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ABSTRACT 
 

The main challenge for the practical application of metal hydride heat pump (MHHP) is the relatively poor system 

performance, which is mainly caused by the undesirable heat transfer performance of reaction bed. However, there 

is no significant improvement of system performance when enhancing the effective thermal conductivity (E.T.C) of 

reaction bed. In order to identify the relationship between the E.T.C and system performance, a numerical model has 

been carried out first in this research. The effect of E.T.C on cooling temperature, cycle time, the coefficient of 

performance (C.O.P) and cooling power is investigated according to the numerical results, which indicate that the 

variation trend of C.O.P and cooling power is opposite when E.T.C increasing. There therefore exists an optimum 

value of (E.T.C), which is 0.7-0.8 W/mK in this research. The experimental confirmation is conducted eventually, 

and the comparison of results shows a reasonable agreement with an acceptable error range.  

 

1. INTRODUCTION 
 

Answering the call for the eco-friendly energy development, the thermally driven metal hydride heat pump (MHHP) 

is one of feasible approaches for its great potential in the recovery of low-grade heat without greenhouse-gas 

emissions, and that makes it become a leading contender among different applications of metal hydride.  

 

The main challenge for the practical application of MHHP is the relatively poor system performance due to the low 

effective thermal conductivity of metal hydride reaction bed (Takeda 1998). Therefore, aiming for improving heat 

transfer performance, previous researchers had proved that inserting high- conductivity sheet into the reactor is one 

of the most practical methods. Bae (2012) tried to enhance the effective thermal conductivity by inserting the MH 

sheets, which were contained MH powder, carbon fiber, and pulp into reactor, and the results showed that it was 

increased 1.32 times. Besides, Yasuda (2013) also used MH sheets on MHHP system, and pointed out the rate of 

reaction were accelerated, especially on low temperature side. Moreover, Aluminium Foam Sheets (AF sheets) also 

was used on MHHP systems on ETC enhancing, and it succeed to increase the ETC values much greatly than using 

MH sheets on (Lin 2105); however, even the effective thermal conductivity has been increased, the efficiency of the 

system is still relatively low for that the enhancement of performance (C.O.P) is not statistically significant. 

 

In addition, a number of studies had developed analysis about the effect of operating conditions as well as design 

parameters on the system performance. Satheesh (2010a) showed that for a given reactor geometry and overall heat 

transfer coefficient, there was an optimum value of thermal conductivity to cycle time. Kang (1996) indicated that 

the optimum value of a cycle period could be selected on the basis of the (C.O.P) and the heating output for different 

geometric configurations. In addition, it had been found that the average heat storage rate per unit mass of the metal 
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hydride reactors could be maximized by the optimal design of parameters involving the number of heat exchanger 

tubes, the heat exchanger tube diameter and the heat exchanger tube pitch (Bao, 2012). Although Førde (2009) 

discovered that the effective thermal conductivity was sensitive to the system, there have been no studies focusing 

on the relationship between effective thermal conductivity with system performance. To solve this problem, an 

optimization model of E.T.C is proposed in this paper.  

 

2. OPERATING PRINCIPLE   
 

2.1 Mechanism  

In the metal hydride heat pump (MHHP), the reversible reaction of metal hydrides includes the hydriding 

(exothermic) process and dehydriding (endothermic) process, which can be indicated as below (Muthukumar,2010):  

 

                                                           
fx

hydriding HMHH
x

M   2
2                                                                         (1) 

                                                           
2

2
H

x
MHMH gdehydridin

fx  
                                                                        (2) 

Where M stands for a metal (or metal alloy); x is a non-stoichiometric constant and ΔHf is the hydride formation 

heat. By controlling the equilibrium pressure in the reaction, the direction of the reaction can be controlled. Figure1 

(a) P-C-T curve is employed to demonstrate the relation between the pressure, hydrogen capacity and isotherm 

properties of metal hydrides. Under each isotherm condition, P-C-T curve denotes the plateau process in the main 

stage of this reaction, which is described in direct relationship to Van’t Hoff equation: 

 

                                                                                                                                                           (3) 

 

Where ΔH and ΔS are the enthalpy and entropy variation of metal hydrides and R is the gas constant. Thus building 

MHHP system requires two different alloys possessing different properties of P-C-T curves, which is translated into 

the Van’t Hoff plot in Figure 2 for a refrigeration cycle. 

 

    
                    Figure 1 : PCT curve of metal hydride                     Figure 2 : MHHP of refrigeration cycle 

 

2.2 The Valve-Controlled Metal Hydride Refrigeration System 
Based on the theory of Van’t Hoff, only relying on temperature changes enables hydrogen pressure to increase or 

decrease to change the hydrogen flow, so that the operation of the system could be achieved by the regulation of 

temperature and switching the valve. A valve-controlled metal hydride refrigeration system then is established, 

including a high-temperature reactor A, a low-temperature reactor B and the hydrogen tube and valve, which is 

shown as the Figure 3. In this system, the heat source and heat sink provide the regulation of temperature for high-

temperature side and low-temperature side, which is selected as 80℃ and 20℃ respectively based on the 

consideration of experimental environment. In addition, the variation of hydrogen flow and cycle time could be 

achieved by controlling the valve. 

 

(1) Preheating process: In the beginning, both of reactor A and reactor B are placed under low-temperature side, 

but MH1 is kept as metal hydride (spot 3) meanwhile the MH2 is in the state of alloy (spot1), and the valve is 
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closed. For increasing the hydrogen pressure, the temperature of reactor A could be increased to heat source 

temperature by using the heat from heat source. In the meantime, reactor B is still maintained at low-

temperature side. Therefore, the purpose of this process is to increase the equilibrium hydrogen pressure of 

MH1 (spot2) above that of MH2 (spot1), preparing for the next process of regeneration. 

 

(2) Regeneration process: In this process, opening the valve, due to the the pressure difference, the hydrogen 

would flow from reactor A to reactor B. Therefore, the desorption of hydrogen is carried out with endothermic 

reaction in reactor A, and the heat is supplied from heat source. Meanwhile, the absorption of hydrogen is 

running with exothermic reaction in reactor B, and the reaction heat is moved by heat sink. 

 

(3) Precooling process: After the regeneration process, MH1 is in the state of desorption (spot2) and MH2 is in 

the state of absorption (spot1). In order to cycling the hydrogen, closing the valve and using the middle 

temperature (heat sink) for cooling the reactor A, the hydrogen pressure of MH1 (spot3) would be decreased 

lower than MH2 (spot1). 

 

(4) Cooling process: The process of precooling results in a pressure difference of hydrogen, so that the hydrogen 

would flow from reactor B to reactor A once the valve is opened. In this process, MH1 would absorb 

hydrogen with endothermic reaction and MH2 desorb hydrogen with exothermic reaction. This exothermic 

reaction enables the temperature of MH2 to decrease to cooling load temperature (spot4), achieving the 

cooling purpose. 

 

3.MATHEMATICAL MODELLING 
 

3.1 System Model 
The numerical model describes a pair of cylindrical reactor filled with metal hydride alloy. In practical application, 

however, a continuous power output requires at least two pairs of reactors. The physical model is showed in Figure3. 

Each reactor is placed at the thermostatic bath and is connected with a tube for transferring hydrogen by controlling 

the valve. In order to simplify this analysis model, some assumptions are made as following: 

 

(1) Each part of the system is under the adiabatic condition. 

(2) The convective heat transfer in hydride materials is negligibly small comparing with conductive heat transfer. 

(3) The wall temperature of the reactor is constant with the temperature of thermostatic bath without considering 

of the heat convection, and the heat loss from the system is neglected. 

 

 
Figure 3 : The calculation model schematic diagram of MHHP 

 

3.2 Numerical Equations  
Considering the desorption or absorption reacting inside the reactor as an internal heat source, it is essential for mass 

transfer analysis to connect the hydrogen flow rate with to the physical-thermodynamic parameters of the hydrogen 

gas and hydride. Thus, the equation governing the hydrogen concentration is employed (Gambini,1994a), which has 

been experimentally proved suitable for the engineering application with reasonable accuracy in earlier literatures 

and is expressed as following: 

 

In the process of desorption: 
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(4) 

 

where θd is the hydrogen concentration, thus dθd/dt stands for the hydrogen concentration variation in reactor during 

desorption process, and it is proportional to the hydrogen flow rate: 

 

                                                                                                                                                               
(5) 

   
where G is hydrogen flow rate and the constant α could be calculated by: 

 

                                                                                                                                                            
(6) 

 

By contrast, hydrogen concentration variation during absorption process is expressed as: 

 

                                                                                                                                  
(7) 

 

where θ∞ is the the maximum achievable value of hydrogen concentration when dθa/dt=0. 

From above equations, it shows that the key dynamic of reaction is the variation of hydrogen pressure and 

temperature that causes the hydrogen flow to change, affecting the reaction heat of system. As it is coupled and 

influenced each other between mass transfer and heat transfer in the reactor (Choi, 1990), to build a complete 

analysis model equations governing heat transfer should be decided appropriately according to assumptions. 

Without considering the convective heat transfer, the unsteady heat conduction of a cylinder with an inner heat 

source can be normally represented as (Çengel, 1998): 

 

                                                                                                         
(8) 

 

where  is the internal heat source from reaction heat and is the product of hydrogen flow rate G and the enthalpy 

ΔH of hydrides. In addition, keff stands for the effective thermal conductivity (E.T.C) of the reaction bed. In this case, 

the heat transfer mainly occurs in the radial direction due to the symmetry of reactor and negligible hydrogen 

pressure drop in the axial direction. The conductive heat transfer equation therefore would be simplified as: 

 

                                                                                                                                             
(9) 

 

In the process of regeneration and cooling, the tube of hydrogen is connected since the valve is opened. The 

transient analysis to the hydrogen properties in the tube should therefore be considered, determining whether the 

reaction process of whole system is finished, which is solved coupling with energy conservation equation. 

Considering this process is insulated without mechanic work, the internal energy variation would be: 

 

                                                                                         
(10) 

 

For hydrogen, assuming a linear relationship between the enthalpy and internal energy and temperature as 

H=cpT+H0 and U=cvT+U0, the above equation would be expressed as: 

 

                                                                  
(11) 
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According to mass conservation: 

 

                                                                                                                                                           
(12) 

 

and assuming H0=U0, the temperature of hydrogen would be: 

 

                                                                                                                   
(13) 

 

As ideal gas requires that PV=nRT, the pressure of hydrogen in the tube is represented as: 

 

                                                                                                                                            
(14) 

 

3.3 Performance of a Metal Hydride Heat Pump 
For the purpose of studying the relationship between heat transfer properties and system performance, cycle time, 

the coefficient of performance (C.O.P) and cooling power are selected as the indicators of system performance.  

For numerical results, 

 

                                                                                                                                                                  
(15)           

 

where Qout and Qin is the heat generated during cooling process and regeneration process and can be calculated as: 

 

                                                                                                                                                   
(16) 

 

For experimental verification, the equation can be derived following the general thermodynamic theory 

(Yang,2010):  

         

                                                                                                                       
(17) 

 

The cooling power is a calculation determining the amount of heat that needs to be removed from a system by a 

cooling mechanism in a unit time. It is one of the things considered during the design phase for a cooling system, 

and the goal is to build a structure with better efficiency to remove increasingly amount of heat during certain time. 

 

                                                                                                      
(18)   

 

4.RESULTS AND DISCUSSION 
 

4.1 Numerical Results 
The results of calculation computing by MATLAB identify the performance of metal hydride heat pump for a 

variety of effective thermal conductivity. Based on the consideration of available data about parameters of metal 

hydride, LaNi4.8Al0.2 and LaNi5 are selected as high temperature metal hydride (MH1) and low temperature metal 

hydride (MH2) respectively. The properties are taken from (Gambini,1994b) and shows in Table1. The effective 

thermal conductivity of hydride bed is varied from 0.5to 2.0 W/mK by keeping other parameters as constant.  
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Table 1: Parameters used in calculation 

 

Parameters   MH1 MH2 

Reaction Heat       ΔH kJ/mol 33.89 30.8 

Entropy Change   ΔS kJ/mol.K 0.107 0.108 

Kinetic Coefficient of Desorption εd  1420000 1320 

Kinetic Coefficient of Absorption εd  15200 35.8 

Activation Energy of Desorption Ed kJ/kg 20330 12400 

Activation Energy of Absorption Ea kJ/kg 13890 8430 

Specific Heat c kJ/kg.K 0.426 0.359 

Density  ρ kg/m3 8110 8300 

Gas Constant       R kJ/mol.K 0.008314 0.008314 

Figure 4 shows the relation between E.T.C and cooling temperature and cycle time. By definition, the cooling 

temperature is the attainable lowest temperature during cooling process, which is proportional hydrogen desorption 

capacity, reflecting refrigeration effect. In Figure 4 when ETC increasing, the cooling temperature rises slightly at 

first and then is increasing rapidly once E.T.C is up to 1.3 W/mK. In contrast, the cycle time is found to an opposite 

trend. It is observed that due to the improvement of heat transfer the cycle time is decreasing significantly with the 

growth of E.T.C up to 0.9 W/mK and then shows a slowing trend, which is matching with the result from past 

research conducted by Satheesh (2010b).  It indicates that the shortening cycle time leads to a higher cooling 

temperature, weakening refrigeration effect for the reason that available hydrogen capacity will be less provided. As 

refrigeration capability is tending towards stability once hydrogen is all reacted, cooling temperature increases 

slowly at first. Because it is found that heat transfer determines the rate at which hydrogen is transferred 

(BJURSTROM 1989). 

Effective Thermal Conductivity (E.T.C) (W/mK)
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Figure 4: The effect of E.T.C on cooling temperature and cycle time by calculation 

 

The effect of E.T.C on the cooling power and C.O.P is investigated in Figure5 and Figure6. It is showed that cooling 

power is gradually increased while C.O.P is slightly declining with an increase in the E.T.C. This phenomenon is 

explained by the relation between E.T.C and cooling temperature and cycle time. According to the data from 

Figure4, it is showed that when E.T.C changes for certain range, a wider range of cycle time is represented 

comparing with the change of cooling temperature, which means the variation rate of cycle time is more 

dramatically than refrigeration capacity. When it comes to cooling power, it would gradually increase with the 

growth of E.T.C. As when cycle time increasing, the available hydrogen capacity increases, and thus the heat output 

increases, resulting in a better C.O.P. In addition, once a certain cycle time has been reached, in this scenario when 

E.T.C decreases to 0.7 W/mK, E.T.C has less effect on the hydrogen capacity, so that C.O.P begins to change slowly 

with a decreasing of E.T.C. By comparing the variation trend, it is noticed that there exists an optimal cycle time, 

which could achieve a high COP value while a good cooling power. For this stimulation condition, the optimal 

range would be 0.7-0.8 W/mK, which is presented in Figure7 for temperature distribution of each process. 
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                 Figure 5: The effect of E.T.C on cooling power         Figure 6: The effect of E.T.C on C.O.P 

 

 
                                     (a) Preheating process                                          (b) Regeneration Process 

 
                                      (c) Precooling process                                         (d) Cooling Process 

Figure 7: The temperature distribution of the MHHP system 

 

4.2 Experiment Set Up and Results 
There are lots of researches discussing about the cycle time and reaction temperature on MH reaction period, 

besides, the values of cooling power and C.O.P of heat pump system are also mentioned frequently to evaluate how 

the system is. Our research team have also done lots of researches about enhancing the C.O.P values through 

increasing the effective thermal conductivities. However, until now, there is no any research talking about the 

relationship between C.O.P and effective thermal conductivity of MH particles. Originally, the experiment was set 

to show this relationship, but it's difficult to control the values of effective thermal conductivities on all cases in the 

experiment. Instead of that, considering the relationship between ETC and reaction time for linear situation part, the 

total reaction time was controlled as 25, 28, 31, 34, 37, 40,43, 46 minutes for k=0.5-2.0 to observe the values of 

C.O.P and cooling power on every cases. Before the experiment, the MHs (LaNi5 and LaNi4.8Al0.2) have been 

activated and stabilized already.  
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The experiment equipment is shown as figure 8. There are two reactors (filled into 50g LaNi5 and 75g LaNi4.8Al0.2 

alloy powder), hydrogen supply, vacuumed pump, thermostatic bath, and controlling valves on the device. The 

thermostatic bath is set as 20 degrees for lower temperature bath and 80 degrees for higher temperature bath. The 

reactors, shown as figure 9, are made by steel circular pipe with 19.05 mm external diameter and 15.75 mm internal 

diameter, and thermocouples are inserted into the center of the reactors from the tube bottom.  

 
 Figure 8:  The schematic diagram of MHHP experiment               Figure 9: Specification of reactor 

 

According to the MHHP cycle written in theorem, experiment is set for four process, preheating, regeneration, pre-

cooling, and cooling process. These process are converted by controlling valves and moving the reactor from higher 

(lower) temperature bath to the other. Parameters (pressure, temperature, and flow rate) are recorded during all of 

the process, and the values of C.O.P and cooling are calculated by experimental equations. 

Time (mins)

20 25 30 35 40 45 50

C
.O

.P

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Time(mins)

20 25 30 35 40 45 50

C
o

o
li

n
g

 P
o

w
er

 (
k

w
/k

g
)

0.2

0.3

0.4

0.5

0.6

 
  Figure 10: COP vs controlled cycle time by Exp.         Figure 11: Cooling power vs controlled cycle time by Exp. 

 

Figure 10 shows that C.O.P values changing while adjusted reaction time changing. At first, because the reaction 

between hydrogen and MH happened on the reactor, considering the generation heat, when increasing the reaction 

time, C.O.P was also increased; however, considering heat loss of the system, when increasing the reaction time of 

the system, it produces much more total heat loss during the reaction period. Combined these two reasons, the peak 

value of C.O.P happened between 35-40 minutes for k = 0.7-0.8W/mK. 

 

Figure 11 shows the relationship between reaction time and cooling power. The result indicates that the value of 

cooling power become smaller when the reaction time is increased. According to the formula (18), the value of 

cooling power is the ratio of heat for cooling and cycle time multiple MH mass. It can be explained as the rate of 

cooling heat reduced when the reaction time extended due to the reaction amount of MH reduced. Instead of that, 

reaction time become a leading factor on the value of cooling power when the reaction time increasing. 

 

4.3 Result Verification 
Figure 12 left shows that the comparison between experimental data and simulation data on C.O.P values. Both of 

them are increased when the reaction time increasing. On simulation case, C.O.P values are remained the same as 

before while controlled reaction time over 50 minutes due to the same total generation heat of the system. Under the 

adiabatic condition of system, C.O.P values is related to total generation heat during the reaction period. However, 

on the experimental case, heat loss should be take into account on C.O.P calculation. It can be observed that the 

values of C.O.P are decreased when the reaction time is over 40 minutes due to the affection of heat loss. Besides, it 
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also be found that neglecting over 40 minutes' data, the average error differences between the simulation values and 

the experimental value were less than 5% 
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Figure 12: The comparison between experimental results and numerical results on C.O.P and cooling power 

 

Figure 12 right shows that the comparison between experimental data and simulation data on cooling power. It can 

be observed that the tendency of cooling power changing with different reaction time on experimental values is the 

same as simulation data; moreover, the error band between experimental data and simulation data is less than 3%. It 

can strongly prove the accuracy of this calculation model 

 

5.CONCLUSIONS 
 

As the conclusion, a numerical model identifying the relation between E.T.C and system performance of MHHP is 

carried out to obtain the optimal condition. Based on this model, the effect of E.T.C on cooling temperature, cycle 

time, C.O.P and cooling power could be investigated. The numerical results indicate that for a given reactor 

geometry and operation condition, there exists an optimum value of effective thermal conductivity which could 

achieve a high value of C.O.P as well as a good cooling power. On this ideal situation, the optimal value range of 

E.T.C is between 0.7-0.8W/mK. To verify this numerical model, the performance of system is evaluated 

experimentally, and the comparison between experimental data and numerical results shows a reasonable agreement, 

for that the accuracy of this calculation model is within acceptable level, especially for cooling power which error 

band less than 3%. 

 

NOMENCLATURE 
 

E activation energy (kJ/kg) 

G hydrogen flow rate (kg/s) 

H enthalpy (kJ/mol) 

M molecular weight 

N number of atoms in hydride molecule 

P pressure (atm)  

Q heat (kJ) 

R gas constant (kJ/mol.K)    

S entropy (kJ/mol.K)                                                         

T temperature (K) 

U internal energy (kJ/kg) 

W hydride and reactor mass (kg) 

c specific heat (kJ/kg.K) 

cp specific heat at constant pressure 

cv specific heat at constant volume 

keff effective thermal conductivity (W/mK) 

m mass (kg) 

r radius (m) 

t time (s)  
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Greek Letters   

θ hydrogen concentration ([H]/[MH]) 

ε kinetic coefficient 

α constant 

ρ density (kg/m3) 

 internal heat source (kW) 

 

 

Subscript   

MH metal hydride 

H2 hydrogen 

a/d absorption or desorption 

eq equilibrium 

g gas 

c/r cooling process or regeneration process  

out/in output or input 

0 referred to initial condition 

∞ referred to infinite time 

1,2 referred to MH1 and MH2  
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