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ABSTRACT

Chen, Yulu Ph.D., Purdue University, May 2015. Circular Bessel Field Statistics and
the Pursuit of Far-Subwavelength Resolution . Major Professor: Kevin J. Webb.

The statistical description of wave propagation in random media is important for

many applications. While polarized light in systems with weakly interacting scatterers

and sufficient overall scatter has zero-mean circular Gaussian statistics, the underlying

assumptions break down in the Anderson localization and weakly scattering regimes.

Although probability density functions for wave intensity and amplitude exist beyond

Gaussian statistics, suitable statistical descriptions for the field with strong and weak

random scatter were unknown. The first analytical probability density function for

the field that is effective in both the Anderson localization regime and the weakly

scattering regime is derived by modeling the field as a random phasor sum with a

random number of contributing terms. This provides a framework for modeling wave

propagation in random media, facilitating random media characterization, imaging

in and through scatter, and for random laser design.

The resolution of far-field imaging systems is diffraction limited. Super resolution

techniques that break the diffraction limit are important in the physical, chemical,

and biological sciences, and in technology. An imaging method based on object

motion with structured illumination and far-field measurement data that results in

far-subwavelength image information is proposed. Simulations show that this ap-

proach, with generous detector noise, will lead to the ability to distinguish image

features on the nanometer scale with visible light. Along different lines, a perfect

negative refractive index can act as a superlens, but realistic materials render this ap-

proach ineffective. A method to tune the lens material properties is shown to provide

enhanced resolution.
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1. INTRODUCTION

1.1 Circular Bessel Statistics and their Applications

The statistical description of electromagnetic fields and intensity can be traced

back to the invention of the maser and the discovery of speckle [1, 2]. Speckle forms

when coherent waves interact with random media. In general, random media consist

of a multitude of randomly positioned objects with a variety of sizes, shapes, veloc-

ities, and materials. Examples include cloud, fog, rain, dust, smoke, milk, ground

glass, and tissue. Characterization of wave transport (especially laser light in the

visible spectrum) in random media plays a pivotal role in imaging and sensing into

and through randomly scattering media, which leads to important biological, astro-

nomical, and meteorologic applications.

When light travels through or is reflected from random media, the well-known

zero-mean circular Gaussian statistics have been applied to describe field and inten-

sity distributions with great success [3], and have been verified by interferometric

measurements in optically thick random scattering media with weakly interacting

scatterers [4, 5]. The fundamental assumption of zero-mean circular Gaussian statis-

tics is a random phasor sum model that describes the field as the sum of a multitude

of independent random phasors, each representing partial waves traveling through

different trajectories inside the random medium or reflected from different parts of a

rough surface. Because of the central limit theorem, the probability density function

for the real and imaginary parts of the polarized field are Gaussian. Using a simple

change of variables, the probability density functions for the intensity and amplitude

can be found to be negative exponential and Rayleigh, respectively [3].

The random phasor sum model carries the implicit assumption that the field can

be treated as a scalar. In two-dimensional problems, the geometry is translationally
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invariant in the third dimension. Because there is no coupling between the two polar-

izations due to scatter, the solution to 2D problems can be decomposed into transverse

electric and transverse magnetic modes. In this case, the out-of-plane component of

the field can be modeled by the random phasor sum. For three-dimensional systems,

the random phasor sum picture holds for a particular vector field component (co- or

cross-pol), as long as there is a sufficiently large number of scattering events so that

each orthogonal vector component of the field solution (the scalar) have equivalent

statistical information. With weaker overall scatter, however, the temporal response

of a random medium has been known to depend on polarization [5], which leads to

the development of vector descriptions [6].

Wave transport in random media can be categorized into different regimes, with

the scattering mean free path and localization length being two important metrics.

The scattering mean free path measures the average distance between successive scat-

tering events, and the localization length is the system size for Anderson localization

to occur [7, 8]. In the diffusive regime, the scattering mean free path is much larger

than the wavelength of the light, but much smaller than the size of the system. This

means that the light is scattered multiple times, but the scattered partial waves have

little correlation, which is why the Gaussian statistics hold in the diffusive regime.

In the weakly scattering regime, there is not enough scatter to completely randomize

the incident field. Quantitatively speaking, the system size is then smaller than the

transport mean free path, which is a characteristic length over which the memory of

the incident field is lost [9]. The scattering mean free path is typically much shorter

than the transport mean free path, and is equal to the latter only when the scatter-

ing is isotropic [10]. Gaussian statistics do not hold in the weakly scattering regime,

because the incident field phasor dominates so that the total field cannot be treated

as the summation of a large number of random phasors. In the Anderson localization

regime, characterized by the system size being smaller than the localization length,

the field forms localized modes, which can be treated as local random cavities formed

by random scatterers. Inside these localized modes, the field is the sum of a few
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multiply scattered partial waves. Outside the localized modes, there is little field.

Consequently, Gaussian statistics do not apply in the Anderson localization regime.

We present a family of circular Bessel probability density functions that are capa-

ble of describing the intensity, amplitude, and field statistics of waves in any random

medium, with only the assumption of circularity, in Chapter 2 and Chapter 3. Inspired

by the K-distribution [11], which treats the field as a random phasor sum with a ran-

dom number of contributing phasors, we derive the first analytical probability density

function for the field that is effective in both the Anderson localization regime and

the weakly scattering regime. The field probability density function that we derive

and the K-distribution are coherent statistical descriptions that unveil the intrinsic

connection between intensity and field, and they are able to model a broader range

of statistical phenomena than is possible with zero-mean circular Gaussian statistics.

We refer to this family of density functions as “circular Bessel statistics”, because

both the K-distribution and the field density function that we derive contain Bessel

functions. The validity of the circular Bessel statistics has been verified through

numerical simulations of electromagnetic waves propagating in 2D random media for

both the Anderson localization regime and the weakly scattering regime. Having a set

of density functions that work in all scattering regimes provides a framework for mod-

eling wave propagation in random media, facilitating random media characterization,

imaging in and through scatter, and random laser design.

1.2 The Pursuit of Far-Subwavelength Resolution

The ability to see tiny things is definitely among one of man’s greatest aspirations.

It not only satisfies our curiosity, but also has fundamentally important applications

in the physical, chemical, and biological sciences. However, the resolution of any

imaging system is ultimately limited by the ratio between the wavelength of its source

and twice the numerical aperture, λ/(2NA), which was found a long time ago [12].

This ratio is frequently referred to as the “diffraction limit”. The fundamental reason
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for the existence of diffraction limit is the loss of evanescent field information in the

far field. Because evanescent fields decay exponentially, they could be easily buried

under the noise floor of the detectors, even after a propagation distance of only a few

wavelengths.

Researchers have been developing “super-resolution” techniques that can break

the diffraction limit for a long time. One simple way to do this is by increasing the

numerical aperture by imaging in a medium of large refractive index, such as using

an oil immersion microscope [13]. Linear optics nanoscopy based on a random and

time varying flow of nanoparticles moving in proximity to the inspected sample has

been reported to have nanometer resolution, because the nanoparticles excite the

evanescent fields and couple them into harmonic waves [14]. A nonlinear medium

mixes modes with high and low spatial frequencies and allows more information to be

transferred through the numerical aperture, hence beating the diffraction limit [15]. A

holey-structured 3D metamaterial was found to achieve deep-subwavelength acoustic

imaging, thanks to the strong coupling between the evanescent field components and

the Fabry-Pérot resonances inside the holey structure [16]. Structured illumination

using unknown far field speckle patterns can also provide two times improvement of

resolution [17]. The fluorescent response of samples, combined with novel illumination

schemes [18], gives rise to several remarkable super-resolution microscopy methods,

such as stimulated emission depletion (STED) microscopy [19], photoactivated lo-

calization microscopy (PALM) [20], and stochastic optical reconstruction microscopy

(STORM) [21].

A perfect lens with infinite resolution made of negative refractive index material

has been proposed [22]. The inevitable loss in materials and the difficulty of achieving

negative permeability at optical frequencies have made the implementation of the

perfect lens difficult [23, 24]. With the development of metamaterials, small periodic

structures made of metal and dielectric materials (the so-called superlens) have been

designed to convert evanescent waves into propagating waves. So far both 1D [25,26]
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and 2D [27] superlenses operating in optical frequency range have been implemented

to obtain a three- to seven-fold increase in resolution.

All super-resolution techniques described above have certain limitations. For in-

stance, methods based on fluorescence require labeling of the samples under study,

which may be complicated or not feasible for certain samples. In reality, the medium is

linear or has very weak nonlinearity in most imaging scenarios, so nonlinearity induced

mode mixing may be inefficient [28]. Metamaterial superlenses must be fabricated to

a good precision, and placed in the near field in order to couple to evanescent waves.

Far field structured illumination cannot obtain resolution improvements better than

a factor of two.

We propose an imaging method based on object motion with structured light il-

lumination and far-field measurement data that results in far-subwavelength image

information in Chapter 4. Simulations show that this approach, with generous de-

tector noise, will lead to the ability to distinguish image features on the nanometer

scale with visible light, without the need for fluorophores.

We find that the transmittance of a negative index slab can be greatly enhanced

at a certain spatial frequency if the imaginary parts of the permittivity and perme-

ability in the materials can be tuned, even when all media have overall loss. This

leads to a proposed method to image the far-subwavelength features of an object by

reconstructing the evanescent part of its spectrum in Chapter 5.
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2. CIRCULAR BESSEL STATISTICS AND ANDERSON

LOCALIZATION†

2.1 Introduction

Zero-mean circular Gaussian statistics are ubiquitously assumed for electromag-

netic fields in statistical optics [3]. The validity of this model hinges on the field being

made up of a multitude of independent random phasors and weakly interacting scat-

terers. For example, polarized thermal light has circular complex Gaussian statistics

because it contains a large number of independent contributions from each atom in

the source. Coherent light can also produce Gaussian statistics after multiple scat-

tering events, as would occur with transmission through certain random scattering

media, including, but not limited to, diffusers, particle suspensions, and tissue [1].

Zero-mean circular Gaussian field statistics have been verified experimentally in op-

tically thick random scattering media with weakly interacting scatterers, where the

mean free path length, a measure of the mean distance between scattering events, is

much larger than the wavelength and long-range correlation effects are negligible [4,5].

In this regime, all of the scattered fields in a random phasor sum description of the

field at a point in space can be assumed to be statistically independent.

The statistics of a randomly scattered electromagnetic field can be non-Gaussian,

or equivalently, the intensity density function can deviate from negative exponen-

tial, when there are a limited number of contributing phasors or when there are

correlations between different phasors [29]. The probability density functions for the

total transmission and angle-dependent transmission coefficient have been obtained

using Feynman diagrams [30,31] and random matrix theory [32]. Instead of studying

†This chapter has been published as: Jason A. Newman, Yulu Chen, and Kevin J. Webb, “Zero-

mean circular Bessel statistics and Anderson localization,” Phys. Rev. E, vol. 90, pp. 022119,

August 2014
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the effects of interference on wave transport, another line of work focused on the

properties of the number of contributing random phasors, which led to a family of

K-distributions [33, 34]. Such distributions were found to be excellent models for

various situations where the intensity statistics are not negative exponential, such

as microwave radiation reflected by rough sea surfaces [33], transmission through

turbulent atmosphere [35–37], and randomly corrugated waveguides [38].

Despite prior work on the deviation of intensity statistics from negative exponen-

tial, an analytical density function has not been achieved that can describe the field

statistics when they are not zero-mean circular Gaussian. Inspired by previous work

on the K-distribution (modified Bessel function of the second kind) [11, 33, 39], we

derive an analytical density function for the real and imaginary parts of the field, as-

suming only circularity, which is satisfied in media having a sufficiently large number

of random scatterers. The resulting circular density function uses a Bessel function

description, and is referred to as a circular Bessel density function. The circular Bessel

density function contains a degree of freedom that makes it effective in describing the

numerical field statistics obtained from strong scatter including the Anderson local-

ization regime [8]. In this paper, we demonstrate that analytic intensity and field

density functions based on a circular Bessel function field description are in excellent

agreement with numerical data in these strongly scattering regimes.

2.2 Theory

The K-distribution applies to situations where the field is the resultant sum of

a randomly varying number of random phasors, N . Its derivation is based on the

underlying fluctuation in N , where N is modeled by the negative binomial probability

mass function as [11]

p(N) =

(
N + α− 1

N

)
[〈N〉/α]N

[1 + 〈N〉/α]N+α
. (2.1)

The parameter α governs the shape of (2.1). When α � 1, it is centered around its

mean value, 〈N〉. Thus, for sufficiently large 〈N〉, any density function derived from
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(2.1) will approach Gaussian statistics. When α � 1, p(N) is peaked at N = 0 and

then decreases with increasing N , which is the case for localization. This versatility

in differing numbers of contributing phasors, N , makes (2.1) applicable to a variety

of scattering regimes.

If the contributing random phasors are independent and circular, the characteristic

function for the total field amplitude (A), ψA(ω), is the product of the characteristic

functions of the amplitudes of the N contributing phasors, ψA(ω) = JN
0 (aω), where

J0 is the zeroth order Bessel function of first kind and a is the magnitude of each

contributing random phasor [1]. After averaging ψA(ω) over N using (2.1) [11],

〈ψA(ω)〉N =

(
1 +

ω2〈A2〉
4α

)−α

, 〈N〉 → ∞. (2.2)

The density function for A is the inverse zeroth-order Hankel transform of (2.2),

which in turn leads to the K-distribution for the normalized intensity after a change

of variables (I = A2) and normalization (Î = I/〈I〉), giving [33, 39]

p(Î) =
2α

Γ(α)
(αÎ)(α−1)/2Kα−1

(
2
√
αÎ

)
, (2.3)

where Γ is the Gamma function, K denotes the modified Bessel function of the second

kind, and α is a parameter that is obtained from the variance of Î, such that [39]

σ2
Î
= 1 + 2/α. (2.4)

We now derive the probability density functions for the field from (2.2). Let φR and

φI denote the real and imaginary parts of the field, respectively, so the field amplitude

is A =
√
φ2
R + φ2

I . Assuming that the phase of each random phasor contributing

to the total field is uniformly distributed over 2π, the resultant total field will be

circular [1]. Then, the characteristic functions for φR and φI will be equal to that

of the amplitude A [11], given in (2.2), and p(φR) and p(φI) can be obtained by an

inverse Fourier transform as

p(φR,I) =
1

2π

∫ ∞

−∞

〈ψA(ω)〉Ne−iωφR,Idω (2.5)

=
2

Γ(α)

√
α

π〈A2〉

⎛
⎝
√
αφ2

R,I

〈A2〉

⎞
⎠

α−0.5

Kα−0.5

⎛
⎝2

√
αφ2

R,I

〈A2〉

⎞
⎠ . (2.6)
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We define the normalized real/imaginary part of the field as φ̂R,I ≡ φR,I/
√〈A2〉.

Because φ̂R,I ≡ φR,I/
√〈A2〉 is monotonic and invertible, the probability density

function for φ̂R,I can be obtained via a change of variables using (2.6), giving

p(φ̂R,I) =
2√
πΓ(α)

α(α+0.5)/2(φ̂2
R,I)

(α−0.5)/2Kα−0.5

(
2
√
αφ̂2

R,I

)
. (2.7)

We call equation (2.7) the circular Bessel density function. It is a counterpart to

the well-known zero-mean circular Gaussian density function, and is suitable under

circumstances where the central limit theorem does not hold. With this analytical

density function for field secured, we proceed to investigate its validity in describing

localized fields using numerical simulations.

2.3 Results

The two-dimensional simulation geometry we considered, shown in Fig. 2.1, was

an 8 mm long by 2 mm wide region of lithium niobate, LiNbO3 (LN), with randomly

distributed 50 μm diameter dielectric-filled holes. The left and right boundaries

Fig. 2.1. The random medium simulation geometry (not to scale) was
composed of randomly distributed 50 μm diameter cylindrical holes in
an 8 mm long by 2 mm wide LN region (εr = 41.7): PML - perfectly
matched layer; PEC - perfect electric conductor. A 0.75 THz plane
wave with H in the ẑ-direction was incident from the left.
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were perfectly matched layers (PML), to absorb the scattered waves, and the top

and bottom boundaries were perfect electric conductors (PECs). The boundary on

the left was the input plane and that on the right was the output plane. In the

simulations, a transverse magnetic 0.75 THz plane wave, an effective wavelength of

62 μm in LN with a dielectric constant of 41.7, with H in the ẑ-direction, was incident

from the left (hence, propagating in the x̂-direction), Circular holes were distributed

throughout the LN region using a Gaussian density function with a mean x-spacing

of 〈x〉 and a mean y-spacing of 〈y〉, and variances of σ2
x and σ2

y , respectively. By

varying the variance of the Gaussian hole distribution, the holes can be distributed

quasi-periodically or highly random, as in the cases presented here. The holes were

filled with various dielectrics, with dielectric constants ranging from 1 to 20, where

smaller values provide stronger scatter. Due to the large contrast in the dielectric

constants of LN and free space, this disordered waveguide geometry has been shown

to be an excellent platform to study Anderson localization [40]. Numerical solutions

were obtained using finite element method simulations (COMSOL Multiphysics). We

investigated two hole distributions, both with a mean fill fraction of 0.42, and mean

hole spacings of 〈x〉 = 67μm and 〈y〉 = 69μm, and 〈x〉 = 78μm and 〈y〉 = 60μm,

corresponding to low and high transmission for the periodic cases, respectively.

We first demonstrate localization of THz waves by analyzing the total transmitted

power and intensity statistics at the output plane. The power transmitted through

the random medium, T , is the integral of the Poynting vector over the plane of

the detector. Let T̂ denote the ensemble averaged power transmission, namely T̂ =

T/〈T 〉. The characteristic function of T̂ was originally derived assuming weak scatter,

under general assumptions of flux conservation and time invariance [31, 32]. The

probability density function of T̂ , written as the inverse Laplace transform of its

characteristic function, has been shown to be [31]

p(T̂ ) =

∫ i∞

−i∞

1

2πi
e
ξT̂−gln2

(√
1+ξ/g+

√
ξ/g

)
dξ, (2.8)
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where g is the dimensionless conductance that is related to the variance of T̂ by

σ2
T̂
= 2/(3g) [31,32]. A typical indicator of localization is a dimensionless conductance

less than 1 [41, 42], a measure of the variance of the transmission statistics. It was

later shown experimentally that (2.8) can also be applicable in the localization regime,

for both electromagnetic [42–45] and acoustic [46] waves.

0 1 2 3
0

2

4

T̂

p
(T̂

)

εr = 1
εr = 10
εr = 20

0 1 2 3
10

−2

10
−1

10
0

T̂
p
(T̂

)

εr = 1
εr = 10
εr = 20

(a) (b)

Fig. 2.2. Probability density function of normalized total transmis-
sion power, p(T̂ ), from numerical data (symbols) and (2.8) (curves)
on linear (a) and semi-log (b) scales. The randomly located 50μm
diameter holes in LN (εr = 41.7) had dielectric constants of 20, 10,
and 1, and a fill fraction of 0.42. The hole Gaussian density function
had 〈x〉 = 67μm, 〈y〉 = 69μm and σx,y = 7μm. As the hole dielectric
constant decreases (increasing scatter), g decreases as well.

From our simulation results, we obtained an estimate of g from the variance of T̂ .

We compared p(T̂ ) obtained from our numerical data with (2.8) using the estimated

g and then performed a numerical integration. We did this for holes with three

distinct dielectric constants (εr), 1, 10, and 20, with the results shown in Fig. 2.2

[45]. As the dielectric constant increases, it approaches the dielectric constant of the

LN background, 41.7, reducing the effective scattering strength. For each dielectric

constant, the statistical data was formed from the numerical field data in 90 randomly

generated hole distributions. Figure 2.2 shows how p(T̂ ) evolves as g transitions from
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42.02 (red) to 1.26 (green) to 0.02 (blue), corresponding to a transition from diffusive

transport to localization with increasing strength of scatter. In the diffusive regime

there are many “conducting channels” in the random medium, all contributing to the

total transmission. Thus, p(T̂ ) is Gaussian as a result of the central limit theorem with

weaker scatter (large hole dielectric constant). As localization is approached (with

smaller hole dielectric constant), the number of “conducting channels” diminishes,

leading to a larger variance in p(T̂ ). These characteristics of p(T̂ ) are all clearly

observed in Fig. 2.2. In the case of free space holes (εr = 1), g = 0.02 indicates the

localization regime. Note that our numerical results fit the theoretical model of (2.8)

well in all three cases, from weak through strong scatter.

We provide a rough estimate of the localization length, ξ ∼ N�s, where N is

the number of propagating modes in our geometry and �s is the scattering mean

free path [42, 47, 48]. We assume that the random medium can be homogenized

such that the geometry can be represented as a waveguide filled with a medium

with an effective dielectric constant determined by Maxwell-Garnett mixing theory

[49, 50]. Thus, the number of modes is equal to N = 2w/λe, where w is the width

of the waveguide (2 mm) and λe is the effective wavelength in the homogenized

medium. For εr = 1, 10, and 20, we find that N is equal to 45, 51, and 56 respectively.

The scattering mean free path is given by �s = 1/(ρσs), where ρ is the density of

scatterers and σs is the scattering cross section of a single scatterer. After obtaining

the scattering cross section from a numerical simulation of the scattered field for a

single scatterer, we find the scattering mean free path, �s, to be 31.7 μm, 39.7 μm,

and 91.6 μm for εr = 1, 10, and 20, respectively. With both N and �s calculated, the

localization length is be found to be 1.4 mm, 2.0 mm, and 5.1 mm, when εr is equal to

1, 10, and 20, respectively. The calculation of the dimensionless conductance, the plot

of the probability density function of the normalized total transmission, the estimate

of the scattering mean free path, and the localization length all serve as important

indicators of localization and allow us to establish that LN with randomly placed free

space holes can localize THz waves.
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We proceed to investigate the intensity probability density function, p(Î), at the

output plane, where Î is the intensity, x̂-component of the Poynting vector, of the

magnetic field normalized by its ensemble average. As long as the nth moment of

the normalized intensity and total transmission are related by 〈În〉 = n!〈T̂ n〉 for all
positive integers n, p(Î) can be obtained from p(T̂ ) by [31]

p(Î) =

∫ ∞

0

1

T̂
e−Î/T̂p(T̂ )dT̂ , (2.9)

where p(Î|T̂ ) = T̂−1 exp(−Î/T̂ ) is the conditional density for Î, given T̂ , arrived at

by virtue of the moment dependence between Î and T̂ , and Bayes’ rule has been used.
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(Î

)

(a) (b)

Fig. 2.3. Probability density function for the normalized intensity, Î:
negative exponential (green); theoretical result from (2.9) (red); K-
distribution (2.3) (blue); numerical data (black dots). The scatterers
were 50 μm diameter dielectric holes in LN, where (a) εr = 1 with
g = 0.32 and α = 0.12, and (b) εr = 20 with g = 42 and α = 37.
In both figures, the Gaussian-distributed holes had 〈x〉 = 78 μm,
〈y〉 = 60 μm, and σx,y = 7μm.

We plot numerical p(Î) data at the output plane in Fig. 2.3 for the localization

(Fig. 2.3(a)) and diffusive (Fig. 2.3(b)) regimes. Density functions obtained from

numerical results are fitted to (2.3) and (2.9). The negative exponential density

function is also drawn for comparison.
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For the case of strong scatter in Fig. 2.3(a), we observe that both (2.3) and (2.9) fit

our numerical data well, while the negative exponential density function decays much

faster. This is the first observation that the K-distribution, given by (2.3), can model

intensity statistics of Anderson localized waves. In this randomly scattering medium,

the number of random phasors that contribute to the total field at a certain position

within the random medium is itself random. The number of contributing phasors

vanish at positions outside of localization regions, where the field is evanescent, and

the number becomes non-zero when the position is within a localization region. These

localized regions include concatenated or spatially overlapping localized modes, known

as necklace states, that can transmit energy through the random medium [51]. The

K-distribution (2.3) fits the data well because (2.1) is an effective model for the

number of random phasors that contribute to the field in the strong scatter case.

Similarly, in randomly corrugated waveguides having weak scatter and a small number

of contributing random phasors, it was found that the output plane field magnitude

statistics could be described using the K-distribution [38].

For the case of weak scatter in Fig. 2.3(b), all three models fit the data well, indi-

cating, as expected, a negative exponential probability density function for intensity.

Equation (2.3) fits because it approaches a negative exponential density function for

α � 1, while (2.9) fits because p(T̂ ) is Gaussian, with a mean of unity and small

variance (approximately a Dirac delta function) in the diffusive regime. Then, p(T̂ )

sifts out exp (−Î) in (2.9), making the density function for Î negative exponential.

The distribution for the logarithm of the normalized intensity in the localization

regime has been predicted to be log-normal [48, 52, 53]. From (2.3), we can do a

change of variables and obtain the K-distribution for lnÎ as

p(lnÎ) = elnÎ 2α

Γ(α)
(αelnÎ)(α−1)/2Kα−1

(
2
√
αelnÎ

)
. (2.10)

In Fig. 2.4, we plot the numerical distribution of the natural logarithm of the normal-

ized intensity data and compare it with both (2.10) and the Gaussian density function

for lnÎ. The log scale provides an expanded view for normalized intensities less than

one, which in Fig. 2.3 represents a small portion of the overall plot. The excellent
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Fig. 2.4. Probability density function for the natural logarithm of
normalized intensity, lnÎ: fit to (2.10) with α = 0.267 (green dashed);
fit to Gaussian with mean μ = −3.05 and variance σ2 = 8.37 (red);
numerical data (black dots). The numerical data is the same as in
Fig. 2.3.

agreement between the data and Gaussian fit provides additional evidence for Ander-

son localization. On this scale, the K-distribution also fits the data reasonably well.

The random phasor sum model leading to the K-distribution for intensity allows the

derivation of an analytic form for the field density function which, until now, has not

been achieved. The similarity and difference between (2.10) and Gaussian density

function can be analyzed by studying the asymptotic forms of the modified Bessel

function of second kind, Kν(z),

Kν(z) ∼ 1

2
Γ(ν)

(z
2

)−ν

, z → 0 (2.11)

Kν(z) ∼
√

π

2z
e−z, z → ∞ (2.12)

Substituting (2.11) and (2.12) into (2.10), we obtain

p(lnÎ) ∼ elnÎ , Î → 0 (2.13)

p(lnÎ) ∼ e−e(lnÎ)/2

, Î → ∞ (2.14)
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In (2.13) and (2.14) we only retain the term that dominates the asymptotic behavior

of p(lnÎ). We observe from (2.13) that p(lnÎ) grows as exp (lnÎ) as lnÎ increases

from negative infinity. This growth is slower than the form of any Gaussian den-

sity function. When lnÎ approaches infinity, (2.14) indicates that p(lnÎ) decays as

exp (− exp ((lnÎ)/2)), which is faster than any Gaussian decay. Figure 2.4 clearly

shows these features.
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Fig. 2.5. Magnetic field statistics at the output plane, on both linear
and semi-log scales for clarity: (a) and (b) are for strong scatter (εr =
1), where the theoretical line is calculated using (2.7); (c) and (d)
show the weak scatter case (εr = 20), with the red line being the fit
to a Gaussian density function. The numerical data is the same as in
Fig. 2.3.
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Using magnetic field data at the output plane, we obtained the p(φ̂R,I) results in

Fig. 2.5, given on both linear and semi-log scales for clarity. Figures 2.5(a) and (b)

show the localized case and Figs. 2.5(c) and (d) that for Gaussian fields and weak

scatter. We can see that (2.7) is an excellent model for the data, making it the

first analytical expression to describe the probability density function of the real and

imaginary parts of fields in the localization regime.

Consider now the field statistics inside the random medium for both the diffusive

and localization regimes. Referring to Fig. 2.1, numerical field data from the x =2,

4, 6, and 8 mm planes inside the random medium resulted in the probability density

functions in Fig. 2.6. We show only the real part of the field for clarity, the imaginary

density function is the same. We find identical normalized field statistics at different

depths inside the random medium, even in the case of localization.

−4 −2 0 2 4

10
−2

10
0

φ̂R

p
( φ̂

R
)

2mm
4mm
6mm
8mm

−4 −2 0 2 4

10
−2

10
0

φ̂R

p
(φ̂

R
)

2mm
4mm
6mm
8mm

(a) (b)

Fig. 2.6. Statistics of the real part of the magnetic field taken at
different depths inside the random medium: (a) strong scatter (εr =
1); (b) weak scatter (εr = 20). The red line shows the theoretical
prediction using (2.7). The numerical field data is the same as that
used to generate the results in Fig. 2.3.

The circular Bessel density function, (2.7), has been written in terms of normalized

field. However, it has one free variable α that can be traced back to (2.1). It is

exactly the different shapes of (2.1) for different α that gives (2.3) and (2.7) their
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versatility to model wave statistics under all scattering conditions, with only the

minimal assumption of circularity. In Fig. 2.6(a), the invariance of the normalized

field statistics as a function of depth is attributed to the contribution of necklace

states to the variance (and α) in the localization regime.

All field densities in Fig. 2.6(b) are identical because of the normalization. We

know that for zero-mean circular Gaussian statistics, p(φR,I)=exp(−φ2
R,I/2σ

2)/
√
2πσ2,

and the amplitude is Rayleigh distributed, p(A=
√
φ2
R + φ2

I)=A exp(−A2/(2σ2))/σ2

[1]. Given that 〈A〉 =
√
σ2π/2, we can eliminate σ2 in p(φR,I) by using φ̂R,I =

φR,I/〈A〉 as the new random variable, and obtain p(φ̂R,I) = 0.5 exp(−πφ̂2
R,I/4). Thus,

as long as the fields are zero-mean circular Gaussian, the real and imaginary parts of

the field can always be normalized so that they have a probability density function

that is independent of position, assuming fully developed statistics. Notice that the

peak of the density function in Fig. 2.5(c) is exactly 0.5.

2.4 Conclusion

The fundamental equations of physics, such as Maxwell’s equations and the Schrö-

dinger equation, use a field or wave function solution that forms the basis for the

intensity or probability. Their solutions are typically represented using phasors. Our

work contributes to the random phasor sum model by predicting the field density

function when the number of contributing random phasors is finite. This holds not

only for photon scattering in a variety of random medium, but should also hold for

electrons and other particles scattering in random potentials.

We have shown that the numerical field statistics in the localization regime can be

well described by the circular Bessel density function. The basis of the circular Bessel

density function is the random variation in the number of contributing phasors in

the total field, which in turn is tied to the physical picture of Anderson localization.

Although the log-normal distribution appears to be a more precise model for intensity

in the localization regime, the K-distribution and the circular Bessel density function,
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obtained from a modified random phasor sum model, are statistical descriptions that

unveil the intrinsic connection between intensity and field, a connection which is

not available with the log-normal description. The discovery of the circular Bessel

density function for fields builds a theoretical foundation for experiments that directly

measure field [40,54]. This density function may also be a basis for the development of

a moment theorem analogous to that developed for Gaussian statistics [55], which will

facilitate the intensity-based characterization of random media, and imaging through

and within random media. The parameter α in the circular Bessel density function

is related to the scintillation index (σ2
Î
), which has recently been shown to describe

a fundamental length scale of waves in random media [56]. Thus, the field density

function we derived may also bridge the gap between field statistics and the formation

of freak waves in weakly scattering random media. Having an analytical density

function that works in a variety of scattering regimes may also prove interesting in

the study of random lasers [57], for example, in the design of highly directional random

lasers [58].



20

3. CIRCULAR BESSEL STATISTICS: DERIVATION AND

APPLICATION TO WAVE PROPAGATION IN RANDOM

MEDIA†

3.1 Introduction

In optics, randomness is the rule rather than the exception [1]. Soon after the laser

was invented, people noticed that a laser beam reflected from many surfaces displayed

high-contrast, fine-scale granular patterns (speckles), which was later attributed to

the random roughness of the surfaces [59]. The majority of natural media that light in-

teracts with are random, such as the atmosphere, sea surface, and tissue [60–63]. The

random phasor sum model has been used to describe such light-matter interactions,

which expresses one polarization component of the field as the sum of multiple ran-

dom phasors, each conceptually representing light traveling a distinct trajectory [3].

When the number of random phasors becomes very large and the phasors are inde-

pendent of each other, the central limit theorem holds, resulting in the well-known

zero-mean circular Gaussian statistics that give rise to explicit analytical probability

density functions for the intensity (negative exponential), amplitude (Rayleigh), and

real and imaginary parts of the field (Gaussian) [3].

In a general situation, a random phasor sum picture would be applied to a par-

ticular vector field component, leading to a scalar sum description [1]. In three-

dimensional systems, scalar theory for a particular vector field component (co- or

cross-pol) holds when there are a sufficient number of scattering events so that each

orthogonal vector component of the field solution (the scalar) has equivalent infor-

mation. However, with weaker overall scatter, the temporal response of a random

†This chapter has been published as: Yulu Chen, Jason A. Newman, and Kevin J. Webb, “Circular

Bessel statistics: derivation and application to wave propagation in random media,” J. Opt. Soc.

Am. A , vol. 31, pp. 2744-2752, December 2014
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medium depends on polarization [5], leading to the need to consider vector descrip-

tions [6]. While the response of the co-polarized light is faster with reducing scatter,

the scatter needs to be quite weak for the the zero-mean circular Gaussian assump-

tion for this field component to break down [5]. Two-dimensional (2D) problems that

are translationally invariant in the third dimension are intrinsically scalar, and can

be treated as either transverse electric and transverse magnetic, without coupling

between the two polarizations as a result of the scatter. In this case, a scalar model

can then be applied to the out-of-plane component of the field.

Zero-mean circular Gaussian statistics break down when the number of contribut-

ing phasors is small or significant correlations exist between the phasors. Wave trans-

port in these scenarios has been investigated using the radiative transfer equation

(see [7] for a review). Deviations from negative exponential intensity statistics due to

mesoscopic correlations have been studied extensively using Feynman diagrams [30,32]

and random matrix theory [31]. The resultant density functions have been applied

to capture intensity statistics for microwave radiation in random waveguides [45], ul-

trasound in 3D elastic networks [46], and near-visible light localized in 2D random

systems [44].

Despite prior achievements in modeling wave intensity, an analytical density func-

tion for field statistics when the central limit theorem does not hold has remained

elusive. Maxwell’s equations, which are the fundamental equations of electromagnet-

ics, use a field solution that forms the basis for intensity. Thus, studying field statistics

can provide insight into various statistical phenomena in electromagnetics at a more

fundamental level, such as Anderson localization. In this paper, we provide a de-

tailed derivation of a density function that is capable of describing electromagnetic

field statistics in all scattering regimes. Our theory is based on a modified random

phasor sum model where the number of phasors that contribute to the field is ran-

dom. This model has been previously employed to obtain the K-distribution [11,39]

— an intensity probability density function that has been used to model microwave

intensity reflected by rough sea surfaces [33], transmission through turbulent atmo-
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sphere [35–37], and randomly corrugated waveguides [38]. Assuming circularity of

contributing random phasors, we obtain the density function for field from a modified

random phasor sum model by a simple inverse Fourier transform. The field density

function that we derive, together with the K-distribution, describes a broader class

of statistical phenomena than is possible with zero-mean circular Gaussian statistics.

In Gaussian statistics, the randomness of the number of contributing phasors is not

taken into account. We use the term “circular Bessel statistics” because both the

K-distribution and the field density function we develop contain Bessel functions.

Recently, we introduced the circular Bessel field density function and found it to be

an excellent model for field statistics in the Anderson localization regime [64]. Here,

we develop and describe in detail the circular Bessel density function and consider ap-

plications in both the strong and weakly scattering regimes where Gaussian statistics

do not describe the field.

This paper is organized as follows. In Section 3.2, we give a detailed derivation of

circular Bessel statistics and discuss its applicability and limitations. A comparison

to circular Gaussian statistics is also made. In Section 3.3, we describe numerical sim-

ulations performed to verify our density functions and analyze the results. Section 3.4

concludes the paper by summarizing our major findings and discussing potential ap-

plications.

3.2 Theory

We derive here the circular Bessel density functions for intensity, amplitude, and

the real and imaginary parts of the field. The K-distribution has been previously used

for the intensity and amplitude statistics [11,39]. We extend this work and provide a

derivation from first principles, namely the random phasor sum model with a random

number of contributing phasors, which covers the intensity, amplitude, and, for the

first time, the field statistics. A detailed and self-contained derivation allows us to

take full advantage of the circularity assumption of the phasors to obtain the density
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functions for the real and imaginary parts of the field, to understand the applicability

and limitations of the theory, to establish a meaningful normalization procedure for

data analysis, and to give a simple physical interpretation for a variety of statistical

phenomena encountered when electromagnetic waves propagate in random media.

3.2.1 Derivation of Circular Bessel Statistics

We assume that the total field, φ, can be modeled by the sum of N random

phasors,

φ =
N∑

n=1

φn =
N∑

n=1

ane
jθn = Aejθ. (3.1)

We make a few common assumptions regarding the amplitudes and phases of these

random phasors [1, 11]: (i) an and θn are independent of am and θm for n �= m, (ii)

for given n, an and θn are independent of each other, (iii) all phases θn are uniformly

distributed over 2π, and (iv) all amplitudes an are distributed according to some

(unknown) density function p(a).

Consider the characteristic function of the real part of one random phasor [1]

ψφnR
(ω) =

∫ π

−π

∫ ∞

0

ejωan cos θnpa,θ(an, θn)dandθn. (3.2)

From assumptions (ii) and (iii), we obtain pa,θ(an, θn) = pa(an)pθ(θn) and pθ(θn) =

1/(2π). Substituting these into (3.2) and integrate with respect to θn, we obtain

ψφnR
(ω) =

∫ ∞

0

(
1

2π

∫ π

−π

ejωan cos θndθn

)
pa(an)dan =

∫ ∞

0

J0(ωan)pa(an)dan, (3.3)

where J0 is the zeroth order Bessel function of first kind. The last equality in (3.3)

indicates that ψφnR
(ω) is the mean of J0(ωan) for some random variable an. Because

all amplitudes an are distributed according to some (unknown) density function p(a)

(assumption (iv)), we can write (3.3) as

ψφnR
(ω) = 〈J0(ωa)〉a, (3.4)
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where 〈...〉a denotes the average over a. An identical result can be obtained for the

characteristic function of the imaginary part, namely

ψφnI
(ω) = 〈J0(ωa)〉a. (3.5)

Because the characteristic function of the sum of several independent random

variables is the product of the characteristic functions of the components of the sum,

assumption (i) applied to (3.4) and (3.5) leads to the characteristic function of the

real and imaginary parts of the total field,

ψφR
(ω) = ψφI

(ω) = 〈J0(ωa)〉Na . (3.6)

In addition, because all random phasors contributing to the field are circular (as-

sumption (iii)), the field should also be circular. This gives an alternative way to

write the characteristic function for the real part of the field, leading to

ψφR
(ω) =

∫ π

−π

∫ ∞

0

ejωA cos θpA,θ(A, θ)dAdθ = 〈J0(ωA)〉A, (3.7)

and the imaginary part of the field has the same characteristic function. Because both

(3.6) and (3.7) are the characteristic function of same quantity (ψφR
), they should

be equal. In addition, we can obtain the joint characteristic function of φR and φI

following the circularity assumption as [1, 11]

ψφR,φI
(ωR, ωI) = ψφR,φI

(ω =
√
ω2
R + ω2

I ) = 〈J0(ωa)〉Na = 〈J0(ωA)〉A, (3.8)

where ωR and ωI are the transform variables for φR and φI , respectively.

Now we introduce fluctuations in the number of random phasors, N . Assume

that N is a random variable whose probability mass function is the negative binomial

distribution [39]

p(N) =

(
N + α− 1

N

)
(N̄/α)N

(1 + N̄/α)N+α
, (3.9)

where N̄ is the mean value of N and α is a positive real parameter. We average (3.8)

over N using (3.9), obtaining

〈J0(ωA)〉A,N =
1

(1 + N̄/α)α

∞∑
N=0

(
N + α− 1

N

)(〈J0(ωa)〉aN̄/α
1 + N̄/α

)N

, (3.10)
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where 〈...〉N denotes the average over the distribution of N . Using the identity [65]

1

(1− x)α
=

∞∑
N=0

(
N + α− 1

N

)
xN , (3.11)

we finally obtain, from (3.10),

〈J0(ωA)〉A,N =
[
1 + (1− 〈J0(ωa)〉a) N̄/α

]−α
. (3.12)

To preserve finite second moments of the field when N̄ approaches infinity, we

normalize a by
√
N̄ [1], so (3.12) becomes

〈J0(ωA)〉A,N =

[
1 +

(
1− 〈J0(ω a√

N̄
)〉a

)
N̄/α

]−α

. (3.13)

The zeroth order Bessel function of first kind in (3.13), J0

(
ωa/

√
N̄
)
, can be written

as the sum of a series of integrals by first considering the Taylor series expansion of

the exponential function exp (jωa cos θ/
√
N̄), resulting in

J0

(
ω

a√
N̄

)
=

1

2π

∫ π

−π

(
1 + j

ωa cos θ√
N̄

− ω2a2 cos θ2

2N̄
− j

ω3a3 cos θ3

6N̄
√
N̄

+ · · ·
)
dθ.

(3.14)

Assuming that N̄ → ∞, we retain only the first three terms in the integrand in (3.14)

and calculate the integration with respect to θ, which gives

J0

(
ω

a√
N̄

)
≈ 1− ω2a2

4N̄
. (3.15)

To see that the assumption of large N̄ does not necessarily lead to Gaussian statistics,

consider the normalized variance of the negative binomial distribution in (3.9) [39]

σ2
N

N̄2
=

1

N̄
+

1

α
. (3.16)

While we have assumed large N̄ , a small α can still make (3.16) large, skewing the

distribution significantly towards small N . An example of the negative binomial

distribution is shown in Fig. 3.1 with N̄ set to be 100 and two different values of α.

In Fig. 3.1 (a), α is equal to 50. The negative binomial distribution is centered around

its mean so that the central limit theorem applies, leading to Gaussian statistics. In
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Fig. 3.1 (b), we set α to be 0.5 and observe that p(N) is peaked at N = 0 and

decreases as N grows, which results in the circular Bessel statistics. The ability to

incorporate small and random N into the density functions makes the circular Bessel

statistics, derived from the assumption of (3.9), applicable to a variety of scattering

regimes, which will be discussed further in Section 3.3.
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Fig. 3.1. Plot of the negative binomial distribution for (a) α = 50,
N̄ = 100, and (b) α = 0.1, N̄ = 100.

A further average of (3.15) over a gives

〈J0
(
ω

a√
N̄

)
〉a =

∫ ∞

0

(
1− ω2a2

4N̄

)
pa(a)da = 1− ω2〈a2〉

4N̄
. (3.17)

Substituting (3.17) into (3.13), we obtain [11]

〈J0(ωA)〉A,N =

(
1 +

ω2〈a2〉
4α

)−α

. (3.18)

An inverse Hankel transform of (3.18) secures the radial profile f(A) of the joint

probability density function of φR and φI as

f(A) =
1

2π

∫ ∞

0

(
1 +

ω2〈a2〉
4α

)−α

J0(ωA)ωdω. (3.19)

The probability density function for the field amplitude, A, can be found by multi-

plying f(A) by 2πA [1], resulting in

p(A) = 2πAf(A) = A

∫ ∞

0

(
1 +

ω2〈a2〉
4α

)−α

J0(ωA)ωdω. (3.20)
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The integration of (3.20) gives the K-distribution for field amplitude A as [11, 33]

p(A) =
2b

Γ(α)

(
bA

2

)α

Kα−1(bA), (3.21)

where Γ is the gamma function and b = 2
√
α/〈a2〉. From (3.21), the second moment

of A has been calculated to be [39]

〈A2〉 = 4α

b2
. (3.22)

From (3.22) and the definition of b, we can see that 〈A2〉 = 〈a2〉 = 〈I〉.
We define the normalized amplitude Â as Â = A/

√〈A2〉. The probability density

function for Â can be obtained from (3.21) by a change of variables as

p(Â) =
dA

dÂ
p(A) =

4
√
α

Γ(α)

(√
αÂ

)α

Kα−1(2
√
αÂ), (3.23)

upon substituting b = 2
√
α/〈A2〉.

Because the mapping between the intensity and the amplitude is monotonic and

invertible (I = A2), the probability density function for the intensity can be obtained

from (3.21) by a change of variables as

p(I) =
dA

dI
p(A) =

2α

〈I〉Γ(α) (αI/〈I〉)
(α−1)/2Kα−1(2

√
αI/〈I〉). (3.24)

Rewriting (3.24) in terms of the normalized intensity, Î = I/〈I〉, we obtain

p(Î) =
dI

dÎ
p(I) =

2α

Γ(α)

(
αÎ

)(α−1)/2

Kα−1(2
√
αÎ). (3.25)

The analytical expressions for all moments of Î have been obtained [39], and in

particular the variance of Î, σ2
Î
= 〈Î2〉 − 〈Î〉2 = 〈Î2〉 − 1, has been found to be

σ2
Î
= 1 +

2

α
. (3.26)

This simple relation as been used to estimate the parameter α from numerical data

[33].
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The probability density functions of the real and imaginary parts of the field can

be found by performing an inverse Fourier transform on their respective characteristic

functions, given by (3.6) and (3.18). The inverse Fourier transform of (3.18) yields

p(φR,I) =
1

2π

∫ ∞

−∞

(
1 +

ω2〈A2〉
4α

)−α

e−iωφR,Idω (3.27)

=
2

Γ(α)

√
α

π〈A2〉

⎛
⎝
√
αφ2

R,I

〈A2〉

⎞
⎠

α−1/2

Kα−1/2

⎛
⎝2

√
αφ2

R,I

〈A2〉

⎞
⎠ . (3.28)

We define the normalized real and imaginary part of the field as φ̂R,I ≡ φR,I/
√〈A2〉,

whose probability density functions are obtained from (3.28) by a change of variables

as

p(φ̂R,I) =
2√
πΓ(α)

α(α+1/2)/2
(
φ̂2
R,I

)(α−1/2)/2

Kα−1/2

(
2
√
αφ̂2

R,I

)
. (3.29)

Equation (3.29) is a key result in the sense that it is the first analytical density func-

tion that can describe field statistics when the well-known Gaussian density function

does not hold. The K-distribution for intensity and the field density function we

derived, namely (3.29), are coherent statistical descriptions that unveil the intrinsic

connection between intensity and field. We show that (3.29) not only fits field data

in the Anderson localization regime very well, it also successfully models residual

field statistics in the weakly scattering regime. In addition, (3.29) approaches the

Gaussian density function as α → ∞, so it is also effective in the diffusive regime.

3.2.2 Review of Circular Gaussian Statistics

Let φR,I , A, and I denote the real and imaginary parts of the field, field amplitude,

and intensity, respectively. When the field can be regarded as the sum of a large

number of random phasors, their density functions are [1]

p(φR,I) =
1√
2πσ2

e−φ2
R,I/(2σ

2) (3.30)

p(A) =
A

σ2
e−A2/(2σ2) (3.31)
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p(I) =
1

2σ2
e−I/(2σ2). (3.32)

The mean intensity can be calculated easily from (3.32) to be 2σ2. Using the same

normalization scheme as for the circular Bessel density functions (φ̂R,I = φR,I/
√〈A2〉,

Â = A/
√〈A2〉, and Î = I/〈I〉), we obtain the following probability density functions

for normalized field, amplitude, and intensity,

p(φ̂R,I) =
1√
π
e−φ̂2

R,I (3.33)

p(Â) = 2Âe−Â2

(3.34)

p(Î) = e−Î . (3.35)

Because there are no free parameters in (3.33), (3.34), and (3.35), any difference from

the Gaussian statistics can be easily identified when using the normalized density

functions to model numerical data.

3.3 Application to Wave Propagation in Random Media

3.3.1 Numerical Simulation

The two-dimensional simulation geometry we considered, shown in Fig. 3.2, con-

sisted of randomly distributed cylindrical scatterers in free space background. The

left and right boundaries were perfectly matched layers (PML) to absorb the scat-

tered waves. The top and bottom boundaries were perfect electric conductors (PEC).

The left boundary of the free space background was the input plane and the right

boundary was the output plane. In the simulations, a transverse electric 0.75 THz

plane wave, with E in the ẑ-direction, was incident from the left (hence, propagating

in the x̂-direction). Different scatterer materials, together with the size and distribu-

tion of the scatterers, allow us to investigate wave transport in a variety of scattering

regimes. In each scattering regime, two hundred random realizations of the scatterers

were simulated, and numerical solutions were obtained using finite element method

(COMSOL Multiphysics).
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3.3.2 Results: Anderson Localization Regime

More than half a century ago, Anderson predicted that an electron may not diffuse

when placed in a random potential [8]. This phenomenon, Anderson localization,

is fundamentally a wave effect with an exponentially decaying spatial wave function

given sufficient randomness [66]. The wave nature of this effect has extended the study

of Anderson localization beyond electron transport to a broad spectrum of domains

[67], including but not limited to acoustics [68] and photonics [69–71]. Photonics

offers unique opportunities for research into Anderson localization due to the absence

of photon-photon interaction, whereas electrons not only interact with the random

potential but also with each other, neglected in the Anderson model [8]. Scaling

theory indicates that the waves can always be localized in two-dimensional systems

with sufficient size [41]. Localization experiments are typically performed in low-

loss and strongly scattering structures, allowing small structure sizes and removal of

ambiguities due to absorption [72].

In our 2D simulations, the size of the simulation domain was 8 mm by 2 mm. The

scatterers were 80 μm-diameter silicon cylinders (εr = 11.7), which were distributed

Fig. 3.2. The random medium simulation geometry: PML - perfectly
matched layer; PEC - perfect electric conductor. The numerical simu-
lations used a 0.75 THz plane wave with E in the ẑ-direction incident
from the left.
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throughout the free space background using a Gaussian density function with a mean

x-spacing of 〈x〉 = 120 μm and a mean y-spacing of 〈y〉 = 120 μm, and variances of

σ2
x = 25 μm and σ2

y = 25 μm, respectively. The significant difference between the

relative permittivities of the background and scatterers makes this geometry a good

platform to study Anderson localization.

The localization length, ξ, and the scattering mean free path, �s, are two important

length scales that characterize the transport regime. These two quantities are related

by ξ ∼ N�s, where N is the number of open channels (modes) in the randomized

waveguide. To obtain the scattering mean free path, �s = 1/(ρσs), we calculated the

scattering cross section of a single scatterer, σs, by numerical simulation of the scat-

tering of a single scatterer in the free space background, and the density of scatterers,

ρ, was computed from the scatterer size and distribution. The mean free path was

found to be 31.0 μm. As an estimation, we homogenized the randomized waveguide

using J. C. M. Garnett mixing theory [49] and found N = 15. Hence the localization

length is 0.47 mm, significantly shorter than the length of the geometry.

Let T̂ denote the power transmission coefficient normalized by its ensemble aver-

age, namely T̂ = T/〈T 〉. In the diffusive regime, the variance of T̂ has been shown

to relate to the dimensionless conductance, g, by σ2
T̂
= 2/(3g) [31, 32]. This relation,

later used beyond the diffusive regime, provides a simple means to estimate g, which

serves as an indicator for Anderson localization (g < 1) [42–46]. We obtain from the

variance of T̂ that g = 0.81, which is another signature of Anderson localization.

We plot the statistics of φ = Ez in the output plane in Fig. 3.3 with the parameter

α = 1.1 (obtained by (3.26) using numerical data). In Fig. 3.3, we observe an excellent

match between the numerical data and the circular Bessel density functions, while

the zero-mean circular Gaussian field and negative exponential intensity statistics

fail to model the numerical data. This can be explained by the physical picture of

Anderson localization, where the number of random phasors (N) that contribute to

the total field at a certain position is random. N vanishes in positions outside of

localization regions, where the field is evanescent, and becomes non-zero (N �= 0)
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Fig. 3.3. Electric field statistics at the output plane in the Anderson
localization regime. (a) The probability density functions for normal-
ized intensity, p(Î), are compared with numerical data (black dots):
fit to the circular Bessel density function in (3.25) (solid red line);
negative exponential density function (3.35) (dashed green line). (b)
The probability density functions for normalized amplitude, p(Â), are
compared with numerical data (black dots): fit to the circular Bessel
density function in (3.23) (solid red line); Rayleigh density function
(3.34) (dashed green line). (c) The probability density functions for
normalized real/imaginary part of field, p(φ̂R,I), compared with nu-
merical data (blue dots/cyan triangles): fit to the circular Bessel den-
sity function in (3.29) (solid red line); Gaussian density function (3.33)
(dashed green line). (d) is the field data in (c) shown on log scale for
clarity. The numerical data was from 80 μm-diameter silicon cylinders
distributed throughout the free space background in the geometry of
Fig. 3.2. The positions of the cylinders were obtained using a Gaussian
density function with 〈x〉 = 120 μm, 〈y〉 = 120 μm, and σx,y = 25 μm.
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when the position is within a localization region. The localized regions are usually

isolated localized modes due to delicate interference effects between a few multiply

scattered partial waves. This can also be understood as a high quality factor cavity

formed by multiple randomly positioned scatterers. Because the spatial support of

localized modes only spans a small part of the scattering medium, p(N �= 0) is small,

which perfectly matches the negative binomial distribution with small α (Fig. 3.1

(b)).

Occasionally several localized modes can overlap in space and transmit energy

efficiently through the random medium, a statistical phenomena known as necklace

states [51]. In Fig. 3.4 we show the energy density (normalized with respect to the

largest value in space for clarity) and the time-averaged Poynting vector in the x̂-

direction for two example realizations of the random scatterer distribution. Although

the scatterer positions in these two examples are generated from the same distribution,

the field inside the random medium exhibits drastically different behaviors. In Fig. 3.4

(a) and (b), the energy density and the magnitude of Poynting vector are very small

3 mm into the medium, which is typical for localization. In Fig. 3.4 (c) and (d), an

instance of necklace states is shown. The high energy density and large magnitude

of the Poynting vector that exist throughout the random medium demonstrate that

energy is transmitted through effectively. The total transmitted power in Figs. 3.4

(c) and (d) is two orders of magnitude larger than that in Figs. 3.4 (a) and (b).

3.3.3 Results: Diffusive Regime

In optically thick random scattering media with weakly interacting scatterers, the

field can be assumed to be the sum of a large number of independent random phasors

so that Gaussian statistics hold. The background was assumed to be free space of size

16 mm by 8 mm, where 200 μm-diameter dielectric cylinders (εr = 3) were distributed

throughout using a Gaussian density function with a mean x-spacing of 〈x〉 = 1 mm

and a mean y-spacing of 〈y〉 = 1 mm, and variances of σ2
x = 200 μm and σ2

y = 200 μm,
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Fig. 3.4. The energy density and the time-averaged Poynting vector
in the x̂-direction inside two example random samples are shown. The
numerical data was from 80 μm-diameter silicon cylinders distributed
throughout the free space background in the geometry of Fig. 3.2.
The positions of the cylinders were obtained using a Gaussian density
function with 〈x〉 = 120 μm, 〈y〉 = 120 μm, and σx,y = 25 μm. (a)
and (b) show typical results where the energy density and power flow
through the random medium decrease significantly with depth. (c)
and (d) show a random sample where there are high energy density
and large power flow deep within the sample.
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respectively. Using σ2
T̂

= 2/(3g), we found the dimensionless conductance, g, to

be 21, which indicates diffusive transport [42]. The scattering mean free path and

localization length in this case are 3.8 mm and 152 mm, respectively.

In Fig. 3.5, we plot the statistics of φ = Ez in the output plane with the parameter

α = 43 (obtained by (3.26) using numerical data). From (3.16), a large α corresponds

to a small variance of the negative binomial distribution. Together with the assump-

tion N̄ → ∞ in the derivation of circular Bessel statistics, this describes a random

phasor sum with a large number of contributing phasors, which holds in the diffusive

regime. Both the circular Bessel statistics and the circular Gaussian statistics match

the data in Fig. 3.5 extremely well.

3.3.4 Results: Weakly Scattering Regime

We have shown that the circular Bessel density functions can model field statistics

in the diffusive regime and the Anderson localization regime. Now we show that they

are equally applicable in the crossover from ballistic to diffusive wave propagation,

in the weakly scattering regime. By weakly scattering regime, we mean that there is

not enough scatter to completely randomize the incident coherent field, so that the

incident field phasor dominates the random phasor sum and Gaussian statistics do

not hold. A weakly scattering medium can be any system whose length is shorter

than one transport mean free path, which is the characteristic length over which the

memory of the incident field is lost [9]. The transport mean free path is typically

much longer than the scattering mean free path, and is equal to the latter only when

the scattering is isotropic [10, 73].

The total field, φ, can be regarded as the summation of the incident field and

multiple scattered partial waves. In the weakly scattering regime, the amplitudes

of scattered fields can be much smaller than that of the incident field, so the total

field is not circular. This scenario is shown in Fig. 3.6 (a). The total field can
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Fig. 3.5. Electric field statistics at the output plane in the diffusive
regime. (a) The probability density functions for normalized inten-
sity, p(Î), are compared with numerical data (black dots): fit to the
circular Bessel density function in (3.25) (solid red line); negative ex-
ponential density function (3.35) (dashed green line). (b) The proba-
bility density functions for normalized amplitude, p(Â), are compared
with numerical data (black dots): fit to the circular Bessel density
function in (3.23) (solid red line); Rayleigh density function (3.34)
(dashed green line). (c) The probability density functions for nor-
malized real/imaginary part of field, p(φ̂R,I), compared with numeri-
cal data (blue dots/cyan triangles): fit to the circular Bessel density
function in (3.29) (solid red line); Gaussian density function (3.33)
(dashed green line). (d) is the field data in (c) shown on log scale
for clarity. The numerical data was from 200 μm-diameter dielectric
cylinders (εr = 3) distributed throughout the free space background in
the geometry of Fig. 3.2. The positions of the cylinders were obtained
using a Gaussian density function with 〈x〉 = 1 mm, 〈y〉 = 1 mm, and
σx,y = 200 μm.
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Fig. 3.6. Two ways to model the field: (a) incident field plus scattered
field, and (b) mean field plus residual field

alternatively be written as the sum of the mean field (averaged over many random

scatterer configurations) and the residual field [74]

φ(r) = 〈φ(r)〉+ δφ(r), (3.36)

shown in Fig. 3.6 (b). The residual field, δφ, defined as the difference between the field

and its ensemble average in (3.36), has been shown to be circular even in optically

thin samples (quasi-ballistic regime) [74].

We simulated THz wave propagation in a 2D random medium consisting of weak

scatterers separated by large distances (see Fig. 3.2) and fitted the residual field data

to circular Bessel statistics. The background was assumed to be free space of size

6 mm by 4 mm. The scatterers were 200 μm-diameter cylindrical cylinders with

εr = 1.5, distributed throughout using a Gaussian density function with a mean

x-spacing of 〈x〉 = 1 mm and a mean y-spacing of 〈y〉 = 1 mm, and variances of

σ2
x = 400 μm and σ2

y = 400 μm, respectively. Notice that the relative permittivity

of the scatterers is very close to 1, providing weak scatter. The scattering mean free

path and localization length in this case are 13.2 mm and 264 mm, respectively. The

scattering mean free path is longer than the system length (6 mm), indicating that

we are in the weakly scattering regime.
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Fig. 3.7. Residual field statistics at the output plane in the weakly
scattering regime. (a) The probability density functions for normal-
ized intensity, p(Î), are compared with numerical data (black dots):
fit to the circular Bessel density function in (3.25) (solid red line);
negative exponential density function (3.35) (dashed green line). (b)
The probability density functions for normalized amplitude, p(Â), are
compared with numerical data (black dots): fit to the circular Bessel
density function in (3.23) (solid red line); Rayleigh density function
(3.34) (dashed green line). (c) The probability density functions for
normalized real/imaginary part of field, p(φ̂R,I), compared with nu-
merical data (blue dots/cyan triangles): fit to the circular the Bessel
density function in (3.29) (solid red line); Gaussian density function
(3.33) (dashed green line). (d) is the field data in (c) shown on log
scale for clarity. The numerical data was from 200 μm-diameter di-
electric cylinders (εr = 1.5) distributed throughout the free space
background in the geometry of Fig. 3.2. The positions of the cylinders
were obtained using a Gaussian density function with 〈x〉 = 1 mm,
〈y〉 = 1 mm, and σx,y = 400 μm.
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In Fig. 3.7, we plot the statistics of the residual field, φ = δEz = Ez − 〈Ez〉, in
the output plane with the parameter α = 8.0 (obtained by (3.26)). We can see that

the deviations of the numerical data from Gaussian statistics are beautifully captured

by the circular Bessel density functions, such as in Fig. 3.7 (a) for large Î, and in

Fig. 3.7(d) for large |φ̂R,I |.
In our simulation, the scatterers are far apart and have a relative permittivity

close to the surrounding medium. In this case single scattering is predominant and

the Born approximation holds. So the total field at a point in space can be treated

as the incident field plus fields scattered by different scatterers. If we return to the

random phasor sum model, the number of terms in the random phasor sum should

be one (incident field phasor) plus the total number of scatterers in the geometry

(scattered field phasors). However, the scattered field decays as 1/
√
ρ, where ρ is the

distance between the observation point and the scattering center. So the number of

scattered field phasors that actually contribute to the total field is small, which is

equal to the number of scatterers that lie within a few wavelengths’ distance from

our point of interest. Because the scatterer positions are random, the number of

contributing phasors in space is, of course, random. This explains why the circular

Bessel density functions work better than circular Gaussian density functions for

modeling the residual field statistics. The previous success of using (3.21) to model

field amplitude statistics in randomly corrugated waveguides [38] can be explained by

the same argument.

3.3.5 Discussion

We have derived a scalar statistical description (circular Bessel density function)

for the field and applied it to a 2D scattering system — the structure and the fields

are independent of the ẑ coordinate in Fig. 3.2. Considering a 2D system reduces the

computational cost in the numerical simulations and the structure is compatible with

some experiments that directly measure field [54]. As a further step, it would be inter-
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esting to apply the circular Bessel density function to a polarized field measurement

in three-dimensional random media. In such scenarios, we expect that the circular

Bessel density function should describe a single polarized component of the field as

long as there are a sufficient number of scattering events. In the weakly scattering

regime, the evolution of co- and cross-polarized light and the application of circular

Bessel statistics requires further study.

Both the Gaussian and Bessel density functions are based on the concept of a

random phasor sum, which corresponds to the mathematical picture of a total field

at a point in space described as the sum of the incident field and scattered fields from

different scattering trajectories, each represented as a phasor. Gaussian statistics

hold as a result of the central limit theorem, which corresponds to a large number

of independent contributing phasors to the field. The circular Bessel density func-

tions, however, assume that the number of contributing phasors is random and can

be modeled by the negative binomial distribution (3.9). The choice of negative bi-

nomial distribution strikes the balance between analytical tractability and modeling

flexibility. While it is necessary to assume N̄ → ∞ to retain only the first three terms

in (3.14) and obtain analytical density functions, N can still be small and random

because the distribution is skewed significantly towards small N when α is small. The

case of small and random N corresponds to total field statistics in the localization

regime and residual field statistics in the weakly scattering regime. Although it is

hardly feasible to determine the exact value of N in large random media, the circular

Bessel density functions do provide a means to estimate the distribution of the num-

ber of random phasors through the fit of α to measured data and hence gain valuable

information on the nature of wave transport inside the random media. If the field

is circular, the value of α is a quantitative indicator of the diffusive and localization

regimes, where a smaller (larger) α means the transport is more localized (diffusive).

If the field is not circular, as is the case in the weakly scattering regime, a smaller

α may indicate more ballistic transport. A limiting case is a homogeneous medium

where no residual field exists, so p(N = 0) = 1 in the random phasor sum model
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for residual field. This corresponds to an infinite normalized variance of the negative

binomial distribution and α = 0, as seen in (3.16).

3.4 Conclusion

We have presented a detailed derivation of the circular Bessel statistics under the

modified random phasor sum model where the number of contributing phasors is ran-

dom. The density functions obtained are found to be excellent statistical descriptions

for the intensity, amplitude, and real and imaginary part of electromagnetic waves

in a variety of scattering regimes. When the total field is circular, such as in the

diffusive and localization regimes, circular Bessel statistics can be directly applied to

the total field. When the total field is not circular, due to very weak scatter, it can

be used to model residual field statistics. The Schrödinger equation, like Maxwell’s

equations, also has solutions that can be represented by phasors. Thus, the circular

Bessel statistics should also hold for electrons and other particles scattered in ran-

dom potentials. Because the circular Bessel statistics asymptotically approach the

well known Gaussian statistics when α → ∞, it can be regarded not only as a gen-

eralization of the latter but also as the foundation of a broader class of statistical

phenomena. Theoretically, it is vital in the understanding of the formation of freak

waves [56], and can potentially motivate the development of a moment theorem anal-

ogous to that developed for Gaussian statistics [55]. Experimentally, it can provide

the theory for experiments that directly measure field [54], facilitate random media

characterization when designing highly directional random lasers [57,58] and compact

spectrometers [75], as well as imaging within and through randomly scattering media.
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4. OBJECT MOTION WITH STRUCTURED

ILLUMINATION AS A BASIS FOR

FAR-SUBWAVELENGTH RESOLUTION†

4.1 Introduction

For a very long time it has been accepted that the resolution of any far-field

imaging system is fundamentally limited by the wavelength of the radiation and the

refractive index of the optics used. For a large numerical aperture lens, this results

in a resolution proportional to λ0/(2n), where λ0 is the free space wavelength and

n is the refractive index. The restriction of the maximum achievable resolution to

about one half of a wavelength, known as the diffraction limit [12], has driven the

use of shorter wavelengths for lithography and optical memory, as well as optics of

larger background refractive index (immersion optics) in order to obtain improved

resolution. In the case of microscopy, there are various application domains where

a dramatically reduced wavelength may not be possible, and there are challenges in

manipulating light having a very small wavelength.

The mathematical picture for the diffraction limit comes from a plane wave field

expansion in the near-field and the removal of the evanescent fields, which are below

the noise floor of a detector in the far-field where most optical systems operate. Use

of near-field scanning methods allow measurement of the evanescent fields, but such

approaches may not be practical in applications. Structured illumination and the

Moiré effect provide a means to determine object information in the far-field with

an improvement in resolution of up to a factor of two [76, 77]. Also, phase contrast

†This chapter has been submitted for publication as: Kevin J. Webb, Yulu Chen, and Trevor A.

Smith, “Object motion with structured illumination as a basis for far-subwavelength resolution.”
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from an interferometer measurement provides accurate axial (thickness) information,

given the refractive index, subject to source and detector noise [78].

Subwavelength spatial resolution has been achieved using fluorescence microscopy

[19, 20, 79]. In stimulated emission depletion (STED) microscopy, a patterned beam

(such as a donut shape) is scanned along with the excitation beam, and all pho-

toexcited fluorophores are driven to a dark state except those near the center of the

point spread function. The spatial resolution is thus defined by the depleting beam,

and a lateral resolution of λ0/45 and a longitudinal resolution of about three times

this have been shown [79]. This approach was limited by the need for reversible

photophysical behavior of the fluorophore. In photoactivated localization microscopy

(PALM) [20], and in stochastic optical reconstruction microscopy (STORM) [21], a

subset of molecules are activated, and it is assumed that the distance between any

two of them is greater than λ0/(2n) away. The emitter can then be localized to a

precision limited by the determination of the emission peak in space at the detector.

While used with great success, these forms of microscopy are limited by the need to

introduce (sometimes specific) fluorescent molecules or nanoparticles, a situation that

may not always be possible in practice.

We present a new approach for retrieving subwavelength object information that

requires neither the introduction of a fluorophore nor the assumption of spatially

disparate elements - separated by more than λ0/(2n). By employing a structured

incident field and then performing a set of far-field measurements using detector

arrays as a function of scanned object position, we show using simulated noisy data

that λ0/100 resolution can easily be achieved with substantial detector noise. Unlike

near-field scanning methods that access small collection volumes and are restricted to

surface information, by scanning the object position (a cell, for example), scattered

light from the whole object is measured at each of the object positions.
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(a) (b)

Fig. 4.1. (a) The square 6λ simulation geometry consists of two square
scatterers (εr = 1.5) scanned in 0.1λ steps in 2D. The range of motion
is represented by the blue square (1λ × 1λ) at the center of the free
space background. The red dotted lines denote the locations of the
detectors. (b) The central scanned region is drawn to explicitly show
the dimension and arrangement of the scatterers.

4.2 Numerical Simulation

We consider a 2D simulation geometry where two small square scatterers (εr =

1.5) are moved around in a free space background, as shown in Fig. 4.1(a). The

numerical finite element method (FEM - COMSOL) simulation used an incident field

wavelength of λ = 1 μm, but the problem is scalable, and all data as a function of

spatial coordinates are presented in terms of wavelength. The size of the free space

background is 6λ by 6λ, and it is surrounded by 2λ-thick perfectly matched layers

(PML) on all sides. The square scatterers are of dimension 0.05λ, and their edge-to-

edge separation is denoted by D, as shown in Fig. 4.1(b). The two scatterers with

fixed relative positions are scanned in both the x̂- and ŷ-directions with a step size of

0.1λ over a region of λ by λ (denoted by the blue square in the center of Fig. 4.1(a)).
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We use two illumination schemes. The first (PW) is a single plane wave with E

in the ẑ-direction and incident from the left, hence propagating in the x̂-direction

(assuming exp (jωt) dependence) as

E =
√
2e−jkxẑ, (4.1)

where k = 2π/λ. The second scheme (SI) is the superposition of two plane waves,

both having E in the ẑ-direction, one propagating in the x̂-direction and the other in

the ŷ-direction, giving

E = (e−jkx + e−jky)ẑ. (4.2)

Two detector arrays, s1 and s2, are used to measure power in the transmission direc-

tion and are shown as the red dotted lines in Fig. 4.1(a). Both s1 and s2 are 0.5 λ

from the boundaries, and the length of each is 5 λ.

For the PW case, we use s2 to measure the time-averaged Poynting vector in the

x̂-direction, Sx. For a single plane wave described by (4.1), Sx = 1/η, where η is

the (free space) wave impedance. The total power detected by s2 is PPW = 5λ/η.

For the SI case, s1 is also used to measure the time-averaged Poynting vector in the

ŷ-direction, Sy. From (4.2), Sx = Sy = [1 + cos (kx− ky)]/(2η). Therefore, the total

power into s1 and s2 is PSI = 5λ/η, identical to the PW case when there is no object

present. Equal detected powers for both cases provides a basis for comparison.

Because we are interested in the far-subwavelength distance between the two sub-

wavelength scatterers, we comment on the accuracy of the numerical model before

proceeding further. In the FEM simulations, the maximum mesh size was 0.02λ and

the minimum mesh size was 0.001λ. There were at least 8 layers of mesh elements

between the two scatterers. When the maximum mesh was reduced to 0.01λ, the

change in the Poynting vectors was 6 orders of magnitude smaller. We therefore

assume that the numerical field solution is sufficient for our purpose.

4.3 Noise Analysis

A key step in establishing spatial resolution is the incorporation of detector noise

information. The detector signal-to-noise ratio is SNR = 〈i〉2/σ2
i , where 〈i〉 is the
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average photodetector current and σ2
i is the variance. We assume that at each detector

the additive (current) noise is a zero-mean Gaussian random variable whose standard

deviation is proportional to the detected time-averaged Poynting vector. The noise

equivalent power (NEP W/
√
Hz) is defined as the optical signal power needed to

make the electrical SNR=1 in a B = 1 Hz bandwidth. Writing σ2
i = 2e〈in〉B for

detector integration time T = (2B)−1, with 〈in〉 the average noise current (so in = i

gives Poisson-based shot noise) and e the magnitude of the electron charge, 〈i〉 =

κ NEP = σi =
√

2e〈in〉, where κ (A/W) is the photodetector responsivity. Consider

the thermal noise limit, and a dark current count rate of R electrons/s, resulting

in NEP = (e/κ)
√
2R. We define a Poynting vector SNR = Sd/σs, where Sd is the

Poynting vector magnitude (mean) at the detector and σs is the standard deviation, a

reflection of the detector noise. Setting σs = NEP/Ae, with Ae the effective detector

aperture, gives a measure of detector noise. Based on achieved NEP and Sd for a

typical laser source, we establish noise-based error bars on Poynting vector plots.

A typical NEP range for commercially available avalanche photodiodes (APDs)

and photomultiplier tubes is 10−18 − 10−17 W/
√
Hz, and 10−22 W/

√
Hz has been

achieved for single-photon-counting detection with an APD operated at 78 K [80].

With Ae = 10−12 m2 and an assumed Poynting vector magnitude at the detector of

Sd = 1011 W/m2, along with a NEP = 10−17 W/
√
Hz, we find a SNR = SdAe/NEP =

1016 or 160 dB - with the assumption of a 1 Hz electrical bandwidth. We choose a

very conservative SNR of 40 dB in the simulations.

4.4 Results and Discussion

In Fig. 4.2, we plot Sx information measured by s2 for both the PW and SI

cases when the scatterers are located at (0, 0) for three different values of D. In

Figs. 4.2(b) and (d), we show differences between the detector measurements for the

three scatterer separations, using the D = 0.02 λ case as a reference. Because of the

relatively weak scatter, the measured data in Figs. 4.2(a) and (c) is very close to that
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for the incident field alone. Figures 4.2(b) and (d) show error bars determined from

σs = Sd/SNR = 10−4, in other words, SNR = 40 dB. The end-to-end length of the

error bars is equal to twice the standard deviation of the noise process. As expected,

the 0.01λ change in D cannot be resolved by detectors with SNR=40 dB.
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Fig. 4.2. Time-averaged Poynting vector in the x̂-direction, measured
at s2 for D = 0.01λ, 0.02λ, and 0.03λ, for the two εr = 1.5 objects
fixed at the center of the domain, (0, 0). The spatial coordinates refer
to the geometry in Fig. 4.1. The PW case is shown in (a) and (b),
and the SI case is shown in (c) and (d). To clearly show the error
bars, the data plotted in (b) and (d) is for Sx − Sx,D=0.02λ.
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We use (Δx,Δy) to represent the shift from the central, reference position of the

two scatterers, (0, 0). As the scatterers are scanned while preserving the geometry,

the time-averaged Poynting vector measured at the detectors is compared with the

Poynting vector data with the object at the reference position. Consider then the

function

f(Δx,Δy;D)

=

∫
x,y∈s

|S(x, y; Δx,Δy,D)− S(x, y; 0, 0, D)| · ds,
(4.3)

which is the integral of the change in detected power due to motion over a surface

(line) defined by s with a fixed scatterer separation, D. For the PW case, s includes

only s2, while for SI, s contains both s1 and s2. When noise is incorporated into the

data, f → fn in (4.3). Because the ranges of f and fn are much greater than the

small differences induced by the far-subwavelength change in D, we introduce

g(Δx,Δy;D) = fn(Δx,Δy;D)− f(Δx,Δy;D0), (4.4)

which reflects the change inD and in the detector data due to the motion of scatterers.

Figure 4.3 shows g(Δx,Δy;D), when the scatterers are scanned along the bottom

(Δy = −0.5λ) and left (Δx = −0.5λ) boundaries, referring to Fig. 4.1, forD0 = 0.02λ

and both the PW and SI cases. In Figs. 4.3(a) and (b), we see that the 0.01λ change

in D is barely resolvable in g(Δx,Δy;D) with a single incident plane wave and a

40 dB SNR. However, Figs. 4.3(c) and (d) show that the 0.01λ change in D can be

easily resolved for the SI case. This resolution enhancement is due to the additional

information encoded into the far-field scattered field (represented in the change in Sx

and Sy) by the interaction between the scatterers and the structured illumination.

Based on the sensitivity that has now been established, we propose a method

to determine the far-subwavelength distance between two scatterers as well as their

dielectric constants. We use the notation f(Δx,Δy;D, εr) with an unknown dielectric

constant for the scatterers. An experiment will yield fn(Δx,Δy;D, εr) from far-field

power measurements. Determination of the correct values of D and εr, denoted by
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Fig. 4.3. Numerical values of g(Δx,Δy;D) (see (4.4)) for the reference
separation D0 = 0.02λ when the (two εr = 1.5) scatterers are scanned
along the (a) bottom and (b) left boundaries (the central region in
Fig. 4.1(a)) for the PW case, and (c) and (d) for the SI situation, all
with a SNR = 40 dB (producing the error bars).

D∗ and ε∗r , from the forward calculation of f(Δx,Δy;D, εr) for possible values of D

and εr is achieved by minimizing the cost function

(D∗, ε∗r)= argmin

{D, εr}

∑
Δx,Δy

|fn(Δx,Δy;D,εr)− f(Δx,Δy;D,εr)|. (4.5)
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Fig. 4.4. Cost functions for a simulated experiment with D∗ = 0.02λ
and ε∗r = 1.5. (a) and (b) are the decimal logarithm of the cost func-
tion for the PW and SI cases, respectively. (c) and (d) are plots of the
costs for the correct value of εr for the PW and SI cases, respectively.
The error bars give the standard deviation (estimated by performing
the measurement 100 times) with SNR = 40 dB.

Figure 4.4 shows results from (4.5) for a hypothetical experiment with D∗ = 0.02λ

and ε∗r = 1.5 for the PW (Fig. 4.4(a)) and SI (Fig. 4.4(b)) cases. The scatterers

were scanned over a region of 0.5λ by 0.5λ to save computation time. Note that

the minimum cost is with the correct separation and dielectric constant, despite the

rather large SNR of 40 dB. We plot the cost at the correct εr as a function of D for the

PW and SI cases in Figs. 4.4(c) and (d), respectively, in order to show the influence
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Fig. 4.5. Cost functions for a simulated experiment with D∗ = 0 (a
single object) and ε∗r = 2.5. The meaning of all sub-figures is the same
as Fig. 4.4.

of detector noise in relation to the cost function features - as (barely noticeable) error

bars. Notice that there is less sensitivity in the cost to variations in D for the PW case

relative to that with SI. This is in agreement with the data presented in Figs. 4.3(a)

and (b) (PW) relative to Figs. 4.3(c) and (d) (SI). Figure 4.5 shows results from

another hypothetical experiment with D∗ = 0 (a single scatterer) and ε∗r = 2.5. The

method clearly works with D∗ = 0, meaning that it is possible to distinguish one

large scatterer from two smaller scatterers.
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4.5 Conclusion

We have presented a far-subwavelength imaging method based on motion in struc-

tured light in two dimensions that can easily be extended to the three-dimensional

case. Three or more beams would provide suitable illumination in which to move

the object. The sensitivity of the measurement data to subwavelength scale object

features is related to the structure of the incident field. Precise spatial scanning of the

object is possible with piezoelectric stages that are routinely used in atomic force mi-

croscopy. Given wavelength-scale structure in the field, and the possible stage motion

and detector noise, it appears that a spatial resolution on the order of 1 nm should be

achievable with visible light. While we show that objects can be uniquely identified

based on comparison with reference measurement data, use of a cost function imaging

method [81] will in principle allow images to be reconstructed without pre-computed

information. However, the data set in relation to regularization will have to be in-

vestigated. The structured illumination could be periodic, as we considered, or of

some other form, such as speckle. Regardless, measured data can be taken with and

without the object, and as a function of scan position.
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5. ENHANCED AND TUNABLE RESOLUTION FROM

AN IMPERFECT NEGATIVE REFRACTIVE INDEX

LENS†

5.1 Introduction

Microscopy that can allow subwavelength or super resolution imaging is impor-

tant in the physical, chemical, and biological sciences. However, the resolution of

traditional far-field imaging systems is ultimately limited by λ/(2NA), where λ is the

wavelength of the illumination and NA is the numerical aperture [12]. The funda-

mental reason for the existence of this diffraction limit is the exponential decay of the

evanescent fields, leaving only the propagating part of the plane wave expansion of

the scattered field from the object. It is the evanescent field portion of the spectrum

that contains information about the subwavelength features of the object. In the far

field, the evanescent field information is usually below the noise floor of the detector,

making recovery of subwavelength information infeasible.

It has been proposed that a slab of negative refractive index material with negative

permittivity and negative permeability can be used to focus both propagating and

evanescent fields, making a perfect lens with infinite resolution [22]. A medium made

of negative refractive index material is referred as a left-handed (LH) medium because

the electric field, magnetic field, and the wave vector form a left-handed triplet.

A medium made of positive refractive index material is therefore a right-handed

(RH) medium for similar reasons. Unfortunately, a perfect negative refractive index

medium does not exist in nature, and engineering such material is fundamentally

limited by the intrinsic loss in practical materials as well as the need for a magnetic

†This chapter has been submitted for publication as: Yulu Chen, Yu-Chun Hsueh, Mengren Man,

and Kevin J. Webb, “Enhanced and Tunable Resolution from an Imperfect Negative Refractive

Index Lens.”
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material response at optical frequencies [82]. The presence of loss has restricted

the operation of the LH slab lens to the near field [83], and the resolution of such

a lens has been shown to be greatly compromised [24, 84]. A thin silver layer has

been used to image down to a resolution of λ/6 [85]. However, this lens operates in

the electrostatic limit [22], with small offset distance between the object and image

planes. To date, there is no proposed operation of a true negative refractive index

lens using conceivable nanostructured materials that could provide far-subwavelength

resolution.

In this Letter, we present the possibility of improving the resolution of a LH slab

lens by control of the material properties when both the object medium and the image

medium have loss. We find that the transmittance of a LH slab lens at a particular

spatial frequency can be greatly enhanced when the permittivity and permeability

in the slab are complex. Tuning the imaginary parts of the permittivity and per-

meability for a series of spatial frequencies allows reconstruction of the evanescent

part of the spatial frequency spectrum of the object field, and hence the recovery of

subwavelength features of the object beyond the capability of a LH slab lens with

fixed material parameters. The practicality of our proposal is presented following a

discussion of the relevant issues.

5.2 Theory

Figure 5.1 shows the imaging geometry we consider, where each region is described

by a relative permittivity εri = εi/ε0 = ε′ri + jε′′ri and a relative permeability μri =

μi/μ0 = μ′
ri + jμ′′

ri, with i = 1, 2, 3 designating the region index from left to right.

Assuming exp (jωt) dependence, the transmission coefficient from the object plane to

the image plane can be obtained from the transverse transmission matrix method [86]

as

T =
(1 + r12)(1 + r23)e

−j(kz1d1+kz2d2+kz3d3)

1 + r12r23e−j2kz2d2
, (5.1)

where kzi = k′zi + jk′′zi describes the field variation in the positive ẑ-direction in

Medium i and rmn is the reflection coefficient of the field incident onto the semi-
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Fig. 5.1. The imaging geometry consists of three media indexed by
i = 1, 2, 3 from left to right. Medium 1 is the RH object space;
Medium 2 is the LH slab with thickness d2; and Medium 3 is the
RH image space. The distance between the object plane and the left
boundary of the slab is d1, and the distance between the image plane
and the right boundary of the slab is d3.

infinite Medium n from Medium m. Because of the time dependence assumed, both

k′z1 and k′z3 are positive. In a LH medium, energy and wavefront travel in opposite

directions, so k′z2 < 0. The longitudinal and transverse wavevectors are related by

kzi=k0
√
μriεri − (kx/k0)2

=k0
√
μ′
riε

′
ri − μ′′

riε
′′
ri − (kx/k0)2 + j(μ′

riε
′′
ri + ε′riμ

′′
ri).

(5.2)

Deep into the evanescent spectrum (|kx/k0| � 1), the real part under the square root

in (5.2) dominates, so that |k′′zi| � |k′zi|.
The transmission coefficient in (5.1) can be greatly enhanced if |r12| → ∞ and/or

|r23| → ∞. When Medium 1 and Medium 3 are the same, the reflection coefficients

are r23 = −r12 = (Z3 − Z2)/(Z3 + Z2), where Zi is the wave impedance in Medium

i. We focus on r23 in the following. For |r23| → ∞, Z3 + Z2 = 0. We discuss the

conditions for Z3 + Z2 = 0 for both TE and TM polarizations without placing any

restrictions on medium properties (allowing gain or loss) except their handedness.

We will see that this provides very specific guidance on the material properties in

Medium 2 and Medium 3.

For TM polarization, Z3 + Z2 = 0 gives

ε2kz3 + ε3kz2 = 0. (5.3)
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Substituting ε2 = ε′2 + jε′′2, ε3 = ε′3 + jε′′3, kz2 = k′z2 + jk′′z2, and kz3 = k′z3 + jk′′z3 into

(5.3), we obtain

(ε′3k
′
z2 + ε′2k

′
z3 − ε′′3k

′′
z2 − ε′′2k

′′
z3) + j(ε′′3k

′
z2 + ε′′2k

′
z3 + ε′3k

′′
z2 + ε′2k

′′
z3) = 0. (5.4)

The real and imaginary parts of (5.4) must both be zero for |r23| → ∞, so we have

ε′′3k
′′
z2 + ε′′2k

′′
z3 = ε′3k

′
z2 + ε′2k

′
z3 (5.5)

ε′3k
′′
z2 + ε′2k

′′
z3 = −(ε′′3k

′
z2 + ε′′2k

′
z3). (5.6)

For most materials, the loss or gain in ε is small so that |ε′i| � |ε′′i |. Considering also

|k′′zi| � |k′zi| in the deep evanescent spectral range, the quantities with large absolute

values are all on the left of (5.6), while those with small absolute values are all on

the right. Because ε′3 > 0 and ε′2 < 0, (5.6) holds only when k′′z2k
′′
z3 > 0, meaning that

both Medium 2 and Medium 3 should have gain or loss simultaneously. We consider

the more practical lossy case and choose k′′z2 < 0 and k′′z3 < 0. From the handedness

of Medium 2 and Medium 3, the right side of (5.5) is negative. For loss in Medium 2

and Medium 3, the left side of (5.5) is negative only when at least one of ε′′2 and ε′′3 is

positive (electric gain). However, the electric gain must be smaller than the magnetic

loss so that the medium has overall loss.

TE polarization is the dual of TM polarization, and the condition for r23 → ∞
can be found to be

(μ′
3k

′
z2 + μ′

2k
′
z3 − μ′′

3k
′′
z2 − μ′′

2k
′′
z3) + j(μ′′

3k
′
z2 + μ′′

2k
′
z3 + μ′

3k
′′
z2 + μ′

2k
′′
z3) = 0. (5.7)

The real and imaginary parts of (5.7) must be zero, so we obtain

μ′′
3k

′′
z2 + μ′′

2k
′′
z3 = μ′

3k
′
z2 + μ′

2k
′
z3 (5.8)

μ′
3k

′′
z2 + μ′

2k
′′
z3 = −(μ′′

3k
′
z2 + μ′′

2k
′
z3). (5.9)

The conditions for (5.8) and (5.9) to hold are also duals of the TM case. As for TM,

it is practical to assume that both Medium 2 and Medium 3 have loss. However,

at least one of μ′′
2 and μ′′

3 must be positive (magnetic gain) for (5.8) to hold. The

magnetic gain, however, must be smaller than the electric loss so that the medium

has overall loss.
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5.3 Numerical Results

Consider now the implications of the above LH lens analysis. The usual situation

is that Medium 1 would be non-magnetic with some electric loss, for example, a

biological molecule. If Medium 3 were magnetic, then control of the electric and

magnetic properties in this region could be used to compensate for imperfect lens

parameters, allowing a large |r23|. If we assume that Medium 3 is non-magnetic, the

only opportunity for achieving large |r23| is to have a magnetic material response

in Medium 2, consistent with the LH lens operation. For TE polarization, Medium

2 needs to have large electric loss and small magnetic gain. For TM polarization,

Medium 2 should have small electric gain and large magnetic loss. In addition, we

consider the case where the real parts of εri and μri are matched and for vacuum. The

material properties can then be written as εr1 = 1 + jε′′r1, μr1 = 1, εr2 = −1 + jε′′r2,

μr2 = −1 + jμ′′
r2, εr3 = 1 + jε′′r3, and μr3 = 1. With fixed ε′′r1 and ε′′r3, both negative

for loss, there are two free variables to satisfy (5.4) or (5.7), ε′′r2 and μ′′
r2. However,

an exact solution to these equations may not exist, and the amount of gain and loss

achievable in material engineering is limited, Therefore, it is more practical to specify

a range for ε′′r2 and μ′′
r2 and then find the maximum |r23|. We vary both ε′′r2 and μ′′

r2

over three orders of magnitude (10−4 to 10−1) in a numerical procedure to find their

optimal values, denoted by ε′′∗r2 and μ′′∗
r2, that give the maximum |r23| at a given kx,

for various losses in Medium 1 and Medium 3.

In Fig. 5.2, we plot the magnitude of the transmittance (5.1) for the evanescent

spectrum on a log scale when Medium 1 and 3 are lossy, for both TE (Figs. 5.2

(a) and (b)) and TM (Figs. 5.2 (c) and (d)) polarizations for d2 = 2d1 = 2d3 =

0.25λ (see Fig. 5.1). When all three media are lossless, the lens is perfect, and

T (kx/k0) = 1 for all kx We optimize Medium 2 properties to maximize |r23| at kx/k0 =
10, and the corresponding transmittance peak is obvious in all four cases. We also

list the engineered Medium 2 properties and the optimized transmittance |T ∗| for
both TE (Table 5.1) and TM (Table 5.2) polarizations for kx/k0 = 8, 10, 12. As a

reference, we show the result for ε′′r2 = ε′′r3 and μ′′
r2 = 0 as |TL| in Tables 5.1 and 5.2
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Fig. 5.2. Plot of log10|T (kx/k0)| when Medium 2 is lossless (ε′′r2 = 0,
μ′′
r2 = 0), has electric loss (ε′′r2 = ε′′r3, μ

′′
r2 = 0), and is optimized

for kx/k0 = 10 (ε′′r2 = ε′′∗r2 , μ
′′
r2 = μ′′∗

r2): (a) ε′′r1 = ε′′r3 = −0.01, TE
polarization; (b) ε′′r1 = ε′′r3 = −0.001, TE polarization; (c) ε′′r1 = ε′′r3 =
−0.01, TM polarization; and (d) ε′′r1 = ε′′r3 = −0.001, TM polarization.
Referring to Fig. 5.1, d2 = 2d1 = 2d3 = 0.25λ. Note that the green
dashed line corresponds to the situation for TL in Tables 5.1 and 5.2.

to illustrate the importance of the control of the lens material properties. Note from

Table 5.1 that μ′′∗
r2 is at the minimum of the allowed values, indicating only a small

magnetic gain is sufficient. Note also that the requirement for small magnetic gain is

a consequence of Medium 3 being non-magnetic. Table 5.2 shows that |TL| falls below
10−4 even for relatively small kx/k0 and that an engineered Medium 2 can produce
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a significantly large |T ∗| in most cases. Given the ability to increase the evanescent

field transmittance at a certain spatial frequency, we propose a method to image the

far-subwavelength features of an object.

ε′′r1, ε
′′
r3 kx/k0 ε′′∗r2 μ′′∗

r2 |T ∗| |TL|
−0.01 8 −0.0027 0.0001 1.0000 0.0023

−0.01 10 −0.0099 0.0001 1.0010 1.0× 10−5

−0.01 12 −0.0187 0.0001 1.6034 4.0× 10−8

−0.001 8 −0.0117 0.0001 1.0000 0.1904

−0.001 10 −0.0189 0.0001 1.0003 0.0100

−0.001 12 −0.0277 0.0001 1.1763 4.0× 10−6

Table 5.1.
Values for the optimal parameters ε′′∗r2 and μ

′′∗
r2 and transmittance com-

parison for the TE polarization case. |T ∗| denotes the transmittance
of the system when Medium 2 has been optimized to maximize |r23|.
|TL| is the case when Medium 2 has the same electric loss as Medium
1 and Medium 3 but with μ′′

r2 = 0.

ε′′r1, ε
′′
r3 kx/k0 ε′′∗r2 μ′′∗

r2 |T ∗| |TL|
−0.01 8 0.0101 −0.0127 1.0746 1.5× 10−7

−0.01 10 0.0101 −0.0199 0.0268 2.6× 10−10

−0.01 12 0.0101 −0.0287 4.8× 10−5 4.8× 10−13

−0.001 8 0.0011 −0.0127 1.0007 1.5× 10−5

−0.001 10 0.0011 −0.0199 1.6702 2.6× 10−8

−0.001 12 0.0011 −0.0287 0.0046 4.8× 10−11

Table 5.2.
Values for the optimal parameters ε′′∗r2 and μ

′′∗
r2 and transmittance com-

parison for TM polarization. The variables are the same as for Ta-
ble 5.1.

Consider an object field denoted byO(x), and its spatial Fourier transformO(kx) =

F{O(x)}, where F is the Fourier transform operator. For a given LH slab lens, the

image field I(x) can be modeled by I(x) = F−1{T (kx)O(kx)}, where F−1 is the
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inverse Fourier transform operator. For TE (TM) polarization, O(x) and I(x) cor-

respond to Ey(x) (Hy(x)) at the object and image planes, respectively (Fig. 5.1). A

perfect lens would have T (kx) = 1 for all kx, hence the image would be identical to

the object. For physical materials with even a small amount of loss, T (kx) is com-

plex and decays significantly as kx grows [83], as shown in Fig. 5.2 (blue and green

lines). If exact and noise-free field measurements can be made at the image plane and

T (kx) is known, the object field can be obtained from inverting the effect of the lens

O(x) = F−1{I(kx)/T (kx)}, where I(kx) = F{I(x)}. Unfortunately, the high spatial

frequency components can be easily buried in the measurement due to noise, making

the inversion impossible.

The higher spatial frequency information in the object is retrievable as long as

it is above the noise floor of the detector. For good detectors [80], a signal-to-noise

ratio (S/N) of 60 dB is not difficult to achieve. However, this S/N is measured with

respect to the Poynting vector and not a particular spatial frequency component of

the field. With this in mind, we propose the following scheme to calculate the spatial

frequency spectrum of the object and hence determine the object in the presence of

noise. The propagating spatial frequency information of the object is easy to obtain,

and variations in the image geometry and materials can be compensated. For a certain

evanescent spatial frequency kαx > k0, we optimize Medium 2 such that |T (kx = kαx )|
is maximized. We denote T by T ∗ when Medium 2 has the optimal free parameters.

If |T ∗(kαx )| ≥ 10−3, corresponding to a threshold associated with a 60 dB S/N, we

add noise to the image in the spatial domain and denote the noisy image by In(x).

We assume that at each detector position x the noise process is a circular Gaussian

random variable in the complex plane whose standard deviation is equal to 10−3 of

|I(x)|, which roughly relates to a 60 dB S/N. The reconstructed object spectrum at

kαx can be computed as O∗(kαx ) = In(k
α
x )/T

∗(kαx ). We form O∗ this way for increasing

kαx until |T ∗(kαx )| < 10−3. The reconstructed object, O∗(x), is the inverse Fourier

transform of O∗(kx).
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Fig. 5.3. Plot of the object, O(x), LH slab lens image, I(x), and
the reconstructed image through Medium 2 optimization, O∗(x) for:
(a) ε′′r1 = ε′′r3 = −0.01, TE polarization; (b) ε′′r1 = ε′′r3 = −0.001,
TE polarization; (c) ε′′r1 = ε′′r3 = −0.01, TM polarization; and (d)
ε′′r1 = ε′′r3 = −0.001, TM polarization.

Figure 5.3 shows the LH slab lens image and the reconstructed image of a triple

slit object having 0.05λ slits and 0.05λ edge-to-edge separation. The TE polarized

field is better imaged by the LH slab lens than the TM case because |T (kx)| for large
kx is larger for TE polarization (see Fig. 5.2). The blue dashed-dotted response is the

case with T = TL, without optimization, and the slits cannot be resolved by the lossy

LH slab lens in all cases. When Medium 2 is optimized and the object is reconstructed
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according to our proposed method, good images of the object are obtained for both

TE and TM polarizations. This demonstrates the potential of our method to image

far-subwavelength structures when the object and image domains are lossy.

5.4 Conclusion

We have proposed a method to enhance the deep evanescent spectral information

at the image plane by engineering the negative refractive index lens material parame-

ters for the practical situation where the object and image domains have loss, and the

lens has overall loss. The approach requires measurement of field data, facilitated by

an interferometer. This method provides access to subwavelength information about

the object field under the assumption that Medium 1 and Medium 3 are known, lead-

ing to an engineered response for the lens as a function of kx. Although fine tuning

of loss and gain in the LH medium may not be easy, one can anticipate that new

methods and metamaterials will be developed to allow such control. While a single

set of material parameters could be used to enhance the resolution, better results re-

quire adjustment to optimize the result at specific kx during the experiment. Finally,

the case that we considered had a relatively thin lens and stand-off distance from the

object. It may be possible to increase this, depending on the material parameters

involved or the lens configuration. However, the likely situation is that this approach

will be effective only over relatively small length scales, on the order of a wavelength

or so, leading to expectations for imaging small objects or larger objects (like cells)

to such a depth.
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6. SUMMARY

An analytical probability density function that is able to describe field statistics

in a broad spectrum of wave transport regimes has been derived. This new field

density function is developed under the assumption that the field can be modeled as

a random phasor sum of a random number of contributing phasors. This new field

probability density function and the well-known K-distribution for wave intensity are

coherent statistical descriptions that unveil the intrinsic connection between intensity

and field. Because both contain Bessel functions, the term “circular Bessel statistics”

is used to refer to both density functions. Numerical simulations of electromagnetic

waves propagating in 2D random media confirm that our new density function can

be applied to the total field in the Anderson localization regime and the residual field

in the weakly scattering regime. Having a set of density functions that work in a

variety of scattering regimes provides a framework for better understanding of wave

propagation in random media, facilitating random media characterization, design of

random lasers, and imaging in and through scattering medium.

A non-fluorescent far-subwavelength imaging method that incorporates object mo-

tion with structured light illumination and far-field measurement data is proposed.

Numerical simulations demonstrate that the proposed method can distinguish image

features on the nanometer scale with visible light, even in the presence of generous

detector noise. Another method is developed to image the far-subwavelength features

of an object by reconstructing the evanescent part of its spectrum through engineering

the material properties in the negative refractive index material lens. This approach

works even in the presence of losses in the object and image media.
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A. DERIVATION OF PROBABILITY DENSITY

FUNCTIONS OF TOTAL TRANSMISSION

COEFFICIENT USING RANDOM MATRIX THEORY

This appendix is mainly dedicated to provide a detailed derivation of (2.8) and (2.9).

A.1 Definitions

A.1.1 Fourier and Laplace Transforms

One dimensional Fourier transform:

F (ω) =

∫ ∞

−∞

e−iωxf(x)dx, (A.1)

and the corresponding inverse Fourier transform is:

f(x) =
1

2π

∫ ∞

−∞

eiωxF (ω)dω, (A.2)

Now consider one dimensional Laplace transform:

F (s) =

∫ ∞

−∞

e−sxf(x)dx, (A.3)

and the corresponding inverse transform:

f(x) =
1

2πi

∫ i∞

−i∞

esxF (s)ds, (A.4)

We can see that by replacing s with iω, the Fourier transform and Laplace trans-

form are equivalent. When applied to probability theory, Laplace transform is more

frequently used because of the fact that its form is closer to that of the moment

generating function.
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A.1.2 Some Basic Probability Theory

The moment generating function for a random variable x is:

E[e−sx] =

∫ ∞

−∞

e−sxp(x)dx, (A.5)

where p(x) is the probability density function of the random variable x. Expanding

e−sx in a series:

E[e−sx] = E[

∞∑
n=0

(−sx)n
n!

]

=
∞∑
n=0

(−s)n
n!

∫ ∞

−∞

xnp(x)dx

=
∞∑
n=0

(−s)n
n!

〈xn〉

= 1− s〈x〉+ s2

2
〈x2〉 − s3

6
〈x3〉+ ...

(A.6)

Equation (A.5) can also be viewed as the Laplace transform of p(x). Hence if

the moment generating function is known, we can obtain p(x) by an inverse Laplace

transform of the moment generating function:

p(x) =
1

2πi

∫ i∞

−i∞

esxE[e−sx]ds (A.7)

A.2 Calculation of Some Important Equations

First I show explicitly how to obtain the moment generating function of the nor-

malized total transmission coefficient T̂a, namely equation (10) of [31]. In equation

(9) of [31] the authors have inexplicitly normalized Ta by its average g/N , so it should

have read:

p(T̂a) =
1

2πi

∫ i∞

−i∞

esT̂aE[e−sT̂a]ds, (A.8)
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where T̂a ≡ Ta/〈Ta〉 = Ta/(g/N). The moment generating function for T̂a can be

calculated using equation (8) of [31] as:

E[e−sT̂a ] =

∫ ∞

0

e−sT̂ap(T̂a)dT̂a

=

∫ ∞

0

e−sT̂ap(Ta)dTa

=

∫ ∞

0

e−sTaN/gp(Ta)dTa

=

∫ ∞

0

dTae
−sNTa/g

∫
d{τ}p({τ})

∫
dUδ(Ta −

∑
α

|uaα|2τα)

=

∫
d{τ}p({τ})

∫
dU

∫ ∞

0

e−sNTa/gδ(Ta −
∑
α

|uaα|2τα)dTa

=

∫
d{τ}p({τ})

∫
e−

sN
g

∑
α |uaα|2ταdU

(A.9)

Now using the fact that “to leading order in 1/N both real and imaginary components

of uaα are independently distributed gaussian random variables with zero mean and

variance 1/(2N)” [31], the integration with respect to all uaα’s can be carried out.

Focus on just one particular uaα ≡ xaα + iyaα:∫
e−

sN
g

(x2
aα+y2aα)ταp(xaα, yaα)dxaαdyaα

=

∫
e−

sN
g

(x2
aα+y2aα)τα

1

2πσ2
e−(x2

aα+y2aα)/(2σ
2)dxaαdyaα

(A.10)

Now substitute in σ2 = 1/(2N) and change to polar coordinates (xaα = r cos θ, and

yaα = r sin θ): ∫
e−

sN
g

(x2
aα+y2aα)τα

1

2πσ2
e−(x2

aα+y2aα)/(2σ
2)dxaαdyaα

=

∫ 2π

0

dθ

∫ ∞

0

dre−
sN
g

r2τα 1

2πσ2
e−r2/(2σ2)

=

∫ ∞

0

2Nre−Nr2(1+sτα/g)dr

=

∫ ∞

0

e−Nr2(1+sτα/g)d(Nr2)

=
1

1 + sτα/g

(A.11)
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With this result in hand, equation (A.9) becomes:

E[e−sT̂a ] =

∫
d{τ}p({τ})

∫
e
−
sN

g
∑

α |uaα|2τα

dU

=

∫ N∏
α=1

1

1 + sτα/g
p({τ})d{τ}

≡〈
N∏

α=1

1

1 + sτα/g
〉τ

(A.12)

Then I show how to arrive at equation (12) of [31]. What is left to do is to

carry out the average with respect to τ , which is related to the “charges” να via

τα = 1/ cosh2(να/2). The probability density function of να is assumed to be uniform

[87]:

p(ν) =

⎧⎪⎨
⎪⎩
g/2 0 ≤ ν ≤ 2L/l,

0 ν > 2L/l.

(A.13)

Then using p(τ)dτ = p(ν)dν, the probability density function for τ can be obtained:

p(τ) = p(ν)|dν
dτ

|

=
g

2τ
√
1− τ

(A.14)

Using (11) of [31], we convert the average of different τα’s to the average of τ :

E[e−sT̂a ] = eln〈
∏N

α=1
1

1+sτα/g
〉τ

= e−
∑N

α=1 ln(1+sτα/g)

= e
−g

∫ 1
0

ln(1+sτα/g)

2τ
√

1−τ
dτ

= e−g ln2(
√

1+s/g+
√

s/g)

(A.15)

Equation (2.8) is simply the inverse Laplace transform of (A.15).

Equation (18) of [31] can be obtained by a Taylor series expansion of (A.15) about

s = 0:

E[e−sT̂a] ≈ 1− s+ (0.5 + 1/(3g))s2 +O[s]3 (A.16)

Compare (A.16) with (A.6), we find out that 〈T̂a〉 = 1, and 〈T̂ 2
a 〉 = 1 + 2/(3g). Thus

the variance of normalized total transmission coefficient is 〈T̂ 2
a 〉 − 〈T̂a〉2 = 2/(3g).
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Finally I show how to get equation (15) of [31] from equation (4) in [31]. Equation

(15) of [31] should read (taking into account all normalization that is not written

explicitly in the original paper):

p(T̂ab) =

∫ ∞

0

1

T̂a
e−T̂ab/T̂ap(T̂a)dT̂a (A.17)

Equation (4) of [31] should read:

〈T̂ n
ab〉 = n!〈T̂ n

a 〉 (A.18)

In order to see how (A.18) leads to (A.17), first consider the writing p(T̂ab) as the

inverse Fourier transform of its moment generating function (cf. (A.6) and (A.7)):

p(T̂ab) =
1

2π

∫ ∞

−∞

eiωT̂abE[e−iωT̂ab ]dω

=

∫ ∞

−∞

eiωT̂ab

∞∑
n=0

(−iω)n
n!

〈T̂ n
ab〉
dω

2π

(A.19)

Now substitute (A.18) into (A.19):

p(T̂ab) =

∫ ∞

−∞

eiωT̂ab

∞∑
n=0

(−iω)n
n!

n!〈T̂ n
a 〉
dω

2π

=

∫ ∞

−∞

eiωT̂ab

∞∑
n=0

(−iω)n
n!

(∫ ∞

0

une−udu

)(∫ ∞

0

T̂ n
a p(T̂a)dT̂a

)
dω

2π

(A.20)

Rearrange terms and change the order of integration:

p(T̂ab) =

∫ ∞

−∞

eiωT̂ab

∫ ∞

0

due−u

∫ ∞

0

∞∑
n=0

(−iωuT̂a)n
n!

p(T̂a)dT̂a
dω

2π

=

∫ ∞

−∞

eiωT̂ab

∫ ∞

0

due−u

∫ ∞

0

e−iωuT̂ap(T̂a)dT̂a
dω

2π

=

∫ ∞

0

∫ ∞

0

due−u 1

2π

∫ ∞

−∞

e−iω(uT̂a−T̂ab)dωp(T̂a)dT̂a

(A.21)

Using the definition of dirac delta function:

p(T̂ab) =

∫ ∞

0

∫ ∞

0

due−uδ(T̂ab − uT̂a)p(T̂a)dT̂a

=

∫ ∞

0

1

T̂a
e−T̂ab/T̂ap(T̂a)dT̂a

(A.22)

This completes the derivation of (2.9).
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B. DERIVATION OF THE TRANSMISSION

COEFFICIENT FOR A NEGATIVE REFRACTIVE

INDEX SLAB BETWEEN TWO DIFFERENT MEDIA

This appendix is mainly dedicated to provide a detailed derivation of (5.1).x

zd1 d1+d2+d30

A1+A1- A3+A-3

ObjectPlane ImagePlane

1,	μ1 ε3,	μ3

Fig. B.1. The geometry consists of a slab of thickness d2 placed be-
tween two different media. The distance between the object plane
and the left boundary of the slab is d1, and the distance between the
image plane and the right boundary of the slab is d3.

The slab problem can be solved by the transverse transmission matrix theory [86].

Let us denote the amplitudes of positive and negative traveling waves at the object

and image planes by A±
1,3. These quantities can be related by the following equation

⎡
⎣A+

1

A−
1

⎤
⎦ =M

⎡
⎣A+

3

A−
3

⎤
⎦ , (B.1)
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where the transverse transmission matrix, M , is

M =

⎡
⎣ejkz1d1 0

0 e−jkz1d1

⎤
⎦
⎡
⎣Z2+Z1

2Z2

Z2−Z1

2Z2

Z2−Z1

2Z2

Z2+Z1

2Z2

⎤
⎦
⎡
⎣ejkz2d2 0

0 e−jkz2d2

⎤
⎦
⎡
⎣Z3+Z2

2Z3

Z3−Z2

2Z3

Z3−Z2

2Z3

Z3+Z2

2Z3

⎤
⎦
⎡
⎣ejkz3d3 0

0 e−jkz3d3

⎤
⎦ .

(B.2)

The first, third, and fifth elements in (B.2) are the wave transmission matrices for

homogeneous media with thickness d1, d2, and d3, respectively. Meanwhile, the sec-

ond and fourth elements in (B.2) are wave transmission matrices for the two planar

discontinuity interfaces in the structure, which can be derived from the continuity

condition of transverse EM fields at the boundary.

Now we express the elements in M in terms of the reflection coefficients of two

half spaces. The reflection coefficients from medium 2 back to medium 1 is

r12 =
Z2 − Z1

Z2 + Z1
, (B.3)

and similarly the reflection coefficients from medium 3 back to medium 2 is

r23 =
Z3 − Z2

Z3 + Z2

. (B.4)

Expressing the impedances in terms of r12 and r23 in (B.2) and carrying out the

multiplication give

M =
1

(1 + r12)(1 + r23)

⎡
⎣M11 M12

M21 M22

⎤
⎦ , (B.5)

where the elements are

M11 = ej(kz1d1+kz2d2+kz3d3) + r12r23e
j(kz1d1−kz2d2+kz3d3),

M12 = r23e
j(kz1d1+kz2d2−kz3d3) + r12e

j(kz1d1−kz2d2−kz3d3),

M21 = r12e
−j(kz1d1−kz2d2−kz3d3) + r23e

−j(kz1d1+kz2d2−kz3d3),

M22 = r12r23e
−j(kz1d1−kz2d2+kz3d3) + e−j(kz1d1+kz2d2+kz3d3).

(B.6)

To obtain the transmission and reflection coefficients of the slab with object and

image planes specified in Fig. B.1, substitute A+
1 = 1, A−

1 = Γ, A+
3 = T , and A−

3 = 0

in (B.1), we obtain

T =
(1 + r12)(1 + r23)e

−j(kz1d1+kz2d2+kz3d3)

1 + r12r23e−j2kz2d2
, (B.7)
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Γ =
r12 + r23e

−j2kz2d2

1 + r12r23e−j2kz2d2
e−j2kz1d1 . (B.8)

A special case arises when medium 1 and 3 are the same so that r ≡ r12 = −r23.
Then the transmission and reflection coefficients can be expressed as

T =
1− r2

1− r2e−j2kz2d2
e−j(kz1d1+kz2d2+kz3d3), (B.9)

Γ =
1− e−j2kz2d2

1− r2e−j2kz2d2
re−j2kz1d1 . (B.10)
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