of the experimental facility 

 

Steam was provided to the condenser by two boilers controlled by solid-state controllers, with a maximum capacity 

of 51 kW.  An inlet heater and choke valve ensured that the steam was superheated at the condenser inlet.  At the 

condenser outlet, condensate drained by gravity into a receiver, and a condensate pump refilled the boilers when the 

condensate receiver had filled.   

 

2.2 Test Specimen (Condenser tube) 
 

 
Figure 2: Facility cross-section 

 

 
 

Figure 3: Condenser cross-section 
 

Figure 4: Picture of full tube 

 

Polycarbonate 

window 

location 
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The flattened, carbon-steel, 10.72 m-long condenser tube with aluminum fins was cut in half lengthwise, and a 9.5 

mm-thick polycarbonate sheet was attached to the open face to allow visual access.  The half tube had a width of 214 

mm and a depth of 6.3 mm as presented in Figure 3.  The inner perimeter of the condenser, not including the 

polycarbonate window, was 223 mm.  The fin length was 200 mm and the height was 19 mm.  The axial fans were 80 

mm in diameter, and were arranged to pull air upwards through the fins.  Orientation of the tube, air duct, fans, and 

insulation can be seen in Figure 2.  The un-cut full tube is pictured in Figure 4 

 

2.3 Test conditions 

Table 1: System operating parameters 

Parameter Range Uncertainty 

Inlet vapor mass flux [kg m-2 s-1] 6.8 ±1 

Mass flow rate [g s-1] 10. ±1 

Condenser capacity [kW] 25 – 29 ±3% 

Air velocity (average) [m s-1] 2.0 ±7% 

Vapor inlet pressure [kPa] 102 – 106 ±0.1 

Vapor inlet superheat [oC] 0.1 – 0.7 ±.05 

Inclination angle [o] 0.3 – 13.2 ±0.4% 

 

2.4 Measurements 
Heat transfer was measured on the steam side and on the air side to provide redundant measurements.  The locations 

of the measuring points are presented in Figure 5. 

 

 
Figure 5: Schematic drawing of temperature and pressure measurement locations 

 

Temperatures were measured at 1-m intervals along the condenser. At each point, steam saturation temperature, 

condenser wall temperature, air in and out temperature, and local air temperature were measured.  Saturation 

temperature of the steam and condenser wall temperature were measured at x-locations 160.5 and 53.5 mm, in order 

to detect temperature gradients along the tube height.  Tamb, Tsatt, Tsatb, Ts, Tai and Tao were measured using sheathed 

T-type thermocouples.  Twt, Twb, Tat, and Tab were measured using welded-bead 30-gauge T-type thermocouple wire. 

Condensate mass flow rate was measured at the receiver by weight, using a digital scale.   

 

On the air side, the total length of the tube was divided into 11 sections (each 1 m long) for air velocity measurements. 

Air velocity was measured with a locally-calibrated Alnor Compuflow 8585 hot wire anemometer.  Average velocity 

per section varied ±10% around the overall average velocity, as seen in Figure 6. 
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Figure 6: Average air velocity per 1m section along the condenser, measured at the inlet to the fins 

 

2.5 Data Reduction 
Air-side heat balance was determined per measurement section, j, based on flow rate and enthalpy difference, as in 

equation (3): 

 

 
𝑄𝑎,𝑗 = 𝑣𝑎,𝑗𝜌𝑎,𝑗𝐻𝑎∆𝑧(𝑐𝑝,𝑎,𝑜𝑢𝑡,𝑗𝑇𝑎𝑜,𝑗 − 𝑐𝑝,𝑎,𝑖𝑛,𝑗𝑇𝑎𝑖,𝑗) + 𝑄𝑎,𝑙𝑜𝑠𝑠,𝑗 

 

(3) 

 

 𝑄𝑎 =∑𝑄𝑎,𝑗

11

𝑗=1

 (4) 

 

Steam-side heat balance was determined for the entire condenser from inlet and outlet conditions, as in equation (5).   

 

 
𝑄𝑠 = 𝑚̇𝑐((𝑖𝑖𝑛 − 𝑖𝑜𝑢𝑡)) − 𝑄𝑠,𝑙𝑜𝑠𝑠 (5) 

Assuming negligible superheat and subcooling, Qs was simplified to:   

 

 
𝑄𝑠 = 𝑚̇𝑐(𝑖𝑓𝑔) − 𝑄𝑠,𝑙𝑜𝑠𝑠  (6) 

Overall heat transfer coefficient U was determined from equation (7) using the uncertainty-weighted average of the 

steam-side and air-side heat balances, and a heat-transfer-resistance network: 

 

 
𝑄̅ = 𝑈𝐴 × 𝐿𝑀𝑇𝐷 (7) 

 𝑄̅ =
(
1
𝑢𝑎

2)𝑄𝑎 + (
1
𝑢𝑠

2)𝑄𝑠

1
𝑢𝑎

2 +
1
𝑢𝑠

2

 (8) 

 

 

 

1

𝑈𝐴
=

1

ℎ̅𝑎𝐴𝑎𝜂0
+

𝑡𝑠𝑡
𝑘𝑠𝑡𝐴𝑠

+
1

ℎ̅𝑠𝐴𝑠
 (9) 

As overall resistance could be divided into air-side, nearly-negligible conduction through the steel, and steam-side, as 

shown in equation (9), steam-side HTC was determined with all other variables known. 

 

The correlation for air-side HTC for this particular geometry was provided from experimental work performed by 

Creative Thermal Solutions: 

 𝑁𝑢 = 0.1871𝑅𝑒𝑎
0.5 (10) 

 

3. RESULTS AND DISCUSSION 
 

3.1 Visualization of flow regimes  
As diagramed in Figure 7 below, the general pattern of flow was axial vapor flow, with mixed filmwise and dropwise 

condensation on the tube wall.  In dropwise regions, droplets of critical size would fall due to gravity, sliding along 
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the steel surface and cleaning the surface below of droplets.  These falling droplets would almost exclusively originate 

at the top of the tube, as droplets lower on the surface would be continuously swept off by droplets falling from above.  

These falling droplets would pool in the condensate river at the tube bottom.  The condensate river flowed in the axial 

direction, predominantly due to gravitational force.  The condensate river gradually increased in depth and velocity 

from tube inlet to tube outlet.   

 

From this basic description, the flow pattern could then be divided into four different flow regions along the length of 

the condenser: the entrance region, wavy region, transition region and stagnation region.  All regions contained mixed-

mode dropwise and filmwise condensation.  The entrance region began at the condenser inlet and extended less than 

0.5 m into the tube.  This region was characterized by turbulent vapor flow.  Falling droplets of condensate were 

subjected to significant shear stress, so they were carried downstream while falling under the influence of gravity.  As 

a result, there was no significant condensate river in this region. 

 

The wavy region was only present in the horizontal orientation.  In this region, the condensate river had reached a 

depth of a few millimeters, while the vapor velocity remained high.  The high vapor shear created a distinct wave 

pattern along the condensate surface caused by a Helmoltz instability.  This region was only present in the horizontal 

orientation.  For steeper inclinations, the condensate river was much thinner, not allowing vapor shear to overcome 

the condensate surface tension. 

 

  

 

 
Figure 7: Diagram of vapor and condensate flow in condenser tube (L); Picture of condensate flow at z = 1m (C); 

Cross-sectional diagram of flow regime (R) 

 

The transition region was characterized by a smoother vapor-condensate interface at the tube bottom.  The condensate 

river gradually increased in depth, and the vapor flow transitioned from turbulent to laminar.  As a result, the flow of 

condensate was almost entirely gravity driven.  The falling condensate droplets fell parallel to the force of gravity, 

and the condensate river slowly accelerated with gravity.  This region encompassed the majority of the condenser’s 

length. 

 

The stagnation region occurred near the tube outlet.  In this region, vapor velocity fell to zero, and the condensate flow 

was completely dominated by gravity.  Velocity and mass flow rate of the condensate river was at a maximum in this 

region.  For the horizontal configuration, depth of the condensate river decreased in this section.  For all other 

inclinations, the condensate river increased to a maximum at the condenser outlet. 

 

The depth of the condensate river was also measured at five points along the condenser.  Figure 8 shows that for all 

inclinations above the horizontal, the depth of the condensate river gradually increased along the condenser length.  

In addition, condensate river depth at each location decreased with increasing inclination angle.  This result agrees 

with the trends predicted by Cheng et al. (2015).  To quantitatively compare the numerical and experimental results, 

the cross-sectional areas of both condensate rivers were compared.  This technique is necessary to account for the 

differing geometries between this experiment and the numerical model.  In quantity of condensate in the river, the 

model by Cheng over-predicted the experimental results by 12%, as seen in Table 2. 

 

See picture, right 
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Figure 8: Depth of condensate river at discrete locations along the condenser, at six different inclination angles; 

error bars on 13.2o inclination only, for clarity 

Table 2: Cross-sectional area of condensate river for numerical full-tube and experimental half-tube 

 Full-Tube Model (Cheng et al. 2015) Half-Tube Experiment 

Inclination            [deg] 5 6 

Condensate Area [mm2] 55.8 24.5 

 

The depth of the condensate river affects HTC by reducing the effective steam-side area.  Heat transfer by single-

phase laminar convection of liquid is less than 10% of that of condensing vapor.  Therefore, overall heat transfer 

coefficient can be assumed to be reduced by an amount proportional to the condenser area covered by the condensate 

river.  At a given axial location, the half-tube had a perimeter of 223 mm.  At an inclination of 6o, the condensate 

height on the steel surface was 4.3 mm at a 1.3 m axial location and 8.3 mm at a 10.6 m axial location.  This 

corresponded to a 1.8% loss of heat transfer area between 1.3 m and 10.6 m along the condenser.  

 

3.2 Heat Transfer Results and Discussion 
For all inclinations tested, the air-side heat balance was approximately 30% greater than the steam-side heat balance.  

The suspected cause of the discrepancy was the difficulty in measuring air temperatures accurately.  To solve this 

issue, the thermocouples have been moved to a location in the air duct where the temperature gradient is lower, thereby 

decreasing uncertainty in air-side temperature for future tests.   

 

Figure 9 - Figure 12 show air-side heat flux at each measurement section along the condenser, for six different 

inclinations from 0.3 – 13.2o.  Heat flux for each section is normalized to the horizontal inclination.  The data show 

that inclination angle had the most significant effect on heat flux in the entrance region of the condenser.  Inclinations 

of 2.9o and 6.0o showed a decrease in heat flux over the first three meters of the condenser.  Heat flux over the first 

meter of the tube then slowly increased for angles 8.7-13.2o, reaching a maximum improvement of 6% versus the 

horizontal for the maximum inclination of 13.2o.  The increase in heat flux over the second and third meters was not 

significant.  The change in heat flux versus inclination was not significant for other portions of the tube, except for 

the 6o inclination.  For this inclination, the heat flux was less than that of the horizontal for the first nine meters of the 

condenser tube.  The portion of the tube that showed the least effects of inclination was the final two meters. 

 

These results are surprising in that the inclination effect has been previously shown to be more pronounced for low 

quality and low vapor mass flux.  These two variables are lowest near the condenser outlet.  However, previous studies 

did not investigate vapor mass fluxes near stagnation, and in fact, the entrance vapor mass flux of 6.8 kg/m2-s was 

below the range of operating conditions in any of the previous studies. 
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Figure 9: Heat flux over 0-3 m axial position along the 

condenser, normalized to the horizontal inclination 

 
Figure 10: Heat flux over 3-6 m axial position along the 

condenser, normalized to the horizontal inclination 

 
Figure 11: Heat flux over 6-9 m axial position along the 

condenser, normalized to the horizontal inclination 

 
Figure 12: Heat flux over 9-10.7 m axial position along 

the condenser, normalized to the horizontal inclination 

 

 
Figure 13: Steam-side HTC normalized to HTC in the 

horizontal inclination 

 
Figure 14: Measured steam-side HTC compared to 

predictions from Nusselt (1916) and Kröger (2004) 

 

Based on previously-published results, steam-side HTC was expected to be a function of inclination angle, φ.  The 

maximum overall heat transfer coefficient was expected to occur between an inclination angle of 15 and 45o.  Overall 

steam-side heat transfer coefficient showed an increase of up to 30% versus the horizontal for inclinations of 6o and 

higher, depicted in Figure 13.  However, the large amount of scatter in the data and the significant uncertainty made 
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the correlation between inclination angle and steam-side HTC weak.  A linear regression of HTC over inclination 

angle indicated that 24% of the variation in HTC was due to inclination angle.  The correlation between HTC and 

inclination angle was 0.49, and the slope was 0.013, with a standard error of 0.006.  These data indicate that heat 

transfer coefficient was a function of inclination angle as expected.  However, compared to the HTC predicted by 

Nusselt condensation (Nusselt 1916) and Kroger’s correlation (Kröger 2004), the measured HTC was less than one-

third of the anticipated values, as shown in Figure 14.  Further work is underway to explore the reasons for this 

discrepancy. 

 

4. CONCLUSIONS 

 
Visually, the steam condensation and heat transfer occurred as expected, with mixed-mode dropwise and filmwise 

condensation, and a condensate river at tube bottom that increased in depth while progressing down the length of the 

condenser.  The condensation mode and flow regime did not change with an increase in inclination from horizontal to 

13.2o.  However, the depth of the condensate river decreased at all positions along the condenser with an increase in 

inclination.   

 

The average steam-side heat transfer coefficient increased with an increase in inclination.  A 1o increase in inclination 

increased the heat transfer coefficient by approximately 1%. However, this relationship was obscured by uncertainty 

in the heat flux determination.  The value of average heat transfer coefficient was lower than that predicted by either 

classical Nusselt condensation (Nusselt 1916), or by Kröger (2004) correlation for air-cooled condensers.   

 

Future work will focus on extending the investigation to 90o inclination and quantifying the phenomena observed 

during flow visualization in order to present an accurate analytical model of the condensation heat transfer. 

 

NOMENCLATURE 

 
A Area (m2) 

cp specific heat (J kg-1 K-1) 

D diameter (m) 

G mass flux (kg m-2 s-1) 

g gravity (m s-2) 

h heat transfer coefficient (W m-2 K-1) 

H height (m) 

ifg enthalpy of vaporization (J kg-1) 

i specific enthalpy (J kg-1) 

k thermal conductivity (W m-1 K-1) 

L length (m) 

LMTD log mean temperature difference (0 C) 

𝑚̇ mass flow rate (g s-1) 

Q heat transfer (W) 

R resistance to heat transfer (m2 K W-1) 

t thickness (m) 

T temperature (0 C) 

U overall heat transfer coefficient (W m-2 K-1) 

v velocity (m s-1) 

W width of tube (m) 

x position along condenser height; quality (m); (-) 

y position perpendicular to tube face (along width) (m) 

z position along condenser axis (m) 

μ viscosity (kg m2 s) 

ρ density (kg m-3) 

φ inclination angle (o) 

 

Subscript 

 

a Air 
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b bottom 

c condensate 

f fluid 

g gas 

h hydraulic 

i in 

loss heat transfer to ambient 

o out 

s steam 

sat saturation 

sh superheat 

st steel 

t top 

w wall 
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