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ABSTRACT 

Chen, Chun. Ph.D., Purdue University, May 2015. Modeling Person-To-Person 
Contaminant Transport in Enclosed Environments. Major Professor: Dr. Qingyan (Yan) 
Chen, School of Mechanical Engineering. 
 
 

It is essential to predict person-to-person contaminant transport in enclosed environments 

to improve air distribution design and reduce the infection risk from airborne infectious 

diseases. This study aims to improve and accelerate the simulation of person-to-person 

contaminant transport in enclosed environments. 

This investigation first conducted experimental measurements of person-to-person 

contaminant transport in an office mockup and the first-class cabin of a functional MD-

82 aircraft. The experimental data of steady-state airflow, temperature, and gas 

contaminant concentration fields obtained in the office were used to validate the steady-

state computational fluid dynamics (CFD) models. In the aircraft cabin, the transient 

particle concentrations were measured at the breathing zones of each passenger. The 

experimental data were used for evaluating the transient particle models in this study. 

When applying the CFD models, most of the existing studies assumed that the index 

person coughed or sneezed directly without covering the mouth. In reality, however, 

people usually cover their mouths with a hand or a tissue when they cough or sneeze.  

Currently, no simple method is available in the literature for predicting the exhaled 

airflow from a cough with the mouth covered. Therefore, this study developed simplified 

models for predicting the airflow on the basis of the smoke visualization experiment. This 

investigation then applied the developed simplified models to assess the influence of 

mouth coverings on the receptor’s exposure to exhaled particles. It was found that 
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covering a cough with a tissue, a cupped hand, or an elbow can significantly reduce the 

horizontal transport of exhaled particles. 

As a popular particle model, the Lagrangian model needs to track a large number of 

particles in the calculations in order to ensure accuracy. Traditionally, modelers have 

conducted an independence test in order to find a reasonable value for this particle 

number. However, the unguided process of an independence test can be highly time-

consuming. Therefore, this investigation developed a method for estimating the necessary 

particle number in the Lagrangian model. The results show that the proposed method can 

estimate the necessary particle number with a reasonable magnitude and thus reduce the 

effort that is normally required for evaluating different numbers of particles in order to 

achieve statistically meaningful results. Moreover, the superimposition and time-

averaging method was proposed, which can reduce the necessary particle number, and, as 

a result, the computing cost can be further reduced. 

Although the traditional Eulerian and Lagrangian models can provide informative results 

of transient particle transport indoors, they are considerably time-consuming. Thus, this 

study further developed a new particle model on the basis of a Markov chain frame for 

quickly predicting transient particle transport indoors. When solving the particle transport 

equations, the Markov chain model does not require iterations in each time step, and thus 

it can significantly reduce the computing cost. The validation results show that, in general, 

the trends in the transient particle concentration distributions predicted by the Markov 

chain model agreed reasonably well with the experimental data. Furthermore, the Markov 

chain model produced similar results to those of the Lagrangian and Eulerian models, 

while the speed of calculation increased by at least 6 times in comparison to the latter two 

models for the studied case. 

To further identify a suitable model for indoor transient particle transport simulations, 

this study systematically compared the Eulerian, Lagrangian, and Markov chain models 

in terms of performance, computing cost, and robustness. This investigation used four 

cases, including three cases with experimental data, for the comparison. The comparison 

shows that all the three models can predict transient particle transport in enclosed 
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environments with a similar accuracy. With the same time step size and grid number, the 

Markov chain model was the fastest among the three models. Unless super-find grid was 

used, the Eulerian model was faster than the Lagrangian model. The Eulerian and 

Lagrangian models were more robust than the Markov chain model, because the Markov 

chain model was sensitive to the time step size. 
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CHAPTER 1. INTRODUCTION 

1.1 Background and Significance 

Researchers from both the medical and engineering disciplines have been collectively 

addressing the issue of transmission of airborne infectious diseases (Mangili and 

Gendreau, 2005). Airborne infectious diseases include cold, influenza, avian flu, 

tuberculosis (TB) and Severe Acute Respiratory Syndrome (SARS). Viboud et al. (2004) 

reported that about 47,200 deaths were caused by influenza epidemics every year in the 

United States. The Spanish flu of 1918-19 (H1N1) was found as the most lethal flu 

pandemic of the 20th century, which infected about one-quarter of the global population 

and killed more than 40 million people (WHO, 2002). The World Bank (2005) concluded 

that a pandemic of avian flu among humans could cost the global economy $800 billion a 

year. The evaluation of the global burden of TB showed that TB infections were found in 

about 22 countries and cause a total of 1.87 million deaths (Dye et al., 1999). The World 

Health Organization (WHO) (2002) reported that there were 8098 people all over the 

world infected by SARS and 774 of them lost their lives. These airborne diseases cause 

endless social and economic disruptions. Thus, it is important to understand and control 

the transmission of airborne disease to reduce its influence on human health. 

Enclosed spaces such as buildings and transport vehicles are more susceptible to the 

transmission of airborne infectious diseases than the outdoors due to the low air exchange 

rate (Mangili and Gendreau, 2005). For instance, among enclosed spaces, a greater risk of 

infection is possible in aircraft cabins due to the high occupant density and long exposure 

time. Some of the outbreaks of TB (Kenyon et al., 1996), influenza (Moser et al., 1979), 

SARS (Olsen et al., 2003), and norovirus transmission (Kirking et al., 2010) are alleged 

to have happened during air travel. The swine flu epidemic in 2009 also created a panic 
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among air travelers and caught the attention of researchers (Khan et al., 2010). These 

transmissions could have happened through direct contact, indirect contact, droplets or 

airborne route. The infection spread to rows away from the infected person indicated the 

transmission to these places may have happened through airborne route (Olsen et al., 

2003; Li et al., 2005; Li et al., 2007; Kirking et al., 2010). Due to the rapidly growing 

number of air passengers (800 million air passengers in 2010, US DOT 2011), the 

transmission of airborne infectious diseases in aircraft cabins becomes more and more 

important. Furthermore, people spend roughly 90% of their life time indoors (Klepeis et 

al., 2001). Thus, it is essential to predict and control the transmission of airborne 

infectious disease in enclosed environments. 

The airborne disease transmission process starts from droplets carrying the infectious 

agents. These droplets are exhaled by an infected person through various respiratory 

exhalations (Cole and Cook, 1998; Nicas et al., 2005). They then disperse in the enclosed 

environment and can be inhaled by susceptible fellow occupants (Morawska, 2006).  The 

droplet dispersion depends on the airflow in the enclosed environment and the exhalation 

process. The airflow in enclosed environments is normally not uniform (Chen, 2009). 

The pulse release of infectious agents by the index passenger through coughing, 

breathing, or talking exhalations is transient (Gupta et al., 2009 and 2010). Therefore, the 

expiratory droplet distribution and the risk of infection in enclosed environments are 

inhomogeneous and temporal.  

To predict such complex airborne infectious diseases transmission, one can use simple 

models such as well-mixed models (Walkinshaw, 2010), multi-zone models (Chen et al., 

2011), and zonal models (Song et al., 2008). However, these models can provide only 

limited information with poor accuracy (Chen, 2009). In recent years, computational fluid 

dynamics (CFD) has been widely used in modeling person-to-person contaminant 

transport in enclosed environments, since it can provide more detailed and accurate 

information than the simple models. For particle modeling, the Eulerian (e.g. Li et al., 

2011; Seepana and Lai, 2012) and Lagrangian (e.g. Chao and Wan, 2006; Zhang and Li, 

2012) are two popular models. The Eulerian model treats the particle phase as a 
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continuum and solves the scalar transport equation. The Lagrangian model calculates the 

trajectories of numerous individual particles based on Newton’s law. Both the Eulerian 

and Lagrangian models can provide detailed information about transient particle 

concentration distributions in enclosed environments (Wang et al., 2012). 

However, there are some problems of the existing models for transient particle transport 

indoors. First, when applying the CFD models, most of the existing studies assumed that 

the index person coughed or breathed directly without covering the mouth (e.g. Seepana 

and Lai, 2012). In reality, however, people usually cover their mouths when they cough 

or sneeze. For instance, Tang et al. (2009) indicated that people might cover their cough 

or sneeze with a tissue, cupped hand, fist, sleeve, surgical mask or N95 mask. Therefore, 

the uncovered coughing/sneezing assumption would make the simulation of person-to-

person particle transport become unrealistic. To overcome this problem, a model for 

predicting the exhaled airflow from a cough/sneeze with the mouth covered is desirable. 

However, no simple method is available in the literature for predicting such exhaled 

airflow. Thus, it is worthwhile to develop such a model to make the simulation more 

realistic.   

Another major problem of the existing particle models is that they are considerably time-

consuming (Wang et al., 2012). For the Lagrangian model, the discrete random walk 

(DRW) model is typically used to calculate the turbulence dispersion. Statistically 

speaking, a large number of particles are needed in the calculations in order to ensure 

accuracy. Traditionally, modelers have conducted an independence test in order to find a 

reasonable value for this particle number (Zhang and Chen, 2006). However, the 

unguided process of an independence test can be highly time-consuming. For the 

Eulerian model, the unsteady-state calculation with iterations in each time step is also 

very time-consuming. For instance, Wang et al. (2012) reported that the computing times 

of the Eulerian and Lagrangian models for calculating transient particle transport in a 

typical room were 62.2 and 84.9 hours, respectively, on an eight-core cluster with two 2.5 

GHz AMD quad-core processors. Thus, it is necessary to accelerate the particle models 

for quickly predicting person-to-person contaminant transport in enclosed environments.  
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1.2 Outline of this Thesis 

Chapter 2 presents a literature review on the models for predicting person-to-person 

contaminant transport in enclosed environments. The review identified two major 

problems of the existing particle models, which will be addressed in the following 

chapters.   

Chapter 3 presents experimental measurements of person-to-person particle transport in 

an office mockup and the first-class cabin of an MD-82 aircraft cabin. The steady-state 

experimental data obtained in the office were used to validate the steady-state CFD 

model. The experimental data of transient particle transport obtained in the aircraft will 

be used for evaluating the transient particle models in the next chapters.  

Chapter 4 develops simplified models for exhaled airflow from a cough with the mouth 

covered to make the simulation of person-to-person particle transport more realistic. The 

models were developed on the basis of smoke visualization of the exhaled airflow. 

Numerical simulations were then performed to assess the influence of mouth coverings 

on the receptor’s exposure to exhaled particles. 

Chapter 5 develops a method for estimating the necessary particle number in the 

Lagrangian model, in order to reduce the effort that is normally required for evaluating 

different numbers of particles in order to achieve statistically meaningful results.  

Moreover, this chapter proposes the superimposition and time-averaging method to 

reduce the necessary particle number, and so to reduce the computing cost.  

Chapter 6 develops a new particle model on the basis of Markov chain model for quickly 

predicting person-to-person particle transport indoors. When solving the particle transport 

equations, the Markov chain model does not require iterations in each time step, and thus 

it can significantly reduce the computing cost. This chapter used three sets of 

experimental data for transient particle transport to validate the model. 
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Chapter 7 compares the Eulerian, Lagrangian, and Markov chain models in terms of 

performance, computing cost, and robustness, in order to identify a suitable model for 

indoor transient particle transport simulations. This chapter used four cases, including 

three cases with experimental data, for the comparison. 

Chapter 8 summarizes the major findings of this investigation and discusses the 

directions for future work. 
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CHAPTER 2. LITERATURE REVIEW 

To accurately and quickly obtain information about airborne infectious disease 

transmission in enclosed environments is critical in reducing the infection risk to the 

occupants. Therefore, it is worthwhile to improve and accelerate the computer models for 

predicting person-to-person contaminant transport in enclosed environments. This goal 

requires a good understanding of the existing models. Thus, this chapter conducts a 

literature review on the existing particle models in order to identify their major problems. 

 

2.1 Models for Person-to-Person Contaminant Transport Indoors 

The first part of this chapter reviews the existing models for predicting person-to-person 

particle transport in enclosed environments. These models were categorized into two 

groups. The first group is simple particle models, including well-mixed, multi-zone, and 

zonal models, which can provide only limited and inaccurate results. The second group is 

CFD-based models, including Eulerian and Lagrangian models, which can provide 

informative and accurate results. 

 

2.1.1 Well-Mixed, Multi-Zone, and Zonal Models 

The first group of particle models includes the well-mixed, multi-zone, and zonal models. 

The well-mixed model is traditionally used to predict the contaminant concentration in 

enclosed environments. For instance, Walkinshaw (2010) applied a well-mixed model to 

predict the number of virus inhaled by aircraft passenger and office worker groups 

exposed to the exhaled breath of an infected person, as shown in Figure 2-1. Bolster and 
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Linden (2009) used a well-mixed to predict the transient particle concentrations in a room 

with displacement ventilation. In the well-mixed model, the entire room is treated as a 

well mixed space, i.e. the contaminant concentration distribution is assumed to be 

uniform. However, in reality, the contaminant concentration distribution is not uniform in 

most of cases. Therefore, the applications of the well-mixed model are limited.  

 

 

Figure 2-1. Number of influenza virus particles inhaled by office worker and aircraft 
passenger groups exposed to the exhaled breath of one infected person 
(Walkinshaw, 2010). 

 

The well-mixed model is used for a single room, while the multi-zone models are applied 

for multiple rooms connected with openings such as doors and windows. Similar to the 

well-mixed model, the multi-zone models also assume each zone to be a well-mixed 

space. A comprehensive history and theory of multi-zone models can be found in Axley 

(2007). The multi-zone models have been used for predicting airborne infectious disease 

transmission indoors. For instance, Ko et al. (2004) and Jones et al. (2009) used multi-

zone models to calculate the risks based on dose response models. Chen et al. (2011) 

applied an improved multi-zone model to investigate the influence of two-way airflow 

due to temperature difference on the transmission of SARS in the hospital Ward 8A in 
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Hong Kong, as shown in Figure 2-2. However, the assumption that air contaminant 

concentration in a zone is uniform may not be valid.  

 

     
                                           (a)                                                  (b) 

Figure 2-2. (a) Floor plan of Ward 8A during the time of outbreak in March 2003, (b) 
Results of particle concentration distribution using the multi-zone model 
(Chen et al., 2011).  

 

To remedy the problem of the well-mixed and multi-zone models, zonal models have 

been used to predict the distributions of contaminant concentration indoors. Zonal models 

divide an indoor space into a limited number of cells. The number of cells is typically 

less than 1000 (Chen, 2009). Normally, zonal models require the information of airflow 

distribution either from experiment or simulation. Then, the models use mass balance 

equations to calculate the contaminant concentration in each cell to provide the non-

uniform distribution in the room. For example, Song et al. (2008) developed a zonal 

model by integrating it with source and sink models for contaminants, as shown in Figure 

2-3. The review of zonal models by Mergi and Haghighat (2007) indicated that the 

applications of zonal models were limited because of the availability of airflow patterns. 
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Figure 2-3. Results of particle concentration distributions using a zonal model (a) 8 zones, 
(b) 18 zones (Song et al., 2008). 

 

2.1.2 Computational Fluid Dynamics Models 

The second group of particle models is the Computational Fluid Dynamics (CFD) models. 

As a powerful airflow and contaminant modeling tool, CFD models have been widely 

used because they can provide informative and accurate results of transient particle 

transport in enclosed environments. There are two parts of CFD modeling on person-to-

person contaminant transport: airflow modeling and particle modeling. 

 

2.1.2.1 Airflow and Turbulence Models 

To obtain the information of airflow distribution, CFD numerically solves a set of partial 

differential equations for the conservation of mass, momentum (Navier-Stokes equations), 

energy, and turbulence quantities. The solution includes the distributions of air velocity, 

pressure, temperature, turbulence parameters, and contaminant concentration. For indoor 

airflow modeling, there are several turbulence models, which have been systematically 

reviewed and tested by Zhang et al. (2007), and Wang and Chen (2009). The section 

summarizes the popular turbulence models for indoor airflow simulations. 
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The Reynolds-Averaged Navier-Stokes (RANS) models are the most popular CFD 

models. For an incompressible Newtonian flow, the RANS equation can be written as: 

 

1
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where U is the Reynolds average air velocity, t is the time, x represents the coordinate, ρ 

is the air density, P is the pressure, μ is the air viscosity, u is the fluctuating air velocity, S 

is the source term, and the bar stands for Reynolds average.  For RANS models, they can 

be generally divided into two categories: eddy-viscosity models and Reynolds-stress 

models. The eddy-viscosity models use the Boussinesq eddy-viscosity approximation to 

link the turbulence Reynolds stresses to an eddy-viscosity: 
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where i ju u  is the turbulence Reynolds stress, μt is the eddy viscosity, and k is the 

turbulent kinetic energy, which is expressed as: 

 

1

2 i ik u u                                                                                                                    (2.3) 

 

Among the eddy-viscosity models, the zero-equation turbulence eddy-viscosity models 

are the simplest, which have only an algebra equation for turbulent viscosity. For indoor 

airflow simulations, Chen and Xu (1998) proposed the following function to connect 

turbulent viscosity to local mean velocity and the distance to the nearest wall: 
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0.03874t UL                                                                                                        (2.4) 

 

where νt is the turbulent viscosity, U is the local mean velocity, and L is the distance to 

the nearest wall. This model is a very popular zero-equation model for enclosed 

environments. For instance, the commercial CFD software, Airpak, has included this 

model as its default. 

Although the zero-equation models are very easy to use, they fail to consider the non-

local and flow-history effects on turbulent eddy-viscosity. To overcome this problem, 

one-equation turbulence models were developed, which normally use the turbulent 

kinetic energy to calculate the eddy viscosity:  

 

1/ 2
t Ck l                                                                                                                    (2.5) 

 

where C is an empirical coefficient, and l is a turbulence length scale. 

Different from using the turbulent kinetic energy to calculate the eddy viscosity, Spallart 

and Allmaras (1992) developed a model which directly solved a transport equation for 

the eddy viscosity. This model has been adopted in predicting airflow and turbulence in 

indoor environments. 

In addition to the turbulent kinetic energy equation, two-equation eddy-viscosity models 

further solve another transport equation. The k-ε model family is the most popular two-

equation eddy-viscosity model. Launder and Spalding (1974) developed the standard k-ε 

model which has been widely used for predicting indoor airflow field. In the k-ε model, 

the turbulent eddy viscosity is calculated by: 

 

2

t

k
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
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where Cμ is an empirical constant, k is the turbulence kinetic energy, and ε is the 

dissipation rate of turbulence energy. In addition to the standard k-ε model, the Re-

Normalization Group (RNG) k-ε model (Yakhot and Orszag, 1986; Choudhury, 1993), 

which accounts for the effects of smaller scales of motion, has also been widely used for 

indoor environments. Another popular k-ε model is the realizable k-ε model (Shih et al., 

1995), which works better for swirling and separation flows. These k-ε models are 

developed for high Reynolds number flows. To better calculate low Reynolds number 

flows, Launder and Shamar (1974) further developed a low Reynolds number k-ε model 

(LRN). 

The k-ω model family is another popular two-equation eddy-viscosity model. In the k-ω 

models, ω is defined as: 

 

k

                                                                                                                                (2.7) 

 

It was found that the performance of k-ω models is better than the k-ε models in 

predicting equilibrium adverse pressure flows (Wilcox, 1988), but worse in predicting 

wake region and free shear flows (Menter, 1992). To take advantages of both models, 

Menter (1994) further developed a shear stress transport (SST) k-ω model, which is 

essentially a k-ω model in regions near walls and a k-ε model in regions far from walls.  

All of the eddy viscosity models introduced above assume isotropic turbulence structures, 

which may fail for flows with strong anisotropic behaviors. To overcome this problem, 

some researchers applied the Reynolds stress models (RSM) to calculate airflow field in 

indoor environments (Murakami et al., 1990; Renz and Terhaag, 1990). Instead of 

calculating the turbulence eddy viscosity, the RSMs explicitly solve the transport 

equations of Reynolds stresses. Although the RSMs take the anisotropic turbulence 

structures into account, it was found that they are only slightly better than the k-ε model 

but much more time-consuming for indoor airflow simulations (Chen, 1996).  
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Different from the RANS models which model all of the eddies, the large eddy 

simulation (LES) directly resolves large eddies and models small eddies. Therefore, the 

LES requires the separation of small-eddies from large-eddies with a filter (Smagorinsky, 

1963). The rationale behind LES is that momentum, mass, energy, and passive 

contaminants are transported mostly by large eddies, which are more dependent on the 

geometries and boundary conditions. Thus, these important large eddies should be 

directly resolved. One the other hand, small eddies are more isotropic and less dependent 

on the geometries. Thus, modeling small eddies would not introduce significant errors.  

Since LES requires superfine grid in the near-wall region and so considerable computing 

cost, detached eddy simulation (DES) was developed to relax the size of grid in the near-

wall region. The only difference between the LES and DES is that DES employs the 

unsteady RANS models in the near-wall regions. Both the LES and DES include more 

solid fluid physics than the RANS models do, and contain less than one empirical 

coefficient. However, even when the flow is steady-state, the transient flow still needs to 

be solved when one uses LES or DES. Furthermore, the accuracy of LES and DES 

greatly depends on the grid resolution. Therefore, LES and DES always consume much 

more computing resource than the RANS models for steady-state airflow simulations. 

Figure 2-4 summarizes the popular turbulence models that have been applied to predict 

airflow in enclosed environments. 
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Figure 2-4. Summary of popular turbulence models that have been applied to predict 
airflow in enclosed environments. 

 

Wang and Chen (2009) systematically compared eight turbulence models for indoor 

airflow simulations, including an indoor zero equation model (0-eq) (Chen and Xu, 1998), 

a low Reynolds number k-ε model (LRN) (Launder and Shamar, 1974), an RNG k-ε 

model (RNG) (Yakhot and Orszag, 1986), an SST k-ω model (SST) (Menter, 1994), a 

v2f model (v2f) (Davidson et al, 2003), a Reynolds stress model (RSM) (Gibson and 

Launder, 1978), a detached-eddy-simulation model (DES) (Shur et al, 1999), and a large-

eddy-simulation model (LES) (Germano et al, 1996; Lilly, 1992). Figures 2-5 and 2-6 

compares the velocity and turbulent kinetic energy profiles, respectively, predicted by the 

eight turbulence models for one of the cases in Wang and Chen (2009). It was found that 
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the LES model was the best among the eight models in terms of accuracy. However, the 

RNG k-ε model had the best overall performance if the accuracy and computing cost are 

both considered.  

 

 

Figure 2-5. Comparison of the velocity profiles predicted by the eight turbulence models 
for one of the cases in Wang and Chen (2009). 
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Figure 2-6. Comparison of the turbulent kinetic energy profiles predicted by the eight 
turbulence models for one of the cases in Wang and Chen (2009). 

 

2.1.2.2 Eulerian Model 

Based on the airflow predicted by the turbulence models introduced above, one can 

continue to solve the particle equations to obtain information about person-to-person 

contaminant transport in enclosed environments. For particle modeling, the Eulerian and 

Lagrangian are two popular models. The Eulerian model treats the particle phase as a 

continuum and solves the scalar transport equation: 
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where uj is the averaged air velocity; υt is the turbulent kinetic viscosity; σc is the 

turbulent Schimit number; and Sc is the particle source term. The particle gravitational 

settling velocity, usj, can be calculated by: 

 

sj p ju g                                                                                                (2.9) 

 

where τp is the relaxation time of particle. The τp can be calculated by: 
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where Cc is the Cunningham coefficient caused by slippage. The Cc can be calculated by 

(Hinds, 1999): 
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where λ is the mean air molecules free path. A user-defined function can be implemented 

in ANSYS Fluent 12.1 to realize the Eulerian model (ANSYS, 2010). 

The Eulerian model has been widely used in predicting person-to-person contaminant 

transport indoors. For instance, Li et al. (2011) used an Eulerian model to study the 

spatial distribution of exhaled droplet residuals under different ventilation modes. 

Seepana and Lai (2012) investigated the person-to-person exposure due to sneezing in a 

full-scale chamber with an Eulerian model. Li et al. (2013) applied an Eulerian model to 

assess the effectiveness of covering a cough on reducing the exposure to coughed 
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particles. Hang et al. (2014) studied the effect of human walking on interpersonal 

exposure to exhaled contaminants in an isolation room using an Eulerian model. The 

Eulerian model can obtain the distribution of exhaled particle concentrations as an 

example shown in Figure 2-7. 

 

 
                                   (a)                                                                 (b) 

Figure 2-7. Exhaled particle concentration distributions predicted by an Eulerian model in 
a room with (a) mixing ventilation and (b) displacement ventilation (Li et al., 
2011). 

 

2.1.2.3 Lagrangian Model 

Instead of assuming particles to be a continuum as the Eulerian model does, the 

Lagrangian model calculates the trajectories of numerous individual particles based on 

Newton’s law using the particle momentum equation: 
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where pu


 is the particle velocity vector; au


 is the air velocity vector; g


 is the 

gravitational acceleration vector; ρp  and ρa  is the density of particle and air, respectively; 

and  aF


 is Brownian motion force. The drag force, ( )D a pF u u
 

, can be calculated by:     
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where µα is the air viscosity, dp is the diameter of particle, Re is the Reynolds number, 

and CD is the drag coefficient (Morsi and Alexander, 1972), which can be calculated by: 

 

32
1 2Re ReD

aa
C a                                    (2.14) 

 

where a1,  a2, and a3 are constants which apply to smooth spherical particles over several 

ranges of Re given by Morsi and Alexander (1972). 

The turbulence dispersion is modeled using the Discrete Random Walk (DRW) model: 

 

' 2 / 3ii iu k                                               (2.15) 

 

where ζi is a normal random number and ki is the turbulent kinetic energy in cell i. The 

particle trajectories can be calculated using ANSYS Fluent 12.1 (ANSYS, 2010).  

The Lagrangian model has been also widely used in predicting person-to-person 

contaminant transport indoors. For example, Chao and Wan (2006) and Gao and Niu 

(2007) used a Lagrangian model to investigate the dispersion of particles in a room with 
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different ventilation modes. Chen et al. (2010) use a Lagrangian model to predict the 

patient to dentist particle transport in a dental clinic. Gupta et al. (2011a) investigated the 

dispersion of exhaled droplets in a section of an aircraft cabin with the Lagrangian 

method. Gao et al. (2012) applied a Lagrangian model to study the lock-up phenomenon 

of exhaled droplets in a room with displacement ventilation. Zhang and Li (2012) studied 

the transport of exhaled droplets in a fully-occupied high-speed rail cabin using a 

Lagrangian model. The Lagrangian model can obtain the information about the transport 

of each individual exhaled particle as an example shown in Figure 2-8.  

 

 

Figure 2-8. The transport of exhaled droplets in a fully-occupied high-speed rail cabin 
using a Lagrangian model (Zhang and Li, 2012). 
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One can convert the Lagrangian trajectories to particle number concentrations by 

implementing a user-defined function in ANSYS Fluent 12.1. The user-defined function 

counts the particle number in each cell, and then divides it by the volume of the cell, to 

obtain the particle number concentration. 

 

2.2 Major Problems of Existing CFD Models 

Although both the Eulerian and Lagrangian models can provide detailed information 

about person-to-person particle transport in enclosed environments, there are still some 

problems of the existing models. This section discusses two major problems of the 

existing CFD models: unrealistic and time-consuming.  

 

2.2.1 Effect of Covering a Cough/Sneeze 

The first major problem is that, when applying the CFD models, most of the existing 

studies assumed that the index person coughed or sneezed directly without covering the 

mouth. For example, Seepana and Lai (2012) investigated the person-to-person particle 

transport due to sneezing in a full-scale chamber with an Eulerian model. The two 

persons were standing face-to-face with a distance of about 0.3 m. With such a short 

distance, the index person was still assumed to directly sneeze to the receptor, as shown 

in Figure 2-9, which is not realistic in a civilized society. In reality, people usually cover 

their mouths with a hand or a tissue when they cough or sneeze. In health care facilities, 

patients with respiratory illness are usually asked to wear a mask. Center for Disease 

Control and Prevention (CDC) has also strongly recommended the public to “cover your 

cough” (CDC, 2009), since it may reduce the risk of transmission of airborne infectious 

diseases.  
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Figure 2-9. Simulation results of person-to-person exhaled particle concentration 
distribution when sneezing (Seepana and Lai, 2012). 

 

There are a lot of studies experimentally investigated the effect of covering a 

cough/sneeze on person-to-person contaminant transport. Masks such as surgical and 

N95 masks have been extensively investigated especially for its effectiveness of 

removing exhaled particles. For instance, Gupta (2010) conducted a systematic review on 

the performance of N95 masks and concluded that the penetration through the N95 masks 

including the face seal leakages to be 10%. However, for surgical masks, Green et al. 

(2012) found that the removal efficiency of bioaerosols only ranged from 48% to 76%. 

Milton et al. (2013) showed that the surgical masks can remove 96% of coarse influenza 

virus aerosols (> 5 μm) but only 55% of fine influenza virus aerosols (≤ 5 μm). Davies et 

al. (2013) further compared the surgical and homemade mask, and found that the surgical 

mask was 3 times more effective in blocking transmission than the homemade mask. 

Furthermore, the fit performance of a mask can significantly affect the effectiveness of 

removing exhaled particles (Mansour and Smaldone, 2013). In addition to particle 

removal achieved by masks, other influencing factors about masks were also investigated. 

Tang and colleagues applied the real-time schlieren and shadowgraph imaging method to 

visualize the airflow from a cough with and without a mask (Tang et al., 2008; Tang and 

Settles, 2009; Tang et al., 2009). They found that a N95 mask can block the formation of 

the cough jet and a surgical mask can redirect the jet in a less harmful direction. Lai et al. 

(2012) measured the receptor’s exposure in an environmental chamber and concluded 
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that the separation between the source and the receptor was the most influential 

parameter affecting mask protection. Moreover, it was found that masks on the receptors 

offered less protection when compared with masks on the sources (Diaz and Smaldone, 

2010; Mansour and Smaldone, 2013).  

Compared with masks, there are few studies addressing the effectiveness of other mouth 

coverings, such as a tissue or a hand. Tang and colleagues used the real-time schlieren 

and shadowgraph imaging method to extensively visualize the airflow from a 

cough/sneeze with the mouth covered by a tissue, cupped hand, fist, novel ‘coughcatcher’ 

device (Tang et al., 2011) and elbow (Tang et al., 2012), as shown in Figure 2-10. The 

qualitative schlieren and shadowgraph imaging experiments show that covering a cough 

can significantly reduce the horizontal velocity of the exhaled airflow. However, air jets 

were still observed from the leakage points between the face and covering. The 

videos/images produced by Tang and colleagues significantly improve the public 

understanding on the airflow from a cough/sneeze with the mouth covered. However, the 

visualization cannot be used for quantitative assessment of the effect of covering a cough. 

 

 

Figure 2-10. Visualization of exhaled airflow by a cough with mouth covering (a) 
uncovered, (b) fist, (c) cupped hand, (d) tissue, (e) surgical mask, (f) N95 
mask (Tang et al., 2011).  

 

(a) (b)
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Figure 2-10. continued. 

 

Although great effort has been made on experimental studies about covering a cough, 

there are surprisingly few numerical studies available in the literature. Li et al. (2013) 

used CFD simulations to investigate the effects of mouth covering on a co-occupant’s 

exposure under three commonly employed ventilation systems. They concluded that 

covering the mouth could interrupt the horizontal transport of exhaled air and protect the 

co-occupant from direct exposure to the coughed particles. Their work has provided a 

new avenue in studying the effects of a mouth covering on the dispersion of exhaled 

particles. However, in their simulations, a small plate (0.20 m in length × 0.12 m in 

height) located 0.03 m in front of the infector’s mouth was used to represent the mouth 

covering, as shown in Figure 2-11. The plate may not be representative of actual mouth 

coverings used in daily life. Thus, to obtain more realistic information about person-to-

(c) (d)

(e) (f)
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person contaminant transport in indoor environments, it is important to correctly predict 

the exhaled airflow from a cough with the mouth covered. 

 

 

Figure 2-11. A small plate to represent the mouth covering used by Li et al. (2013).  

 

To predict the exhaled airflow from a cough with the mouth covered, one option is to 

directly build a realistic geometry of the mouth covering, such as a tissue, a cupped hand, 

a fist, or an elbow. However, it would be very difficult to identify the air leakage points 

between the face and mouth covering. Furthermore, the complicated geometry of the 

mouth covering would necessitate a large number of grids in CFD simulations and result 

in significant computing costs. Therefore it is worthwhile to develop simplified models 

for predicting the exhaled airflow from a cough with the mouth covered, which can make 

the simulation of person-to-person particle transport more realistic. 

 

2.2.2 Computing Cost of Existing CFD Models 

The studies reviewed above have demonstrated that both the Eulerian and Lagrangian 

models can provide detailed information about transient particle concentration 

Mouth Covering Model
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distributions. However, both models are considerably time-consuming, especially for 

transient particle transport calculations (Wang et al., 2012). For instance, four weeks 

were required to run a four-minute real-time simulation of particle transport in a seven-

row aircraft cabin using the Lagrangian model on an eight-parallel-processor computer 

cluster (Gupta et al., 2011a). Wang et al. (2012) tested the computing times of the 

Eulerian and Lagrangian models with different turbulence models for calculating 

transient particle transport in a typical room on an eight-core cluster with two 2.5 GHz 

AMD quad-core processors, as shown in Table 2-1. It can be seen that, such a calculation 

requires at least 62.2 and 84.9 hours for the Eulerian and Lagrangian models, respectively. 

 

Table 2-1. Computing costs of different particle simulation models (Wang et al., 2012). 

Method Computing time (hour)* 

Eulerian 

RANS 62.2 
LES 323.3 

DES1 367.0 
DES2 396.6 

Lagrangian 

RANS 84.9 
LES 360.5 

DES1 389.2 
DES2 434.3 

* The computing time was estimated on an eight-core cluster. 

 

For the Lagrangian model, it calculates the trajectories of individual particles on the basis 

of Newton’s law. The discrete random walk (DRW) model is typically used to calculate 

the turbulence dispersion. Statistically speaking, a large number of particles are needed in 

the calculations in order to ensure accuracy. Traditionally, modelers have conducted an 

independence test in order to find a reasonable value for this particle number. For 

instance, as shown in Figure 2-12, Zhang and Chen (2006) conducted a particle number 

independence test by comparing the particle concentration solutions from different 

tracked particle numbers. It was found that 10,000 particles are needed to obtain 

statistically meaningful results in their case. However, this unguided process of an 
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independence test can be highly time-consuming when no simple method is available for 

estimating the necessary particle number. Furthermore, the computing cost of the 

Lagrangian model is positively associated with the particle number in the calculation. If 

this number is very large, the computing cost may not be affordable. Therefore, it is 

worthwhile to develop a method for estimating and reducing the necessary particle 

number, in order to accelerate the Lagrangian method for modeling transient particle 

transport in indoor environments. 

 

 

Figure 2-12. A particle number independence test at three poles in one of the cases in 
Zhang and Chen (2006). 

 

Wang et al. (2012) systematically compared the Eulerian and Lagrangian models with 

various turbulence models and found that the Eulerian model was faster than the 

Lagrangian model. However, even with the Eulerian model, the unsteady-state 

calculation with iterations in each time step is considerably time-consuming for 

engineering applications, as shown in Table 2-1.  

Several studies have demonstrated the ability of the Markov chain technique to quickly 

predict spatial and temporal particle concentrations. For instance, Nicas (2000) and Jones 

and Nicas (2014a,b) applied the Markov chain technique in a multi-zone model, as shown 

in Figure 2-13. However, these models can only work for an extremely coarse grid. 
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Therefore, a new model that not only works on a fine grid, as do the Eulerian and 

Lagrangian methods, but also runs faster than these two methods, is desirable. Note that, 

when solving the particle equations, the Markov chain technique does not require any 

iteration in a time step. Compared with the Eulerian model which requires iterations in 

each time step, the Markov chain technique has the potential to reduce the computing 

cost. Therefore, it is worthwhile to develop a new CFD model on the basis of a Markov 

chain frame, which can be much faster than the traditional models, for predicting detailed 

transient particle concentration distributions in enclosed environments. 

 

 

Figure 2-13. The Mycobacterium tuberculosis particle concentrations in the near-field 
and far-field zones in the first 60 seconds following a pulse release of 10 
particles into the near field at time zero using a two-zone model based on a 
Markov chain frame. (Nicas, 2000). 

 

According to the review conducted in this chapter, the following tasks are proposed in 

this study to improve and accelerate the computer models for predicting person-to-person 

contaminant transport in enclosed environments: 

(1) Developing simplified models for predicting the exhaled airflow from a cough with 

the mouth covered; 
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(2) Develop a method for estimating and reducing the necessary particle number in order 

to accelerate the Lagrangian model; 

(3) Develop a new CFD model on the basis of a Markov chain frame, which can be much 

faster than the traditional models. 
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CHAPTER 3. EXPERIMENTAL STUDY 

The major objective of this study is to improve and accelerate the computer models for 

predicting person-to-person contaminant transport in enclosed environments. To assess 

the performance of the computer models, experimental data of airflow, temperature, and 

contaminant concentration distributions are required. Therefore, this chapter aims to 

conduct experimental measurements for person-to-person transient particle transport in 

an office mockup with an under-floor air-distribution (UFAD) system and the first-class 

cabin of an MD-82 airplane. 

 

3.1 Steady-State Experiment in an Office Mockup  

This study first conducted experimental measurements of steady-state distributions of 

airflow, temperature, and passive contaminant concentration in an office mockup with a 

UFAD system. Although the person-to-person contaminant transport is transient in nature, 

the steady-state experimental measurements are still useful for validating the basic 

features of CFD simulations. 

 

3.1.1 Experimental Setup 

This investigation built a full-scale office using an environmental chamber with 

dimensions of 4.8 m in length, 4.3 m in width, and 2.4 m in height, as shown in Figure 3-

1(a). A UFAD system was installed in the chamber. There were two inlets installed at 

floor level, and the exhaust was located at ceiling level. Figure 3-2 shows the linear type 

of diffusers used in the experiment. The environmental chamber could provide a 
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controlled air supply at various airflow rates. The enclosures were well insulated so that 

the chamber could maintain a stable thermal condition. 

 

 
(a) 

 
(b) 

Figure 3-1. (a) Schematic of the office and (b) measuring locations and heights for air 
velocity, temperature and SF6 concentration. 
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Figure 3-2. Linear diffuser used in the UFAD system. 

 

The ventilation rate was set at 3, 6, and 9 ACH, and the person-to-person distance was set 

at 0.5, 1.1, and 1.8 m. This study used sulfur hexafluoride, SF6, as a tracer gas to simulate 

the exhaled contaminants. The SF6 source was located in the breathing zone of one of the 

human simulators, as shown in Figure 3-1. Before each measurement, this investigation 

operated the heating, ventilation, and air-conditioning (HVAC) system for 6 to 8 hours to 

reach a thermally steady-state condition. The measurement started after a steady-state 

concentration distribution of SF6 was reached.  

The air velocity, temperature, and SF6 concentration distributions were measured in the 

experiment. As depicted in Figure 3-1(b), the air velocity, temperature, and SF6 

concentration were measured in two sections at 13 locations in the plane. At each 

location the measurements were conducted at five different heights along a pole. The 

experiment used 30 hot-sphere anemometers to measure the air velocity and air 

temperature. The hot-sphere anemometers had an accuracy of 0.02 m/s for velocity and 

0.2 K for air temperature. A photo-acoustic multi-gas analyzer (INNOVA model 1312) 

with a multipoint sampler (INNOVA model 1309) was employed to measure the SF6 

concentration with an accuracy of 0.001 ppm. The measurement duration of air velocity, 

air temperature, and SF6 at each point was five minutes. Moreover, the air velocity 

magnitude and direction at the inlets were measured using ultrasonic anemometers. All 

the surface temperatures were measured using thermocouples as shown in Table 3-1. 
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Table 3-1. Measured boundary conditions. 

Boundary Temp. (oC) Boundary Temp. (oC) 
Heat Power 

(W) 
North wall (-X) 24.7 Lamps (north) - 87 
South wall (+X) 23.6 Lamps (south) - 70 
East wall (-Z) 24.8 Human simulator (east) 27.7 84 

West wall (+Z) 24.3 Human simulator (west) 28 93.3 
Ceiling (+Y) 24.8 PC simulator (east) 31.4 105 

Floor (-Y) 24.3 PC simulator (west) 30.8 90 
Supply air (north) 21.1 Supply air (south) 20.2 

 

3.1.2 Validation of Steady-State CFD Model 

This study used the experimental data to first validate the steady-state CFD model in 

terms of airflow, temperature, and passive contaminant concentration fields. A RANS 

model with the Eulerian method for steady-state was used in this study because of the 

reasonable accuracy and low computing cost associated with the model (Wang et al., 

2012). The renormalization group (RNG) k-ε model (Choudhury, 1993) was applied to 

calculate the airflow and turbulence because it has the best overall performance among 

all RANS models for enclosed environments (Wang and Chen, 2009). For contaminant 

modeling, because the mean diameter of the droplets exhaled through breathing was 0.4 

μm (Gupta et al., 2010), the effect of gravitational settling on droplet dispersion was 

negligible (Zhao et al., 2009). Furthermore, Chen and Zhao (2010) have indicated that the 

transient process from a droplet to a droplet nucleus due to evaporation is also negligible 

for particles with a diameter of 0.4 μm. Furthermore, this case is to simulate a continuous 

breathing scenario, thus, modeling the breathed droplets as gaseous contaminants is 

reasonable.  

Numerical simulations were conducted using the CFD program, ANSYS Fluent 12.1 

(ANSYS 2010). A user-defined function (UDF) was implemented to realize the Eulerian 

model. Three grid resolutions (101,709, 729,304, and 1,476,360) were tested for CFD 
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grid independence. The 729,304 grid resolution was sufficiently fine to capture such a 

turbulent flow in the office mockup.  

Figure 3-3 compares the measured and calculated air velocity profiles for the six 

validation cases. The lower and upper bounds of the error bars represent the 10th and 90th 

percentiles of the measurement data, respectively. There was a large quantity of data; 

therefore, in order to keep the paper concise, this study shows only representative results 

at poles x1 and x3. It can be seen in Figure 3-3 that both the measured and calculated air 

velocities were higher at the lower region of pole x3, which was near an inlet. At that 

location, the model predicted higher air velocities when the ventilation rate increased, 

which agrees well with the measurements. At the locations that were far away from the 

inlets, such as pole x1, both the measurements and the modeling results show relatively 

low air velocities. For all the cases, the average relative error of air velocity was 45%. 

 

 
                                               (a)                                                            (b) 

Figure 3-3. Comparison of the measured and calculated air velocity profiles for (a) Case 
1: 3 ACH and 0.5 m distance; (b) Case 3: 3 ACH and 1.1 m distance; (c) Case 
9: 6 ACH and 0.5 m distance; (d) Case 11: 6 ACH and 1.1m distance; (e) Case 
21: 9 ACH and 0.5 m distance; and (f) Case 23: 9 ACH and 1.1 m distance. 
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                                               (c)                                                            (d) 

  
                                               (e)                                                            (f) 

Figure 3-3. Continued. 

 

Figure 3-4 shows a comparison of the measured and calculated air temperature profiles at 

poles x3 and z2. The air temperature was normalized by 
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where T is the local temperature, and Tin and Tout are the temperatures at the inlets and 

exhaust, respectively.  
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                                               (a)                                                            (b) 

 
                                               (c)                                                            (d) 

 
                                               (e)                                                            (f) 

Figure 3-4. Comparison of the measured and calculated air temperature profiles for (a) 
Case 1: 3 ACH and 0.5 m distance; (b) Case 3: 3 ACH and 1.1 m distance; (c) 
Case 9: 6 ACH and 0.5 m distance; (d) Case 11: 6 ACH and 1.1m distance; (e) 
Case 21: 9 ACH and 0.5 m distance; and (f) Case 23: 9 ACH and 1.1 m 
distance. 
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be small when the ventilation rate was increased to 9 ACH. The reason was that such 

high air velocities near the inlet caused mixing and destroyed the stratification. The 

model can predict such a phenomenon in good agreement with the measurements. For all 

the cases, the average relative error of air temperature was 31%. 

Figure 3-5 compares the measured and calculated SF6 concentration profiles for the six 

cases. Again, the SF6 concentration was normalized by 

 

* in

out in

C C
C

C C





                                                                                                                (3.2) 

 

where C is the local concentration, and Cin and Cout are the concentrations at the inlets 

and exhaust, respectively. When the ventilation rate was 3 and 6 ACH, both the measured 

and calculated results show that the SF6 concentration had a positive vertical gradient. 

This confirmed that the UFAD system could create a stratified air distribution. With a 

high ventilation rate of 9 ACH, the SF6 concentration was uniform. The high air 

velocities near the inlets caused the mixing type of air distribution at pole x3. In Figure 3-

5(a), remarkable differences existed between measurement and simulation. For pole x5, 

the simulation shows that there was a sudden change of concentrations at the height 

between 1.6 to 1.7 m. A single measurement point here was difficult to capture such a 

sudden change of concentrations. This might be the major reason for the remarkable 

difference between measurement and simulation. However, it can be seen that the 

measured data at 1.6 m matches well with the calculated data at 1.7 m. The measured 

data did fell in the range of calculated results at the height between 1.6 to 1.7 m. The 

similar explanation may apply to the remarkable difference at pole z2. For all the cases, 

the average relative error of SF6 concentration was 44%. 
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                                               (a)                                                            (b) 
 

 
                                               (c)                                                            (d) 

    
                                               (e)                                                            (f) 

Figure 3-5. Comparison of the measured and calculated air temperature profiles for (a) 
Case 1: 3 ACH and 0.5 m distance; (b) Case 3: 3 ACH and 1.1 m distance; (c) 
Case 9: 6 ACH and 0.5 m distance; (d) Case 11: 6 ACH and 1.1m distance; (e) 
Case 21: 9 ACH and 0.5 m distance; and (f) Case 23: 9 ACH and 1.1 m 
distance. 
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Generally speaking, the calculated results agree reasonably well with the experimental 

data in terms of air velocity, temperature, and contaminant concentration distributions. 

Therefore, the RNG k-ε model can be used for predicting steady-state airflow and 

temperature distribution in enclosed environment. Furthermore, the steady-state Eulerian 

model is very fast and can be used for predicting steady-state contaminant concentration 

distribution indoors. The validated steady-state model has been applied to investigate the 

influence of ventilation mode, ventilation rate, and person-to-person distance on steady-

state person-to-person contaminant transport indoors. This work is shown in Appendix A 

instead of the main body because the major focus of this thesis is for transient particle 

transport.  

 

3.2 Experiment of Transient Particle Transport in an Aircraft 

The section above has validated the steady-state CFD model for airflow and temperature 

prediction in enclosed environments. For person-to-person particle transport, it is 

transient in nature. Therefore, experimental data of transient particle transport is needed 

to validate the transient particle models. This section reports our effort in measuring 

person-to-person transient particle transport in the first-class cabin of an MD-82 aircraft. 

 

3.2.1 Experimental Setup 

Figure 3-6(a) shows the schematic model of the fully-occupied first-class cabin of the 

MD-82 aircraft. The dimension of the cabin was 3.28 m (L) × 2.91 m (W) × 2.04 m (H). 

The cabin contained three rows of seats, and each row had four seats as numbered in 

Figure 3-6(b). There were three and a half pieces of diffusers installed on each side in the 

cabin. Each diffuser of the supply inlet contained 280 linear slots which were arranged in 

two rows. The size of each slot was 124 mm (L) × 3 mm (W). Seven exhausts were 

located on each side of the cabin near the floor. The heated manikins were built by 

wrapping solid manikins with nickel-chromium wires. The sensible heat production of 
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the manikin was 75 W (Liu et al., 2013). A detailed description of the cabin can be found 

in Liu et al. (2012). The airflow and thermal boundary conditions of the first-class cabin 

were measured previously by Liu et al. (2012, 2013). This case was an ideal and realistic 

one for studying person-to-person transient particle transport in a mechanical ventilated 

space. 

 

 
(a) 

 

 
(b) 

Figure 3-6. Schematic of the fully-occupied first-class cabin: (a) perspective view and (b) 
plane view (Liu et al., 2013). 
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The manikin 2C was set as the index passenger with a particle source. At the mouth, 

particles were released to the cabin air through a tube of 0.01 m in diameter at a speed of 

1.03±0.02 m/s. To simulate a cough, an electromagnetic valve was installed in the tube, 

as shown in Figure 3-7. Then the particle release time could be controlled accurately. It 

was tested that the release time can be controlled within an error of 0.1 s. A MAG 3000 

PALAS particle generator was used to generate Di-Ethyl-Hexyl-Sebacate (DEHS) mono-

size particles with a diameter of 3 μm. DEHS is a non-soluble liquid with a low 

evaporation rate and a density of 912 kg/m3. The DEHS particles have been widely used 

in experiments for indoor particle transport. For instance, Zhang et al. (2009) used DEHS 

particles to represent the exhaled particles in an airliner cabin mockup and measured their 

distributions under a half-occupied scenario. 

 

 

 Figure 3-7. Particle source with an electromagnetic valve. 

 

The particle concentrations versus time at the breathing zones were measured in front of 

each passenger’s mouth. An aerodynamic particle sizer (APS 3321, TSI Inc., St. Paul, 
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MN) spectrometer was used to measure the particle concentration. To measure the 

transient particle concentration in a location, the sampling time should be larger than the 

response time of the aerodynamic particle sizer but should also be as short as possible. 

The response time of the instrument was 1 s so it was used in the experiment. To verify 

this sampling time, we measured the particle concentrations versus time were measured 5 

mm in front of the source with different sample time intervals, 1, 2, 3 s. The source 

release time was set at 20 s (determination of the source release time is discussed in the 

next sub-section). In addition, the average particle concentration of the constant source 

(continuously releasing source) was also measured to be a reference. Figure 3-8 shows 

the comparison of particle concentrations in front of the source when the sample time 

interval was set at 1, 2, 3 s, respectively, and the average particle concentration of the 

constant source. Each profile was the average one of three-time measurements. The 

difference of the peak particle concentration when sample time interval was 1 s and the 

average concentration of the constant source was only 3.1%. Therefore, the sample time 

interval can be set at 1 s in the experiments to obtain detailed information with acceptable 

measurement accuracy. 

 

Figure 3-8. Comparison of particle concentrations in front of the source for different 
sample time intervals. 
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The source release time is also an important factor of experimental data quality. A single 

cough lasts for less than 1 s (Gupta et al., 2009). With such a short source release time in 

the experiment, the particle concentrations in the cabin may be too low to be detected by 

the aerodynamic particle sizer, so the data quality would be poor. Therefore, the source 

release time should be increased to some extent. Although the increased source release 

time was different from the real coughing case, the experiment was still meaningful since 

the aim of this study was to provide reliable experimental data to validate the CFD 

models. If the source release time had been too long, the experiment might have become 

a steady-state case. Hence, the source release time still needs to be as short as possible to 

meet the purpose of this study, while the particle concentrations at the breathing zone of 

other manikins should be detectable with the aerodynamic particle sizer.  

This investigation compared the particle concentration versus time at 1A and 2A under 

three different source release times: 5, 20, and 60 s, as shown in Figure 3-9. It can be seen 

that a 5 s source release time cannot result in obvious particle concentration peaks. 

Therefore, a 5 s source release time was too short so that the particle concentrations in the 

cabin were too low to be detected by the aerodynamic particle sizer. A 20 s source release 

time can generate a peak concentration that is more than 5 times the background 

concentration. Obviously, a 20 s source release time can result in sufficient particle 

numbers at the breathing zone of the manikins so that the peak concentrations can be 

easily detected and observed. It can be seen that a 60 s source release time can result in 

even higher and more obvious peaks. However, the goal was to make the source release 

time be as short as possible to meet the purpose of this study. Therefore, a 60 s source 

release time may be too long for a transient particle transport case. Hence, a 20 s source 

release time was applied in the experiment. 
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(a) 

 
(b) 

Figure 3-9. Comparison of the particle concentration levels when the source release time 
was 5, 20, and 60 s for (a) 1A and (b) 2A. 
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experimental data quality is related to the repeatability of the experiment, Figure 3-10 

compares the three independent measurements of particle concentration versus time, 

taking 1B and 2A as examples. It can be seen that the three independent measurements 

matched very well with each other. Hence, the repeatability of the experiment is 

acceptable. 

 

 
(a) 

 
(b) 

Figure 3-10. Comparison of three independent measurements of particle concentration 
versus time for (a) 1B and (b) 2A. 
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3.2.2 Experimental Data 

Figure 3-10 showed that the transient particle concentrations were fluctuating to some 

extent. For easy observation and comparison with modeling results, the experimental data 

should be rearranged. Figure 3-11 compares different average metrics of the experimental 

data, i.e. averaged every 1, 5, 10, and 15 seconds. It can be seen that the 15 second 

averaged particle concentration versus time is smooth enough and easy to observe. Thus, 

the experimental data were averaged every 15 s. 

 

 

Figure 3-11. Comparison of different average metrics of the experimental data. 
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Figure 3-12 shows the transient particle concentrations at the breathing zone of each 

passenger. Since the experiment was repeated 3 times, each solid point in the figure 

represents the average value of the 45 data points (15×3=45). The lower and upper bound 

of the error bars represents the 10th and 90th percentile of the 45 data points, respectively. 

The experimental data were normalized by the maximum concentration among the 

monitoring points for the entire experiment. The particle concentration at the breathing 

zone of each passenger reached to a very low level after 500 s. The particle 

concentrations at Seat 1B, 1C were relatively high, while that at the other seats were 

relatively low. A large portion of the released particles moved forward from 2C to 1B, 

and 1C and resulted in relatively high peak concentrations. The rest of the particles 

dispersed to other locations and also led to peaks but with lower concentrations. The 

experimental data measured in the first-class cabin of the MD-82 aircraft can be used in 

evaluating the performance of the models studied and developed in this study. 

 

  

Figure 3-12. Experimental data of transient particle concentrations at the breathing zone 
of each passenger. 
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Figure 3-12. continued. 
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Figure 3-12. continued. 

 

3.3 Conclusions  

This chapter conducted experimental measurements for person-to-person particle 

transport in an office mockup with a UFAD system and the first-class cabin of an MD-82 

airplane. The investigation has led to the following conclusions: 

(1) The experimental data measured in the office mockup can be used in evaluating the 

performance of steady-state airflow and contaminant distribution models. 

(2) The RNG k-ε model can be used for accurately predicting steady-state airflow and 

temperature distribution in enclosed environments. 
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(3) The steady-state Eulerian model is very fast and can be used for predicting steady-

state contaminant concentration distribution in enclosed environments.  

(4) The experimental data measured in the first-class cabin of the MD-82 aircraft can 

be used in evaluating the performance of the transient particle models in the next 

chapters. 
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CHAPTER 4. SIMPLIFIED MODELS FOR COVERING A COUGH 

People usually cover their mouths with a hand or a tissue when they cough or sneeze. To 

predict the exhaled airflow from a cough with the mouth covered, one option is to 

directly build a realistic geometry of the mouth covering, such as a tissue, a cupped hand, 

a fist, or an elbow. However, it would be very difficult to identify the air leakage points 

between the face and mouth covering. Furthermore, the complicated geometry of the 

mouth covering would necessitate a large number of grids in CFD simulations and result 

in significant computing costs. Therefore this chapter aims to develop simplified models 

for predicting the exhaled airflow from a cough with the mouth covered, to make the 

simulation of person-to-person particle transport more realistic. 

 

4.1 Visualization of Exhaled Airflow 

 

4.1.1 Experimental Methods 

In order to understand the characteristics of exhaled airflow from a cough with the mouth 

covered, this study used tobacco smoke to visualize the airflow from 16 human subjects 

(15 males and 1 female). The median diameter of tobacco smoke particles is about 0.2 

μm (Klepeis and Nazaroff, 2002) and the temperature of exhaled tobacco smoke is close 

to that of pure exhaled air (Gupta et al., 2009). Thus, the exhaled smoke flow should 

closely follow the cough airflow. 

The subjects were healthy smokers, and the experimental procedures were approved by 

an institutional review board for human subject experimentation. The subjects were 
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informed of the objectives of this research and the associated risks. Each subject signed a 

consent form before participating in the experiment. The pictures of the exhaled flows 

were obtained by moderate-speed photography at a frequency of 80 Hz. Five types of 

mouth covering methods were tested: a tissue, a cupped hand, a fist, and an elbow with a 

sleeve and without a sleeve, as well as an uncovered cough. Each test was repeated at 

least twice for each subject. The subjects were asked to exhale smoke through a single 

cough. To ensure high-quality flow visualization, a light source and a dark background 

were used. The pictures were taken from both the front and side view. However, the 

results showed that the exhaled airflow visualized from the front view was much more 

limited than that from the side view. Therefore, this study only discusses the 

characteristics of coughed airflow from the side view. 

 

4.1.2 Characterizing Exhaled Airflow from a Cough with the Mouth Covered 

In representative photographs of a cough covered by a tissue (Figure 4-1), the transient 

exhaled airflow profiles can be seen in detail. A forward jet penetrated the tissue, and an 

upward jet escaped from the upper leakage point between the face and tissue. Further 

visualization results are provided in Figure 4-2. Some subjects exhaled both forward and 

upward jets, as shown in Figure 4-2(a), while others exhaled only a forward jet or only an 

upward jet, as shown Figures 4-2(b) and 4-2(c), respectively. The visible horizontal 

transport distance of the smoke was quantitatively estimated using the digital color Y’UV 

model. Averagely, the visible smoke flow from a cough covered by a tissue can travel by 

0.10 m in the horizontal direction. Note that the estimated visible horizontal transport 

distance does not necessarily represent the actual stopping distance of the cough air, since 

the smoke may be too weak to be detected outside the “edge” of the visible smoke. This 

parameter is provided for comparison between different covering methods. 
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Figure 4-1. Representative photographs of a cough covered by a tissue. 

 

 
                            (a)                                         (b)                                   (c) 

Figure 4-2. Visualization of a cough covered by a tissue (a) with both forward and 
upward jets, (b) with only a forward jet, and (c) with only an upward jet. 

 

When a cough was covered by a cupped hand, upward and downward jets escaped the 

upper and lower leakage points, respectively, between the face and hand. Moreover, the 

upward jet tended to move forward to some extent. The visualization results (Figure 4-3) 

indicate that the cough could lead to both upward and downward jets, only an upward jet, 

or only a downward jet. The average horizontal transport distance for a cough covered by 

a cupped hand was 0.13 m. 

 



54 

 

  
                           (a)                                       (b)                                        (c) 
Figure 4-3. Visualization of a cough covered by a cupped hand (a) with both upward and 

downward jets, (b) with only an upward jet, and (c) with only a downward jet. 

 

When a cough was covered by a fist, jets moved through the hole in the subject’s fist 

(Figure 4-4(a)), through the side leakage points between the fist and face (Figure 4-4(b)), 

or through both locations (Figure 4-4(c)). The average horizontal transport distance for a 

cough covered by a fist was 0.30 m, which was remarkably larger than a cough covered 

by a tissue or cupped hand. 

 

  
                             (a)                                   (b)                                      (c) 

Figure 4-4. Visualization of a cough covered with a fist (a) with a jet through the hole in 
the fist, (b) with jets through the leakage points between the face and fist, and 
(c) with both types of jets. 

 

When a cough was covered by an elbow with a sleeve, there was a relatively strong 

upward jet and a relatively weak downward jet through the leakage points between the 
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face and elbow (Figure 4-5). An elbow with a sleeve can significantly redirect the 

exhaled airflow.  

 

  

Figure 4-5. Visualization of a cough covered by an elbow with a sleeve. 

 

Without a sleeve, the jet can move further than with a sleeve, as illustrated in Figure 4-6. 

Therefore, the effectiveness of covering a cough by an elbow without a sleeve is worse 

than that with a sleeve. The average horizontal transport distance for a cough covered by 

an elbow without a sleeve (0.25 m) was relatively larger than that with a sleeve (0.18 m). 

As a reference, this study also visualized the airflow from an uncovered cough. The 

average horizontal transport distance for an uncovered cough was 0.38 m. 

 

 

Figure 4-6. Visualization of a cough covered by an elbow without a sleeve. 
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4.2 Developing the Simplified Models 

From the images captured in the experiments, the jet velocity and direction from the 

coughs can be determined, and these parameters can be used as boundary conditions for 

modeling person-to-person contaminant transport in ventilated spaces. This section 

details the determination of jet velocity and direction. 

 

4.2.1 Methods for Determining Jet Velocity, Direction, and Flow Ratio 

Figure 4-7 shows an example of the first image captured after the start of exhalation. 

Because the image capture frequency was 80 Hz, the image was captured at t = 0.0125 s. 

The distance traveled by the jet was Δs, which was quantitatively determined using the 

digital color Y’UV model. It was found that the peak velocity occurred at the very 

beginning of exhalation, and thus the peak velocity of the jet can be calculated by 

 

s
V

t





                    (4.1) 

 

where Δt is equal to 0.0125 s. 

 

 

Figure 4-7. An example of the first image captured after the start of exhalation. 
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To verify the method, this investigation also visualized the airflow from an uncovered 

cough and compared it with detailed measurement data from Gupta et al. (2009). The 

average calculated peak velocity (11.8 m/s for 15 males and 1 female) agrees reasonably 

well with the measurement data (12.6 m/s for 25 males). Thus, this method can be used to 

determine the jet velocity from a cough with the mouth covered.  

The direction of the jet’s central line was visually approximated as a line that equally 

divided the smoke in the two-dimensional plane as shown in Figure 4-8. Two angles, θ1 

and θ2, were used to describe the direction of the jets. For cases in which two jets were 

observed, the ratio of the airflow rates can be estimated by the volumes of the two smoke 

jets.  

 

 

Figure 4-8. Directions of jets’ central lines. 

 

4.2.2 Simplified Models 

The average, 10th percentile, and 90th percentile of initial jet velocity, direction, and flow 

ratio were determined for coughs with the mouth covered, as shown in Figure 4-9. The 

average velocities of the forward and upward jets from a cough covered by a tissue were 

2.6 and 3.8 m/s, respectively, which were lower than in the other cases. Since the use of 

tissues can also prevent the transmission of infectious diseases by eliminating direct 
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contact with hands, covering a cough with a tissue should be the best approach. Covering 

a cough with a cupped hand is the second best approach, with an average upward jet 

velocity of 6.3 m/s and an average angle of 59.2o. When coughs were covered by an 

elbow with and without a sleeve, the average initial jet velocity was similar between them, 

but the average angle with a sleeve was relatively large. Thus, the sleeve is beneficial for 

redirecting the airflow and reducing the risk of horizontal transport of exhaled particles. 

Covering a cough with a fist is probably the worst approach, with a relatively high 

velocity of 8.5 m/s and a small angle of 25.8o.  

 

 
                                    (a)                                                                 (b) 

Figure 4-9. Average jet velocity, direction, and flow ratio for coughs covered by (a) a 
tissue, (b) a cupped hand, (c) an elbow with a sleeve, (d) an elbow without a 
sleeve, and (e) a fist; and (f) an uncovered cough. The numbers in parentheses 
are the 10th and 90th percentiles, respectively.  
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(c)                                                                 (d) 

 
                                    (e)                                                                 (f) 

Figure 4-9. continued. 

 

A covered mouth can be represented by a simplified method that separates the opening 

into four equal sections with a total area of 8 cm2, as shown in Figure 4-10. The jet 

velocity and direction are defined at two of these sections, and the other two sections are 

defined as solid walls. Thus, the remaining area of the opening is 4 cm2, which is the 

actual area of a mouth opening (Gupta et al., 2009). The various mouth coverings (Figure 

4-10) are defined according to the following rule. If the angle shown in Figure 4-9 is 

larger than 45o, the jet is defined at the upper or lower section of the opening, whereas, if 
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the angle is smaller than 45o, the jet is defined at the upper-front or lower-front section of 

the opening. Under this simplification, the complicated geometries of mouth coverings 

are avoided, and the models can be used more easily for engineering applications. 

 

 
Figure 4-10. Definition methods for different mouth coverings in CFD simulations. 

 

4.3 Model Verification and Case Study 

This investigation designed multiple cases and applied the proposed simplified models to 

calculate the particle concentration distribution as a function of time. The CFD results 

were then qualitatively compared with the images of smoke flow in order to verify the 

models to some extent. Finally, this study explored the influence of mouth coverings on 

the receptor’s exposure.  

 

4.3.1 Case Setup and Simulation Models 

Figure 4-11 illustrates the configuration of the room used in this study. The room was 3.0 

m in length, 3.0 m in width, and 2.3 m in height. There were two persons sitting face to 

face, with a distance of about 1.0 m between their noses. The person on the left was 

assumed to be the index person, while the one on the right was the receptor. The index 
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person was assumed to have a single cough at time zero. The room was ventilated by a 

mixing ventilation system with an air change rate of 3 ACH. The temperature of the 

supplied air was 21 oC, and the surface temperature of the persons was 32 oC. All the 

walls were adiabatic.  

 

 

Figure 4-11. Configuration of the room studied in this study.    

 

Eight cases were investigated, including a cough covered by a tissue, a cupped hand, a 

fist, an elbow with a sleeve, and an elbow without a sleeve, an uncovered cough with 

average and maximum velocity and a hypothetical release of particles with zero velocity. 

The total particle emission rates were exactly the same for all cases. This study assumed a 

constant exhaled velocity for a cough. The constant velocity was assumed to be the peak 

velocity. The cough duration was set at 0.15 s so that the cough expired volume matches 

with the measurement data by Gupta et al. (2009). A particle size of 1.0 μm was assumed 

in order to represent fine particles. The densities of particles were assumed to be uniform.  

Obviously, this case is more complicated than the previously discussed validation cases 

because of the complicated manikin geometry with unstructured tetrahedral grids. This 
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study used the case to further assess the performance of the Markov chain model in a 

realistic scenario. 

 

4.3.2 Verification of the Simplified Models 

Figure 4-12 provides a qualitative comparison of the CFD simulation results (at 0.05 s) 

with images of the smoke flows. The experimental images of (a) to (f) depict the coughs 

with an initial jet velocity and direction that is close to the average values shown in 

Figure 4-9. The experimental image of (g) depicts an uncovered cough with an initial jet 

velocity that is the maximum of the initial jet velocities of all uncovered coughs. The 

proposed simplified models can predict the general trend of exhaled airflow reasonably 

well. For instance, the models predicted the relatively weak jet generated by a cough 

covered by a tissue. For a cough covered by a cupped hand and an elbow, the model 

correctly predicted an upward and a downward jet. Furthermore, the model reflects the 

fact that covering a cough with an elbow with a sleeve can redirect the airflow more 

significantly than an elbow without a sleeve. In addition, the predicted horizontal jet from 

a cough covered by a fist was the strongest jet from coughs with the various mouth 

covering methods.  

 

 
(a) 

Figure 4-12. Qualitative comparison of airflow in experimental images and as depicted 
by simplified models, from coughs covered by (a) a tissue, (b) a cupped hand, 
(c) an elbow with a sleeve, (d) an elbow without a sleeve, and (e) a fist; and 
uncovered coughs with (f)  average velocity and (g) maximum velocity. 
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 (b) 

 
(c) 

    
(d) 

  
(e) 

Figure 4-12. continued. 
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(f) 

 
(g) 

Figure 4-12. continued. 
 

The comparison showed that the CFD simulation results agreed well with the 

experimental observations. Thus, these simplified models can be used to predict the 

airflow from a cough with the mouth covered. 

 

4.3.3 Influence of Mouth Coverings on Receptor’s Exposure 

The background airflow distribution predicted by CFD simulation shows that there was 

no strong advective airflow moving from the index person to the receptor. This feature 

allows us to examine the influence of a cough and mouth coverings on receptor’s 

exposure with minimized impact of background advective airflow. The particle 

concentration distribution at t = 5.0 s is shown in Figure 4-13 for each of the eight cases. 

For a hypothetical release of particles with zero velocity and for coughs covered by a 

tissue, a cupped hand, and an elbow, the exhaled particles moved upward with the 

thermal plumes generated by human bodies. For these cases, the horizontal transport 
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distances of the particles at this moment were less than 0.5 m. For a cough covered by a 

fist and an uncovered cough with an average velocity, the particles penetrated the thermal 

plumes and moved forward to some extent. The horizontal transport distance of the 

particles for covering by a fist was about 0.7 m. For an uncovered cough with a 

maximum velocity, the particles directly entered the breathing zone of the receptor, i.e. 

the horizontal transport distance of the particles was at least 1.0 m. The results indicate 

that the mouth coverings, with the exception of the fist, can significantly reduce the 

horizontal air velocity and cause the particles to move upward with the thermal plumes. 

Furthermore, when the horizontal air velocity is sufficiently high, or the person-to-person 

distance sufficiently small, the particles can directly enter the breathing zone of the 

receptor and result in serious exposure. 

 

 
                                    (a)                                                                (b) 

Figure 4-13. Comparison of particle concentration distributions at 5.0 s for (a) a 
hypothetical release of particles with zero velocity; coughs covered by (b) a 
tissue, (c) a cupped hand, (d) an elbow with a sleeve, (e) an elbow without a 
sleeve, and (f) a fist; and uncovered coughs with (g) average velocity and (h) 
maximum velocity. 
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                                   (c)                                                                 (d) 

 
                                   (e)                                                                 (f) 

 
                                    (g)                                                                 (h) 

Figure 4-13. continued. 

 

Figure 4-14 compares the normalized particle concentration as a function of time in the 

breathing zone of the receptor for the eight cases. The particle concentrations were 
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normalized by the maximum concentration observed in the breathing zone of the receptor 

among all the cases. For uncovered coughs, the exhaled particles directly entered the 

breathing zone of the receptor. The receptor also experienced indirect exposure because 

the particles dispersed throughout the room and again reached the receptor. However, if 

the mouth was covered, the receptor experienced only indirect exposure.  

 

 

Figure 4-14. Comparison of particle concentration as a function of time in the breathing 
zone of the receptor for the eight cases. 

 

As compared with the particle concentration as a function of time, the total exposure of 

the receptor may be more important for estimating the risk of infection. This study 

calculated the inhaled dose, ID, by  
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where C(t) is the particle concentration in the breathing zone of the receptor, t is the time, 

q is the breathing flow rate which was set at 0.00053 m3/s, which corresponds to the ISO 

standard for an adult 1.88 m tall with a mass of 85 kg engaged in moderate work (ISO, 

2007). The inhaled dose was further separated into direct exposure from 0 to 50 s and 

indirect exposure from 50 to 5000 s, as shown in Figure 4-15. All the inhaled doses were 

normalized by the total inhaled dose for an uncovered cough with maximum velocity. 

The results show that, for an uncovered cough with maximum velocity, direct exposure 

was 44.7% of the total exposure. However, if the mouth was covered, no direct exposure 

was observed. Thus, covering a cough can eliminate approximately 45% of the total 

exposure as compared with an uncovered cough with maximum velocity. Note that this 

percentage did not include the particles that were removed from the mouth covering. The 

removal of particles by the mouth covering will be discussed in section 4.4. Interestingly, 

the indirect exposure for all the cases was similar to that of a hypothetical release of 

particles with zero velocity, which indicates that indirect exposure was determined 

primarily by the ventilation rather than the cough itself. 

 

 

Figure 4-15. Comparison of inhaled dose for the eight cases. 
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4.3.4 Influence of Turning the Head Away on Receptor’s Exposure 

The results above demonstrate the benefits of covering a cough. Covering can prevent 

direct exposure, which suggests that turning the head away may also reduce direct 

exposure. The person on the left was assumed to have turned her head by 90o when she 

coughed. Three cases were calculated in which the head was turned away, including an 

uncovered cough with an average velocity and maximum velocity, and a cough covered 

by an elbow with a sleeve. Figure 4-16 compares the total exposure when the head was 

turned away with the total exposure when there were face-to-face uncovered coughs. If 

the index person turned her head away, the receptor experienced only indirect exposure. 

Moreover, the total exposure when the head was turned away was similar to that of a 

hypothetical release of particles with zero velocity. It should be noted that although 

turning the head away can prevent direct exposure, it cannot remove the coughed 

particles in the same way that covering a cough can do. Therefore, covering a cough is 

still a better choice. It is likely that turning the head away while simultaneously covering 

the mouth is the best way to reduce the risk of infection. 

 

 

Figure 4-16. Comparison of the inhaled dose when the head was turned away with the 
inhaled dose when there were face-to-face uncovered coughs. 
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4.3.5 Possibility in Further Simplifying the Model 

The above results show that the total exposures of the mouth covering cases were close to 

that of the zero momentum case. Thus, it is possible to use the zero momentum 

assumption for these cases to calculate reasonable results of the total exposure of receptor. 

Table 4-1 shows the relative errors of using the zero momentum assumption for the 

mouth covering cases. The relative error was defined by 

 

zero covering

covering

100%
ID ID

ID



                                                                                             (6.3) 

 

where IDzero is the inhaled dose of the zero momentum case and IDcovering is the inhaled 

dose of the mouth covering cases. It was found that the relative errors of using the zero 

momentum assumption were all below 3% for covering a cough with a tissue, a cupped 

hand and an elbow with a sleeve. Using the zero momentum assumption for covering a 

cough with a fist resulted in the largest relative error of 7.9%. It was because the exhaled 

droplets by a cough with covering a fist penetrated the human thermal plume while the 

droplets moved upward with the human thermal plume if assuming emission with zero 

momentum. It should be noticed that the relative errors shown in the table were obtained 

based on this particular case. Other settings may result in either higher or lower relative 

errors. In principle, as long as the mouth coverings can make the exhaled droplets move 

with the human thermal plume, the relative error of using the zero momentum assumption 

can be minimized. 
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Table 4-1. Relative errors of using the zero momentum assumption for the mouth 
covering cases. 

Mouth covering approach Relative error 
Tissue  2.4% 

Cupped hand  2.1% 
Fist  7.9% 

Elbow with a sleeve  2.8% 
Elbow without a sleeve  5.3% 

 

4.4 Estimating Droplet Removal Achieved by Mouth Covering 

Mouth covering not only can re-direct the exhaled airflow but also can remove a portion 

of the coughed droplets. This section uses theoretical analysis to estimate removal of 

droplets achieved by a mouth covering. 

 

4.4.1 Original Size Distribution of Coughed Droplets 

To estimate the removal efficiency of the total number of droplets or mass droplet 

concentration by a mouth covering, information about the original size distribution of 

coughed droplets is required. There have been a number of studies and excellent reviews 

(Nicas et al., 2005; Morawska, 2006) on the size distribution of coughed droplets. Early 

studies suggested that the majority of droplets generated through coughs are in the super-

micrometer size (Duguid, 1945; Loudon and Roberts, 1967). Chao et al. (2009) also 

reported that the coughed droplets in close proximity to the mouths are in the super-

micrometer size. Yang et al. (2007) reported that droplet size spans from 0.6 to 16 μm, 

with the average at 8.35 μm during coughing. However, some other studies indicated that 

the majority of coughed droplets are within the sub-micrometer size range (Papineni and 

Rosenthal, 1997; Morawska et al., 2009). The discrepancy of these studies on the size 

distribution of droplets is more because of the instrument and measurement methodology 

(Chen and Zhao, 2010). Table 4-2 summarizes the representative diameter, concentration, 

measurement technique and limitations of the previous studies. It can be found that the 
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studies before 2009 had certain limitations including not considering the effect of 

evaporation, nucleation and water partitioning onto sample media. Furthermore, when 

using microscopic technique after collection of droplets on a media, the sub-micrometer 

droplets cannot be captured. On the other hand, when using modern aerodynamic particle 

sizers, the accuracy of super-micrometer droplets is a major issue. Considering the 

measurement accuracy, the size distribution and concentration of sub-micrometer 

droplets measured by Morawska et al. (2009) tends to be the most reliable. The 

representative diameter is less than 0.8 μm and the average total number concentration 

for sub-micrometer droplets is 0.64 cm-3. For super-micrometer droplets, the size 

distribution measured by Chao et al. (2009) tends to be the most reliable. The results 

show that the geometric mean diameter of super-micrometer droplets by coughs is 13.5 

μm. Although their technique cannot measure the actual concentrations, they roughly 

estimated the droplet concentration using four different methods based on some 

unverified assumptions. The first method was to convert the size-dependent droplet 

numbers measured by Duguid (1946) to the total volume of droplets. Then the total 

volume of droplets and the size distribution were used to estimate the concentrations. The 

second method was analogous to the first one but using the data by Loudon and Roberts 

(1967). The third method was to directly use the total volume of droplets reported by Zhu 

et al. (2006). The fourth method was to divide the total number of droplets captured by 

the total laser measurement volume. However, they acknowledged that significant 

uncertainties existed for all the methods.  Figure 4-17 shows the combination of the size 

distribution obtained by Morawska et al. (2009) and Chao et al. (2009) (the first method 

in their study) for the entire size range. There are two peaks in the size distribution for the 

entire size range. The total concentration including sub-micrometer and super-micrometer 

droplets is 2.91 cm-3. It should be noticed that the considerable uncertainty in the 

concentration of super-micrometer droplets may lead to significant error of the size 

distribution for the entire size range.     
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Table 4-2. Summary of the previous studies on coughed droplets. 

Reference 
Representative 
diameter (μm) 

Concen. 
(cm-3) 

Technique Limitations 

Duguid 
(1946) 

14 5a 
Count of large droplets 
using microscopy after 

collection on a slide 

Sampling losses for 
submicron droplets, 

evaporation, 
nucleation, water 
partitioning NOT 

considered 

Loudon & 
Roberts 
(1967) 

12 0.47a 
Count of large droplets 
using microscopy after 

collection on a filter 

Sampling losses for 
submicron droplets, 

evaporation, 
nucleation, water 
partitioning NOT 

considered 

Fairchild  
& 

Stamper 
(1987) 

 0.6 

Sample aerosol from a 
respirator mask using a 

laser aerosol 
spectrometer 

Sampling losses for 
submicron droplets, 

evaporation, 
nucleation, water 
partitioning NOT 

considered 

Papineni 
& 

Rosenthal 
(1997) 

<0.6 
0.024–
0.22 

A subject coughed into a 
funnel connected to an 

OPCb 

Sampling losses for 
supermicron 

droplets, evaporation, 
nucleation NOT 

considered 

Yang et 
al. 

(2007) 
8.35 

881–
2355 

Measure size distribution 
and concentration using 
APSc after collection in 

an air bag 

Sampling losses for 
supermicron 

droplets, evaporation, 
nucleation, water 
partitioning NOT 

considered 

Chao et 
al. (2009) 

13.5 
2.368–
5.212d 

Measure size distribution 
immediately at mouth 

opening using IMIe 

Sampling losses for 
submicron droplets 

NOT considered 

Morawska 
et al. 

(2009) 
<0.8 0.64 

Measure size distribution 
and concentration using 
APS immediately at the 

mouth opening 

Sampling losses for 
supermicron droplets 

NOT considered 
a Assuming the Cough Expired Volume (CEV) to 1.0 L (Gupta et al., 2009)  
b OPC: Optical Particle Counter 
c APS: Aerodynamic Particle Sizer 
d Concentration estimated based on four different methods 
e IMI: Interferometric Mie Imaging 
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Figure 4-17.  Size distribution and concentration of coughed droplets as combined from 
the data of Morawska et al. (2009) and Chao et al. (2009) (the first data set 
in their study). 

 

4.4.2 Droplet Removal by Mouth Covering 

Droplets can deposit onto the mouth-covering surface by several mechanisms, such as 

Brownian and turbulent diffusion, gravitational settling, inertial impaction, etc. Lai (2002) 

reviewed and collected the particle deposition velocities associated with Brownian and 

turbulent diffusion, gravitational settling, and other mechanisms such as thermopheresis, 

as measured in indoor environments. The deposition velocity, Vd, has a magnitude in the 

range of 10-6 to 10-3 m/s (Lai, 2002). The deposition area, i.e., the surface area of the 

mouth covering, Ad, has a magnitude of 10-2 m2. Thus, the droplet deposition “flow rate”, 

VdAd, has a magnitude in the range of 10-8 to 10-5 m3/s. However, the cough airflow rate 

has a magnitude of 10-3 m3/s (Gupta et al., 2009), which is much larger than the 

deposition “flow rate.” Thus, the droplet deposition due to diffusion and gravitational 

settling onto the surface of the mouth covering is negligible, and this finding agrees with 

that of Li et al. (2012). 

0.0

1.0

2.0

3.0

4.0

5.0

0.1 1 10 100 1000

dC
n

/d
L

og
D

 (
cm

-3
)

Droplet diameter (μm)

Morawska et al. (2009)

Chao et al. (2009)

Combined size distribution



75 

 

To determine the droplet deposition due to inertial impaction, this study referred to the 

impactor theory (Hinds, 1999). Particle removal efficiency is a function of the square root 

of the Stokes number, as shown in Figure 4-18 (Marple and Liu, 1974).  

 

 

Figure 4-18. Relationship between particle removal efficiency and square root of Stokes 
number (Marple and Liu, 1974). 

 

The Stokes number is expressed as (Hinds, 1999) 
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where ρp is the particle density, dp is the particle diameter, U is the air velocity of the 

cough, μ is the dynamic viscosity of air, h is the height of the mouth opening, and Cc is 

the Cunningham coefficient caused by slippage. Furthermore, the relationship between 

particle removal efficiency and the square root of the Stokes number depends on the 
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Reynolds number. Because the average air velocity of a cough is 11.8 m/s and the height 

of the mouth opening is about 0.02 m (Gupta et al. 2009), the Reynolds number is equal 

to 15,051. Thus, the curve for a Reynolds number of 25,000 in Figure 4-18 should be 

used.  

This study also calculated the effect of droplet evaporation. As summarized by Nicas et al. 

(2005), respiratory droplets are composed of an aqueous solution containing inorganic 

and organic ions, glycoprotein, and protein, and the equilibrium diameter of a completely 

evaporated particle (dep) is related to the initial diameter (d0) by 

 

00.44epd d                                                                                                                     (6.5) 

 

Figure 4-19 shows the size distribution of coughed droplets at the origin, after they have 

been removed by the mouth covering, and after evaporation. Droplets with a diameter 

larger than 10 μm are removed by the mouth covering. However, fine droplets can move 

with the airflow through the leakage points between the face and mouth covering. After 

the removal of larger droplets by the mouth covering, the representative diameter drops 

from 13.5 to 5.4 μm. When the remaining droplets have been completely evaporated, the 

representative diameter is further reduced to 2.4 μm. It is expected that at this size, 

droplet nuclei can follow the airflow very closely (Yin et al., 2011). In regard to particle 

removal efficiency, the mouth covering can remove 64.8% of the total number of 

coughed droplets. If the droplets are all assumed to be spherical and of the same density, 

then it can be said that 99.99% of the total mass of coughed droplets is removed by the 

mouth covering. This is because large droplets tend to contain most of the mass. For the 

various data sets provided in Chao et al. (2009), the removal efficiency of the total 

number of coughed droplets varies from 58.6% to 64.8%.  
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Figure 4-19. Size distributions of coughed droplets at the original site, after removal of 
large droplets by a mouth covering, and after evaporation. 

 

4.5 Discussion 

There are a number of limitations to the present study, beginning with the use of smokers 

as human subjects. Smokers may suffer from chronic obstructive pulmonary disease 

(COPD) so that their respiratory patterns may be different from non-smokers (Decramer 

et al., 2012). Typically, a smoker may generate a larger volume of cough air than a non-

smoker (Tang et al., 2012). Therefore, this study recruited “healthy” smokers who 

reported no COPD in their consent forms to minimize this influence, although the 

experimental results may still be somewhat biased. Another limitation was that only 1 

female subject was recruited in this study due to the difficulty of finding female smokers. 

Thus, the proposed models should work better for males than females. To avoid the 

influence of smokers as human subjects, Tang and colleagues proposed to use the real-

time schlieren and shadowgraph imaging method to visualize the exhaled airflow (Tang 

and Settles, 2009; Tang et al., 2008; 2009; 2011; 2012). This method does not require the 
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Tang et al. (2008, 2009), this method can obtain instantaneous velocity vectors of a 

cough. Thus, it is hoped that this investigation will encourage the researchers who have 

access to the schlieren and shadowgraph imaging systems to develop similar models as 

presented in this study based on the advanced experimental technique.  

This study developed the simplified models based on the average values of initial jet 

velocity and direction. As shown in Figure 9, the initial jet velocity and direction can 

vary significantly among subjects. Thus, the proposed simplified models predict the 

general patterns of airflow from a cough with the mouth covered, other than the pattern 

for a particular person. Furthermore, this study limited the models to two dimensions 

since the exhaled airflow visualized from the front view was much more limited than 

from the side view. This assumption may result in a certain error since there might be 

some small airflow in the third direction. Moreover, this study did not consider the effect 

of the speed with which the user can put their hands/tissues into effective position to 

cover the cough. It was reported that this factor could significantly affect the 

effectiveness of covering a cough (Tang et al., 2011). In addition, the movement of the 

head when coughing may also affect the airflow movement (Tang et al., 2011), which 

was not included in the present analysis. Furthermore, mouth covering not only can re-

direct the exhaled airflow but also can remove a portion of the coughed droplets, which 

deserves further study. 

When estimating the removal of droplets by the mouth covering, this study assumed that 

some of the droplets were first removed, and then the size of the rest of the droplets 

decreased because of evaporation. However, these two processes may occur 

simultaneously. That is to say, it is possible that a droplet is evaporating when it is 

removed by the mouth covering, or even a droplet is completed evaporated before it is 

removed. Therefore, to better estimate the removal and size distribution change of the 

droplets, the time scale of the droplet removal by the mouth covering and the droplet 

evaporation should be further considered. 
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4.6 Conclusions 

This chapter used smoke to visualize the airflow exhaled by a cough from 16 human 

subjects with covered mouths. On the basis of the smoke data, simplified models were 

developed for predicting airflow. Finally, the effects of a mouth covering on the 

receptor’s exposure were discussed. Within the scope of this research, the following 

conclusions can be drawn: 

(1) The proposed simplified models can be used to predict the airflow from a cough 

when the mouth is covered, which make the simulation of person-to-person particle 

transport more realistic. 

(2) Covering a cough with a tissue, a cupped hand, or an elbow can significantly 

reduce the horizontal velocity and cause the exhaled particles to move upward with the 

thermal plumes generated by human bodies. 

(3) Covering a cough or turning the head away can prevent the receptor’s direct 

exposure. 
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CHAPTER 5. ACCELERATING THE LAGRANGIAN MODEL 

The Lagrangian model calculates the trajectories of individual particles on the basis of 

Newton’s law. The discrete random walk (DRW) model is typically used to calculate the 

turbulence dispersion. Statistically speaking, a large number of particles are needed in the 

calculations in order to ensure accuracy. Traditionally, modelers have conducted an 

independence test in order to find a reasonable value for this particle number. However, 

the unguided process of an independence test can be highly time-consuming when no 

simple method is available for estimating the necessary particle number. Furthermore, the 

computing cost of the Lagrangian method is positively associated with the particle 

number in the calculation. If this number is very large, the computing cost may not be 

affordable. Therefore, this chapter aims to develop a method for estimating and reducing 

the necessary particle number, in order to accelerate the Lagrangian method for modeling 

transient particle transport in indoor environments. 

 

5.1 Methods for Accelerating the Lagrangian Model 

 

5.1.1 Estimating the Necessary Particle Number 

When performing Lagrangian particle tracking, the number of particles injected from the 

source is one of the inputs. This section proposes a method for estimating the necessary 

particle number in the Lagrangian method that can provide statistically meaningful 

results. 
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For the purpose of estimating the necessary particle number, this study assumed a well-

mixed condition in the indoor environments that were studied. The particle mass balance 

equation is: 

 

in
room room room

( ) ( )
( ) ( )

dC t Q Q S t
C t C t

dt V V V
                          (5.1) 

 

where C(t) and Cin(t) are the particle number concentration in the room and at the inlet, 

respectively, t is the time, Q is the airflow rate from the inlet, S(t) is the particle emission 

rate from an indoor source, and Vroom is the volume of the room. With a certain boundary 

condition, Eq. (5.1) can be easily solved either analytically or numerically.  

To demonstrate the method, this study used an example in which particles are emitted 

from the inlet over duration of ts. The boundary condition can be expressed as: 

 

in

0
( )

0

s
s

s

N
t t

Q tC t

t t

    
 

      and       ( ) 0S t                                       (5.2) 

 

where N is the total number of particles emitted from the inlet. The goal of this section is 

to estimate the lower bound of this N, i.e., the necessary particle number, Nnec. Solving 

Eq. (5.1) with this boundary condition, the particle number concentration as a function of 

time is: 

 

room
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(1 exp( )) 0

( )

( )exp( ( ))

s
s

s s s

N Q
t t t

Q t V
C t

Q
C t t t t t

V

      
   


                                                                   (5.3) 
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 The peak particle concentration over time, C(t)max, is: 

 

max
room

( ) (1 exp( ))s
s

N Q
C t t

Q t V
  


                                                                        (5.4) 

 

To obtain statistically meaningful results for particle concentrations in a target zone, the 

particle number in this zone for Lagrangian tracking should be sufficiently large. 

Considering a target zone with a volume of Vtarget, the particle number in this target zone 

is: 

 

target target( )= ( )N t C t V                                                                                             (5.5) 

 

The peak particle number over time in this zone, Ntarget(t)max, is: 

 

target max max target( ) = ( )N t C t V                                                                                           (5.6) 

 

Assuming that the necessary particle number in the target zone is Ntarget
*, then, 

 

*
target target( )N t N                                                                                                       (5.7) 

 

so that the particle number in this zone at every time point is statistically sufficient. 

According to the law of large numbers, the greater the number of particle samples used, 

the closer the estimate will be to the true value (Durrett, 2010). Therefore, theoretically, 

there is no cut-off value for Ntarget
*. However, in real-life applications, a sample size of 30 
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is normally large enough for a statistical analysis (Student, 1908). This is because the t-

distribution becomes a close fit for the normal distribution when the number of samples 

reaches 30 (Student, 1908). Thus, Ntarget
* can be set at 30. 

However, for a transient particle transport case, theoretically, Eq. (5.7) may not hold at 

every time point. For instance, Ntarget(t) would approach zero as the time approaches 

infinity, causing Eq. (5.7) to become problematic. Therefore, to make the method 

workable for engineering applications, Eq. (5.7) is replaced by: 

 

*
target max target( )N t N                                                                                             (5.8) 

 

where α is a coefficient ranging from 0% to 100%. According to Eq. (5.8), if this α is 

equal to 1%, the results will be statistically meaningful even when the particle 

concentration has decreased to 1% of the peak value (Ntarget(t)max). Therefore, the value of 

α depends on the tolerance of error.  

When Eqs. (5.4), (5.6), and (5.8) are solved together, the following equation is obtained: 

 

room
*

target

target(1 exp( ))

s

s

t
V

N N
t

V







 

                                                                                      (5.9) 

 

where τ is the time constant of the room: 

 

roomV

Q
                                                                                                                         (5.10) 
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Therefore, the necessary number of particles injected from the source for Lagrangian 

tracking, i.e., the lower bound of N, is: 

 

room
*

target

target(1 exp( ))

s

nec
s

t
V

N N
t

V







 

                                                                     (5.11) 

 

Note that Eq. (5.11) was derived under the assumption of a well-mixed condition. If the 

room is ventilated with a displacement ventilation system, there will be a negative 

particle concentration gradient along the vertical axis. In that case, the proposed method 

may underestimate the necessary particle number when the target zone is located in the 

lower part of the room. Even if the room is ventilated with a mixing ventilation system, 

the particle concentration distribution may not be uniform. In that case, the proposed 

method may underestimate the necessary particle number when the particle concentration 

in the target zone is lower than the average level. Therefore, it is important to note that 

the proposed method can only estimate a reasonable magnitude of the necessary particle 

number instead of determining a precise value. 

 

5.1.2 Reducing the Necessary Particle Number 

5.1.2.1 Superimposition Method 

The superimposition method has been successfully used to convert the transient particle 

concentration distributions from a single pulsed source to one from multiple pulsed 

sources (Gupta et al., 2011b). Eq. (5.11) shows that the necessary particle number can be 

reduced as the duration of particle emission is shortened. It implies that the 

superimposition method has the potential to reduce the necessary particle number. Instead 

of injecting particles in each time step, the superimposition method injects particles only 
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in one time step. Then, the transient particle transport from this single pulsed source is 

calculated with Lagrangian particle tracking. Finally, by superimposing the calculated 

particle concentrations with a time shift, the total particle concentration can be calculated 

by:  

 

single( ) ( )i
for all i

C t C t t                                                                                       (5.12) 

 

where Csingle(t-ti) is the particle concentration at time t-ti as a result of emission from the 

single pulsed source that started at time ti. With the superimposition method, only the 

calculation of particle transport from a single pulsed source is needed for Lagrangian 

particle tracking. Therefore, the necessary particle number is: 

 

room
*

,sup target

target(1 exp( ))
nec

t
V

N N
t

V











 
                                                                          (5.13) 

 

where Δt is the time step size. Normally, the time step size is much smaller than time 

constant of the room, τ. Therefore, one can take the Taylor expansion for the exponent in 

Eq. (5.13) and keep only the first term, and Eq. (5.13) becomes: 

 

*room
,sup target

target
nec

V
N N

V



                                                                                               (5.14) 

 

Compared with the pure Lagrangian method, the combined Lagrangian and 

superimposition method can reduce the necessary particle number by a factor of: 
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s

s

t
N

tN





 

                                                                                        (5.15) 

 

5.1.2.2 Time-Averaging Method 

This method performs time-averaging of the particle concentrations within certain time 

steps. If the number of particles tracked in a time step is N’, then the total number of 

particles tracked in n time steps is N’×n. Therefore, theoretically, if time-averaging is 

performed over every n time steps, the necessary particle number can be reduced by n 

times.  

However, if the particle number in the calculation is too small, it is possible that no 

particles will be tracked in the target zone. Therefore, at least one particle should be 

tracked in this zone; i.e., the Ntarget
* in Eq. (5.11) should be at least 1. When Ntarget

* = 1, 

Eq. (5.11) becomes:  

 

room
nec,sup+time-ave

target

V
N

V



                                                                          (5.16) 

 

Compared with the pure Lagrangian method, the combined Lagrangian and time-

averaging method can reduce the necessary particle number by a factor of: 

 

*nec
target

nec,time-ave

N
N

N
                                                                                                        (5.17) 

 

when time-averaging is performed taken over every Ntarget
* time steps. 
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5.1.2.3 Combined Superimposition and Time-Averaging Method 

To further reduce the particle number in the Lagrangian tracking calculation, one can use 

both the superimposition and time-averaging methods. When using only the 

superimposition method, the necessary particle number can be calculated by Eq. (5.14). If 

the time-averaging method is then used for every Ntarget
* time steps, the particle number 

can be further reduced by a factor of Ntarget
*. Therefore, the necessary particle number 

when both methods are used can be calculated by: 

 

room
nec,sup+time-ave

target

V
N

V



                                                                                        (5.18) 

 

Therefore, compared with the pure Lagrangian method, the combined Lagrangian, 

superimposition, and time-averaging method can reduce the necessary particle number by 

a factor of: 

 

*nec
target

nec,sup+time-ave 1 exp( )

s

s

t
N

N
tN






 

                                                                  (5.19) 

 

 

5.2 Verification and Validation of the Proposed Methods 

 

5.2.1 Case Description 

This investigation used the case of transient particle transport in an isothermal ventilated 

chamber (Zhang et al., 2009) to verify the proposed methods. Figure 5-1 shows the 
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configuration of the chamber with spatial dimensions of 4 m in length, 2.1 m in width, 

and 2.4 m in height. The size of both the supply inlet and exhaust was 0.3 m × 0.3 m. The 

supply inlet was located 0.3 m from the ceiling, while the exhaust was located 0.3 m from 

the floor. The averaged supply-air velocity magnitude and turbulence intensity were 0.84 

m/s and 20%, respectively. The incident angle of the supply air was 10° downward. 

Particles with a size of 1 μm were injected through the inlet into the chamber. Transient 

particle concentrations were measured at two locations on a vertical line in the z-

directional center-cutting plane and 1 m away from the inlet. The measurement locations, 

Point 1 and Point 2, were 1.8 and 0.9 m from the floor, respectively. In the experiment, 

two optical particle counters were used to measure the transient particle concentrations at 

the inlet and one of the measurement locations (Point 1 and Point 2) simultaneously. 

Therefore, the experiment was conducted twice in order to obtain the results at the two 

locations. The two profiles exhibit similar trends, but there are some differences. In 

general, at the inlet, there was an initial peak in particle concentration, and then the 

concentration decreased significantly to a stable level. 

 

 

Figure 5-1. Configuration of the chamber studied by Zhang et al. (2009). 
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Numerical simulations were performed using ANSYS Fluent 12.1 (ANSYS, 2010). Three 

grid resolutions (4,934, 18,009, and 134,090) were tested for CFD grid independence. 

The resolution of 18,009 was sufficiently fine to capture the turbulent flow in the 

chamber. The time step was set at 0.05 s. An independence test regarding the time step 

size was conducted to ensure that 0.05 s was small enough to obtain accurate results. 

Particle deposition, resuspension, and droplet evaporation are negligible at a particle size 

of 1 μm (Zhao et al., 2009, Zhu et al., 2012, Chen and Zhao, 2010).  

 

5.2.2 Verification of the Method for Estimating the Necessary Particle Number  

This study designed three cases to verify the method for estimating the necessary particle 

number in the Lagrangian method (Eq. (5.11)), as listed in Table 5-1. The target zone in 

Cases 1 and 3 was the breathing zone, while that in Case 2 was the whole room. The 

center of the breathing zone was Point 2. The volume of the breathing zone was set at 

0.027 m3 (OSHA, 2014). The duration of the particle source in Cases 1 and 2 was one 

time step (Δt), i.e., a pulsed source, while the duration in Case 3 was equal to the time 

constant of the room (τ). The airflow rate (Q) was 0.074 m3/s, the volume of the room 

(Vroom) was 20.2 m3, the necessary particle number in the target zone (Ntarget
*) was set at 

30 (Student, 1908), and the coefficient (α), which depends on the tolerance of error, was 

set at 1%. A sensitivity analysis of the coefficient (α) is discussed in Section 5.3.1. The 

values of these parameters were the same for all the cases discussed in this paper. 

 

Table 5-1. Cases designed to verify the method of estimating the necessary particle 
number. 

Case 
No. 

Target zone 
Volume of target 

zone (m3) 

Characteristics 
of source 
duration 

Duration 
of particle 
source(s) 

Calculated 
necessary particle 
number (millions) 

1 breathing zone 0.027 Δt 0.05 2.24 
2 whole room 20.2 Δt 0.05 0.003 
3 breathing zone 0.027 τ 273 3.55 
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This study conducted particle number independence tests for the designed cases to 

determine whether or not the calculated particle numbers were sufficient for obtaining 

statistically meaningful results. The necessary particle numbers calculated by Eq. (5.11) 

were 2.24, 0.003, and 3.55 million, respectively, for Cases 1, 2, and 3. This study used 

the Lagrangian method with the calculated particle number to predict the particle 

concentration as a function of time in the target zone. To conduct the particle number 

independence tests, this study repeated the simulations with a particle number that was 

increased by a factor of 10. Figure 5-2 compares the normalized particle concentrations 

predicted from the calculated particle number with those predicted from particle number 

that is 10 times larger. All the particle concentrations were normalized by the total 

particle number injected in the room. For all three cases, the Lagrangian method with the 

calculated particle number provided similar results to those with a 10-times-larger 

particle number. Therefore, the proposed method can provide a necessary particle number 

with a reasonable magnitude. This method avoids the unguided process of the particle 

number independence test and thus significantly accelerates the entire calculation process. 

 

 
(a) 

Figure 5-2. Particle number independence tests for (a) Case 1, (b) Case 2, and (c) Case 3.  
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(b) 

 
(c) 

Figure 5-2. continued. 
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necessary particle number for the pure Lagrangian method calculated by Eq. (5.11) was 

3.55 million, while that for the combined method calculated by Eq. (5.14) was 2.24 

million. As shown in Figure 5-3, the particle concentrations predicted by the combined 

Lagrangian and superimposition method agreed well with that predicted by the pure 

Lagrangian method. However, the necessary particle number in the combined method 

(2.24 million) was reduced by 1.6 times in comparison with that in the pure Lagrangian 

method (3.55 million).  

 

 

Figure 5-3. Comparison of normalized particle concentrations predicted by the combined 
Lagrangian and superimposition method and the pure Lagrangian method.  
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could be reduced by five times when using the superimposition method. Therefore, the 

superimposition method can reduce the necessary particle number in the Lagrangian 

method when the particle source duration is relatively long. 

 

 

Figure 5-4. Factor of reduction in particle number as a function of particle source 
duration when the superimposition method is used. 
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method. Thus, the hypothesis that the time-averaging method can reduce the necessary 

particle number has been verified. It should be noted that the number of time steps to be 

averaged depends on the level of detail required in the results. For instance, if the 

calculated particle concentration as a function of time with a time step size of 0.05 s is to 

be compared with experimental data with a measurement time interval of 0.5 s, time-

averaging over more than 10 time steps is not suitable. Furthermore, the particle 

concentrations may vary significantly in certain time steps. To ensure that the peak 

particle concentrations are captured, the time-averaging method should not be used in 

such time steps.   

 

 
(a) 

Figure 5-5. Comparison of normalized particle concentrations predicted by the combined 
Lagrangian and time-averaging method and the pure Lagrangian method for (a) 
Case 1 and (b) Case 3.  
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(b) 

Figure 5-5. continued. 

 

5.2.3.3 Combined Superimposition and Time-Averaging Method 

This study further compared the normalized particle concentrations predicted by the 

combined Lagrangian, superimposition, and time-averaging method and the pure 

Lagrangian method for Case 3. The calculated necessary particle number for the pure 

Lagrangian method was 3.55 million according to Eq. (5.11), while that for the combined 

method was 0.074 million according to Eq. (5.18). As shown in Figure 5-6, the particle 

concentration profiles predicted by the two methods matched well with each other. 

Furthermore, the necessary particle number in the combined method was reduced by 48 

times as compared with that in the pure Lagrangian method. Therefore, this comparison 

verifies that the combined method can further reduce the necessary particle number in the 

Lagrangian method.  
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Figure 5-6. Comparison of normalized particle concentrations predicted by the combined 

Lagrangian, superimposition, and time-averaging method and the pure 
Lagrangian method.  
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superimposition, and time-averaging method can reduce the computing time by 40 times 

when compared with the pure Lagrangian method. Therefore, the proposed method can 

significantly save the computing resources. 

 

Table 5-2. Comparison of computing cost. 

Case No. 
Pure 

Lagrangian 
Lagrangian + 

Superimposition 
Lagrangian + 

Time-averaging 

Lagrangian + 
Superimposition + 

Time-averaging 
Computing time (hour) * 

1 48.9 N/A 1.6 N/A 
3 64.8 48.9 2.2 1.6 

* The computing time was estimated on a single core computer, with two 3.2 GHz Intel(R) 
Xeon(R) processors and 12 GB of memory.  
 

 

5.2.4 Validation with Experimental Data  

5.2.4.1 Particle Transport in an Isothermal Ventilated Chamber 

This study first used the experimental data obtained by Zhang et al. (2009) to validate the 

proposed methods for predicting transient particle transport in indoor environments. This 

case was the same as the previous cases in all aspects except the boundary condition at 

the inlet. In the experiment, two optical particle counters were used to measure the 

transient particle concentrations at the inlet and one of the measurement locations (Point 

1 and Point 2) simultaneously. Therefore, the experiment was conducted twice in order to 

obtain the results at the two locations. The inlet particle concentration profiles at Points 1 

and 2 are shown in Figure 5-7(a) and 5-7(b), respectively. The two profiles exhibit 

similar trends, but there are some differences. In general, at the inlet, there was an initial 

peak in particle concentration, and then the concentration decreased significantly to a 

stable level.  
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With the grid resolution (18,009) used in this study, the volume of the CFD cell at Points 

1 and 2 was 0.0012 m3. The calculated necessary particle number in the combined 

Lagrangian, superimposition, and time-averaging method was 1.72 million on the basis of 

the proposed method. The time step size in the simulation was 0.05 s. Figure 5-7 

compares the numerical results for transient particle concentration with the experimental 

data. Note that two sets of simulations were performed on the basis of the corresponding 

inlet particle concentration profiles.  

 

 
(a) 

Figure 5-7. Comparison of the numerical results for transient particle concentration with 
the corresponding experimental data: (a) Point 1 and (b) Point 2. 
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(b) 

Figure 5-7. continued. 
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proposed method can be used for predicting transient particle transport in indoor 

environments with reasonable accuracy. 

 

5.2.4.2 Particle Transport in an Aircraft Cabin 

This study then used the experimental data of transient particle transport in the first-class 

cabin of the MD-82 aircraft to further validate the proposed combined Lagrangian, 

superimposition, and time-averaging method. According to the proposed method, the 

necessary particle number injected from the source was 1.76 million. Figure 5-8 

compares the transient particle distributions predicted by the combined method with the 

corresponding experimental data.  

 

 
(a) 

Figure 5-8. Comparison of the numerical results of transient particle concentrations 
predicted by combined Lagrangian, superimposition, and time-averaging 
method with the corresponding experimental data at seats: (a) 1B, (b) 1C, (c) 
2B, and (d) 3B.. 
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(b) 

 
(c) 

Figure 5-8. continued. 
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(d) 

Figure 5-8. continued. 

 

As shown in Chapter 3, the particle concentrations at Seat 1B, 1C were relatively high, 

while that at the other seats were relatively low. Figures 5-8(a) and 5-8(b) shows that the 

combined method accurately predicted relatively high peak concentrations at Seats 1B 

and 1C when compared with the experimental data. For the other seats where the 

concentrations were relatively low, only the comparison results at Seats 2B and 3B are 

shown here in Figures 5-8(c) and 5-8(d) to keep the main body of thesis concise. Seat 3B 

was a representative location where the agreement between simulation and experiment 

was very good, while Seat 2B was a representative location where the agreement was 

worse. Generally speaking, the proposed method can predict the general trends of person-

to-person particle transport in the aircraft cabin with reasonable accuracy. The validation 

cases have demonstrated that the proposed method can estimate the necessary particle 

number and thus reduce the effort that is normally required for evaluating different 

numbers of particles in order to achieve statistically meaningful results. 
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5.3 Discussion 

 

5.3.1 Influence of the Coefficient α  

The coefficient α in Eq. (5.11) can influence the calculated necessary particle number in 

the Lagrangian tracking calculations. If this α is equal to 1%, the results will be 

statistically meaningful even when the particle concentration has decreased to 1% of the 

peak value. Therefore, the value of α depends on the tolerance of error. This study 

conducted a sensitivity analysis of α for Case 1. Figure 5-9 compares the normalized 

particle concentrations predicted by the Lagrangian method with particle numbers that 

were estimated using α values of 1%, 10%, and 100%. The corresponding calculated 

necessary particle numbers were 2.24, 0.224, and 0.0224 million, respectively. It can be 

seen that a smaller α provides better results, with fewer fluctuations and uncertainties. 

Theoretically, there is no cut-off value for α. For engineering applications, as shown in 

the figure, an α value of around 1% should minimize fluctuations and uncertainties in the 

results. 

 

Figure 5-9. Comparison of normalized particle concentrations predicted by the 
Lagrangian method with particle numbers that were estimated using α values 
of 1%, 10%, and 100%.  
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5.3.2 Equations for Other Particle Sources  

In order to demonstrate the proposed methods, the analysis above used an example in 

which particles were emitted from the inlet. Another typical scenario is the emission of 

particles from a location inside the room, such as from the cough of an occupant. In this 

case, the boundary condition of Eq. (5.1) is: 

 

0
( )

0

s
s

s

N
t t

tS t

t t

   
 

       and       ( ) 0inC t                                     (5.20) 

 

Using the approach described in Section 5.1.1, the equation for calculating the necessary 

particle number can be obtained. One finds that the equation for a particle source inside 

the room is identical to that for a particle source from the inlet (Eq. (5.11)). 

For some particle sources, Eq. (5.1) cannot be solved analytically with the corresponding 

boundary condition. One such case is that studied by Zhang et al. (2009), as described in 

Section 5.2.4. In this case, the inlet particle concentrations were time-varying, as shown 

in Figure 4-7. The study solved the equation numerically for this case by simply using 

Microsoft Excel. Therefore, even if the equation cannot be solved analytically, the 

proposed methods can be used to accelerate the Lagrangian method by numerically 

solving the ordinary differential equation.   

 

5.3.3 Limitations  

There are a number of limitations to the present work, beginning with the assumption of a 

steady-state airflow field, which may be a problem in some cases. For instance, transient 

particle transport in a building with natural ventilation is likely to have an unsteady-state 

airflow field. In such cases, the time-averaging method can still be used; however, the 
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superimposition method may not be suitable. In addition, this study neglected particle 

deposition onto surfaces because the modeled particle size was 1 μm. However, for 

ultrafine or coarse particles in a room with a low air change rate, the impact of particle 

deposition may be considerable. Therefore, to model the transient transport of ultrafine or 

coarse particles, the influence of deposition should be taken into account. Although the 

transient airflow and particle deposition could affect the necessary particle number in the 

Lagrangian method, it should be noted that the proposed method is to estimate a 

reasonable magnitude of the necessary particle number rather than determining a precise 

value. Therefore, the proposed method can still be used for these scenarios. 

 

5.4 Conclusions 

This chapter developed a method for estimating and reducing the necessary particle 

number in order to accelerate the Lagrangian method for predicting transient particle 

transport in indoor environments. The investigation has led to the following conclusions: 

(1) The proposed method can estimate the necessary particle number and thus reduce 

the effort that is normally required for evaluating different numbers of particles in 

order to achieve statistically meaningful results. 

(2) The superimposition and time-averaging method can reduce the necessary particle 

number, and, as a result, the computing cost can be further reduced. 

(3) The combined Lagrangian, superimposition, and time-averaging method can 

predict transient particle transport in indoor environments with reasonable accuracy. 
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CHAPTER 6. DEVELOPING A MARKOV CHAIN MODEL 

Both the Eulerian and Lagrangian models can provide detailed information about 

transient particle concentration distributions. However, even with the Eulerian method, 

the unsteady-state calculation with iterations in each time step is considerably time-

consuming. Several studies have demonstrated the ability of the Markov chain technique 

to quickly predict spatial and temporal particle concentrations. However, these models 

can only work for an extremely coarse grid. Therefore, a new model that not only works 

on a fine grid, as do the Eulerian and Lagrangian methods, but also runs faster than these 

two methods, is desirable. This chapter aims to develop a Markov chain model, which is 

much faster than the traditional models, for predicting detailed transient particle 

concentration distributions in enclosed environments. 

 

6.1 Model Development 

 

6.1.1 Markov Chain Model for Transient Particle Transport 

This study used the first-order homogeneous Markov chain technique (Ross, 1996) to 

calculate transient particle transport. This Markov chain technique is effective for 

particles with a diameter smaller than 3 μm, which have negligible inertial effects (Chen 

et al., 2012). Assuming that the CFD grid has n-1 cells, the additional cell n can be 

assigned to represent the space to which the particles are removed. Then the probabilities 

of the state’s changing of a particle can form an n×n transition probability matrix, pij: 
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where pi,j is the probability of a particle’s moving from cell i to cell j in a certain time 

step, Δt. The transition probability matrix has the following property: 

 

, ,
1

1 , 0
n

i j i j
j

p p


                                                                                                          (6.2) 

 

This property can be regarded as the constraint of mass balance for the whole domain. 

Since the movement of the particles normally does not have a major impact on the 

airflow field, the transition probability matrix is fixed. 

The particle number vector at the present time (state k) is assumed to be: 

 

 ,1 ,2 ,k k k k nN N N N                                                 (6.3) 

 

where Nk,i represents the number of particles in cell i at time k. Then, after one time step 

(time k+1), the number of particles in cell i can be calculated by: 

 

1, ,1 ,2 ,1, 2, ,k i k k k ni i n iN N N Np p p                            (6.4) 

 

Thus, the particle number vector at time k+1 can be calculated by: 
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1k kN N P                                                                                                                       (6.5) 

 

If one calculates the particle transport from time zero, the particle number vector at time 

k can be calculated by: 

 

int
k

kN N P                                                                                                                      (6.6) 

 

where Nint is the initial particle number vector. The particle number concentration in cell i 

at time k can be calculated by: 

 

,
,

k i
k i

i

N
C

V
                                                                                                                        (6.7) 

 

where Vi is the volume of the cell.  

The transition probability matrix can require a considerably large storage memory for a 

normal CFD grid. To reduce the size of the matrix, Eq. (6.4) was rewritten as: 

 

1, , ,, ,k i k i k nbi i nb i
nb

N N Np p                                                  (6.8) 

 

where the subscript nb represents the neighboring cells or boundaries. Eq. (6.8) shows 

that the Markov chain model does not require iterations in each time step. Therefore, this 

model has the potential to reduce the computing cost. 
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6.1.2 Transition Probabilities 

The key operation in applying the Markov chain technique to the calculation of transient 

particle transport is to obtain the transition probabilities, pij. Again, pij is the probability 

of a particle’s moving from cell i to cell j in a certain time step, Δt. The first step is to 

calculate the probability of a particle’s remaining in the current cell in Δt, pii. It is 

assumed that there are N0 particles present in cell i at time zero and that these particles 

can be removed only by the flow of air. The particle mass balance equation for this cell is 

(Nicas, 2000): 

 

,

( ) ( )
i nb

nbi

dN t N t
Q

dt V
                           (6.9) 

 

where Qi,nb is the airflow rate from cell i to the neighboring cell. Solving Eq. (6.9) leads 

to the following equation (Nicas, 2000): 

 

,
0( ) exp( )i nb

nb i

Q
N t N t

V
                                                (6.10) 

 

Therefore, after a certain time step, Δt, N(Δt) particles remain in this cell. Thus, the 

probability of a particle’s remaining in the current cell in Δt can be expressed as (Nicas, 

2000): 

 

,
, exp( )i nb

i i
nb i

Q
p t

V
                                               (6.11) 
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If cell j is one of the neighboring cells, the probability of a particle’s moving from cell i 

to cell j in Δt can be calculated by (Nicas, 2000): 

 

,
, ,

,

(1 )i j
i j i i

i nb
nb

Q
p p

Q
 


                                            (6.12) 

 

where Qi,nb consists of the mean airflow rate (Qmean,i,nb) and the turbulent fluctuating 

airflow rate (Qfluctuating,i,nb) from cell i to the neighboring cell: 

 

, , , , ,i nb mean i nb fluctuating i nbQ Q Q                                              (6.13) 

 

The mean airflow rate from cell i to the neighboring cell can be obtained from the CFD 

simulation results. The turbulent fluctuating airflow rate from cell i to the neighboring 

cell is determined on the basis of the discrete random walk (DRW) model (ANSYS, 

2010). The turbulent fluctuating velocity in cell i can be calculated by: 

 

' 2 / 3i iu k                                               (6.14) 

 

where ξ is a standard normal random number and ki is the turbulent kinetic energy in cell 

i. This study estimated the turbulent fluctuating airflow rate from cell i to the neighboring 

cell as: 

 

, , , ,2 / 3fluctuating i nb i nb i i nbkQ A                       (6.15) 
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where Ai,nb is the area of the connecting face between cell i and the neighboring cell The 

coefficient αi,nb is calculated by: 

 

,
,

/
2 (1 ( ))

2 / 3
i nb

i nb

i

s t

k


 
                         (6.16) 

 

where Δsi,nb is the distance between the centroid of cell i and that of the neighboring cell. 

The function Φ() is the cumulative distribution function for a standard normal 

distribution: 

 

1
( ) (1 ( ))

2 2

x
x erf                         (6.17) 

 

where erf() is the error function. The coefficient αi,nb considers the effects of the distance 

between the cell centroids and the time step on the turbulent dispersion of particles. For 

instance, when the distance between the cell centroids, Δsi,nb, is extremely small, its effect 

is negligible, and the coefficient αi,nb should be equal to 1. However, when the distance 

between the cell centroids is extremely large, a particle originally at the center of the cell 

has almost no chance of moving to the neighboring cell in one time step, and the 

coefficient should be equal to 0.  

This investigation used the CFD code ANSYS Fluent 12.1 (ANSYS, 2010) to calculate 

the airflow field. A user-defined function (UDF) was implemented in order to realize the 

Markov chain model. 

 



112 

 

6.2 Validation of the Markov Chain Model 

This investigation used two cases, transient particle transport in an isothermal ventilated 

chamber (Zhang et al., 2009) and a chamber with displacement ventilation (Bolster and 

Linden, 2009), to validate the Markov chain model. This section discusses the validation 

results. 

 

6.2.1 Particle Transport in an Isothermal Ventilated Chamber 

The first study was the case of transient particle transport in an isothermal ventilated 

chamber as addressed by Zhang et al. (2009). The configuration of the chamber is shown 

in Figure 5-1. The spatial dimensions were 4 m in length, 2.1 m in width, and 2.4 m in 

height. The size of both the supply inlet and exhaust was 0.3 m × 0.3 m. The supply inlet 

was located 0.3 m from the ceiling, while the exhaust was located 0.3 m from the floor. 

The averaged supply-air velocity magnitude and turbulence intensity were 0.84 m/s and 

20%, respectively. The incident angle of the supply air was 10° downward. Particles with 

a size of 1 μm were injected through the inlet into the chamber. Transient particle 

concentrations were measured at two locations on a vertical line in the z-directional 

center-cutting plane and 1 m away from the inlet. The measurement locations were 0.9 

and 1.8 m from the floor. Two optical particle counters were used to measure the 

transient particle concentrations at the inlet and one of the measurement locations 

simultaneously. Therefore, the experiment was conducted twice in order to obtain the 

results at the two locations. 

Note that the current Markov chain model can only calculate transient particle transport 

from a pulse source. However, the measurement results show that there was an initial 

peak in the particle concentration, and then the concentration decreased significantly to a 

stable level. Thus, this study first divided the inlet concentration into various pulse 

sources with duration of one time step (Δt). The Markov chain model was then used to 

calculate the transient particle concentrations from a pulse source, CMC, with an inlet 



113 

 

particle number concentration of 1 per m3. The total particle concentration can be 

calculated using the superimposition method (Gupta et al., 2011):    

 

0

( ) ( ) ( ) (( 1) )
m

in MC
n

C t C m t C n t C m n t


                                                           (6.18) 

 

where Δt is the time step, m is the number of calculation steps, Cin(n·Δt) is the inlet 

particle concentration at time n·Δt, and CMC((m-n+1)·Δt) is the particle concentration 

from a pulse source with an inlet particle number concentration of 1 per m3 at time (m-

n+1)·Δt.  

Three grid resolutions (4,934, 18,009, and 134,090) were tested for CFD grid 

independence. The resolution of 18,009 was sufficiently fine to capture the turbulent flow 

in the chamber. The time step size was set at 0.01 s. The independence test showed that 

this time step size was sufficiently fine to capture the transient features. Particle 

deposition and resuspension are negligible at a particle size of 1 μm (Zhao et al., 2009, 

Zhu et al., 2012). Figure 6-1 compares the numerical results for transient particle 

concentration with the experimental data. Note that two sets of simulations were 

performed on the basis of the corresponding inlet particle concentrations, as shown in 

Figure 5 of Zhang et al. (2009). In Figure 6-1(a), both the Markov chain model and the 

experimental data exhibit an initial peak in particle concentration. In Figure 6-1(b), the 

model and the experimental data both display smaller peaks in particle concentration than 

those in Figure 6-1(a). Furthermore, the Markov chain model can capture the fact that the 

peak at this location was delayed in time. In general, the trends in transient particle 

transport predicted by the Markov chain model agree well with the experimental data. 
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(a) 
 

 
(b) 

Figure 6-1. Comparison of the numerical results for transient particle concentration with 
the corresponding experimental data: (a) y = 1.8 m, (b) y = 0.9 m. 

 

6.2.2 Particle Transport in a Chamber with Displacement Ventilation 

The second case was a chamber with displacement ventilation, as shown in Figure 6-2 

and used by Bolster and Linden (2009) for measuring transient particle transport. The 
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chamber had dimensions of 2.6 m in length, 1.3 m in width, and 1.8 m in height. The air 

was supplied through four linear slot diffusers, each with a width of 2.5 cm, that were 

installed at the edges of the floor. The exhausts were located at ceiling level according to 

the schematic in Figure 1 of Bolster and Linden (2009). A heated box with a power of 65 

W was located at the center of the floor. The box had dimensions of 0.2 m in length, 0.2 

m in width, and 0.22 m in height. The supply-air velocity was 0.08 m/s. Particles with a 

size of 2 μm were injected from a point above the heated box for 328 s. Transient particle 

concentrations were measured at four locations on a vertical line in the x-directional 

center-cutting plane and 0.65 m away from the heated box. The measurement locations 

were 0.2, 0.6, 1.1, 1.4, and 1.7 m from the floor. 

 

 

Figure 6-2. Configuration of the chamber studied by Bolster and Linden (2009). 

 

This study first used the Markov chain model to calculate CMC and then applied the 

superimposition method (Eq. (6.18)) to calculate the total particle concentration. This 

investigation tested three grid resolutions (19,100, 53,740, and 383,120) for CFD grid 

independence. The resolution of 53,740 was sufficiently fine to capture the turbulent flow 

in the chamber. The time step size was set at 0.01 s. The independence test showed that 

this time step size was sufficiently fine to capture the transient features. Particle 
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deposition and resuspension at a particle size of 2 μm were neglected (Zhao et al., 2009, 

Zhu et al., 2012). Figure 6-3 compares the numerical results for transient particle 

concentration with the experimental data. All the particle concentrations were normalized 

by the concentration at the source. The Markov chain model and experimental data 

display similar particle concentration profiles at the locations with heights of 1.7 and 1.4 

m. At the location with a height of 1.1 m, the peak in the particle concentration was 

delayed in comparison with the peaks at the 1.7 and 1.4 m locations, and this delay was 

correctly captured by the Markov chain model. Furthermore, the model correctly 

predicted lower particle concentrations at the location with a height of 0.2 and 0.6 m than 

at the other locations, which are not shown here. Generally speaking, the trends in the 

normalized particle concentration distributions predicted by the Markov chain model 

again agreed reasonably well with the experimental data. 

 

 
(a) 

Figure 6-3. Comparison of the numerical results for transient particle concentration with 
the corresponding experimental data: (a) y = 1.7 m, (b) y = 1.4 m, and (c) y = 
1.1 m. 
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(b) 

 
(c) 

Figure 6-3. continued. 

 

6.2.3 Particle Transport in an Aircraft Cabin 

This study then used the experimental data of transient particle transport in the first-class 

cabin of the MD-82 aircraft to further validate the Markov chain model. Figure 6-4 

compares the transient particle distributions predicted by the Markov chain model with 

the corresponding experimental data. Chapter 3 showed that the particle concentrations at 
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Seat 1B, 1C were relatively high, while that at the other seats were relatively low. Figures 

6-4(a) and 6-4(b) shows that the combined method accurately predicted relatively high 

peak concentrations at Seats 1B and 1C when compared with the experimental data. For 

the other seats where the concentrations were relatively low, only the comparison results 

at Seats 2B and 3B are shown here in Figures 6-4(c) and 6-4 (d) to keep the main body of 

thesis concise. Seat 3B was a representative location where the agreement between 

simulation and experiment was very good, while Seat 2B was a representative location 

where the agreement was worse. Generally speaking, the Markov chain model can predict 

the general trends of person-to-person particle transport in the aircraft cabin with 

reasonable accuracy. 

 

 
(a) 

Figure 6-4. Comparison of the numerical results of transient particle concentrations 
predicted by the Markov chain model with the corresponding experimental 
data at seats: (a) 1B, (b) 1C, (c) 2B, and (d) 3B. 
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(b) 

 
(c) 

Figure 6-4. continued. 
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(d) 

Figure 6-4. continued. 

 

6.3 Application of the Markov Chain Model  

This study used the validated Markov chain model to predict person-to-person particle 

transport in a ventilated room. Figure 4-11 illustrates the configuration of the room used 

in this study. Detailed description of the study is provided in section 4.3.1. Two persons, 

represented by heated manikins, were seated face to face in the room, with a distance of 

about 1.0 m between their noses. The person on the left was assumed to be the index 

person, while the one on the right was the receptor. The room was ventilated by a mixing 

ventilation system with an air change rate of 3 ACH. The forced air and thermal plumes 

generated by the heated manikins formed a mixed convection airflow pattern. The index 

person was assumed to have a release of particles with zero velocity at time zero. The 

particle release duration was 0.15 s. A particle size of 1 μm was assumed in order to 

represent fine particles.  

Since no experimental data was available for this case, this study used the Lagrangian 

and Eulerian models as benchmarks to assess the performance of the Markov chain 

model. Three grid resolutions (669,109, 1,446,790, and 2,937,128) were tested for CFD 
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grid independence. This investigation used a grid resolution of 1,446,790 in the 

simulation, which was sufficiently fine to capture the turbulent flow in the room. The 

evaporative process is almost instantaneous for droplets with a diameter of 1 μm (Chen 

and Zhao, 2010). The time step size was 0.1 s. The independence test showed that this 

time step size was sufficiently fine to capture the transient features. The calculations for 

this case were performed over a time period of 5 room time constants. For the Lagrangian 

model, the particle number injected from the source was 2.29×106, which was calculated 

using the method proposed in Chapter 4. 

Figure 6-5 compares the time-varying particle concentration distributions predicted by 

the Markov chain model with those predicted by the Lagrangian and Eulerian models in 

the first 100 seconds. All three models show that the exhaled particles initially moved 

upward with the thermal plume generated by the index person. The particles then 

dispersed throughout the room and reached the receptor. It can be seen in Figure 6-5 that 

the Markov chain and Lagrangian models both predicted slower particle dispersion than 

did the Eulerian model. Note that both the Markov chain and Lagrangian models use the 

principle of the random walk model (Eq. 6.14) to calculate the turbulent diffusion, while 

the Eulerian model includes the turbulent diffusion term in the particle governing 

equation. The numerical diffusion introduced by the Eulerian model may be an important 

reason for its more dispersive characteristics. Generally speaking, the trends in transient 

particle transport predicted by the Markov chain model agree well with both the 

Largangian and Eulerian models. For the calculation as a whole in this case, the Markov 

chain model was 8.0 times faster than the Lagrangian model and 6.3 times faster than the 

Eulerian model. 
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(a) 

 
(b) 

Figure 6-5. Comparison of particle concentration distributions at 5, 15, 50, 60, 80, and 
100 s predicted by (a) the Markov chain model, (b) the Lagrangian model, and 
(c) the Eulerian model. 
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(c) 

Figure 6-5. continued. 

 

6.4 Discussion 

There are a number of limitations to the present study, beginning with the assumption of 

a steady-state airflow field. For instance, some sources could change the airflow pattern, 

such as a powerful cough or sneeze from an uncovered mouth. In these cases, the 

probability transition matrix would also change. Therefore, the Markov chain model 

developed in this study is suitable only for those scenarios in which the mouth is 

effectively covered or the influence of the exhaled air is negligible. In the future, we 

intend to develop an improved Markov chain model for transient particle transport under 

unsteady-state airflow conditions. Note that, when combining with the superimposition 

method, the Markov chain model can also be used for predicting steady-state particle 

concentrations with a continuous source. However, when compared with the steady-state 

Eulerian model, the Markov chain model is more time-consuming because it needs to be 

performed under a transient condition. Therefore, the Markov chain model is not superior 

for steady-state particle concentration predictions. The Markov chain technique can also 

be applied in a zonal model so that the calculation speed can be further increased while 
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the results would be less informative. This study also developed an improved zonal 

Markov chain model for predicting faster-than-real-time information about transient 

particle transport in enclosed environments. Details please see Appendix B. 

The Markov chain model that was developed considers the dispersion of particles by the 

mechanisms of advection and turbulence diffusion. For particles with a diameter smaller 

than 3 μm, as were used in this study, these are the only important mechanisms in typical 

indoor environments (Zhao et al., 2009). If only these two mechanisms are considered, 

this model can also be used for tracer gas simulations. However, for particle transport, 

there are other mechanisms, such as gravitational settling, thermophoresis, particle 

fluctuation due to turbulence, and particle acceleration. Zhao et al. (2009) indicated that 

gravitational settling could significantly affect the particle concentration distribution for 

particles with a diameter larger than 5 μm. Thus, to model the transient transport of 

coarse particles, the effect of gravitational settling should be further considered. 

Furthermore, for coarse and ultrafine particles in a room with a low air change rate, the 

influence of particle deposition on the particle concentration distribution may be 

considerable. Therefore, the implementation of particle deposition into the current 

Markov chain model deserves further study.  

 

6.5 Conclusions 

This chapter developed a Markov chain model for quickly predicting transient particle 

transport in enclosed environments. Within the scope of this research, the following 

conclusions can be drawn: 

(1) The proposed Markov chain model can be used for predicting detailed information 

about transient particle transport in enclosed environments. 

(2) The Markov chain model increased the speed of calculation by 8.0 and 6.3 times in 

comparison with the Lagrangian and Eulerian models, respectively, for the case that 

was studied. 



125 

 

CHAPTER 7. COMPARISON OF THREE PARTICLE  MODELS 

This chapter reports our effort in comparing the performance, computing cost, and 

robustness of the Eulerian, Lagrangian, and Markov chain models for indoor transient 

particle transport simulations. On the basis of this comparison, suitable models can be 

identified for the study of transient particle transport indoors and for use by engineers in 

the design of air distributions. 

 

7.1 Comparison of the Performance 

This study used four cases of particle transport to assess the performance of the Eulerian, 

Lagrangian, and Markov chain models. The first case was that of particle transport from a 

single pulsed source in an empty chamber, from Wang and Chen (2009). The present 

investigation used the first case to qualitatively compare the transient particle 

concentration distributions predicted by the three models. The second case was particle 

transport in an isothermal ventilated chamber with a source at the inlet, from Zhang et al. 

(2009). The third case was particle transport from a source located inside a chamber with 

displacement ventilation, from Bolster and Linden (2009). The present study used the 

second and third cases to quantitatively assess the performance of the three models by 

comparing their results with experimental data. The fourth case was person-to-person 

particle transport in the first-class cabin of an MD-82 aircraft cabin with heated manikins 

from Chapter 3. Experimental data was used to assess the performance of the three 

models in a realistic scenario of airborne infectious disease transmission. 
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7.1.1 Case 1: Particle Transport from a Single Pulsed Source 

The first case was that of particle transport from a single pulsed source in an empty 

chamber. Figure 7-1 shows the configuration of the chamber studied by Wang and Chen 

(2009). The dimensions of the chamber were 2.44 × 2.44 × 2.44 m. An isothermal jet 

from an inlet at the upper edge of the chamber developed along the ceiling and then 

moved downward, forming a circulation pattern in the chamber. This is a basic forced 

convection airflow pattern in a mechanically ventilated room. The air change rate was 

22.6 ACH. The thermo-fluid boundary conditions were measured by Wang and Chen 

(2009). Our study modeled a scenario with a pulsed source near the inlet, and another 

scenario with a pulsed source in the circulation zone. Particle transport in the first 

scenario was dominated by convection, while turbulent diffusion also served as an 

important driven force in the second scenario. In the scenario with the pulsed source, the 

duration of the particle source was one time step. 

 

 

Figure 7-1. Configuration of the empty chamber studied by Wang and Chen (2009).    

 

Three structured grid resolutions (8,000, 51,840, and 414,720) were tested for CFD grid 

independence. The resolution of 51,840 was sufficiently fine to produce accurate results 
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for the airflow in the chamber. The Eulerian, Lagrangian, and Markov chain models were 

used to calculate transient particle transport. The particle diameter used was 1 µm. 

Particle deposition and resuspension were neglected because of their limited effects 

(Zhao et al., 2009, Zhu et al., 2012). The time step size was set at 0.01 s. For the 

Lagrangian model, the necessary particle number injected from the source was 1.61 

million. 

Figure 7-2 compares the transient particle concentration distributions predicted by the 

Eulerian, Lagrangian, and Markov chain models for the scenario with a pulsed source 

near the inlet. All three models predicted that the particles moved along the ceiling, 

traveled downward along the right wall, moved to the floor, and finally were dispersed 

throughout the whole chamber by means of recirculation. Figure 7-3 compares the three 

models for the scenario with a pulsed source in the circulation zone. For these two 

scenarios, the three models agreed well with one another in terms of the general trend of 

transient particle transport in the chamber. 

 

 
(a) 

Figure 7-2. Comparison of particle concentration distribution with a pulsed source near 
the inlet at 5, 10, 20, 50, 75, and 100 s predicted by (a) Eulerian model, (b) 
Lagrangianmodel, and (c) Markov chain model. 
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(b) 

 
(c) 

Figure 7-2. continued. 
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(a) 

 
(b) 

Figure 7-3. Comparison of particle concentration distribution with a pulsed source in the 
circulation zone at 5, 15, 30, 50, 75, and 100 s predicted by (a) Eulerian model, 
(b) Lagrangian model, and (c) Markov chain model. 
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(c) 

Figure 7-3. continued. 

 

7.1.2 Case 2: Particle Transport from a Source at the Inlet 

The second case was that of transient particle transport from a source at the inlet in an 

isothermal ventilated chamber, as studied by Zhang et al. (2009). The dimensions of the 

chamber were 4 m in length, 2.1 m in width, and 2.4 m in height, as shown in Figure 5-1. 

Particles with a size of 1 μm were injected through the inlet into the chamber. Particle 

concentrations as a function of time were measured at two locations. The two 

measurement locations (Point 1 and Point 2) were 1.8 and 0.9 m, respectively, from the 

floor, as shown in Figure 5-1.  

This study used a grid resolution of 18,009, which was sufficiently fine to produce 

accurate results for the airflow in the chamber. The Eulerian, Lagrangian, and Markov 

chain models were used to calculate the transient particle concentration distributions. The 

time step size was set at 0.01 s. Particle deposition and resuspension were negligible at a 

particle size of 1 μm (Zhao et al., 2009, Zhu et al., 2012). It should be noted that two sets 

of simulations were performed on the basis of the corresponding inlet particle 
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concentrations, as shown in Figure 5 of Zhang et al. (2009). For the Lagrangian model, 

the necessary particle number injected from the source was 2.24 million. 

Figure 7-4 compares the numerical results for transient particle concentration as predicted 

by the Eulerian, Lagrangian, and Markov chain models and as measured experimentally. 

Figure 7-4(a) compares the results at the location with a height of 1.8 m, which was near 

the inlet. All three models correctly predicted the peak in particle concentration in the 

initial stage that was observed in the experimental data. However, as shown in Figure 7-

4(b), both the simulations and the experiment exhibited a smaller peak than that in Figure 

7-4(a). Furthermore, all three models captured the fact that the peak was delayed in time 

at this location. This weaker response was due to the greater distance between this 

location and the source. Generally speaking, the trends in transient particle concentration 

predicted by the Eulerian, Lagrangian, and Markov chain models agreed reasonably well 

with the experimental data. 

 

 
(a) 

Figure 7-4. Comparison of the numerical results of transient particle concentrations 
predicted by Eulerian, Lagrangian, and Markov chain models with the 
corresponding experimental data at positions (a) y=1.8 m and (b) y=0.9 m. 
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(b) 

Figure 7-4. continued. 

 

7.1.3 Case 3: Particle Transport from a Source Inside the Chamber 

The third case was that of particle transport from a source inside a chamber with 

displacement ventilation, as shown in Figure 5-2 (Bolster and Linden, 2009). The 

chamber dimensions were 2.6 m in length, 1.3 m in width, and 1.8 m in height. The air 

was supplied through four linear slot diffusers around the floor, and the exhausts were 

located at ceiling level. The air velocity at the supply inlet was 0.08 m/s. There was a 

heated box with a power of 65 W on the floor. The particle source was located above the 

box. The particle size was 2 μm, and the duration of particle release was 328 s. Transient 

particle concentrations were measured at five locations, which were 0.2, 0.6, 1.1, 1.4, and 

1.7 m above the floor, respectively, as shown in Figure 5-2. 

Our study used a grid resolution of 53,740, which was sufficiently fine. The Eulerian, 

Lagrangian, and Markov chain models were used to calculate the particle concentration 

as a function of time. The time step size was set at 0.01 s. This study neglected particle 

deposition and resuspension for this case (Zhao et al., 2009, Zhu et al., 2012). For the 
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Lagrangian model, the necessary particle number injected from the source was 0.68 

million. 

Figure 6-5 compares the numerical results for transient particle concentration as predicted 

by the Eulerian, Lagrangian, and Markov chain models and as measured experimentally. 

This investigation normalized all the particle concentrations by the maximum 

concentration at the location with a height of 1.7 m. At the locations with heights of 1.7 

and 1.4 m, the three models obtained particle concentration profiles that were similar to 

the experimental data. At the location with a height of 1.1 m, the peak in particle 

concentration in the experimental data was delayed as compared with the peak at the 1.7 

and 1.4 m locations, and this delay was correctly captured by all the models. In addition, 

all three models correctly predicted extremely low particle concentrations at the locations 

with heights of 0.6 and 0.2 m. To keep this paper concise, the results at these two 

locations are not presented here. In general, the trends in transient particle transport 

calculated by the three models again agreed reasonably well with the experimental data. 

 

 
(a) 

Figure 7-5. Comparison of the numerical results of transient particle concentrations 
predicted by Eulerian, Lagrangian, and Markov chain models with the 
corresponding experimental data at positions: (a) y=1.7 m, (b) y=1.4 m, and (c) 
y=1.1 m. 
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(b) 

 
(c) 

Figure 7-5. continued. 

 
 
7.1.4 Case 4: Person-To-Person Particle Transport in an Airplane 

The fourth case was the person-to-person particle transport in the first-class cabin of an 

MD-82 airplane, as shown in Figure 3-6. Liu et al. (2012) has described the aircraft cabin 

and measured the thermo-fluid boundary conditions in details. The cabin contained three 
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rows with a total of 12 seats as numbered in Figure 3-6. The cabin was fully-occupied by 

heated manikins. Particles with a diameter of 3 μm were released from the mouth of the 

manikin at Seat 2C into the cabin for duration of 20 s. The particle concentrations as a 

function of time were measured at the breathing zones of each passenger. Detailed 

information about the experiment is provided in Chapter 3.  

In the simulation, this investigation used a resolution of 6.4 million, which has been 

proven to be sufficiently fine. The Eulerian, Lagrangian, and Markov chain models were 

used to calculate the transient particle concentration distributions. The time step was set 

at 0.01 s. Particle deposition and resuspension at a particle size of 3 μm were negligible. 

For the Lagrangian model, the necessary particle number injected from the source was 

1.76 million. 

Figure 7-6 compares the normalized particle concentration distribution as a function of 

time as predicted by the Eulerian, Lagrangian, and Markov chain models and as 

measured experimentally. Chapter 3 showed that the particle concentrations at Seats 1B 

and 1C were relatively high, while those at the other seats were relatively low. Figures 7-

6(a) and 7-6(b) show that all three models accurately predicted the relatively high peak 

concentrations at Seats 1B and 1C that were observed in the experimental data. For the 

other seats, where the concentrations were relatively low, the comparison results are 

shown only for Seats 2B and 3B in Figures 7-6(c) and 7-6(d), respectively, in order to 

keep the paper concise. Seat 3B is representative of the locations at which the agreement 

between the simulation and experiment was very good, while Seat 2B is representative of 

those locations at which the agreement was worse. Generally speaking, the Eulerian, 

Lagrangian, and Markov chain models can all provide the transient particle concentration 

distribution with reasonable accuracy for such a complex case. 
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(a) 

 
(b) 

Figure 7-6. Comparison of the numerical results of transient particle concentrations 
predicted by Eulerian, Lagrangian, and Markov chain models with the 
corresponding experimental data at seats: (a) 1B, (b) 1C, (c) 2B, and (d) 3B. 
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(c) 

 
(d) 

Figure 7-6. continued. 

 

7.2 Comparison of the Computing Cost 

The comparisons above show that the Eulerian, Lagrangian, and Markov chain models 

can provide information about transient particle transport with similar accuracy. 
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Computing cost is another important factor in the identification of an efficient model. 

This section evaluates the computing costs of the three models. 

Theoretically, the computing cost of the Eulerian model is related to the grid number and 

the number of iterations in each time step. For the Markov chain model, which does not 

require any iterations, the computing cost is related only to the grid number. For the 

Lagrangian model, the cost factors include the grid number and the number of particles 

being tracked. The necessary particle number for the Lagrangian model can be calculated 

by Eq. (5.11). It can be seen that the particle source duration can influence the necessary 

particle number and therefore the computing time. To isolate the impact of source 

duration, this study substituted the combined Lagrangian and superimposition method for 

the pure Lagrangian method. With the combined method, the necessary particle number 

can be calculated by Eq. (5.13), which is independent from the source duration. For the 

purpose of a fair comparison among the cases, the ratio of Vroom to Vtarget was set at a 

consistent value of 1000, so that the number of particles being tracked was the same for 

all cases. A ratio of 1000 ensured that the volumes of the target zones were of the same 

magnitude in all three cases, and that they were smaller than the volumes of the breathing 

zones. This investigation first used these assumptions to fairly compare the computing 

costs and to develop empirical equations for determining the relative computing times of 

the three models. Next, the empirical equations were modified to account for the effects 

of source duration and the ratio of Vroom to Vtarget with the Lagrangian model. 

Furthermore, for the purpose of a fair comparison, all the cases were calculated over a 

period of five time constants of the room, 5τ, and the time step size was set at the same 

value for all models. 

To quantitatively investigate the speed of calculation, this study determined the relative 

computing times of the three models. For each case, the computing time of the Eulerian 

model relative to that of the Markov chain model was defined as: 

 

,
/ ,

,

Eulerian i
E M i

Markov i

t

t
                                                                                                        (7.1) 
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where tEulerian,i and tMarkov,i is the computing time of Eulerian and Markov chain model for 

Case i, respectively. Similarly, the relative computing time of Lagarngian to Markov 

chain model was defined as: 

 

,
/ ,

,

Lagrangian i
L M i

Markov i

t

t
                                                                                             (7.2) 

 

where tLagrangian,i is the computing time of Lagrangian model for Case i.  

Figure 7-7 shows the relative computing times for the four cases as a function of grid 

number. The linear regression shows that the computing time of the Eulerian model 

relative to that of the Markov chain model was independent of the grid number (the slope 

was zero). This occurred because the only difference between the Eulerian and Markov 

chain models in regard to computing time was the number of iterations in each time step. 

Normally, the Eulerian model requires several iterations in each time step, while the 

Markov chain model does not require any iterations. For a given grid number, the 

computing time of the Eulerian model for a single iteration is comparable to that of the 

Markov chain model for a single time step. Therefore, the computing time of the Eulerian 

model relative to that of the Markov chain model depends only on the number of 

iterations required by the Eulerian model in each time step. For the studied cases, on 

average, the Eulerian model required five to six iterations in each time step, where the 

simulations were assumed to have converged when the residual for the particle equation 

was less than 1×10-5. Therefore, according to regression analysis, the computing time of 

the Eulerian model relative to that of the Markov chain model is: 

 

,
/ ,

,

5.59Eulerian i
E M i

Markov i

t

t
                                                                                             (7.3) 

 



140 

 

The factor of reduction in computing time may be different if the iteration number is 

different.  

 

 

Figure 7-7. Relative computing time as a function of grid number for the Eulerian, 
Lagrangian, and Makov chain model. 

 

Figure 7-7 also shows that the computing time of the Lagrangian model relative to that of 

the Markov chain model was negatively associated with the grid number. When the grid 

number was relatively small, the Lagrangian model required a much longer computing 

time than did the Eulerian and Markov chain models. However, when the grid number 

was relatively large, the Lagrangian model required less computing time than the other 

two models. As indicated in the Lagrangian equations, the calculation of particle 

trajectory is independent of the grid number. Therefore, the influence of grid number on 

the computing time of the Lagrangian model tends to be weaker than its influence on the 

other two models. As shown in the figure, a power function could satisfyingly describe 
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the relationship between the relative computing time of the Lagrangian to Markov chain 

model and the grid number: 

 

, 5 0.68
/ ,

,

1.18 10Lagrangian i
L M i

Markov i

t
n

t
                                                                           (7.4) 

 

where n is the grid number. Note that this equation was derived based on the assumptions 

that the ratio of Vroom to Vtarget was equal to 1000. To account for the impact of this ratio, 

Eq. (7.4) should be modified as: 

 

, 5 0.68 0.68room room
/ ,

, target target

1.18 10 118
1000

Lagrangian i
L M i

Markov i

t V V
n n

t V V
         


                   (7.5) 

 

Moreover, the above equation was developed based on the combined Lagrangian and 

superimposition method in order to isolate the impact of source duration. If the pure 

Lagrangian method is used, the necessary particle number would be increased by a factor 

which can be calculated by Eq. (5.15). Therefore, to account for the impact of source 

duration, Eq. (7.5) should be further modified as: 

 

, 0.68 room
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Lagrangian i
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t
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 

                                              (7.6) 

 

Empirical equations (7.3) and (7.6) can be used to evaluate the relative computing time of 

the Eulerian, Lagrangain, and Markov chain models. They can together serve as a general 
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guideline for selecting an efficient model to calculate transient particle transport in indoor 

environments. 

 

7.3 Comparison of the Robustness 

 

7.3.1 Influence of Time Step Size 

In the above comparison of the Eulerian, Lagrangian, and Markov chain models, the 

same time step size was used in all three models. The time step size should be small 

enough to capture the transient features of particle transport. Theoretically, the transient 

features can be fully captured if, in each time step, the particles move across a distance 

that is less than the width of a cell, i.e., the Courant number is less than 1 (Courant et al., 

1928). Therefore, a suitable time step size can be estimated by the following equation 

(Courant et al., 1928): 

 

min( )
l

t
u

                                                                                                           (7.7) 

 

where l is the distance between the centroids of two adjacent cells, and u is the air 

velocity at the connecting face of the two cells. The time step sizes used in this study 

were chosen according to Eq. (7.7).  

However, for engineering applications, modelers normally are concerned about the 

transient feature of particle transport only in certain locations, such as breathing zones. In 

this case, if the particle concentration does not change rapidly in these locations, the time 

step size may be set at a larger value in order to reduce the computing cost. This section 

reports our effort in exploring the influence of time step size on transient particle 

transport prediction with the three models. 
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This study conducted a sensitivity analysis of time step size using the Eulerian, 

Lagrangian, and Markov chain models for Case 2. The original time step size was set at 

0.01 s, according to Eq. (7.7). Two larger values, 0.05 and 0.5 s, were also tested. Figure 

7-8 compares the transient particle concentrations predicted by the three models with 

time step sizes of 0.01, 0.05, and 0.5 s. For the Eulerian and Lagrangian models, the 

predicted results for the different time step sizes agree very well with one another. Thus, 

the transient particle concentrations were relatively insensitive to time step size for the 

Eulerian and Lagrangian models. However, for the Markov chain model, a larger time 

step size resulted in lower particle concentrations. This difference occurred because the 

particles can move only to the adjacent cells in a time step. When the time step size was 

too large, the Markov chain model was not able to make the particles move beyond the 

adjacent cells. In this case, the transport of particles was slower than it would be in reality. 

Thus, the transient particle concentrations were highly sensitive to time step size for the 

Markov chain model. 

 

 

Figure 7-8. Comparison of transient particle concentrations predicted by the Eulerian, 
Lagrangian, and Markov chain models with a time step size of 0.01, 0.05, and 
0.5 s. 
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Note that, when the transient features in every cell of the domain are of concern, the 

Courant number should be less than 1 (Courant et al., 1928). In this case, the time step 

size is sufficiently fine to ensure the accuracy of Markov chain model. However, in some 

cases, only the transient features in certain cells where particle concentration does not 

change rapidly are of concern. When calculating such cases, modelers may need to run 

the Markov model with a finer time step size when compared with the other two models, 

which increases the computing time. A possible solution would be merging the cells 

where particle concentration changes rapidly so that the time step size could be relaxed 

for Markov chain model, which deserves further study. 

 

7.3.2 Other Influencing Factors 

The Eulerian and Lagrangian are two mature and well-developed models for transient 

particle transport simulations. Although the airflow in the cases above were steady-state, 

the Eulerian and Lagrangian models can also be used under an unsteady-state airflow 

condition (Wang et al., 2012). Furthermore, the two methods can account for other 

mechanisms of particle dispersion such as gravitational settling and thermophoresis 

(Zhao et al., 2004; Zhao et al., 2009), as well as particle deposition onto the surfaces 

(Zhao et al., 2004; Chen et al., 2006). On the other hand, the newly developed Markov 

chain model cannot account for the above influencing factors and can currently only 

calculate the transient particle transport from a single pulsed source. Also the requirement 

of a small time step size is a shortcoming of the Markov chain model. Nevertheless, the 

Markov chain model generally uses far less computing cost compared with the other two 

models. 

 

7.4 Conclusions 

This chapter compares the Eulerian, Lagrangian, and Markov chain models for indoor 

transient particle transport simulations. The comparison discussed their accuracy, 

computing cost, and robustness. The following conclusions can be made: 
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(1) The Eulerian, Lagrangian, and Markov chain models can predict transient particle 

transport in enclosed environments with a similar accuracy. 

(2) With the same time step size and grid number, the Markov chain model was the 

fastest among the three models. Unless super-find grid was used, the Eulerian model 

was faster than the Lagrangian model.  

(3) This study developed empirical equations to quantitatively evaluate the relative 

computing cost among the three models.   

(4) The Eulerian and Lagrangian models were more robust than the Markov chain 

model, because the Markov chain model was sensitive to the time step size. 
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CHAPTER 8. CONCLUSIONS AND FUTURE WORK 

This chapter first summarizes the key conclusions from this study and then discusses the 

direction of future work. 

 

8.1 Conclusions 

This study first conducted experimental measurements of person-to-person particle 

transport in an office mockup with a UFAD system and the first-class cabin of an MD-82 

airplane. The experimental data measured in the office mockup can be used in evaluating 

the performance of steady-state airflow and contaminant distribution models. The RNG 

k-ε model can be used for accurately predicting steady-state airflow and temperature 

distribution in enclosed environments. The steady-state Eulerian model is very fast and 

can be used for predicting steady-state contaminant concentration distribution indoors.  

The experimental data measured in the first-class cabin of the MD-82 aircraft can be used 

in evaluating the performance of the transient particle models. 

This investigation then developed simplified models for predicting exhaled airflow from 

a cough with the mouth covered on the basis of the smoke visualization data. The 

developed models make the simulation of person-to-person particle transport more 

realistic. The numerical investigation found that covering a cough with a tissue, a cupped 

hand, or an elbow can significantly reduce the horizontal velocity and cause the exhaled 

particles to move upward with the thermal plumes generated by human bodies. Covering 

a cough or turning the head away can prevent the receptor’s direct exposure. 

Furthermore, this study developed a method for estimating and reducing the necessary 

particle number in order to accelerate the Lagrangian method for predicting transient 
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particle transport in indoor environments. The proposed method can estimate the 

necessary particle number and thus reduce the effort that is normally required for 

evaluating different numbers of particles in order to achieve statistically meaningful 

results. The superimposition and time-averaging method can reduce the necessary 

particle number, and, as a result, the computing cost can be further reduced. The 

combined Lagrangian, superimposition, and time-averaging method can predict transient 

particle transport in indoor environments with reasonable accuracy. 

This investigation further developed a Markov chain model for quickly predicting 

transient particle transport in enclosed environments. The proposed Markov chain model 

can be used for predicting detailed information about transient particle transport in 

enclosed environments. The Markov chain model increased the speed of calculation by 

8.0 and 6.3 times in comparison with the Lagrangian and Eulerian models, respectively, 

for the case that was studied. 

Finally, this study compared the Eulerian, Lagrangian, and Markov chain models in terms 

of accuracy, computing cost, and robustness, in order to identify a suitable model for 

indoor transient particle transport simulations. All the three models can predict transient 

particle transport in enclosed environments with a similar accuracy.With the same time 

step size and grid number, the Markov chain model was the fastest among the three 

models. Unless super-find grid was used, the Eulerian model was faster than the 

Lagrangian model. The Eulerian and Lagrangian models were more robust than the 

Markov chain model, because the Markov chain model was sensitive to the time step size. 

 

8.2 Future Work 

This investigation performed numerical simulations to assess the influence of mouth 

coverings on the receptor’s exposure to exhaled particles. It was found that covering a 

cough with a tissue, a cupped hand, or an elbow can significantly reduce the horizontal 

velocity and cause the particles to move upward with the thermal plumes generated by a 
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human body. However, mouth covering not only can re-direct the exhaled airflow but 

also can remove a portion of the coughed droplets. The removal of coughed droplets by 

the mouth covering is attributed by the mechanism of particle deposition (Lai, 2002), 

which deserves further experimental and detailed numerical study. In addition, this study 

only considered the coughing scenarios, while the sneezing scenarios are equally 

important, which deserves further investigation. 

For the Markov chain model developed in this study, a major limitation is the assumption 

of a steady-state airflow field. For instance, some sources could change the airflow 

pattern, such as a powerful cough or sneeze from an uncovered mouth. In these cases, the 

probability transition matrix would also change. Therefore, in the future, it is worthwhile 

to develop an improved Markov chain model for transient particle transport under 

unsteady-state airflow conditions.  

Furthermore, the newly developed Markov chain model can only account for the 

mechanisms of advection and turbulence diffusion. It cannot account for other 

mechanisms of particle dispersion such as gravitational settling and thermophoresis, as 

well as particle deposition onto the surfaces. On the other hand, the Markov chain model 

can currently only calculate the transient particle transport from a single pulsed source. 

Also the requirement of a small time step size is a shortcoming of the Markov chain 

model. Nevertheless, the Markov chain model generally uses far less computing cost 

compared with the other two models. Therefore, it is worthwhile to develop an improved 

Markov chain model for transient particle transport which can account for these 

influencing factors. 

In addition, this investigation did not consider the effect of virus survival on the 

receptor’s exposure. There are several environmental parameters affecting the survival of 

virus, such as humidity, temperature, ultraviolet (UV) radiation and ozone reaction 

(Weber and Stilianakis, 2008). For instance, given the first-order inactivation rate 

reported by Hemmes et al. (1960), in an environment with a relative humidity at 15 to 

40%, 21.9% of the influenza A virus would be inactivated after 30 minutes in the air. 

This implies that, although covering a cough cannot avoid the indirect exposure, it can 
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delay the exposure so that a portion of virus could be inactivated. Thus, this characteristic 

further enhances the effectiveness of covering a cough on the receptor’s exposure to virus 

particles, which deserves further detailed study. 
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Appendix A. Steady-State Particle Transport Simulations  

A1 Introduction 

Ventilation mode, ventilation rate, and person-to-person distance are among the factors 

that may influence person-to-person contaminant transport in enclosed spaces. A number 

of studies have focused on these influencing factors. The first factor, ventilation mode, 

was investigated by Qian et al. (2006) and Yin et al. (2011); they compared the 

effectiveness of mixing and displacement ventilation in controlling person-to-person 

contaminant transport in hospital wards. Lai and Wong (2010, 2011) and Olmedo et al. 

(2012) experimentally investigated person-to-person contaminant transport in laboratory 

chambers with mixing and displacement ventilation. There are more than 30 cases 

comparing the effect of mixing and displacement ventilation on person-to-person 

contaminant transport available in these studies. However, fewer studies are available in 

the literature for another commonly used ventilation mode, the Under-Floor Air-

Distribution (UFAD) system (He et al., 2011; Li et al., 2011).   

In regard to the second factor, ventilation rate, Qian et al. (2006) experimentally 

investigated its effect on person-to-person contaminant transport in a hospital ward with a 

displacement ventilation system. Nielsen et al. (2010) compared the person-to-person 

contaminant exposure in a hospital ward with ventilation rates of 6, 9, and 10 ACH. In 

addition, Yin et al. (2011) compared the person-to-person contaminant exposure in an 

inpatient room with ventilation rates of 4 and 6 ACH. However, in most of these cases, 

the patients were lying in beds, which may not be representative of normal scenarios such 

as working in an office. 

 

The third factor, person-to-person distance, was investigated by Qian et al. (2006); they 

assessed its effect on person-to-person contaminant transport in a hospital ward with a 

ventilation rate of 4 ACH. Recently, Olmedo et al. (2012) experimentally investigated the 

effect of person-to-person distance on exhaled contaminant transport in a room with a 
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ventilation rate of 5.6 ACH. However, the effect of person-to-person distance on exhaled 

contaminant transport under high ventilation rates has not been well understood. 

The review of existing studies shows that additional cases of person-to-person 

contaminant transport are needed to in order to address the limitations discussed above. 

Thus, this study aims to develop a database and systematically investigate the general 

effect of ventilation mode, ventilation rate, and person-to-person distance on person-to-

person contaminant transport in mechanically ventilated spaces. 

 

A2 Methods 

A2.1 Developing a Database from the Literature 

This study first collected the cases available in the literature to create a database. Note 

that different studies used different units or normalization methods for the exposure data. 

Thus, the selected studies must be comparative so that the relative effects of the target 

factors on person-to-person contaminant transport can be calculated for each individual 

study. In this investigation, the relative effect of ventilation mode on exposure was 

calculated for each study by: 

 

*
mod

mixing

E
E

E
                                                                                                                  (A1) 

 

where E is the exposure for a particular case, and Emixing is the average exposure for 

mixing ventilation in that study. Thus, the relative effects of ventilation mode on 

exposure could be compared among different studies. The database from the literature 

included 32, 34, and 4 cases for mixing ventilation, displacement ventilation, and UFAD 

systems, respectively.   
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Because all the collected studies included at least one case with a ventilation rate of 6 

ACH, the relative effect of ventilation rate was calculated by: 

 

*

6
ACR

ACH

E
E

E
                                                                                                                  (A2) 

 

where E6ACH is the average exposure at a ventilation rate of 6 ACH for each study. The 

database from the literature contained 23, 20, 15, and 15 cases for 4, 6, 9, and 10 ACH, 

respectively.   

Because all the collected studies included at least one case with a person-to-person 

distance of 1.1 m, the relative effect of person-to-person distance was calculated by: 

 

*

1.1
dis

m

E
E

E
                                                                                                                      (A3) 

 

where E1.1m is the average exposure of the cases with a person-to-person distance of 1.1 m 

for each study. There are 40 cases for different person-to-person distances available in the 

literature. 

 

A2.2 Adding Necessary Cases to the Database 

As discussed in the introduction, the effect of the UFAD system on controlling person-to-

person contaminant transport has not been thoroughly studied. Thus, this study added 24 

UFAD system cases with different ventilation rates and person-to-person distances to the 

database. The ventilation rate varied from 3 to 9 ACH, which is a reasonable range for 

common indoor environments. The person-to-person distance varied from 0.5 to 1.8 m, 
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which corresponds to common scenarios in a two-person office. Because only 

comparative data could be used for the database, 12 mixing ventilation and 12 

displacement ventilation cases were also set up for comparison with the UFAD systems. 

Table A1 lists detailed information about ventilation mode, ventilation rate, and person-

to-person distance for the cases added to the database.  

 

Table A1. Case setup for this study. 
Case Mode ACR (ACH) Dis. (m) Exp. CFD 

1 UFAD 3 0.5 √ √ 
2 UFAD 3 0.8 √ 
3 UFAD 3 1.1 √ √ 
4 UFAD 3 1.8 √ 
5 UFAD 5 0.5 √ 
6 UFAD 5 0.8 √ 
7 UFAD 5 1.1 √ 
8 UFAD 5 1.8 √ 
9 UFAD 6 0.5 √ √ 
10 UFAD 6 0.8 √ 
11 UFAD 6 1.1 √ √ 
12 UFAD 6 1.8 √ 
13 UFAD 7 0.5 √ 
14 UFAD 7 0.8 √ 
15 UFAD 7 1.1 √ 
16 UFAD 7 1.8 √ 
17 UFAD 8 0.5 √ 
18 UFAD 8 0.8 √ 
19 UFAD 8 1.1 √ 
20 UFAD 8 1.8 √ 
21 UFAD 9 0.5 √ √ 
22 UFAD 9 0.8 √ 
23 UFAD 9 1.1 √ √ 
24 UFAD 9 1.8 √ 
25 Mixing 3 0.5 √ 
26 Mixing 3 1.1  √ 
27 Mixing 5 0.5  √ 
28 Mixing 5 1.1  √ 
29 Mixing 6 0.5  √ 
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Table A1. continued. 
30 Mixing 6 1.1  √ 
31 Mixing 7 0.5  √ 
32 Mixing 7 1.1  √ 
33 Mixing 8 0.5  √ 
34 Mixing 8 1.1  √ 
35 Mixing 9 0.5  √ 
36 Mixing 9 1.1  √ 
37 Displace 3 0.5  √ 
38 Displace 3 1.1  √ 
39 Displace 5 0.5  √ 
40 Displace 5 1.1  √ 
41 Displace 6 0.5  √ 
42 Displace 6 1.1  √ 
43 Displace 7 0.5  √ 
44 Displace 7 1.1  √ 
45 Displace 8 0.5  √ 
46 Displace 8 1.1  √ 
47 Displace 9 0.5  √ 
48 Displace 9 1.1  √ 

 

In addition, the literature assessed the effect of ventilation rate on the transport of 

contaminants exhaled only by reclining patients, which may not be representative of 

normal scenarios such as working in an office. Although the patient room settings are 

more likely to a concern for infectious disease transmission, numerous studies have 

focused on the contaminant transport in hospital environments (Chen et al., 2010; Chen et 

al., 2011; Ching et al., 2008; Nielsen et al., 2010; Qian et al., 2006; Yin et al., 2011). The 

office settings where people spend considerable time are also important, since the cross 

infections occurring in the offices are strongly related to working efficiency and 

productivity. Therefore, this study investigated person-to-person contaminant transport in 

an office with different ventilation rates to extend the knowledge in this area. The 

schematic of the office is depicted in Figure 3-1(a). There were two seated persons with a 

height of 1.2 m, two personal computers, and two desks in the office. The following 

section details the strategy for obtaining person-to-person contaminant exposure data. 



166 
 

 

A2.3 Obtaining Person-to-Person Contaminant Exposure Data 

Compared with experimental measurements, Computational Fluid Dynamics (CFD) 

modeling is more cost-effective for obtaining person-to-person contaminant exposure 

data. However, the reliability of the CFD modeling should be verified. Thus, this study 

first conducted experimental measurements in the office to validate the model (Chapter 3), 

and then applied the model to obtain the exposure data for all the cases listed in Table A1. 

Because the UFAD system has not been well studied, the experiment was conducted for 

this system. Furthermore, because ventilation rate and person-to-person distance are the 

target parameters in this study, different ventilation rates and person-to-person distances 

were included in the experiment. Ventilation rates of 3, 6, and 9 ACH correspond to low, 

medium, and high ventilation, respectively, in normal indoor environments. Person-to-

person distances of 0.5 and 1.1 m correspond to close and normal distances, respectively, 

for common scenarios. Table A1 also illustrates the measurement cases identified. 

 

A3 Results 

A3.1 Effect of Ventilation Mode 

Using the 118 cases in the database that address ventilation mode, it is possible to study 

the effect of ventilation mode on person-to-person contaminant transport. Figure A1 

compares the median value of the relative effect of mixing ventilation, displacement 

ventilation, and the UFAD system on person-to-person contaminant exposure. The lower 

and upper bounds of the error bars represent the 10th and 90th percentiles of the data from 

the database, respectively.    
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Figure A1. Relationship between ventilation mode and person-to-person contaminant 
exposure. 

 

The median value of the relative effect from the literature and from this study is also 

shown separately in the figure. Because the reference for the relative effect was the 

person-to-person contaminant exposure under mixing ventilation, the median values of 

the relative effect for mixing ventilation from the literature and from this study were both 

close to 1.0. The median value of the relative effect for displacement ventilation from the 

literature was 0.91, while the median value from this study was 0.70. The difference may 

be attributed to the differences in scenarios. For instance, some cases from the literature 

were for the scenario of contaminant transport between reclining patients (Qian et al., 

2006; Yin et al., 2011). The thermal plumes from the reclining patients tended to be 

weaker than those from the standing or seated persons in our study. Thermal plumes from 

the human body play an important role in the distribution of exhaled contaminants (Gao 

et al., 2012a). Weaker thermal plumes may reduce the chance of removal of exhaled 

contaminants by fresh air. When the relative effects from the literature and this study 

were combined, the median value of the relative effect for displacement ventilation was 

0.82. The median values of the relative effect for the UFAD system from the literature 

and from this study were in good agreement. The median value from the combination of 
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the literature and this study for the UFAD system was 0.78. It can be seen that the 

deviation in the performance of displacement ventilation was larger than in that of mixing 

ventilation. The high exposure cases of displacement ventilation were the measurement 

cases by Olmedo et al. (2012) when the person-to-person distance was 0.35 m. Their 

measurements showed that, when the person-to-person distance was 0.35 m, the exposure 

under displacement ventilation was much higher than that under mixing ventilation.    

Generally speaking, the performances of displacement ventilation and UFAD systems in 

controlling person-to-person contaminant transport were quite similar. They were about 

20% better than mixing ventilation in reducing person-to-person contaminant exposure. 

Displacement ventilation and UFAD systems can be categorized as stratified air-

distribution systems. The cool, fresh air from the inlets remains in the lower region of the 

room and then moves directly into the occupied zone because of thermal buoyancy. Thus, 

these systems have the potential to reduce person-to-person contaminant exposure and 

provide better indoor air quality, as compared with mixing ventilation. This finding is 

consistent with the results of many previous studies (Chen and Glicksman, 2003; Lau and 

Chen, 2006). However, Olmedo et al. (2012) pointed out that displacement ventilation 

may have poorer performance than mixing ventilation in controlling person-to-person 

exposure under certain circumstances. The large error bars shown in Figure 6 also 

indicate significant variations in the relative effects for different ventilation modes. The 

median value of the relative effect was 1.0 for mixing ventilation and around 0.8 for the 

displacement ventilation and UFAD systems. A factor of 1.25 may represent the general 

effect of ventilation mode on person-to-person contaminant transport in mechanically 

ventilated spaces. 

 

A3.2 Effect of Ventilation Rate 

Similarly, a total of 124 cases in the database could be used to study the effect of 

ventilation rate on person-to-person contaminant transport. Figure A2 shows the 

relationship between person-to-person contaminant exposure and ventilation rate. Each 
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symbol represents the median value of the relative effect for the corresponding 

ventilation rate. The lower and upper bounds of the error bars represent the 10th and 90th 

percentiles of the data, respectively. The median values of the relative effect from the 

literature and from this study are also shown separately in the figure. Because the 

reference for the relative effect was the person-to-person contaminant exposure under a 

ventilation rate of 6 ACH, the median values of the relative effect for 6 ACH from the 

literature and from this study were both close to 1.0. The trends of the relative effects on 

contaminant exposure versus ventilation rate in Figure 7 show that the results of this 

study matched well with those from the literature. However, the relative effect for 4 ACH 

from the literature seems to be lower than the general trend. The reason is unknown, but 

the difference is not significant. Combining the relative effects from the literature and 

from this study, a linear regression was performed for the median value of the relative 

effect with the corresponding ventilation rates. The correlation between ventilation rate 

and person-to-person contaminant transport is significant, with an R2 of 0.87.  

 

 

Figure A2. Relationship between ventilation rate and person-to-person contaminant 
exposure. 
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The database shows that the exposure was negatively associated with ventilation rate for 

all the ventilation modes. This finding makes sense because higher ventilation rate 

corresponds to higher dilution rate, which can reduce contaminant concentration in the 

breathing zone of the receptor. ASHRAE (2008) and CDC (2005) guidelines recommend 

a minimum ventilation rate of 12 ACH for hospital isolation rooms. These guidelines are 

evidence that ventilation rate is important in controlling person-to-person contaminant 

transport. Gao et al. (2012b) also indicated that increasing ventilation rate together with 

household isolation could be as effective as school closure for influenza transmission 

control in schools. However, the large error bars shown in Figure 7 imply significant 

variations in the relative effects of ventilation rate on person-to-person contaminant 

transport. Thus, other factors may modify the effect of ventilation rate. In addition, the 

median values of the relative effect on person-to-person contaminant exposure were 1.1 

and 0.6 for ventilation rates of 3 and 10 ACH, respectively. This implies that an increase 

in ventilation rate by a factor of 3.3 resulted in a decrease of person-to-person 

contaminant transport by a factor of only 1.8. Memarzadeh and Xu (2012) also indicated 

that although increasing ventilation rate diluted concentrations more effectively when the 

contaminant source was constant, it did not necessarily increase the ventilation 

effectiveness. Thus, controlling person-to-person contaminant transport by increasing 

ventilation rate may have certain limitations.   

 

A3.3 Effect of Person-to-Person Distance 

Very similarly to the previous subsections, 88 cases in the database were available for 

studying the effect of person-to-person distance on person-to-person contaminant 

transport. Figure A3 shows the relationship between person-to-person contaminant 

exposure and person-to-person distance. Each symbol represents the median value of the 

cases at the corresponding person-to-person distance. The lower and upper bounds of the 

error bars represent the 10th and 90th percentiles of the data, respectively. The median 

values of the relative effect from the literature and from this study are also shown 

separately in the figure. Because the reference for the relative effects was the person-to-
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person contaminant exposure at a distance of 1.1 m, the median values of the relative 

effect for 1.1 m from the literature and from this study should be close to 1.0, as 

confirmed in the figure. Most of the median values of the relative effect from the 

literature were close to those from this study, except at distances of 0.5 and 0.8 m. It is 

difficult for us to articulate the reason for these differences because there were many 

unknown factors. The differences are acceptable for our analysis in this investigation. 

Combining the relative effects from the literature and from this study, a power regression 

was performed for the median values of the relative effect with the corresponding person-

to-person distances. An R2 of 0.94 implies a strong correlation between person-to-person 

contaminant transport and person-to-person distance.  

 

 

Figure A3. Relationship between person-to-person distance and person-to-person 
contaminant exposure. 

 

It can be seen that when the person-to-person distance was smaller than 1.1 m, the 

relative effect on person-to-person contaminant exposure increased rapidly with the 

decrease in distance. However, when the person-to-person distance was larger than or 

equal to 1.1 m, the curve tended to be rather flat. This was because the contaminant 
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concentration gradient was larger near the source than in other locations. Thus, when the 

person-to-person distance increased to some extent, the influence of concentration 

gradient became insignificant. In this study, 1.1 m can be regarded as a cut-off person-to-

person distance in terms of person-to-person contaminant transport. The median value of 

the relative effect on contaminant exposure was 5.3 for a distance of 0.35 m, and around 

1 for a distance of 1.8 m. A factor of 5.3 indicates that person-to-person distance is a 

rather important parameter in terms of controlling person-to-person contaminant transport, 

when compared with ventilation mode and ventilation rate. 

 

A4 Discussion 

This study compared mixing, displacement, and UFAD ventilation systems, which are the 

most commonly used systems in residential or commercial buildings. However, other 

ventilation modes may also affect person-to-person contaminant transport. For instance, 

downward ventilation has been widely used in hospital wards or clean rooms. Qian et al. 

(2006) reported that downward and mixing ventilation had similar performance in a 

multi-bed hospital ward. Moreover, personalized ventilation has become a popular 

ventilation mode. He et al. (2011) concluded that personalized ventilation could increase 

contaminant concentration in the breathing zone of the receptor as well as provide clean 

personalized airflow. Whether person-to-person exposure could be reduced depends on 

the balance of the pros and cons of personalized ventilation.  

Although the cases collected from the literature included both breathing and coughing 

cases, this study did not quantitatively assess the differences between breathing and 

coughing. The peak exhaled velocity of coughing is much higher than that of breathing. 

Thus, the contaminant exhaled by a cough tends to travel more quickly than by a breath. 

The model used in this study was for breathing cases, which can be regarded as a steady-

state condition. If the transient particle transport resulting from a cough were investigated, 

the hybrid model developed and validated in our previous study could be used (Chen et 

al., 2013). 
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The key factor in contaminant transport is the “path” of airflow (Memarzadeh and Xu, 

2012). The perfect “path” should be that the fresh air firstly goes through the receptor, 

then reaches to the source, and finally removes the contaminant to the exhaust. However, 

it is difficult to use a single parameter to describe the “path”. The “path” depends on 

ventilation mode, ventilation rate, person-to-person distance, and other parameters. At the 

first stage of design, a designer needs to make a decision on what kind of ventilation 

mode should be used, how much ventilation is needed, and how far the person-to-person 

distance (e.g. desk-to-desk distance in an office) should be designed. The statistical 

results in this study can be a general guideline to support the designers’ decisions at this 

stage. After that, if possible, the designer can use CFD technique to investigate the “path” 

in detail. 

In addition to ventilation mode, ventilation rate, and person-to-person distance, which are 

among the ones that mostly related to HVAC design, other factors may influence person-

to-person contaminant transport. Previous studies have reported that air cleaners have the 

potential to reduce person-to-person contaminant transport in hospital wards (Chen et al., 

2010). Wearing masks has been identified as an effective method to reduce the risk of 

exposure to exhaled contaminants (Gupta et al., 2012; Lai et al., 2012). The use of air 

curtains may also reduce contaminant transport between two zones (Ching et al., 2008; 

Chen et al., 2011). Moreover, the use of upper-room ultraviolet germicidal irradiation 

(UVGI) has been proven effective in disinfecting exhaled airborne pathogens and 

reducing the risk of person-to-person exposure (Yang et al., 2012). Furthermore, the 

orientations of persons relative to one another (Olmedo et al., 2012) and the gestures of 

the persons can also influence person-to-person contaminant exposure. 

 

A5 Conclusions 

This appendix presents a systematic study of the effect of ventilation mode, ventilation 

rate, and person-to-person distance on person-to-person contaminant transport. This 

investigation collected a large quantity of data from the literature and used a validated 
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CFD model to generate additional data in order to establish a database. From this 

database, the following conclusions can be drawn: 

(1) The overall performances of displacement ventilation and a UFAD system were 

similar in terms of reducing exposure to person-to-person contaminant transport, and the 

two systems were about 20% better than mixing ventilation. 

(2) The data show that person-to-person contaminant exposure tended to be reduced with 

an increase in ventilation rate. 

(3) When the person-to-person distance was less than 1.1 m, person-to-person 

contaminant exposure increased rapidly with distance. At a distance larger than 1.1 m, the 

effect of distance was insignificant. 

(4) Person-to-person distance is more important than ventilation mode and ventilation 

rate in controlling person-to-person contaminant transport. 
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Appendix B. Developing A Zonal Markov Chain Model 

B1 Introduction 

In recent years, Computational Fluid Dynamics (CFD) has been widely used in modeling 

transient particle transport in mechanical ventilated spaces. The Eulerian and Lagrangian 

models have become increasingly popular for investigating interpersonal particle 

transport. However, when the source location is changed, even for a fixed airflow field, 

all of these models require recalculation of the particle equations, which requires 

considerable computing effort. Thus, it is worthwhile to develop an approach for quickly 

predicting transient particle transport in enclosed environments.  

To quickly assess transient particle transport, Nicas (2000) applied the Markov chain 

technique in a zonal model. That study demonstrated the capability of the Markov chain 

technique in quickly predicting the spatial and temporal particle concentrations. However, 

this simple model failed to account for most of the particle dispersion mechanisms such 

as drag force, gravitational settling, and turbulent dispersion. Because CFD simulation 

can easily take these influencing factors into account, a combination of CFD with the 

Markov chain technique has the potential to significantly improve the zonal model. 

Therefore, this investigation aimed to develop and validate a zonal Markov chain model 

for predicting faster-than-real-time information about transient particle transport in 

enclosed environments. 

 

B2 Methods 

B2.1 Zonal Markov Chain Model 

There are two assumptions in the first-order homogeneous Markov chain technique (Ross, 

1996): 

1) Any future state depends only on the present state as well as the probabilities of the 

state’s changing; 
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2) These probabilities of the state’s changing are time-independent (or fixed). 

To satisfy these assumptions of the Markov chain technique, one should assume the 

inertial effect of particles to be negligible, which holds well for particles with a diameter 

smaller than 3 μm (Zhao et al., 2009; Yin et al., 2011). For particles with a diameter 

larger than 3 µm, if they are transported by an impinging jet with an extremely high 

velocity, the inertial impaction may significantly affect the particle transport (Chen et al., 

2012). In such scenarios, the first-order homogeneous Markov chain method could have a 

large error. However, since most of the airflow in enclosed environment does not have 

strong impinging jets, this method still can be used for particles with a diameter larger 

than 3 µm. Since the coarse particles intend to rapidly deposit onto the floor, they may be 

less important in term of airborne infectious diseases transmission. 

The equations of Markov chain model is the same as that described in section 6.1.1 (Eqs. 

(6.1)-(6.7)). The only difference is that zonal Markov chain model divides the room to 

only a few zones, while the Markov chain model developed in Chapter 6 works under a 

CFD grid. If the zones are of the same size, the resulting probability vector versus time 

can be regarded as the normalized particle concentrations (or normalized number of 

particles) versus the time in the zones. Therefore, the Markov chain technique can be 

used for predicting transient particle transport in enclosed environments. Moreover, for a 

fixed airflow, when the source location is changed, Eq. (6.6) can be used with an updated 

N0 to quickly calculate the updated particle concentrations versus time. Note that the 

fixed airflow could be a problem if the source could change the airflow pattern, such as a 

powerful sneezing without covering the mouth. However, the experimental 

measurements and then computer simulation of airflow in an airliner cabin by Gupta et al. 

(2011) indicated that even a cough without covering mouth can have limited affect on the 

local airflow field but not the whole airflow field. If a mouth is covered when coughing 

or sneezing as people would usually do, the influence of coughing and sneezing on the 

airflow field would be minimal. Therefore, the assumption that airflow field was fixed 

should be valid for most of cases. 
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B2.2 Calculating the Transition Probability Matrix Using CFD 

The key point in applying the Markov chain technique to the prediction of indoor particle 

transport is to obtain the transition probability matrix, pij. This study calculated the 

airflow field using CFD. Next, this investigation uniformly released a certain amount of 

particles in zone i, and used Lagrangian stochastic tracking to calculate the percentage of 

particles that moved from zone i to zone j in a certain time, Δt, which can be regarded as 

the pij. Repeating this process for all the zones, the whole transition probability matrix 

can be obtained. The following paragraphs detail the CFD model used in this study. 

The Re-Normalization Group (RNG) k-ε model (Choudhury, 1993) was applied to 

calculate the airflow field. It has the best overall performance among all RANS models 

for enclosed environments (Zhang et al., 2007). A detailed discussion of the RNG k-ε 

model can be found in ANSYS (2010). The Lagrangian model was adopted to calculate 

the particle movements in Δt. Using the momentum equation based on Newton’s law, the 

trajectory of each particle can be calculated. The transient process from a droplet to a 

droplet nucleus due to evaporation is negligible for particles with a diameter smaller than 

3 μm (Chen and Zhao, 2010). The Discrete Random Walk (DRW) model (ANSYS, 2010) 

is used to calculate the turbulence dispersion.  

Note that the time step of the Markov chain, Δt, is an important parameter that needs to 

be determined based on the ventilation rate of the space and the size of the divided zones. 

The Δt can be neither too short nor too long. If the Δt is too short, the particles may have 

no chance to “escape” from the current zone. If the Δt is too long, the particles may move 

across the adjacent zones so that the fact that they had appeared in these adjacent zones 

would be missed. Thus, the Δt should allow the particles to move only to the adjacent 

zones. In addition, to ensure the Δt to be suitable for all the zones, the sizes and 

dimensions of the zones should be similar. In this study, different time steps of the Zonal 

Markov chain model were tested for each case and the appropriate ones were then used. 

The specific formulas for determining the time step are not yet available. However, there 

may be two rules. First, the larger the air change rate is, the smaller the time step intends 

to be. Second, the smaller the size of the zones becomes, the smaller the time step intends 
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be. It would take less time for the particles to move across the adjacent zones when the 

size of the zones is smaller or the air change rate is larger. 

 

B3 Validation  

This study used three cases, particle transport in an isothermal clean room (Murakami et 

al., 1992), a room with an Under-Floor Air-Distribution (UFAD) system (Zhang and 

Chen, 2006), and the first-class cabin of an MD-82 airliner (Chen et al., 2013), to validate 

the zonal Markov chain model. This section discusses the validation results. 

 

B3.1 Particle Transport in an Isothermal Clean Room 

The first study was the case of particle transport in a ventilated clean room as addressed 

by Murakami et al. (1992), who conducted detailed measurements of particle 

distributions in a room. Figure B1(a) shows the configuration of the clean room with two 

ceiling supply diffusers and four exhausts located on the lower walls of the room. The 

total air exchange rate was 40 ACH. The thermo-fluid boundary conditions were defined 

according to the measurements. The details of the measured boundary conditions can be 

found in Murakami et al. (1992). The particle diameter used was 1 µm. The review by 

Lai (2002) indicated that the deposition velocity of the particles with a diameter of 1 µm 

ranged from 8×10-6 to 2×10-5 m/s in indoor environments. Thus, the deposition rate for 

such particles in this room ranged from 0.048 to 0.12 per hour. This was much lower than 

the air change rate in this room. Therefore, the influence of particle deposition on the 

results can be neglected. Furthermore, the particle resuspension was also negligible due 

to the low resuspension rate associated with 1 µm particles (Zhu et al., 2012). As shown 

in Figure B1(b), we divided the room into six zones and labeled the “removal zone” as 

zone 7.  
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                                                   (a)                                                       (b)  

Figure B1. (a) Configuration of the clean room studied by Murakami et al. (1992) and (b) 
the zones of the clean room on a horizontal plane.    

 

Based on the calculated airflow field and Lagrangian particle tracking, the transition 

probability matrix can be obtained: 
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The time step of the Markov chain, Δt, was set as 15 s for this case, which ensures that 

particles move only to the adjacent zones within the Δt. Two scenarios, in which the 

particle source was located in zone 3 and zone 6, respectively, were used to validate the 

Zonal Markov chain model. The initial probability vector was: 
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Using Eq. (6.6), the probability vectors versus time of particle transport can be calculated. 

The experiment measured only the steady-state airflow field and particle distributions. 

Validation of the Markov chain model would require transient particle distributions. 

However, our earlier study (Wang et al. 2012) validated the RNG k-ε – Eulerian drift flux 

model for this case with a good result. The model can be used to generate transient 

distributions of particle concentrations as the basis for validating the Markov chain model. 

Because steady-state and transient particle dispersion are governed by the same physics, 

this approach would not compromise accuracy. 

Figures B2 and B3 compare the trends of the normalized particle concentrations versus 

time, as obtained by the Zonal Markov chain model and CFD simulations with a source 

in zones 3 and 6, respectively. The CFD simulation results were obtained by averaging 

the particle concentrations in each zone. Furthermore, all of the particle concentrations 

were normalized by the maximum concentration observed in the room. Figure B2 shows 

that both the Markov chain and CFD methods predicted higher particle concentrations in 

zones 1, 4, and 5 as compared with that in zones 2 and 6. This occurred because zones 1, 

4, and 5 were adjacent to zone 3, where the source was located. A comparison of Figures 

B2 and B3 shows that both the Markov chain and CFD methods predicted higher particle 

concentrations with a source in zone 3 than with a source in zone 6. The results make 

sense because a large portion of particles were directly removed through the exhaust 

located in zone 6, which resulted in low concentrations in other zones for the case with 

source in zone 6. In general, the trends of transient particle transport predicted by the 

zonal Markov chain model agree well with the results of the CFD simulations. 
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Figure B2. Comparison of the trends of the normalized particle concentrations versus 
time as obtained by the zonal Markov chain model and CFD simulation with a 
source in zone 3 for the isothermal clean room. 
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Figure B3. Comparison of the trends of the normalized particle concentrations versus 
time as obtained by the zonal Markov chain model and CFD simulation with a 
source in zone 6 for the isothermal clean room. 
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B3.2 Particle Transport in a Room with a UFAD System 

 

The second case was a room with a UFAD system, as shown in Figure B4(a) and used by 

Zhang and Chen (2006) for measuring particle distributions. They used four heated boxes 

to simulate occupants in the room. The air was supplied through two floor inlets and 

exited through the exhaust at the ceiling. The total air exchange rate was 5.5 ACH. The 

thermo-fluid boundary conditions were defined according to the measurements. The 

detailed measured boundary conditions can be found in Zhang and Chen. (2006). The 

studied particle diameter was 1 µm. The deposition rate for such particles in this room 

ranged from 0.046 to 0.116 per hour. This was much lower than the air change rate in this 

room. Therefore, the influence of particle deposition was negligible. In addition, the 

particle resuspension was also neglected for this case. As shown in Figure B4(b), our 

investigation divided the room into six zones, with zone 7 as the “removal zone.” 

 

             
                                                   (a)                                                    (b)  

Figure B4. (a) Configuration of the room with the UFAD system studied by Zhang and 
Chen (2006) and (b) the zones of the room on a horizontal plane.    

 

Based on the calculated airflow field and Lagrangian particle tracking, the transition 

probability matrix is: 
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0.85 0.04 0.11 0.00 0.00 0.00 0.00

0.05 0.82 0.00 0.13 0.00 0.00 0.00
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The time step of the Markov chain, Δt, was set as 25 s for this case. The size of the zones 

of the isolation room was close to that of the room with UFAD system, while the air 

change rate of the isolation room was much larger than that of the room with UFAD 

system. Therefore, the time step used for the room with UFAD system (25 s) was larger 

than that for the isolation room (15 s).  

Two scenarios, in which the source was located in zone 4 and zone 6, respectively, were 

used to validate the Zonal Markov chain model. The initial probability vector was: 

 

 
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0

0 0 0 1 0 0 0 , 4
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                                                                         (B4) 

 

Because of the lack of experimental data for transient particle concentrations, this study 

again used the CFD results as a benchmark for this study. The CFD simulation was again 

validated by steady-state experimental data, with good agreement between them. Figures 

B5 and B6 compare the trends of the normalized particle concentrations versus time as 

obtained by the Zonal Markov chain model and CFD simulations with a source in zone 4 

and zone 6, respectively. The CFD simulation results were again obtained by averaging 

the particle concentrations in each zone. 
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Figure B5. Comparison of the trends of the normalized particle concentration 
distributions versus time as obtained by the zonal Markov chain model and 
CFD simulation with a source in zone 4 for the room with the UFAD system. 
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Figure B6. Comparison of the trends of the normalized particle concentration 
distributions versus time as obtained by the zonal Markov chain model and 
CFD simulation with a source in zone 6 for the room with the UFAD system. 
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removed directly by the exhaust located in zone 4. It can be seen that the discrepancies 

between Markov chain and CFD method were larger in some zones than other zones. 

Note that the particles were uniformly released in each zone when calculating the 

transition probability matrix. Thus, the uniformities of the particle concentrations in the 

zones for a real case might influence the accuracy of the Zonal Markov chain model. 

Since the uniformities of the particle concentrations in the zones were different, the 

accuracies of the Zonal Markov chain model in different zones might be also different. 

Generally speaking, the trends of the normalized particle concentration distributions 

predicted by the zonal Markov chain model again agreed reasonably well with the CFD 

simulations. However, because this case is more complicated than the isothermal clean-

room case, the agreement tends to be somewhat worse than that for the clean room. 

 

B3.3 Particle Transport in an MD-82 Aircraft Cabin 

The third case was the first-class cabin of a functional MD-82 commercial airliner, as 

shown in Figure B7. Liu et al. (2012) provided a detailed description of the cabin and 

aircraft and detailed measurements of the thermo-fluid boundary conditions. The cabin 

had three rows of seats, and each row contained four seats as numbered in Figure B7. 

Manikins were used to simulate passengers.  The sensible heat production of each heated 

manikin was 75 Watt. At the mouth of the manikin in Seat 2C, we released particles with 

a diameter of 3 μm into the cabin air for 20 s. The particle concentrations versus time at 

the breathing zones were measured in front of each passenger’s mouth. A detailed 

description of the experimental procedure and data analysis can be found in Chen et al. 

(2013). Both the experimental data for the transient particle concentration distributions 

and the CFD simulation results were used to validate the Zonal Markov chain model. 

You and Zhao (2013) calculated the particle deposition rates in this aircraft cabin. They 

found that the deposition rate of particles with a diameter of 3 µm was 1.0 per hour, 

which was much lower than the air change rate in the aircraft cabin (33 ACH). Therefore, 

the influence of particle deposition was negligible. Furthermore, the particle resuspension 
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was also neglected (Zhu et al., 2012). As shown in Figure 7, we divided the cabin into 

fifteen zones, with zone 16 as the “removal zone.” 

 

 

Figure B7. the zones of the cabin in a horizontal plane. 

 

Based on the calculated airflow field and Lagrangian particle tracking, the transition 

probability matrix can be obtained: 
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The time step of the Markov chain, Δt, was set as 4 s for this case. The air change rate of 

the aircraft cabin was close to that of the isolation room, while the size of the zones of the 

aircraft cabin was much smaller than that of the isolation room. Therefore, the time step 

used for the aircraft cabin (4 s) was smaller than that for the isolation room (15 s).  

To better match the experimental setup, the particles were released only from the month 

of the manikin instead of the whole space of zone 7, where the source was located. The 

initial probability vector was: 

 

 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0                                                                           (B6) 

  

Figure B8 compares the trends of the normalized particle concentration distribution 

versus time as obtained by the zonal Markov chain model, CFD simulation, and 

experimental measurement. The Zonal Markov chain model correctly predicted relatively 

high peak concentrations at Seats 1B and 1C and low concentrations at most of the other 

seats. However, the Zonal Markov chain model over-predicted the concentrations at Seats 

1D and 2D. The discrepancies could be attributed to two factors. First, the differences 

between the simulated and measured airflow fields were significant (Chen et al., 2013), 

which can cause a large discrepancy in particle concentration distribution. Second, the 

Zonal Markov chain model calculated the average particle concentrations in each zone, 

while the experiment measured the particle concentration only in the breathing zones. We 

have further calculated the average particle concentrations in each zone by CFD as shown 

in Figure B8. The CFD simulation also over-predicted the concentrations at Seats 1D and 

2D, which confirms the validity of the second factor above. Generally speaking, the zonal 

Markov chain model can predict the general trends of the particle concentrations versus 

time for such a complex case, and it may be used for engineering applications. 
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Figure B8. Comparison of the trends of the normalized particle concentration distribution 
versus time for the aircraft cabin as obtained by the zonal Markov chain 
model, CFD simulation and experimental data (Chen et al., 2013). 
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Figure B8. continued. 

 

B4 Discussion 

Quickly obtaining information about airborne infectious disease transmission in enclosed 

environments is crucial for reducing infection risk to the occupants. For an application of 

the zonal Markov chain model, the airflow field and the transition probability matrix for 
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an enclosed environment can be calculated in advance. For predicting infectious disease 

transmission, either the CFD or zonal Markov chain model can be used for calculating 

the transient particle transport. Table 1 compares the computing time by the CFD method 

using the previous calculated airflow field and zonal Markov chain model using the 

previous calculated transition probability matrix for the three cases. It took only seconds 

for the zonal Markov chain model to calculate the transient particle transport, while hours 

or even days were needed for the CFD simulations. This was because the zonal Markov 

chain model requires only simple matrix multiplications while the CFD requires a lot of 

numerical iteration for a large amount of grids. It can be seen that the zonal Markov chain 

model can provide faster-than-real-time information about particle transport in enclosed 

environments. In other words, for a fixed airflow field, when the index patient or the 

source location is changed, the zonal Markov chain model can be used to avoid 

recalculation of the particle transport equation and thus reduce computing costs. This 

capability has been validated by comparing with the CFD simulations in this study. It is 

meaningful since the accuracy of CFD simulations has been experimentally validated 

previously (e.g. Zhang and Chen, 2007; Zhao et al., 2009; Chen et al., 2013). 

 

Table B1. Comparison of the computing time by the CFD method using the previous 
calculated airflow field and zonal Markov chain model using the previous 
calculated transition probability matrix. 

Case CFD method (hr) Zonal Markov chain model (s)
Isolation clean room 4 <1 

Room with UFAD system 15 <1 
Aircraft cabin 75 5 

 

In addition, the number of the divided zones in the Zonal Markov chain model may also 

affect the results. In principle, the number of the divided zones depends on the required 

resolution. However, as discussed above, if the size of the zones is unreasonably large, 

the time step also needs to be very large. Such a large time step may not be able to reflect 

the transient characteristics of the particle transport. To assess how the results depend on 



193 
 

 

the number of the divided zones, this study further compared the results of transient 

particle transport when the clean room was divided into 6 and 12 zones, as shown in 

Figure B9. The particle source was located in zone 3. It can be found that the differences 

between the results for 6 and 12 divided zones are insignificant. Thus, 6 divided zones 

are sufficient enough to capture the transient characteristics of the particle transport in the 

clean room. 

 

 
Figure B9. Comparison of the trends of the normalized particle concentrations versus 

time as obtained by the Zonal Markov chain model when the clean room was 
divided into 6 and 12 zones.   

 

Currently, either deterministic or probabilistic approaches can be used for risk assessment 

of airborne infectious disease transmission (Gupta et al., 2012). In the deterministic 

approaches, the risk or probability of infection cannot be quantified. In the probabilistic 

approaches, because the quantities exhaled cannot be directly determined, their accuracy 

has been debated (Sze To and Chao, 2010). The Zonal Markov chain model predicts the 

probability of a particle’s appearing in a zone at a certain point in time. Because the 
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movements of indoor particles tend to be independent, the calculated probabilities should 

be independent probabilities. Through simple calculations of the joint probability and the 

probability of either event’s occurring, we can calculate the probability of a certain 

number of particles appearing in the breathing zone of the receptor. For instance, if the 

index patient exhales 100 particles, we can calculate the probability that 10 out of these 

100 particles appear in the breathing zone. Thus, the Markov chain with probability 

calculations has the potential to account for both deterministic and probabilistic 

information.  

In addition, the Zonal Markov chain model has the potential to account for other 

influencing factors in infectious disease transmission. For instance, compared with 

completely fresh-air ventilation systems assumed in this study, ventilation systems with 

return air are more widely used in actual engineering. In these cases, the particles can re-

enter the space through the return air. To take this factor into account, we can simply 

modify the transition probability matrix as: 

 

  1 2 1 1 2 1)(1i n i nnjp r r r r r r r r                                       (B7) 

 

where 

 

(1 )i ir f                                                                                                (B8) 

 

where fi is the ratio of the supply airflow rate in zone i to the total airflow rate, η is the 

particle removal efficiency of filter, and β is the ratio of the return airflow rate to the total 

airflow rate. Then the effect of contaminated return air and filter can be easily assessed 

using Eq. (B8) with the updated transition probability matrix. The effectiveness of 

wearing masks and the effects of temperature and humidity on virus survival can also be 

investigated using a similar approach. 
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B5 Conclusions 

This investigation developed a zonal Markov chain model for predicting faster-than-real-

time information about transient particle transport in enclosed environments. From the 

results presented in this paper, the following conclusions can be drawn: 

(1) The proposed zonal Markov chain model can provide faster-than-real-time 

information about particle transport in enclosed environments. 

(2) For a fixed airflow field, when the source location is changed, the zonal Zonal 

Markov chain model can be used to avoid recalculation of the particle transport equation 

and thus reduce computing costs. 
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