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ABSTRACT

Chen, Yi-Ting Ph.D., Purdue University, May 2015. Laser Scanner Jitter Charac-
terization, Page Content Analysis for Optimal Rendering, and Understanding Image
Graininess. Major Professor: Jan P. Allebach.

In Chapter 1, the electrophotographic (EP) process is widely used in imaging sys-

tems such as laser printers and office copiers. In the EP process, laser scanner jitter is

a common artifact that mainly appears along the scan direction due to the condition

of polygon facets. Prior studies have not focused on the periodic characteristic of

laser scanner jitter in terms of the modeling and analysis. This chapter addresses

the periodic characteristic of laser scanner jitter in the mathematical model. In the

Fourier domain, we derive an analytic expression for laser scanner jitter in general,

and extend the expression assuming a sinusoidal displacement. This leads to a simple

closed-form expression in terms of Bessel functions of the first kind. We further ex-

amine the relationship between the continuous-space halftone image and the periodic

laser scanner jitter. The simulation results show that our proposed mathematical

model predicts the phenomenon of laser scanner jitter effectively, when compared to

the characterization using a test pattern, which consists of a flat field with 25% dot

coverage However, there is some mismatches between the analytical spectrum and

spectrum of the processed scanned test target. We improve experimental results by

directly estimating the displacement instead of assuming a sinusoidal displacement.

This gives a better prediction of the phenomenon of laser scanner jitter.

In Chapter 2, we describe a segmentation-based object map correction algorithm,

which can be integrated in a new imaging pipeline for laser electrophotographic (EP)

printers. This new imaging pipeline incorporates the idea of object-oriented halfton-

ing, which applies different halftone screens to different regions of the page, to im-
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prove the overall print quality. In particular, smooth areas are halftoned with a low-

frequency screen to provide more stable printing; whereas detail areas are halftoned

with a high-frequency screen, since this will better reproduce the object detail. In

this case, the object detail also serves to mask any print defects that arise from the

use of a high frequency screen. These regions are defined by the initial object map,

which is translated from the page description language (PDL). However, the infor-

mation of object type obtained from the PDL may be incorrect. Some smooth areas

may be labeled as raster causing them to be halftoned with a high frequency screen,

rather than being labeled as vector, which would result in them being rendered with

a low frequency screen. To correct the misclassification, we propose an object map

correction algorithm that combines information from the incorrect object map with

information obtained by segmentation of the continuous-tone RGB rasterized page

image. Finally, the rendered image can be halftoned by the object-oriented halfton-

ing approach, based on the corrected object map. Preliminary experimental results

indicate the benefits of our algorithm combined with the new imaging pipeline, in

terms of correction of misclassification errors.

In Chapter 3, we describe a study to understand image graininess. With the

emergence of the high-end digital printing technologies, it is of interest to analyze

the nature and causes of image graininess in order to understand the factors that

prevent high-end digital presses from achieving the same print quality as commercial

offset presses. We want to understand how image graininess relates to the halftoning

technology and marking technology. This chapter provides three different approaches

to understand image graininess. First, we perform a Fourier-based analysis of regular

and irregular periodic, clustered-dot halftone textures. With high-end digital print-

ing technology, irregular screens can be considered since they can achieve a better

approximation to the screen sets used for commercial offset presses. This is due to

the fact that the elements of the periodicity matrix of an irregular screen are ra-

tional numbers, rather than integers, which would be the case for a regular screen.

From the analytical results, we show that irregular halftone textures generate new
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frequency components near the spectrum origin; and these frequency components are

low enough to be visible to the human viewer. However, regular halftone textures

do not have these frequency components. In addition, we provide a metric to mea-

sure the nonuniformity of a given halftone texture. The metric indicates that the

nonuniformity of irregular halftone textures is higher than the nonuniformity of regu-

lar halftone textures. Furthermore, a method to visualize the nonuniformity of given

halftone textures is described. The analysis shows that irregular halftone textures are

grainier than regular halftone textures. Second, we analyze the regular and irregular

periodic, clustered-dot halftone textures by calculating three spatial statistics. First,

the disparity between lattice points generated by the periodicity matrix, and centroids

of dot clusters are considered. Next, the area of dot clusters in regular and irregular

halftone textures is considered. Third, the compactness of dot clusters in the regular

and irregular halftone textures is calculated. The disparity of between centroids of

irregular dot clusters and lattices points generated by the irregular screen is larger

than the disparity of between centroids of regular dot clusters and lattices points gen-

erated by the regular screen. Irregular halftone textures have higher variance in the

histogram of dot-cluster area. In addition, the compactness measurement shows that

irregular dot clusters are less compact than regular dot clusters. But, a clustered-dot

halftone algorithm wants to produce clustered-dot as compact as possible. Lastly,

we exam the current marking technology by printing the same halftone pattern on

different substrates, glossy and polyester media. The experimental results show that

the current marking technology provides better print quality on glossy media than on

polyester media. With above three different approaches, we conclude that the cur-

rent halftoning technology introduces image graininess in the spatial domain because

of the non-integer elements in the periodicity matrix of the irregular screen and the

finite addressability of the marking engine. In addition, the geometric characteristics

of irregular dot clusters is more irregular than the geometric characteristics of regular

dot clusters. Finally, the marking technology provides inconsistency of print quality

between substrates.
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1. LASER SCANNER JITTER CHARACTERIZATION

1.1 Introduction

The electrophotographic (EP) process is widely used in imaging systems, such as

laser printers and office copiers. It can be categorized into six basic steps: charging,

exposure, development, transfer, fusing, and cleaning. Fig 1.1 shows the architecture

of EP process. The diode laser emits the pulsed laser beam controlled by the for-

matter. The pulsed laser beam is exposed onto the optical photoconductive drum

(OPC), which is electro-statically charged by a charged roller, and that beam then

scans through the spinning polygon mirror facet. The charges of the OPC surface are

then discharged according to the target image. Subsequently, the toner is attached

to the OPC surface where areas exposed by the laser beam are discharged. The roller

conveys the developed image onto the output media (such as paper), and the output

media are transferred to the fuser where they are fused with the toner particles by

heat and pressure. Finally, the OPC and rollers are cleaned for the next page to be

printed [1].

In the EP process, the overall print quality is determined by the stability of the

imaging process. Different mechanical issues contribute to various image artifacts

such as fine-pitch banding and laser scanner jitter. Fine-pitch banding is analogous

to laser scanner jitter. The only difference being in the direction in which it occurs:

fine-pitch banding is due to fluctuations in the process direction, and laser scanner

jitter is due to fluctuations in the scan direction. Fine-pitch banding has been widely

studied [2–5]. However, little work has been done on laser scanner jitter in terms of

a characterization and analysis that exploits its periodic nature.

A few studies on laser scanner jitter have focused on its root cause [6], ways to

reduce it [7], and its characterization [8,9]. Horikawa et al [6] demonstrated that laser
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scanner jitter has two typical root causes: rotational variation of the spindle motor

and the condition of the facets of the polygon mirror. The first cause is directly re-

lated to the rotation speed of the polygon mirror. Therefore, the non-regular variation

of the spindle motor influences the low-frequency jitter components in the frequency

domain. On the other hand, the condition of the facets of the polygon mirror intro-

duces high-frequency jitter components [6]. Horikawa et al. demonstrated that the

high-frequency jitter components were essentially caused by the radius variation of

the mirror facets and the curve of the mirror facets [6]. To reduce the effect of laser

scanner jitter, Stutz presented a pixel placement correction system, which contains

an encoder or clock track to examine the position of the scanner [7].

As for the characterization aspect, Eid et al [8, 9] proposed a characterization

method that combined two-dimensional analysis of Gabor pre-filtering to detect and

localize the artifacts, and spectral analysis. However, the root cause in [8, 9] is due

to oscillatory disturbances of the OPC drum and developer roller. This is different

from the causes of the jitter examined in the papers [6, 7]. Most importantly, Eid et

al [8, 9] did not investigate the periodic characteristic of laser scanner jitter in their

analysis.

In this chapter, we focus on laser scanner jitter that is periodic, since the jitter

we consider is introduced by the condition of the polygon mirror facets, as discussed

in [6, 7]. We present a new method for characterizing the Fourier spectrum of the

periodic laser scanner jitter. We view the image as a two-dimensional signal, which has

a periodic displacement in the scan direction, and derive an analytic expression for its

Fourier spectrum. The laser scanner jitter phenomenon and its periodic characteristic

are illustrated in Fig. 1.2. In Fig. 1.2, straight lines are printed along the process

direction. However, they appear to be wiggly lines instead of straight lines; and we

can clearly see the periodic characteristic of the laser scanner jitter. The length of each

straight line is 100 printer-addressable pixels or printer scan lines; and the periodic

pattern repeats every 10 pixels because the polygon mirror in our target laser printer

has 10 facets. Guided by the periodicity of the jitter pattern, we incorporate this
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Fig. 1.1. Architecture of a typical electrophotographic printer. [1]

characteristic into our mathematical model to more accurately capture the behavior

of laser scanner jitter. A brief description of our work can be found in [10]. In this

article, it is illustrated with much more details, and it provides a new approach to

improve the experimental result.

In this chapter, we mainly focus on characterizing the behavior of the laser scanner

jitter, and do not provide a solution to reducing the impact of the jitter in the EP

process. The rest of this paper is organized as follows. The next section describes the

mathematical model of laser scanner jitter, and then extends the model to the special

case where the periodic displacement is a sinusoidal function in Section 1.3. Then, we

investigate in the Fourier domain the relationship between the halftone image and the

periodic laser scanner jitter in Section 1.4. In Section 1.5, we present an evaluation

of the mathematical model. In Section 1.6, we provide a new approach to improve

our mathematical model to better predict the phenomenon of laser scanner jitter.

Finally, we conclude in the Section 1.7.

1.2 Mathematical Model of Laser Scanner Jitter

We first develop the general mathematical model of periodic laser scanner jitter

in a two-dimensional continuous-space for a continuous-tone image, and extend it

to the special case of a sinusoidal displacement in the next section. We denote the
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Fig. 1.2. Straight lines printed in the process direction appear to be
wiggly instead of straight. The length of each straight line is 100
printer-addressable pixels, and the periodic pattern repeats every 10
pixels because the polygon mirror in our target laser printer has 10
facets. The printer resolution is 600 dpi.
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continuous-tone image by f(x, y). Here x corresponds to the process (vertical) direc-

tion, and y corresponds to the scan (horizontal) direction. We define a new image

g(x, y), with periodic laser scanner jitter, according to

g(x, y) = f
(
x, y − d(x)

)
, (1.1)

where the displacement d(x) is periodic in x. Let F (u, v) denote the two-dimensional

Continuous-Space Fourier Transform (CSFT) of f(x, y) defined according to

F (u, v) =

∫ +∞

−∞

∫ +∞

−∞
f(x, y)e−j2π(ux+vy)dx . (1.2)

The CSFTG(u, v) of g(x, y) is defined similarly. To derive a closed form expression

for G(u, v) in terms of F (u, v), we use the separability of the CSFT. Namely, we use

the fact that G(u, v) can be realized as a one-dimensional CSFT with respect to the

y coordinate followed by a one-dimensional CSFT with respect to the x coordinate.

Thus we can write

F̃ (x, v) =

∫ +∞

−∞
f(x, y)e−j2πvydy . (1.3)

F (u, v) =

∫ +∞

−∞
F̃ (x, v)e−j2πuxdx . (1.4)

Applying this idea to Eq. (1.1), we obtain

G̃(x, v) =

∫ +∞

−∞
f
(
x, y − d(x)

)
e−j2πvydy

= F̃ (x, v)e−j2πvd(x) , (1.5)

where we have used the shifting property of the one-dimensional Fourier transform.

Let

c(x; v) = e−j2πvd(x) . (1.6)

It follows from the periodicity of d(x) that c(x; v) is also periodic in x with period X.

Thus, Eq. (1.6) can be expressed as a Fourier series

c(x; v) =
∞∑

k=−∞

Ck(v)ej2πkx/X , (1.7)
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where the Fourier coefficients are given by

Ck(v) =
1

X

∫ +X
2

−X
2

c(x; v)e−j2πkx/Xdx

=
1

X

∫ +X
2

−X
2

e−j2πkx/Xe−j2πvd(x)dx

=
1

X

∫ +X
2

−X
2

e−j2π
(
kx/X+vd(x)

)
dx . (1.8)

Now, completing the Fourier transform of g(x, y), we obtain

G(u, v) =

∫ +∞

−∞
G̃(x, v)e−j2πuxdx

=

∫ +∞

−∞
F̃ (x, v)e−j2πvd(x)e−j2πuxdx

=

∫ +∞

−∞
F̃ (x, v)

∞∑
k=−∞

Ck(v)ej2πkx/Xe−j2πux . (1.9)

Interchanging integration and summation in the last line of Eq. (1.9), we get

G(u, v) =
∞∑

k=−∞

Ck(v)

∫ +∞

−∞
F̃ (x, v)e−j2π(u−k/X)x

=
∞∑

k=−∞

Ck(v)F (u− k/X, v) . (1.10)

From Eq. (1.10), we see that the periodic laser scanner jitter causes replication

of the spectrum F (u, v) of the original image in the process (u) frequency direction

with interval 1
X

, which is the reciprocal of the period of the jitter. Each replication

is weighted differently by a function that varies in the scan (v) frequency direction.

Specifically, the k-th replication is weighted by Ck(v), which is given by Eq. (1.7).

Letting

b(x; v) =
1

X
e−j2πvd(x)rect (x/X) , (1.11)

we can write

Ck(v) = B̃ (k/X; v) , (1.12)
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where the k-th weighting function Ck(v) is the 1–D CSFT B̃(u; v) of b(x; v) with

respect to x, evaluated at frequency u = k
X

. Note that b(x; v) is complex-valued.

Therefore, in general, B̃(u; v) will have no particular symmetry with respect to u.

The function b(x; v) has the form of a frequency modulation (FM) signal with zero

carrier frequency. The spectral properties of FM signals have been well studied, and

can be delineated into two categories – wideband or narrowband, according to the

magnitude of the frequency deviation, which here is proportional to the parameter,

i.e., the horizontal frequency. In general, there is no simple closed form expression

for the FM spectrum in terms of the modulated baseband signal. However, for the

special case where the baseband signal is a sinusoid, i.e., d(x) = sin (2πx/X), the

spectrum can be written in terms of Bessel functions [11].

1.3 Periodic Laser Scanner Jitter with Sinusoidal Displacement

In this section, we extend the model to the special case where the periodic dis-

placement is a sinusoid function d(x) = A sin(2πx/X). Here A is a constant scale

factor that is the peak jitter displacement, and X is the period of the laser scanner

jitter. With an approach similar to that used in the previous section, we can derive

the Fourier coefficients. Applying this idea to Eq. (1.6), we obtain

c(x; v) = e−j2πAv sin(2πx/X) . (1.13)

We express Eq. (1.13) as a Fourier series and we have

e−j2πAv sin(2πx/X) =
∞∑

k=−∞

Ck(v)ej2πkx/X , (1.14)
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where the Fourier coefficients are given by

Ck(v) =
1

X

∫ +X
2

−X
2

c(x; v)e−j2kπx/Xdx

=
1

X

∫ +X
2

−X
2

e−j2πAv sin(2πx/X)e−j2kπx/Xdx

=
1

X

∫ +π

−π
e(−j2πAv)(sin z)e−jkz (X/2π) dz

=
1

2π

∫ +π

−π
e

(
j(−2πAv)(sin z)−kz

)
dz

= Jk(−2πAv) , (1.15)

where the Fourier coefficients are articulated by the k-th order Bessel function of the

first kind [11].

To obtain the Fourier transform of g(x, y), we substitute Eq. (1.15) into Eq.

(1.10), yielding

G(u, v) =
∑
k

Jk(−2πAv)F (u− k/X, v) . (1.16)

In Eq. (1.16), the periodic laser scanner jitter introduces replications in the process

(u) frequency direction with interval 1
X

. Each replication is weighted by the k-th

order Bessel function, Jk(−2πAv), that changes in the scan (v) frequency direction.

The key difference between Eq. (1.10) and Eq. (1.16) is because of the sinusoidal

displacement; and we can derive a closed form for Fourier series coefficients, which is

the k-th order Bessel function.

To illustrate the structure of the spectrum given by Eq. (1.16) and in particular,

the v-axis dependence of the Fourier coefficients due to the k-th order Bessel function,

we use an example in Fig. 1.3 to demonstrate the phenomena. The image in Fig. 1.3(a)

is an infinitely long vertical sinc-strip image f(x, y) = sinc(600y), where sinc(ξ) =

sin(πξ)/(πξ). This strip does not vary in the process direction, and is centered at

y = 0. It has zero crossings spaced apart by 1/600 inch in the y direction. The Fourier

transform of this image is the function F (u, v) = (1/600)rect(v/600)δ(u), which is a

portion of an impulse sheet oriented along the v-axis. Here, rect(ξ) = 1, |ξ| < 1/2,
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and rect(ξ) = 0, otherwise. This spectrum is shown in Fig. 1.3(b). Fig 1.3(c) shows

the sinc-strip image with laser scanner jitter. The maximum displacement of the

jitter is 1/1200 inches. The Fourier spectrum of the sinc-strip image is shown in

Fig. 1.3(d). We can see clearly in Fig. 1.3(d) that the constant amplitude impulse

sheet in Fig. 1.3(b) is replicated along the u-axis at multiples of the fundamental

frequency 60 cycles/inch of the periodic jitter, and that along the v-axis, the Fourier

coefficients Jk(−2πAv) continuously modulate the amplitude of each replication of

this impulse sheet.

1.4 Fourier Analysis of a Continuous-space Halftone Image with Laser

Scanner Jitter

In this section, we investigate in Fourier domain the relationship between a halftone

image and periodic laser scanner jitter. We first derive in the Fourier domain the

halftone image generated by the screening process. We use boldface lower case to rep-

resent vectors, and boldface upper case to denote matrices. In the following derivation,

we use (x) = (x, y)T and [m] = [m,n]T to indicate continuous and discrete coordi-

nates, respectively, where the units of (x) and [m] are inches and printer-addressable

pixels, respectively. Here m corresponds to the process (vertical) direction, and n

corresponds to the scan (horizontal) direction.

The screening process generates the halftone image by thresholding the discrete-

space continuous-tone image g[m] with a threshold array t[m] pixel by pixel. The

threshold array is defined by two independent tile vectors n1 and n2; and the screen

matrix N can be written as N = [n1|n2]. Therefore, the discrete-space halftone image

h[m; a] can be written as follow:

h[m] =

1, if g[m] ≥ t[m]

0, else
, (1.17)

where t[m] is the threshold array and its periodicity is based on the periodicity matrix

N , i.e., T [m + Nq] = T [m],∀q ∈ Z2.
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(a) (b)

(c) (d)

Fig. 1.3. Illustration of the infinitely long vertical sinc-strip image
with laser scanner jitter that shows the v-dependent attenuation in the
frequency domain. (a) The infinitely long vertical sinc-strip centered
at y = 0 with zero crossings in the y direction separated by 1/600
inch. (b) The Fourier spectrum of the infinitely long vertical sinc-
strip image, which is an impulse sheet with a rect function profile
along the v-axis. (c) The infinitely long vertical sinc-strip image with
laser scanner jitter. (d) The Fourier spectrum of the image in (a) with
laser scanner jitter.
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To simplified the derivation, we focus on a constant-tone image for the following

analysis. If we halftone a constant-tone image, the resulting hafltone image is h[m; a]

where the variable a is the absorptance between 0 (white) and 1 (black). Therefore,

h[m; a] can also be expressed as

h[m; a] =

1, if a ≥ t[m]

0, else
. (1.18)

The printer model is embodied by the printer dot profile pdot(x). For the ideal

case, we do not consider the dot-gain effects in this study. Therefore, pdot(x) is exactly

the printer-addressable pixel and we define the printer dot profile as

pdot(x) = rect (x/R) ,

= rect(x/R)rect(y/R) . (1.19)

where the parameterR is the horizontal and vertical distance between printer-addressable

pixels in units of inches. The resulting continuous-space halftone image h(x; a) can

be expressed [12] as

h(x; a) =
∑
m∈Z2

h[m; a] pdot(x−mR) . (1.20)

For periodic, clustered-dot screening, the colorant dots are placed compactly

within each unit halftone cell Ω. If we let c[m; a] be the discrete-space halftone

dot-cluster function within a unit halftone cell, it can be expressed as

c[m; a] =

1, if a ≥ t[m] and m ∈ Ω

0, else
, (1.21)

Due to its periodicity, the discrete-space halftone image h[m; a] can be also repre-

sented as

h[m; a] =
∑
t∈Z2

c[m−Nt; a] . (1.22)
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The Continuous Space Fourier Transform (CSFT) of h(x; a) can be expressed as

H(u; a) =
∑
m∈Z2

h[m; a]

∫ ∞
−∞

pdot(x−mR)e−j2πu
Tx dx

= Pdot(u)
∑
m∈Z2

h[m; a]e−j2πu
TmR

= Pdot(u)
∑
t∈Z2

∑
m∈Z2

c[m−Nt; a]e−j2πu
TmR

= Pdot(u)C̆(uR; a)
∑
t∈Z2

e−j2πu
TNtR, (1.23)

where Pdot(u) is the CSFT of pdot(x) defined as

Pdot(u) =

∫ ∞
−∞

pdot(x)e−j2πu
Tx dx

= R2sinc(Ru)

= R2sinc(Ru)sinc(Rv) , (1.24)

and C̆(u; a) is the Discrete Space Fourier Transform (DSFT) of c[m; a]

C̆(u; a) =
∑
m∈Z2

c[m; a]e−j2πu
Tm . (1.25)

Furthermore, in Eq. (1.23),
∑

t∈Z2 e−j2πu
TNtR is a 2-D comb function, and its Fourier

series representation [12] of this 2-D comb function can be expressed as∑
t∈Z2

e−j2πu
TNtR =

1

|N|R
∑
t∈Z2

δ(u− 1

R
N−T t) , (1.26)

where N−T denotes the inverse and transpose of N, and |N| ≡ |det(N)|. Applying

Eq. (1.26) to Eq. (1.23), the H(u; a) can be expressed as

H(u; a) =
1

|N|R
Pdot(u)C̆(uR; a)

×
∑
t∈Z2

δ(u− 1

R
N−T t) , (1.27)

Eq. (1.27) shows that altering the screen matrix N will change the location of the

spectral energy in the frequency domain. In order to simply identify the points in
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the frequency domain where the spectral energy of H(u; a) is located, we refer to

F = [f1|f2] as the frequency matrix defined by

F = ρN−T , (1.28)

where ρ is the printer resolution in units of dot-per-inch (dpi). Note that the frequency

matrix F = [f1|f2] actually defines the reciprocal lattice of the screen matrix N.

To derive the relationship between this halftone image and periodic laser scanner

jitter, we view the halftone image h(x; a) as the continuous-tone image f(x, y) in Eq.

(1.1) that is subject to jitter. Then, the Fourier spectrum F (u, v) for the continuous-

tone image in Eq. (1.16) becomes the Fourier spectrum H(u; a) for the halftone image

given by Eq. (1.27). So substituting Eq. (1.27) into Eq. (1.16), we obtain

H̃(u; a) =
∑
k∈Z

Jk
(
− 2π[0, A]u

)
H
(
u− [k/X, 0]T ; a

)
, (1.29)

where H̃(u; a) denotes the Fourier transform of the continuous-space halftone image

with laser scanner jitter. Substituting Eq. (1.27) into Eq. (1.29), and we obtained the

complete expression of the Fourier transform of the continuous-space halftone image

with laser scanner jitter

H̃(u; a) =
1

|N|R
∑
k∈Z

Jk
(
− 2π[0, A]u

)
Pdot

(
u− [k/X, 0]T

)
C̆
(
(u− [k/X, 0]T )R; a

)
×
∑
t∈Z2

δ
(
(u− [k/X, 0]T )− 1

R
N−T t

)
. (1.30)

1.5 Evaluation of the Mathematical Model for Laser Scanner Jitter

To evaluate our mathematical model, we compute the Fourier spectrum of a

halftone image with scanner jitter Eq. (1.30). We then compare the result with

the Fourier spectrum of a scanned test target of a 25% tint-fill (a = 1
4
) constant-tone

image halftone printed at 600 dpi with two different colorants, black and magenta,

using a dry toner laser EP printer. The printed test target is then scanned with an
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EPSON Expression 10000XL at 2400 dpi. The corresponding periodicity matrices of

these two colors are the default design for our target printer. The screen tile vectors

for magenta are n1 = [3,−1]T and n2 = [1, 3]T. For black, they are n1 = [2,−2]T and

n2 = [2, 2]T. The screen frequency for magenta is 190 lpi. For black, it is 212 lpi.

The screen angle for magenta is 18 degrees. For black, it is 45 degrees. The size of

the scanned image target is 1000× 1000.

Figure 1.4 shows the scanned images of test targets that are printed with a printer

with normal-case and worst-case laser scanners. In our experiment, we swapped the

laser scanner assembly in the same printer to eliminate other sources of variability

that might be observed from printer to printer. The left column images of Fig. 1.4 are

printed with the normal-case laser scanner. The right column images of Fig. 1.4 are

printed with the worst-case laser scanner. We can see a significant visual difference

between the two images in the first row of Fig. 1.4. However, we do not see a

visible difference between the magenta test targets because of the screen angle of the

magenta.

To compare the Fourier transform of the scanned images with the analytical results

obtained by evaluating Eq. (1.30), we apply the following processes to the scanned

images in Fig. 1.4(b) and 1.4(d). First, we transform the scanner RGB to linear RGB

by computing the gray balancing curves for the R, G and B channels. To obtain the

gray balancing curves, we first scan the 24 neutral gray scale patches on the Kodak

Q60 target, which is shown in Fig. 1.5, with an EPSON Expression 10000XL scanner

at 2400 dpi. The R, G, and B values for each patch are computed as the average of all

the pixel values within each patch. Then, the CIE Y value of each gray scale patch is

measure by the X-rite DTP70 Spectrophotometer as shown in Fig. 1.6. Finally, the

gray balancing curves can be approximated by a power law equation as follows

Rl = a(R/255)b + c , (1.31)

where Rl = Y/100, and Rl is the linearized R output value for a patch. Similarly,

we can also find the parameters, a, b, and c for the G and B channels. The values of
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(a) (b)

(c) (d)

Fig. 1.4. Comparison of the scanned test targets with and without
laser scanner jitter in black and magenta. (a) The black color test
target without laser scanner jitter, and the dot coverage is 25%. (b)
The scanned test target with laser scanner jitter. (c) The magenta
color test target without laser scanner jitter, and the dot coverage is
25%. (d) The scanned test target with laser scanner jitter.
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Table 1.1
The parameters for the power law equation for each channel

R G B

a 0.004652 0.008277 0.002842

b 1.791 1.68 1.886

c 0.5154 0.3634 0.5

parameters, a, b, and c for the R, G and B channels can be found in Table 1.1. The

gray balancing curves for R, G and B channel are shown in Fig. 1.7 (a)–(c).

Fig. 1.5. Kodak Q60 target we used to obtain the gray balancing
curves for the R, G and G channels, and the transformation matrix
from linear RGB to CIE XYZ.

Next, we find the transformation matrix for transforming the linear RGB values

to CIE XYZ values. We use the process mentioned above to obtain the linear RGB

values for the 228 color patches on the Kodak Q60 target. Then, the transformation

matrix, M , is given by

M = (ATA)−1ATX

=


0.5327 0.2889 0.0460

0.2673 0.5902 0.1194

0.0869 0.0376 0.5664

 , (1.32)
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Fig. 1.6. X-rite DTP70 Spectrophotometer is used to measure the
CIE Y value of each gray scale patch on the Kodak Q60 target.
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(a)

(b)

(c)

Fig. 1.7. The Gray balancing curves for R, G and B channel are
approximated by a power law equation that uses the average of all
the pixel values in each channel within each gray patch on the Kodak
Q60 target, and the measured CIE Y value of each gray patch. (a)
The gray balancing curve for R channel. (b) The gray balancing curve
for G channel. (c) The gray balancing curve for B channel.
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where matrix A (228 × 3) contains the 228 linear RGBs, and matrix X (228 × 3)

contains the corresponding CIE XYZ values. Eq. (1.32) also shows the experimental

result of the transformation matrix M . Based on the above processing, Fig. 1.4(b)

and 1.4(d) are transformed to CIE XYZ. Finally, the CIE Y values are scaled to range

from 0 (black) to 255 (white). We call the scanned Y image processed as described

above the luminance image. The luminance images in black and magenta are shown

in Fig. 1.8(b) and Fig. 1.8(e).

Before computing the 2D Discrete Fourier Transform (DFT) of the luminance

image, we first perform the contrast stretching technique to enhance the luminance

image for both Fig. 1.8(b) and (d). For black luminance image as shown in Fig. 1.8(b),

we map the absorptance 100 in the black luminance image to absorptance 0, and map

the absorptance 255 in the black luminance image to absorptance 255. The values

between the absorptance 100 and absorptance 255 are scaled linearly in the range [0,

255]. The black enhanced luminance image is shown in the Fig. 1.8(c). On the other

hand, we perform a different image enhancement to the magenta luminance image be-

cause it has very few absorptance 255. Therefore, we perform the following processes

to the magenta luminance image. we map the minimum value in the black luminance

image to absorptance 0, and map the maximum value in the black luminance image to

absorptance 255. The values between minimum value and maximum value are scaled

linearly in the range [0, 255]. The magenta enhanced luminance image is shown in

the Fig. 1.8(f).

Subsequently, we compute the 2D Discrete Fourier Transform (DFT) of the en-

hanced luminance image. However, there are vertical and horizontal line smears, and

noise in the frequency spectrum of the enhanced luminance image. These artifacts

are not accounted for by our analytical result obtained by evaluating Eq. (1.30). The

vertical and horizontal line smears may be due to that fact that the size of the en-

hanced luminance image is a non-integer multiple of periods of the halftone pattern.

To eliminate the smears, a raised-cosine window function is applied to the enhanced

luminance image and it is shown in Fig. 1.9. This window function drops from 1 to
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(a) (b) (c)

(d) (e) (f)

Fig. 1.8. Illustration of the results that the scanned test targets in
black and magenta are transformed to CIE Y images, and CIE Y
images are enhanced by the contrast stretching technique. (a) The
black color test target wit laser scanner jitter, and the dot coverage
is 25% as same as in Fig. 1.4(b). (b) The black color test target is
transformed to CIE Y image that is called luminance image in this
article. (c) The black enhanced luminance image. (d) The magenta
color test target with laser scanner jitter, and the dot coverage is
25% as same as in Fig. 1.4(d). (e) The magenta color test target is
transformed to CIE Y image. (f) The magenta enhanced luminance
image.
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0 within a zone inside each boundary of the image that comprises 5% of the total

width or height of the image. In our experiment, we only apply this window func-

tion to the black color enhanced luminance image because the DFT of the magenta

color enhanced luminance image does not show obvious vertical and horizontal line

smears. To better show the spectrum, especially the low intensity features, Chang

and Allebach [13] had the spectrum logarithmically compressed according to

iOUT =

(
255/

(
log(K + 1)

))
log

(
K
(
iIN/max(iIN)

)
+ 1

)
. (1.33)

where iOUT is the logarithmically compressed spectrum and iIN is the input spectrum.

The parameter K for the DFT of the enhanced luminance images are chosen empiri-

cally by 1000. The parameter K for the analytical spectra are chosen emprically by

5 × 104. The final Fourier spectra of the printed and scanned halftone patches are

shown in Fig. 1.10(a) and (d).

Fig. 1.9. A raised-cosine window function is applied to the luminance
image. This window function drops from 1 to 0 within a zone inside
each boundary of the image that comprises 5% of the total width or
height of the image.

Figure 1.10 compares the analytical results obtained by evaluating Eq. (1.30) to

those obtained by computing the DFT of the windowed enhanced luminance image of

the black and the enhanced luminance image of the magenta. The first column images

of Fig. 1.10 are the Fourier spectra of the windowed enhanced luminance image (black)

and the enhanced luminance image (magenta). The second column images of Fig. 1.10
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are based on Eq. (1.29) with the default periodicity matrices. For the computation,

we set the values for the parameters in Eq. (1.30) as follows: A = 1/1200 inches,

a = 0.25 absorptance units, X = 1/60 inches, and R = 1/600 inches. According to

Eq. (1.30), we will have frequency components where the impulses are located; and

an impulse corresponds to a pixel in the plot. To enhance its visibility, we replace

each such impulse by a 9× 9 square with constant amplitude. The Fourier spectrum

of the continuous-space halftone image with laser scanner jitter exhibits replications

of the spectrum of the original continuous-space halftone image. Each replication is

separated by 60 cpi (cycles per inch) in the frequency domain with different weights.

This is because the period X of the laser scanner jitter is 10
600

inches. By comparison,

the spectrum of the scanned image also shows replications that are separated by 60

cpi.

We can see that the analytical Fourier spectrum of magenta can predict the spec-

trum of the enhanced luminance image effectively. However, there is some mismatch

in black. There are three possible reasons for this issue. First, the instability of

the EP process may not reproduce the given test target perfectly. Furthermore, the

screen frequency of black is higher than the screen frequency of magenta. Thus, the

printed image of magenta would have better print quality. Second, we assume the

displacement function to be a sinusoid function. However, the actual displacement

is not a perfect sine wave function. Finally, the Fourier spectrum of the windowed

luminance image shows that the spectral peaks roll off more as we move away from

the origin than is the case with the analytical spectrum computed using Eq. (1.30).

This could be due to the fact that our analytical model assumes that each printer

addressable pixel is the function rect( x
R

). However, the effective spot shape may be

larger than it is in our model due to dot gain effects. The above factors may be

responsible for the mismatch in the Fig. 1.10(a) and Fig. 1.10(b).
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(a) (b) (c)

(d) (e) (f)

Fig. 1.10. Comparison of the Fourier spectrum of the scanned test tar-
get and the analytical Fourier spectrum both with laser scanner jitter.
(a) The Discrete Fourier Transform of the black color windowed en-
hanced luminance image obtained by the color space transformation
of the black color scanned test target in Fig. 1.4(b) followed by image
enhancement, windowing and, finally, logarithmically compressed ac-
cording to Eq. (1.33). (b) The result of using Eq. (1.29) to compute
the Fourier spectrum of the continuous-space halftone image with
laser scanner jitter using the periodicity matrix for black. (c) The
analytical Fourier spectrum of black, which is based on Eq. (1.10)
and Eq. (1.8). The Fourier coefficient Ck(v) defined in Eq. (1.8) is
numerically evaluated based on the estimated displacement function
that is describe in Section 1.6 instead of assuming a sinusoidal dis-
placement. (d) The Discrete Fourier Transform of the magenta color
enhanced luminance image obtained by the color space transforma-
tion of the magenta color scanned test target in Fig. 1.4(d) followed by
image enhancement and logarithmically compressed according to Eq.
(1.33). (e) The result of using Eq. (1.29) to compute the Fourier spec-
trum of the continuous-space halftone image with laser scanner jitter
using the periodicity matrix for magenta. (f) The analytical Fourier
spectrum of magenta obtained by using the Fourier coefficient numer-
ically evaluated based on the estimated displacement function instead
of assuming a sinusoidal displacement.
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1.6 Estimation of the Displacement Function

In the previous section, we show that there are mismatches between the Fourier

spectrum of the scanned test target and the analytical Fourier spectrum both with

laser scanner jitter. One of the reasons is that we assume the displacement function

to be sinusoid function and periodic. Thus, we can derive a closed form for Fourier

series coefficients, which is the k-th order Bessel function. Instead of making that

assumption, we estimate the actual displacement by creating another test target and

keep the assumption that the displacement function is periodic.

The test target is shown in Fig. 1.11(a), and it uses to measure the displacement

function of laser scanner jitter. The fiducial marks on the top and bottom of the

target are used to measure the skew. Fig. 1.11(b) is the zoomed-in image of the red

box indicated in Fig. 1.11(a). Each group of line segments has 11 line segments,

and each line segment, 4 pixels wide, within a eleven-line-segment group separates 7

pixels. Each line segment denotes a certain facet of the polygon mirror as shown in

the Fig. 1.11(b), and the first and last line segment denote the same facet. The first

line segment of every eleven-line-segment group is always the first facet.

To measure the displacement function, we first printed at 600 dpi with two different

colorants, black and magenta, using a dry toner laser EP printer. The printed test

target is then scanned with an EPSON Expression 10000XL at 800 dpi, and the

scanned test target and zoomed-in scanned test target are shown in Fig. 1.12(a)

and (b). To analyze the scanned image, We binarize the zoomed-in image by Otsu’s

algorithm [14], and the binarized image is shown in Fig. 1.12(c). Next we applied the

connected component analysis [15], and then compute the centroid of each connected

component. Fig. 1.12(d) shows the locations of centroid of each line segment in red

cross. We use the centroid of the first line segment in each eleven-line-segment group

as the reference. Before calculating the estimated displacement function, we apply the

rotation matrix to the centroid coordinates to correct the skew. The rotation matrix

is obtained by finding the centroids of fiducial marks, and the centroid coordinates
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is used to retrieve the skew angle. The rotation matrix for black is shown in Eq.

(1.34) with θ = 0.1709 and rotation matrix for magenta is shown Eq. (1.35) with

θ = 0.0749. Since the first and last line segment denote the same facet, we average

the y coordinate of the centroid of the first and last line segment, and use it as a

reference to calculate the relative difference from the rest of 9 lines segments. Next, we

collect relative differences of 100 eleven-line-segment groups, and average them. Then,

we use these 10 relative differences data to fit a curve, the estimated displacement

function destimate(x) by using cubic spline interpolation. We do the above processes

to the scanned test target in black and magenta colorants. We show the estimated

displacement functions for black and magenta colorants in Fig. 1.13, and the estimated

displacement is in unit of pixel. As stated in the beginning of this section, we assume

the displacement function is periodic, and the period is 10, the number of facets of

the polygon mirror in our target printer.

Rblack(θ) =

cos(θ) − sin(θ)

sin(θ) cos(θ)


=

1.000 −0.003

0.003 1.000

 (1.34)

Rmagenta(θ) =

1.0000 −0.0013

0.0013 1.0000

 (1.35)

As we have the estimated displacement function for black and magenta test tar-

gets, we can numerically evaluate the Fourier coefficient Ck(v) defined in Eq. (1.8),

and we can have the spectrum of a halftone image with laser scanner jitter G(u, v)

according to Eq. (1.10). The resulting spectra of a halftone image with laser scan-

ner jitter are shown in Fig. 1.10(c) and Fig. 1.10(f). The resulting spectra are also

logarithmically compressed according to Eq. (1.33), and the parameter K is chosen

empirically to be 5× 104. We can see that the analytical Fourier spectra give a bet-

ter prediction to spectrum of the enhanced luminance image than the experimental
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results in Fig. 1.10(b) and Fig. 1.10(e). But, some mismatches still exists. The spec-

tral peaks roll off more as we move away from the origin than is the case with the

analytical spectrum since dot gain effects may be responsible for this issue.

1.7 Conclusion

In this chapter, we present a new method for characterizing and analyzing the

Fourier spectrum of periodic laser scanner jitter. Unlike prior studies, we incorporate

the periodic characteristics of laser scanner jitter into the mathematical model and ex-

tend the model to the special case where the jitter has a sinusoidal displacement. This

leads to a simple closed-form expression in terms of Bessel functions of the first kind.

We further investigate the Fourier domain relationship between a continuous-space

halftone image and laser scanner jitter. Our preliminary experimental results show

that the mathematical model based on the sinusoidal displacement can effectively

characterize the phenomenon of laser scanner jitter, but there is some mismatches.

To improve experimental results, we create another test target to directly estimate

the displacement function instead of assuming a sinusoidal displacement. This gives

a better prediction of the phenomenon of laser scanner jitter.
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(a)

(b)

Fig. 1.11. Illustration of the test target that uses to measure the
displacement function of laser scanner jitter. (a) The test target de-
signed for estimating the displacement function of laser scanner jitter.
The fiducial marks on the top and bottom of the target are used to
measure the skew. (b) The zoomed-in image of the red box indi-
cated in (a). Each column of line segments has 11 line segments, and
each line segment, 4 pixels wide, within an eleven-line-segment group
separates 7 pixels wide. Each line segment denotes a certain facet
of the polygon mirror as shown in the figure, and the first and last
line segment denote the same facet. The first line segment of every
eleven-line-segment group is always the first facet.
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(a)

(b) (c) (d)

Fig. 1.12. Illustration of the process to get the centroid of each line
segment in the scanned test target. (a) The scanned test target with
skew. The fiducial marks are used to correct the skew. (b) The
zoomed-in scanned test target. (c) The binarized scanned test tar-
get, which is binarized from the zoomed-in scanned test target by the
Otsu’s algorithm. (d) The binarized scanned test target is applied
with the connected component analysis, and the connected compo-
nent map is used to calculate the centroid location of each connected
component. The centroid locations are marked by red crosses.
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(a) (b)

Fig. 1.13. Illustration of the estimated displacement function
destimate(x). (a) The estimated displacement function destimate(x) for
black color. Red circles are the relative differences obtained by using
the test target in Fig. 1.11. Then, the data are fitted by the cubic
spline interpolation. According to our assumption, the estimated dis-
placement function destimate(x) is periodic, and the period is 10, the
number of facets of the polygon mirror in our target printer. The
estimated displacement function destimate(x) is used to numerically
evaluated the Fourier coefficient defined in Eq. (1.8). Then, we can
obtain the better prediction of the spectrum of a halftone image with
laser scanner jitter as shown in Fig. 1.10. (b) The estimated displace-
ment function destimate(x) for magenta color.
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2. PAGE CONTENT ANALYSIS FOR OPTIMAL

RENDERING

2.1 Introduction

A typical document page is composed of miscellaneous image objects that have

different characteristics. Figure 2.1(a) shows a common example of such a page. This

page contains text, photos, pictures, gradient regions, graphics, and background. In

this paper, we divide these different parts of the page into high frequency or low fre-

quency areas according to their spatial frequency content. We refer to high frequency

areas as detail, and low frequency areas to smooth. As indicated in Fig. 2.1(a), photos

and pictures belong to the detail area since the color changes frequently. On the other

hand, gradient regions and the background are part of the smooth area because of

the slower color change. We call pictures or photos raster, and gradient or graphics

regions vector in this study.

To reproduce this page content with a laser electrophotographic (EP) printer,

it is common practice to choose one of the various halftoning techniques and to

apply it to all areas of the page regardless of the image characteristics. With such

miscellaneous image objects on a single page, one single halftoning approach may

not produce the best print quality with a laser EP printer. This is because laser

EP printers are innately unstable due to the fluctuations in the angular velocity of

the photoconductor (OPC) drums, and irregular development and transfer processes.

Therefore, the halftone patterns may be susceptible to print artifacts such as fine

pitch banding, streaks, and mottle. [16–18] In particular, print artifacts are more

visible in the smooth areas of the printed document if we apply a high frequency

screen to them. On the other hand, in detail areas the detail information will mask
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the appearance of halftone artifacts that can occur with a high frequency screen; and

the high frequency screen will better reproduce the detail information.

To overcome this issue, several different halftoning approaches have been suggested

in the literature. [19–22] Basically, different halftone screens are used on different parts

of the page. Park [23] et al refer to this approach as object-oriented halftoning. While

previous works [19–22] demonstrated that the object-oriented halftoning can improve

the overall print quality, these methods may produce boundary artifacts due to the

mingling of different halftone textures. Park et al proposed a seamless halftoning

algorithm to remove such boundary artifacts. [23]

Based on Park et al [23], in this study we apply a high lpi (lines-per-inch) screen

to detail objects, and a low lpi screen to smooth objects. Figure 2.1 shows an example

illustrating a typical page content and its corresponding object map. In Table 2.1,

we also summarize the different object types, their color codes in the object map

images, and the halftone screen corresponding to each. We apply a high lpi screen to

the raster and background and text regions. On the other hand, we apply a low lpi

screen to the vector region. For the purpose of applying different halftone screens to

different regions of the page, we need an object map, an initial version of which can

be extracted from the page description language (PDL) used to represent the page.

Example languages include PCL, Postscript, and PDF.

The PDL communicates the description of each page generated by a composition

system to a rendering system. The PDL specifies how each object on the page should

appear when rendered on the final output medium such as a display or paper. [24–26]

The PDL describes the appearance of the page composed of different objects such

as texts, graphics, and images in terms of abstract graphical elements instead of de-

vice pixels. [26] These abstract graphical elements are converted by the raster image

processor (RIP) into a display list, a series of graphics commands. The commands

are then rasterized into an array of pixels that represent the output page image.

The rasterization also extracts the object type information of each object, and this

information forms the initial object map. The output image and the object type in-
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formation are fed to the imaging pipeline of an output device, such as a display driver,

printer driver, or embedded printer formatter or controller for further processing.

However, the information of object type obtained from the PDL may be incorrect

due to the fact that some objects are originally defined as pictures or photos in

the PDL by the application that generated the document, even though they contain

no frequent color variation. Such areas may be interpreted as raster by the RIP.

Figure 2.2 shows an example illustrate the misclassification in the RIPping process.

In Fig. 2.2(a), the black box indicates a smooth region in a page document, and the

corresponding region in the initial object map is classified as raster, whereas it should

be vector. If we apply a high lpi halftone screen to this region, it is more susceptible

to print artifacts. To reduce the appearance of these artifacts, we want to modify

these regions to vector to apply a low lpi halftone screen, and thereby improve the

overall print quality.

To correct the misclassification in the object map, a reclassification step is needed.

Different document image analysis and segmentation algorithms have been suggested

in the literature. Shafait et al [29] reported several page segmentation algorithms

and presented an approach to evaluate their performance. These algorithms segment

a page into blocks, and classify these blocks with predefined labels. [30] Instead of

segmenting the page into blocks, Shadkami and Bonnier [31] introduced a watershed-

based approach to segment a document into regions and classify them with a size

filter into text, background, and image. On the other hand, Moll et al [32] classified

each pixel as a predefined class using a k-nearest neighbors based classifier. Rather

than classifying blocks or pixels in the given image, Cheng and Bouman [33] pro-

posed a multiscale Bayesian segmentation and used a trainable model for different

segmentation applications. The aforementioned algorithms proposed solutions to seg-

ment the page into different objects and classified them according to certain rules. In

addition, there are several works aimed to extract photos, pictures and detail areas

directly from the given page document. Won [34] adapted the block segmentation

approach based on a maximum a posteriori (MAP) framework and pixel-based refine-
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ment around the block boundary to extract images in a document. Chiu et al [36]

applied an optical character recognition (OCR) system to mask text regions and the

normalized cut algorithm [38] to cluster non-text pixels into pictures. More recently,

Erkilinc et al [35] proposed an algorithm to classify a scanned document into text,

photo and strong lines by five different processes. First, they applied several image

preprocessing techniques to the scanned images. The two to fourth processes are

that text regions are extracted by applying wavelet transform and run-length coding,

photo regions are segmented by applying Markov random field based block-wise seg-

mentation [34], and strong lines regions are detected by performing edge detection

algorithms and Hough transform. Finally, K-means algorithm is used to combine the

extraction of the text, photo and strong line maps to generate a page layout.

Unlike the previous works, their reclassification and segmentation approaches are

based on the given input image. However, we have the initial object map extracted

from the RIP in this study even though there may be misclassifications in some areas.

Based on experimental observation, these misclassifications mostly appear in raster

regions. Smooth areas are classified as raster rather than vector. Rather than using

relatively complex approaches such as those described in the references cited above

to fully segment the page image from scratch, and then classify each region with

predefined labels, we only focus on the raster regions that are defined in the object

map and correct them with simpler approaches.

Chen et al [37] proposed an algorithm that combines three features extracted from

the input image and the segmentation algorithm to generate a map that indicates the

photos and images in the input image. In the segmentation part, Chen et al applied

the connected component analysis (CCA) twice, one finds the regions that should be

classified as raster based on a criterion and another one modifies the misclassification

around the text characters. The target of this algorithm is to be implemented in

the imaging pipeline of the laserjet printer. Applying two CCA is not feasible in the

hardware implementation. A more efficient algorithm should be explored.
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In this chapter, we propose a more efficient segmentation-based object map cor-

rection algorithm (SBOMCA) to modify the initial object map generated by the

RIP. The algorithm focuses on correcting the misclassification in raster areas since

some raster areas should be vector. We combine feature extraction, segmentation

and mathematical morphology algorithms to generate a map that indicates the true

raster areas in the input image. Then, the corrected object map can mark each ob-

ject in the continuous-tone raster image with the correct object type. In addition,

we introduce a new imaging pipeline, which incorporates the SBOMCA and the idea

of object-oriented halftoning. With this new imaging pipeline, we can achieve our

ultimate goal – the improvement of overall print quality.

The rest of the chapter is organized as follows. In the next section, we briefly

review the new imaging pipeline and seamless halftoning algorithm. Next, we present

a detailed description of the segmentation-based object map correction algorithm

(SBOMCA) in the Section 2.3. Then, experimental results are provided. Finally, we

conclude in the last section.

(a) (b)

Fig. 2.1. Illustration of the object type definition (a) Example page
content classification: smooth and detail regions. (b) The correspond-
ing object map showing the complete page content classification color-
coded according to Table 2.1.
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Table 2.1
Color code for the object map

Red Green Blue

Object Type Raster Vector and Background Text

Halftone Screen High Low High

(a) (b)

Fig. 2.2. Illustration of the misclassification in the object map (a)
A typical page document. (b) The corresponding initial object map
with misclassification.

2.2 Preliminaries

2.2.1 The New Imaging Pipeline

Figure 2.3 shows the new imaging pipeline for laser EP printers. The RIP inter-

prets a description of the page expressed in the form of a PDL to create a display

list, which is a series of commands that define a rasterized image. This image is
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then rendered by executing the display list. The output of this interpretation is a

continuous-tone RGB color space raster image. In addition, the RIP extracts infor-

mation that identifies the object type associated with each object in the rasterized

image. We call it the initial object map. It describes each object on the page as raster,

vector, text, or background. However, the object type information may be incorrect.

The object map correction algorithm is proposed to modify the initial object map.

Afterward, the continuous-tone RGB color space image is transformed by the color

channel conversion block into a continuous-tone CMYK color space image. Then,

it is halftoned by using the concept of object-oriented halftoning that is based on

the corrected object map, and halftone blending [23]. Finally, the halftoned CMYK

image is sent to the marking engine to generate a hardcopy document. [27,39,40]

The conventional imaging pipeline is more susceptible to print artifacts since the

rendered image is halftoned with only one halftone method on the entire page re-

gardless of its image characteristics. To address this issue, the new imaging pipeline

applies low frequency screens to smooth areas to reduce the appearance of print ar-

tifacts; and it applies high frequency screens to detail areas to preserve the detail

rendition. Consequently, the new imaging pipeline can improve the overall print

quality.

Document
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*.ppt, etc)
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Fig. 2.3. The new imaging pipeline for laser electrophotographic (EP) printers.

2.2.2 Seamless Halftoning

Object-oriented halftoning applies a low lpi frequency screen to smooth areas and

high lpi frequency screen to detail areas. Although this process improves the overall
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quality, it introduces artifacts along the boundary between objects halftoned with two

different frequency screens due to the mingling of different halftone textures. [23].

Figure. 2.4 illustrates these boundary artifacts. To reduce these artifacts, Park et

al [23] proposed a seamless halftoning approach.

Seamless halftoning creates a transition region along the boundary between objects

halftoned with different screens. This transition region has different halftone textures

that are generated by blending the two halftone textures from the detail and smooth

screens. The transition region starts at the edge of the region that will be halftoned

exclusively with the smooth screen and ends at the edge of the region that will be

halftoned exclusively with the detail screen. The concept of the transition region is

shown in Fig. 2.5. As we move from the start of the transition region to the end

of the transition region, the strength of the smooth screen decreases. Conversely,

the strength of the detail screen increases, as the strength of the smooth screen

diminishes. The strength ratio of the two screens is determined by the parameter d,

which is defined as the distance between the starting point of the transition region

and the current pixel (x, y). At the center of the transition region, the ratio is unity.

At the end of the transition region, where d = dmax, the strength of smooth screen is

effectively zero.

Based on the distance parameter d, Park et al [23] describe the blending process

by the following equation

g(x, y) = max{h(S)(x, y), h(D)(x, y)} , (2.1)

where g(x, y) is the pixel value after blending process, h(S)(x, y) is the smooth halftone

texture and h(D)(x, y) is the detail halftone texture. To design these halftone screens,

Park et al [23], and Lee and Allebach [28] give detailed descriptions for the design of

periodic, clustered-dot halftone screens for application to laser EP printers with the

mechanism of pulse width modulation (PWM) that allows each pixel of the halftone

image to be defined as a multi-bit quantity that specifies pulse-width and possibly a

justification mode.
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Fig. 2.4. Boundary artifact caused by object-oriented halftoning. [23]
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Fig. 2.5. Transition region for blending halftone texture. [23]
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2.3 Segmentation–Based Object Map Correction Algorithm

The segmentation-based object map correction algorithm (SBOMCA) uses four

different features that form three maps, the connected components analysis algorithm

and morphological erosion to modify the initial object map. The block diagram is

shown in Fig. 2.6. There are four steps in the SBOMCA. First, a raster decision

map (RDM) is computed based on three maps that are formed by extracting four

different features that extracted from the continuous-tone RGB color space image

and initial object map. These four features are second order derivative, saliency, neu-

tralness of the pixel in the continuous-tone RGB image and text. The RDM reflects

potentially the regions of the truly raster. Second, we apply connected component

analysis (CCA) to label the thresholded edge map into different connected compo-

nents. Afterwards, some connected components are merged by comparing the size

of each connected component with a fixed threshold. However, there may still be

some misclassification around the text characters after this process. Third, we re-

move these misclassifications by morphological erosion where the structure element

is a 5 × 5 square window. At this point, we have a reference map that marks the

potential raster regions of the continuous-tone RGB color space image. Fourth, we

use this map to correct the initial object map. The corrected object map is the final

output of our algorithm.

Continuous-tone

Image (RGB)

Computation 

of 

Raster Decision Map

Extraction and

Reclassification of 

Misclassified 

Non-raster Regions

Region Reclassification

around

Text Characters

Generation of 

Final Corrected 

Object Map

Initial

Object Map

Corrected

Object Map

Fig. 2.6. Block diagram of segmentation-based object map correction
algorithm (SBOMCA).
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2.3.1 Computation of Raster Decision Map

In this section, three different maps, visual importance map, neutralness map

and text map are discussed. The visual importance map is formed by using the two

features, second order derivative and saliency. Then, neutralness map is generated

by calculating the neutralness of the pixel in the continuous-tone RGB image. Fi-

nally, the text map is obtained by extracting the text information form the initial

object map. The detail discussions for each map are given in the following. Then, a

raster decision map (RDM) is defined based on these three maps. Fig. 2.9 illustrates

the result obtained from these features for an example continuous-tone RGB image

f [m,n; i], i = R,G,B (Fig. 2.9a) and initial object map oinitial[m,n] (Fig. 2.9b). The

color code for the object map is given in Table 2.1.

Visual Importance Map

In this section, we discuss the visual importance map that is formed by the second

order derivative and saliency. We then show how we calculate second order derivative

and saliency in the following.

In the continuous-tone RGB page image, smooth areas tend to have lower color

variation, and detail areas have higher color variation. The local activity in the image

provides a means to quantify this difference. The local activity in an image can be

estimated by edge detection algorithms. In this study, a number of edge operators

were considered such as the Sobel operator [15], Canny edge detector [42], Laplacian of

Gaussian [43], and the first/second order derivative. Since the Sobel operator, Canny

edge detector and Laplacian of Gaussian all require relatively greater computational

effort, we use the second order derivative as the edge detection method to extract the

edge information in this step.

We compute the second order derivative of the continuous-tone image in each

of the three channels, respectively. Moreover, to further increase the computational

efficiency, we only compute the second derivative at pixels that are classified as raster
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in the initial object map. In the following mathematical expression, we denote the

initial object map as oinitial[m,n]. Instead of only computing the horizontal or vertical

second order derivative, the second order derivative of the continuous-tone RGB color

space image in each of three channels is defined as the maximum of the absolute

horizontal and absolute vertical second order derivatives. The horizontal second order

derivative can written as

f ′′h [m,n; i] = f [m,n+ 1; i]− 2f [m,n; i] + f [m,n− 1; i] , (2.2)

where f [m,n; i] is the pixel value of the ith channel of the continuous-tone RGB color

space image and f ′′h [m,n; i] is the horizontal second order derivative of the ith channel.

On the other hand, the vertical second order derivative can represented as

f ′′v [m,n; i] = f [m+ 1, n; i]− 2f [m,n; i] + f [m− 1, n; i] , (2.3)

where f ′′v [m,n; i] is the vertical second order derivative of the ith channel of the

continuous-tone RGB color space image. Finally, the second order derivative of the

continuous-tone RGB color space image in each of three channel is defined by

f ′′[m,n; i] = max
(
|f ′′h [m,n; i]|, |f ′′v [m,n; i]|

)
. (2.4)

The idea of saliency is a feature to represent objects or regions that are visually

most important in a given document. The way we compute the saliency value map

S[m,n] for a given image follows Achanta et al [44]. This method is computationally

efficient and effective in detecting the salient regions. As defined by Achanta et al [44],

the algorithm contains two steps. First, the given image is converted to an L*a*b*

color space image. Then, the transformed image is blurred with a Gaussian filter.

Finally, the saliency value at each pixel is computed as the squared Euclidean distance

between the L*a*b* value at that pixel in the blurred image, and the average L*a*b*

value of the entire blurred image. In our implementation, we reduce the computational

effort by directly computing the saliency value of each pixel of the L*a*b* color space

image without blurring by a Gaussian filter. In addition, we only compute the average
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L*a*b* value of a 5×5 window centered at the current pixel in the L*a*b* color space

image, instead of computing the average over the entire image. Thus, we have

S[m,n] =

(
L[m,n]−

k=2∑
k=−2

l=2∑
l=−2

L[m+ k, n+ l]

)2

+

(
a[m,n]−

k=2∑
k=−2

l=2∑
l=−2

a[m+ k, n+ l]

)2

+

(
b[m,n]−

k=2∑
k=−2

l=2∑
l=−2

b[m+ k, n+ l]

)2

. (2.5)

An alternative for L*a*b* color space is to compute NIQ [45] color space to reduce

the computation effort of transforming RGB to L*a*b*. The transformation can be

expressed as 
N

I

Q

 =


1/3 1/3 1/3

1/2 −1/2 0

1/4 1/4 −1/2



R

G

B

 (2.6)

However, the range of the NIQ is different from the Lab. The range of L, a and

b are 0 ≤ L ≤ 100, −128 ≤ a ≤ 128 and −128 ≤ b ≤ 128. On the other hand,

the range of N, I and Q are 0 ≤ N ≤ 255, −128 ≤ I ≤ 128 and −128 ≤ Q ≤ 128.

Therefore, we rescale the value of N from 0 to 100 and rewrite Eq. 2.6 as follow
N

I

Q

 =


100/255 0 0

0 1 0

0 0 1




1/3 1/3 1/3

1/2 −1/2 0

1/4 1/4 −1/2



R

G

B

 (2.7)

Therefore, we can use the values of NIQ to approximate the values of Lab, and

rewrite the Eq. 2.5 by

S[m,n] =

(
N [m,n]−

k=2∑
k=−2

l=2∑
l=−2

N [m+ k, n+ l]

)2

+

(
I[m,n]−

k=2∑
k=−2

l=2∑
l=−2

I[m+ k, n+ l]

)2

+

(
Q[m,n]−

k=2∑
k=−2

l=2∑
l=−2

Q[m+ k, n+ l]

)2

. (2.8)
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Based on Eq. 2.4 and Eq. 2.8, we generate the visual importance v[m,n] map as

follow

v[m,n] = I
(
(k,l)∈[−2,2]×[−2,2]

i=R,G,B

max f ′′[m+ k, n+ l; i] > Tactivity
)
∩

I
(
S[m,n] > Tsaliency

)
, (2.9)

where I(·) is the indicator function. The fixed thresholds Tactivity and Tsaliency are

chosen empirically to yield the best image quality. Here Tactivity is chosen to be 4,

and Tsaliency is chosen to be 5.

Neutralness Map

In the new imaging pipeline as shown in Fig. 2.3, the color channel conversion

block transforms the RGB color space image into CMYK color space image. To

better reproduce the print quality, different regions in the continuous-tone RGB ras-

terized page image are applied with different color maps for transforming RGB color

space into CMYK color space. We summarize the color maps for different region

in Table 2.2. The reason for rendering raster areas with process neutral is because

K-only process may have contour or gloss changes in the transitions from gray black

to color regions. Process grays are smooth and blend well with surrounding colors,

so transitions in gradients from highlights to shadows is smooth with uniform gloss.

On the other hand, text and graphic regions should apply K-only process because

process neutral may introduce color misregistration and halo artifacts [40,41]. There-

fore, K-only process keeps text lines sharp and reduces the impact of color plane

misregistration.

However, different color appearance is perceived when we apply different color

maps to different regions, especially two adjacent regions, with the same color. In

Fig. 2.7, we show an example to illustrate the color difference between two color

maps, process neutral and K-only in rendering the printed page. In Fig. 2.7(a), it is

rendered by using the process neutral color map. On the other hand, Fig. 2.7(b) is
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Table 2.2
Color map for different object types

Object Type Raster Text, Vector and Background

Color Table Process-Neutral K-only

rendered by K-only process. We can see a huge color difference in the upper region of

the page, which is a region that should be classified as raster. If we render that raster

region with two different color maps because of our object map correction algorithm,

color difference can be detect easily, and it causes the artifact. To avoid this issue,

we need a mechanism to prevent.

The color difference mainly appears around the neutral axis (with equal RGB

value). To avoid this issue, the object type of a particular pixel in the initial object

map should not be changed when R, G and B values are similar. To determine their

similarity, we apply the following decision rule. If the maximum absolute difference

between each of two color values is smaller than a certain threshold TNeutral, the pixel

value of the neutralness map η[m,n] is set to be 1. If the maximum absolute difference

between each of two color values is greater than a certain threshold TNeutral, the pixel

value of the neutralness map η[m,n] is set to be 0 Then, we obtained the neutralness

map η[m,n] as follow

η[m,n] = I
(

max
{
|f [m,n;R]− f [m,n;G]|, |f [m,n;G]− f [m,n;B]|,

|f [m,n;R]− f [m,n;B]|
}
< TNeutral

)
, (2.10)

where TNeutral is chosen empirically to be 10.

Text Map

Initial object map is one of the input to our object map correction algorithm.

As described in the PRELIMINARIES section, the initial object map is formed by
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(a) (b)

Fig. 2.7. Illustration of the color difference between applying different
color maps to render the printed page (a) The image is rendered by
the process neutral color map. (b) The image is rendered by the
K-only color map.
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Table 2.3
Color code for the raster decision map

Black White

Object Type Non-Raster Potential Raster

extracting object information from the rasterization process. In this map, it includes

the information of the text regions. Thus, we formed the text map as follow

t[m,n] = I
(
oinitial[m,n] = “text”

)
(2.11)

Raster Decision Map

We use the three maps mentioned in the previous section to compute a raster

decision map. The raster decision map is defined as

oRDM [m,n] = v[m,n] ∪ η[m,n] ∪ t[m,n] , (2.12)

where oRDM [m,n] is the raster decision map, v[m,n] is the visual importance map,

η[m,n] is the neutralness map and t[m,n] is the text map. ∪ is the “OR” operation.

If the pixel value at a particular pixel in the raster decision map is 1, we consider

that pixel to be potential raster. If the pixel value at a particular pixel in the raster

decision map is 0, we consider that pixel to be non-raster. The color code for the

raster decision map is provided by Table 2.3. Figure 2.9(c) shows the raster decision

map obtained for the continuous-tone RGB image in Fig. 2.9(a).

2.3.2 Extraction and Reclassification of Misclassfied Non-raster Regions

As the red box indicated in Fig. 2.9(c) and the red pixels in the zoom-in image,

Fig. 2.9(g), these red pixels should be classified as potential raster rather than non-

raster. Segmentation-based method needs to applied to the Fig. 2.9(c) to find these

regions.
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The objective of this step is to modify non-raster regions that should belong to

potential raster regions. To extract these regions, we apply connected component

analysis [15] (CCA) in this step. We use a 4-connected components, so the neighbor-

hood of a point [m,n] is defined as

∂[m,n] =
{

[m− 1, n], [m+ 1, n], [m,n− 1], [m,n+ 1]
}
. (2.13)

At first, a labeled connected component image is initialized. Given a pixel P1, a class

label is assigned to the connected component of P1 that is a path of M pixels P1,

P2, . . . , PM in a binary image such that for 1 ≤ i ≤ M , Pi−1 and Pi are connected

neighbors. The connected neighbors of P are defined as

c(P ) = {Q ∈ ∂P | |xP − xQ| < TCCA} , (2.14)

where P and Q are two points in the binary image, xP and xQ are the pixel value of

P and Q, and TCCA is a fixed threshold. In this paper, we define TCCA is equal to 1

because it is sufficient to differentiate objects in a binary image. The corresponding

pixels of this connected component in the labeled connected component image are

labeled. Then, a new class label is assigned to another connected set by starting at

an unlabeled pixel. After iterating through the whole image, the CCA labels each

pixel with a index associated with its connected component.

To modify non-raster regions that should belong to potential raster regions, we

first apply CCA to the raster decision map oRDM [m,n]. Since our objective is to mod-

ify non-raster regions, we only run the CCA on those pixels are labeled as non-raster

in the raster decision map. The CCA labels each connected component of non-raster

regions with a different index. Meanwhile, we store the size of these connected com-

ponents when we extract them. A simple decision rule is defined to determine the

object type of each connected component. If the size of a particular connected compo-

nent is smaller than a certain threshold T2, we label this connected component to be

potential raster. Otherwise, we do not make any change to this connected component.

If the size of a connected component is larger than the predefined threshold Tmerge,
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this object is highly likely to be the background or a graphic in the input image; and

it should be classified as non-raster. Lastly, we merge connected components that

are smaller than the threshold Tmerge to be potential raster. The threshold Tmerge is

6% of area of the entire image, and is chosen empirically. Figure 2.9(d) shows the

resulting image. We call it the raster decision map1 oRDM1 [m,n].

2.3.3 Region Reclassification around Text Characters

There are two issues with the raster decision map1 oRDM1 [m,n]. As can be seen in

the zoomed images of Fig. 2.9(h) and Fig. 2.9(i), there are misclassifications around

the text character. First, pixels in the closed-bowl of the text character are classified

as potential raster ; however, they should be classified as non-raster. Secondly, the

outside boundary of the text character is enlarged because of the thresholding.

In this study, we only reclassify the outside boundary of the text character with-

out modifying the misclassification in the closed-bowl of the text character. If the

closed-bowl regions are reclassified into non-raster, these regions will be applied low

frequency screen when we halftone the page image. It is easy to see the halftone tex-

ture when background regions are applied high frequency screen. We use two exam-

ples in Fig. 2.8 to illustrate this phenomena. In Fig. 2.8(a), the closed-bowl region is

halftoned with low frequency screen and background is halftoned with high frequency

screen. Figure. 2.8(c) is the zoom-in image of the red box in the Fig. 2.8(a), and

Fig. 2.8(d) is the object map of the Fig. 2.8(c). On the other hand, the Fig. 2.8(b),

the closed-bowl region is halftoned with high frequency screen and background is

halftoned with low frequency screen. Figure. 2.8(e) is the zoom-in image of the red

box in the Fig. 2.8(b), and Fig. 2.8(f) is the object map of the Fig. 2.8(e). In the

first example, the halftone texture in Fig. 2.8(c) is easy to be perceived. Therefore,

we should not reclassify the closed-bowl region to be non-raster, and keep them as

potential raster. In the second example, we show the other situation that the adjacent
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regions are applied with different halftone screen. The print quality is good enough

under such setting.

Since the goal of this step is to modify pixels classified as potential raster on

the outside boundary of the text characters, we apply the morphological operator,

erosion [46], to reclassify those pixels. Erosion operator is the morphological transfor-

mation that combines the binary image and the structuring element using the vector

subtraction [46]. In the following, the binary image is denoted as A and structuring

element is denoted as B. With set A and B in Z2, the erosion [46] of A by B is defined

as

A	B = {z ∈ Z2|z + b ∈ A, ∀b ∈ B} . (2.15)

The binary image A is the merged thresholded edge map oRDM1 [m,n] and the struc-

turing element B is a 5× 5 square structuring element. The resulting image is shown

in Fig. 2.9(e) and Fig. 2.9(j). This is used as the reference to correct the initial object

map oinitial[m,n]. We name it the raster decision map2 oRDM2 [m,n].

2.3.4 Generation of Final Corrected Object Map

The last step of the object map correction algorithm is to modify the initial object

map, which is generated by the raster image processor (RIP). Based on the concept

of object-oriented halftoning, we want to apply halftone screens with different fre-

quencies to different parts of the document page to improve the overall print quality.

A correct object map is needed to achieve this goal. However, there may be misclas-

sification in raster regions in the initial object map.

The issue with the initial object map is that smooth areas in the input document

page are classified as raster when they should be classified as vector. The objective is

to reclassify those pixels that truly belong to vector, but which are classified as raster

in the initial object map. For each pixel in the image, we first check whether it is

raster or not in the initial object map oinitial[m,n]. If yes, we check the corresponding

pixel in the raster decision map2 oRDM2 [m,n] that has been generated as discussed
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(a) (b)

(c) (d) (e) (f)

Fig. 2.8. Illustration of the print quality of different halftone screen
that affects the visual appearance in the closed-bowl of the text char-
acter (a) A print page that the closed-bowl regions are halftoned with
high frequency screen and the background regions are halftoned with
low frequency screen. (b) A print page that the closed-bowl regions
are halftoned with low frequency screen and the background regions
are halftoned with high frequency screen. (c) The zoom-in character
in (a). (d) The corresponding object map of (c). (e) The zoom-in
character in (b). (f) The corresponding object map of (e).
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earlier in this section. If the corresponding pixel is potential raster, we do not make

any change. Otherwise, we change the pixel type to be vector. The corrected object

map is shown in Fig. 2.9(f). We denote it as ocorrected[m,n]. With the corrected

object map, we can apply object-oriented halftoning, and improve the overall print

quality.

2.4 Experimental Results

The target printer in this study is the HP Color LaserJet CM4540 MFP printer

at 600 dpi. To print the CMYK halftoned image, which is halftoned by the object-

oriented halftoning with blending algorithm and adaptive halftoning algorithm (AHT) [19],

we use the backdoor printing path. It directly stores the halftoned image in the buffer

which is in the memory of the printer, and it is then transmitted to the formatter. It

sends the video signal to control the laser driver board for reproduction. As we print

the input document, it is scanned with a EPSON Expression 10000XL at 1200dpi.

The new imaging pipeline was applied to a large number of PDF files. Here, we

provide some experimental results to show the benefits of our algorithm. The test

PDF files are obtained from the Purdue University e-Archives and Hewlett-Packard

Company. The files are interpreted by the raster image processor (RIP) producing

two images: the initial object map and the continuous-tone RGB color space image.

These two images are the inputs to the segmentation-based object map correction

algorithm (SBOMCA). We have shown the step-by-step results in Fig. 2.9, as we

discussed the segmentation-based object map algorithm. Currently, we have tested

the SBOMCA on 74 different PDF files. Here we present three different samples

to illustrate the benefits of our algorithm. The examples are shown in Fig. 2.10.

Figures 2.10(a), 2.10(d), and 2.10(g) are continuous-tone RGB color space images.

Figures 2.10(b), 2.10(e), and 2.10(h) are initial object maps generated by the RIP.

Figures 2.10(c), 2.10(f), and 2.10(i) are the corrected object maps. The corrected
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i) (j)

Fig. 2.9. Illustration of the segmentation-based object map correction
algorithm (a) Continuous-tone RGB color space image. (b) Initial
object map. (c) Raster Decision map. (d) Raster Decision map1. (e)
Raster Decision map2. (f) Corrected object map. (g) Red pixels in the
zoom-in image of the raster Decision map indicate that the regions
should be classified as potential-raster. (h)The zoomed-in image of
the text character in the RGB color space image. (i) The zoomed-
in image of the text character in the raster Decision map1. (j) The
zoom-in image of reclassifying around the text characters.
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object maps show that smooth areas in the initial object maps have been reclassified

effectively by our algorithm.

Lastly, we compare the print quality between using the new imaging pipeline

and conventional imaging pipeline. The new imaging pipeline applies the object-

oriented halftoning based on the corrected object map on the given page. We use

the screen design based on Park et al. [23]. The detail screen set is using cyan 190

lpi, magenta 190 lpi, yellow 200 lpi, and black 212 lpi. The corresponding vectors

are cyan:
−→
d1 = (3,−1),

−→
d2 = (1, 3), magenta:

−→
d1 = (1,−3),

−→
d2 = (3, 1), yellow:

−→
d1 = (3, 0),

−→
d2 = (0, 3), and black:

−→
d1 = (2, 2),

−→
d2 = (−2, 2). The smooth screen set

is using cyan 135 lpi, magenta 135 lpi, yellow 212 lpi, and black 150 lpi whose vectors

are cyan:
−→
d1 = (4, 2),

−→
d2 = (−2, 4), magenta:

−→
d1 = (4,−2),

−→
d2 = (2, 4), yellow:

−→
d1 = (2, 2),

−→
d2 = (−2, 2), and black:

−→
d1 = (4, 0),

−→
d2 = (0, 4). On the other hand, the

conventional imaging pipeline applies high frequency screens on the whole given page.

The high frequency screen set is same as the new imaging pipeline. The following

examples show the benefit of using the new imaging pipeline. In Fig. 2.11, there are

mottles in two images, which prints with the conventional imaging pipeline, on left

hand side. By using the new imaging pipeline, mottles are reduced due to applying

low lpi screen on the smooth area. In Fig. 2.12(a), there are streaks indicated in black

ellipses. These streaks are reduced in Fig. 2.12(b).

2.5 Conclusion

In this paper, we proposed a systematic method to modify the initial object map

for object-oriented halftoning. We first described the miscellaneous image objects

that have different characteristics in a typical page content, and the idea of object-

oriented halftoning. We then discussed the new imaging pipeline for laser EP printers

and briefly reviewed the seamless halftoning, which reduces the undesired jagged pat-

terns along the boundary of two different halftone screens. To apply object-oriented

halftoning, we retrieve the object type information from the page description language
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 2.10. Examples comparing the initial object map and corrected
object map (a) Continuous-tone RGB color space image. (b) Initial
object map. (c) Corrected object map. (d) Continuous-tone RGB
color space image. (e) Initial object map. (f) Corrected object map.
(g) Continuous-tone RGB color space image. (h) Initial object map.
(i) Corrected object map.



55

(a) (b)

(c) (d)

Fig. 2.11. Image quality between the conventional and new imaging
pipeline (a) High frequency screen only: mottles are observed. (b)
Object-oriented halftoning: mottles reduction. (c) High frequency
screen only: mottles are observed. (d) Object-oriented halftoning:
mottles reduction.
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(a) (b)

Fig. 2.12. Print samples with streaks (a) High frequency screen only:
streaks are observed. (b) Object-oriented halftoning: streaks reduc-
tion.
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(PDL) to create an initial object map. However, the object type information in the

initial object map may be incorrect. Specifically, smooth areas that should be vector

are classified as raster. Therefore, we introduce a more efficient segmentation-based

object map correction algorithm (SBOMCA) to correct the initial object map than in

Chen [37]. The algorithm combines four features extracted from the continuous-tone

RGB color space image and the initial object map, segmentation algorithm that uses

connected component analysis and morphological erosion. Finally, we test the algo-

rithm on a variety of contents in PDF files. Preliminary experimental results confirm

the ability of our algorithm to yield a properly corrected object map.
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3. UNDERSTANDING IMAGE GRAININESS

3.1 Introduction

With the emergence of the high-end digital printing technologies such as HP Indigo

Technology that offers a different printing solution from laser electrophotographic

(EP) printers, HP Indigo Technology aims to achieve the print quality as commercial

offset presses. The imaging system of HP Indigo Technology are shown in Fig. 3.1 [47].

Instead of using toner in the commercial Laser EP printers, HP Indigo Technology

uses the liquid electrophotography based on ElectroInk R© [47]. The imaging processes

are the following. The photo imaging plate (PIP) is electronically charged. The laser

beam unit emits laser light that exposes on the PIP, and a latent image is created [47].

Various colored ink development stations have the ink developed individually onto

the latent image. Afterward, the electronic field is used to transfer the ink to the

hot blanket from the PIP. The liquid carrier in ElectroInk R© is evaporated by the

heat that creates a thin ink film [47]. Finally, the thin ink film on the hot blanket is

transferred to the substrate by pressure and tackiness [47]. These steps complete the

imaging process.

In addition to the different printing process from the laser EP printers, a different

type of screen, which is one of various halftoning techniques used in HP Indigo Techn-

logy. Halftoning is the process of rendering continuous-tone images with the limited

number of tone levels. Mostly, the number of toner is two, which indicates a dot on

the paper is either printed or not printed. Halftoning utilizes the low-pass nature of

the human visual system, which can blur the halftone pattern, so that the halftone

image is perceived as a continuous-tone image when we view from a distance.

The halftoning algorithms can be categorized into three different approaches:

point operation (screening) [28,48], neighborhood processes (error diffusion) [49] and
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iterative processes (for example, DBS [50]). Screening is one of the most widely used

in laser EP printers. Because of the innately unstable printing processes, screening is

popular because it, which generates periodic, clustered-dot halftone textures provides

a better rendering on laser EP printers. Moreover, screening provides a better control

of moire by the superposition of different colorant planes [53]. In commercial offset

printing, the imaging plates are all written using a high-resolution, laser-marking sys-

tem. The screens for different colorants C, M, Y and K can all be obtained by a single

screen that is rotated to the ideal angles of 0, 30, 45, and 60 degrees [53]. The screen

frequency of the screen, which the commercial offset printer uses can be specified in

a certain range.

However, the digital imaging system can not provide a high-resolution address-

ability that is same as commercial offset presses. This makes the screen angles and

frequencies are limited. To reproduce dot cluster with screen under this circumstance

when expressed in units of printer-addressable pixels, the elements of the periodic-

ity matrix must be integer-valued [53]. This type of screen is called regular screens.

They tile the plane into identical microcells that align with the printer-addressable

lattice [53]. However, the regular screens have limited ability to approximate the

screens sets used in commercial offset presses. To better approximate the screen sets

of the commercial offset presses, irregular screens are used, which are used in HP

Indigo Technology. In contrast to the elements of periodicity matrix of the regular

screen have integer numbers, the elements of irregular screen’s periodicity matrix are

rational numbers when expressed in units of printer-addressable pixels. Recently,

Tang et al [53] provides a procedure to design the irregular screen.

With such a high-end digital imaging system, graininess is still an important issue

that HP Indigo Technology can not have the same smoothness as the commercial

offset presses. Graininess describes the subjective perception of noise in a given

image [51]. ISO 13660 standard defines graininess as the non-periodic high frequency

noise, in contrast to mottle, which is defined as non-periodic low frequency noise

[52]. In addition, the standard defines that graininess has aperiodic fluctuations of
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density at a spatial frequency greater than 10 cycle-per-inch (cpi). Different graininess

metrics have been proposed [51, 54, 55] to describe graininess of halftone images.

However, the analysis of how halftone textures introduce image graininess has not to

our knowledge been discussed in the literature. Therefore, we provide two different

approaches analyzing the halftone textures in the frequency and the spatial domain

to understand image graininess. In addition to analyze halftone textures, we conduct

experiments to examine HP Indigo Technology by printing the same halftone pattern

on different substrates, glossy and polyester media to see how the combinations of

halftone textures and substrates affect the graininess measurement.

In this chapter, we report on a study to understand the relationship between im-

age graininess and halftone technology and marking technology. We provide three

different approaches to understand image graininess. The rest of this paper is or-

ganized as follows. In the next section, we give a brief introduction to screening

and printer model. Then, we perform a Fourier-based analysis of regular and ir-

regular periodic, clustered-dot halftone textures in the Section 3.3. Subsequently, a

spatial-statistics approach is described in Section 3.4. In Section 3.5, experiments on

graininess measurement on different substrates are illustrated. Finally, we conclude

in the Section 3.6.

3.2 Preliminaries

In this section, we briefly introduce printer model and screening.

3.2.1 Pinter Model

Let (x) = (x, y)T and m = [m,n]T indicate the continuous and discrete coordi-

nates, respectively, where the units of (x) and [m] are inches and printer-addressable

pixels, respectively. We use f [m] to denote the continuous-tone image and g[m] to

represent the halftoned version of f [m]. The image f [m] takes the discrete values

from {0, 1
L−1 ,

2
L−1 , . . . , 1}, where L is the total number of gray levels. On the other
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Fig. 3.1. Printing engine of a HP Indigo digital press. [47]
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hand, g[m] takes the values from either 0 (white) or 1(black). We specify a ideal

printer dot profile to be a square dot, and it is defined as

pdot(x) = rect (x/R)

= rect(x/R)rect(y/R) . (3.1)

The rendered image f(x) of f [m] can be expressed as

f(x) =
∑
m∈Z2

f [m] pdot(x−mR) , (3.2)

where the parameterR is the horizontal and vertical distance between printer-addressable

pixels in units of inches. Similarly, we have

g(x) =
∑
m∈Z2

g[m] pdot(x−mR) . (3.3)

3.2.2 Screening

Screening is a point operation. The screening process generates the halftone image

by thresholding the discrete-space continuous-tone image g[m] with a threshold array

t[m] pixel by pixel. The discrete-space halftone image is defined as follow

g[m] =

1, if f [m] ≥ t[m]

0, else
, (3.4)

where t[m] is the threshold array and its periodicity is based on the periodicity matrix

N, i.e., t[m + Nq] = t[m],∀q ∈ Z2.

3.3 Fourier-based Analysis of Regular and Irregular Periodic, Clustered-

dot Halftone Textures

In this section, we develop a Fourier-based approach to analyze the regular and

irregular periodic, clustered-dot halftone textures, and define a metric to measure

the nonuniformity of the given halftone pattern. First, we introduce two terminol-

ogy, analog rendering and digital rendering. Analog rendering is a continuous-space
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halftone image without sampling by the printer lattice. On the other hand, the digital

rendering is obtained by sampling the analog rendering. Then, each sampled impulse

is convolved by the printer dot profile, which is a 2-D rect function in our analysis as

we discussed in Section 3.2. The tile vectors of the regular halftone textures is follow:

n1 = [3; 3] and n2 = [−3; 3]. On the other hand, The tile vectors of the irregular

halftone textures is follow: n1 = [2; 11/3] and n2 = [−11/3; 2]. The absorptance

is 0.25 for both regular and irregular halftone images. Figure. 3.2 is an example to

illustrate the difference of the analog rendering and digital rendering between regu-

lar and irregular halftone textures in spatial domain. Figure 3.2 (a) and (c) are the

analog rendering of the regular and irregular halftone textures. We can see that the

images are basically the same with slightly differences in angle and dot area because

the tile vectors of the regular and irregular screen are different. Figure 3.2 (b) and (d)

are the digital rendering of the regular and irregular halftone textures. We can see

there is a huge difference between the two digital renderings due to the non-integer

elements in the periodicity matrix of the irregular screen when expressed in units of

printer-addressable pixels. In the following section, we analyze regular and irregular

halftone textures in frequency domain.

3.3.1 Fourier Spectrum of a Digital-Rendered Continuous-space Halftone

Image with Circular Dot Pattern

In this section, we analyze a continuous-space halftone image with the circular dot

pattern, and derive the corresponding Fourier expression after a image being sampled

by the printer lattice and rendered by a printer dot profile function. In the following,

we use boldface lower case to represent vectors, and boldface upper case to denote

matrices. In the following derivation, we use (x) = (x, y)T to indicate continuous

coordinates , where the units of (x) is inches.
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(a) (b)

(c) (d)

Fig. 3.2. Comparison of the difference the analog rendering and digital
rendering between regular and irregular halftone textures in spatial
domain. (a) The analog rendering of regular screen in spatial domain.
(b) The digital rendering of regular screen in frequency domain. (c)
The analog rendering of irregular screen in spatial domain. (d) The
digital rendering of irregular screen in frequency domain.
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We denote a continuous-space halftone image with circular dot pattern by g(x),

and it is defined as

g(x) = circ(Mx) ∗ p(x) , (3.5)

where circle function circ(x) is defined according to

circ(x) =

1, if
√
x2 + y2 ≤ 1

2

0, else
, (3.6)

and the impulse function p(x) is defined as

p(x) =
∑
k∈Z2

δ(x−RNk) , (3.7)

where the matrix N is the periodicity matrix and the parameter R is the horizontal

and vertical distance between printer-addressable pixels in units of inches. The matrix

M is a diagonal matrix, and it is defined as

M =

1
d

0

0 1
d

 , (3.8)

where the parameter d is the diameter of the circle. Therefore, we can rewrite the

continuous-space halftone image with circular dot pattern g(x) as

g(x) = circ(Mx) ∗ p(x)

= circ(Mx) ∗
∑
k∈Z2

δ(x−RNk)

=
∑
k∈Z2

circ
(
M(x−RNk)

)
. (3.9)

The image g(x) is analog rendering, which we describe at the beginning of this section.

Then, we compute the Continuous-Space Fourier transform (CSFT) of the continuous-
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space halftone image with circular dot pattern g(x), and CSFT of g(x) is computed

according to

G(u) =

∫ ∞
−∞

g(x)e−j2πu
Tx dx (3.10)

=

∫ ∞
−∞

∑
k∈Z2

circ
(
M(x−RNk)

)
e−j2πu

Tx dx

=
∑
k∈Z2

∫ ∞
−∞

circ
(
M(x−RNk)

)
e−j2πu

Tx dx

=
1

|det(M)|
∑
k∈Z2

jinc(M−Tu)e−j2πu
TRNk

=
1

R2|det(M)det(N)|
jinc(M−Tu)

∑
k∈Z2

δ(u− 1

R
N−Tk) , (3.11)

where the CSFT of a circ function is a jinc function. The jinc function is defined as

jinc(u) =
J1(π
√
u2 + v2)

2
√
u2 + v2

, (3.12)

where J1 is the Bessel function of the first kind with order 1.

Then, we sample the continuous-space halftone image with circular dot pattern

g(x) with the printer lattice, and convolve with the printer dot profile function. The

rendered image of g(x) is

gp(x) = combRR[g(x)] ∗ rect(
x

R
) . (3.13)

The image gp(x) is the digital rendering, which we describe at the beginning of this

section. The CSFT of gp(x) can be computed as follow

Gp(u) = rep 1
R

1
R

[G(u)]sinc(Ru)

= sinc(Ru)
∑
m∈Z2

G(u−Vm)

=
sinc(Ru)

R2|det(M)det(N)|
∑
m∈Z2

jinc
(
M−T (u−Vm)

)
×
∑
k∈Z2

δ(u−Vm− 1

R
N−Tk) , (3.14)

where the matrix V is

V =

 1
R

0

0 1
R

 (3.15)
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Now, we have the analytical expression of the CSFT of a analog rendering G(u)

and digital rendering Gp(u). We plot the CSFT of the analog rendering and digital

rendering of the regular and irregular screen in the following. The tile vectors of the

regular screen are n1 = [3; 3] and n2 = [−3; 3]. The screen angle and frequency of

the regular screen are 45 ◦ and 191.4 line-per-inch (lpi), respectively. On the other

hand, The tile vectors of the irregular halftone textures are n1 = [2; 11/3] and n2 =

[−11/3; 2]. The screen angle and frequency of the irregular screen are 61 ◦ and 194.4

lpi, respectively. The absorptance of the continuous-space halftone image is 0.25. To

better show the spectrum, especially the low intensity features, Chang and Allebach

[13] had the spectrum logarithmically compressed according to

iOUT =

(
255/

(
log(K + 1)

))
log

(
K
(
iIN/max(iIN)

)
+ 1

)
, (3.16)

where iOUT is the logarithmically compressed spectrum and iIN is the input spectrum.

Figure 3.3 shows the CSFT of the analog rendering and digital rendering of the

regular and irregular halftone textures. The parameter K in Eq. (3.16) is chosen

empirically to be 100.

3.3.2 Fourier Spectrum of a Perceived Digital-Rendered Continuous-space

Halftone Image with Circular Dot Pattern

In this section, we derive the CSFT of a perceived digital-rendered continuous-

space halftone image with circular dot pattern. Let hHV S(x) be the point spread

function of the human visual system (HVS). A perceived digital-rendered continuous-

space halftone image with circular dot pattern g̃p(x) is defined as

g̃p(x) = gp(x) ∗ hHVS(x) . (3.17)
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(a) (b)

(c) (d)

Fig. 3.3. Comparison of the difference between the analog render-
ing and digital rendering between regular and irregular halftone tex-
tures in frequency domain. (a) The analog rendering of regular screen
in frequency domain. (b) The digital rendering of regular screen in
frequency domain. (c) The analog rendering of irregular screen in
frequency domain. (d) The digital rendering of irregular screen in
frequency domain.
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Then, we compute the CSFT of a perceived digital-rendered continuous-space halftone

image with circular dot pattern g̃p(x) as follow

G̃p(u) = Gp(u)HHVS(u)

=
HHVS(u)sinc(Ru)

R2|det(M)det(N)|
∑
m∈Z2

jinc
(
M−T (u−Vm)

)
×
∑
k∈Z2

δ(u−Vm− 1

R
N−Tk) , (3.18)

where the CSFT of the point spread function hHV S(x) is HHVS(u). In our analysis,

the HVS filter we use is Näsänen model [56]. The viewing distance is 16 (in) at 812

dpi.

3.3.3 A Metric for Measuring the Nonuniformity

In the previous section, we have the analytical expression of the spectrum of a

perceived digital-rendered continuous-space halftone image. We like to have a metric

to measure the nonuniformity of a given halftone pattern. The metric we use to

measure the nonuniformity of a give halftone pattern is square root of the average

power of the signal.

Let a 2-D periodic signal f(x, y) with period Tpx in x direction and Tpy in y

direction can be represented using Fourier series by the following

f(x, y) =
∞∑

k=−∞

∞∑
l=−∞

Fk,le
j2π(kFpxx+lFpyy) , (3.19)

where the Fourier coefficient Fk,l is defined as

Fk,l =
1

Tpx

1

Tpy

∫ Tpy/2

−Tpy/2

∫ Tpx/2

−Tpx/2
f(x, y)e−j2π(kFpxx+lFpyy) dxdy . (3.20)
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The parameter Fpx = 1/Tpx and Fpy = 1/Tpy . The average power of a periodic signal

is the sum of the power spectrum density, and the power is defined according to

P =
1

Tpx

1

Tpy

∫ Tpy/2

−Tpy/2

∫ Tpx/2

−Tpx/2
|f(x, y)|2dxdy

=
1

Tpx

1

Tpy

∫ Tpy/2

−Tpy/2

∫ Tpx/2

−Tpx/2
f(x, y)

∞∑
k=−∞

∞∑
l=−∞

F ∗k,le
j2π(kFpxx+lFpyy)dxdy

=
∞∑

k=−∞

∞∑
l=−∞

F ∗k,l

(
1

Tpx

1

Tpy

∫ Tpy/2

−Tpy/2

∫ Tpx/2

−Tpx/2
f(x, y)ej2π(kFpxx+lFpyy)dxdy

)

=
∞∑

k=−∞

∞∑
l=−∞

|Fk,l|2 . (3.21)

According to Eq. (3.21), we can get the average power of a periodic signal by

finding the Fourier coefficients of the 2-D periodic signal. To find the Fourier coeffi-

cients of the 2-D periodic signal from the CSFT, we first write the Fourier transform

of a 2-D periodic signal as

F (u, v) =
∞∑

k=−∞

∞∑
l=−∞

Fk,lδ(u−
k

Tpx
, v − l

Tpy
) . (3.22)

The following is the proof for Eq. (3.22).

F−1{F (u, v)} =

∫ ∞
−∞

∫ ∞
−∞

(
∞∑

k=−∞

∞∑
l=−∞

Fk,lδ(u−
k

Tpx
)δ(v − l

Tpy
)

)
ej2π(ux+vy) dudv

=
∞∑

k=−∞

∞∑
l=−∞

Fk,l

∫ ∞
−∞

∫ ∞
−∞

δ(u− k

Tpx
)δ(v − l

Tpy
)ej2π(ux+vy) dudv

=
∞∑

k=−∞

∞∑
l=−∞

Fk,le
j2π k

Tpx
x
e
j2π l

Tpy
y

=
∞∑

k=−∞

∞∑
l=−∞

Fk,le
j2π(kFpxx+lFpyy)

= f(x, y) . (3.23)

We know that a perceived digital-rendered continuous-space halftone image with

circular dot pattern is a 2-D periodic signal. Therefore, we can find the Fourier coef-

ficient of the perceived digital-rendered continuous-space halftone image according to
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Eq. (3.22). The Fourier coefficient Ck,m of the perceived digital-rendered continuous-

space halftone image is defined as

Ck,m =
HHVS(Vm + 1

R
N−Tk)sinc(m + N−Tk)jinc

(
1
R

M−TN−Tk
)

R2|det(M)det(N)|
. (3.24)

Now, we have the analytical expression of the the Fourier coefficient Ck,m of

a perceived digital-rendered continuous-space halftone image. Average power is a

metric of nonuniformity. Then, we categorize the average power of the perceived

digital-rendered continuous-space halftone image into three contributions.

The first contribution of the nonuniformity is due to the analog rendering, which is

not sampled by the printer lattice. Therefore, the spectrum for the first contribution

is

G̃p

1
(u) =

HHVS(u)sinc(Ru)

R2|det(M)det(N)|
jinc
(
M−T (u)

) ∑
k∈Z2

δ(u− 1

R
N−Tk) , (3.25)

where m in Eq. (3.18) is equal to 0. The Fourier cofficient C1
k,m that satisfies the

condition of first contribution can be rewritten as

C1
k,m =

HHVS( 1
R

N−Tk)sinc(N−Tk)jinc
(
1
R

M−TN−Tk
)

R2|det(M)det(N)|
. (3.26)

The nonuniformity of first contribution is the square root of the sum of the Fourier

coefficient C1
k,m over k, and m = 0 and 1

R
N−Tk 6= 0, and we have

P 1
nonuniformity =

√√√√∑
k6=[0 0]T
k∈Z2

|C1
k,m|2 . (3.27)

The second contribution of the nonuniformity is introduced by the digital render-

ing, which is obtained by sampling the analog rendering, and then convolved with

the printer model. As we know, if we sample the image in spatial domain, we get

replication in frequency domain. The replicated frequency components may or may

not fall on the same frequency locations as the analog rendering. In the second contri-

bution of the nonuniformity, we find those frequency components that fall on the on
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the same frequency locations as the analog rendering. The following is the condition

to find the frequency components for the second contribution of the nonuniformity:

For any m ∈ Z2 and m 6= 0, ∃k ∈ Z2 and l ∈ Z2 ⇒

Vm +
1

R
N−Tk =

1

R
N−T l and Vm +

1

R
N−Tk =

1

R
N−T l 6= 0 . (3.28)

Therefore, the spectrum for the second contribution is the Eq. (3.29), and the spec-

trum is satisfied the condition (3.28).

G̃p

2
(u) = Gp(u)HHVS(u)

=
HHVS(u)sinc(Ru)

R2|det(M)det(N)|
∑
m∈Z2

jinc
(
M−T (u−Vm)

)
×
∑
k∈Z2

δ(u−Vm− 1

R
N−Tk) , (3.29)

The Fourier coefficient C2
k,m that satisfies the condition of second contribution is

C2
k,m =

HHVS(Vm + 1
R

N−Tk)sinc(m + N−Tk)jinc
(
1
R

M−TN−Tk
)

R2|det(M)det(N)|
, (3.30)

where the parameter k and m should satisfy condition (3.28). The nonuniformity of

second contribution is the square root of the sum of the Fourier coefficient C2
k,m, and

we have

P 2
nonuniformity =

√√√√∑
k∈Z2

∑
m6=[0 0]T
m∈Z2

|C2
k,m|2 . (3.31)

The third contribution of the nonuniformity is also introduced by the digital ren-

dering. However, The replicated frequency components fall on the different frequency

locations as the analog rendering. The following is the condition to find the frequency

components for the third contribution of the nonuniformity:

For any m ∈ Z2 and m 6= 0, @k ∈ Z2 and l ∈ Z2 ⇒

Vm +
1

R
N−Tk =

1

R
N−T l . (3.32)
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Therefore, the spectrum for the third contribution is the Eq. (3.33), and the spectrum

is satisfied the condition (3.32).

G̃p

3
(u) = Gp(u)HHVS(u)

=
HHVS(u)sinc(Ru)

R2|det(M)det(N)|
∑
m∈Z2

jinc
(
M−T (u−Vm)

)
×
∑
k∈Z2

δ(u−Vm− 1

R
N−Tk) , (3.33)

The Fourier coefficient C3
k,m that satisfies the condition (3.32) is

C3
k,m =

HHVS(Vm + 1
R

N−Tk)sinc(m + N−Tk)jinc
(
1
R

M−TN−Tk
)

R2|det(M)det(N)|
, (3.34)

where the parameter k and m should satisfy Eq. (3.32). The nonuniformity of third

contribution is the square root of the sum of the Fourier coefficient C3
k,m, and we have

P 3
nonuniformity =

√∑
k∈Z2

∑
m∈Z2

|C3
k,m|2 . (3.35)

Figure 3.4 shows the spectrums of three contributions of the nonuniformity for

regular and irregular halftone textures. Figure 3.4 (a) and (b) is the first contribution

of the nonuniformity of regular and irregular halftone textures. Then, Fig. 3.4 (c) and

(d) show the the second contribution of the nonuniformity of regular and irregular

halftone textures. According to the definition of second contribution of nonuniformity,

frequency components fall on the same frequency locations as the the first contribution

of the nonuniformity for both regular and irregular halftone textures. In Fig. 3.4

(f), it shows that there are new frequency components in the spectrum of the third

contribution of the nonuniformity of irregular halftone textures. On the other hand,

there is no new frequency components in the spectrum of the third contribution of

the nonuniformity of regular halftone textures as shown in Fig. 3.4 (e).

As we know the spectra of three contributions of the nonuniformity, we can use Eq.

(3.27), (3.31) and (3.35) to compute the nonuniformity in terms of root mean square

that are introduced by first, second and third contribution of regular and irregular

halftone textures. The results are shown in Table 3.1. From table 3.1, we can see
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Table 3.1
The RMS value of three contributions for regular and irregular halftone textures

First contribution Second contribution Third contribution

Regular 9.66× 10−6 2.41× 10−6 0

Irregular 8.16× 10−6 3.85× 10−7 9.97× 10−4

Table 3.2
Power budget of the RMS values for measuring the nonuniformity
that applies the HVS filter

First contribution Second contribution Third contribution

Regular 80.1% 19.9% 0%

Irregular 0.812% 0.038% 99.15%

that the nonuniformity of regular halftone textures comes from the first and second

contribution. The variations come from those frequency components which are far

from the spectrum origin as shown in Fig. 3.4 (a) and (c). As we see the spatial image

from a distance, these frequency components may be invisible to the human viewer.

On the other hand, the nonuniformity of irregular halftone textures mostly comes

from the third contribution. The new frequency components are introduced because

of the non-integer elements in their periodicity matrix and finite addressability of the

marking engine. These new frequency components are low enough to be visible to the

human viewer. In Table 3.2, THE table summarizes the power budgets that include

the HVS filter when we calculate the RMS value. In our experiments, the HVS filter

we use is Näsänen model [56]. The viewing distance is 16 (in) at 812 dpi.

3.3.4 Visualization of Contributions of the Nonuniformity

In the previous section, we show the spectra of the three contributions of the

nonuniformity and provide a metric to measure the nonuniformity. In this section,
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(a) (b)

(c) (d)

(e) (f)

Fig. 3.4. Comparison of the spectra of three contributions of the
nonuniformity of regular and irregular halftone textures. The param-
eter K in Eq. (3.16) is chosen empirically to be 108. (a) First con-
tribution of the nonuniformity of regular halftone textures. (b) First
contribution of the nonuniformity of irregular halftone textures. (c)
Second contribution of the nonuniformity of regular halftone textures.
(d) Second contribution of the nonuniformity of irregular halftone tex-
tures. (e) Third contribution of the nonuniformity of regular halftone
textures. (f) Third contribution of the nonuniformity of irregular
halftone textures.
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we visualize these three contributions of nonuniformity in spatial domain. We use

two sets of regular and irregular screen pairs in the following experiments. For the

first example, the tile vectors of regular screen are: n1 = [3; 3] and n2 = [−3; 3].

The screen angle and frequency of the regular screen are 45 ◦ and 191.4 line-per-inch

(lpi), respectively. The basic screen block (BSB) [28] of this regular screen 6 × 6.

On the other hand, the tile vectors of the irregular screen are n1 = [2; 11/3] and

n2 = [−11/3; 2]. The screen angle and frequency of the irregular screen are 61 ◦ and

194.4 lpi, respectively. The BSB of this irregular screen 157 × 157. For the second

example, the tile vectors of regular screen are: n1 = [4; 4] and n2 = [−4; 4]. The screen

angle and frequency of the regular screen are 45 ◦ and 143.5 (lpi), respectively. The

BSB of this irregular screen 8×8. On the other hand, the tile vectors of the irregular

screen are n1 = [4; 11/3] and n2 = [−11/3; 4]. The screen angle and frequency of the

irregular screen are 42.5 ◦ and 149.63 (lpi), respectively. The BSB of this irregular

screen 265 × 265. Two examples of regular and irregular screen are considered to

understand how the screen frequency affect the nonuniformity. The image size of

the halftone textures is chosen to be a integer multiple of the BSB to prevent the

windowing artifact, which is introduced in computing the Discrete Fourier Transform

(DFT) of a 2-D image. The parameter K in Eq. (3.16) is chosen empirically to be 50

for Fig. 3.5, Fig. 3.6, Fig. 3.7, Fig. 3.8, Fig. 3.9, Fig. 3.10, Fig. 3.11, and Fig. 3.12.

In the experiment, we first create the analog rendering of a given halftone screen

in spatial domain. Then, we sample the analog rendering, and digital rendering

is obtained by convolving the sampled analog rendering with a printer dot profile

function. Then, we compute the DFT of the analog and the digital rendering. We

create the analog rendering in spatial domain by upsampling 24 times to mimic the

circle function at an infinity resolution. On the other hand, we also upsample 24

times for the digital rendering by using nearest neighbor method.

As we know from the previous section, the first contribution of the nonuniformity is

contributed by the analog rendering, and we compute Inverse Discrete Fourier Trans-

form (IDFT) to get the spatial domain of the first contribution of the nonuniformity.
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To get the spatial domain of second and third contribution of the nonuniformity,

we first calculate the spectrum difference between the analog and digital rendering.

According to the definition of the second contribution of the nonuniformity, the fre-

quency components of the second contribution fall on the same frequency location as

the first contribution. Thus, we find those frequency components that are same as the

first contribution in the difference spectrum of the analog and digital rendering, and

that forms the spectrum of the second contribution of the nonuniformity. Similarly,

we can get the second contribution of the nonuniformity in the spatial domain by

computing the IDFT. Finally, the spectrum of the third contribution of the nonuni-

formity is formed by finding those frequency components that do not fall on the same

location as the first contribution of the nonuniformity. Afterward, IDFT is performed

to get the third contribution of the nonuniformity in the spatial domain. Spatial do-

main images in Fig. 3.6, Fig. 3.8, Fig. 3.10 and Fig. 3.12 that are all multiplied by a

constant to make the maximum value of each image to be absorptance 1 (black).

The results of the first example of regular halftone textures are shown in Fig. 3.5

and Fig. 3.6. Figure 3.5 (a) and (b) are the analog and digital rendering in the

spatial domain. Figure 3.5 (c) and (d) are the corresponding DFT spectrum. Then,

we analyze the DFT spectrum of the digital rendering, and it is categorized into two

different contributions of nonuniformity. Images of first and second contribution of

the nonuniformity in the spatial domain are shown Fig. 3.6 (a) and (b). Figure. 3.6

(c) and (d) are the corresponding DFT spectra. As we know from the analysis in

the previous section, The nonuniformity of a given regular halftone texture is given

by the first and second contribution. The image of the first contribution shown in

Fig. 3.6 (a) is contributed by the analog rendering shown in Fig. 3.5 (a). On the

other hand, the image of the second contribution shown in Fig. 3.6 (b) comes from

the difference of the analog and digital rendering.

Next, we have results of the first example of irregular halftone textures are shown

in Fig. 3.7 and Fig. 3.8. In the DFT spectra of analog rendering of the regular and

irregular halftone textures, we can not see any difference except the screen frequency
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and screen angle. However, the DFT spectra of digital rendering of the regular and

irregular halftone textures are quite different due to the new frequency components

introduced by sampling the analog rendering. Then, we analyze the DFT spectrum

of the digital rendering, and we categorize it into three different contributions of the

nonuniformity. Images of first, second, and third contribution of the nonuniformity

in the spatial domain are shown in Fig. 3.8 (a), (b) and (c). The corresponding DFT

spectra are shown in Fig. 3.8 (d), (e) and (f). In contrast to the regular case, there

are new frequency components are shown in the spectrum, and new components form

the third contribution of the nonuniformity. In Fig. 3.8 (f), there are roughly 60 cpi

frequency components that can be observed, and we can see a 1/60 in approximately

repeated pattern in Fig. 3.8 (c).

In the second example, we choose a lower screen frequency for regular and irregular

screen. The results of the second example of regular halftone textures are shown in

Fig. 3.9 and Fig. 3.10. In addition, the results of the first example of irregular halftone

textures are shown in Fig. 3.11 and Fig. 3.12. The contributions of nonuniformity in

the spatial or in the frequency domain show a similar pattern as in the first example.

However, we can see in Fig. 3.12 that there are roughly 30 cpi frequency components

that can be observed. Thus, the irregular halftone textures in the second example

gives a more visible repeated pattern in the spatial domain than in the first example.

We conclude that a given irregular halftone textures becomes noisier when the screen

frequency is lower.

To visualize graininess from a given digital rendering that we have used in this

section, we first apply the HVS filter to the digital halftone image, and the perceived

image is processed based on the module shown in Fig. 3.13 to visualize graininess. The

HVS filter we use is Näsänen model [56]. The view distance is 16 (in) at 812 dpi. In

Fig. 3.13, the perceived image g̃p(x, y) is obtained by convolving the digital rendering

gp(x, y) with the point spread function hHV S(x, y). According to the Fig. 3.13, we have
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the relationship between the enhanced perceived image g̃p
′
(x, y) and the perceived

image g̃p(x, y) as follows

g̃p
′
(x, y) = S ×

(
g̃p(x, y)− E[g̃p(x, y)]

)
+ E[g̃p(x, y)]

= S ×∆g̃p(x, y) + E[g̃p(x, y)] , (3.36)

where the parameter S is chosen empirically be 5 to get a better comparison visually.

The digital rendering of two different pairs of regular and irregular halftone tex-

tures are considered. The results are shown in Fig. 3.14 and Fig. 3.15. Figure 3.14 are

the digital rendering, perceived digital rendering and enhanced perceived digital ren-

dering of the first example of the regular and irregular halftone textures. Figure 3.15

are the digital rendering, perceived digital rendering and enhanced perceived digital

rendering of the second example of the regular and irregular halftone textures. In

Fig. 3.14 (c) and (f), we can see graininess of both images. However, graininess of

both images does not have a big difference visually. To quantify graininess, we calcu-

late the variance of the perceived digital rendering for regular and irregular screen in

Fig. 3.14 (b) and (e). The variance of both images are equal to 0.0019. This could be

due to the fact that the screen frequency of the first pair of of regular and irregular

halftone textures is high enough so that the variance of both images are the same

when the digital rendering is applied with the HVS filter.

Next, we consider the second pair of of regular and irregular halftone textures

that has lower screen frequency than the first pair. In Fig. 3.15 (c) and (f), we

can see that the enhanced perceived digital rendering of irregular halftone textures

has high graininess than the enhanced perceived digital rendering of regular halftone

textures. Similarly, we calculate the variance of the perceived digital rendering for

regular and irregular halftone textures in Fig. 3.15 (b) and (e). The variance of the

perceived digital rendering for regular halftone textures is 0.0017. On the other hand,

the variance of the perceived digital rendering for irregular screen is 0.0034. Based

on these two examples, we find out that the screen frequency affects graininess of a
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given digital rendering. The lower the screen frequency is, the more visible graininess

is observed.

(a) (b)

(c) (d)

Fig. 3.5. The tile vectors of regular screen are: n1 = [3; 3] and
n2 = [−3; 3]. The screen angle and frequency of the regular screen
are 45 ◦ and 191.4 (lpi), respectively. The parameter K in Eq. (3.16)
is chosen empirically to be 50. (a) The analog rendering of regu-
lar hafltone textures. (b) The digital rendering of regular halftone
textures. (c) The DFT spectrum of the analog rendering of regular
halftone textures. (d) The DFT spectrum of the digital rendering of
regular halftone textures.
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(a) (b)

(c) (d)

Fig. 3.6. Comparison of the DFT spectra of contributions of the
nonuniformity of regular halftone textures. The parameter K in Eq.
(3.16) is chosen empirically to be 50. The spatial domain images are
obtained by calculating the IDFT of the DFT spectra. These images
are all multiplied by a constant to make the maximum value of each
image to be absorptance 1 (black). (a) The spatial image of the first
contribution of the nonuniformity of regular halftone textures. (b)
The spatial image of second contribution of the nonuniformity of reg-
ular halftone textures. (c) The DFT spectrum of the first contribution
of the nonuniformity of regular halftone textures. (d) The DFT spec-
trum of second contribution of the nonuniformity of regular halftone
textures.



82

(a) (b)

(c) (d)

Fig. 3.7. The tile vectors of the irregular screen are n1 = [2; 11/3]
and n2 = [−11/3; 2]. The screen angle and frequency of the irregular
screen are 61 ◦ and 194.4 (lpi), respectively. The parameter K in
Eq. (3.16) is chosen empirically to be 50. (a) The analog rendering
of irregular halftone textures. (b) The digital rendering of irregular
halftone textures. (c) The DFT spectrum of the analog rendering
of irregular halftone textures. (d) The DFT spectrum of the digital
rendering of irregular halftone textures.
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(a) (b) (c)

(d) (e) (f)

Fig. 3.8. Comparison of the DFT spectra of contributions of the
nonuniformity of irregular halftone textures. The parameter K in Eq.
(3.16) is chosen empirically to be 50. The spatial domain images are
obtained by calculating the IDFT of the DFT spectra. These im-
ages are all multiplied by a constant to make the maximum value of
each image to be absorptance 1 (black). (a) The spatial image of the
first contribution of the nonuniformity of irregular halftone textures.
(b) The spatial image of second contribution of the nonuniformity of
irregular halftone textures. (c) The spatial image of third contribu-
tion of the nonuniformity of irregular halftone textures. (d) The DFT
spectrum of the first contribution of the nonuniformity of irregular
halftone textures. (e) The DFT spectrum of second contribution of
the nonuniformity of irregular halftone textures. (f) The DFT spec-
trum of third contribution of the nonuniformity of irregular halftone
textures.
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(a) (b)

(c) (d)

Fig. 3.9. The tile vectors of regular screen are: n1 = [4; 4] and
n2 = [−4; 4]. The screen angle and frequency of the regular screen
are 45 ◦ and 143.5 (lpi), respectively. The parameter K in Eq. (3.16)
is chosen empirically to be 50. (a) The analog rendering of regu-
lar halftone textures. (b) The digital rendering of regular halftone
textures. (c) The DFT spectrum of the analog rendering of regular
halftone textures. (d) The DFT spectrum of the digital rendering of
regular halftone textures.
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(a) (b)

(c) (d)

Fig. 3.10. Comparison of the DFT spectra of contributions of the
nonuniformity of regular halftone textures. The parameter K in Eq.
(3.16) is chosen empirically to be 50. The spatial domain images are
obtained by calculating the IDFT of the DFT spectra. These images
are all multiplied by a constant to make the maximum value of each
image to be absorptance 1 (black). (a) The spatial image of the first
contribution of the nonuniformity of regular halftone textures. (b)
The spatial image of second contribution of the nonuniformity of reg-
ular halftone textures. (c) The DFT spectrum of the first contribution
of the nonuniformity of regular halftone textures. (d) The DFT spec-
trum of second contribution of the nonuniformity of regular halftone
textures.
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(a) (b)

(c) (d)

Fig. 3.11. The tile vectors of the irregular screen are n1 = [4; 11/3]
and n2 = [−11/3; 4]. The screen angle and frequency of the irregular
screen are 42.5 ◦ and 149.63 (lpi), respectively. The parameter K in
Eq. (3.16) is chosen empirically to be 50. (a) The analog rendering
of irregular halftone textures. (b) The digital rendering of irregular
halftone textures. (c) The DFT spectrum of the analog rendering
of irregular halftone textures. (d) The DFT spectrum of the digital
rendering of irregular halftone textures.
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(a) (b) (c)

(d) (e) (f)

Fig. 3.12. Comparison of the DFT spectra of contributions of the
nonuniformity of irregular halftone textures. The parameter K in Eq.
(3.16) is chosen empirically to be 50. The spatial domain images are
obtained by calculating the IDFT of the DFT spectra. These im-
ages are all multiplied by a constant to make the maximum value of
each image to be absorptance 1 (black). (a) The spatial image of the
first contribution of the nonuniformity of irregular halftone textures.
(b) The spatial image of second contribution of the nonuniformity of
irregular halftone textures. (c) The spatial image of third contribu-
tion of the nonuniformity of irregular halftone textures. (d) The DFT
spectrum of the first contribution of the nonuniformity of irregular
halftone textures. (e) The DFT spectrum of second contribution of
the nonuniformity of irregular halftone textures. (f) The DFT spec-
trum of third contribution of the nonuniformity of irregular halftone
textures.
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Fig. 3.13. A tool to visualize graininess of a given digital halftone image.
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(a) (b) (c)

(d) (e) (f)

Fig. 3.14. This example shows that a higher screen frequency of the
regular and irregular halftone textures. From the enhanced perceived
image of the regular and irregular halftone textures, graininess of both
images does not have a big difference visually. (a) Digital rendering of
the regular halftone textures. (b) The perceived image of the regular
halftone textures is obtained by convolving the digital rendering with
the HVS filter. The variance of this image is equal to 0.0019. (c) The
enhanced perceived image of the regular halftone textures is obtained
according to Eq. (3.36) and Fig. 3.13. (d) Digital rendering of the
irregular halftone textures. (e) The perceived image of the irregular
halftone textures is obtained by convolving the digital rendering with
the HVS filter. The variance of this image is equal to 0.0019 (f)
The enhanced perceived image of the irregular halftone textures is
obtained according to Eq. (3.36) and Fig. 3.13.
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(a) (b) (c)

(d) (e) (f)

Fig. 3.15. Another example shows that a lower screen frequency of
the regular and irregular halftone textures. From the enhanced per-
ceived image of the regular and irregular halftone textures, graininess
of irregular halftone textures are more visible than graininess of reg-
ular halftone textures. (a) Digital rendering of the regular halftone
textures. (b) The perceived image of the regular halftone textures is
obtained by convolving the digital rendering with the HVS filter. The
variance of this image is equal to 0.0017 (c) The enhanced perceived
image of the regular halftone textures is obtained according to Eq.
(3.36) and Fig. 3.13. (d) Digital rendering of the irregular halftone
textures. (e) The perceived image of the irregular halftone textures is
obtained by convolving the digital rendering with the HVS filter. The
variance of this image is equal to 0.0034 (f) The enhanced perceived
image of the irregular halftone textures is obtained according to Eq.
(3.36) and Fig. 3.13.
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3.4 Spatial-statistics-based Analysis of Regular and Irregular Periodic,

Clustered-dot Halftone Textures

In this section, we report on a study of a spatial-statistics-based analysis of regular

and irregular periodic, clustered-dot halftone textures. In the spatial-statistics-based

analysis, three different spatial statistics are considered. First, we find the disparity

between the centroids of dot clusters in the captured printed and digital halftone

textures, and lattice points generated by the periodicity matrix of regular or irregular

halftone screens. Second, we find the area of each dot cluster in the captured printed

and digital halftone textures. Finally, the compactness of each dot cluster in the

captured printed and digital halftone textures is discussed.

In this section, we find the error between the centroids of dot clusters in the

halftone textures, and lattice points generated by the periodicity matrix of regular or

irregular halftone screens. We use a set of regular and irregular screen pairs in our

experiment. For the first example, the tile vectors of regular screen are: n1 = [3; 3]

and n2 = [−3; 3]. The screen angle and frequency of the regular screen are 45 ◦

and 191.4 line-per-inch (lpi), respectively. The basic screen block (BSB) [28] of this

regular screen 6 × 6. On the other hand, the tile vectors of the irregular screen are

n1 = [2; 11/3] and n2 = [−11/3; 2]. The screen angle and frequency of the irregular

screen are 61 ◦ and 194.4 lpi, respectively. The BSB of this irregular screen 157×157.

3.4.1 Disparity between the Centroids of Dot Clusters and Lattice Points

These digital halftone textures are shown in Fig. 3.16. We also print these digital

halftone textures by HP Indigo 5000 at 812.8 dpi, and capture these textures by QEA

PIAS II at 7663 dpi. The image size is 768 × 1024. The captured printed halftone

textures are shown in Fig. 3.17.

To find the error between centroids and lattice points, we first find the centroid

of each dot cluster. For digital halftone textures, we can directly find centroids in

Fig. 3.16 (a) and (b). For captured printed halftone textures, Otsu algorithm [60] is
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(a) (b)

Fig. 3.16. Regular and irregular halftone textures used to find er-
ror between centroids of dot clusters in the digital halftone textures,
and lattice points generated by the periodicity matrix of regular or
irregular halftone screens. (a) The first example of regular halftone
textures with tile vectors n1 = [3; 3] and n2 = [−3; 3]. (b) The first
example of irregular halftone textures with tile vectors n1 = [2; 11/3]
and n2 = [−11/3; 2].

(a) (b)

Fig. 3.17. Captured printed regular and irregular halftone textures.
The digital halftone textures are printed by HP Indigo 5000 at 812.8
dpi, and then captured by QEA PIAS II at 7663 dpi. The image size
is 768×1024. (a) The captured printed regular halftone textures. (b)
The captured printed irregular halftone textures.
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used to generate the binary mask image. Then, the binary mask image and captured

gray level image are used to calculate the centroids of dot clusters.

Next, we calculate lattice points according to the following

L1

L2

 = N

t1
t2

+

ε1
ε2

 , (3.37)

where (L1 , L2)
T is the coordinate of the lattice point, N is the periodicity matrix of

halftone textures, (t1 , t2)
T is the integer scalars, and (ε1 , ε2)

T is the coordinate of the

top left centroid.

The results are shown in Fig. 3.18 and Fig. 3.19. In Fig. 3.18 (a) and (b), we use

red cross to mark centroids of dot clusters, and green cross to mark lattice points.

In Fig. 3.18 (a), centroids and lattice points of regular digital halftone textures all

fall on the same location. However, difference in the location of centroids and lattice

points of irregular halftone textures shown in Fig. 3.18 (b) can be observed.

On the other hand, we use red cross to mark centroids of dot clusters, and green

cross to mark lattice points in the binarized captured printed halftone textures. It

is shown in Fig. 3.19. In Fig. 3.19 (a), the location of centroids of dot clusters are

different from the location of lattice points when regular halftone textures are printed,

which would not be the case for digital halftone textures. In Fig. 3.19 (b), it shows

a significant difference between the location of centroids of dot clusters are different

from the location of lattice points when irregular halftone textures are printed.

To quantify the difference between digital halftone textures and printed halftone

textures, we find the disparity between centroids of dot clusters and lattice points by

calculating the average of Euclidean distance between all centroids and lattice points.

The results of digital halftone textures are shown in Table 3.3 in unit of printer pixels.

The results of binarized captured printed halftone textures are shown in Table 3.4 in

unit of printer pixels. A printer pixel is equal to 7663/812.8 camera pixels. As we can

see from these two Tables, the disparity is larger when the digital halftone textures

are printed. In addition, another statistic, percentage error of distance, is obtained
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by as error divides by the square root of the area of the microcell. The area of the

microcell is the determinant of the periodicity matrix.

In this section, we found out that the disparity of centroids of dot clusters and

lattice points in the irregular halftone textures are more different than in regular

halftone textures according Table 3.3. Moreover, the disparity of centroids of dot

clusters and lattice points in the binarized captured printed irregular halftone textures

is increased according to Table 3.4.

We also are interested in the disparity of centroids of dot clusters and lattice

points in the real-world irregular halftone textures, which is shown in Fig. 3.21 (c)

and Fig. 3.22 (c). However, the periodicity matrix of irregular halftone textures

(HP Indigo) is unknown. A least square fit is conducted to find the corresponding

periodicity matrix.

Given coordinates of centroids X1,X2, . . . ,XN , we want to minimize the following

optimization problem

minimize E =
N∑
i=1

||Xi − X̃i||2 , (3.38)

where X̃i is the i-th lattice point, which is associated with Xi. The lattice point X̃i

is defined as

X̃i = Nti + e , (3.39)

where the parameter N is the periodicity matrix (which is unknown), ti is a vector

and e is the offset. To solve this optimization problem, we need to know the ti that

is associated with X̃i. To obtain ti, we first find an initial guess of the periodicity

matrix Nini. We pick three centroids in Fig. 3.21 (c), and these three points can

generate an initial guess of the periodicity matrix Nini. In the experiment, the initial

periodicity matrix is

Nini =

3.53 −2.2

2.2 3.53

 . (3.40)
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Table 3.3
Location disparity between centroids and lattice points of regular and
irregular digital halftone textures in unit of printer pixels, and the
percentage error of distance

Regular Irregular Irregular (HP)

Error 0 0.0051 0.01

Percentage error of distance 0 0.12% 0.24%

As we know the coordinates of centroids and the periodicity matrix Nini, we can

obtain ti from Eq. 3.39.

Then, we can infer the unknown periodicity matrix N. Given centroids (x1, y1)
T , (x2, y2)

T ,

. . . , (xN , yN)T and, for very i, (ki, ti)
T is known, we want to solve

min E =
N∑
i=1

(xi − x̃i)2 + (yi − ỹi)2 . (3.41)

According to the lattice theory, we havex̃i
ỹi

 =

a11 a12

a21 a22

ki
ti

+

ε1
ε2

 , (3.42)

We take the partial derivative of Eq. 3.41 to 6 unknown parameters (i.e., a11, a12, a21,

a22, ε1 and ε2) and are set to 0. By solving these 6 equations, we obtain the unknown

periodicity N as

N =

 3.6 −2.25

2.25 3.6

 . (3.43)

According to Fig. 3.18, Fig. 3.19, Table 3.3 and Table 3.4, we can the disparity of the

actual irregular halftone textures is larger than another halftone textures.

3.4.2 Area of the Regular and Irregular Dot Clusters

In this section, we find the area of each dot cluster in the digital halftone textures

and binarized captured printed halftone textures. We use examples in Fig. 3.21, which



96

(a) (b) (c)

Fig. 3.18. In the figure, we mark the centroid of each dot cluster red
cross, and mark the lattice point generated by the periodicity matrix
of regular and irregular halftone textures green cross. (a) The location
of all centroid of dot clusters and the location of lattice points fall on
the same position. (b) A difference between the location of centroids
and lattice points can be observed. (c) The difference between the
location of centroids and lattice points in actual halftone textures is
obvious.

(a) (b) (c)

Fig. 3.19. In the figure, we mark the centroid of each dot cluster
in the binarized captured printed halftone textures red cross, and
mark the lattice points generated by the periodicity matrix of regular
and irregular screens green cross. (a) The location of centroid of dot
clusters and the location of lattice points have slightly difference. (b)
A significant difference between the location of centroids and lattice
points can be observed. (c) The difference between the location of
centroids and lattice points in actual halftone textures is obvious.
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are three different digital halftone textures, and Fig. 3.22, which are three different

captured printed halftone textures. Figure 3.21 (c) and Fig. 3.22 (c) show a real

digital irregular halftone textures and captured printed halftone textures. We can

see the halftone textures shown in Fig. 3.21 (c) are more irregular than the irregular

halftone textures shown in Fig. 3.21 (b). For captured printed halftone textures, we

also have to binarize the captured image, and the binarized captured image can be

used to find the area of each dot cluster. The connected component analysis [15] was

applied to group pixels into connected sets. We use a 8-connected components in our

experiment. To find the area of each dot cluster, number of pixels in each dot cluster

is calculated. Figure 3.20 shows three examples to illustrate the way of counting area

of a given dot cluster.

Histograms of digital dot-cluster area and binarized captured printed dot-cluster

area are shown in Fig. 3.23 and Fig. 3.24. In addition to the mean and standard

deviation of the histogram, we use normalized standard deviation (NSTD), which is

defined as the ratio of standard deviation and the square root of the mean area. This

statistic is independent of the area of dot cluster. In Fig. 3.23 (a), the histogram

of the regular dot-cluster area has mean 5, standard deviation 0 and NSTD 0. In

Fig. 3.23 (b), the histogram of the irregular dot-cluster area has mean 4.11, standard

deviation 0.31 and NSTD 0.15. In Fig. 3.23 (c), the histogram of another irregular

dot-cluster area has mean 3.93, standard deviation 0.72 and NSTD 0.37. We can

Table 3.4
Location disparity between centroids and lattice points of binarized
captured printed regular and irregular halftone textures in unit of
printer pixels, and the percentage error of distance

Regular Irregular Irregular (HP)

Error 0.013 0.042 0.05

Percentage error of distance 0.03% 0.1% 0.12%
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(a)

(b)

(c)

Fig. 3.20. Illustration of counting area of a dot cluster. (a) Area is
equal to 5. (b) Area is equal to 3. (c) Area is equal to 3.
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(a) (b) (c)

Fig. 3.21. Digital regular and irregular halftone textures used to find
area of dot clusters. (a) The first example of regular halftone textures
with tile vectors n1 = [3; 3] and n2 = [−3; 3]. (b) The first example
of irregular halftone textures with tile vectors n1 = [2; 11/3] and
n2 = [−11/3; 2]. (c) Irregular halftone textures provide by HP Indigo
partners.



100

(a)

(b)

(c)

Fig. 3.22. Captured printed regular and irregular halftone textures.
The digital halftone textures are printed by HP Indigo 5000 at 812.8
dpi, and then captured by QEA PIAS II at 7663 dpi. The image size
is 768×1024. (a) The captured printed regular halftone textures. (b)
The captured printed irregular halftone textures. ((b) The captured
printed irregular halftone textures, which is provided by HP Indigo
partners.)
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observe that irregular halftone textures provided by HP Indigo partners have higher

variance in the area of dot clusters according to the normalized standard deviation.

Figure. 3.24 (a) shows the histogram of the binarized captured printed regular

dot-cluster area has mean 7.21, standard deviation 0.46 and NSTD 0.17. Figure. 3.24

(b) shows the histogram of the binarized captured printed irregular dot-cluster area

has mean 5.49, standard deviation 0.64 and NSTD 0.27. Figure. 3.24 (c) shows the

histogram of the binarized captured printed irregular dot-cluster area has mean 6.24,

standard deviation 1.36 and NSTD 0.54. According to the results, we can observe

that the NSTD of three histogram of binarized captured printed halftone textures are

all increased due to the printing process.

3.4.3 Compactness of the Regular and Irregular Dot Clusters

In this section, we measure the compactness of the regular and irregular dot

clusters. A compactness ratio is used to measure the compactness. The compactness

measurement is considered is because a clustered-dot halftone algorithm wants to

produce clustered-dot as compact as possible. Thus, we would like to compare the

compactness of regular dot clusters and of irregular dot clusters. The compactness

ratio is defined as A/πR2, where A is the area of a dot cluster, and R is the radius of

smallest circle which surround a dot cluster.

Histograms of digital dot-cluster compactness and binarized captured printed dot-

cluster compactness are shown in Fig. 3.25 and Fig. 3.26. In Fig. 3.25 (a), the his-

togram of the regular dot-cluster compactness has mean 0.64 and standard deviation

0. In Fig. 3.25 (b), the histogram of the irregular dot-cluster compactness has mean

0.58 and standard deviation 0.06. In Fig. 3.25 (c), the histogram of the another ir-

regular dot-cluster compactness has mean 0.5 and standard deviation 0.08. We can

observe that irregular dot clusters provided by HP Indigo partners are less compact

than the regular dot clusters and irregular dot clusters we generate.
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(a)

(b)

(c)

Fig. 3.23. Different histograms of the dot-cluster area in the regu-
lar and irregular digital halftone textures. In addition to the mean
and standard deviation of the histogram, we use normalized standard
deviation (NSTD), which is defined as the ratio of standard devia-
tion and the square root of the mean area. (a) The histogram of the
dot-cluster area in the regular halftone textures has mean 5, standard
deviation 0 and NSTD 0. (b) The histogram of the area of dot clusters
in the irregular halftone textures has mean 4.11, standard deviation
0.31 and NSTD 0.15. (c) The histogram of the dot-cluster area in the
irregular halftone textures provided by HP Indigo partners has mean
3.93, standard deviation 0.72 and NSTD 0.37.
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(a)

(b)

(c)

Fig. 3.24. Different histograms of the dot-cluster area in the regular
and irregular binarized captured printed halftone textures. (a) The
histogram of the dot-cluster area in the binarized captured printed
regular halftone textures has mean 7.21, standard deviation 0.46 and
NSTD 0.17. (b) The histogram of the binarized captured printed
irregular dot-cluster area has mean 5.49, standard deviation 0.64
and NSTD 0.27. (c) The histogram of another binarized captured
printed irregular dot cluster has mean 6.24, standard deviation 1.36
and NSTD 0.54.
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Figure. 3.26 (a) shows the histogram of the binarized captured printed regular

dot-cluster compactness has mean 0.8 and standard deviation 0.042. Figure. 3.26

(b) shows the histogram of the binarized captured printed irregular dot-cluster area

has mean 0.76 and standard deviation 0.065. Figure. 3.26 (c) shows the histogram of

another binarized captured printed irregular dot-cluster area has mean 0.72 and stan-

dard deviation 0.085. According to the results, we can observe that the compactness

of binarized captured printed regular dot clusters is higher than the compactness of

two binarized captured printed irregular dot clusters. However, we also observe that

the printing processes increase the compactness of dot clusters.

3.5 Graininess Measurements on Different Substrates

In this section, we measure graininess on different substrates, and understand how

the characteristics of the substrate affects graininess measurement. We consider two

different substrates, glossy and polyester media. The polyester media we used is from

TEKRA’s Dura-Go R© Polyester. In our experiment, 175 micron Clear Polyester is

considered since it is the smoothest substrate provided by TEKRA. We choose the

smoothest to eliminate graininess introduced by the substrate.

3.5.1 Experimental Setting and Captured Images

In the experiment, we print regular and irregular halftone pattern on glossy and

polyester media. The tile vectors of the regular screen are: n1 = [3; 3] and n2 =

[−3; 3]. The screen angle and frequency of the regular screen are 45 ◦ and 191.4 line-

per-inch (lpi), respectively. On the other hand, the irregular screen are provided by

HP Indigo. The screen angle and frequency of the irregular screen are 31.88 ◦ and

192.06 (lpi), respectively. On the target, we print 10 different gray levels from 15 to

159 with increment 16 for both regular and irregular screen. The capture device is

the Dyson Relay CMOS Imaging Device (Dr. CID) at 7946.85 dpi shown in Fig. 3.29.
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(a)

(b)

(c)

Fig. 3.25. Different histograms of compactness of regular and irregular
dot clusters. (a) The histogram of the regular dot-cluster compact-
ness has mean 0.64 and standard deviation 0. (b) The histogram
of the irregular dot-cluster compactness has mean 0.58 and standard
deviation 0.06. (c) The histogram of another irregular dot-cluster
compactness has mean 0.5 and standard deviation 0.08.
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(a)

(b)

(c)

Fig. 3.26. Different histograms of compactness of binarized captured
printed regular and irregular dot clusters. (a) The histogram of the
binarized captured printed regular dot-cluster compactness has mean
0.8 and standard deviation 0.042. (b) The histogram of the binarized
captured printed irregular dot-cluster compactness has mean 0.76 and
standard deviation 0.065. (c) The histogram of another binarized
captured printed irregular dot-cluster compactness has mean 0.72 and
standard deviation 0.085.
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To capture the halftone textures on the glossy media, we place the Dr. CID

camera on top of the target, and the camera sensor captures images by recording the

light, emitted by the internal white LED, reflects from the target surface. However,

this scenario does not work on the polyester media. It is because the polyester media

is transparent. To overcome this issue, we place the polyester media on top of a light

box1 shown in Fig. 3.30. Instead of capturing the light reflecting from the target

surface, the camera sensor captures the light passing through the polyester media.

The switch shown in Fig. 3.29 turns off when capturing the halftone textures on the

polyester media, and turns on when capturing the halftone textures on the polyester

media. In addition, there is a lighting effect when we capture the halftone textures

on the glossy media using the internal white LED as shown in Fig. 3.27. To reduce

the lighting effect, we only use the captured image in the red box as indicated in

Fig. 3.27.

Figure. 3.28 shows a digital halftone image, a captured halftone image printed

on glossy media and a captured halftone image printed on polyester media for both

regular and irregular halftone textures at gray level 63. The size of these images are

all 830 × 742. The captured images are all in camera RGB color space. Figure 3.28

(a) and (d) are the digital halftone image of regular and irregular pattern.Figure 3.28

(b) and (e) are the captured halftone patterns on the glossy media; and Figure 3.28

(c) and (f) are the captured halftone patterns on the polyester media. As we can see

from the images capturing from the glossy media are quite different from the images

capturing from the polyester media. This is because the light sources for these two

kinds of images are different. To compensate the color difference issue and to compare

graininess of two different images, calibration processes that transform the camera

RGB to CIE XYZ are required.
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Fig. 3.27. The lighting effect appears when we use the internal white
LED of the Dr. CID.
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(a) (b) (c)

(d) (e) (f)

Fig. 3.28. (a) The digital halftone image of regular halftone pat-
tern. (b) The captured regular halftone patterns on the glossy media.
(c) The captured regular halftone patterns on the polyester media.
(d) The digital halftone image of irregular halftone pattern. (e) The
captured irregular halftone patterns on the glossy media. (f) The
captured irregular halftone patterns on the polyester media.
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3.5.2 Calibration for the Captured Halftone Textures on Glossy Media

To transform the camera RGB to CIE XYZ for the images capturing from the

glossy media, we first have to transform the camera RGB to linear RGB by computing

the gray balancing curves for the R, G and B channels. To obtain the gray balancing

curves, we capture the 22 neutral gray scale patches on the Kodak IT8 4× 5” target.

However, there is lighting effect when we capture images using the internal white

LED. To further reduce the lighting effect, a flat field method is considered. We

first capture 20 white patches on the glossy media. Then, we average these white

patches to get the averaged white patch. Each pixel of a neutral gray scale patch is

divided by the corresponding pixel of the averaged white patch. Subsequently, the

pixel of the resultant image is multiplied by 255 and each pixel value is rounded to

integer value. Therefore, we have the flat-field-corrected gray patches. The R, G,

and B values for each corrected gray patch are computed as the average of all the

pixel values within each patch. The size of each gray patch is 400×400 for averaging.

Then, the CIE Y value of each gray scale patch is measured by the X-Rite DTP70

Spectrophotometer under the default illuminant D65. Finally, the gray balancing

curves can be approximated by a power law equation as follows

Rl = a(R/255)b + c , (3.44)

where Rl = Y/100, and Rl is the linearized R output value for a patch. Similarly,

we can also find the parameters, a, b, and c for the G and B channels. The values of

parameters, a, b, and c for the R, G and B channels for images on glossy media can

be found in Table 3.5. The gray balancing curves for R, G and B channel for glossy

media are shown in Fig. 3.32 (a)–(c).

Next, we find the transformation matrix Mglossy for transforming the linear RGB

values to CIE XYZ values. We use the process mentioned above to obtain the linear
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RGB values for the 228 color patches on the Kodak IT8 4 × 5” target. Then, the

transformation matrix for glossy media, Mglossy, is given by

Mglossy = (ATA)−1ATX

=


0.5512 0.3136 0.0649

0.6102 1.0208 0.2873

0.1294 0.0241 0.69

 , (3.45)

where matrix A (228 × 3) contains the 228 linear RGBs, and matrix X (228 × 3)

contains the corresponding CIE XYZ values. Eq. (3.45) also shows the transformation

matrix Mglossy for glossy media. Based on the above processing, we can transform

the camera RGB to CIE XYZ. Finally, the CIE Y values are scaled to range from 0

(black) to 255 (white). Figure. 3.34 shows the calibration results for images capturing

from the glossy media.

3.5.3 Calibration for the Captured Halftone Textures on Polyester Media

On the other hand, the calibration process for images capturing from the polyester

media is different. Since the illuminant for capturing the halftone pattern on the

polyester is from the light box, chromatic adaption transformation (CAT) is per-

formed. Instead of using X-Rite DTP70 Spectrophotometer, we use Photo Research

Spectroradiometer (SpectroScan 705)2 as shown in Fig. 3.31. Chromatic adaption

transformation (CAT) is used in imaging systems to map image appearance to col-

orimetry under different illumination sources [57]. The goal of a CAT algorithm is

to have a linear transformation of a source color (XS, YS, ZS) to a destination color

(XD, YD, ZD) by a transformation matrix [M ] that is dependent on the source refer-

ence white (XWS, YWS, ZWS) and the destination reference white (XWD, YWD, ZWD).
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The relationship of a source color (XS, YS, ZS) and a destination color (XD, YD, ZD)

is the following [57] 
XD

YD

ZD

 = [M ]


XS

YS

ZS

 . (3.46)

To perform the chromatic adaption transformation, we first have to linearly transform

CIE XYZ into relative cone response domain (LMS) [57] by multiply a 3× 3 matrix

[MCAT ]. Then, Eq. (3.47) and Eq. (3.48) define the transformation from CIE XYZ to

relative cone response domain for a source reference white and a destination reference

white. Transformation matrix [M ] is defined according to Eq. (3.49)


LS

MS

SS

 = [MCAT ]


XWS

YWS

ZWS

 . (3.47)


LD

MD

SD

 = [MCAT ]


XWD

YWD

ZWD

 . (3.48)

[M ] = [MCAT ]−1


LD/LS 0 0

0 MD/MS 0

0 0 SD/SS

 [MCAT ] , (3.49)

where the scaling is based on on the ratio of the cone response of the source and

destination reference whites [57]. In our experiment, we choose the CAT based on

CMCCAT 2000 [58], and the matrix [MCAT ] is shown in Eq. (3.50).

The following is the calibration processes for images capturing from the polyester

media. First, we measure the CIE XYZ value of the light emitted from the light box by

1Logan Electric, Texarkana, AR.
2Photo Research Inc., Chatsworth, CA.
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using Photo Research Spectroradiometer (SpectroScan 705). Then, we transform the

measured CIE Y of the light box white to transformed Y values that is measured under

illuminant D65 that is the default illuminant of X-Rite DTP70 Spectrophotometer.

As we have the transformation matrix [M ], we then find the gray balancing curves

for R, G and B channel. To find the gray balancing curves, we place the Kodak IT8

4× 5” transparency target on top of the light box, and measure the CIE XYZ values

of the 22 gray level patches using Photo Research Spectroradiometer (SpectroScan

705). Afterward, we can apply CAT to the measured CIE Y of these gray patches to

transformed CIE Y. On the other hand, we use Dr. CID to capture the 22 gray level

patches on the target, which is on the light box, then we use these data to fit the

gray balancing curve for each R, G and B channel based on the Eq. (3.44). The size

of the patch using to average is 400× 400. The values of parameters, a, b, and c for

the R, G and B channels for images on polyester media can be found in Table 3.6.

The gray balancing curves for R, G and B channel for polyester media are shown in

Fig. 3.33 (a)–(c).

Next, we find the transformation matrix Mpolyester for transforming the linear RGB

values to CIE XYZ values. We measure the CIE XYZ values of the 228 color patches

on the Kodak IT8 4× 5” transparency target by Photo Research Spectroradiometer

(SpectroScan 705). Again, these measured CIE XYZ values are applied CAT to the

transformed CIE XYZ. Then, Dr. CID is used to capture the 228 color patches on

the Kodak IT8 4 × 5” transparency target. Based on Eq. (3.45), we can obtain

the transformation matrix Mpolyester for polyester media, and Mpolyester is shown in

Eq. (3.51). Figure. 3.35 shows the calibration results for images capturing from the

polyester media.

[MCAT ] =


0.7982 0.3389 −0.1371

−0.5918 1.5515 0.0406

0.0008 0.0239 0.9753

 . (3.50)
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[Mpolyester] =


0.3467 0.1901 0.076

0.6484 0.9644 0.4369

0.1021 0.0056 0.6899

 (3.51)

Fig. 3.29. Dyson Relay CMOS Imaging Device (Dr. CID).

Fig. 3.30. Light box.
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Fig. 3.31. Photo Research Spectroradiometer (SpectroScan 705).

Table 3.5
The parameters for the power law equation for each channel for images
capturing from glossy media

R G B

a 5.039× 10−5 4.137× 10−4 1.139× 10−3

b 2.566 2.18 1.982

c -4.127 -2.372 2.223

Table 3.6
The parameters for the power law equation for each channel for images
capturing from polyester media

R G B

a 1.055× 10−4 5.3× 10−6 1.675× 10−4

b 2.489 2.915 2.349

c -2.369 0.8057 -1.098
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(a)

(b)

(c)

Fig. 3.32. (a) The gray balancing curve for R channel for the glossy
media. (b) The gray balancing curve for G channel for the glossy
media. (c) The gray balancing curve for B channel for the glossy
media.
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(a)

(b)

(c)

Fig. 3.33. (a) The gray balancing curve for R channel for the polyester
media. (b) The gray balancing curve for G channel for the polyester
media. (c) The gray balancing curve for B channel for the polyester
media.
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(a) (b)

(c) (d)

Fig. 3.34. The calibration results for images capturing from the glossy
media. (a) A captured image of a regular halftone textures in camera
RGB color space. (b) A calibrated image of a regular halftone tex-
tures in CIE Y. (c) A captured image of a irregular halftone textures
in camera RGB color space. (b) A calibrated image of a irregular
halftone textures in CIE Y.
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(a) (b)

(c) (d)

Fig. 3.35. The calibration results for images capturing from the
polyester media. (a) A captured image of a regular halftone tex-
tures in camera RGB color space. (b) A calibrated image of a reg-
ular halftone textures in CIE Y. (c) A captured image of a irregular
halftone textures in camera RGB color space. (b) A calibrated image
of a irregular halftone textures in CIE Y.
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3.5.4 Graininess Measurements

We perform two different experiments to understand how the property of the

substrate affects the graininess measurement. First, we compare graininess of different

halftone textures, regular and irregular that are on the same substrate either glossy

or polyester. In our experiment, we apply Grainometer [59], a tool provided by HP

Indigo partners to measure graininess of a given image. Figure. 3.36 (a) shows the

graininess measurement between regular and irregular halftone textures on glossy

media with different absorptance. In addition, Fig. 3.36 (b) shows the graininess

measurement between regular and irregular halftone textures on polyester media with

different absorptance. From these two plots, we can see that graininess of the irregular

halftone pattern is higher than the graininess of the regular halftone pattern either

glossy or polyester. In addition, the overall graininess of images capturing from the

polyester media are lower than graininess of images capturing on the glossy media.

This is because the polyester media is inherently smoother than the glossy media.

Second, we we compare graininess of the same halftone textures either regular or

irregular, but they are on the different substrates. Figure. 3.37 (a) shows the grain-

iness measurement between glossy and polyester media for regular halftone textures

with different absorptance. In addition, Fig. 3.37 (b) shows the graininess measure-

ment between glossy and polyester media for irregular halftone textures with different

absorptance. From the results, we can see that smoothness of the substrate impacts

graininess more when the absorptance is lower than 95/255. In addition, the print

quality of halftone dots is better on glossy media than on the polyester media, and

it might lead to the fact that the graininess of the printed pattern on the polyester

media is higher than the graininess of the printed pattern on the glossy media when

the absorptance is higher than 95/255.
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(a)

(b)

Fig. 3.36. (a) The graininess measurement between regular and irreg-
ular halftone textures on glossy media with different absorptance. (b)
The graininess measurement between regular and irregular halftone
textures on polyester media with different absorptance.
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(a)

(b)

Fig. 3.37. (a) The graininess measurement between glossy and
polyester media for regular halftone textures with different absorp-
tance. (b) The graininess measurement between glossy and polyester
media for irregular halftone textures with different absorptance.
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3.6 Conclusions

With the emergence of high-end digital printing technologies, it is of interest to

analyze the nature and causes of image graininess in order to understand the fac-

tors that prevent high-end digital presses from achieving the same print quality as

commercial offset presses. In this chapter, we report on a study to understand the

relationship between image graininess, and halftone technology and marking tech-

nology. First, we describe a Fourier-based analysis of regular and irregular periodic,

clustered-dot halftone textures. With high-end digital printing technology, irregular

screens can be considered since they can achieve a better approximation to the screen

sets used for commercial offset presses. This is due to the fact that the elements of

the periodicity matrix of an irregular screen are rational numbers. However, irregular

halftone textures generate new frequency components near the spectrum origin; and

these frequency components are low enough to be visible to the human viewer. On

the other hand, regular halftone textures do not have these frequency components.

Moreover, the metric for measuring nonuniformity of given halftone textures indicates

that the nonuniformity of irregular halftone textures is higher than the nonuniformity

of regular halftone textures. Next, a spatial-statistics-based analysis of regular and

irregular periodic, clustered-dot halftone textures is conducted. The three spatial

statistics, disparity between the centroids of dot clusters and lattice points, area of

dot clusters and compactness of dot-clusters, indicate that irregular digital halftone

textures have higher disparity between the location of centroids of dot clusters and lat-

tice points, and have higher variance in the histogram of dot-cluster area. Moreover,

the variance increases when the digital halftone textures are printed. In addition, the

compactness measurement shows that irregular dot clusters are less compact than

regular dot clusters. A clustered-dot halftone algorithm wants to produce clustered-

dot as compact as possible. Even though the irregular digital dot cluster is less

compact, the compactness of irregular printed dot cluster is increased because of the

printing processes. Lastly, the experiments of graininess measurement on different
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substrates are discussed. We print regular and irregular halftone textures on glossy

and polyester media. From the experiments, we observed that the irregular printed

halftone textures are grainier than regular printed halftone textures on both glossy

and polyester media. In addition, the substrate characteristics affect graininess and

the dot formation quality. Based on the analysis and experiments, we conclude that

irregular halftone textures introduce image graininess in the spatial domain because

of the non-integer elements of their periodicity matrix, and the finite addressability of

the marking engine. In addition, the dot cluster shape of irregular halftone textures

varies from dot to dot; and each dot cluster location of irregular halftone textures

differs from each other, which would not be the case for regular halftone textures.

Moreover, the irregular dot cluster is less compact. Finally, the marking technology

provides inconsistency of print quality between substrates.
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