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ABSTRACT 
 

This paper presents a brief overview of pool boiling heat transfer performance of refrigerant/lubricant mixtures. 

Various parameters affecting the heat transfer coefficient, such as viscosity, surface tension are examined. It is 

known that, during evaporation process, the lubricant accumulates on the surface since the refrigerant is preferential 

to evaporate. Hence, excess lubricant enrichment on the surface results in a thin lubricant excess layer and a thermal 

boundary layer, which influence the heat transfer performance, either enhancement or degradation. The effect of 

lubricant concentration on pool boiling is not consistent due to different working conditions. Some major parameters 

causing the inconsistency includes surface active components in the oil that changes the surface tension appreciably, 

such as local variations in concentration and surface tension gradient on growing bubbles; enhanced stirring in the 

boundary layer detaching bubbles; number of boiling sites; foaming on the heating surface and the like. Generally, 

increasing the oil concentration continuously degrades the heat transfer performance for highly interrupted surfaces. 

But the deterioration effect of lubricant on the HTC for plain and integral tubes occurs at a comparatively high oil 

concentration. At a lower concentration, the HTC can be higher or lower than the oil-free refrigerant, depending on 

the complex interactions amid surface geometry, lubricant, saturation temperature, heat flux, foaming, etc. Yet a 

higher viscosity and a lower surface tension of lubricant normally cast positive influence on HTC. It appears that 

foaming may be beneficial to enhance pool boiling and a higher heat flux or a lower saturation temperature also 

provide positive influence on HTC of refrigerant lubricant mixtures. 

 

1. INTRODUCTION 
 

Table 1: Thermophysical properties of R113/oil mixture. From Zhu et al. (2012) 

 Oil concentration 

Thermophysical properties 0% 5% 10% 20% 40% 

Density, kg m-3 1508.2 1464.4 1422.4 1345.9 1215.2 

Thermal conductivity, W m-1K-1 0.063655 0.064111 0.064672 0.066105 0.0070219 

Specific heat, J kg-1 K-1 940.37 988.49 1036.6 1132.9 1325.4 

Viscosity, Pa s  0.00049040 0.00061451 0.00077001 0.0012091 0.0029809 

Surface tension, N m-1 0.014698 0.017388 0.018529 0.020154 0.022468 

 

The heart of compression-based refrigeration and air-conditioning systems is the compressor which circulates 

refrigerant to proceed heating or cooling. In practice, the compressors require lubricants for essential lubrication of 

the moving parts. On the other hand, the lubricant provides a seal between the moving parts enabling efficient vapor 

compression. Gibb et al. (2003) had shown the benefits that introducing more energy efficient refrigeration 

lubricants can lead to a reduction in energy consumption as high as 15% and indirect reductions in emissions of the 

greenhouse gas CO2. With properly designed lubricants, Gibb et al. (2003) estimated that up to 80% of the industrial 

refrigeration and air-conditioning systems replaced in the next twenty years in the USA could result in annual 

energy saving up to 200,000 GWh corresponding to 11 million metric tons of carbon in reduced CO2 emissions.  

Despite its crucial role in increasing the energy efficiency of compressor, in typical operation of an air-conditioning 

or refrigeration system, a small amount of oil is carried out of the compressor with the discharge vapor into the 

circuit of the refrigeration system. Since the oil separator cannot secure the oil in total, it results in the migration of 

lubricant oil. The tiny amount of lubricant changes the thermodynamics and transport properties of refrigerant 
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mixtures. Among the difference in thermophysical properties, the influence of viscosity is especially imperative 

since the viscosity of lubricant oil is about two to three orders higher than that of refrigerant. Yet the corresponding 

surface tension of lubricant is approximately one order higher than that refrigerant. Consequently lubricant oil would 

impose a significant influence on the heat transfer characteristics. Table 1 tabulated the thermophysical properties of 

R-113 and VG68 oil with concentration ranging from 0 to 40% from Zhu et al. (2012). Normally, a moderate drop 

of mixture density subject to the rise of lubricant concentration is seen, accompanied with a slight increase of 

thermal conductivity and a moderate rise of specific heat and surface tension. The most pronounced change of 

physical property, as expected, is the viscosity which rises more than six times at a concentration of 40%. 

 

Lubricants used for refrigeration system are classified into mineral and synthetic oils. The mineral oils can be 

subdivided into paraffins, naphthenics, aromatics and non-hydrocarbons. The synthetic oils that had been introduced 

for the widely used mineral oils are not miscible, and the HFCs were proposed as substitutes of the CFCs. The 

synthetic lubricant oils are classified into Polyol Ester (POE), Poly Aklylene Glycol (PAG), Alkyl Benzene (AB), 

and Poly Alpha Olefin (PAO). Normally additives are added into lubricant to improve its characteristics. Additive 

types include (1) pour-point depressants for mineral oil, (2) floc-point depressants for mineral oil, (3) viscosity index 

improvers for mineral oils, (4) thermal stability improvers, (5) extreme pressure and antiwear additives, (6) rust 

inhibitors, (7) antifoam agents, (8) metal deactivators, (9) disperants, and (10) oxidation inhibitors (ASHRAE 2010). 

Some additives provide performance advantages in one area but could raise other problems in another. Apparently, 

the presence of these additives complicates the heat transfer performance of the lubricant oils. There had been many 

reviews concerning the influences of lubricant oils on the heat transfer characteristics of refrigerant, for instance 

Filho et al. (2009), Shen and Groll (2005a, 2005b), Wang et al. (2012, 2014), some general behaviors of the 

lubricants were reported and some controversies still exists. The objective of this study is to give a short overview 

about the effect of lubricant on the nucleate boiling heat transfer characteristics.  

 

2. TYPICAL RESULTS ABOUT LUBRICANTS ON HTC 

 
Fig. 1. Effect of oil on heat transfer enhancement ratio oil (=hr,o/hr) at 30 kW m-2). From Memory et al. (1995) 

 

Wang et al. (2014) had summarized experimental data regarding to the influence of lubricant on the nucleate boiling 

heat transfer subject since 1980 from a total of 34 literatures. The associated surface, operation condition, lubricant 

concentration, heat flux, and major findings were summarized. From their summary, it appears that the test results 

about lubricant on HTC are quite inconsistent. Depending on the lubricant, refrigerant, concentration, tube geometry, 

saturation temperature and supplied heat flux, the HTC can be augmented or impaired and it lacked some conclusive 

trend upon the lubricant addition. Normally the increase of HTC occurs only at a comparative low oil concentration. 

Figure 1 depicts test results from Memory et al. (1995). They conducted  measurements of pool boiling heat-transfer 

coefficients in pure R-114 and R-114-oil mixtures having a bundle of smooth tubes and three enhanced tube bundles 

(finned, structured and porous). Each bundle contained 15 electrically heated tubes in a staggered triangular-pitch 

layout. With addition of oil, the performance of the smooth and finned tube bundles peaks at a specific oil 
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concentration before dropping off slightly. For the structured and porous bundles, oil addition leads to a steady 

decrease in performance, especially for the porous bundle at high heat fluxes. Analogous results were reported by Ji 

et al. (2010) who performed R-134a/PVE lubricant for plain, integral fin and four enhanced tubes. Their test results 

also reveal a more pronounced drop with lubricant concentration especially for enhanced tube geometries. In short, 

most studies depicted that the presence of oil would jeopardize nucleate boiling heat transfer performance especially 

for a highly structured surface than a smooth one. However, it should be noted that some investigators had reported 

a consistent decrease of heat transfer coefficient with oil concentration for plain and structured surfaces (eg. 

Chongrungreong and Sauer (1980a), Bell et al. (1987), Webb and McQuade (1993)), indicating some complex 

behaviors amid lubricant, refrigerant, and heating surfaces. 

 

3. TYPICAL THEORIES ABOUT LUBRICANTS ON HTC 
 

During boiling of refrigerant and lubricant mixture, the more volatile component refrigerant evaporates 

preferentially and leaves the less volatile component (lubricant) at the heating surface and around the bubble, 

forming an oil-rich layer. This was suggested from some prior researches, such as Jensen and Jackman (1984) and 

Mitrovic (1998). A schematic of the idealized configuration about the oil-rich layer is shown in Fig. 2. In addition, 

due to the preferential evaporation of the refrigerant, an oil-rich layer and a steep oil concentration gradient forms 

around the bubble so that the liquid-gas surface tension is likely to increase. The rise of surface tension requires 

more work for evaporation and deteriorates the HTC accordingly. However, this may lead to a reduction in bubble 

size and an increase in bubble frequency. In addition, the he high oil viscosity induces a thicker thermal boundary 

layer at the heated surface,which can increase the number of active nucleation sites, and enhance the heat transfer 

performance.  

 
Fig. 2. Schematic of the bubble growth in association with oil-rich layer. (From Jensen and Jackman, 1984) 

 

Wang et al. (1999) also examined the influence lubricant oil (3GS, 5GS) on the heat transfer performance for plain 

tube at saturation temperatures of  20 C, 4.4 C, and -5 C with oil concentration being 0.75, 1.5, 3.6, and 7%, 

respectively. At a higher saturation temperature of 20 C, the heat transfer coefficients are decreased with increase 

of oil concentration. However, for a saturation temperature of -5 C, the effect of lubricant oil on the heat transfer 

coefficients is reversed. This reversed trend of lubricant on the HTC at various saturation temperature for smooth 

tube is also reported by Mohrlok et al. (2001) in boiling R-507 refrigerant mixture. The heat transfer coefficients 

with oils are higher than those of pure refrigerants over the range of  = 0~3%. A maximum increase of 20~30% of 

heat transfer coefficient is observed near  = 1.5%. There are several possible explanations of this unusual 

characteristic. Firstly, it is attributed to the influence of the most influential physical properties, surface tension and 

viscosity.  For the influence of viscosity, based on the pool boiling correlation developed by Stephan and 

Abdelsalam (1980) where: 
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where f is the kinematic viscosity of the liquid phase of refrigerant and f is the thermal diffusivity. As seen in Eq. 

(1), the heat transfer coefficient is proportional to kinematic viscosity 533.0

f . Hence, it explains in part that a much 

higher viscosity of lubricant oil at a lower saturation may promote the heat transfer. The experimental data of Sauer 

et al. (1980b) also indicated that a lower viscosity lubricant added to R-11 refrigerant causes a much stronger decline 

of heat transfer coefficient than an oil with high viscosity. Secondly, for the influence of surface tension, Mitrovic 

(1998) argued that it is possible that the oil-rich film reduces the liquid-gas interface surface tension. This is possible 

when the oil contains some surface-active component. Mitrovic (1998) reached an expression that connects the 

temperature, oil concentration, and the size of the bubble in equilibrium with the mixture:
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        (4)
 

Where h and r denote the heat transfer coefficient and equilibrium bubble radius, respectively. The subscript o refers 

the state of lubricant mixtures. By using this expression, adding lubricant oil to a refrigerant can facilitate the bubble 

formation and improve the heat transfer. For this to occur, the oil must contain some surface active components. 

For refrigerant oil mixtures, a higher wall temperature is required to accommodate the same nucleation site density 

as compared to the pure refrigerant. This leads to a decrease of HTC at constant heat flux condition. With addition 

of oil, a greater gradient of the surface tension around the bubble may enhance the Marangoni convection. However, 

at a higher oil concentration, the positive effect of oil on heat transfer associated with change of surface tension is 

expected to be offset by mass transfer.  

  
Fig. 3. Schematic illustration of mass transfer during the bubble growth in a refrigerant-oil mixture (a) Expanding bubble surface 

filters the mixture resulting in an oil accumulation around the bubble. (b) Motionless semipermeable membrane representing the 

bubble surface the liquid flows radially towards the membrane. 

 

Further elaboration about the effect of mass transfer resistance in the presence of lubricant is given by Mitrovic 

(1998) as shown in Fig. 3. Since the oil is non-volatile and the vapor in the bubble is the pure refrigerant, the 

expanding interface of a growing bubble, allows only refrigerant molecules to pass through the bubble vapor space. 

Hence,oil would arrive and accumulate at the interface steadily via convective transport of oil molecules through the 

help of refrigerant molecules during expansion. Yet the oil molecules at the interface also tend to diffuse the oil 

molecules to the bulk. The two mechanisms: the diffusion tends to lower, yet the convection may increase or 

decrease the oil concentration at the interface depending on the mass fluxes as time passes.  

Thirdly, the foaming characteristics subject to lubricant oil at saturate temperature may pose extra augmentation. 

Figure 4 illustrated the foaming characteristics by Wang et al. (1999) for R-22/3GS oil at saturation temperature of 
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20 C and -5 C. For the same oil concentration, the depth of the foaming increases when the saturation temperature 

is decreased. The size of the foaming is increased as the saturation temperature is decreased due to a lower pressure. 

When oil added to the refrigerant an intensive foaming is produced as heat flux is increased. Several investigators 

had postulated that the increase of heat transfer coefficients at low oil concentration is related to the foaming process 

(eg. Stephan (1963), Udomboresuwan and Mesler (1986)). 

 

  

q = 58 kW/m2, TS = 20C,  = 0.75%   q = 50.4 kW/m2, TS = 5C,  = 0.75% 

Fig. 4. Photos of foaming characteristics of R-22/3GS mixture at different saturation temperatures. (From Wang et 

al. (1999). 

 

The presence of foaming gives rise to more phase interface area through which the latent heat of evaporation is 

transferred. For a growing bubble, the temperature of the phase interface is decreasing. Heat is transferred at lower 

temperature differences and with higher heat transfer coefficients. On the other hand, there is an oil-rich layer next 

to the heating surface and foam. The foam inhibits the flow of liquid refrigerant to the heating surface, giving rise to 

a high local oil concentration. The foaming phenomenon becomes more pronounced with higher heat fluxes and 

higher oil concentrations. Several investigators (Memory et al. (1995a, 1995b), Udomboresuwan and Mesler (1986)) 

also claimed that the effect of foaming for refrigerant-oil mixtures may significantly increase the heat transfer 

characteristics. Udomboresuwan and Mesler (1986) reported significant enhancement in pool boiling heat transfer in 

the presence of foam. They assumed two possible enhancement effects caused by the foaming, including (1) a thin 

liquid film was created between the foam and the heated surface which results in a very large heat transfer 

coefficient; and (2) secondary nucleation caused by the bubble leaving the surface which bursting into the 

neighboring liquid-vapor region. Notice that a further increase of heat flux may result in significant increase of the 

depth of the foaming. In addition, the size of the foaming is getting finer as heat flux is increased. A close 

examination of the foaming shows that the size of the foaming can be roughly classified into coarse and fine one. 

The coarse one is on the top of the fine one. In summary of the foregoing observations, it is concluded that the effect 

of foaming are more evident in higher oil concentration, lower saturation temperature, and a higher supplied heat 

flux. The presence of foaming may explain partially the sharp bounce of heat transfer coefficient of Zheng et al.’s 

data (2008) when oil concentration is raised from 5% to 10% at a saturation temperature of 7.2 C whereas this 

phenomenon is not seen at a higher saturation temperature of 23.3 C. Similar test results about an appreciable 

increase of heat transfer coefficient with a higher supplied heat flux were also reported by some investigators (e.g. 

Stephan and Mitrovic (1981) and Spindler and Hahne (2009)). Some of their representative data are showed in Fig. 

5. In essence, the foaming effect casts a positive role in augmentation of heat transfer. Hsieh and Weng (1997) also 

postulated that foaming promotes secondary motion in pool boiling and is helpful in moving the oil out of the heated 

surface. The foregoing explanation about the effect of foaming may also be confirmed with the data of Stephan and 

Mitrovic (1981, 1982) who showed the HTC is increased by raising heat flux and HTC could be slightly higher than 

pure refrigerant at a small range of . Moeykens et al. (1995) and Moeykens and Pate (1996) examined the spray 

evaporation performance of R-134a/340-SUS (POE) and R-22/300-SUS (alkyl-benzene) on single tube as well as on 

tube bundles. Foaming was observed due to the oil dissolved in the refrigerant and appreciable enhancements were 

observed. In essence, the foaming effect casts a positive role in augmentation of heat transfer. 

 

In addition to the foregoing explanations of the influence of lubricant on the HTC, Kedzierski attributed the pool 

boiling mechanism to the variations of bubble size and bubble number. Kedzierski (2000) attempted to explain the 

pool boiling mechanism of refrigerant-oil mixtures by introducing the concept of an oil excess (oil rich) layer at the 
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heated surface. Shen and Groll (2005a) had summarized three possible reasons of Kedzierski’s study for lubricant 

enhancing pool boiling: 

1. The oil excess layer is able to reduce the solid-liquid interaction. Then the solid-liquid oil-rich layer leads to a 

reduction in bubble size and an increase in bubble frequency. 

2. The high oil viscosity induces a thicker thermal boundary layer at the heated surface. The thicker thermal 

boundary layer can increase the site density to activate the bubbles.  

3. The oil partial miscibility might contribute to the enhanced boiling. When a partial miscible refrigerant-oil 

mixture boils at the temperature close to the critical solution temperature, there are two liquid films enveloping the 

bubble, an oil-rich film and a refrigerant-rich film. The interface of the two films has a large curvature gradient, 

which leads to a great film pressure gradient. The superheated liquid may be moved to the bubble side by the 

pressure gradient. 

  
(a) Ts = 0 C, from Stephan and Mitrovic (1981) (b) Ts = -10C. Stephan and Mitrovic (1981)  

   
(c) Mass concentration from 1-5, taken from Spinder and Hahne (2009) 

Fig. 5. Heat transfer performance of refrigerant-lubricant mixtures from representative studies. 

 

4. CONCLUSIONS 
 

The effect of lubricant on the nucleate boiling heat transfer performance is briefly summarized in this study. As 

noted in the existing literatures, the heat transfer performance in association with lubricants reveals quite 

inconsistent behaviors. Some major parameters causing the inconsistent trend includes surface active components in 

the oil that changes the surface tension appreciably, local variations in concentration and surface tension gradient on 

growing bubbles; enhanced stirring in the boundary layer of detaching bubbles; number of boiling sites; foaming on 

the heating surface and the like. Some more conclusive trends about the influence of lubricant on the HTC are 

summarized as follows: 

(1) Generally, increasing the oil concentration continuously degrades the heat transfer performance for highly 

interrupted surfaces. But the deterioration effect of lubricant on the HTC for plain and integral tubes occurs 

at a comparatively high oil concentration. At a lower concentration, the HTC can be higher or lower than 

the oil-free refrigerant, depending on the complex interactions amid surface geometry, lubricant, saturation 

temperature, heat flux, foaming, etc. 

(2) Normally a higher viscosity and a lower surface tension lubricant will improve the heat transfer 

performance. 

(3) Some investigators speculated that foaming are beneficial to enhance pool boiling. 
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(4) Some test results suggested that higher heat flux and lower saturation temperature provides positive 

influence on HTC of refrigerant lubricant mixtures.  

 

NOMENCLATURE 
 

C oil concentration (kg/kg) 

Cp     isobaric specific heat        (J kg-1 K-1) 

Q heat flux (W m-2) 

Nu Nusselt number (-) 

T      temperature                             (C) 

s                     specific gravity                     (-)  

h                         heat transfer coefficient            (W m-1K-1) 

f kinematic viscosity (m2
 s-1) 

 

Symbol 

 

 thermal diffusivity (m2
 s-1)  

 Contact angle (degree) 

 density (kg m-3 )  

oil  = hr,o/hr (-) 

 thermal conductivity (W m-1K-1)  

 oil concentration (-)  

 dynamic viscosity (Pa s) 

                        surface tension                        (N m-1) 

Subscript   

f liquid phase 

g vapor phase 

o oil  

r refrigerant  

r,o                       mixture 

s saturation 
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