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ABSTRACT 
 

Heat Pump Water Heaters are becoming more and more interesting technologies for efficient sanitary hot water 

production. The specificities of hot water production compared to the traditional use of heat pumps for space heating 

are the relatively constant energy needs for different outdoor temperatures and the more rapid dynamics associated 

with water temperature elevation. 

This study focuses on the modeling and performance evaluation of an R134a air to water heat pump water heater with 

an external mantle heat exchanger. By nature being a thermo-hydraulic kind of system, a heat pump water heater 

requires both the aspects of fluid mechanics and heat transfer to be covered when modeling the global system 

composed of the heat pump and the thermal storage tank. 

Hence, a detailed thermodynamic model of the heat pump cycle is developed using Modelica covering a description 

of all the components of the thermodynamic cycle from compressor to evaporator and all the possible operating 

conditions such as heating and defrosting. This model is associated with a zonal model accounting for the convective 

behavior patterns of the water observed in the storage tank at different operating conditions and boundary conditions 

imposed by the heat pump cycle. This dynamic model is compared against experimental data coming from an 

instrumented system tested in laboratory conditions for different phases such as draw-off, standby and heating. Good 

precision (<5-10 %) is attained for the heat flow rates, temperatures along the thermodynamic cycle and temperature 

profiles in the water tank for the different phases tested. 

It is shown that the water tank plays an important role in the performances of the system that is very sensitive to the 

operating conditions such as draw-off flow rate, heat pump operating capacity or thermal losses, that cause mixing 

and destruction of the thermal stratification and a reduction in the available energy for the end user. 

 

1. INTRODUCTION 
 

Heat Pump Water Heaters (HPWH) have been researched since the 1950s (Hepbasli and Yildiz, 2009). However since 

the beginning of the 2000’s and the emergence of progressively more stringent energy policies, in particular European 

directives, HPWH have been gaining on market penetration. In France, this is particularly the case where since 2012 

a limit has been set on the primary energy consumption of a building. This has put the focus on reducing the heating 

needs of a building that represent the relative biggest share of the total energy consumption of a building (ADEME, 

2014). 

 

In the total energy demand of a building, Domestic Hot Water (DHW) has the particularity to be relatively climate 

independent  (Morrison et al., 2004) and has a seemingly constant relative value of 10 % over the period of 1973 to 

2012 of the final energy consumption of a typical French building. The legislative purpose to reduce the overall 

primary energy consumption implies that in the near future the relative share of the energy demand for hot water in 

the total energy demand of a building will increase. Within this context electric water heaters (EWH) are becoming 

less favorable and in most cases will be rejected from a new construction project. HPWH have the advantage of using 

small heat pump units that being more energy efficient reduce the dependency of hot water production on primary 

energy compared to EWH.  
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It was observed that most of the systems actually proposed on the French market consist of a basic vapor compression 

cycle composed of an expansion valve, an evaporator, a compressor and a condenser that is connected to a water 

Thermal Storage Tank (TST). Typically three kinds of condenser layouts can be found for the connection between the 

HP unit and the water TST of the HPWH which are the mantle, immersed and external Heat exchanger (HX). Our 

investigation relates more specifically to the HPWH system with a mantle type heat exchanger (MHX) that is one of 

the most commonly proposed systems on the French market.  

 

According to our literature review, numerous studies have been conducted to analyze the performances by means of 

modeling or experimental testing of HPWH. Most of the studies focused on particular points of the thermodynamic 

cycle configuration: condenser configuration, refrigerant mixtures or double-stage compression with injection (Kim 

& Kim, 2014). However, most of these models represent the water TST in a simplified way, by assuming either a 

fixed temperature in the thermal storage tank or a 1D nodal model. It is believed that in the assessment of the global 

performance of a HPWH both the heat pump and the TST have to be modeled accurately. Accordingly, the aim of this 

study is to model a basic thermodynamic cycle with a MHX taking into account both the thermodynamic cycle and 

the TST’s behavior. An experimental study of a HPWH with a MHX, conducted in climatic cells at EDF Lab, is used 

to evaluate and validate the modeling results. 

 

2. EXPERIMENTAL SET-UP 
As to build and validate the model, first an experimental investigation was conducted on one of the most representative 

HPWH available on the French market. The HPWH with the MHX is a split air source type system with an external 

unit connected to the water tank through a refrigerant line. The external air unit is composed of the compressor, 

evaporator and expansion valve whereas the internal unit is composed by a 200 liter tank with wrap-around MHX 

condenser (Figure 1). The general specifications of the HPWH are given in Table 1. In Figure 1 a general schematic 

representation of the tank and its instrumentation is given. The tank was instrumented with internal PT100 1/10DIN 

type temperature sensors disposed vertically at an approximately equidistant interval of 17cm inside the TST. The 

Heat Pump was instrumented with PT100 temperature sensors all along the height of the MHX condenser surface, 

temperature sensors at the entrance and the outlet both on the air and fluid side of the evaporator as well as surface 

temperatures over its copper coils. Electric power was measured with a Yokogawa watt meter with a precision of 0.2 

%, energy delivered from the tank during draw-offs was measured with a Endress+Hauser mass flow meter with a 

precision of 0.5 % and PT100 1/10DIN temperature sensors disposed at the inlet and outlet of the tank.  

 

 

Table 1: General data concerning the heat pump and the TST 

Heat Pump Specifications  

Total power (W) 2800  

Heat Pump Maximum electric power (W) 1000  

Electric auxiliary heater power (W) 1800  

Refrigerant type/mass (kg) R134a / 1.1  

Tank specifications  

Volume (l) 200 

Dimensions HxWxD (m) 1.37x0.53x0.6 

Upper height of the MHX (m) 0.13 

Lower height of the MHX (m) 0.73 

Number of coils  52 

MHX internal diameter (m) 0.0085 

Width of the  MHX wall (m) 0.003 

Width of the tank isolation wall – extremities 

(m) 

0.035-0.02 

Width of the tank isolation over the MHX (m) 0.02 
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Figure 1: Experimental set-up and instrumentation of the HPWH with MHX 

 

The HPWH is tested by means of two climatic controlled cells (Figure 1), one simulating an external air condition 

with an imposed temperature and humidity and another simulating an interior air. The operating conditions of the 

system during the experimental tests are resumed in Table 2. 

 

3. MODELING THE HEAT PUMP 
As a thermo-hydraulic kind of system, a HPWH is composed of two major components which are the water Thermal 

Storage Tank (TST) and the Heat Pump (HP) unit. This means that for the purpose of modeling, both parts’ relative 

contribution in the energy transformation from electricity fed to the compressor to the final end-user’s DHW demand 

have to be taken into account. 

  

The model was developed under Modelica language which allows an acausal object oriented kind of modeling. The 

numerical solving procedure was done with Dymola© developed by Dassault Systèmes AB (Dassault Systèmes AB, 

2014) which has predefined explicit and implicit integrated solvers. The numerical solver chosen was the Radau 

implicit scheme with a tolerance of 10−6.  

 

The heat pump unit is modeled with the TIL© thermal component library developed by TLK-GmbH and the thermal 

properties along the cycle are calculated with TILmedia © (Schulze et al., 2015). The heat pump model developed is 

of semi-empirical gray-box nature. As such the heat exchangers are based on energy and mass conservation with 

empirical correlations used for the heat transfer and pressure drop calculation. On the other hand the compressor model 

is based on constructor data.  

Table 2: Operating conditions during the experimental investigation 
Ambient temperature, 𝑻𝒂 (°C) 20 

Tank temperature setpoint, 𝑻𝒔𝒆𝒕(°C) 55 

External air temperature (°C) 7 

Incoming water temperature, 𝑻𝒕,𝒊𝒏 (°C) 10 

Initial  water temperature, 𝑻𝒕,𝒊𝒏𝒊𝒕 (°C) 10 

Air relative humidity ratio, 𝑯 (%) 87 

 

Climatic cell 1 Climatic cell 2
Temperature sensors

1
3

7
cm

1
7

cm

6
0

cm
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3.1 Modeling the compressor and the expansion valve 
The compressor is a small capacity rotary type compressor of 13 cm3. The only outputs of interest for thermodynamic 

cycle modeling are the discharge temperature, the mass flow rate and the electric power consumed (Li, 2013). All 

three were calculated using empirical fitted relations for the volumetric efficiency, the isentropic efficiency and the 

global efficiency of the compressor. For volumetric efficiency, it is common to fit a linear decreasing law as function 

of compression ratio. However it was observed from constructor data that there was a strong dependency on the 

evaporating temperature. Consequently, the best fitting function was found to be: 

 

𝜂𝑣 = 𝑎0 − 𝑎1 (
𝑃𝑐

𝑃𝑒
)

1
𝑘⁄

+ 𝑎2𝑇𝑒 + 𝑎3𝑇𝑒
2 

 

(1) 

 

 

For the isentropic efficiency, a dependency was found with the evaporating and condensing temperatures, as: 

 
𝜂𝑖𝑠 = 𝑏0 + 𝑏1 (

𝑃𝑐

𝑃𝑒
) + 𝑏2 (

𝑃𝑐

𝑃𝑒
)
2

+ 𝑏3𝑇𝑒 + 𝑏4𝑇𝑐 
 

(2) 

 

The global efficiency allows to determine the electric power from the isentropic power as: 

 
𝑊̇𝑒𝑙 =

𝑊̇𝑖𝑠

𝜂𝑔
 

 

(3) 

 

Where the global efficiency was calculated according to constructor data as proposed by Ghoubalia et al. (2014): 

 
𝜂𝑔 = 𝑐0 + 𝑐1 (

𝑃𝑐

𝑃𝑒
) + 𝑐2 (

𝑃𝑐

𝑃𝑒
)
2

+ 𝑐3 (
𝑃𝑐

𝑃𝑒
)
3

+ 𝑐4 (
𝑃𝑐

𝑃𝑒
)
4

+ 𝑐5𝑇𝑒 + 𝑐6𝑇𝑐 
 

(4) 

 

The electronic expansion valve is assumed to be isenthalpic and the mass flow rate is calculated as: 

 
𝑚̇𝐸𝐸𝑉 = 𝐴𝑒𝑓𝑓√2𝜌𝑐,𝑜𝑢𝑡(𝑃𝑐 − 𝑃𝑒) 

 

(5) 

 

3.2 Modeling the heat exchangers 

The MHX condenser is assumed to behave like a finite length horizontal tube. The modeling approach adopted by 

TIL-TLK (Schulze et al., 2015) consists in discretizing in n cells following the finite volume approach. The heat 

transfer correlations used for one phase heat transfer are Gnielinski’s for Reynolds numbers ranging from 2300 to 

10000 and Dittus Boelter’s for Reynolds numbers superior to 10000. Two phase heat transfer coefficient’s are 

determined using Shah‘s correlation. The pressure drop is calculated using Konakov’s correlation for smooth pipes.  

 

The fin and tube evaporator is modeled using finite volumes method. Same approach as for the condenser has been 

chosen for one phase heat transfer. Two phase convective and nucleate heat transfer is calculated using Shah’s 

correlation for low Froude numbers inferior to 0.04 and Chen’s correlation for higher Froude numbers. 

 

4. MODELING THE THERMAL STORAGE TANK 
The main aim for the water TST is to shift heat generation from the actual use. This allows to use smaller dimensioned 

heat pump units that heat the water in the TST during periods when the DHW needs are low. Naturally when water is 

heated inside a tank, a density gradient is generated and a temperature stratification appears following Archimedes’ 

principle. In this way the buoyancy forces drive the hot water to the upper part of the tank and the colder water stays 

in the bottom part. In terms of energy, this stratification effect allows to maintain the useful energy in the top part of 

the tank where it will finally be drained.   

 

Different phenomena have been found in literature that can play a role in the performance of the thermal storage tank 

but the main causes of stratification disturbance or destratification are respectively the inlet water jets that mix with 

the water in the TST and the thermal heat losses to the ambient. Different types of modeling strategies exist with 

different grades of precision. On the one hand 3D CFD models are computationally intensive but precise and on the 

other hand one can make the hypothesis of a stirred volume with one global temperature and discard stratification 

completely. Experimentally, it was observed that the fluid’s thermal and dynamic behavior was dependent on the 

operating conditions that define different boundary conditions for the TST system. As such, a hybrid modeling 

approach was opted for, specific to the heating, standby heat losses and draw-off periods.  
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4.1 Modeling the heat-up 
For the heat-up phase, the zonal approach proposed by Kenjo et al. (2003) was chosen. This model is based on the 

hypothesis of a thermal and inertial boundary layer forming along the tank wall when heated by the MHX, 

consequently forming a convective Rayleigh-Bénard type of cell as shown in Figure 2. For simulation, 10 isothermal 

cells were used in the vertical direction and 7 cells in the horizontal direction, taking into account the mantle HX, the 

tank wall, the boundary layers and the central region of the tank. An axial symmetry was used to simplify the model.  

 

The upflowing mass flow rate in the boundary layer was determined by using Bejan’s (2013) temperature and velocity 

profiles for turbulent flow and integration along the cross sectional surface of the boundary layer. For an element i,j 

of the boundary layer, this results in: 

 

𝑚̇𝑏𝑙,𝑖,𝑗 = 0.098𝛼𝜌𝑃𝑟
1
15 [

𝑅𝑎𝑖,𝑗

1 + 0.494𝑃𝑟
2
3

]

2
5⁄

𝑝 

 

(6) 

 

Kenjo et al.’s (2003) model assumes a mantle-heat exchanger positioned along the total height of the tank. 

Consequently, the entrainment flow entering the boundary layer depicted by the horizontal arrows in Figure 2 would 

be « egoistically positive » all over the height of the tank. It was observed that this leads to numerical inconsistencies 

with a MHX covering only a given height of the tank, leading to « negative flows » outcoming the boundary layer in 

the parts of the tank with a negative temperature gradient between the wall temperature and the initial water 

temperature. As such, the following condition was added to the numerical solving procedure: 

 
𝑚̇𝑖,𝑗 = {

𝑚̇𝑏𝑙,𝑖,𝑗   𝑅𝑎𝑖,𝑗 > 𝑅𝑎𝑖−1,𝑗 

𝑚̇𝑖−1,j,   𝑅𝑎𝑖,𝑗 ≤ 𝑅𝑎𝑖−1,𝑗
 

 

(7) 

 

The idea is that once the buoyancy forces of the superior layer are inferior to the buoyancy forces of the inferior layer 

then there is no more entrainment flow. In other words, this hypothesis assumes that the buoyancy flow generated by 

the hot wall has sufficient inertia to reach the upper part of the tank without major velocity drop. 

 

This initial model proposed by Kenjo et al. (2003) related to heating phase only assuming an initial uniform water 

tank. However it was observed experimentally that for an initial stratified case, the natural convection cell had a 

varying extent according to time. This allowed us to make the hypothesis of a specific dynamic behavior associated 

with the convection cell. More precisely, it was seen that the upward boundary flow would only reach the levels of 

similar temperature levels and density levels. As such, an additional flow/no-flow condition was added to the model: 

 
𝑚̇𝑖,𝑗 = {

𝑚̇𝑏𝑙,𝑖,𝑗   𝑇𝑖,𝑗 > 𝑇𝑖+1,𝑗+1 

0,   𝑇𝑖,𝑗 ≤ 𝑇𝑖+1,𝑗+1
 

 

(8) 

 

Having the entrained mass flow rates allows to close the system for a i cell and to calculate all the other mass flows 

from the j cells surrounding based on steady state assumption and the flow pattern assumption given in Figure 2 as: 

 ∑𝑚̇𝑖,𝑗

𝑗

= 0  

(9) 

 

The heat transfer for a given cell i and the j cells (north, south, east and west) surrounding can be calculated as: 

 
𝑐𝑣,𝑖𝑉𝑖

𝑑𝑇𝑖
𝑑𝑡

= −∑[(𝑈𝑖,𝑗𝐴𝑖,𝑗(𝑇𝑖 − 𝑇𝑗) + 𝑚̇𝑖,𝑗𝑐𝑝(𝑇𝑖 − 𝑇𝑗))]

𝑗

 
 

(10) 

 

Where 𝑈𝑖,𝑗 represents the overall heat transfer coefficient with the neighboring cells that can be either conductive 

and/or convective. In case of a heating period Shah (2000)’s heat transfer correlation is used: 

 
𝑁𝑢(𝑧) = (4.501 − 3.103

𝐷𝑡
𝐻𝑡
)(
𝑔𝛽(𝑇𝑝(𝑧) − 𝑇∞)𝑧

4

𝜈𝛼𝐻𝑡
) 

0.19

 
 

(11) 

 

 
ℎ𝑐𝑜𝑛𝑣(𝑧) =

𝑁𝑢(𝑧)𝑧

𝑘
 

 

(12) 
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Figure 2: Different flow patterns in the MHX thermal storage tank according to operating conditions 

 

4.2 Modeling the standby periods 
Oliveski (2013) observed with CFD that a descending boundary layer flow forms along the water tank wall during 

standby-periods. As suggested by Kenjo et al. (2003), the zonal model would hence fit very well too, this time not 

with an upward flow but downwards calculated in the same ways as eq. (6). This was however yet not confronted to 

experimental data. 

 

It was suggested by Kenjo et al. (2003) that this flow pattern would exist all along the tank wall. However the CFD 

performed by Oliveski (2013) and Furbo (2012) let us believe that this is not always the case. Their results seem to 

demonstrate that the boundary layer reduces until extinction with time. This reduction of the mass flow rate is directly 

taken into account by the temperature gradient appearing in the Rayleigh number that progressively reduces while 

reaching equilibrium. For the case of total extinction of the boundary layer, a lower limit has to be taken into account 

where the fluid’s viscous forces are greater than the buoyancy forces. According to Kaminski and Jensen (2011) this 

happens when the Rayleigh number is below 2000. An extra condition was hence added to the flow resolution as: 

 
𝑚̇𝑖,𝑗 = {

−𝑚̇𝑏𝑙,𝑖,𝑗 , 𝑅𝑎𝑖,𝑗 > 2000 

0, 𝑅𝑎𝑖,𝑗 ≤ 2000
 

 

(13) 

 

The convective heat transfer during cool down phases was obtained using Oliveski (2013)’s correlation as: 

 

 𝑁𝑢̅̅ ̅̅ = 1.86𝐴𝑐
1.11𝑈̂0.174(𝑃𝑟𝑅𝑎∗)0.155 (14) 

 

4.3 Modeling draw-offs 
It was observed experimentally that two types of flow region exist in the tank when drawing-off water at a given flow 

rate. First a piston type flow seemed to exist in the upper part of the tank. This piston type flow is a general assumption 

taken by a lot of authors from literature. Another region seemed to exist in the bottom part of the tank closest to the 

tank inlet. This region seemed to be subject to intense mixing with the incoming cold water flow and its extent in the 

tank seemed to increase with time. A lot of parameters affect the dynamics of this mixing region such as tank and 

(cold water) inlet design, incoming water flow rate, incoming water temperature and tank temperature.  

  

For this study, it is assumed that mixing occurs at a fixed height from the inlet and that the piston type flow appears 

all over the height of the tank. As such, the energy balance for a horizontal layer i in the vertical direction with the j 

cells surrounding can be formulated as: 

Uniform initial 

temperature heat-up

Stratified initial 

temperature heat-up
Cooling
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𝑐𝑣,𝑖𝑉𝑖
𝑑𝑇𝑖
𝑑𝑡

=

{
 
 

 
 −∑[𝑈𝑖,𝑗𝐴𝑖,𝑗(𝑇𝑖 − 𝑇𝑗)]

𝑗

+
𝑚̇𝐷𝐻𝑊𝑐𝑝(𝑇𝑖𝑚𝑖𝑥 − 𝑇𝑖𝑛)

𝑖𝑚𝑖𝑥
, 𝑖 ≤ 𝑖𝑚𝑖𝑥  

−∑[𝑈𝑖,𝑗𝐴𝑖,𝑗(𝑇𝑖 − 𝑇𝑗)]

𝑗

+ 𝑚̇𝐷𝐻𝑊𝑐𝑝(𝑇𝑖−1 − 𝑇𝑖),   𝑖 > 𝑖𝑚𝑖𝑥

 

 

 

(15) 

 

 

5. RESULTS AND DISCUSSION 

5.1 Validation of the TST model  
The validation of the tank model is done upon three different temperature levels in the tank. This allows to validate 

the behavior of the tank profile according to the height of the tank.  

 

In figure 3, the TST model is confronted to experimental data for a heating period (from 10 °C to 55 °C) followed by 

a standby phase at 20 °C ambient temperature. It can be seen that water in the tank reaches its temperature set point 

after approximately 7 hours. For the bottom layer of the tank it can be seen that a heating lag exists between the heating 

start-up phase and the temperature elevation in this region. This heating lag is due to the time necessary to the tank 

walls to heat up, the boundary layer to form and to transport sufficient energy after successive heat up of the higher 

zones.  

 

 
Figure 3: Heating from uniform temperature of 10 °C to 55 °C followed by a standby-period in a 20 °C ambient 

temperature environment with 10 °C external temperature 

 

Also it is interesting to point out that the zonal model predicts the temperatures along the whole height of the tank 

with a good precision. In the standby-period from hour 7 to 24, the model predicts with a good accuracy the 

temperatures in the high and middle region of the tank. In the bottom section, although the tendency seems to be 

similar, there exists a persisting error of 2 K. Those errors can be related both to the boundary layer mass flow 

correlation and to the numerical precision of the grid that were used in this study.  

 

In figure 4, successive heat-up and draw-off phases are presented. At a draw-off flow rate of 720 l/h an acceptable 

precision is found at the different heights of the tank. The stratified reheating phase that follows seems also to be well 

predicted. However for a 120 l/h draw-off flow rate there seems to be an imprecision of the model in the higher regions 

of the tank. This can be related to the precision of the numerical grid employed. Indeed it is assumed that 10 

horizontally mixed regions exist, subject to the plug flow and mixing regime. In reality, a cold water front rises cooling 

infinitesimally small layers of the tank in a successive manner. As such, the temperature predicted by the model relates 

more to an average temperature of a plurality of infinitesimal layers different from the sensors that measure the real 

temperature of one given infinitesimal layer.  
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Figure 4: A heat-up phase at 7 °C external temperature, followed by a draw-off at 720 l/h, reheat and a draw-off at 

120 l/h with reheat 

The mixing model employed assumes a fixed height. However in figure 4 it can be seen that a deviation exists in the 

lower layer temperature predictions for the 720l/h draw-off where for 120l/h this deviation is smaller. Consequently, 

a possible improvement for the mixing model would be to correlate the mixing layer height with the influencing 

parameters such as draw-off flow-rate and water inlet temperature.  

 

5.2 Validation of the Heat Pump model 
For the heat pump validation both temperatures around the cycle and electric power consumed by the compressor 

measured experimentally (Figure 1) represent important characteristics to validate. Figure 5 shows the validation of 

the model in the condenser and evaporator parts. For the condenser, the model is validated in the superheat, 

condensation and subcooling regions (on the refrigerant side). The condensation temperature rises both in the model 

and experiment with the elevation of the water to 55 °C. For the evaporator, the model is validated on the air and 

refrigerant sides, with a satisfying prediction. However, a small error of 1.7 K exists for the refrigerant inlet 

temperature prediction. This can be related to the connecting tubes and collector that were not taken into account in 

the model.  

 
Figure 5: Condenser and evaporator boundary validation for a heating phase at 10 °C external temperature 

 

In figure 6, the power consumed by the compressor is confronted at different evaporator air inlet temperatures. The 

compressor model seems to present acceptable precisions with small deviations at the end of the heat-up phase. This 

can be explained by the precision of the empirical mapping employed, variable according to the condensing and 

evaporating temperature regions.  
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Figure 6: Predicted and experimental power at different evaporator temperature levels and predicted COP 

 

The Coefficient of Performance (COP) could not be confronted to the model as there was no measure done yet on the 

refrigerant mass flow rate in the heat pump unit. The prediction presented in figure 6 seems however to be coherent 

with physical considerations. In the start-up phase the heat pump has a lower COP due to the thermal inertia of the 

heat pump cycle. Then an optimum is reached once the cycle is in steady-state and has a low tank water temperature 

hence low condensing pressure. Then the COP decreases with the increase of the condensation temperature following 

the increase of water temperature all along the heat-up phase.  

 

6. CONCLUSIONS 
A general thermodynamic model was built for the purpose of simulating a heat pump connected to a water thermal 

storage tank. A fluid mechanics based zonal model from literature was used for the tank assuming boundary layer 

flow during heat-up and cooling periods. The boundary layer flow’s region of influence was determined according to 

physics based criterions. A semi-empirical approach was used to model the heat pump with empirical data for the 

compressor and general heat transfer correlations for the discretized heat exchangers. These two combined approaches 

allow to simulate the behavior of a Heat Pump Water Heater with a mantle heat exchanger in a numerical efficient, 

modular and precise way. Such a model can be used for the purpose of optimization and yearly simulations as it allows 

both low simulation time and high precision in the results. 

 

NOMENCLATURE 
 

 

𝐴 Surface     (m²) 

𝐴𝑐 Modified aspect ratio     (m²) 

𝑐𝑣 Specific volumetric heat capacity  (J/°C/m3) 

𝑐𝑝 Specific heat capacity at constant pressure  (J/°C/kg) 

𝐷 Diameter  (m) 

𝑔 Gravity  (m/s²) 

𝐻 Height  (m) 

ℎ𝑐𝑜𝑛𝑣  Convective heat transfer coefficient  (W/ m²/°C) 

𝑘 Conductive heat transfer coefficient  (W/ m/°C) 

𝑚̇ Mass flow rate  (kg/s) 

𝑁𝑢 Local Nusselt Number   (–) 

𝑃 Pressure  (Pa) 

𝑃𝑟 Prandtl number   (–) 

𝑅𝑎 Rayleigh number   (–) 

𝑅𝑎∗ Modified Rayleigh number   (–) 

𝑇 Temperature   (°C) 

𝑈 Overall heat transfer coefficient  (W/ m²/°C) 

𝑈̂ Dimensionless overall heat transfer coefficient (–) 
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𝑉 Tank volume   (m3) 

𝑊̇ Power  (W) 

𝑧 Vertical axe coordinate   (m) 

∆𝑧 Vertical layer height   (m)  

𝜂 Efficiency  (–)   

𝜌 Density  (kg/m3)   

𝛼 Thermal diffusivity  (m²/s) 

𝑝 Tank perimeter                 (m) 

𝛽 Thermal expansion coefficient  (/°C) 

𝜈 Cinematic Viscosity   (m²/s) 

Subscript   

𝑏𝑙 Boundary layer   

𝑐 Condensation 

𝑒 Evaporation 

𝐸𝐸𝑉 Electronic Expansion Valve 

𝑒𝑓𝑓 Effective 

𝑒𝑙 Electric 

𝑔 Global 

𝑖, 𝑗 Increments 

𝑖𝑠 Isentropic 

𝑣 Volumetric 
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