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ABSTRACT 
 

This paper presents the experimental study of the inclination effect on condensation pressure drop in a large-scale 

flattened tube used in an Air-Cooled Condenser (ACC) for steam. Slightly-superheated steam with mass flux of 6.8 

kg m-2 s-1 was condensed inside a 10.7 m long, flattened half-tube with inclination angle varied from horizontal to 

13.2˚. A uniform velocity profile of 2.03 ± 0.12 m s-1 was imposed on the air side to extract heat from the steam. Initial 

two-phase pressure drop measurements and flow visualization showed a reduction of pressure drop due to 

improvement in the gravity-assisted drainage of condensate inside the tube, although improvement was only seen at 

an early stage of inclination. To create a visualization window, the tube was cut in half, and thus a model that accounts 

for the differences in tube material and size between the real, full, flattened condenser tube and test tube was developed 

and validated in the single-phase flow scenario. This model enables the prediction of pressure drop under different 

inclination configurations in the actual ACC in power plants by using the experimental results obtained in this study. 

Heat transfer results are presented in a companion paper.  

 

1. INTRODUCTION 
 

In the application of condenser tubes for refrigeration, nuclear and thermal power generation industries, the 

characteristics of pressure drop are of great importance for system design and optimization. Multiple factors, such as 

tube geometry, local vapor quality, mass flux and tube inclination, influence the flow pattern, and thus heat transfer 

and pressure drop, in a convoluted manner. A large number of correlations for two-phase pressure drop have been 

developed based on experimental investigations. Coleman & Garimella (2003) studied two-phase flow regimes in 

round, square and rectangular tubes during condensation of R134a. Their results showed that flow regime transitions 

are not very strongly dependent on tube shape and aspect ratio for similar hydraulic diameters. Pressure drop 

correlations for two-phase flow in horizontal rectangular channels were also described by Wambsganss et al (1992) 

and Lee & Lee (2001). The modification of parameter C in the Lockhart-Martinelli correlation improved pressure 

drop predictions when the effect of small gap size needs to be taken into account. Kim et al (2013) reasonably predicted 

the pressure drop during the condensation of R410a using the Muller-Steinhagen and Heck correlation with hydraulic 

diameter or Friedel correlation with equivalent diameter. In addition to the tube shape, flow patterns are influenced by 

the tube inclination, but few studies are available to investigate the effect of tilting angle on heat transfer and pressure 

drop during condensation (Lips & Meyer, 2011). Two-phase frictional pressure drop in rectangular channels studied 

by Ide & Matsumura (1990) proved that Lockhart-Martinelli correlation and Akagawa’s correlation do not agree well 

with the experimental data when inclination angle is large and superficial liquid velocity is small. A more 

comprehensive study done by Lips & Meyer (2012) provided detailed results of pressure drop during the condensation 

of R134a in a round tube for a whole range of inclination angles. The concept of apparent gravitational pressure drop 

and apparent void fraction were intruduced to quantify the effect of inclination on the flow. Groenewald & Kroger 

(1995) quantified the effect of mass transfer on wall friction for turbulent steam vapor flow inside ducts during 

condensation. Their correlations on numerical integration of the vapor velocity profile agreed well with experimental 

data within ± 5% error. These studies confirmed and quantified the effect of tube geometry and inclination angle on 

condensation pressure drop, but pressure drop models for a large-scale flattened tube with low mass flux are not 

available and thus need to be developed.  
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In order to address these issues, an experimental facility was designed and built to test a condenser tube in the same 

scale as those used in power plants. Measurements were taken of heat transfer and pressure drop at different inclination 

angles during the condensation of steam. To observe flow patterns, the flattened tube was cut in half and a 

polycarbonate window replaced the removed part, forming a half-tube test section. Such a half-tube design 

complicated the interpretation of the pressure drop tests by removing the direct applicability of the measurements to 

pressure drop in an actual power-plant condenser tube. However, such a sacrifice was paid off by having clear visual 

access to the flow regimes along the entire length of the condenser tube and at different inclination angles. Flow 

patterns, and their alteration with inclination angle, have a strong influence on the two-phase pressure drop, therefore 

it is essential to work with such a design. Nonetheless, special attention must be paid to accurately predicting the 

pressure-drop performance of the actual condenser tube, and therefore a model to relate the pressure drop measurement 

in the test tube to full tubes was developed. 

 

2. EXPERIMENT DESCRIPTION 
 

2.1 Experiment Facility 

Boiler 1

24 kW

Boiler 2

27 kW

Condensate
Pump

Condensate 

Receiver

Inlet 
Heater

Scale  

 

(a) (b) 

Figure 1: Experimental Facility: (a) Schematic Drawing, (b) Actual Facility 

 

The experiment facility is shown in Figure 1. The cross-sectional area of the flattened condenser test tube in this study 

is half of the full tubes widely used in ACC power plants. Typical dimensions of the full tube are 10.7 m in length, 

0.214 m in height and 0.02 m in width as is shown in Figure 2. After cutting the original full tube into half and adding 

the polycarbonate window, a test tube with one side transparent was assembled and is shown in Figure 3.  

 

On the steam side, two boilers running in parallel provide a maximum power of 51 kW in steam generation, and their 

powers are individually controlled so that the mass flux of steam can be properly varied. A pipe heater is attached to 

the steam inlet to create superheat. Slightly-superheated steam is then condensed inside the test tube. Foam insulation 

is attached to the polycarbonate window so that an adiabatic condition on the polycarbonate side can be maintained 

when not doing visualization. To study the effect of inclination on pressure drop and heat transfer, the tube is able to 

be tilted from horizontal to vertical. At the tube exit condensate is collected in a receiver, and its mass flow rate is 

determined by measuring its weight change against time. A high-temperature condensate pump feeds condensate back 

into the two boilers intermittently, forming a semi-closed system on the steam side.   

 

On the air side, 134 axial fans are powered to pull air upwards passing through the aluminum fins that were brazed on 



 

 2250 Page 3 
 

16th International Refrigeration and Air Conditioning Conference at Purdue, July 11-14, 2016 

the condenser tube. Air flow is constrained inside an air duct with insulation on the outside to minimize heat losses. 

Each fan is controlled individually by a potentiometer to simulate different air flow profiles and mimic the actual 

operation of the condenser in power plants. A cross-sectional view of the complete assembly of the condenser tube is 

shown in Figure 3. 

 

2W

H

W = 10mm

H = 214mm

Aluminum 

Baseline Fin

Steel Tube

  

(a) (b) 

Figure 2: Cross-sectional View of Full Flattened Tube: 

(a) Schematic, (b) Actual Photo 

 

 
Figure 3: Cross-sectional View of the Half 

Flattened Tube Assembly 

 

2.2 Measurements Points 

Along the tube length, 12 sets of temperature measurements and six pressure measurement points are employed to 

determine the heat transfer and pressure drop on steam side. As is shown in Figure 4, five Rosemount® differential 

pressure transducers measure pressure drop between each adjacent pressure measurement point. The full range of the 

sensors are 2 inH2O (497.68 Pa), 1 inH2O (248.84 Pa), 1 inH2O (248.84 Pa), 0.5 inH2O (124.42 Pa), and 0.35 inH2O 

(87.097 Pa), respectively for dP1 to dP5. The steam vapor velocity decreases from 11 m s-1 at the inlet to 0 at the 

outlet, so the sensors with larger range are selected closer to the inlet and smaller ones near the outlet. The total 

pressure drop in the entire tube is then obtained by adding all the individual values together. Another transducer, Pi, 

with range of 30 inH2O (7465.20 Pa) is added at the inlet which measures the inlet gauge pressure to determine the 

inlet superheat. All these instruments have an error of 0.15% of their full range according to the instrument manual.    

 
Figure 4: Measurement Points Arrangement 
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3. RELATING PRESSURE DROP IN TEST TUBE TO THE REAL FULL SIZE TUBE 
 

3.1 Problem Description 

The visualization access results in an artificial tube that is half-size compared to the original tube and is made of two 

distinct materials, steel and polycarbonate. Such differences, as is illustrated in Figure 5, complicate the process of 

directly comparing pressure drop in the real, full-size tubes in power plants to the experimental results from this 

facility. For instance, the smooth polycarbonate surface creates less frictional pressure drop than the rough steel 

surface in both single- and two-phase tests. Even more distinctively, no condensate is formed on the polycarbonate 

window in the two-phase test due to the adiabatic condition along the insulated polycarbonate, as shown in Figure 3. 

In contract, on the steel surface condensate is formed and generates shear stresses on the flowing steam vapor. Finally, 

the difference in cross-sectional area itself leads to a difference in the area/volume ratio and therefore a difference in 

pressure drop. Therefore, a model to relate pressure drop in the test tube to the real full size tube is needed, and this 

model can enable the quantification of the above-mentioned differences.  

Steel

εst 

Polycarbonate

εpc<<εst  

2W
W

Single Phase

Real Tube Test Tube  

Two-Phase 

Interface

εint 

Polycarbonate

εpc<<εint  

Two Phase

Condensate
No 

Condensate

Real Tube Test Tube  
(a) (b) 

Figure 5: Difference of Pressure Drop for Real and Test Tube in (a) Single Phase Test, (b) Two Phase Test 

 

3.2 Model Description 

The model for single phase uses an equivalent friction factor 
e

f in Equation (1) derived from the measured pressure 

drop of flows, P , in the test tube. 
e

f  can be expressed in terms of 
st

f  and  pc
f in Equation (2), which are calculated 

friction factors for hypothetical tubes made of one pure material indicated by the subscript. In Equation (2), weights,

st
  and 1

st
 , are assigned to each individual friction factor based on the half-tube geometry. The weight  

st
  is 

evaluated in Equation (3) according to the ratio of the circumferential length of steel 
st

L  over the perimeter of the 

cross section. In this study, 0.5091
st

  and 1 0.4909
st

  .  

 
21

2
e

h

L
P f V

D
    (1) 

 (1 )
e st st st pc

f f f      (2) 

 st st

st

half st

L L

p L H
  


 (3) 

Once 
st

f is determined for the half tube, steel surface roughness can be calculated using Churchill’s (1977) correlation 

as is shown in Equation (4):  
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 

1/12
12

3/28
8

Re
h

CH CH

D

f A B


  
    
    

, where 

16
1

0.9

7
2.457 ln 0.27

Re
h

CH

D h

A
D


                   

, 

16

37530

Re
h

CH

D

B
 

  
 
 

         (4) 

Finally, the full-tube friction factor and pressure drop can be calculated using the same correlation and roughness as 

the half tube, and updating the dimensions and Reynolds number for a full tube.  

 

This model was developed and validated for single phase, as elaborated in section 3.3. However, the same logic can 

be also applied to relate two-phase pressure drop in the real and test tubes. The major difference in the two-phase 

pressure drop compared to single-phase presented is that vapor quality and void fraction have to be taken into account 

in two-phase tests because these two parameters would affect the values of 
h

D  and thus Re and friction factors. 

Equation (1) then must be modified accordingly to account for the influences of the two-phase phenomena so that the 

equivalent friction factor in two-phase flow can be accurately determined. In the two-phase region, steam vapor flows 

over the two-phase interface on the steel side and over the smooth polycarbonate surface on the visualization window 

as is illustrated in Figure 5(b), so 
pc

f is still the same as it is in the single-phase test but 
st

f needs to be replaced by the 

interfacial friction factor 
int

f  that is a function of film thickness (Hewitt, 2013). Having the information of 
int

f , steam 

mass flux, and geometry of the full tube, the prediction of full tube pressure drop based on the test tube measurements 

then becomes feasible.  

 

3.3 Model Validation 

To verify the model in single phase, three independent experiments were conducted to measure friction factors in 

different tubes. The first experiment was in a full-sized flattened steel condenser tube with cross section shown in 

Figure 2, and the length for the pressure drop measurement section was 9.22 m. This full steel tube was made in the 

same way and by the same vendor as the one forming the test tube. The second experiment was in a rectangular 

polycarbonate duct with cross section 90.5 mm by 93.1 mm, and the length for the pressure drop measurement section 

was 1.13 m. This polycarbonate duct was made from the same material as the polycarbonate window in the half 

flattened condenser tube. The intention of using the same materials is to guarantee that the friction factor measured in 

these two experiments can accurately reproduce the friction factors on both the steel side and polycarbonate side in 

the test tube. The third experiment was in the test tube and the length for the pressure drop measurement section was 

8.58 m. Due to the large interval volumes of the full and test tubes, high-pressure nitrogen gas was used in the test, 

while low-pressure compressed air was used in testing the polycarbonate tube because of its small size.   

 

The friction factors, and therefore surface roughnesses, are determined in a slightly different manner for each tube. 

For the polycarbonate tube, where surface roughness is negligibly small, the friction factor is determined by Equation 

(5) that was derived from Prandtl’s one-seventh power law (Prandtl, 1969).  

 
1

44 0.078Re
hD

f


    (5) 

Steel surface roughness is determined using Churchill’s correlation (Equation (4)). For both tubes, surface roughness 

is determined in the turbulent and transition regions, where friction factor is a function of surface roughness.  

 

To verify the accuracy of the determined friction factors, they were compared to several correlations based on flow 

regime. In fully-developed laminar flow inside rectangular ducts, Natarajan & Lakshmanan (1972) developed an 

equation to relate friction factor, Reynolds number and aspect ratio as shown in Equation (6).  

 
1/6Re 4 14.4

hD
f      (6) 

A number of turbulent friction factor correlations are available in literature such as those developed by Colebrook & 

White (1937) and Haaland (1983), which are shown in Equation (7) and (8). These turbulent models are implemented 

to verify the validity of Equation (1) through (3) with experimental results.  

 
1 2.5226

2log
3.7056 Re

h
h D

Df f

 
   
 
 

  (7) 

 

1.11

1 6.9
1.8log

3.7 Re
hh D

Df

  
    

   

  (8) 
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Figure 6 is the friction factor of steel determined in the first experiment. Back fitting the friction factor measurements 

in the turbulent region using Churchill’s equation (Equation (4)), surface roughness of steel (
st

 ) is found to be 0.8546 

mm with a standard error of 0.0704 mm. The major sources of uncertainties involved in the determination of 
st

  are 

from the low pressure drop measurements. At low Reynolds number, pressure drop was so small in the full steel tube 

that the instrument limit was nearly reached. Even in the fully turbulent region when Re was above 7000, pressure 

drop was still below 100 Pa. This reasoning can be further verified by the measurement done in the polycarbonate 

duct in which the measurement points matched the predictions very well as shown in Figure 7.  

 

Figure 7 is the friction factors measured in the second experiment. Experimental data aligned very well with the 

predictions by Colebrook for different small values of surface roughness and by Prandtl. As is expected that the 

roughness of polycarbonate should be very small, the data validate the usage of smooth tube assumption when 

calculating pressure drop inside the polycarbonate tube.   

 

Figure 8 shows the measured friction factor in the half flattened tube. The data were compared with the equivalent 

friction factor, 
e

f , derived from the analytical model (Equation (2)). 
st

f  and pc
f  are evaluated based on the surface 

roughness measurements in the first and second experiments, therefore 
e

f is independent from the third experiment. 

A very good match between prediction and experiment data is exhibited.  

 

 
Figure 6: Comparison of Friction Factors in Steel 

Tube with Different Correlations 

 
Figure 7: Comparison of Friction Factors in 

Polycarbonate Duct with Different Correlations 

 
Figure 8: Comparison of Friction Factor in Test Tube with Different Correlations 

 

Knowing the surface roughness of steel and polycarbonate from the first two experiments, the model successfully 

reproduced the pressure drop in the half tube within 5% error in turbulent region, and 40% error in low Reynolds 

number region compared with experimental data. Although the relative error of prediction is about 40% in laminar 
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region, the absolute value of pressure drop inside the test tube is very small. Additionally, Churchill equation works 

for predicting pressure drop in all ranges of Reynolds number, but it was originally developed based on the round tube 

measurements. So the difference between Natarajan’s and Churchill’s predictions shown in Figure 6 to Figure 8 is 

justified, and experimental data fit Natarajan’s correlation much better than Churchill’s in the low Reynolds number 

region. Overall, the model in single-phase is proven to be a useful tool to relate test tube measurements to the full tube 

ones provided that the surface characteristics in both flattened tubes can be accurately determined. A modified two-

phase model is under development and will be implemented to predict actual pressure drop performance in the ACC 

system in power plants.  

 

4. EFFECT OF INCLINATION ON PRESSURE DROPS 
 

4.1 Test Conditions 

In-tube pressure drop was measured at various inclination angles. Limited by the ceiling height in the current 

laboratory setup, the test tube can only be inclined up to about 15˚. The preliminary test results were obtained under 

the conditions listed in Table 1. At different inclination angles, mass flow rate changes due to the changes in heat 

transfer inside the condenser tube. In order to account for the effects of different mass flow rate on pressure drop, 

boiler power was adjusted accordingly so that a constant flow rate condition can be maintained. The actual variation 

of mass flow rate at different inclination angles is less than 1.5%.  

 

Table 1: Test Conditions 

Parameter Range Uncertainty 

Inlet vapor mass flux [kg m-2 s-1] 6.8 ±1 

Mass flow rate of condensate [g s-1] 10.0 ±1 

Condenser capacity [kW] 25.2 – 29.1 ±3% 

Air velocity (average) [m s-1] 2.03 ±7% 

Vapor inlet pressure [kPa] 102 – 106 ±0.1 

Vapor inlet superheat [oC] 0.1 – 0.7 ±.05 

Inclination angle [o] 0.3 – 13.2 ±0.4% 

  

4.2 Results and Discussion 

Figure 9 presents information about pressure measurements with error bars when the test tube was horizontal. Pressure 

drop per unit length was plotted to show the local pressure variation as a function of distance from the tube inlet. As 

is expected, pressure drop is much larger near the entrance of the test tube than it is near the exit due to the deceleration 

of steam vapor by condensation. In almost all measurements, the pressure drop in the first two-meter section is about 

half of the total pressure drop from inlet to the outlet. The gauge pressures at each individual pressure measurement 

point were also determined after knowing the inlet gauge pressure, atmospheric pressure and the pressure drop in each 

section.  

 

In addition to the horizontal configuration, pressure variations along the tube at three other distinct inclination angles 

were shown in the same manner in Figure 10. No obvious effect of inclination angle on local pressure drop per unit 

length was observed within the range of angles tested. But the dependence of the total pressure drop from inlet to 

outlet on the inclination was discovered and is shown in Figure 11. Overall, the total pressure drop increased as 

inclination angle increased. The initial results showed an increase of 11.7% in pressure drop at 13.2 o versus at 

horizontal. However, there was a sudden decrease of total pressure drop at 2.87 o. This phenomenon can be explained 

by the initial visualization data shown in Figure 12, which presents the depth of condensate river along the tube at 

different inclination angles. The depth of condensate river gradually increased towards the exist of the test tube due 

to the accumulation of condensate downstream. The depth at each specific location decreased as the inclination angle 

increased. The increase in inclination angle assisted the drainage of condensate by gravity, which decreased the depth 

and thus increased the void fraction. So the gravity-assisted drainage exhibited a significant effect on pressure drop 

reduction when the depth dropped significantly at 2.87 o compared to the depth at horizontal.   

 

Further investigation is underway to fully explore and understand the dependence of two-phase pressure drop on all 

ranges of inclination angles. The relationship between pressure drop and vapor mass flux, local vapor quality and void 

fraction will also be provided in the next stage of study.  
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Figure 9: Pressure Variations Along the Tube at Φ = 0.3 o 

 

 
Figure 10: Pressure Variations Along the Tube at Different Inclination Angles 
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Figure 11: Total Pressure Drop at Different Inclination Angles 

 
Figure 12: Depth of condensate river at discrete locations along the 

condenser 

 

5. SUMMARY AND CONCLUSIONS 
 

The experiment of steam condensation was conducted to research the effect of inclination on pressure drop. The 

inclination angle was varied from horizontal to 13.2o with the intention of extending up to 90o. Slightly superheated 

steam at the inlet was condensed in the 10.7 m long test tube at mass flow rate equal 10 g s-1, resulting in mass flux of 

6.8 kg m-2 s-1. Pressure drop was measured and related to the inclination angles and flow visualizations. The issue 

resulting from the fact that the test tube was half of the real full size tube due to the need for visualization was mitigated 

by modeling pressure drop in single- and two-phase in both real and test tubes. Further development of the model for 

relating pressure drop is in progress. Based on the experimental results in this facility, it will provide a useful tool to 

predict two-phase pressure drop inside the condensers in the real power plants using ACCs.  

 

The expected positive effect of inclination angle on the reduction of pressure drop due to gravity-assisted drainage of 

condensate has proven to be correct, although the effect only occurred at very early inclination stages. Further 

investigation into understanding this phenomenon is underway through the collection and interpretation of more data 

points in the next stage of research.  

 

NOMENCLATURE 
 

ACC  Air Cooled Condenser 

D  Diameter   (m) 

    Surface Roughness  (mm) 

f    Darcy Friction Factor  

G  Mass Flux   (kg m-2 s-1) 

H  Height    (m) 

L  Length    (m) 

P  Pressure    (Pa) 

p  Perimeter    (m) 

Re  Reynolds Number 

T  Temperature   (˚C) 

W  Width    (m) 

    Angle of Inclination  (˚) 

 

Subscript 

a   Air 

b  Bottom 
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e  Equivalent 

h  Hydraulic 

i  Inlet 

int  Interface 

o  Outlet 

pc  Polycarbonate 

s  Steam 

sat  Saturation 

st  Steel 

t  Top 

w  Wall 
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