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ABSTRACT 
 

The use of heating, ventilation, air conditioning, and refrigeration (HVAC&R) systems is always increasing. This is 

because the HVACR systems are necessary for food production and ability to inhabit buildings that otherwise would 

be inhabitable. Thus, there is continued research focused on improving the efficiency and reducing the negative 

environmental impact of these systems. The basic vapor compression cycle (i.e., evaporator, condenser, expansion 

device and compressor), which is still the main underlying HVAC&R technology worldwide, has already reached its 

limits and researchers are investigating more creative and complex cycles to improve capacity and efficiency. This 

motivates the development of a generalized vapor compression system simulation platform. Steady state simulations 

require less time than transient simulations, and are used in system design optimization and cost minimization for 

given performance. This paper presents a comprehensive vapor compression system steady state solver which has 

several novel features compared to the existing solvers. Firstly, this solver is capable of simulating large number of 

different vapor compression system designs. This includes arbitrary system configurations, and user defined 

refrigerants. The solver uses a component-based solution scheme in which the component models are treated as black 

box objects. This allows a system engineer to quickly assemble and simulate a system where-in the component models 

and performance data comes from disparate sources. This allows different vapor compression systems design 

engineers, and manufacturers to use the solver without the need to expose the underlying component model 

complexities. We validate the solver using a residential air source heat pump system and the modeling results match 

the experimental results within 5% accuracy. Also, the solver shows an agreement within 10% accuracy with the 

experimental results of a vapor injection heat pump system with a flash tank. 

 

1. INTRODUCTION 
 

The use of vapor compression systems, whether on the commercial or residential scale, is continuously increasing. 

One reason for that is that vapor compression systems comprise the majority of the HVACR systems. According to 

the US Department of Energy (U.S. Department of Energy, 2010), heating, ventilation, and air conditioning (HVAC) 

account for 40%, and 33% of primary energy use in residential and commercial buildings, respectively. Thus, research 

is ongoing to improve the efficiency, and reduce the cost and environmental impact of the HVACR systems. In order 

to reach these targets, a large number of system designs need to be evaluated, either through simulation or building a 

prototype. The latter option is obviously expensive and time consuming. Hence, the development cost of vapor 

compression systems drops when using proper simulations tools as large number of prototypes can be evaluated 

without the need of manufacturing large number of prototypes (Negrão & Hermes, 2011). A proper simulation tool 

should combine three main factors: robustness, speed, and accuracy (Ding, 2007). A vapor compression system 

simulation tool comprises two main parts; the component models, and the system solver. The component model can 

vary from empirical equations to detailed component equations. The system solver, which is the main focus in this 

paper, combines the component models together according to the relationship between component parameters. The 

aim is to obtain the steady state refrigerant state (e.g. pressure, enthalpy, temperature…etc.) while satisfying the energy 

and mass balance in the system. 

 

There are many solvers that can be used for energy system simulation, such as vapor compression systems, that 

currently exist. These can be divided into two main categories with some solvers utilizing hybridizations of the two 
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categories (Richardson, 2006). The first category is the general equation solvers. These solvers allows specifying the 

system in terms of its governing and component models’ equations. The solver then solves these set of equations. 

Although this category allows for the simulation of any system, it requires a lot of efforts from the system designer. 

The second category of simulation packages is the advanced energy system solvers. These solvers are usually designed 

for a specific task (e.g. simulation of a heat pump model, solar power plant…etc.). This makes it easier to perform the 

desired simulations. However, it is usually limited with the specific system to which it is designed. This makes 

generalizations of the system very difficult if not impossible. Hybridizations of the two categories provide fixed 

systems with user defined component models. A reliable vapor compression system simulation solver should have the 

option to simulate user defined systems using user defined components. Although, such solver is highly required, it 

doesn’t currently exist in literature. 

 

The unknown variables in a vapor compression system solver are typically fluid-related state information (Qiao, et 

al., 2010). The system solvers can also be divided in two main approaches in which the unknown variables are solved 

(Winkler, 2009): successive approach where a variable is solved before moving on to the next variable, and 

simultaneous approach which uses a non-linear equation solver to solve all the unknown variables simultaneously. 

The successive approach (Davis & Scott, 1976; Hiller & Glicksman, 1976; Ellison & Creswick, 1978; Tassou, et al., 

1982; Domanski & Didion, 1983; Domanski & McLinden, 1992; Fischer & Rice, 1983; Robinson & Groll, 2000; 

Koury, et al., 2001; Joudi & Namik, 2003; Sarkar, et al., 2006; Fukushima, et al., 1977; de Lemos & Zaparoli, 1996; 

Zhao, et al., 2003; Rigola, et al., 2005; Santa & Garbai, 2013; Stefanuk, et al., 1992; Winkler, et al., 2008; Blanco, et 

al., 2012) is fast and robust. However, as the system configuration gets more complicated, this approach needs more 

than one nested loop to perform the system level iterations.  Thus, this approach becomes less convenient (i.e. it gets 

more difficult to determine the proper and efficient solution scheme) to use as the system configuration becomes more 

complex (e.g. more components, more splits and merges, multi-stage cycles…etc.). This is due to the fact that for a 

small modification to the system configuration, major code changes, if not a new solution scheme, are required. In the 

simultaneous approach (Almedia, et al., 1990; Belman, et al., 2009; Corberan, et al., 2002; Corberan, et al., 2000; 

Herbas, et al., 1993; Jin & Spitler, 2002; Hwang & Radermacher, 1998; Jolly, et al., 1990; Parise, 1986; Richardson, 

et al., 2002; Rossi, 1995; Richardson, et al., 2004; Shao, et al., 2008; Agrawal, et al., 2007; Bourdouxhe, et al., 1994; 

Browne & Bansal, 1998; Sanaye & Malekmohammadi, 2004; Paulus, et al., 1994), the number of unknown variables 

is higher than in the successive approach for the same system configuration. This is because all the unknown variables 

are independent and are solved for simultaneously. Although this approach provides higher flexibility for the modeled 

system configuration, it has higher computational cost than the successive approach. Also, for this approach, unlike 

the successive approach, the sequence of running the different component models in the system is not important. Thus, 

a new solver is required that combines the robustness and speed efficiency of the successive approach while 

maintaining the flexibility of the simultaneous approach. 

 

A third method of categorizing the system solvers is based on the relation between the system solver and component 

models. The system solvers are then categorized into two main schemes: the global scheme and the component-based 

scheme (Winkler, 2009). In the global scheme, the equations used in the component models are typically hard coded 

within the system solver. This helps improve the robustness of the solver since the solver is directly evaluating all the 

mathematical equations. Also, general equations solvers can be used to solve the generated set of equations. However, 

the obvious drawback of this scheme is its inflexibility. Adding new components or changing part of the system 

configuration needs a lot of effort. This is because the set of equations and solution variables are not dynamically 

formulated based on the system configuration. In the component-based solution scheme, the system solver is 

decoupled from the component models. In other words, the system solver treats the component models as black-box 

objects interacting with one another through a series of ports and junctions. In order to create a generic vapor 

compression system simulation tool that can handle arbitrary system configurations, a component-based solution 

scheme is needed. However, only very few vapor compression system simulation packages implement this solution 

scheme. 

 

To sum up, there are many steady state simulation solvers that exist in literature. However, these solvers either 

implement the fast and robust successive approach which has limited flexibility to system configuration, or the flexible 

simultaneous approach which suffers from speed and robustness problems. Also, most of these solvers require the 

equations used in the component models to be hardcoded and/or exposed to the system solver. This limits the 

widespread use of these tools among the vapor compression system manufacturers due to the proprietary equations 

and data used in the different components. Thus, some existing solvers use the component-based solution scheme 

where the different components are defined as refrigeration system components, and are modeled as black box objects 
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interacting with one another through a series of ports and junctions (DOE/ORNL, 2015; Winkler, et al., 2006). 

However, these tools lack one or more of the key features: a user friendly interface, the ease of incorporating new 

component models in the system, the flexibility to create new arbitrary cycles, and the capability to perform further 

analysis on the system (e.g. optimization, sensitivity, or parametric analysis). Therefore, this paper presents a 

comprehensive vapor compression system steady state solver that can simulate advanced vapor compression systems. 

Also, this solver supports user-defined fluids, and user-defined convergence criteria. 

 

2. OUTLINE OF THE NEW SOLVER 
 

The new solver falls under the successive solution scheme category of solvers. However, the solver uses highly flexible 

data structures to overcome the flexibility problem associated with this type of system solvers. The solver outline 

consists of three main steps:  

1. Determining the unknown variables and formulating the residual equations 

2. Determining the number of required initial guess values and convergence criteria 

3. Running the non-linear equation solver 

 

The most challenging steps in this outline are the first two steps. These steps makes the solver gain its flexibility to 

simulate arbitrary system configurations. Thus, these two steps are the main focus in the new solver. In the next part, 

we demonstrate the comprehensive solver outline for a basic vapor compression cycle with two condensers, shown in 

Fig.1. The unknown variables for this cycle are the pressure and enthalpy at each junction and the refrigerant mass 

flow rate fraction in the condensers. This makes a vector of a total of 9 unknown variables [P1 P2 P3 P4 h1 h2 h3 h4 mx]. 

Based on the enthalpy marching solver (Winkler, et al., 2008), the enthalpy can be propagated from one component 

to the next (e.g. the enthalpy outlet of the compressor in the enthalpy inlet to the condenser). Therefore, the only 

unknown enthalpy is at the compressor inlet. These two considerations reduce the number of unknown variables to 5 

variables [P1 P2 P4 h1 mx]. Before moving on to the solving scheme, we need to derive a general method to be used by 

the solver to determine the unknown variables in any arbitrary system configuration. The solver applies the following 

rules to determine the number of unknown variables: 

1. For every pressure based component (compressor, ejector …etc.), the inlet pressure and enthalpy, and the 

outlet pressure are unknown. 

2. For each refrigerant flow split, the solver adds a number of unknown variables equal to the number of 

additional split branches (i.e. number of additional unknowns = number of branches -1). 

3. For each expansion device, the outlet pressure is an unknown. 

 

Then, a non-linear equation solver is used to solve the residual equations to obtain the value of the unknown variables. 

This means that we need a set of residual equations corresponding to the number of unknown variables. The solver 

uses the following rules in the first step to formulate the residual equations: 

1. For each pressure level containing a condenser (e.g. in the example cycle, this is one), at any condenser outlet 

(only one condenser outlet at the pressure level) the residual equation is based on an input system constraint 

(e.g. system subcooling at condenser outlet, or discharge pressure for a transcritical system). 

2. For every refrigerant flow merge, the pressure levels from each branch are equal to one another. This provides 

a number of residual equations equal to the number of additional split branches (i.e. number of residual 

equations = number of branches -1). 

3. For every compressor, the solver formulates two residual equations at the compressor inlet. These two 

equations (P1,i-P1,i-1=0, h1,i-h1,i-1=0) compare the calculated compressor inlet pressure and enthalpy values 

after each iteration with the calculated values from the previous iteration. The solver uses an input inlet 

pressure guess value as the reference pressure at the first iteration. The suction enthalpy is based on the 

suction pressure and the desired superheat. 

4. For every expansion device, the solver compares the input superheat value with the calculated enthalpy at 

the specified point at each iteration. 

 

Also, the non-linear equation solver needs initial guess values as a starting point for some of the unknown variables. 

The solver uses the following rules to determine the number of required guess values, and convergence criteria in the 

second step: 

1. For each pressure level containing a condenser (e.g. in the example cycle = 1), subcooling at any condenser 

outlet is an input convergence criteria. 

2. For every compressor, the inlet and outlet pressures are two input guess values.  
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3. For every expansion device, a corresponding desired outlet condition (e.g. superheat value at any evaporator 

outlet along the same refrigerant path of the expansion device) is an input to the solver. 

 
Figure 1: Basic vapor compression cycle with two condensers 

 

At every iteration, we need to run all the component models. As mentioned previously, at this point many of the 

existing tools are not flexible enough as the sequence of executing the components is important and typically 

hardcoded. In the proposed new solver, one of the key steps is to run all the pressure based components (e.g. 

compressors) at the beginning of each iteration. This is because for all the compressors, the suction and discharge 

pressures are known (either from the guess values or the previous iteration) and the suction enthalpy is calculated 

(based on the input suction superheat, or the previous iteration). Once the solver runs all the pressure based 

components, it loops through all the other components to run them one by one. For each component, if the upstream 

refrigerant state (i.e. inlet port state) is known, the solver runs the component model. However, if the inlet port state 

has not been calculated yet, the solver moves to the following component. As an example, in Fig. 1, after running the 

compressor, if the solver checks the evaporator, it will not run te evaporator as h4 is not calculated yet. The solver will 

only be able to run the condensers since the refrigerant state at junction 2 is already calculated. The solver keeps 

repeating the same loop until it runs all the component models. It then calculates the residuals and passes the values 

to the non-linear equation solver to proceed to the following iteration. This keeps going until convergence occurs 

within the specified tolerance. Figure 2 shows the solver flowchart.  

 

 
Figure 2: Solver flowchart 
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3. VALIDATIONS 
 

3.1. Residential Air Source Heat Pump (ASHP) System 

 
In this section, an ASHP system is validated against experimental data in the AHRI low GWP AREP report by 

Alabdulkarem et al. (Alabdulkarem, et al., 2013). The compressor model is a ten-coefficient (AHRI-540-2004 

Standard) model with power and mass flow rate adjustment factors. The condenser and evaporator component models 

use a finite volume heat exchanger simulation tool (Jiang, et al., 2006). The expansion device’s inlet subcooling and 

suction superheat are the convergence criteria. These criteria values are set to be equal to the experimental values for 

the corresponding testing conditions and refrigerant. The modeling results match the experimental results within 5% 

accuracy as shown in Fig. 3. It is worth noting that the same validation study was previously done using the enthalpy 

marching solver and results showed the same agreement (Alabdulkarem, et al., 2015). 

 

 
Figure 3: ASHP validation 

 

3.2. Vapor Injection Heat Pump System with a Flash Tank 

 
In this section, a vapor injection heat pump system with a flash tank is validated against experimental data by Xu (Xu, 

et al., 2013). The compressor model is a two stage compressor with an intermediate suction port. The condenser and 

evaporator component models use a finite volume heat exchanger simulation tool (Jiang, et al., 2006). The expansion 

device’s inlet subcooling and suction superheat are the convergence criteria. These criteria values are set to be equal 

to the experimental values for the corresponding testing conditions and refrigerant. Figure 5 shows the cycle 

schematic. The modeling results match the experimental results within 10% accuracy as shown in Fig. 4.  
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Figure 4: Vapor injection cycle schematic 

 
Figure 5: Flash tank cycle validation 

 

4. CONCLUSION 

 
This paper presents a new component-model based steady state vapor compression systems solver. This solver falls 

under the successive solution scheme category of solvers. Nevertheless, it uses highly flexible data structures to 

overcome the flexibility problem associated with this category of system solvers.  Thus, this solver can handle arbitrary 

system configurations without compromising modeling speed or robustness. Moreover, this solver supports user-

defined fluids, and user-defined convergence criteria. The solver outline is demonstrated for a basic vapor compression 

cycle with two condensers. The solver is also validated using a residential ASHP, and vapor injection heat pump 

systems and the modeling results match the experimental results within 5%, and 10% accuracy, respectively. 
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