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ABSTRACT 
 

Variable refrigerant flow (VRF) systems are easily subjected to performance degradation due to refrigerant 

leakage, mechanical failure or improper maintenance after years of operation. Ideal VRF systems should equip 

with fault detection and diagnosis (FDD) program to sustain its normal operation. This paper presents the fault 

diagnosis method for refrigerant charge faults of variable refrigerant flow (VRF) systems. It is developed based 

on the classification and regression tree (CART) algorithm. Data of the experimental VRF system is used to test 

the advantages of the CART method. Results show that the decision tree can achieve desirable diagnosis efficiency 

on undercharge faults, while it is less sensitive to the overcharge faults. Validation study is also conducted using 

the data of online VRF systems. Results implies that the CART method obtains an outstanding classification 

efficiency on the VRF system that has the same type as the one provides the training data. But it is unable to 

identify the data of different type systems 

 

1. INTRODUCTION 
 

Since the building energy consumption occupies the lion’s share in total energy consumption, numerous researches 

and solutions have been implemented for building energy efficiency. For instance, LED light for building 

illumination, frequency conversion technology for chillers, pumps and fans in the heating, ventilation and air-

conditioning (HVAC) systems, application of the building fault detection and diagnosis (FDD) techniques, etc. 

The HVAC system, which accounts for more than 50% of the building energy (Lin and Liu, 2015), draws the 

major attention of building energy efficiency enhancement. The variable refrigerant flow (VRF) system is one of 

the HVAC system, which has been widely installed in commercial and residential buildings. It has outstanding 

part load performance and energy saving potentials, as well as provide flexible zone comfort control (Aynur, et 

al., 2009, Lin, et al., 2015). To maintain the healthy operation of the HVAC system, the FDD techniques has been 

proposed to automatically identify and reject the faults. In comparison to abundant FDD researches on centrifugal 

chiller systems, vapor-compression air-conditioning systems, the FDD strategy studies for VRF systems are still 

quite limited. 

Kim and Cho (2012) presented a regression algorithm to detect evaporator air blockage faults of multi-heat pump 

system under heating mode, the fault detection method shows desirable goodness for the multiple indoor units. 

Shin et al. (2014) employed two model-based fault detection methods to identify the heat exchanger fouling faults 

and valve stuck faults in a multi-split VRF system. Li et al. (2016) extending the virtual refrigerant charge (VRC) 

sensor strategy proposed by Li and Braun (2009) with the data-based analysis method. The combination of support 

vector regression and VRC method are proposed to predict the refrigerant charge amount in VRF systems.  
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As mentioned above, most FDD strategies for VRF systems are mainly developed by the model based, semi-

model based or statistic based methods. while small amount of experimental data is used to training and test. 

Although most of the previous studies have emphasized the feasibility of the proposed FDD strategy, they have 

not sufficiently considered the discrepancy of the experimental system and the actual operating systems. In a real 

time, the actual systems or online systems operate in complex conditions rather than specific conditions in the 

laboratory chambers. The data of both systems might be very discrepant and the actual data would be noisy or 

biased, which would degrade the robustness of the FDD model that developed by the experimental data. Hence, 

this study aims at filling the knowledge gap. First, the data of both experimental and online systems are collected. 

Secondly, a typical data mining algorithm, i.e. the classification and regression tree (CART), is presented to 

classify the refrigerant charge faults for VRF systems. The basic ideal of CART method is described, as well as 

generalized the data analysis procedure. Thirdly, the data of experimental VRF system is used to training the 

CART model, and the model is tested by the experimental data. Further, to evaluating the robustness of the FDD 

strategy, validation studies are implemented with the data of online operating VRF systems. 

 

2. MATERIALS AND METHODS 
 

2.1 Data sources  
This analysis used the data of an experimental and there online VRF systems, respectively. All VRF systems 

investigated in this work are made by the same manufacturer. The experimental VRF system, constructed with 

one outdoor and five indoor units, is installed in a standard enthalpy difference laboratory. It uses R410A as the 

refrigerant and the normal charge amount is 9.9 kg. The schematic is illustrated in Figure 1. The online VRF 

systems, which we labeled as #1, #2 and #3, are all installed in commercial buildings. The online systems operate 

in the actual conditions rather than specific conditions in the laboratory chambers (for example, different installed 

environment, unstable indoor and outdoor temperature). Besides, the #1 has the same construction as the 

experimental system. While the others are inconsistent, since the #2 and #3 have 8 and 12 indoor units, respectively. 

The data are collected from the built-in controllers in each unit by the original equipment manufacturer (OEM) 

sensors in both experimental and online VRF systems. In addition, the position of OEM sensors installed in the 

online systems are consistent to the experimental system, as the recorded parameters of the controllers are the 

same for both systems. 

In this work, the experimental program contains nine refrigerant charge levels (RCLs). There are three cooling 

modes in each RCL test, i.e. low temperature, medium temperature and high temperature. Each mode includes 

three indoor unit operating scheme, i.e. one unit operating, three units operating and five units operating. The 

overall experimental program is shown in Table 1. The experimental data is used to training and test the refrigerant 

charge fault diagnosis model, while the online data is used to validate the robustness of the model.  

For the experimental data, three categories are grouped according to 9 RCLs. The charge level between 15% of 

 

 
Figure 1: The schematic of experimental VRF system 
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the 100% refrigerant charge level is defined as “Normal charge”, while the charge level less or greater than 15% 

of the 100% refrigerant charge level are deemed to “Undercharge” or “Overcharge”, respectively. For the online 

data, it is grouped into “Normal charge” since each online system is proved to be normal charged after the on-site 

test. The data size of each RCL and online VRF system is illustrated in Table 2.  

 

Table 1: Experimental program 

Group 

number 

Cooling 

mode 

Indoor unit 

‘ON’ number 

Indoor room 

conditions 

Outdoor room 

conditions 

Dry-bulb Wet-bulb Dry-bulb Wet-bulb 

1 

Low 

1 

23 15 31 23 2 3 

3 5 

4 

Medium 

1 

27 19 35 24 5 3 

6 5 

7 

High 

1 

32 24 40 26 8 3 

9 5 

 

Table 2: Data size of both experimental and online VRF systems 

Data source Category Refrigerant charge level Sample size 

Experimental system 

Undercharge 63.64%, 75.45%, 80.00% 51500 

Normal charge 84.84%, 95.75%, 103.74%, 111.72% 60627 

Overcharge 120%, 130% 26017 

Online VRF systems Normal charge #1, #2, #3 6846, 7429, 14893 

 

2.2 Decision tree 
The Classification and Regression Trees (CART) is a non-parametric modeling approach that can explain the 

responses of a dependent from a set of independent continuous variables or categorical variables (Breiman et al., 

1984). In comparison to other “black box” likely classification methods, such as support vector machine, artificial 

neural networks etc. it can generate accurate classification models with understandable and interpretable tree 

structures. Useful domain information can be extracted from the tree. The CART employs the Gini index to select 

properties in each node as shown in Eq. (1). 
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where X is the data set, c is the predefined number of class, and Ci represents the ith class in X. si is the sample 

number of Ci. pi = si/S is the relative frequency of Ci. The CART adopts a binary recursive partitioning strategy to 

split the current X into two subsets, i.e. X1 and X2. The optimal split point can be obtained by minimizing the 

weighted sum of the two subsets as shown in Eq. (2). 

                             Min   

1

0

( )i i
split

i

n Gini X
Gini

n

                       (2) 

where ni is the size of the ith subset, and n is the size of the X. 

The complexity parameter (cp) is employed to prune the tree and prevent overfitting, which represents the tradeoff 

between the tree complexity and accuracy (Themeau and Atkinson, 2011). All analyses were implemented by R 

software (Tippmann, 2015) and the CART model was established with the RPART package (Themeau and 

Atkinson, 2011). 

 

2.3 Data analysis procedure 

Figure 2 illustrates the whole data analysis process for developing the CART model. First, the data are collected 

from the both experimental and online VRF systems. Secondly, in the data pre-processing step, feature extraction 

and outlier remove are implemented on experimental and online data sets, respectively. The feature extraction 

based on domain knowledge is used to select proper variables (Fan, et al., 2015). The outliers of the data are 

filtered using the interquartile range rule (Xiao and Fan, 2014). In addition, the recorded data of system 

starting up process is also removed. Thirdly, in the offline model test process, all the experimental data with 

three labels (“Undercharge”, “Normal charge” and “Overcharge”) are randomly split into two subsets, i.e. training 

data set and test data set. The training data set contains 75% of the total data while the rest is placed into test data 

set. Then, 10-folds cross-validation (CV) is implemented to obtain the best fitted CART model. The training data 
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set is split randomly into 10 disjoint subsets with equal size. Among 10 iterations, each subset would be tested by 

the CART model that trained with other 9 subsets. The cross-validation accuracy, which indicates the ratio of 

correctly classified data to the subset data, would be compared between each fold to select the optimal model. 

Afterword, the performance of the optimal CART model would be evaluated with the test data set. Fourthly, the 

robustness of the CART model is validated using the online data. 

 

3. RESULTS AND DISCUSSION 
 

3.1 Data pre-processing 
There are 216 and 116 recorded variables in the built-in controller of outdoor unit and each indoor unit, 

respectively. The total 332 initial variables contain 280 state variables of the VRF systems, which are Boolean 

value (i.e. TRUE or FALSE) and less beneficial to the fault diagnosis model. Hence, the state variables are 

removed in the first place. Then, optimal 13 variables of the rest 52 variables (i.e. measurements of temperature, 

pressure, current, voltage, frequency and openness) were retained after the feature extraction and model validation, 

i.e. compressor operating frequency (f), condensing saturation temperature (Tcond), evaporating saturation 

temperature (Tevap), compressor, compressor discharge temperature (Tcom,dis), shell temperature (Tshell), 

defrosting temperature (Tdef), liquid refrigerant temperature at the subcooler outlet pipe (Tsubc.out.L), vapor 

refrigerant temperature at the subcooler outlet pipe (Tsubc.out.V), accumulator outlet pipe temperature (Taccu.out), 

accumulator inlet pipe temperature (Taccu.in), openness of the electronic expansion valve of subcooler 

(EXVsubc), compressor module temperature (Tcom,mod) and compressor current (I).  

Afterword, outliers of both experimental and online data are filtered by the interquartile range rule. The sizes 

of retained experimental data are 50483, 58119, 25318 at undercharge, normal charge and overcharge levels, 

respectively. Less than 10% of the total data are removed in the process. For the online data, however, in 

order to validate the robustness of the CART model, the initial data sets without any deletion are used for 

classification. 

 

 
Figure 2: Flowchart of the CART method in refrigerant charge fault diagnosis 

 

 
Figure 3: Label distribution of the three data sets 
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3.2 Test of the decision tree 
In this step, the experimental data set is grouped into the training data set and test data set. Labels in each subset 

have the similar distribution as the total data set as shown in Figure 2, which is benefit to the classification 

efficiency of the model.  

The cp of the CART is set as 0.011, the overall accuracy of the training data and test data are 79.90% and 79.73%, 

respectively. Table 3 shows the fault diagnosis results of the test data. Sensitivity is used to evaluate the sensibility 

of the model, which indicates the ratio of the correctly classified data to the total data in each class. For the 

undercharge data, the sensitivity is 87.97%. While the normal charge data has a high sensitivity for 92.04%. For 

the overcharge data, however, the corrected diagnosis rate is 35.04%, since 59.76% of which is wrongly classified 

into “Normal charge”. This is mainly because the undercharge faults affect the performance of the VRF system 

greatly while the overcharge faults impact little, the CART model regards the overcharge data as normal one. 

Figure 3 shows the boxplot of the partial variables at nine refrigerant charge levels, which illustrates the variation 

range of each variable. As an example, the accumulator outlet pipe temperature (Taccu.out), as shown by the pink 

rectangle in in Figure 3(a), increase as the reducing of the refrigerant charge level. When the refrigerant is 

overcharge, the Taccu.out is remaining the similar range as the normal charge condition. Further, the accumulator in 

the VRF system should account for the low classification efficiency at overcharge cases. The accumulator can 

store the redundant refrigerant in the overcharge conditions, thus trigger less performance variation on the system. 

Therefore, the CART model are insufficient to identify the normal charge and overcharge data. 

Since the overcharge faults are less recognizable by the CART model, the undercharge and normal charge fault 

data are used to train the model to obtain more inherent information. Figure 4 shows the decision tree for the 

classification of two charge classes (i.e. “Undercharge” and “Overcharge”). It can be seen that the tree contains 

18 nodes as well as 10 classes (either “Undercharge” or “Overcharge”). The number of correct classifications and 

the number of observations are also given in each node. Results indicate that 94.44% and 94.43% of the training 

 

Table 3: Confusion matrix of the test data set 

Prediction 

Actual 
Undercharge Normal charge Overcharge Sensitivity 

Undercharge 11042 1430 78 87.97% 

Normal charge 416 13433 745 92.04% 

Overcharge 329 3787 2220 35.04% 

 

 
(a) 

 
(b) 

Figure 4: Boxplot of segmental variables at 9 refrigerant charge levels 
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Figure 5: Decision tree for the prediction of normal charge and undercharge 

 

Table 4: Classification result of online data 

System number Indoor unit number Classification accuracy 

#1 5 99.75% 

#2 8 26.92% 

#3 12 31.83% 

 

records and test records are correctly classified, respectively. In the growing process of the tree, the Taccu.out, Tcond 

and EXVsubc are used repeatedly to split the nodes, which implies that the three variables are significant to identify 

the undercharge faults. It is reasonable as three variables (Taccu.out, Tcond and EXVsubc) vary obviously in the 

undercharge cases as shown in Figure 4. 

According to the decision tree, some interesting information can be gained, which is in accord with the domain 

knowledge. For instance, as shown in node 4, if the condensing saturation temperature is lower than 44, it more 

likely the refrigerant is insufficient. It is consistent to the conclusion that the undercharge faults would lead to a 

lower condensing temperature of the system. Besides, as shown in node 6, the openness of EXVsubc is less than 56 

indicating that the system is normal charged. It is reasonable in the actual situation, for the openness of EXVsubc 

is low in the normal charge cases as illustrated in Figure 4(b). While it would be high to meet the cooling demand 

in the undercharge cases.  

 

3.3 Validation of the decision tree 
In this section, the CART model based on the experimental data is validated using the data of online VRF systems, 

i.e. #1, #2 and #3. The CART, modeling with three refrigerant charge data, obtains 79.73% classification accuracy 

in the test step. Note that the online VRF systems all have the normal refrigerant charge amounts. As illustrated 

in Table 4, the accuracy of #1, which has the same type with the experimental system, is considerably high for 

99.75%. It suggests that 99.75% of the data is identified as “Normal charge”. This is mainly because: 1) the 

variation ranges of monitoring variables of both experimental and #1 system are uniform, 2) the underlying 

relationship between variables of both VRF systems are parallel. However, for the system of #2 and #3, the 

correctly classified ratios are 26.92% and 31.83%. It suggests that CART model failed to identify the refrigerant 

charge level of both systems. Although the variation range of monitoring parameters of #2 and #3 VRF systems 

are similar to the experimental VRF system, the underlying relationship between variables might be different. 

Moreover, the result indicates that the CART method is insufficient to classify the data of VRF systems that have 

different number of indoor units. Therefore, the CART method is more suitable for diagnosing the refrigerant 
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charge faults of VRF systems which have the same type as the system that provide the training data. 

 

4. CONCLUSION 
 

This work presents a decision tree method to diagnosis the refrigerant charge faults for VRF systems. Two CART 

models were established to diagnosis one (undercharge) and two (undercharge and overcharge) faults, respectively. 

Validation study was conducted using the data of online VRF systems. Conclusion are as follows: 

1) The overcharge fault data is insufficient to be classified by the CART model, mainly because the accumulator 

store the redundant refrigerant to maintain the normal operation. Besides, the CART shows desirable 

diagnosis accuracy for undercharge faults, i.e. 93.78% for training data and 93.83% for test data. 

2) The CART model obtains an outstanding classification efficiency on the VRF system that has the same type 

as the one provides the training data. But it is unable to identify the data of different type systems. 

 

NOMENCLATURE 
 

CART classification and regression tree (–) 

c predefined number of class in CART model (–) 

Ci the ith class in X (–) 

CV cross validation (–) 

EXVsubc openness of electronic expansion valve of subcooler (–) 

f compressor operating frequency (Hz) 

FDD fault detection and diagnosis (–) 

Gini Gini index (–) 

I compressor current (A) 

ni size of the ith subset (–) 

n size of X (–) 

si sample number of Ci (–) 

S sample number of X (–) 

Taccu.in accumulator inlet pipe temperature (℃) 

Taccu.out accumulator outlet pipe temperature (℃) 

Tcond condensing saturation temperature (℃) 

Tcom.mod compressor module temperature (℃) 

Tevap evaporating saturation temperature (℃) 

Tcom.dis compressor discharge temperature (℃) 

Tdef defrosting temperature (℃) 

Tshell compressor shell temperature (℃) 

Tsubc.out.L liquid refrigerant temperature at the subcooler outlet pipe (℃) 

Tsubc.out.V vapor refrigerant temperature at the subcooler outlet pipe (℃) 

VRF variable refrigerant flow (–) 

X total data set (–) 

 

Subscript 

accu accumulator  

cond condenser  

dis discharge  

def defrosting  

evap evaporator  

in inlet  

L liquid  

mod module  

out outlet  

shell compressor shell  

subc subcooler  

V vapor  
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