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ABSTRACT 

 
Waste heat can be well utilized in absorption refrigeration systems. The auto-cascade absorption refrigeration system 

could reach a lower temperature than traditional one because the non-azeotropic mixed refrigerants were used. In this 

paper, performances of an auto-cascade absorption refrigeration with R23/R134a/DMF (Dimethylformamide) as the 

working substance was analysed. Theoretical analysing results showed that, to some extent, the COP could be 

increased when the low pressure of the system decreased or the high pressure increased. The reasonable high pressure 

was the high turning point pressure, and reasonable low pressure was the low turning point pressure. The COP of the 

system monotonously increased with the increase of the mole fraction of R23. The lowest R23 mole fraction one 

should be the most promising. 

 

1. INTRODUCTION 

 
The absorption refrigerator is one of heat driven refrigerating devices, which takes advantages of solution properties 

to obtain low temperatures. Industrial waste heat, solar heat and geothermal heat were suitable to drive absorption 

refrigerators, therefore, absorption refrigerators were attracted more and more attentions nowadays. Traditional 

LiBr/H2O or NH3/H2O absorption refrigerators had been widely applied in industries and daily life, but they were 

limited by their relatively high refrigeration temperatures.  Huge quantities of waste heat were released in oil refining 

industries and refrigeration temperature below -50°C was demanded during the process of recovery of LPG. Some 

research data indicated that recovery of 1000kg fuel gas consumed 65kWh refrigeration capacity (Bruno and Guxens, 

2002). Under the circumstances, traditional NH3/H2O absorption refrigerators had to add additional devices and 

complex pipe arrangement to multistage absorption form to reach that low temperature. 

 

Fatouh and Srinivasa Murthy (1995) carried researches on the properties of R22 and inorganic solutions, which 

showed advantages over traditional working substances and were suitable for lower generation temperature between 

75°C and 95°C. 

 

Chen et al. (1998) proposed non-azeotropic mixed refrigerant R22/R142b in the traditional absorption refrigeration 

system to replace R22 when DMF (N, N-dimethylformamide) was selected as the absorbent in 1998. Furthermore, 

they proposed R32/R134a as the mixed refrigerant (Chen et al., 1999a) and found similar system performances can 

be obtained from test results (Chen et al., 1999b). In 2010, Gao et al. (2010) analysed the feasibility of replacing R22 

with R32/R227ea in the traditional absorption system. The results also showed that similar system performances can 

be obtained when DMF was used as the absorbent. 

 

In 2002, Chen (2002) introduced the auto-cascade module into the traditional absorption refrigeration system to obtain 

a lower refrigerating temperature. The followed up experiments showed promising system performances: the lowest 

refrigerating temperature was -47.2°C when the generation temperature was 157°C (Chen and He, 2007). The new 

system was named as the auto-cascade absorption refrigeration system. 
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As the operation mechanism of the new system is far more complicated than that of the traditional one, theoretical 

analyses on the performance of the new system has not been investigated systematically so far. This paper proposed 

a new approach to analyse and optimize the performance of the new system and showed how pressure and refrigerants 

concentration work in the system(Gao, 2010), which can be a useful guide for the future experiment researches. 
 

2. THEORETICAL MODEL 

 
The key characteristic of the auto-cascade absorption refrigeration system was that the non-azeotropic mixed 

refrigerant was applied as working substances, in which the non-azeotropic mixed refrigerant went through 

temperature-changing phase change processes. Thus at the exits of the evaporator and condenser, the mixed 

refrigerants still remained in the two-phase states, which demanded a recuperator with a large area to liquefy the mixed 

refrigerants in the high pressure side before entering the expansion valve, in order to obtain a low refrigerating 

temperature. The flow chart of the auto-cascade absorption refrigeration system was shown in Figure 1. 

 

 
Figure 1. Flow chart of the auto-cascade absorption refrigeration system 

 

2.1. Assumption 
(1) The generating temperature TG, surroundings temperature TH and refrigerating temperature TL were specified. 

(2) The mole fraction of rich solution was specified as well as the mole fraction of DMF at the exit of rectification 

column point 3. 

(3) The high pressure and low pressure of the system were specified. The pressure losses in the heat exchangers and 

rectifier were neglected. 

(4) The pinch point temperature differences of the condenser ΔTC,min and evaporator ΔTE,min occurred at the cold end 

of the condenser and the hot end of the evaporator,  respectively. 

(5) The pinch point temperature differences of the refrigerant recuporator R1, R2 and solution recuperator R3 were 

ΔTR1,min, ΔTR2,min and ΔTR3,min respectively. All of the pinch points occurred at the cold or hot end of the recuperators. 

(6) The pinch point temperature difference of the absorber ΔTA,min occurred at the exit of absorber. 

(7) Refrigerant recuperators, solution recuperator and throttle valves were adiabatic. 

 

2.2. Thermodynamic Model 
The mass conservation and energy conservation equations of all parts in the auto-cascade absorption refrigeration 

system were listed as follows. 
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(1) Generator 

𝑄𝐺 = 𝑚22ℎ22 +𝑚21ℎ21 −𝑚1ℎ1                                                         (1) 
𝑚1 = 𝑚22 +𝑚21                                                                    (2) 

𝑚1𝑧1,𝑖 = 𝑚22𝑧22,𝑖 +𝑚21𝑧21,𝑖                                                           (3) 

where m was the mole flow rate of the working substance [mol ∙ 𝑠−1], h was the specific enthalpy [J ∙ 𝑚𝑜𝑙−1], QG 

was the heat input in the generator [W], z was the mole fraction of the component, the first subscript denoted the 

state point in the cycle, the second subscript i denoted the ith component of the mixture R23/R134a/DMF. 

 
(2) Rectifier 

𝑚22 = 𝑚3 +𝑚𝐿                                                                           (4) 

𝑚22𝑧22,𝑖 = 𝑚3𝑧3,𝑖 +𝑚𝐿𝑧21,𝑖                                                                 (5) 

𝑚22ℎ22 = 𝑚3ℎ3 +𝑚𝐿ℎ𝐿 + 𝑄𝐷                                                              (6) 

where QD was the rectifying heat capacity [W], subscript L denoted the backflow to the generator. 

(3) Absorber 

𝑄𝐴 = 𝑚20ℎ20 +𝑚17ℎ17 −𝑚18ℎ18                                                          (7) 

𝑚18 = 𝑚20 +𝑚17                                                                       (8) 

𝑚18𝑧18,𝑖 = 𝑚20𝑧20,𝑖 +𝑚17𝑧17,𝑖                                                             (9) 

where QA denoted the absorbing heat released to the surroundings [W]. 

(4) Condenser 

𝑄𝐶 = 𝑚4(ℎ4 − ℎ3)                                                                    (10) 

where QC denoted the condensing heat released to the surroundings. 

(5) Gas-liquid separator 

The compositions of R23/R134a/DMF vapour and weak solution in the separator could be determined by the 

vapour-liquid equilibrium.  

𝑚4 = 𝑚42 +𝑚41                                                                     (11) 

𝑚4𝑧4,𝑖 = 𝑚42𝑧42,𝑖 +𝑚41𝑧41,𝑖                                                          (12) 

𝑚4ℎ4 = 𝑚42ℎ42 +𝑚41ℎ41                                                            (13) 

(6) Recuperators 

Two refrigerant recuperators were treated as a whole one. 

𝑚42(ℎ5 − ℎ42) = 𝑚7(ℎ8 − ℎ7)                                                       (14) 

Solution recuperator was defined as: 

𝑚21(ℎ21 − ℎ10) = 𝑚9(ℎ9 − ℎ1)                                                      (15) 

(7) Throttle valves 

The throttle valve at the bottom of the separator: 

𝑚41ℎ41 = 𝑚11ℎ11                                                                   (16) 

The refrigerant throttle valve: 

𝑚5ℎ5 = 𝑚6ℎ6                                                                       (17) 
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The solution throttle valve: 

𝑚10ℎ10 = 𝑚20ℎ20                                                                 (18) 

(8) Evaporator 

𝑚7(ℎ7 − ℎ5) = 𝑄𝐸                                                                 (19) 

where QE denoted the refrigerating capacity [W]. 

(9) Solution pump 

Compared to the amount of heat input into the system, the work consumed by the solution pump was small which 

was neglected. 

(10) Coefficient of performance 

𝐶𝑂𝑃 = 𝑄𝐸 𝑄𝐺⁄                                                                     (20) 

COP could also be expressed as the following form: 

𝐶𝑂𝑃 = (ℎ7 − ℎ5) (𝑓(ℎ21 − ℎ1) + (ℎ22 − ℎ21))⁄                                        (21) 

𝐶𝑂𝑃 = (ℎ8 − ℎ42) (𝑓(ℎ21 − ℎ1) + (ℎ22 − ℎ21))⁄                                       (22) 

where circulating ratio: 

𝑓 = 𝑚1 𝑚22⁄                                                                     (23) 

 

2.3. Calculation Of Properties of the Mixture 
Modified Patel-Teja equation was applied in this paper to calculate the enthalpy, entropy and phase equilibrium of the 

mixed refrigerants. The interaction parameters of each pair among R23, R134a and DMF were fitted from literatures 

(Han et al., 2011, Gao et al., 2012). 

 

3. PERFORMANCE ANALYSIS AND OPTIMIZATION 

 
In calculations, the generation temperature TG=140°C, surroundings temperature TH=20°C, refrigerating temperature 

TL=-50°C, the mole fraction of DMF at point 3 z3,3=0.03. The pinch point temperature difference 

ΔTR1,min=ΔTR2,min=ΔTC,min=ΔTE,min=5°C, ΔTA,min=10°C. The flow rate at point 2 was set to be 1mol/s. 

 

3.1. Optimization Of Pressures 
The high and low pressures of the auto-cascade absorption refrigeration system were not only related with 

condensation temperature and evaporation temperature, but also associated with the generation temperature, 

absorption temperature and the temperature distribution of mixed refrigerants in recuperators attribute to the introduce 

of the high non-azeotropic refrigerant. Hence, the high pressure and low pressure were treated as two important design 

parameters in simulations. 
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Figure 2. The variation of COP with the high pressure PH 

(z1,1=0.2, z1,3=0.6) 

 
From figure 2, it can be seen that a peak COP occurred with the increase of the high pressure at each low pressure. 

Hence, the corresponding high pressure can be selected as the reasonable high pressure at certain low pressure. 

 

It can also be noted from Figure 2 that COP monotonically increased with the decrease of the low pressure at certain 

high pressure. In order to see clearly the variation of COP with the low pressure, the abscissa was reset as the low 

pressure PL as showed in Figure 3.  
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Figure 3. The variation of COP with the low pressure PL 

(z1,1=0.2, z1,3=0.6) 
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From figure 3, it can be seen that COP increased with the decrease of the low pressure at the specified high pressure 

and there existed a turning point along the line. When the low pressure was larger than the turning point low pressure 

COP increased obviously, but when the low pressure was smaller than the turning point low pressure COP increased 

very slightly. Hence, the turning point low pressure can be selected as the reasonable low pressure at certain high 

pressure, because the extreme low pressure deteriorated the performance of the absorber and increased the power 

consumption of the solution pump.  
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Figure 4. The variation of COP, ΔThot, ΔTcold with the high pressure 

(z1,1=0.2, z1,3=0.6, PL=130kPa) 

 

The variations of COP with the high pressure and low pressure discussed above have been found in other mole 

fractions of R23/R134a/DMF solutions. It can also be found that the temperature differences at the hot end of the 

refrigerant recuperator R1 and at the cold end of the refrigerant recuperator R2 varied regularly with the pressures. 

 

From figure 4, it can be found that the temperature differences at the hot end of R1 and at the cold end of  R2 were 

both approximately equal to the pinch point temperature differences of R1 and R2 respectively, namely, 

ΔTcold=ΔThot=ΔTmin, when COP occurred a peak value with the increase of high pressure. In other words, at a specified 

low pressure the pinch point temperature difference transferred from the hot end of R1 to the cold end of R2 when the 

high pressure increased. Because the heat demanded for the generator varied slightly, hence, the variation of COP was 

mainly determined by the cooling capacity change with the increase of the high pressure. After the transfer of the 

pinch point to the cold end of R2, the specific enthalpy difference between state points 5 and 7 increased slightly, but 

the refrigerant flow rate decreased from the top outlet of the gas-liquid separator when the high pressure increased. 

These factors can account for the occurrence of the peak value of COP in Figure 4. 

 
Figure 5 also showed that the temperature differences at the cold end of R2 and at the hot end of  R1 were both 

approximately equal to the pinch point temperature differences of R1 and R2 respectively, namely ΔTcold=ΔThot=ΔTmin, 

COP occurred a turning point with the decrease of the low pressure.  
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Figure 5. The variation of COP, ΔThot, ΔTcold with the low pressure 

(z1,1=0.2, z1,3=0.6, PH=1000kPa) 

 

From the above analyses, we knew that the low and high pressures at the turning points should be the reasonable low 

and high pressures for the specified mole fractions of the solution. In this paper, the reasonable low pressure was 

specified as 100kPa. The peak value of COP at the reasonable low and high pressures for the specified mole fractions 

was defined as the COPopt. 

 

3.2. Optimization Of Mole Fractions 
According to the pressure optimizing method in previous section, COPopt of different mole fractions could be obtained. 

Figure 6 showed the variations of COPopt and refrigerating capacity QE with the mole fraction of R23 when the mole 

fractions of DMF z1,3 were set to be 50%, 60% and 70%. 

 

From figure 6, it can be seen that QE and COPopt both increase monotonically with the increase of R23 for the specified 

mole fraction of DMF z1,3,. The maximum COPopt for different mole fractions of DMF were almost same, but the 

corresponding high pressures to COPopt were different. The larger mole fraction of DMF, the higher the corresponding 

high pressure was.  
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Figure 6. The variation of COPopt and QE with the fraction of R23 

(TG= 140°C, TH= 20°C, TL= -50°C, z3,3=0.03 ) 
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4. CONCLUSION 

 
The performance of an auto-cascade absorption refrigeration cycle operated with non-azeotropic refrigerant 

R23/R134a/DMF was investigated in this paper by a new approach. The analysis results showed that: 

(1) At a specified low pressure, COP increased at first and then decreased with the increase of the high pressure. 

The high pressure corresponding to the peak COP should be the reasonable high pressure. 

(2) At a specified high pressure, COP was obviously increased with the decrease of low pressure within a certain 

range. The turning point low pressure should be the reasonable low pressure. 

(3) When the temperature differences at the cold end of R2 and at the hot end of R1 were both approximately equal 

to the pinch point temperature differences of R1 and R2 respectively, the peak value or the turning point occurred.  

(4) When the mole fraction of DMF was specified, refrigerating capacity QE and COPopt both increased 

monotonically with the increase of the mole fraction of R23. But the maximum COPopt were almost the same for 

different mole fractions of DMF. As the high pressure corresponding to the maximum COPopt for the low mole fraction 

of DMF solution was lower than that of high mole fraction of DMF solutions, the low mole fraction one should be the 

most promising. 

 

NOMENCLATURE 

 
COP coefficient of performance  (–)  

T temperature ℃  

△T temperature difference ℃ 

Q heat load  W  

h enthalpy J ∙ 𝑚𝑜𝑙−1  

m mole flow rate mol ∙ 𝑠−1 

z mole fraction of components  (–)  

f circulating ratio (–)  

P pressure kPa 
 

Subscript   

G generator  

H high  

L low  

R1 recuperator 1  

R2 recuperator 2  

R3 recuperator 3  

C condenser  

E evaperator  

A absorber  

D rectifier  

hot hot end  

cold cold end  

opt optimum  
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