
Purdue University
Purdue e-Pubs
International Refrigeration and Air Conditioning
Conference School of Mechanical Engineering

2016

Experimental Evaluation of Low-Cost Gas Heat
Pump Prototypes for Building Space Heating
Michael Garrabrant
Stone Mountain Technologies, Inc., mgarrabrant@stonemtntechnologies.com

Roger Stout
Stone Mountain Technologies, Inc., rstout@stonemtntechnologies.com

Christopher Keinath
Stone Mountain Technologies, Inc., ckeinath@stonemtntechnologies.com

Paul Glanville
Gas Technologies Institute, paul.glanville@gastechnology.org

Follow this and additional works at: http://docs.lib.purdue.edu/iracc

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.
Complete proceedings may be acquired in print and on CD-ROM directly from the Ray W. Herrick Laboratories at https://engineering.purdue.edu/
Herrick/Events/orderlit.html

Garrabrant, Michael; Stout, Roger; Keinath, Christopher; and Glanville, Paul, "Experimental Evaluation of Low-Cost Gas Heat Pump
Prototypes for Building Space Heating" (2016). International Refrigeration and Air Conditioning Conference. Paper 1573.
http://docs.lib.purdue.edu/iracc/1573

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/77953932?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Firacc%2F1573&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/iracc?utm_source=docs.lib.purdue.edu%2Firacc%2F1573&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/iracc?utm_source=docs.lib.purdue.edu%2Firacc%2F1573&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/me?utm_source=docs.lib.purdue.edu%2Firacc%2F1573&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/iracc?utm_source=docs.lib.purdue.edu%2Firacc%2F1573&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engineering.purdue.edu/Herrick/Events/orderlit.html
https://engineering.purdue.edu/Herrick/Events/orderlit.html


2035, Page 1 
 

16th International Refrigeration and Air Conditioning Conference at Purdue, July 11-14, 2016 

 

Experimental Evaluation of Low-Cost Gas Heat Pump Prototypes for 

Building Space Heating 
 

Michael GARRABRANT1, Roger STOUT1, Chris KEINATH1*, Paul GLANVILLE2 

 
1Stone Mountain Technologies, Inc. 

Johnson City, TN 37604 

(423) 735-7400; ckeinath@stonemtntechnologies.com 

 
2Gas Technologies Institute 

Des Plaines, IL 60018 

 

*Corresponding Author 

 

ABSTRACT 

This paper presents the experimental evaluation of two packaged prototype single-effect ammonia-water absorption 

heat pump systems designed to provide 23.45 kW of space heating with a cycle COP of 1.65 at ambient air and 

hydronic return temperatures of 8.3°C and 37.8°C, respectively. These prototypes were fabricated with materials and 

methods that would allow for mass production and significantly reduce total system cost when compared to 

commercially available absorption heat pump systems. Both prototypes were investigated at their design ambient and 

hydronic return temperatures, and performed within 94% of their target. Their performance was investigated for a 

range of ambient and hydronic return temperatures to allow for characterization of system performance. The impact 

of parasitic power on overall system COP and reduction strategies were investigated. The ability to modulate system 

output was investigated and both units were able to achieve 4:1 modulation. Performance of the single-effect 

prototypes was compared to that of a commercially available GAX absorption heat pump system and was found to be 

comparable.  Additional testing on one of the prototypes was performed to estimate the Annualized Fuel Utilization 

Efficiency (AFUE) for the climate region IV.  An economic payback of 3-5 years compared to a condensing boiler 

was predicted based on the projected cost and measured performance of the prototypes.   

1.0 INTRODCUTION 

Gas-fired residential space heating in the United States is predominantly supplied by furnaces and boilers. These 

technologies have been approaching their thermodynamic limit over the past 30 years and improvements for higher 

efficiency units have approached the point of diminishing return. Electric heat pumps are growing in popularity but 

their heating performance at low ambient temperatures is poor. Commercially available gas absorption heat pumps 

are not economically viable for most applications. The development of a low-cost gas absorption heat pump would 

offer a significant improvement to current furnaces and boilers, and in heating dominated climate zones when 

compared to electric heat pumps. Gas absorption heat pumps (GAHP) exceed the traditional limit of thermal efficiency 

encountered by typical furnaces and boilers, and maintain high levels of performance at low ambient temperatures. 

This paper presents the experimental evaluation of two packaged prototype single-effect ammonia-water absorption 

heat pump systems designed to provide 23.45 kW of space heating with a cycle coefficient of performance (COP) of 

1.65 at ambient air and hydronic return temperatures of 8.3°C and 37.8°C, respectively. 

2.0 PRIOR WORK 

Absorption heat pumps have been investigated for a range of heating and cooling applications at the residential, 

commercial and industrial scales. Several prior investigations are highlighted below.   
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Priedeman et al. (2001) investigated a 17.6 kW ammonia-water Generator-Absorber heat eXchange (GAX) absorption 

system for residential and light-commercial space-conditioning applications. The breadboard system achieved a cycle 

COP of 0.68 at full cooling capacity. The authors noted that a cycle COP of 0.70 or greater could result in an 

economically viable system. This investigation preceded a commercialization effort by a U.S. start-up company, 

Cooling Technologies Inc., focused on residential and commercial cooling. Unfortunately, the commercialization 

effort stalled during the field test stage and the system did not make it to production.  

Garrabrant et al. (2014) experimentally investigated three 2.78 kW nominal residential capacity heat pump water 

heaters fabricated with conventional heat exchangers based on designs and analyses presented by Garrabrant et al. 

(2013). Nominal operating conditions were a 32C hydronic fluid temperature into the absorber and condenser, and a 

20C ambient. During normal operating conditions, the hydronic fluid temperature into the absorber and condenser 

ranges from 14 - 60C. Steady state performance was investigated over a range of hydronic water supply temperatures 

and Energy Factors (EF) of 1.2 - 1.3 were demonstrated. Field testing of this gas absorption heat pump water heater 

design was presented by Glanville et al. (2016). The field test was performed over a 10 month period and showed that 

in-field unit performance was similar to laboratory results. 

The performance of an 18 kW GAX GAHP for domestic hot water for retrofits of existing buildings was the focus of 

concerted effort in Europe. This system was developed as part of the HEAT4U project to aid in the development of 

GAHP solutions for existing European buildings. This was a consortium effort that included the only manufacturer of 

GAHP systems in this capacity range, Robur. Toppi et al. (2014) used the results from performance testing of the 18 

kW unit to develop a characteristic model of the systems performance for a range of operating conditions (external air 

temperature, water temperature, and heating load).  

Erickson et al. (2014) presented a commercialized heat-activated heat pump/chiller for commercial and industrial 

applications. The system is able to provide 88 kW of cooling at a footprint of 0.9 m by 1.5m.  It should be noted that 

all externally coupled components were liquid coupled to their source or sink. This allows for a significant reduction 

in absorption system size. The implementation and results from field testing of this system in several applications 

(meat packing plant, poultry processing plant, pulp and paper processing plant) were presented and showed the 

potential for significant energy and economic savings.   

3.0 PROTOTYPE SYSTEM DESCRIPTION 

Two packaged prototype single-effect ammonia-water gas-fired absorption heat pump units were investigated as part 

of this study. Figure 1 presents images of the units (Unit 01 has silver paneling and Unit 02 has blue paneling). The 

units were built in sequence and initial testing on Unit 01 was completed before Unit 02 was fabricated. As a result, 

there are minor differences between the two units.  The width, depth and height of the packaged units are 1.19 × 0.97 

× 1.12 meters, respectively. The majority of the absorption system is housed towards one end of the unit (Figure 2) 

and occupies a space of 0.43 × 0.97 × 1.12 meters. This space contains the absorber, condenser, condensing flue gas 

heat exchanger (CHX), desorber, rectifier, refrigerant heat exchanger, solution heat exchanger, and solution pump and 

motor. The remaining space is occupied by the direct air coupled evaporator. The evaporator is the largest component 

and occupies 64% of the total footprint. The packaged prototypes, when coupled with accompanying control boxes, 

are standalone units that are designed to maintain a set hydronic return or supply temperature when a call for heat is 

present. The units have the ability to modulate which helps them to better match loading with ambient temperatures 

and limits the number of start-up and shut-downs experienced. 

4.0 EXPERIMENTAL EVALUATION 

Testing of the two packaged units was performed within temperature controlled chambers to allow for evaluation for 

ambient air and hydronic return temperatures of -17.8 to 12.8°C and 27 to 52°C, respectively. Figure 3 is a schematic 

of the test facility used.  In-stream temperature measurements at the hydronic inlet and outlet of the units were made 

using RTD’s (accuracy of ± 0.1°C) and the hydronic flow rate was measured using a volumetric flow meter (Omega, 

FMG-705). The total gas rate in was measured using a volumetric gas meter (Elster American Meter, DTM-200A) 

and the combustion efficiency was determined using a flue gas analyzer (ENERAC, MEA 500). 
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The coefficient of performance (COP) was calculated from the measured data in several different ways which are 

discussed below. The cycle COP was calculated using Equation 1 where the inputs were determined using Equations 

2-4. This COP is representative of the absorption heat pump performance and accounts for heat exchange in the 

absorber, condenser and desorber. 

          COPcycle = (QHeating – QCHX) ÷ QDesorber             (1) 

         QHeating = ṁ × cp × (Thyd,supply – Thyd,return)             (2) 

            QCHX = QGas × (CECHX – CEDesorber)             (3) 

     QDesorber = QGas × CEDesorber              (4) 

The gas COP was calculated using Equation 5. This equation accounts for the heat provided by the absorber, condenser 

and condensing heat exchanger. The denominator is the bulk gas input to the system. 

 COPGas = QHeating ÷ QGas                     (5) 

 

Figure 1: Packaged prototype units (Unit 01 – Left, Unit 02 – Right) 

 

  

     Figure 2: Heat pump components    Figure 3: Test facility schematic 
        housed within unit         

 

 

 



2035, Page 4 
 

16th International Refrigeration and Air Conditioning Conference at Purdue, July 11-14, 2016 

 

The system COP was calculated using Equation 6. The numerator is the heat provided by the absorber, condenser and 

condensing heat exchanger. The denominator is the bulk gas input and the parasitic power of the system. 

                      COPSystem = QHeating ÷ (QGas + PElectric)                       (6) 

It should be noted all of the natural gas based calculations use the higher heat value (HHV) unless otherwise noted.  

5.0  RESULTS AND DISCUSSION 

Performance of both units was investigated at the design ambient (8.3°C) and hydronic return (37.8°C) temperatures. 

Unit 01 achieved cycle, gas and system COP values of 1.62, 1.42 and 1.36, respectively. Unit 02 achieved cycle, gas 

and system COP values of 1.57, 1.39 and 1.35, respectively. Both units performed near the target cycle, gas and system 

COP values of 1.65, 1.45 and 1.4, respectively. At this operating condition Unit 01 and 02 provided 22.3 and 22.1 kW 

of heat, respectively. The target heating duty is 23.5 kW. Unit 01 performed at slightly higher COP values than Unit 

02. This is in part due to the absorber of Unit 02 being damaged during shipping from the fabricator. Parasitic power 

consumption was reduced between Unit 01 and 02 by up to 100 W which contributed to closer system COP values.  

 After initial testing of the units was completed, parametric sweeps were performed to characterize system 

performance over a range of expected ambient (-18 to 12.8°C) and hydronic return (27 to 52°C) temperatures.  Unit 

01 and 02 Gas COP values are plotted as a function of ambient and hydronic return temperatures in Figure 4. The 

plots show the expected trend of increased COP as ambient temperature increases and hydronic return temperature 

decreases. Both systems performed well over the experienced conditions. This is important because a unit installed in 

a real world application will be required to operate over a large range of conditions without issue.  

In addition, the ability to modulate is important because it will limit the number of start-up and shut-down periods 

experienced by the unit in an actual application. These are periods of less efficient operation which is why they should 

be limited. In addition, heating systems are typically sized for the coldest 5% ambient condition and most residential 

systems will spend the majority of their life operating between 40 to 80% of capacity. Modulation of both units was 

investigated for a range of ambient temperatures (-17 to 12.8°C) at the design hydronic return temperature of 37.8°C 

and both systems were able to achieve 4:1 modulation. Figure 5 presents plots of System COP as a function of the gas 

input fraction to the desorber for both units. The plots show that System COP peaks between 50 and 80% for both 

units. System performance initially increases with the reduced heat input because the effective UA of the heat 

exchangers increases. This is also the reason why the peak for both units shifts to lower firing rates with reducing 

ambient temperatures. At less favorable ambient conditions, more effective area will result in increased performance.  

Limiting parasitic power is important to maximizing the System COP because it is an additional energy input to the 

system. Figure 6 is a plot of parasitic power as a function of hydronic return temperature for Unit 01 and 02. The plot 

 

Figure 4: Unit 01 and 02 Gas COP versus ambient and hydronic return temperatures 
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shows that parasitic power is reduced with reduced hydronic return temperature. This is because the required pumping 

power decreases as the high to low side pressure difference decreases. The vertical scatter in several locations is a 

result of investigating system performance with varying evaporator fan speeds. Parasitic power for Unit 02 is roughly 

50 to 100 watts lower than Unit 01 for any given case. This is a result of design changes that occurred between 

fabrication of the two units 

Performance of Unit 01 was investigated by Gas Technology Institute using the ANSI Z21.40.4 test method to estimate 

the Annualized Fuel Utilization Efficiency (AFUE) of these gas heat pump units. The ANSI Z21.40.4 requires a series 

of steady state tests performed at full and partial loading to calculate the AFUE. The AFUE is the ratio of the useful 

heat delivered by a system over a complete heating season to the gas consumed to drive the unit. It should be noted 

that the AFUE does not include electricity consumption in the denominator and that testing for this AFUE was 

performed separate from the data reported above. Data used in the ANSI bin method calculation is presented in Table 

1 for climate region IV, corresponding to an outdoor design temperature of -15°C and 5643 bin hours. This resulted 

in a predicted AFUE of 136% with a seasonal output and consumption of 37,543 and 27,637 kWh, respectively.  The 

annual estimated electricity consumption from the procedure is 5,274 kWh, which combined with fuel consumption 

yield a Heating Season Performance Factor of 9.45 on a source energy basis.  Additional testing of Unit 01 

demonstrated a COPGas of 1.2 with -25°C ambient temperature, at full fire with a 35°C return water temperature. 

  

Figure 5: Gas COP as a function of desorber firing rate 

 

 

Figure 6: Parasitic power as a function of hydronic return temperature 
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6.0 COMPARISON WITH COMMERCIALLY AVAILABLE SYSTEMS 

The availability of residential capacity gas absorption heat pumps is significantly limited. To the knowledge of the 

authors there are only a few companies currently manufacturing these gas heat pump systems, the Italian company 

Robur is one, and they use a GAX Absorption cycle as their core technology. Published Robur data (Toppi et al. 2014; 

Robur 2013) and data collected as part of this study are compared in Figure 7. All of the performance data is reported 

using the Gas Utilization Efficiency (GUE) which is similar to the Gas COP but uses the Lower Heating Valve (LHV) 

for the gas instead of the HHV. This was done because the Robur performance data is presented in GUE. The figure 

shows that Unit 01 and 02 performed at or above the reported performance of the Robur units for the ambient 

temperature range and hydronic supply temperatures reported. This is significant because the Robur units use the GAX 

absorption cycle, which is inherently more complex and costly than the single-effect cycle used in Units 01 and 02.   

Performance was then compared to a commercially available electric heat pump (EHP) system that was specifically 

designed for cold ambient operation (Space Pak, 2015) and two cold ambient EHPs under development (Shen et al. 

2016).  To allow for proper comparison between the gas and electric heat pumps, the Primary Energy COP was 

calculated for both systems (Equations 7 and 8).  

            COPPE,EHP = COPEHP × 3.15                      (7) 

    COPPE,GAHP = QHeating/(QGas + PElectric × 3.15)                                (8) 

The 3.15 adjustment factor was provided by the U. S. Department of Energy (2015). It should be noted that it is unclear 

from either of the electric heat pump data sets whether the non-compressor electric power is factored into the COPEHP. 

If it is not, accounting for this would reduce the EHP COP values. Figure 8 presents a plot of Primary Energy COP 

Table 1: Input and output data used for ANSI Rating Points 

Rating 

Point 

Ambient 

Temperature, °C 

Firing 

Rate, kW 

Heat Output, 

kW COPGas 

Electric Power Input, 

kW 

1 8.2 4.8 7.5 1.54 0.55 

2 1.6 4.8 7.0 1.45 0.56 

3 -8.4 4.7 6.4 1.35 0.52 

4 -8.4 9.0 12.7 1.41 0.58 

5 1.6 16.2 23.4 1.44 0.63 

6 -8.4 15.4 21.1 1.37 0.63 

7 -14.0 14.7 18.4 1.26 0.59 

 

 

   

Figure 7: GUE comparison at 55 and 35°C hydronic supply temperatures 
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for the EHP systems, and GAHP Unit 01 and 02. The 

plot shows that the gas heat pumps outperform the 

Space Pak (2015) electric heat pump for the entire 

range of ambient temperatures and the units presented 

by Shen et al. (2016) for the majority of the ambient 

temperature range (below 0°C). A condensing furnace 

would outperform all of the EHP systems at ambient 

temperatures less than -5°C. This plot shows that even 

cold ambient EHP systems are not ideal for cold 

ambient conditions and that the gas heat pump is more 

appropriate for cold climate heating. Comparison with 

other residential capacity GAHP and cold ambient 

EHP systems shows that the units under investigation 

have the potential to be successful from a performance 

standpoint in heating dominated climate regions. 

In order for the units under investigation to achieve widespread adoption, they not only need to outperform current 

technologies but must also allow for reasonable payback periods when compared to less efficient alternatives. Typical 

non-condensing and condensing gas furnaces have AFUE values around 80 and 95%, respectively. The non-

condensing furnace will use minimal electricity while the condensing furnace is expected to have a parasitic electrical 

load of 4% of the gas input. The GAHP has an AFUE of 136% and is expected to have a parasitic electrical load of 

6% of the gas input. Based on these assumptions the GAHP has the potential to save 18,890 and 11880 kWh of energy 

annually when compared to the standard and condensing furnaces (for the climate region IV), respectively. Assuming 

a 0.042 $/kWh cost of natural gas (EIA.gov, 2016) and a 0.1181 $/kWh of electricity, the GAHP will save $765 and 

$500 annually when compared to a typical furnace and condensing furnace, respectively. This means that for a 3 to 4 

year payback the difference in installed cost between the standard furnace and the GAHP must be between $2,295 and 

$3,060. For the condensing furnace the difference in installed cost must be between $1,500 and $2,000. 

For the GAHP to be adopted readily, unit cost must be low. This becomes a challenge because heat pumps are 

inherently more complex than standard furnaces and boilers. The units investigated above try to address this concern 

in several ways. The first is that the single-effect heat pump is one of the more basic absorption cycles. Limiting the 

complexity of the system will limit cost through fewer heat exchangers and parts. All of the components within the 

units are designed using similar parts and raw materials which allows for fabrication with minimal tooling variation. 

The current projected cost of the GAHP systems investigated (after typical distribution channel mark-ups) is 40 to 

50% that of commercially available GAHP systems, which should make them competitive with standard heating 

systems. 

7.0 CONCLUSION 

Two prototype single-effect ammonia-water absorption heat pump systems designed to provide 23.5 kW of heating at 

a cycle COP of 1.65 were investigated. Both units operated within 6% of their target cycle COP and heating duty. The 

units maintained high coefficients of performance for the range of ambient and hydronic return temperatures 

investigated. The units showed further versatility in their ability to achieve 4:1 modulation for a range of operating 

conditions. Parasitic power was significantly reduced between fabrication of Unit 01 and 02 and will continue to be a 

focus as additional prototype units are fabricated. AFUE evaluation in climate region IV was determined to be 136% 

which is significantly higher than standard furnace and boilers. 

Comparison with a commercially available GAHP showed that the units have similar performance. The biggest 

difference is that the Robur units use the GAX cycle which is significantly more complex and costly than the single-

effect cycle used in Unit 01 and 02. Comparison with a commercially available low ambient EHP showed that the 

GAHP units outperform the electric units. Annual energy and operating cost savings of the GAHP were calculated 

against standard and condensing furnaces and found to be significant. These savings are important because they are 

needed to reduce the payback and improve the likelihood of adoption when in production. Low cost component 

 

Figure 8: Primary Energy COP comparison 
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designs and production methods are projected to bring the installed cost of the units under investigation to 40-50% of 

the current installed cost of a Robur GAHP and bring absorption heat pumps in line with the 3-4 year payback. 

NOMENCLATURE 

AFUE Annualized Fuel Utilization Efficiency GUE Gas Utilization Efficiency 

ANSI American National Standards Institute HHV Higher Heating Value 

CE Combustion Efficiency, % Hyd Hydronic  

CHX Condensing Flue Gas Heat Exchanger LHV Lower Heating Value 

COP Coefficient of Performance, -  P Electric Power, kW 

Cp Specific Heat, kJ/kg-K PE Primary Energy 

EHP Electric Heat Pump ṁ Mass Flow Rate, kg/s 

GAHP Gas Absorption Heat Pump Q Heat Duty, kW 

GAX Generator-Absorber heat eXchange T Temperature, °C 
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