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ABSTRACT 
 
 
 

Chaney, Joseph Rashon. Ph.D., Purdue University, May 2015. Biochemical Investigation 
of the Ubiquitin Carboxyl-Terminal Hydrolase Family Major Professor: Chittaranjan 
Das. 
 
 

The proteasome is the machinery in eukaryotic cells that degrades protein and 

recycles the amino acids.  Protein degradation is a highly regulated process which starts 

by the attachment of chains of ubiquitin, which serves as a tag that marks a protein for 

degradation. This function involves the work of several proteins at the proteasome that 

work either as ubiquitin chaperones, ubiquitin binders or cleave ubiquitin from the 

protein that is to be degraded. As this is a highly regulated process, various irregularities 

can have deleterious effects including the onset of disease, including cardiovascular, 

cancer, and neurological. 

The focus of this dissertation is to study how residues located within and outside 

the active site of Ubiquitin Carboxyl Terminal Hydrolase (UCH) deubiquinating enzymes 

(DUBS) help regulate these enzymes interaction with the ubiquitin. I will provide 

evidence that the putative oxyanion glutamine does function contribute to stabilization of 

the oxyanion intermediate. Secondly, I will show that evidence that glutamine may also 

serve another function within the active site by providing a CHO hydrogen bond that was 

previously thought not to exist within the active sites of cysteine proteases. Lastly, I will 

show that a conserved tryptophan in UCH37 has an effect on its catalytic viability. 
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CHAPTER 1: INTRODUCTION 

 
 
 

1.1 Ubiquitin-Proteasome System 
 
The proteasome is the machinery in eukaryotic cells that degrades protein and 

recycles the amino acids.  Protein degradation is a highly regulated process.  Ubiquitin is 

attached to proteins marked for degradation. Ubiquitin however is not degraded by the 

proteasome. Instead, the ubiquitin chain is cleaved by an enzyme at the proteasome cap 

called deubiquitinating enzymes or DUBS.  Proteins are tightly regulated in the cell by 

the ubiquitin proteasome system. Ubiquitination is the covalent attachment of the 76 

amino acid containing eukaryotic polypeptide ubiquitin and is an important reversible 

post-translational modification of proteins in the cell. It helps regulates a wide variety of 

biological process, such as cell cycle control, transcription, and protein quality control [3-

5].  Ubiquitin is attached through an isopeptide bond between the C-terminal carboxy-

terminal group of ubiquitin and the Ɛ-amino group of a lysine side chain[1].  This 

reaction is catalyzed by the sequential action of three enzymatic systems termed E1, E2, 

and E3 [4].  Ubiquitin is first activated by E1 in an ATP-dependent reaction that results in 

its installation on the E1 enzyme through a thioester bond between the c-terminal 

carboxylic acid of ubiquitin and the catalytic cysteine of E1.  The activated ubiquitin is 

then transferred to the E2 enzymes catalytic cysteine residue.  The E3 enzyme serves the 

function of a protein ligase.  E3 links ubiquitin to the acceptor protein’s lysine residue.  
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Once this isopeptide bond is formed, more ubiquitins are linked to form a polyubiquitin 

chain. There are estimated to be more than 600 E3 proteins found in the human genome 

[5]. E3 are responsible for the type of polyubiquitin chain tagged to the proteins.  The 

type polyubiquitin linkages are identified by the lysine on ubiquitin and the carboxy 

terminus of the next ubiquitin where the bond is formed. The linkages that have been 

identified are K6, K11, K27, K29, K33, K48, and K63. Of these only the roles of K11, 

K48, and K63 have been determined[6-10]. K11 and K48 both have been found to be the 

primary linkage to confer proteasome degradation. While K63 linked substrates are 

responsible for non-degradative functions such as cellular signaling, intracellular 

trafficking, and ribosomal biogenesis [8-12].  The process is ultimately regulated by 

deubiquinating enzymes (DUBs), which catalytic activities oppose that of the E3 

enzymes by editing the polyubiquitin chain or cleaving the ubiquitin directly from the 

substrate, creating more fee ubiquitin [12].  There are five classes of over 90 DUBs in the 

human genome: the cysteine protease comprising the  ubiquitin c-terminal hydrolases 

(UCHs) family, the ubiquitin specific proteases (USPs) family, the ovarian tumor 

proteases (OTU) family, the Machado-Josephin Domain protease (MJDs) family and the 

last family, the  JAB1/MPN/MOV34 (JAMM) protease family, are metalloproteases [13-

15].  

 
1.2 Ubiquitin C-Terminal Hydrolases 

Of the five DUB families, the ubiquitin c-terminal hydrolase family is unique 

because there active sites contain a cross-over loop that restricts the substrate access  .  

There are four members of the UCH family; UCHL1, UCHL3, UCHL5 (UCH37), and 
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BAP1 .  It is the first DUB family to be identified however the substrate preference for 

each enzyme has not yet been determined [18]. Each family member is composed of a 

UCH domain with UCH37 and BAP1 having extensions at their c-terminus [1-3]. 

Ubiquitination is the covalent attachment of the 76 amino acid containing eukaryotic 

polypeptide ubiquitin and is an important reversible post-translational modification of 

proteins in the cell. It helps regulates a wide variety of biological process, such as cell 

cycle control, transcription, and protein quality control [3-5]. Ubiquitin is attached 

through an isopeptide bond between the C-terminal carboxy-terminal group of ubiquitin 

and the Ɛ-amino group of a lysine side chain[1].  This reaction is catalyzed by the 

sequential action of three enzymatic systems termed E1, E2, and E3 [13, 19].  Ubiquitin 

is first activated by E1 in an ATP-dependent reaction that results in its installation on the 

E1 enzyme through a thioester bond between the c-terminal carboxylic acid of ubiquitin 

and the catalytic cysteine of E1.  The activated ubiquitin is then transferred to the E2 

enzymes catalytic cysteine residue.  The E3 enzyme serves the function of a protein 

ligase.  E3 links ubiquitin to the acceptor protein’s lysine residue.  Once this isopeptide 

bond is formed, more ubiquitins are linked to form a polyubiquitin chain.  The process is 

ultimately regulated by deubiquinating enzymes, which catalytic activities oppose that of  

E3 enzymes. 

  
1.2.1 UCHL3 

 
UCHL3 was one of the first structurally characterized in the UCH family and 

also the smallest at just 8.6 kDa [15, 21]. The primary responsibility of UCHL3 has yet to 

be determined. It is understood from structure that it has a crossover loop presumably for 
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conferring substrate specificity [13, 20]. The loop is found to be disordered in the human 

enzyme but takes an ordered conformation when bound to ubiquitin [15, 22]. UCHL3 

shows hydrolase activity to linearly fused ubiquitin to small peptides [22]. It has been 

found to be upregulated in uterine cervical neoplasms and to be a novel regulator in 

prostate cancer cell lines [22, 23].    

 

1.2.2 UCHL1 
 

UCHL1 is a (223 amino acid), 24 kDa protein that belongs the UCH family of 

DUBs.  It is selectively expressed in the brain comprising 1-2% of all brain protein.  

Mutations in UCHL1 have been linked to neurodegenerative diseases. UCHL1 has been 

identified in lewy bodies in Parkinson’s disease [25]. UCHL1 is not expressed in normal 

lung tissue. This gives UCHL1 implications in lung cancer tumor regulation and 

metastasis[10].  UCHL1 monomer is composed of two lobes, a right and left.  The right 

lobe of L1 consisting of five αα helixes [10].  The left lobe of L1 consists of two αα 

helices and six β strands.  Between the lobes is a cleft that contains the catalytic residues.  

The active site is composed of three secondary structural elements; αa helix, a ββ sheet, 

and a loop.  The helix contains the catalytic cysteine (Cys90). The β sheet contains the 

catalytic histidine (His 161).  The loop contains the catalytic aspartic acid (Asp 176) [26].  

These three residues make up UCHL1 catalytic triad and are responsible for UCHL1’s 

ability to cleave the isopeptide bond linked substrates from ubiquitin. 
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1.2.3 UCHL5 
 

UCHL5 (UCH37)  is a 329 amino acid DUB of the UCH family. Its specific 

function is for ubiquitin chain editing, presumably at the distal end, at the 19S 

proteasome [27].  It has been found to dock to the 19S regulatory particle through the 

interactions with the subunit Rpn13.  UCHL5 and RPN13 share a similar construct in 

their c-terminal region called a KEKE motif. The KEKE motif is a series of repetitive 

lysine and glutamate residues.  This motif is believed to be responsible for this 

interaction.  UCHL5’s activity toward poly-ubiquitin chains is mediated by its association 

with RPN13, which provides an additional ubiquitin binding site for the poly-ubiquitin 

chain. RPN13 is linked to the proteasome through an association with RPN2[28].   

  
1.2.4 BAP1 

 
BRCA1 associated protein 1 (BAP1) is the largest member of the UCH family. In 

addition to the N-terminal UCH domain, it contains several interacting domains along 

with a nuclear localization site (NLS) [28]. BAP1 interactes with the RING finger 

domain of BRCA1 [29]. Sequence analysis identified the amino-terminal segment of 

BAP1 as a ubiquitin hydrolase, which was confirmed through activity measurements 

against a     Ub-OEt substrate mimic[30]. BAP1 is the last member of the UCH family 

that has not had its structure determined.  Further characterization of the enzyme revealed 

that BAP1 contained two nuclear localization sites and that BAP1 co-immunprecipitated 

with a splicing variant of BRCA1. This led to the understanding that the ubiquitin 

degradation pathway could play a role in the regulation of BRCA1. Because the sequence 

of BAP1 that interacts with BARD1 overlaps with the UCH domain (residues 182-365), 
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it is still unclear if the deubiquitinating activity of BAP1 has any link to its role is breast 

cancer[31]. 
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CHAPTER 2: CONTRIBUTION OF PUTATIVE OXYANION HOLE RESIDUE TO 
CATALYSIS IN UCHL1, UCHL3 AND UCHL5 

 
 
 

(Previously published as Boudreaux D, Chaney J, Maiti TK, Das C. Contribution of active site 
glutamine to rate enhancement in ubiquitin C-terminal hydrolases. FEBS J. 2012.) 

 
 

 
2.1 Abstract 

Ubiquitin carboxy terminal hydrolases (UCHs) catalyze the hydrolytic removal of 

ubiquitin from ubiquitinated proteins. These deubiquinating enzymes are cysteine 

proteases featuring a classical cysteine-histidine-aspartate catalytic triad, also a highly 

conserved glutamine thought to be a part of the oxyanion hole. However, the contribution 

of this side chain to the catalysis by UCH enzymes is not known.  

 In this study, we demonstrate through mutational analysis that the putative 

oxyanion-stabilizing side chain contributes to rate enhancement in UCHL1, UCHL3 and 

UCHL5. Mutation of the glutamine to alanine in these enzymes reduces the catalytic 

efficiency, mainly due to a 16 to 30-fold reduction in kcat (2 kcal/mol).  

 

2.2  Introduction 

Ubiquitin carboxy-terminal hydrolases (UCHs) belong to a larger group of 

enzymes collectively called deubiquitinases (DUBs), which catalyze the hydrolysis of the 

peptide or isopeptide bond through which ubiquitin is attached to other proteins or other 
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ubiquitin moieties in polyubiquitin chains [12, 35, 36]. The UCH family members are 

cysteine proteases featuring a classical cysteine-histidine-aspartate catalytic triad [12, 15, 

16, 22]. The active site of these enzymes also features a highly conserved glutamine 

residue (Fig. 2.1) believed to be a part of the so-called oxyanion hole, an arrangement of 

spatially proximal peptide dipoles aligned in a way that creates a positively charged 

pocket facing the thiol group of the catalytic cysteine. It is also possible that, by virtue of 

being located at the N-terminus of a helix, the electropositive character of this pocket is 

enhanced by the helix macro dipole effect [6]. In cysteine proteases, nucleophilic attack 

of the carbonyl group on the scissile peptide bond proceeds through a tetrahedral 

transition state bearing a   negative charge on the oxygen atom of the carbonyl group. 

This negative charge is stabilized by electrostatic and hydrogen-bonding interactions with 

the oxyanion hole, which is proposed to be one of the factors leading to the lowering of 

activation energy for the hydrolysis reaction [6].  

  The relative orientation of the carbonyl oxygen of the scissile peptide group with 

respect to the oxyanion-stabilizing groups, as in the tetrahedral transition state, may be 

approximately visualized in the crystal structure of the yeast ubiquitin hydrolase Yuh1 

bound covalently to the suicide substrate ubiquitin aldehyde (Ubal) (Fig. 2) [6]. Attack of 

the catalytic thiol on Ubal results in the formation of the thiohemiacteal product, which 

mimics the oxyanion-bearing tetrahedral transition state (Fig. 2). As seen in Figure 2, the 

hydroxyl oxygen of the thiohemiacetal moiety is within a relatively short distance from 

the backbone NH groups of the catalytic Cys90, Ala89, Asn88 and the side chain NH2 

group of Gln84, the putative oxyanion-stabilizing side chain. It has been proposed that in 

a general cysteine protease, the negatively charged oxygen in the tetrahedral transition 
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state would occupy nearly the same position as the thiohemiacteal hydroxyl oxygen seen 

in the Yuh1-Ubal structure and would be coordinated through electrostatic and hydrogen-

bonding interactions by the groups lining the oxyanion hole [7]. 

   Papain, an extensively studied cysteine protease, revealed that Gln19, the 

oxyanion side chain in the protein, plays a role in the catalytic mechanism of the enzyme 

contributing to rate enhancement [7]. Mutation of this side chain to alanine reduces the 

catalytic efficiency approximately 60-fold, mostly affecting kcat (20-fold lower) with a 

relatively smaller change in KM (3-fold higher) [8]. Ignoring the relatively small change 

in KM, the 20-fold change in kcat was attributed to a loss of the contribution of the 

glutamine side chain to oxyanion stabilization. The catalytic Cys-His-Asp triad of 

structurally characterized UCH enzymes, such as UCHL1, UCHL3 and UCHL5, adopts a 

similar geometric relationship as found in the Cys-His-Asn triad of papain and the triads 

of other papain-like cysteine proteases. Additionally, the active-site glutamine in UCH 

enzymes is located in an identical location as the as Gln19 in papain. However, the role 

played by this side chain in the catalysis by UCH enzymes has not been studied thus far. 

Considering the importance of the UCH group of proteases in diseases such as 

Parkinson’s disease and cancer, understanding the role of active site residues in catalysis 

is important for our overall understanding of the mechanism of these enzymes[9]. We 

sought to determine the contribution to rate enhancement by the putative oxyanion 

glutamine.   
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2.3  Materials and Methods 

Ubiquitin 7-amido-4-methylcoumarin (Ub-AMC) used for hydrolysis assays was 

acquired from Boston Biochem (Boston, MA). The glutathione affinity column (GSTPrep 

FF 16/10), gel filtration column (HiLoad 16/60 Superdex 75) and PreScission protease 

were purchased from GE Biosciences (USA). All fluorescence assays were performed on 

a TECAN Genios microplate spectrofluorometer. Buffer and salt components were 

purchased from either Sigma-Aldrich (St. Louis, MO) or RPI Corp (Mount Prospect, IL).  

 

2.3.1 Mutagenesis, Protein Expression and Purification 

UCHL1, UHCL3, UCHL5N240 were cloned into the pGEX-6P-1 vector using 

standard protocols and subsequently used to mutate the active-site glutamine to alanine 

through PCR reactions using the Quickchange II (Agilent; Santa Clara, CA) site-directed 

mutagenesis kit. All plasmids were transformed into Rosetta2 E. coli cells and grown to 

an ODλ600nm= 0.6 in LB media supplemented with 100 μg/mL ampicillin then induced 

with 0.5 mM isopropyl β-thiogalactoside and grown overnight at 18°C. Cells were 

harvested at 6,000 × g and resuspended in 1X PBS + 400 mM KCl (buffer A). Cells were 

passed through a French press twice at 1,200 psi and the lysate cleared by centrifugation 

at 30,000 × g for 1 hour. The supernatant was loaded onto a glutathione affinity column, 

washed with 3 column volumes of buffer A and eluted with 250 mM Tris, 500 mM KCl, 

10 mM reduced L-glutathione, pH 8.0. The eluted sample was dialyzed against 1X PBS, 

400 mM KCl, 1 mM DTT to which PrecissionProtease was added to remove the 

glutathione S-transferase (GST) tag, which was captured onto a glutathione-agarose 

affinity column. The resulting GST-cleaved protein solution was passed through a 
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Superdex S75 gel filtration column with 50 mM TRIS-HCl (pH 7.6), 150 mM NaCl and 

1mM DTT. Fractions containing purified protein were pooled, concentrated then flash 

frozen in liquid nitrogen and stored at -80 °C until use.  

 

2.3.2 Analysis of Oxyanion Mutants 

Each of the UCH enzymes was diluted in assay reaction buffer (50 mM Tris pH 

7.6, 0.5 mM EDTA, 0.1% BSA, 5 mM DTT) so the final concentration in the reaction is 

the following: UCHL1 (2 nM), UCHL1 Q84A (8 nM), UCHL3 (5 pM), UCHL3 Q89A 

(175 pM), UCHL5N240 (500 pM), UCHL5N240 Q82A (3 nM), UCHL3 Q89E (12 pM), 

UCHL3 Q89K (50 pM). Enzyme was added to a 96-well plate and incubated at 30°C for 

5 min prior to addition of Ub-AMC diluted in assay reaction buffer to initiate the 

reaction. Rates of Ub-AMC cleavage was monitored with an excitation λ = 380 nm and 

an emission λ = 465 nm at 30°C. Initial reaction rates were calculated and plotted versus 

Ub-AMC concentration in SigmaPlot and fitted to the Michaelis-Menten equation to 

determine KM and kcat values. 

 

2.4  Results 

 

2.4.1 Alanine Mutants Show Modest Loss of Activity 

In order to determine if the conserved glutamine residue found in the active site of 

UCH enzymes (fig. 2.3) contributes to rate enhancement, hydrolysis assays using the 

fluorogenic substrate Ub-AMC were conducted using identical conditions for each set of 

enzyme and its glutamine to alanine mutant. These results show that the rate of 
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hydrolysis leading to AMC release is significantly reduced in the mutants compared to 

their wild-type enzymes seen in figure 2.3, suggest that this side chain plays some role in 

the catalytic mechanism of the enzymes. Since glutamine is located in the solvent-

accessible active site of the enzymes, the mutation of this residue to alanine is not 

expected to cause any significant perturbation in the active-site structure or gross changes 

in the three-dimensional fold of the protein. In fact, the circular dichroism spectra of the 

mutants produce a pattern that is nearly identical in shape and intensities to their 

corresponding wild-type proteins confirming that the mutation has no observable 

structural effect in these proteins [10-12].  

The loss in catalytic activity observed upon mutation could be attributed to two 

possible factors: an increase in the Michaelis constant KM, or a reduction in kcat, the rate 

constant of the rate determining step in the hydrolysis reaction. In order to know which 

parameters are affected by the mutation, we set out to analyze the Michaelis-Menten 

kinetics of the mutants and the wild-type enzymes. Additional activity assays were 

conducted with varying substrate concentration and plots of the initial velocities versus 

substrate concentration are shown in figure 2.4 All enzymes with the exception of 

UCHL5N240 Q82A were fit to the Michaelis-Menten equation (figure 2.4). Non-linear 

regression analysis of the plots yielded the kinetic parameters kcat and KM for each UCH 

variant and their values are provided in Table 2.1. The values of the kinetic parameters 

obtained with wild-type enzymes are consistent with previously reported values  . The 

glutamine to alanine mutants showed a 30 and 18-fold decrease in kcat, for UCHL1 and 

UCHL3, respectively, compared to their corresponding wild-type enzymes. However, KM 

values were relatively unchanged due to the mutation, which is consistent with the 
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hypothesis that the glutamine residue is involved in the catalytic mechanism of the 

enzyme.  

In the case of UCHL5N240 Q82A, kcat and KM could not be determined 

individually because, even at concentrations of Ub-AMC as high as 12 M, the 

Michaelis-Menten plot was still rising linearly with substrate concentration, not reaching 

the plateau that is diagnostic of saturation.  Substrate concentrations greater than 12 M 

result in DMSO concentrations higher than 5%, which can diminish the enzyme’s 

activity. Instead, the ratio kcat/KM was determined by dividing the slope of this linear plot 

by the total enzyme concentration since it can be assumed that in this region of the 

Michaelis-Menten plot,  [Ub-AMC] << KM. Comparison of this value for the wild-type 

and Q82A variant of UCHL5N240 shows a 16-fold reduction in catalytic efficiency, 

which is comparable to the reductions seen with UCHL1 and UCHL3 suggesting that the 

Gln82 residue is likely performing the same function as in the other UCH enzymes.   

In order to determine the effect of these mutations on the stabilization of the transition 

state, we sought to estimate the change in free energy of activation associated with the 

mutation. The calculation was carried out using equation 2.1 and the kcat/KM values 

mentioned above and reported in Table 2.1 [11]. The free energy change for the three 

enzymes is approximately 2 kcal/mol, which is consistent with the value reported for the 

same mutation in papain [11].  
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The active-site glutamine in UCH enzymes is involved in a C—H•••O hydrogen 

bond with CH of the catalytic histidine 

 

2.5 Discussion 

The UCH subfamily of dubiquitinases are cysteine proteases with a catalytic triad 

similar to that seen in the papain family. In each member of this family, like papain, there 

is a conserved glutamine residue located in the active site of the enzymes believed to 

stabilize the incipient negative charge on the carbonyl of the scissile bond during the 

transition state of the hydrolysis reaction (Scheme 2.1). Indeed, mutation of the Gln19 in 

papain to alanine resulted in a 60-fold decrease in catalytic efficiency due mainly to a 

diminished catalytic rate (20-fold) and a small loss in substrate binding (3-fold). These 

results support the claim that the conserved glutamine side chain contributes to the 

stabilization of the oxyanion transition state. Given the similarity in certain active-site 

residues between papain and members of the UCH family, we wondered if the glutamine 

would perform a similar role in the UCH family. Our study sought to address the role of 

the conserved glutamine in rate enhancement in three UCH enzymes. 

Through site-directed mutagenesis, the active-site glutamine in three structurally 

characterized members of the UCH family was replaced with alanine in order to assess 

the contribution of this side chain to rate enhancement. Deubiquitination assays show 

there is a significant loss of activity in mutant enzymes compared to their wild-type 

counterparts. Comparison of the kinetic parameters shows a 16 to 30-fold loss (~2 

kcal/mol) in the catalytic efficiency for the glutamine mutants, which is due mainly to a 

decrease in the kcat parameter, as seen in UCHL1 and UCHL3 (for the mutant UCHL5, 
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kcat and KM could not be separately determined). These results are in agreement with the 

aforementioned results from papain, although the UCH enzymes did not exhibit the same 

change in the KM value. The kinetic scheme for UCHL1 has been worked out by Case 

and Stein using the same Ub-AMC substrate [10]. Their study shows that the rate of 

acylation is rate-limiting for kcat, which means KM reduces to the dissociation constant 

(Kd) of the Michaelis complex. The fact that we are not seeing any significant change in 

KM suggests that Gln84 in UCHL1 does not contribute to the enzyme-ground state-

substrate complex. Therefore, in UCHL1, according to our studies, the active site 

glutamine does not make any appreciable contact with the substrate in the Michaelis 

complex; rather it helps to stabilize the transition state.  

The kinetic scheme for UCHL3 remains to be worked out. However, kcat values of 

UCHL3 catalyzed hydrolysis of ubiquitin ethylester and Ub-lysine are very similar to that 

obtained with Ub-AMC as the substrate, suggesting that deacylation might be the rate-

limiting step [13]. In such a case, KM is not the simple dissociation constant of the 

Michaelis complex. Nevertheless, the fact that KM changes only slightly upon glutamine 

to alanine mutation in UCHL3 is consistent with the inference that the glutamine does not 

appreciably contribute to Michaelis complex.  

As discussed before, we could not separately measure kcat and KM for 

UCHL5N240 Q82A; rather, the ratio was measured, which is about 16-fold less than the 

wild-type protein. It is possible that the ratio reflects a change mostly in kcat, like UCHL1 

and UCHL3, due to the structural similarity between the proteins. However, it cannot be 

ruled out that UCHL5N240 employs a different mechanism than UCHL1 and UCHL3. It 

is possible that there was a much larger change in kcat that was compensated by an 
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opposite change in KM. Alternatively, there was little or no change in kcat and the 

observed effect was due mostly to a change in KM. The latter possibility seems rather 

unreasonable since the glutamine is located in an almost identical position as in the other 

enzymes and therefore its effect on stabilizing the Michaelis-Menten complex is expected 

to be the same.  

Our results indicate the mutation of glutamine to alanine results in a significant 

decline in the catalytic rate, which supports the hypothesis that glutamine is functioning 

to stabilize the transition state intermediate(s). However, one expects that the change 

would be much greater than 30-fold as seen in our system if the mechanism were through 

the stabilization of the oxyanion, which has been proposed to involve hydrogen bonding 

between the NH2 group of the side chain of glutamine and the negatively charged oxygen 

ion, given that such hydrogen bonds are particularly strong. For example, mutation of the 

oxyanion-stabilizing residue Tyr16 to phenylalanine in ketosteroid isomerase results in a 

20,000-fold (6.3 kcal/mol) reduction in kcat [9]. One explanation for the discrepancy 

between the result of the mutation of the oxyanion-stabilizing side chain in ketosteroid 

isomerase compared to our system is that, in the latter, the side chain of glutamine is not 

solely responsible for stabilizing the oxyanion through hydrogen bonding; rather, it is 

playing a role in contributing to the overall electropositive character of the oxyanion hole. 

As shown in Figure 2.2, a number of αNH dipoles from surrounding backbone residues 

can still support a significant degree of oxyanion stabilization even in the absence of the 

glutamine side chain. Since main-chain atoms cannot be removed by traditional 

mutagenesis methods, the individual contribution of each atom cannot be determined, nor 

can we determine if the glutamine plays a more significant role than the individual 
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backbone atoms. The alternative possibility that the transition-state stabilization by the 

glutamine side chain is reflecting a somewhat weaker hydrogen bond owing to a longer 

distance between the donor and the acceptor (discussed further in Chapter 4) cannot be 

ruled out. 

  



24 
 

2.6  References 

1. Komander D, Clague MJ, Urbe S. Breaking the chains: structure and function of 
the deubiquitinases. Nat Rev Mol Cell Biol. 2009;10(8):550-63. doi: 10.1038/nrm2731. 
PubMed PMID: 19626045. 

2. Nijman SM, Luna-Vargas MP, Velds A, Brummelkamp TR, Dirac AM, Sixma 
TK, et al. A genomic and functional inventory of deubiquitinating enzymes. Cell. 
2005;123(5):773-86. Epub 2005/12/06. doi: S0092-8674(05)01169-4 [pii] 

10.1016/j.cell.2005.11.007 [doi]. PubMed PMID: 16325574. 

3. Das C, Hoang QQ, Kreinbring CA, Luchansky SJ, Meray RK, Ray SS, et al. 
Structural basis for conformational plasticity of the Parkinson's disease-associated 
ubiquitin hydrolase UCH-L1. Proc Natl Acad Sci U S A. 2006;103(12):4675-80. PubMed 
PMID: 16537382. 

4. Johnston SC, Larsen CN, Cook WJ, Wilkinson KD, Hill CP. Crystal structure of 
a deubiquitinating enzyme (human UCH-L3) at 1.8 A resolution. Embo J. 
1997;16(13):3787-96. PubMed PMID: 9233788. 

5. Misaghi S, Galardy PJ, Meester WJ, Ovaa H, Ploegh HL, Gaudet R. Structure of 
the ubiquitin hydrolase UCH-L3 complexed with a suicide substrate. J Biol Chem. 
2005;280(2):1512-20. PubMed PMID: 15531586. 

6. Johnston SC, Riddle SM, Cohen RE, Hill CP. Structural basis for the specificity 
of ubiquitin C-terminal hydrolases. Embo J. 1999;18(14):3877-87. PubMed PMID: 
10406793. 

7. Leroy E, Boyer R, Auburger G, Leube B, Ulm G, Mezey E, et al. The ubiquitin 
pathway in Parkinson's disease. Nature. 1998;395(6701):451-2. PubMed PMID: 
9774100. 

8. Fang Y, Fu D, Shen XZ. The potential role of ubiquitin c-terminal hydrolases in 
oncogenesis. Biochim Biophys Acta. 1806(1):1-6. Epub 2010/03/23. doi: S0304-
419X(10)00026-0 [pii] 

10.1016/j.bbcan.2010.03.001 [doi]. PubMed PMID: 20302916. 

9. Boudreaux D, Chaney J, Maiti TK, Das C. Contribution of active site glutamine 
to rate enhancement in ubiquitin C-terminal hydrolases. FEBS J. 2012. Epub 2012/01/31. 
doi: 10.1111/j.1742-4658.2012.08507.x. PubMed PMID: 22284438. 

10. Luchansky SJ, Lansbury PT, Jr., Stein RL. Substrate recognition and catalysis by 
UCH-L1. Biochemistry. 2006;45(49):14717-25. PubMed PMID: 17144664. 



25 
 

11. Case A, Stein RL. Mechanistic studies of ubiquitin C-terminal hydrolase L1. 
Biochemistry. 2006;45(7):2443-52. PubMed PMID: 16475834. 

12. Dang LC, Melandri FD, Stein RL. Kinetic and mechanistic studies on the 
hydrolysis of ubiquitin C-terminal 7-amido-4-methylcoumarin by deubiquitinating 
enzymes. Biochemistry. 1998;37(7):1868-79. Epub 1998/03/04. doi: 10.1021/bi9723360 

bi9723360 [pii]. PubMed PMID: 9485312. 

13. Kraut DA, Sigala PA, Fenn TD, Herschlag D. Dissecting the paradoxical effects 
of hydrogen bond mutations in the ketosteroid isomerase oxyanion hole. Proc Natl Acad 
Sci U S A. 107(5):1960-5. Epub 2010/01/19. doi: 0911168107 [pii] 

10.1073/pnas.0911168107 [doi]. PubMed PMID: 20080683. 

 

  



 

 
F
H
fe
 

igure 2.1: Se
Hydrolase en
eatured in re

equence alig
zymes and t
d while the p

gnment for th
the yeast hom
putative oxy

 

he five huma
molog YUH
yanion residu

an Ubiquitin
1. Active sit
ue is featured

n Carboxyl T
te catalytic r
d in blue [9]

Terminal 
esidues are 
] 

26 

  



 

 
S
ox

cheme 2.1: P
xyanion resi

Proposed me
idue glutami

echanism for
ine is boxed 

r deubiquina
in red [5]. 

ation by UCHH enzymes. 

  

Putative 

27 



 

F
U
al
th
 

 

 

 

igure 2.2: A
UCHL3 homo
ldehyde (gra
hiohemiaceta

An illustration
ologue, Yuh
ay). Hydroge
al hydroxyl o

n of oxyanio
h1 (PDB entry
en bonding d
oxygen on th

 

on hole in a U
y 1CMX) (g
distances are
he aldehyde 

UCH enzym
green), coval
e shown for Y

moiety [9]

me. The struc
lently bound
Yuh1 residu

cture of yeast
d to Ubiquitin
ues stabilizin

28 

 

t 
n 

ng the 



 

F
U
an
U
op
 

 

 

 

igure 2.3: C
UCHL1 (5 nM
nd UCHL3(Q

UCHL5N240
pen gray and

omparative 
M) and UCH
Q89A) (5 pM

0(Q82A) (1 n
d glutamine 

activity assa
HL1(Q89A) 
M) with 300
nM) with 48
mutants are 

 

ay of wild-ty
(5 nM) with
 nM Ub-AM
0 nM Ub-AM
shown in so

ype and muta
h 600 nM Ub
MC. C, UCH

MC. Wild-ty
olid black [9

ant UCH enz
b-AMC. B, U

HL5N240 (1 n
ype UCH’s a

9].  

zymes. A, 
UCHL3 (5 p
nM) and 
are shown in

29 

 

M) 

n 



 

F
su
B
Q
 
 
 
 

igure 2.4: G
uggesting th

B. UCHL1 Q
Q82A[9] 

Glutamine to 
at the active

Q84A C. UCH

alanine mut
e site glutami
HL3 WT D. 

 

ants in UCH
ine plays a r
UCHL3 Q8

H enzymes sh
role in rate e
89A E. UCH

how impaire
nhancement

HL5N240 F. U

ed catalysis 
t. A. UCHL1
UCHL5N24

30 

 

1 WT 
40 



31 
 

Table 2.1: Kinetic Parameters for UCH Enzymes showing decrease in kcat/KM from wild 
type to Ala mutants [1] 
 

Enzyme  KM (nM)  kcat (s
-1)  

kcat/KM ×104 (M-1 
s-1)  

ΔΔG‡ 

(kcal/mol)  

UCHL3  77.1 ± 8.2 18.60 ± 0.60  24140  
1.89  

UCHL3 Q89A  
99.1 ± 
13.5  

1.03 ± 0.05  1040  

UCHL1  47.0 ± 6.0 
0.0348 ± 
1.25×10-3  

74.1  
2.19  

UCHL1 Q84A  56.1 ± 2.3 
0.0011 ± 
1.50×10-4  

1.96  

UCHL5N240  21493.2  33.67  15.7  

1.68  
UCHL5N240 
Q82A  

—  —  0.966  
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CHAPTER 3: CONSERVED HYDROPHOBIC MUTATION IN 
UCH ENZYMES HAS VARIED ROLE AS IT RELATES TO UBIQUITIN 

 

3.1 Abstract 

Ubiquitin carboxyl terminal hydrolase (UCH) enzymes release small peptide and 

protein leaving groups from the C-terminus of ubiquitin.  Although the interaction with 

ubiquitin is fairly well understood in these enzymes, recognition of the isopeptide moiety 

of the substrate at the active site has not been well characterized.  The crystal structure of 

TsUCH37 (T. spiralis) bound to the suicide substrate, UbVMe, reveals a conserved 

tryptophan residue that may play a role in stabilizing the isopeptide linkage in the active 

site.  To study the contribution of this tryptophan residue, the equivalent residue in 

human UCH37, W58, was mutated to alanine and phenylalanine.  The phenylalanine 

mutant retained most of its ubiquitin-AMC (Ub-AMC) hydrolysis activity as compared to 

the wild type enzyme, but the alanine mutant was substantially impaired.  The loss of 

activity with the alanine mutant is not due to any alteration in the three-dimensional fold 

of the enzyme.  Considering the distance of this tryptophan residue from G76 of ubiquitin 

(>5 Å), this observation suggests that W55 may be involved in binding to the AMC 

portion of the Ub-AMC substrate, which may indicate that it makes contact with the 

isopeptide moiety in ubiquitin-linked substrates.  This has been further investigated using 

UCHL3 as a model.   
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3.2 Introduction 

Uch37 is a member of the ubiquitin carboxyl terminal hydrolase family. It is the 

only member of the family that has been found to be a resident of the proteasome.  Uch37 

binds to the 19s cap through an interaction at its C-terminus with the C-terminus of 

Rpn13 [2]. It is believed that this interaction activates Uch37 for cleavage of 

polyubiquitin chains by relieving the auto inhibition of the active site by helix 9, though 

this has yet to be experimentally proven [3, 4]. However this interaction provides 

additional ubiquitin binding sites that may contribute to the effectiveness of Uch37 

cleaving polyubiquitin chains. Uch37 has not shown to be activated unless it is bound to 

the 19S proteasome cap. At the proteasome Uch37 takes the role of chain as it process 

polyubiquitin chains at the distal end. Ubiquitin carboxyl terminal hydrolase (UCH) 

enzymes release small peptide and protein leaving groups from the C-terminus of 

ubiquitin . Although the interaction with ubiquitin is fairly well understood in these 

enzymes, recognition of the isopeptide moiety of the substrate at the active site has not 

been well characterized.  It was recently found that the tryptophan residue (Trp55) of 

TsUCH37 which is near the active site was in a particular confirmation that suggested it 

may interact with the isopeptide bond between ubiquitin and its linked substrates [5].  

The crystal structure of TsUCH37 (T. spiralis) bound to the suicide substrate, 

UbVMe, reveals a conserved tryptophan residue that may play a role in stabilizing the 

isopeptide linkage in the active site [5].  Considering the distance of this tryptophan 

residue from G76 of ubiquitin (>5 Å), this observation suggests that W55 may make 

contact with the isopeptide moiety in ubiquitin-linked substrates and have a role in 

ubiquitin binding or substrate release.  We found this interaction to be very intriguing, as 
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it made us wonder the significance of this individual residue. We hoped to identify if this 

tryptophan assists with monoubiquitin binding or does it have an effect on the ability of 

Uch37 to cleave ubiquitin bound substrates. It has been further suggested that the Trp55 

residue may provide important contacts with the isopeptide link, properly positioning for 

cleavage at the active site [5]. 

 

3.3  Materials and Methods 

Mutagenesis primers were ordered from Sigma Aldrich for Uch37(1-240) W58A 

and W58F. Using a Bioneer mutagenesis kit the mutagenesis was performed using 

standard parameters on the PCR thermocycler.  After PCR thermocylcling was compete 

the resulting mixtures were treated with the DPN1 enzyme to remove methylated parental 

DNA. The resulting mutagenesis reaction was transformed using Rosetta cells and plated 

overnight in a 37˚C incubator. The resulting plate produced a number of colonies. The 

mutant DNA was extracted using a mini-prep purification kit. The mutant DNA was 

submitted for sequencing to the Purdue Genomics Facility. The sequence results 

confirmed each mutation was successful (figure 3.2, 3.3, 3.4). The resulting DNA was 

transformed into Rosetta Component Cells.  

 

3.3.1 Mutagenesis, Protein Expression and Purification 

A 75 mL starter culture of Lennox broth (LB) inoculated with 100 ܮ݉/݃ߤ Ampicillin 

and Escherichia coli cells containing the desired protein construct. This culture was 

incubated at 37°C with vigorus shaking overnight.  The next day 6 x 1L of LB media was 



35 
 

inoculated with 100 ܮ݉/݃ߤ Ampicilin and 8 mls of the starter culture. The 6L cultures 

were grown to an optical density (O.D.λ=600nm) = 0.400 and then induced with 1.0 mM 

isopropyl B-D-1-thiogalactopyranoside (IPTG). The cultures were then allowed to grow 

overnight at 18°C. 

 Cells were harvested by centrifugation at 7000 x g for 10 minutes and 

resuspended in 60 mL of 1 X PBS buffer (phosphate-buffered saline plus 400 mM KCl). 

The cells were then lysed by French press at 1,000 psi after incubating for 30 minutes 

with approximately 600 mg of Lysozyme. The pressed cells were then centrifuged at 

1200 rpm (30,000 x g) to pellet the cell debris. The supernatant collected was then loaded 

on to a GSTPrep FF 16/10 glutathione sepharose affinity column, equilibrated with the 1 

X PBS solution, at a flow rate of 1ml/min. The column was then washed with the 60 ml 

of 1 X PBS buffer plus 400 mM KCl to remove non-specific binding elements. The 

desired protein was eluted with approximately 30 ml of elution buffer (250 mM 

Tris•HCL, 500 mM KCl, 10 mM reduced glutathione, pH 8.0).  About 500 units of 

PreScission Protease, a 47 kDa protein that recognizes and cleaves GST region of the 

protein between a Gln and Gly residues, was added to the eluted solution (citation needed 

GE website). This results in free GST (26 kDa) and free protein containing plus GPLGS 

peptide on the N-terminal.  The solution was dialyzed overnight at 4°C in a 1 X PBS 

buffer plus 400 mM KCl, to allow for sufficient cleavage of the GST tag. The solution 

was then loaded on to the GSTPrep FF 16/10 glutathione sepharose affinity column 

allowing the GST free protein to pass through the column while the cleaved GST stays 

bound in a process called GST subtraction. Fractions were taken from each step of the 

purification process and run on an SDS PAGE Gel for successful verification of the 
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isolated protein of interest.  The protein was then concentrated by centrifugation to 4 ml, 

filtered through a .25 micron syringe filter and loaded onto an S75 gel filtration column 

on an Akta protein purification system (GE Healthcare Life) with a running buffer of 50 

mM Tris-HCL 50 mM NaCl and 1 mM DTT (pH 7.4). The protein was collected in 2 ml 

fractions. An SDS PAGE Gel was run on the collected fractions to quantify were the 

protein eluted. The fractions containing the most concentrated eluted protein was then 

pooled and concentrated to around 2 ml. A small sample of protein taken for 

concentration measurement and the rest was aliquoted into 100 ml epindorf tubes, flash 

frozen in liquid nitrogen, and stored in -80˚C Ultra Freezer. 

 

3.3.2 Kinetic Analysis of Oxyanion Mutants 

Each of the hUCH37 (hUch37N240 WT, hUch37N240 W58A and hUch37N240 

W58F) and UCHL3 (UCHL3 and UCHL3 I58A) enzymes were diluted in assay reaction 

buffer (50 mM Tris pH 7.6, 0.5 mM EDTA, 0.1% BSA, 5 mM DTT) so the final 

concentration in the reaction is the following: Uch37N240 WT  (1 nM), Uch37N240 

W58A (1 nM), Uch37(N240)W58F (1 Nm), UCHL3 (50 pM), UCHL3 I58A (50 pM).  

Enzymes were added to a 96-well plate and incubated at 30°C for 5 min prior to addition 

of Ub-AMC diluted in assay reaction buffer to initiate the reaction. Rates of Ub-AMC 

cleavage were monitored with an excitation λ = 380 nm and an emission λ = 465 nm at 

30°C.  
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3.3.3 Circular Dichroism 

Each of the hUCH37 (hUch37N240 WT, hUch37N240 W58A and hUch37N240 

W58F) were buffer exchanged into 1 X PBS buffer pH 7.4, to remove all traces of Tris 

HCL which absorbs strongly at 210 nm. Each protein was diluted to the final following 

concentrations: Uch37N240 WT (5 nM), Uch37N240 W58A (5 nM), Uch37N240 W58F 

(5 nM). CD spectra were obtained using a wavelength scan on a JASCO J-810 

spectrophotometer. Scans were conducted in the region of 260 to 190 nm.  Scans were 

corrected for blank and raw data converted to molar ellipticity. 

 

3.3.4 Isothermal Titration Calorimetry 

All solutions were dialyzed against 50 mM Tris-HCl 1mM TCEP.  In the titration 

of hUCH37N240 (WT) and ubiquitin, ubiquitin was diluted in buffer to 10 mM in 

syringe. hUCH37N240 (WT) was at a diluted to a concentration of 200 uM in cell.  In the 

titration of UCH37-RPN13N268 complex and Ubiquitin, the complex was diluted to a 

concentration of 100 uM in cell. Ubiquitin was diluted in buffer to 2 mM in syringe.  In 

the titration of hUCHL3 (WT) and ubiquitin and hUCHL3 I58A, ubiquitin was diluted in 

buffer to 500 μM in syringe. Both hUCHL3 (WT) and hUCHL3 I58A were diluted to a 

concentration of 59 μM for each titration. All ITC experiments were carried out by 

titrating free ubiquitin in syringe into the cell containing the respective UCH enzyme. 

Data was analyzed and fitted to a one-site binding model corresponding to a single site 

binding free ubiquitin to the perspective UCH enzyme being tested. Binding isotherm 

plots were produce from the integration of the heat of release vs. time for each ubiquitin-

enzyme pair. 
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3.4  Results 

 

3.4.1 hUCH37N240 W58A and hUCH37N240 W58F 

The tryptophan (55) residue of TsUCH37 was observed to make contact with the 

OMe group, in the structurally characterized, TsUCH37cat-UBVME  which suggest an 

important contact with the hydrocarbon area of the isopeptide bond of an actual ubiquitin 

attached substrate [1]. We mutated this tryptophan (58) residue, conserved in all UCH37 

homologs, in hUCH37 to alanine and phenylalanine to test whether this contact is 

important for substrate binding or ubiquitin interaction with UCH37. The result was that 

the UCH37 enzyme showed no difference in Ub-AMC release between the hUCH37(1-

240) (wild-type)  and the W58F mutant. This comes as no surprise because the 

phenylalanine (F) mutation was a hydrophobic and structurally conservative mutation 

from the tryptophan (W) of that position and no change was expected. However, the non-

conservative mutation of W58A, gave a significant decrease in UCH37 ability to 

hydrolyze the Ub-AMC in comparison to the truncated wild-type and W58F mutation as 

revealed in figure 3.5. We attempted to quantify this change using Isothermal 

Calorimetry measurements of the hUCH37N240 (WT) and hUCH37N240 W58A.  ITC 

of the hUCH37N240 showed a very weak interaction with ubiquitin because it was 

outside of the KD of the ITC (KD < 1 mM) and is estimated to be near 10.5 mM. ITC of 

the mutant hUCH37N240 W58A   was not performed because the due to the WT protein 

not showing measurable binding to ubiquitin. We decided instead to measure the KD of 

UCH37-RPN13N268 complex. This is because previous literature indicates that UCH37 

has an increased affinity to ubiquitin when in complex with Rpn13, a resident of the 
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proteasome [5]. The ITC measurement of the complex also proved to be just outside of 

the range of the instrument and is estimated to be a KD: 1.6 ± 0.7 mM. So ITC proved to 

be not a conclusive way to determine whether the tryptophan mutation affects ubiquitin 

binding to hUCH37. 

 

3.4.2 UCHL3I28A 

The tryptophan of the hUCH37 is conserved in and other homologs [5].     

However sequence alignment of the UCH family as seen in figure 3.1 shows an 

isoleucine present in a similar position in UCHL3. We decided to test whether mutation 

to alanine would have the same effect as witnessed in hUCH37. Also UCHL3 provides 

an excellent model substrate because of its high affinity to ubiquitin. However, we 

observed that this mutation had almost no effect on UCHL3 ability to catalyze Ub-AMC 

as seen in figure 3.11. Similarly, analysis of the ITC data (figure 3.12) indicates that 

UCHL3 wild type protein and UCHL3I28A bind ubiquitin with dissociation constants 

(KD) of 669 ± 60 nM and 456 ± 62 nM, respectively.  We interpret from this that this 

isoleucine has no significant impact in ubiquitin binding or AMC release.   

 

3.5 Discussion 

 We sought to determine the contribution the role of the conserved tryptophan found near 

the active site of hUCH37N240. Through site-directed mutagenesis, the tryptophan residue, 

the equivalent residue in human UCH37, W58, was mutated to alanine and 

phenylalanine.  The phenylalanine mutant retained most of its ubiquitin-AMC (Ub-AMC) 

hydrolysis activity as compared to the wild type enzyme, but the alanine mutant was 
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substantially impaired.  The loss of activity with the alanine mutant is not due to any 

alteration in the three-dimensional fold of the enzyme.  Considering the distance of this 

tryptophan residue from G76 of ubiquitin (>5 Å), this observation suggests that W55 may 

be involved in binding to the AMC portion of the Ub-AMC substrate, which may indicate 

that it makes contact with the isopeptide moiety in ubiquitin-linked substrates. UCHL3, 

another structurally characterized member of the UCH family and excellent model DUB, 

was also studied by mutating the isoleucine, analogous to hUCH37 tryptophan, in order 

to assess the contribution to the isopeptide link near the active site. UB-AMC 

deubiquination assays show there is a significant loss of activity in the UCH37 W58A 

mutant enzymes compared to its wild-type counterparts. However, no effect was 

observed in the same assay with UCHL3 I58A and UCHL3 wild-type.  ITC analysis 

indicates that UCH37 does not tightly bind ubiquitin. We tested UCH37, UCH37 W58A, 

and UCH37-RPN13N268 complex but not able to observe appreciable binding to mono-

ubiquitin. We can reasonably determine that the tryptophan does have an appreciable impact on 

hUCH37  ability to cleave ubiquitnated substrates based on the Ub-AMC experimental results.  It 

would be reasonable to assume that this interaction is with the isopeptide bond and substrate and 

not with ubiquitin binding just based on distance (> 5 Å). What we also can determine is that this 

interaction is not seen in UCHL3 and based on structural similarity we can also rule out this 

effect in UCHL1.  However, at this time we are not able to experimentally rule out its effect on 

ubiquitin binding.  
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CHAPTER 4: C—H•••O  HYDROGEN BONDS IN CYSTEINE PROTEASES 

 

4.1 Abstract 

Cysteine proteases have been extensively studied for their importance in a wide 

variety of biological processes such as apoptosis (Caspases), regulated proteolysis 

(ubiquitin hydrolases), and calcium signaling (Calpains). The mechanism of these 

proteolytic enzymes is relatively well known: it involves a catalytic diad of a cysteine-

histidine pair, or a triad with additional help of either an aspartic acid or asparagine. An 

analysis of structurally characterized cysteine proteases found in Merops Database 

reveals the presence of a close contact between the catalytic (His)CƐ and, most often, the 

O=Cδ of the putative oxyanion hole residue glutamine or a backbone carbonyl oxygen. 

This contact follows the requirements of a C-H---O hydrogen bond as previously reported 

for serine proteases (1).  We speculate that this C-H---O interaction may play a role in the 

catalysis by either altering the pKa of the general- base His and/or by keeping the 

oxyanion-stabilizing side chain in a productive orientation. Upon further analysis, we 

found that the oxyanion-stabilizing side chain, glutamine of ubiquitin carboxyl terminal 

hydrolases are engaged in a C—H•••O hydrogen-bonding interaction with the catalytic 

histidine, a feature that is common in most cysteine proteases, including papain, 

belonging to families with the QCH(N/D) type of active-site configuration.  It is possible 

that removal of the glutamine side chain might have abolished this interaction, which 
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typically accounts for 2 kcal/mol of stabilization, leading to an effect on catalysis 

observed here.    We investigated this further by making an additional mutation of the 

glutamine to glutamic acid and lysine in UCHL3. 

 

4.2 Introduction 

C—H•••O  hydrogen bonds have generally been identified by Taylor and 

Kenard[2] where a carbon is directly adjacent to a neutral or positively charged nitrogen, 

having an electron withdrawing effect. The result is that the carbon is more acidic and 

willing to donate its proton to a ready proton acceptor as long as the stereochemistry of 

the protein allows for it. It has been estimated that energy of this bond is 2.5 to 3.5 

kcal/mol in vaccuo [3]. In recent years several studies have identified  C—H•••O  

hydrogen bonds as having an important role in the stabilization of transmembrane 

helices[4], β sheets[5] and Schellman motifs[6]. However the role of this weak hydrogen 

bond in the activation of proteins is still not fully understood. 

C—H•••O  hydrogen bonds have also been identified in the active sites of serine 

protease.[7]  Derewenda et al. surmise that the significance of the C—H•••O  hydrogen 

bond is to provide an even charge distribution in the imidazole ring of histidine leading to 

the deprotonation of the NƐ2 during the cleavage step of acylation and deacylation of the 

enzyme[7]. Also that the bonds role is not necessary for stabilization of the imidazole 

ring because of the observed preferred trans conformation[7]. However, it has not been 

determined if these bond are present in the active sites of cysteine protease. Using 

generally accepted distance and angle measurements for C—H•••O  hydrogen bonds in 
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macromolecules we have determined the presence of C—H•••O  hydrogen bond in the 

active sites of cysteine proteases. 

 
4.3 Materials and Methods 

Using the Merops[1] a dataset of 94 non-homologous structurally characterized 

cysteine protease were selected. Each of their coordinate files were downloaded from the  

Protein Data bank[8]. A cutoff was for resolution at 3.0 Å and sequence homology of < 

80 %.  Hydrogen’s were added to the protein database coordinate files using the reduce 

program of Molprobity[9].   The stereo chemistry of the C—H•••O  bond was analyzed 

using the 4 different parameters and seen in Figure 1: C-O bond distance (D); O-H bond 

distance (DH); C—H•••O  angle (ζ); and H—O=C angle (ξ).  Geometric parameters used 

in previous C—H•••O  studies can be found in Table 1. The parameters as applied to this 

study limited the C-O bond distance (D) < 4.0Å, O-H bond distance (DH) <2.8Å, C—

H•••O  angle (ζ) > 120 (°)and the H—O=C angle (ξ) was measured but no specific cutoff 

was set. The calculation of the bond distances and angles were calculated using 

Pymol[10] and recorded into a table 4.4 

 

4.4 Results  

 

4.4.1   C—H•••O  Hydrogen Bond In Most Cysteine Protease Active Sites 
 

An analysis of the data reveals the presence of the C—H•••O  hydrogen bond in 

the active sites of cysteine proteases.  We identified 94 structurally characterized cysteine 

protease using the Merops[1]. Out of the 94 just 45 (48%) examples were identified as 
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having a distance C—H•••O  (D) of < 4.0 Å and an H—O (DH) distance of < 2.8 Å with 

an average of 3.52Å and 2.50Å respectively.  Figure 3A and 3B show the relative 

distribution of measured distances in the structures.  It reveals that a majority of the C—

H•••O  distances are between 3.5Å and 4.0Å. Also the H—O distances vary greatly but 

between 2.0Å to 2.8Å.   

The CƐ-H--O (ζ) angles were also well within the defined criteria of >1200 with an 

average of 1560, while the average H—O=C (ξ) angle was 1270. The distribution of angle 

measurements seen in Figure 3B and 3C are very spread out for the CƐ-H--O (ζ) angle 

and relatively tight for the H—O=C (ξ) angle.   These values are consistent with 

previously identified C—H•••O hydrogen bonds as reported in previous C—H•••O 

analysis in literature.   

The CƐ-H--O  hydrogen bond may have its importance in contributing to the 

effect on the charge distribution of the catalytic imidazole as suggested by Derewenda et 

al[7]. However we also noticed that glutamine was observed to be the most frequent 

proton acceptor in the analysis, involved in 32  (34%) of the total 94 proteins studied and 

is most noted to be the member of the putative oxyanion hole of cysteine protease. 

Previous studies have shown the importance of the oxyanion hole for the stabilization of 

the tetrahedral intermediate in the cysteine reaction mechanism and how mutation at this 

residue contributes to the reduction in enzyme activity[11]. From its prevalence as the 

proton acceptor in the importance of the C-H--O interaction may be to position the 

glutamine for immediate stabilization of the tetrahedral intermediate. Figure 4 shows the 

presence of the C—H•••O hydrogen bond in UCHL3 (PDB entry 1UCH), a notably very 

efficient cysteine protease. The glutamine is held in short contact with the catalytic 
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histidine. The CH is approximately 2.0 Å away from the oxygen of the side-chain 

carbonyl group. Interestingly, this distance is less than the sum of their van der Walls 

radii. This distance, along with C—H•••O and H•••O=C angles of 171° and 122°, 

respectively,  which meets the geometric criteria used for a C—H•••O hydrogen bond and 

therefore qualifies as a significant interaction [3, 4, 12-14]. Inspection of the active sites 

of UCHL1 (PDB ID: 3IFW) (bound with ubiquitin vinylmethylester) and UCHL5N240 

(PDB ID: 3RIS) also reveals the presence of the same interaction (Table 2), suggesting 

that the C—H•••O hydrogen bond involving the active site histidine and glutamine is a 

common feature of the UCH enzymes discussed herein [6, 12, 15]. 

 

4.4.2 UCHL3 Lysine and Glutamine Mutants Activity not as Expected 

In order to better understand the role of the glutamine side chain in the catalytic 

reaction, additional mutations converting the glutamine to either a glutamate or a lysine 

were carried out (Figure 6). Since results for the glutamine to alanine mutation were 

consistent across the three UCH enzymes tested, we limited the experiments to just 

UCHL3, which displayed the best geometry for the C—H•••O hydrogen bond among the 

UCH enzymes. Mutation of the glutamine to glutamate would allow for a stronger C—

H•••O bond but would eliminate its contribution to oxyanion stabilization. Furthermore, 

it would introduce a negative charge that is expected to destabilize the oxyanion species. 

Mutation to lysine, on the other hand, would take away the possibility of the C—H•••O 

bond while allowing for stronger oxyanion stabilization, assuming that the side-chain 

NH3
+ group of the lysine would occupy a position similar to the NH2 group of the 

glutamine’s side chain.  As seen in the previous alanine mutants, replacing the glutamine 
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residue with either a glutamate or lysine lowered kcat, while KM remains relatively 

unchanged (Table 3). Surprisingly, the Q89E mutation resulted in only a 5-fold reduction 

in kcat compared to the wild-type enzyme, an effect that is significantly lower than what 

would be expected from the combined effect of both eliminating hydrogen-bonding and 

introducing charge-charge repulsion between the glutamate side chain and the oxyanion. 

In the case of Q89K, despite our expectation that the mutation would lead to better 

oxyanion stabilization, we see a 15-fold loss in kcat, which is roughly the value we see in 

the UCHL3 Q89A mutant (compare Table 3.1 with Table 2.1).  

In the analysis of 94 structurally characterized cysteine proteases we have seen 

evidence of the C—H•••O  hydrogen bond in about half of the cysteine protease that we 

have analyzed. 45 of the 94 exhibited C—H•••O  hydrogen bond from the active site 

Histidine (48%)[16].  32 cases were between the Histidine active site residue and the 

Glutamine oxyanion residue (34%).  We speculate that this interaction gives a greater 

importance for the role of the oxyanion hole residue in cysteine proteases by either 

altering the pKa of the general- base His and/or by keeping the oxyanion-stabilizing side 

chain in a productive orientation.  An alternative explanation of the difference in 

magnitude of Ub-AMC hydrolysis seen between the glutamine to alanine mutants 

compared to the wild-type enzymes can be made by invoking the loss of the C—H•••O 

contact in the mutant. Inspection of active sites of the UCH enzymes reveal that the 

glutamine is in short contact with the catalytic histidine, which satisfies the geometric 

constraints for a C—H•••O hydrogen bond. Intrigued by this, we looked at a larger 

dataset of QCH(N/D) type of cysteine proteases in the Merops database, which revealed 

most cysteine proteases, including papain, possess a conserved glutamine that is within 
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C—H•••O bonding distance of the catalytic histidine. It should be noted that in papain, 

the glutamine (Gln19) is also known to be involved in an N—H•••O hydrogen bond with 

the NH group of the side chain of Trp177 [17], a catalytically important side chain. This 

is an example of a carbonyl group simultaneously engaged in hydrogen bonding with a 

CH and an NH donor, a situation commonly observed among protein -sheets, in which 

the backbone carbonyl groups of one strand are engaged in C—H•••O and N—H•••O 

hydrogen bonds with an adjacent strand’s CH and backbone NH groups, respectively 

[18]. However this ‘bifurcated’ situation does not exist in UCH enzymes, as there is no 

other hydrogen bond donor with accepted distance other than the imidazole group of the 

catalytic histidine. The observation of the C—H•••O contact presented here extends the 

parallels between serine and cysteine proteases. Dewerenda et al. first observed a C—

H•••O contact involving the catalytic histidine and a backbone carbonyl as the hydrogen 

bond donor in the active site of serine proteases [12]. The possibility that such an 

interaction plays a role in the catalytic mechanism of cysteine proteases, as has been 

suggested for their serine counterparts, cannot be ruled out. Interestingly, the change in 

free energy of transition-state stabilization (close to 2 kcal/mol) upon mutation in our 

system, as well as in the case of papain, happens to be very much within the range of the 

strength of a C—H•••O hydrogen bond [3], [19]. 

The C—H•••O hydrogen bond can be thought of as an additional force that 

stabilizes the imidazole side chain in a productive orientation such that it acts both as a 

general base and a proton donor during catalysis. Additionally, the C—H•••O hydrogen 

bonding would serve to enhance the histidine’s ability to specifically act as a general base 

by transferring some electron density from the glutamine carbonyl to the imidazole ring 
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of histidine. A stronger general base would mean a better ability to extract proton from 

water to activate it for nucleophilic attack, facilitating the formation of the tetrahedral 

transition state during deacylation (Scheme 2.1). Although different cysteine proteases 

would employ different mechanisms for hydrolysis, a better general-base histidine will in 

general contribute to efficient catalysis. However, the exact mechanism of how the 

active-site C—H•••O interaction may play a role in transition-state stabilization needs to 

be further investigated by computational work. 

We conducted additional studies on UCHL3 to dissect the role of the glutamine 

side chain in the deubiquitination reaction. If the sole purpose of glutamine were to 

stabilize the oxyanion, removal of the hydrogen-bonding (N-H•••O) donor plus the 

placement of a negative charge would substantially destabilize the transition state, 

leading to an effect on kcat that would be greater than the alanine mutant. Interestingly, 

the glutamine to glutamate mutant (with only a 5-fold decrease in kcat) proved to be a 

better catalyst than the alanine mutant, which is inconsistent with the idea that the 

glutamine is acting as an oxyanion stabilizer. Instead, the data appears to support that the 

C—H•••O hydrogen bond contributes to catalysis.  It is likely that the carboxylate side 

chain of glutamate in the Q89E mutant makes a stronger C—H•••O interaction with the 

CH group of the catalytic histidine than the carboxamide group of glutamine resulting in 

a better catalyst than the wild-type protein, but this effect is compensated to some degree 

by the unfavorable electrostatics between the negatively charged side chain and the 

oxyanion. It should be noted that a previous study showed that Q19E mutation in papain 

resulted in an approximately 20-fold decrease in kcat, to a similar level as seen in the 

Q19A mutant, leading the authors of that study to propose that he negative charge was 
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tolerated in the active site [20]. It is tempting to propose that in papain, the 

accommodation of the unfavorable charge in the mutant might have also been due to the 

compensatory effect of the C—H•••O hydrogen bond. 

  We then mutated the glutamine to lysine, which produced an enzyme with 

activity comparable to the alanine mutant. This is also surprising because lysine side 

chain has two components, NH groups for hydrogen bonding with the oxygen of the 

oxyanion, and the charge for favorable electrostatic interaction, and we expected that the 

combination of the two, assuming that right geometry is maintained for the N-H•••O 

bond, would cause better stabilization of the oxyanion than in the wild-type protein. 

However, this mutant showed similar level of catalytic activity as the alanine mutant, 

indicating that placement of positive charge near the active site does not appreciably 

enhance the stability of the oxyanion species, presumably because the glutamine in the 

wild-type enzyme was not playing a role in oxyanion stabilization. Alternatively, the 

longer side chain of lysine may be oriented away from the oxyanion with little interaction 

between the two, and therefore, the lysine mutant may not be reporting if the glutamine 

were stabilizing the oxyanion.  On the other hand, since the Q89K mutant lacks the 

ability to form the C—H•••O hydrogen bond as the Q89A mutant, the reduction in kcat, to 

nearly the same extent as seen in Q89A, might reflect this deficiency.  

  

4.5 Discussion 

Earlier we have shown that the active-site glutamine in UCH enzymes contributes 

to rate enhancement, but the relatively modest value of transition-state stabilization is 

more indicative of a weaker interaction, such as the C—H•••O bond between the 
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glutamine and catalytic histidine, than the conventional N-H•••O type of hydrogen bond 

that was proposed to stabilize the oxyanion [21]. We now conclude as a result for the 

UCHL3 Q89K and Q89E that this active site glutamine gives all the characteristics of a 

C—H•••O hydrogen bond. The observation that the glutamate mutant of UCHL3 is more 

active than the alanine mutant suggests that the conserved glutamine is unlikely to 

contribute to oxyanion stabilization, rather may play a role in catalysis via the C—H•••O 

hydrogen bond with the catalytic histidine.  
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Table 4.1: Geometric Parameters used in previous studies[6] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D (Å) DH  (Å) CƐ-H--O (ζ) (°) 

 

H—O=C (ξ) (°) Reference 

<3.5 <2.7 >120 --  [4] 

-- <2.7 >90 ~120 [12] 

-- <2.8 >90 -- [22] 

4.0-30 <2.8 >110 120-140 [14] 
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Obtained structures from 
PDB

Catalytic Type

Family

Clan

Generate data set of 
highest resolution 

structure < 3.0 Å, sequence 
homology < 80%

Hydrogen's added in 
Molprobity
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Distance and angles 
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94 non redundant PDB 
entries

 

Figure 4.2: Flowchart used to create database. Structurally characterized proteins 
identified in the Merops Database[1] which segregates proteins by catalytic type, family’s 
by sequence similarity, clan’s by evolutionary relationship. The pdbs were downloaded 
from the Protein Data Bank[8]. The C—H•••O  distances and angles were then measured 
in Pymol[10] 
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Table 4.2: C—H•••O  hydrogen bond parameters observed in 45 of 94 structurally 
characterized cysteine proteases.   Hydrogen bond donor and acceptor in bold. 
(a)Acceptor is backbone carbonyl oxygen of W280. (b) Acceptor is backbone carbonyl 
oxygen of G24 280 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Pdb ID Resolution 
(Å) 

Active site 
residues 

D (Å) DH CƐ-H--O 
(ζ)>120 
(0) 

H--O-C 
(ξ) (0) 

9PAP 1.65 
C25, H159, 
N175,Q19 

3.84 2.79 158.6 115.9 

1YAL 1.70 
C25, H159, 
N179 ,Q19 

3.72 2.60 172.4 125.2 

1PPO 1.80 
C25, H159, 
N179, Q19 

3.69 2.68 153.0 130.4 

1MDW 1.95 
C105, 
H262, N286, 
Q99 

2.97 1.90 164.0 128.4 

1KXR 2.07 
S115, Q109,  
H272, N296 

3.23 2.30 141.7 119.0 

1ZIV 2.31 
C97, H254, 
N278, Q91 

3.26a 2.50 128.2 139.6 

3IFW 2.4 
C90, H161, 
D176, Q84 

3.71 2.79 141.6 159.1 

1UCH 1.80 
C95, H169, 
D184, Q89 

3.11 2.00 171.6 122.1 

2GFO 2.00 

C786, 
H1067, 
D1085, 
N781 

3.31 2.20 172.2 121.0 

1VJV 1.74 
C118, H447, 
N113, N465 

3.10 2.10 147.3 102.4 
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Table 4.2: continued 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pdb ID Resolution 
(Å) 

Active site 
residues 

D (Å) DH CƐ-H--O 
(ζ)>120 
(0) 

H--O-C 
(ξ) (0) 

1QMY 1.90 
C51, H148, 
N46, A163 

3.27 2.20 156.8 126.2 

3K8U 1.90 
C17, H96, 
A112, Q11 

3.59 2.70 136.2 153.6 

1CV8 1.75 
C24,  H120, 
N141, Q18 

3.50 2.40 160.4 138.3 

2CY7 1.90 
C74, D278, 
H280, Y54 

3.09 2.10 141.9 128.3 

3DKB 2.50 
C103, 
H256, N98 

3.96 2.88 167.2 74.7 

1Y08 1.93 
C94, H262, 
D284, D286 

3.30 2.28 153.7 88.9 

2Z84 1.70 
C53, H177, 
D175, Y41 

3.62 2.75 135.5 161.2 

2BU3 1.40 
C70, H183, 
D201, Q64 

3.51 2.41 179.0 150.6 
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Table 4.2: continued 
 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Pdb ID Resolution 
(Å) 

Active site 
residues 

D (Å) DH CƐ-H--O 
(ζ)>120 
(0) 

H--O-C 
(ξ) (0) 

3C0R 2.31 
C120,H222, 
D117 

3.25 2.44 128.8 127.2 

3BIJ 2.50 C135, H84 3.14b 2.34 128.6 88.9 

1EUV 1.60 
C580,H514, 
D531,Q574 

3.90 2.84 160.0 118.0 

2CKG 2.45 
C602,H533, 
D550,Q596 

3.82 2.78 157.5 113.5 

3EAY 2.40 
C926,H794, 
D873,Q920 

3.59 2.59 151.5 137.4 

 

1XT9 

 

2.20 

C163,H102, 
D119,Q157 

 

3.29 

 

2.20 

 

176.7 

 

136.4 

1A2Z 1.73 
C143, E80, 
H167 

3.72 2.82 139.7 100.8 

2HWK 2.45 C477, H546 3.70 2.90 129.5 128.8 

1GEC 2.10 
C25, H159, 
Q19 

3.61 2.06 179.1 150.0 
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Table 4.2: continued 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Pdb ID Resolution 
(Å) 

Active site 
residues 

D (Å) DH CƐ-H--O 
(ζ)>120 
(0) 

H--O-C 
(ξ) (0) 

1S4V 2.00 
C26, H163, 
Q20 

3.79 2.69 174.6 138.3 

1EF7 2.67 
C31, H180, 
N200, Q22 

3.88 2.81 163.9 144.6 

1CQD 2.10 
C27, H161, 
N181,  Q21 

3.98 2.97 152.4 120.8 

2FO5 2.20 
C28, H167, 
N188, Q22 

3.66 2.60 162.2 118.0 

1CS8 1.80 
C25, H163, 
Q19 

3.68 2.59 168.8 131.4 

1GLO 2.20 
C25, H164, 
Q19 

3.33 2.27 161.4 119.7 

7PCK 3.20 
C25, H162, 
Q19 

3.48 2.38 173.9 154.1 

1YVB 2.70 
C25, H159, 
Q19 

3.83 2.78 159.5 112.1 

1HUC 2.10 
C29,H199, 
Q23, N219 

3.55 2.54 153.3 122.5 
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Table 4.2: continued 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Pdb ID Resolution 
(Å) 

Active site 
residues 

D (Å) DH CƐ-H--O 
(ζ)>120 
(0) 

H--O-C 
(ξ) (0) 

3BWK 2.42 
C51, H183, 
N182, Q45 

3.99 2.98 152.8 140.7 

1IWD 1.63 
C25, H159, 
N178, Q19 

3.63 2.54 169.1 137.0 

2BDZ 2.10 
C25, H159, 
N175, Q19 

3.57 2.49 168.8 130.2 

2PNS 1.90 
C25, H157, 
N173, Q19 

2.88 2.01 132.6 101.0 

3F75 1.99 
C31, H167, 
N189, Q25 

3.48 2.38 174.0 139.5 

2B1M 2.00 
G26, H168, 
N175 

3.40 2.38 154.7 137.7 

1CB5 2.59 
C73, H372, 
N396, Q67 

3.71 2.65 162.1 114.6 

1GCB 2.20 
C73, H369, 
N392, Q67 

3.75 2.68 165.9 126.7 

  
Average 3.52 2.50 156.1 127.0 
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Table 4.3: Kinetic Parameters for UCHL3 Glu and Lys mutants showing decrease in 
kcat/KM from wild type  
 

KM (nM)  kcat (s
-1) kcat/KM ×104 (M-1 s-1) ΔΔG≠ (kcal/mol) 

UCHL3 Q89E  49.8 ± 11.0  3.65 ± 0.00 7329 0.72  
UCHL3 Q89K  58.5 ± 2.9  1.20 ± 0.00 1931 1.51  
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Ubiquitin C-terminal hydrolases (UCHs) are cysteine proteases featuring a

classical Cys–His–Asp catalytic triad, and also a highly conserved Gln that

is thought to be a part of the oxyanion hole. However, the contribution of

this side chain to catalysis by UCHs is not known. Herein, we demonstrate

that the Gln side chain contributes to rate enhancement in UCHL1,

UCHL3, and UCHL5. Mutation of the Gln to Ala in these enzymes

impairs the catalytic efficiency, mainly because of a 16-fold to 30-fold

reduction in kcat, which is consistent with a loss of approximately

2 kcalÆmol)1 in transition state stabilization. However, the contribution to

transition state stabilization observed here is rather modest for the side

chain’s role in oxyanion stabilization. Interestingly, we discovered that the

carbonyl oxygen of this side chain is engaged in a C–HÆÆÆO hydrogen-bond-

ing contact with the CeH group of the catalytic His. Upon further analysis,

we found that this interaction is a common active site structural feature in

most cysteine proteases, including papain, belonging to families with the

QCH(N ⁄D) type of active site configuration. It is possible that removal of

the Gln side chain might have abolished the C–HÆÆÆO interaction, which

typically accounts for 2 kcalÆmol)1 of stabilization, leading to the effect on

catalysis observed here. Additional studies performed on UCHL3 by

mutating the Gln to Glu (strong C–HÆÆÆO acceptor but oxyanion destabili-

zer) and to Lys (strong oxyanion stabilizer but lacking C–HÆÆÆO hydrogen-

bonding capability) suggest that the C–HÆÆÆO hydrogen bond could contri-

bute to catalysis.

Introduction

Ubiquitin (Ub) C-terminal hydrolases (UCHs) belong

to a larger group of enzymes collectively called

deubiquitinases, which catalyze the hydrolysis of the

peptide or isopeptide bond through which Ub is

attached to other proteins or other Ub moieties in

polyubiquitin chains [1–5]. The UCH family members

are cysteine proteases featuring a classical Cys–His–

Asp catalytic triad [6–10]. The active site of these

enzymes also features a highly conserved Gln (Fig. 1),

which is believed to be a part of the so-called oxyanion

hole, an arrangement of spatially proximal peptide

dipoles aligned in a way that creates a positively

charged pocket facing the thiol group of the catalytic

Cys. It is also possible that, by virtue of being located

at the N-terminus of a helix, the electropositive charac-

ter of this pocket is enhanced by the helix macrodipole

effect [11]. In cysteine proteases, nucleophilic attack on

the carbonyl group of the scissile peptide bond pro-

ceeds through a tetrahedral transition state bearing a

negative charge on the oxygen atom of the carbonyl

group. This negative charge is stabilized by

electrostatic and hydrogen-bonding interactions with

Abbreviations

AMC, aminomethylcoumarin; PDB, Protein Data Bank; Ub, ubiquitin; Ubal, ubiquitin aldehyde; UCH, ubiquitin C-terminal hydrolase.
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the oxyanion hole, which are proposed to constitute

one of the factors leading to the lowering of activation

energy for the hydrolysis reaction [12].

The relative orientation of the carbonyl oxygen of

the scissile peptide group with respect to the oxyanion-

stabilizing groups, as in the tetrahedral transition state,

may be approximately visualized in the crystal struc-

ture of the yeast Ub hydrolase Yuh1 bound covalently

to the suicide substrate Ub aldehyde (Ubal) (Fig. 2)

[13]. Attack of the catalytic thiol on Ubal results in the

formation of the thiohemiacteal product, which mimics

the oxyanion-bearing tetrahedral transition state

(Fig. 2). As seen in Fig. 2, the hydroxyl oxygen of the

thiohemiacetal moiety is within a relatively short dis-

tance from the backbone NH groups of the catalytic

Cys90, Ala89 and Asn88 and the side chain NH2

group of Gln84, the putative oxyanion-stabilizing side

chain. It has been proposed that, in a general cysteine

protease, the negatively charged oxygen in the tetrahe-

dral transition state would occupy nearly the same

position as the thiohemiacteal hydroxyl oxygen seen in

the Yuh1–Ubal structure and would be coordinated

through electrostatic and hydrogen-bonding interac-

tions with the groups lining the oxyanion hole [13].

Previous studies in papain revealed that Gln19, the

oxyanion side chain in the protein, plays a role in the

catalytic mechanism of the enzyme contributing to rate

enhancement. Mutation of this side chain to Ala

reduces the catalytic efficiency by approximately

60-fold, mostly affecting kcat (20-fold lower), with a

smaller change in Km (three-fold higher) [12]. Ignoring

the relatively small change in Km, the 20-fold change

in kcat was attributed to a loss of the contribution of

the Gln side chain to oxyanion stabilization. The cata-

lytic Cys–His–Asp triad of structurally characterized

UCHs, such as UCHL1, UCHL3, and UCHL5, adopts

a similar geometric relationship as found in the Cys–

His–Asn triad of papain and the triads of other

papain-like cysteine proteases. Additionally, the active

site Gln in UCH enzymes is located in an analogous

position to Gln19 in the active site of papain. How-

ever, the role played by this side chain in catalysis by

UCHs has not been studied thus far. Considering the

importance of the UCH group of proteases in diseases

such as Parkinson’s disease and cancer, dissecting the

role of active site residues in catalysis by these enzymes

is an important endeavor, as it would advance our

understanding of the mechanism of these enzymes

[14–18]. In this study, we sought to determine the con-

tribution to rate enhancement by the putative oxyan-

ion-stabilizing side chain of the active site Gln by

mutational analysis and comparison of the kinetic

parameters with those of the wild-type proteins. This

was investigated in all structurally characterized

UCHs – UCHL1, UCHL3, and the catalytic domain

of UCHL5 (residues 1–240, hereafter referred to as

UCHL5N240) [6–10]. Breast cancer early-onset 1-asso-

ciated protein 1, the remaining human UCH family

member, was omitted from this study, as its crystal

structure has yet to be determined.

Results

Active site Gln fi Ala mutants of UCHs show

significantly less activity than the wild-type

enzymes

In order to determine whether the conserved Gln

found in the active site of UCHs (Fig. 1) contributes

to rate enhancement, hydrolysis assays with the fluoro-

genic substrate Ub-aminomethylcoumarin (AMC) were

Fig. 2. Ubal (gray) covalently bound to Yuh1 (green). Hydrogen

bonding distances are shown for Yuh1 residues stabilizing the thio-

hemiacetal hydroxyl oxygen on the aldehyde moiety. The helix of

Yuh1 that may contribute to the macrodipole is in magenta.

Fig. 1. Sequence alignment of the human UCHs and the yeast

homolog Yuh1. Residues corresponding to the catalytic triad are in

red, and the putative oxyanion residue is in blue.
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conducted, with identical conditions for each enzyme

and its Gln fi Ala mutant. These results showed that

the rate of hydrolysis leading to AMC release was sig-

nificantly reduced for the mutants as compared with

their wild-type counterparts (Fig. S1), suggesting a role

for this side chain in contributing to rate enhancement

in the catalytic mechanism of the enzymes. As Gln is

located in the solvent-accessible active site of the

enzymes, the mutation of this residue to Ala is not

expected to cause any significant perturbation in the

active site structure or gross changes in the three-

dimensional fold of the protein. In fact, the CD spec-

tra of the mutants produced patterns that were nearly

identical in shape and intensity to those of their corre-

sponding wild-type proteins (Fig. S2), confirming that

the mutation has no observable structural effect in

these proteins.

The reduction in catalytic activity observed upon

mutation could be attributable to two possible factors:

an increase in Km, or a reduction in kcat, the rate con-

stant of the rate-determining step in the hydrolysis

reaction. In order to determine which parameters are

affected by the mutation, we set out to analyze the

Michaelis–Menten kinetics of the mutants and the

wild-type enzymes. Additional activity assays were

conducted with varying substrate concentrations, and

plots of the initial velocities versus substrate concentra-

tion are shown in Fig. 3. All enzymes, with the excep-

tion of UCHL5N240 Q82A, were fitted to the

Michaelis–Menten equation (Fig. 3F). Nonlinear

regression analysis of the plots yielded the kinetic

parameters kcat and Km for each UCH variant, and

their values are provided in Table 1. The values of the

kinetic parameters obtained with wild-type enzymes

were consistent with previously reported values [19–

21]. For UCHL1 and UCHL3, the Gln fi Ala mutants

showed 30-fold and 18-fold decreases in kcat, respec-

tively, as compared with their corresponding wild-type

enzymes. However, Km values were relatively

unchanged by the mutation, which is consistent with

the hypothesis that the Gln is involved in the catalytic

mechanism of the enzyme.

In the case of UCHL5N240 Q82A, kcat and Km

could not be determined individually, because, even at

concentrations of Ub-AMC as high as 12 lm, the

Michaelis–Menten plot was still rising linearly with

substrate concentration, not reaching the plateau that

is diagnostic of saturation. Substrate concentrations

> 12 lm result in dimethylsulfoxide concentrations

higher than 5%, which can diminish the enzyme’s

activity. Instead, the kcat ⁄Km ratio was determined by

dividing the slope of this linear plot by the total

enzyme concentration, as it can be assumed that, in

this region of the Michaelis–Menten plot, [Ub-

AMC] > Km. Comparison of this value for the wild-

type and Q82A variant of UCHL5N240 showed a

16-fold reduction in catalytic efficiency, which was

comparable to the reductions seen with UCHL1 and

UCHL3, suggesting that Gln82 is probably performing

the same function as in the other UCH enzymes.

In order to determine the effect of these mutations

on the stabilization of the transition state, we sought

to estimate the change in free energy of activation

associated with the mutation. The calculation was car-

ried out with Eqn (1) and the kcat ⁄Km values men-

tioned above and reported in Table 1 [12]. The free

energy change for the three enzymes was approxi-

mately 2 kcalÆmol)1, which is consistent with the value

reported for the same mutation in papain [12].

DDG 6¼¼ �RT ln
ðkcat=KmÞmutant

ðkcat=KmÞwild-type

" #
ð1Þ

The active site Gln in UCHs is involved in a

C–HÆÆÆO hydrogen bond with CeH of the catalytic His

The loss in enzymatic activity seen in the Gln fi Ala

mutants prompted us to look closely at the inter-

actions of the active site Gln with nearby residues.

Figure 4 shows the active site neighbors of Gln in

UCHL3 [Protein Data Bank (PDB) entry 1UCH].

Interestingly, the Gln is in close proximity to the cata-

lytic His, with the CeH being 2.0 Å away from the

oxygen of the side chain carbonyl group, a distance

less than the sum of their van der Waals radii. This

distance, along with C–HÆÆÆO and HÆÆÆO=C angles of

171� and 122�, respectively, meets the geometric crite-

ria used for a C–HÆÆÆO hydrogen bond, and this inter-

action therefore qualifies as a significant interaction

[22–26]. Inspection of the active sites of UCHL1 (PDB

ID: 3IFW) (bound with Ub vinylmethylester) and

UCHL5N240 (PDB ID: 3RIS) also reveals the pres-

ence of the same interaction (Table 2), suggesting that

the C–HÆÆÆO hydrogen bond involving the active site

His and Gln is a common feature of the UCHs dis-

cussed herein [22,27,28].

This observation led us to wonder whether such a

hydrogen bond also exists in papain and other papain-

like cysteine proteases. To this end, we created a data-

set of structurally characterized cysteine proteases

found in the MEROPS database that contain, in addi-

tion to the three members of the catalytic triad

CH(N ⁄D), the conserved Gln in their active site (see

Experimental procedures) [29]. The list of all proteins

in the dataset and relevant information about them is

Role of active site glutamine in UCH catalysis D. A. Boudreaux et al.
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presented in Table 2. The His–Gln (Ce–Od) distance

and angle distributions within the members of the

dataset are shown as a histogram in Fig. 5. Of 46

structures, 80% (37) satisfied the criteria for a C–HÆÆÆO
interaction. The remaining nine proteins met the

angular requirements for the C–HÆÆÆO bond, but did

not meet the distance requirements. However, it should

be noted that, in general, a hydrogen bond has a sig-

nificant electrostatic component, which will be func-

tional even at relatively longer distances, albeit with a

A B

C D

E F

Fig. 3. Deubiquitination activity assay for determination of catalytic parameters. Data were fitted to the Michaelis–Menten equation to deter-

mine the kcat and Km parameters for each enzyme and the corresponding Gln fi Ala mutants. Wild-type UCHL1 (A) and UCHL1 Q84A (B)

are shown as squares, wild-type UCHL3 (C) and UCHL3 Q89A (D) are shown as diamonds, and wild-type UCHL5N240 (E) and UCHL5N240

Q82A (F) are shown as circles.
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weaker effect [24]. Among the 37 structures that met

the criteria, there were five instances in the dataset

where inactive forms of the protein did not meet C–

HÆÆÆO specifications; however the bond criteria were

satisfied once the protein was in an active conforma-

tion upon complexation with either an inhibitor or a

substrate mimic (Table 2). Table 2 shows that a major-

ity of the C–HÆÆÆO distances were between 3.1 and

4.5 Å, with a mean value of 3.7 Å. Additionally, the

HÆÆÆO distances varied between 2.1 and 3.3 Å with a

mean value of 2.6 Å. The Ce–HÆÆÆO (f) angles were

also well within the defined criteria of > 120�, with a

mean of 161�, whereas the mean HÆÆÆO=C (n) angle

was 134�.
In order to better understand the role of the Gln

side chain in the catalytic reaction, additional muta-

tions converting the Gln to either a Glu or a Lys were

carried out (Fig. 6). As the results for the Gln fi Ala

mutation were consistent across the three UCHs

tested, we limited the experiments to just UCHL3,

which displayed the best geometry for the C–HÆÆÆO

hydrogen bond among the UCHs. Mutation of the

Gln to Glu would allow for a stronger C–HÆÆÆO bond,

but would eliminate its contribution to oxyanion sta-

bilization. Furthermore, it would introduce a negative

charge that is expected to destabilize the oxyanion spe-

cies. Mutation to Lys, on the other hand, would take

away the possibility of the C–HÆÆÆO bond while allow-

ing for stronger oxyanion stabilization, on the assump-

tion that the side chain NH3
+ group of the Lys would

occupy a position similar to the NH2 group of the Gln

side chain. As seen in the previous Ala mutants,

replacing the Gln with either a Glu or a Lys lowered

kcat, whereas Km remained relatively unchanged

(Table 3). Surprisingly, the Q89E mutation resulted in

only a five-fold reduction in kcat as compared with the

wild-type enzyme, an effect that is significantly lower

than what would be expected from the combined effect

of both eliminating hydrogen bonding and introducing

charge–charge repulsion between the Glu side chain

and the oxyanion. In the case of the Q89K mutant,

despite our expectation that the mutation would lead

Table 1. Kinetic parameters for UCHs.

Enzyme Km (nM) kcat (s
–1)

kcat ⁄ Km · 104

(M–1Æs–1)

DDG�

(kcalÆmol)1)

UCHL3 77.1 ± 8.2 18.60 ± 0.60 24 140 1.89

UCHL3 Q89A 99.1 ± 13.5 1.03 ± 0.05 1040

UCHL1 47.0 ± 6.0 (0.0348 ± 1.25) · 10)3 74.1 2.19

UCHL1 Q84A 56.1 ± 2.3 (0.0011 ± 1.50) · 10)4 1.96

UCHL5N240 21 493.2 33.67 15.7 1.68

UCHL5N240 Q82A – – 0.966

Fig. 4. Ribbon diagram of UCHL3 with the catalytic residues and the C–HÆÆÆO bonding Gln shown as sticks. (A) The D-value. (B) The DH-value

along with the n and f angles.
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Table 2. C–HÆÆÆO hydrogen bond parameters observed in 46 structurally characterized cysteine proteases with QCH(N ⁄D)-type active site

configurations from the MEROPS database.

Clan Family PDB Protein Resolution

Active site

residues D (Å) DH (Å) f (�) n (�)

CA C1 1PE6 Papain 2.1 Q19, C25, H159, N175 3.7 2.6 167.4 135.6

1YAL Chymopapain 1.7 Q19, C25, H159, N179 3.7 2.6 172.4 125.2

1PPO Caricain 1.8 Q19, C25, H159, N179 3.7 2.7 153.0 130.4

1GEC Glycyl endopeptidase

(Carica papaya)

2.1 Q19, C25, H159, N179 3.6 2.1 179.1 150.0

2ACT Actinidain 1.7 Q19, C25, H162, N182 3.5 2.5 162.0 124.0

1FH0a Cathepsin V 1.6 Q19, C25, H163, N187 4.2 3.2 162.7 137.9

1S4V Vignain 2.0 Q20, C26, H163, N183 3.8 2.7 174.6 138.3

1EF7b Cathepsin X 2.7 Q22, C31, H180, N200 3.9 2.8 163.9 144.6

1CQDa Zingipain 2.1 Q21, C27, H161, N181 4.0 3.0 152.4 120.8

1M6D Cathepsin F 1.7 Q19, C25, H159, N175 3.8 2.8 146.7 155.6

2FO5 Endopeptidase B

(barley-type)

2.2 Q22, C28, H167, N188 3.7 2.6 162.2 118.0

1CS8 Cathepsin L 1.8 Q19, C25, H163, N187 3.7 2.6 168.8 131.4

1GLO Cathepsin S 2.2 Q19, C25, H164, N184 3.3 2.3 161.4 119.7

7PCK Cathepsin K 3.2 Q19, C25, H162, N182 3.5 2.4 173.9 154.1

1NB5b,c Cathepsin H 2.4 Q19, C25, H159, N158 3.4 2.4 152.3 162.4

1YVB Falcipain-2 2.7 Q19, C25, H159, N175 3.8 2.8 159.5 112.1

1HUCc Cathepsin B 2.1 Q23, C29, H199, N219 3.6 2.5 153.3 122.5

3BPM Falcipain-3 2.5 Q45, C51, H183, N182 3.9 2.8 165.0 98.9

1K3Bc Dipeptidyl-peptidase I 2.2 Q228, C234, H381, N403 3.4 2.3 172.4 131.2

2P86a Rhodesain 1.2 Q19, C25, H162, N182 4.3 3.3 152.8 141.3

1XKG Peptidase 1 (mite) 1.6 Q108, C114, H250, N270 3.4 2.3 165.0 135.6

1F2Aa Cruzipain 1.6 Q19, C25, H159, N175 4.1 3.0 164.0 137.7

1IWD Ervatamin B 1.6 Q19, C25, H159, N178 3.6 2.5 169.1 137.0

1O0Ea Ervatamin C 1.9 Q19, C25, H157, N173 4.0 3.0 168.1 131.3

2BDZ Mexicain 2.1 Q19, C25, H159, N175 3.6 2.5 168.8 130.2

3BCNc Ervatamin A 2.8 Q19, C25, H157, N173 3.1 2.1 154.7 150.9

3F75 TgCPL peptidase

(Toxoplasma gondii)

2.0 Q25, C31, H167, N189 3.5 2.4 174.0 139.5

2B1M Papain-like protein

SPE31 (Pachyrhizus erosus)

2.0 Q20, G25, H168, N188 3.4 2.4 154.7 137.7

1CB5 Bleomycin hydrolase (animal) 2.6 Q67, C73, H372, N396 3.7 2.7 162.1 114.6

C2 1KXR Calpain-1 2.1 Q109, C115, H272, N296 3.2 2.3 141.7 119.0

1MDW Calpain-2 2.0 Q99, C105, H262, N286 3.0 1.9 164.0 128.4

C12 3IFWb Ubiquitinyl hydrolase L1 2.4 Q84, C90, H161, D176 3.7 2.8 141.6 159.2

1UCH Ubiquitinyl hydrolase L3 1.8 Q89, C95, H169, D184 3.1 2.0 171.6 122.1

1CMXc Ubiquitinyl hydrolase YUH1 2.3 Q84, C90, H166, D181 4.1 3.1 159.4 140.8

3IHR Ubiquitin C-terminal hydrolase L5 3.0 Q82, C88, H164, D179 3.6 2.8 133.6 160.1

C39 3K8U Bacteriocin-processing peptidase 1.9 Q11, C17, H96, D112 3.6 2.7 136.2 153.6

C47 1CV8 Staphopain A 1.8 Q18, C24, H120, N141 3.5 2.4 160.4 138.3

1X9Ya Staphopain B 2.5 Q237, C243, H340, N360 4.0 2.9 164.6 123.4

CE C83 2BU3c c-Glutamylcysteine

dipeptidyltranspeptidase

1.4 Q64, C70, H183, D201 3.5 2.4 179.0 150.6

C5 1AVPa Adenain 2.6 Q115, C122, H54, E71 4.5 3.5 156.5 100.5

C48 3EAY SENP7 peptidase 2.4 Q920, C926, H794, D873 3.6 2.6 151.5 137.4

1XT9 SENP8 peptidase 2.2 Q157, C163, H102, D119 3.3 2.2 176.7 136.4

1EUVb Ulp1 peptidase 1.6 Q574, C580, H514, D531 3.9 2.8 160.0 145.6

2CKG SENP1 peptidase 2.5 Q596, C602, H533, D550 3.8 2.8 157.5 118.0

1TH0a SENP2 peptidase 2.2 Q542, C549, H478, D495 3.9 2.9 154.4 122.3

AVG 3.7 2.6 161.1 133.7

a Does not meet our criteria for CHO hydrogen bond. b Satisfies our criteria upon complex formation. c
MOLPROBITY strongly suggested flip-

ping of Gln or His.
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to better oxyanion stabilization, we saw a 15-fold

reduction in kcat, which is approximately the value that

we saw in the UCHL3 Q89A mutant (compare Table 1

with Table 3).

Discussion

The UCH subfamily of deubiquitinases are cysteine

proteases with a catalytic triad similar to that seen in

the papain family. In each member of this family, as in

papain, there is a conserved Gln located in the active

site of the enzymes that is believed to stabilize the

incipient negative charge on the carbonyl of the scissile

bond during the transition state of the hydrolysis reac-

tion (Scheme 1). Indeed, mutation of the Gln19 in

papain to Ala resulted in a 60-fold decrease in catalytic

efficiency, owing mainly to a diminished catalytic

rate (20-fold) and a small loss in substrate binding

(three-fold). These results support the claim that the

conserved Gln side chain contributes to the stabiliza-

tion of the oxyanion transition state. Given the simi-

larity in certain active site residues between papain and

members of the UCH family, we wondered whether

the Gln would perform a similar role in the UCH fam-

ily. The study presented herein sought to address the

role of the conserved Gln in rate enhancement in three

UCHs.

Through site-directed mutagenesis, the active site

Gln in three structurally characterized members of the

UCH family was replaced with Ala, in order to assess

the contribution of this side chain to rate enhance-

ment. Deubiquitination assays show there is a signifi-

cant loss of activity in mutant enzymes as compared

with their wild-type counterparts. Comparison of the

kinetic parameters shows a 16-fold to 30-fold reduction

(� 2 kcalÆmol)1) in the catalytic efficiency for the Gln

mutants, which is attributable mainly to a decrease in

the kcat parameter, as seen in UCHL1 and UCHL3
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(for the mutant UCHL5, kcat and Km could not be sep-

arately determined). These results are in agreement

with the aforementioned results for papain, although

the UCHs did not exhibit the same change in Km

value. The kinetic scheme for UCHL1 has been

worked out by Case and Stein, using the same Ub-

AMC substrate [20]. Their study showed that the rate

of acylation is rate-limiting for kcat, which means that

Km is reduced to the dissociation constant (Kd) of the

Michaelis complex. The fact that we do not see any

significant change in Km suggests that Gln84 in

UCHL1 does not contribute to the enzyme–ground

state–substrate complex. Therefore, in UCHL1,

according to our studies, the active site Gln does not

make any appreciable contact with the substrate in the

Michaelis complex; rather, it helps to stabilize the tran-

sition state.

The kinetic scheme for UCHL3 remains to be

worked out. However, kcat values of UCHL3-catalyzed

hydrolysis of Ub ethylester and Ub-lysine are very sim-

ilar to that obtained with Ub-AMC as the substrate,

suggesting that deacylation might be the rate-limiting

step [19]. In such a case, Km is not the simple dissocia-

tion constant of the Michaelis complex. Nevertheless,

the fact that Km changes only slightly upon Gln fi Ala

mutation in UCHL3 is consistent with the inference

that the Gln does not appreciably contribute to the

Michaelis complex.

As discussed before, we could not separately mea-

sure kcat and Km for UCHL5N240 Q82A; rather, the

ratio was measured, which is about 16-fold less than

that for the wild-type protein. It is possible that the

ratio reflects a change mostly in kcat, as for UCHL1

and UCHL3, because of the structural similarity

between the proteins. However, it cannot be ruled out

that UCHL5N240 employs a different mechanism

from UCHL1 and UCHL3. It is possible that there

was a much larger change in kcat that was compen-

sated for by an opposite change in Km. Alternatively,

there was little or no change in kcat and the observed

effect was attributable mostly to a change in Km. The

latter possibility seems rather unreasonable, as the Gln

is located in an almost identical position as in the

other enzymes, and its effect on stabilizing the Micha-

elis–Menten complex is therefore expected to be the

same.

Our results indicate that the mutation of Gln to Ala

results in a significant reduction in the catalytic rate,

supporting the hypothesis that Gln functions to stabi-

lize the transition state intermediate(s). However, one

would expect the change to be much > 30-fold, as

seen in our system, if the mechanism acted through the

stabilization of the oxyanion, which has been proposed

to involve hydrogen bonding between the NH2 group

of the side chain of Gln and the negatively charged

oxygen ion, given that such hydrogen bonds are

particularly strong. For example, mutation of the

oxyanion-stabilizing residue Tyr16 to Phe in ketoster-

oid isomerase results in a 20 000-fold (6.3 kcalÆmol)1)

reduction in kcat [30]. One explanation for the discrep-

ancy between the result of the mutation of the oxyan-

ion-stabilizing side chain in ketosteroid isomerase and

our system is that, in the latter, the side chain of Gln

is not solely responsible for stabilizing the oxyanion

Fig. 6. Activity assay for UCHL3 mutants fitted to the Michelis–

Menten equation for determination of Km and kcat. (A) UCHL3

Q89E is shown as open circles. (B) UCHL3 Q89K is shown as filled

triangles.

Table 3. Kinetic parameters for UCHL3 mutants.

Km (nM) kcat (s
)1)

kcat ⁄ Km · 104

(M)1Æs)1)

DDG „

(kcalÆmol)1)

UCHL3 Q89E 49.8 ± 11.0 3.65 ± 0.00 7329 0.72

UCHL3 Q89K 58.5 ± 2.9 1.20 ± 0.00 1931 1.51
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through hydrogen bonding; rather, it plays a role in

contributing to the overall electropositive character of

the oxyanion hole. As shown in Fig. 2, a number of

aNH dipoles from surrounding backbone residues can

still support a significant degree of oxyanion stabiliza-

tion even in the absence of the Gln side chain. As

main chain atoms cannot be removed by traditional

mutagenesis methods, the individual contribution of

each atom cannot be determined, and nor can we

determine whether the Gln plays a more significant

role than the individual backbone atoms. The alterna-

tive possibility, that the transition state stabilization by

the Gln side chain reflects a somewhat weaker hydro-

gen bond, owing to a longer distance between the

donor and the acceptor (Fig. 2), cannot be ruled out.

An alternative explanation for the difference in mag-

nitude of Ub-AMC hydrolysis seen between the

Gln fi Ala mutants and the wild-type enzymes

involves the loss of the C–HÆÆÆO contact in the mutant.

Inspection of active sites of the UCHs reveals that the

Gln is in close proximity to the catalytic His, which

satisfies the geometric constraints for a C–HÆÆÆO hydro-

gen bond. Intrigued by this, we looked at a larger

dataset of QCH(N ⁄D)-type cysteine proteases in the

MEROPS database, and this revealed that most cyste-

ine proteases, including papain, possess a conserved

Gln that is within C–HÆÆÆO bonding distance of the cat-

alytic His. It should be noted that, in papain, Gln19 is

also known to be involved in an N–HÆÆÆO hydrogen

bond with the NH group of the side chain of Trp177

[31], a catalytically important side chain. This is an

example of a carbonyl group being simultaneously

engaged in hydrogen bonding with a CH and an NH

donor, a situation that is commonly observed among

Scheme 1. Mechanism for the hydrolysis of ubiquitinated constructs by UCHs. Active site residues of the enzyme are in black, and the

ubiquitinated substrate is in gray. The oxyanion interaction is indicated with dashed lines.
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protein b-sheets, in which the backbone carbonyl

groups of one strand are engaged in C–HÆÆÆO and

N–HÆÆÆO hydrogen bonds with an adjacent strand’s

CaH and backbone NH groups, respectively [32].

However this ‘bifurcated’ situation does not exist in

UCHs, as there is no other hydrogen bond donor with

an acceptable distance other than the imidazole group

of the catalytic His. The observation of the C–HÆÆÆO
contact presented here extends the parallels between

serine and cysteine proteases. Dewerenda et al. first

observed a C–HÆÆÆO contact involving the catalytic His

and a backbone carbonyl as the hydrogen bond donor

in the active site of serine proteases [22]. The possibil-

ity that such an interaction plays a role in the catalytic

mechanism of cysteine proteases, as has been suggested

for their serine counterparts, cannot be ruled out.

Interestingly, the change in free energy of transition

state stabilization (close to 2 kcalÆmol)1) upon muta-

tion in our system, as well as in the case of papain,

happens to be very much within the range of the

strength of a C–HÆÆÆO hydrogen bond [26].

The C–HÆÆÆO hydrogen bond can be thought of as

an additional force that stabilizes the imidazole side

chain in a productive orientation such that it acts both

as a general base and as a proton donor during cataly-

sis. Additionally, the C–HÆÆÆO hydrogen bonding

would serve to enhance the His residue’s ability to spe-

cifically act as a general base by transferring some

electron density from the Gln carbonyl to the imida-

zole ring of His. A stronger general base would mean

a better ability to extract a proton from water to acti-

vate it for nucleophilic attack, facilitating the forma-

tion of the tetrahedral transition state during

deacylation (Scheme 1). Although different cysteine

proteases would employ different mechanisms for

hydrolysis, a better general base His will, in general,

contribute to efficient catalysis. However, the exact

mechanism by which the active site C–HÆÆÆO interac-

tion may play a role in transition state stabilization

needs to be further investigated by computational

work.

We conducted additional studies on UCHL3 to dis-

sect the role of the Gln side chain in the deubiquitina-

tion reaction. If the sole purpose of Gln were to

stabilize the oxyanion, removal of the hydrogen-bond-

ing (N–HÆÆÆO) donor plus the placement of a negative

charge would substantially destabilize the transition

state, leading to an effect on kcat that would be greater

than that in the Ala mutant. Interestingly, the

Gln fi Glu mutant (with only a five-fold decrease in

kcat) proved to be a better catalyst than the Ala

mutant, which is inconsistent with the idea that the

Gln is acting as an oxyanion stabilizer. Instead, the

data appear to support the idea that the C–HÆÆÆO
hydrogen bond contributes to catalysis. It is likely that

the carboxylate side chain of Glu in the Q89E mutant

undergoes a stronger C–HÆÆÆO interaction with the CeH
group of the catalytic His than the carboxamide group

of Gln, resulting in a better catalyst than the wild-type

protein, but this effect is compensated for to some

degree by the unfavorable electrostatics between the

negatively charged side chain and the oxyanion. It

should be noted that a previous study showed

that Q19E mutation in papain resulted in an approxi-

mately 20-fold decrease in kcat, to a similar level as

seen in the Q19A mutant, leading the authors of that

study to propose that the negative charge was toler-

ated in the active site [33]. It is tempting to propose

that, in papain, the accommodation of the unfavorable

charge in the mutant might have also been attributable

to the compensatory effect of the C–HÆÆÆO hydrogen

bond.

We then mutated the Gln to Lys, which produced

an enzyme with activity comparable to that of the Ala

mutant. This is also surprising, because the Lys side

chain has two components, NH groups for hydrogen

bonding with the oxygen of the oxyanion, and the

charge for favorable electrostatic interaction, and we

expected that the combination of the two, assuming

that right geometry is maintained for the N–HÆÆÆO
bond, would cause better stabilization of the oxyanion

than in the wild-type protein. However, this mutant

showed a similar level of catalytic activity as the Ala

mutant, indicating that placement of a positive charge

near the active site does not appreciably enhance the

stability of the oxyanion species, presumably because

the Gln in the wild-type enzyme was not playing a

role in oxyanion stabilization. Alternatively, the longer

side chain of Lys may be oriented away from the oxy-

anion with little interaction between the two. On the

other hand, as the Q89K mutant lacks the ability to

form the C–HÆÆÆO hydrogen bond, the reduction in kcat
to nearly the same extent as seen in the Q89A mutant

might reflect this deficiency.

In conclusion, we have shown that the active site

Gln in UCHs contributes to rate enhancement, but the

relatively modest value of transition state stabilization

is more indicative of a weaker interaction, such as the

C–HÆÆÆO bond between the Gln and catalytic His, than

the conventional N–HÆÆÆO type of hydrogen bond that

was proposed to stabilize the oxyanion. The observa-

tion that the Glu mutant of UCHL3 is more active

than the Ala mutant suggests that the conserved Gln is

unlikely to contribute to oxyanion stabilization, and

rather may play a role in catalysis via the C–HÆÆÆO
hydrogen bond with the catalytic His.
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Experimental procedures

General

The Ub-AMC used for hydrolysis assays was purchased

from Boston Biochem (Boston, MA, USA). The glutathione

affinity column (GSTPrep FF 16 ⁄ 10), gel filtration column

(HiLoad 16 ⁄ 60 Superdex 75) and PreScission protease were

purchased from GE Biosciences (Piscataway, NJ, USA). All

fluorescence assays were performed on a TECAN Genios

microplate spectrofluorometer. Buffer and salt components

were purchased from either Sigma-Aldrich (St Louis, MO,

USA) or RPI Corp. (Mount Prospect, IL, USA).

Mutagenesis, expression and purification of

proteins

The genes for UCHL1, UHCL3 and UCHL5N240 were

cloned into the pGEX-6P-1 vector with standard protocols,

and subsequently used to mutate the active site Gln to Ala

through PCR reactions with the Quickchange II (Agilent,

Santa Clara, CA, USA) site-directed mutagenesis kit. All

plasmids were transformed into Rosetta2 Escherichia coli

cells and grown to a A600 nm of 0.6 in LB medium supple-

mented with 100 lgÆmL)1 ampicillin, and then induced with

0.5 mm isopropyl thio-b-d-thiogalactoside and grown over-

night at 18 �C. Cells were harvested at 6000 g and resus-

pended in 1· NaCl ⁄Pi + 400 mm KCl (buffer A). Cells

were passed through a French press twice at 1200 p.s.i.,

and the lysate was cleared by centrifugation at 30 000 g for

1 h. The supernatant was loaded onto a glutathione affinity

column, washed with three column volumes of buffer A,

and eluted with 250 mm Tris, 500 mm KCl, and 10 mm

reduced l-glutathione (pH 8.0). The eluted sample was dia-

lyzed against 1· NaCl ⁄Pi, 400 mm KCl, and 1 mm dith-

iothreitol, to which Precission Protease was added to

remove the glutathione S-transferase tag, which was cap-

tured on a glutathione–agarose affinity column. The result-

ing glutathione S-transferase-cleaved protein solution was

passed through a Superdex S75 gel filtration column with

50 mm Tris ⁄HCl (pH 7.6), 150 mm NaCl, and 1 mm dith-

iothreitol. Fractions containing purified protein were

pooled, concentrated, and then flash-frozen in liquid nitro-

gen and stored at )80 �C until use.

Kinetic assay to measure Km and kcat values

Each of the UCHs was diluted in assay reaction buffer

(50 mm Tris, pH 7.6, 0.5 mm EDTA, 0.1% BSA, 5 mm

dithiothreitol), so that the final concentrations in the reac-

tion were as follows: UCHL1, 2 nm; UCHL1 Q84A, 8 nm;

UCHL3, 5 pm; UCHL3 Q89A, 175 pm; UCHL5N240,

500 pm; UCHL5N240 Q82A, 3 nm; UCHL3 Q89E, 12 pm;

and UCHL3 Q89K, 50 pm. Enzyme was added to a 96-well

plate, and incubated at 30 �C for 5 min prior to addition of

Ub-AMC diluted in assay reaction buffer to initiate the

reaction. Rates of Ub-AMC cleavage were monitored with

an excitation wavelength of 380 nm and an emission wave-

length of 465 nm at 30 �C. Initial reaction rates were calcu-

lated and plotted against Ub-AMC concentrations in

sigmaplot, and fitted to the Michaelis–Menten equation to

determine Km and kcat values.

C–HÆÆÆO analysis

From the MEROPS database, a dataset of 46 nonhomolo-

gous structurally characterized cysteine proteases were

selected belonging to families with a QCH(N ⁄D) type of

active site configuration [29]. Structures with a resolution

lower than 3 Å were excluded from the dataset. Each of the

coordinate files was downloaded from the PDB, and hydro-

gens were added to the protein structures with the reduce

program under molprobity [34,35]. The stereochemistry of

the C–HÆÆÆO bond was analyzed with the four different cri-

teria for parameters shown in Fig. 7: C–O bond distance

(D); HÆÆÆO bond distance (DH); C–HÆÆÆO angle (f); and

HÆÆÆO=C angle (n). The geometric parameters used in the

present and previous C–HÆÆÆO studies can be found in

Table 4. The bond distances and angles were calculated

with pymol (DeLano Scientific) and are shown in Table 2.

Fig. 7. Definition of geometric parameters. (A) Angular parameters.

(B) Distance parameters.

Table 4. Geometric parameters for C–HÆÆÆO hydrogen bonding

D (Å) DH (Å) f (�) n (�) Reference

£ 4.0 < 2.8 > 120 – Present

study

£ 3.5 < 2.7 > 120 – [23]

– < 2.7 > 90 � 120 [22]

– < 2.8 > 90 – [36]

4.0–3.0 < 2.8 > 110 120–140 [25]

Role of active site glutamine in UCH catalysis D. A. Boudreaux et al.

1116 FEBS Journal 279 (2012) 1106–1118 ª 2012 The Authors Journal compilation ª 2012 FEBS

91



Acknowledgements

We would like to acknowledge S. Schiener, Utah State

University, for his helpful contribution to the manu-

script. We are grateful to J.-C. Rochet for use of his

fluorescence plate reader. Financial support from the

National Institutes of Health (1R01RR026273) to

C. Das is gratefully acknowledged. Financial support

for D. A. Boudreaux was provided by the Purdue

Research Foundation (204533), and financial support

for to J. Chaney was provided by Alliances for Gradu-

ate Education and The Professoriate.

References

1 Komander D, Clague MJ & Urbe S (2009) Breaking

the chains: structure and function of the deubiquitinas-

es. Nat Rev Mol Cell Biol 10, 550–563.

2 Komander D (2010) Mechanism, specificity and

structure of the deubiquitinases. Subcell Biochem 54,

69–87.

3 Love KR, Catic A, Schlieker C & Ploegh HL (2007)

Mechanisms, biology and inhibitors of deubiquitinating

enzymes. Nat Chem Biol 3, 697–705.

4 Nijman SM, Luna-Vargas MP, Velds A, Brummelkamp

TR, Dirac AM, Sixma TK & Bernards R (2005) A

genomic and functional inventory of deubiquitinating

enzymes. Cell 123, 773–786.

5 Wilkinson KD (2009) DUBs at a glance. J Cell Sci 122,

2325–2329.

6 Das C, Hoang QQ, Kreinbring CA, Luchansky SJ,

Meray RK, Ray SS, Lansbury PT, Ringe D & Petsko

GA (2006) Structural basis for conformational plastic-

ity of the Parkinson’s disease-associated ubiquitin

hydrolase UCH-L1. Proc Natl Acad Sci USA 103,

4675–4680.

7 Johnston SC, Larsen CN, Cook WJ, Wilkinson KD &

Hill CP (1997) Crystal structure of a deubiquitinating

enzyme (human UCH-L3) at 1.8 A resolution. EMBO J

16, 3787–3796.

8 Misaghi S, Galardy PJ, Meester WJ, Ovaa H, Ploegh

HL & Gaudet R (2005) Structure of the ubiquitin

hydrolase UCH-L3 complexed with a suicide substrate.

J Biol Chem 280, 1512–1520.

9 Nishio K, Kim SW, Kawai K, Mizushima T, Yamane

T, Hamazaki J, Murata S, Tanaka K & Morimoto Y

(2009) Crystal structure of the de-ubiquitinating enzyme

UCH37 (human UCH-L5) catalytic domain. Biochem

Biophys Res Commun 390, 855–860.

10 Boudreaux DA, Maiti TK, Davies CW & Das C (2010)

Ubiquitin vinyl methyl ester binding orients the mis-

aligned active site of the ubiquitin hydrolase UCHL1

into productive conformation. Proc Natl Acad Sci USA

107, 9117–9122.

11 Warwicker J & Watson HC (1982) Calculation of the

electric potential in the active site cleft due to alpha-

helix dipoles. J Mol Biol 157, 671–679.

12 Menard R, Carriere J, Laflamme P, Plouffe C, Khouri

HE, Vernet T, Tessier DC, Thomas DY & Storer AC

(1991) Contribution of the glutamine 19 side chain to

transition-state stabilization in the oxyanion hole of

papain. Biochemistry 30, 8924–8928.

13 Johnston SC, Riddle SM, Cohen RE & Hill CP (1999)

Structural basis for the specificity of ubiquitin C-termi-

nal hydrolases. EMBO J 18, 3877–3887.

14 Leroy E, Boyer R, Auburger G, Leube B, Ulm G,

Mezey E, Harta G, Brownstein MJ, Jonnalagada S,

Chernova T et al. (1998) The ubiquitin pathway in

Parkinson’s disease. Nature 395, 451–452.

15 Saigoh K, Wang YL, Suh JG, Yamanishi T, Sakai Y,

Kiyosawa H, Harada T, Ichihara N, Wakana S,

Kikuchi T et al. (1999) Intragenic deletion in the gene

encoding ubiquitin carboxy-terminal hydrolase in gad

mice. Nat Genet 23, 47–51.

16 Wicks SJ, Haros K, Maillard M, Song L, Cohen RE,

Dijke PT & Chantry A (2005) The deubiquitinating

enzyme UCH37 interacts with Smads and regulates

TGF-beta signalling. Oncogene 24, 8080–8084.

17 Eletr ZM & Wilkinson KD (2011) An emerging model

for BAP1’s role in regulating cell cycle progression. Cell

Biochem Biophys 60, 3–11.

18 Fang Y, Fu D & Shen XZ (2010) The potential role of

ubiquitin c-terminal hydrolases in oncogenesis. Biochim

Biophys Acta 1806, 1–6.

19 Luchansky SJ, Lansbury PT Jr & Stein RL (2006)

Substrate recognition and catalysis by UCH-L1.

Biochemistry, 45, 14717–14725.

20 Case A & Stein RL (2006) Mechanistic studies of ubiquitin

C-terminal hydrolase L1. Biochemistry, 45, 2443–2452.

21 Dang LC, Melandri FD & Stein RL (1998) Kinetic and

mechanistic studies on the hydrolysis of ubiquitin C-ter-

minal 7-amido-4-methylcoumarin by deubiquitinating

enzymes. Biochemistry 37, 1868–1879.

22 Derewenda ZS, Lee L & Derewenda U (1995) The

occurrence of C-HÆÆÆO hydrogen-bonds in proteins.

J Mol Biol 252, 248–262.

23 Senes A, Ubarretxena-Belandia I & Engelman DM

(2001) The C alpha-HÆÆÆO hydrogen bond: a determinant

of stability and specificity in transmembrane helix inter-

actions. Proc Natl Acad Sci USA 98, 9056–9061.

24 Steiner T (2003) C–HÆÆÆO hydrogen bonding in crystals.

Crystallogr Rev 9, 177–228.

25 Desiraju GR (1996) The C-HÆÆÆO hydrogen bond: struc-

tural implications and supramolecular design. Acc Chem

Res 29, 441–449.

26 Scheiner S, Kar T & Gu YL (2001) Strength of the

(CH)-H-alphaÆÆÆO hydrogen bond of amino acid

residues. J Biol Chem 276, 9832–9837.

D. A. Boudreaux et al. Role of active site glutamine in UCH catalysis

FEBS Journal 279 (2012) 1106–1118 ª 2012 The Authors Journal compilation ª 2012 FEBS 1117

92



27 Chakrabarti P & Chakrabarti S (1998) C-HÆÆÆO hydro-

gen bond involving proline residues in alpha-helices.

J Mol Biol 284, 867–873.

28 Madan Babu M, Kumar Singh S & Balaram P (2002)

A C-H triplebond O hydrogen bond stabilized polypep-

tide chain reversal motif at the C terminus of helices in

proteins. J Mol Biol 322, 871–880.

29 Rawlings ND, Morton FR & Barrett AJ (2006) MER-

OPS: the peptidase database. Nucleic Acids Res 34,

D270–D272.

30 Kraut DA, Sigala PA, Fenn TD & Herschlag D (2010)

Dissecting the paradoxical effects of hydrogen bond

mutations in the ketosteroid isomerase oxyanion hole.

Proc Natl Acad Sci USA 107, 1960–1965.

31 Gul S, Hussain S, Thomas MP, Resmini M, Verma CS,

Thomas EW & Brocklehurst K (2008) Generation of

nucleophilic character in the Cys25 ⁄His159 ion pair of

papain involves Trp177 but not Asp158. Biochemistry

47, 2025–2035.

32 Fabiola GF, Krishnaswamy S, Nagarajan V & Pattabhi

V (1997) C-H...O hydrogen bonds in beta-sheets. Acta

Crystallogr D Biol Crystallogr 53, 316–320.

33 Menard R, Plouffe C, Laflamme P, Vernet T, Tessier

DC, Thomas DY & Storer AC (1995) Modification of

the electrostatic environment is tolerated in the oxyan-

ion hole of the cysteine protease papain. Biochemistry

34, 464–471.

34 Bernstein FC, Koetzle TF, Williams GJB, Meyer EF,

Brice MD, Rodgers JR, Kennard O, Shimanouchi T &

Tasumi M (1977) Protein Data Bank – computer-based

archival file for macromolecular structures. J Mol Biol

112, 535–542.

35 Chen VB, Arendall WB, Headd JJ, Keedy DA, Immor-

mino RM, Kapral GJ, Murray LW, Richardson JS &

Richardson DC (2010) MolProbity: all-atom structure

validation for macromolecular crystallography. Acta

Crystallogr D Biol Crystallogr 66, 12–21.

36 Steiner T (1994) Effect of acceptor strength on C–H...O

hydrogen-bond lengths as revealed by and quantified

from crystallographic data. J Chem Soc Chem Commun,

20, 2341–2342.

Supporting information

The following supplementary information is available:

Fig. S1. Comparative activity assays of wild-type and

mutant UCHs.

Fig. S2. Far-UV CD spectroscopy shows that the oxy-

anion-stabilizing mutations of Gln to Ala do not per-

turb the gross structure of the UCHs.

Data S1. Methods.

This supplementary material can be found in the

online version of this article.

Please note: As a service to our authors and readers,

this journal provides supporting information supplied

by the authors. Such materials are peer-reviewed and

may be reorganized for online delivery, but are not

copy-edited or typeset. Technical support issues arising

from supporting information (other than missing files)

should be addressed to the authors.

Role of active site glutamine in UCH catalysis D. A. Boudreaux et al.

1118 FEBS Journal 279 (2012) 1106–1118 ª 2012 The Authors Journal compilation ª 2012 FEBS

93



4/8/2015 Rightslink Printable License

https://s100.copyright.com/CustomerAdmin/PLF.jsp?ref=06afba34­3363­4b2f­a6c7­3171ef402425 1/7

JOHN WILEY AND SONS LICENSE
TERMS AND CONDITIONS

Apr 08, 2015

This Agreement between Joseph R Chaney ("You") and John Wiley and Sons ("John Wiley
and Sons") consists of your license details and the terms and conditions provided by John
Wiley and Sons and Copyright Clearance Center.

License Number 3601470996814

License date Apr 03, 2015

Licensed Content Publisher John Wiley and Sons

Licensed Content Publication FEBS Journal

Licensed Content Title Contribution of active site glutamine to rate enhancement in
ubiquitin C­terminal hydrolases

Licensed Content Author David A. Boudreaux,Joseph Chaney,Tushar K. Maiti,Chittaranjan Das

Licensed Content Date Feb 27, 2012

Pages 13

Type of use Dissertation/Thesis

Requestor type Author of this Wiley article

Format Print and electronic

Portion Full article

Will you be translating? No

Title of your thesis /
dissertation

BIOCHEMICAL INVESTIGATION OF UBIQUITIN CARBOXY­TERMINAL
HYDROLYSES

Expected completion date May 2015

Expected size (number of
pages)

120

Requestor Location Joseph R Chaney
120 Washington St

LAFAYETTE, IN 47905
United States
Attn: Joseph R Chaney

Billing Type Invoice

Billing Address Joseph R Chaney
120 Washington St

LAFAYETTE, IN 47905
United States
Attn: Joseph R Chaney

Total 0.00 USD

94



4/8/2015 Rightslink Printable License

https://s100.copyright.com/CustomerAdmin/PLF.jsp?ref=06afba34­3363­4b2f­a6c7­3171ef402425 2/7

Terms and Conditions

TERMS AND CONDITIONS

This copyrighted material is owned by or exclusively licensed to John Wiley & Sons, Inc. or
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NEITHER WILEY NOR ITS LICENSORS MAKES ANY WARRANTY OR
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ANY OTHER PARTY OR ANY OTHER PERSON OR ENTITY FOR ANY
SPECIAL, CONSEQUENTIAL, INCIDENTAL, INDIRECT, EXEMPLARY OR
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LIMITED REMEDY PROVIDED HEREIN. 

Should any provision of this Agreement be held by a court of competent jurisdiction
to be illegal, invalid, or unenforceable, that provision shall be deemed amended to
achieve as nearly as possible the same economic effect as the original provision, and
the legality, validity and enforceability of the remaining provisions of this Agreement
shall not be affected or impaired thereby. 

The failure of either party to enforce any term or condition of this Agreement shall not
constitute a waiver of either party's right to enforce each and every term and condition
of this Agreement. No breach under this agreement shall be deemed waived or
excused by either party unless such waiver or consent is in writing signed by the party
granting such waiver or consent. The waiver by or consent of a party to a breach of
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any provision of this Agreement shall not operate or be construed as a waiver of or
consent to any other or subsequent breach by such other party. 

This Agreement may not be assigned (including by operation of law or otherwise) by
you without WILEY's prior written consent.

Any fee required for this permission shall be non­refundable after thirty (30) days
from receipt by the CCC. 

These terms and conditions together with CCC�s Billing and Payment terms and
conditions (which are incorporated herein) form the entire agreement between you and
WILEY concerning this licensing transaction and (in the absence of fraud) supersedes
all prior agreements and representations of the parties, oral or written. This Agreement
may not be amended except in writing signed by both parties. This Agreement shall be
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and authorized assigns. 

In the event of any conflict between your obligations established by these terms and
conditions and those established by CCC�s Billing and Payment terms and
conditions, these terms and conditions shall prevail. 

WILEY expressly reserves all rights not specifically granted in the combination of (i)
the license details provided by you and accepted in the course of this licensing
transaction, (ii) these terms and conditions and (iii) CCC�s Billing and Payment
terms and conditions.

This Agreement will be void if the Type of Use, Format, Circulation, or Requestor
Type was misrepresented during the licensing process.

This Agreement shall be governed by and construed in accordance with the laws of
the State of New York, USA, without regards to such state�s conflict of law rules.
Any legal action, suit or proceeding arising out of or relating to these Terms and
Conditions or the breach thereof shall be instituted in a court of competent jurisdiction
in New York County in the State of New York in the United States of America and
each party hereby consents and submits to the personal jurisdiction of such court,
waives any objection to venue in such court and consents to service of process by
registered or certified mail, return receipt requested, at the last known address of such
party. 

WILEY OPEN ACCESS TERMS AND CONDITIONS

Wiley Publishes Open Access Articles in fully Open Access Journals and in Subscription
journals offering Online Open. Although most of the fully Open Access journals publish
open access articles under the terms of the Creative Commons Attribution (CC BY) License
only, the subscription journals and a few of the Open Access Journals offer a choice of
Creative Commons Licenses:: Creative Commons Attribution (CC­BY) license Creative
Commons Attribution Non­Commercial (CC­BY­NC) license and Creative Commons
Attribution Non­Commercial­NoDerivs (CC­BY­NC­ND) License. The license type is
clearly identified on the article.
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Copyright in any research article in a journal published as Open Access under a Creative
Commons License is retained by the author(s). Authors grant Wiley a license to publish the
article and identify itself as the original publisher. Authors also grant any third party the
right to use the article freely as long as its integrity is maintained and its original authors,
citation details and publisher are identified as follows: [Title of Article/Author/Journal Title
and Volume/Issue. Copyright (c) [year] [copyright owner as specified in the Journal]. Links
to the final article on Wiley�s website are encouraged where applicable.

The Creative Commons Attribution License

The Creative Commons Attribution License (CC­BY) allows users to copy, distribute and
transmit an article, adapt the article and make commercial use of the article. The CC­BY
license permits commercial and non­commercial re­use of an open access article, as long as
the author is properly attributed.

The Creative Commons Attribution License does not affect the moral rights of authors,
including without limitation the right not to have their work subjected to derogatory
treatment. It also does not affect any other rights held by authors or third parties in the
article, including without limitation the rights of privacy and publicity. Use of the article
must not assert or imply, whether implicitly or explicitly, any connection with, endorsement
or sponsorship of such use by the author, publisher or any other party associated with the
article.

For any reuse or distribution, users must include the copyright notice and make clear to
others that the article is made available under a Creative Commons Attribution license,
linking to the relevant Creative Commons web page.

To the fullest extent permitted by applicable law, the article is made available as is and
without representation or warranties of any kind whether express, implied, statutory or
otherwise and including, without limitation, warranties of title, merchantability, fitness for a
particular purpose, non­infringement, absence of defects, accuracy, or the presence or
absence of errors.

Creative Commons Attribution Non­Commercial License

The Creative Commons Attribution Non­Commercial (CC­BY­NC) License permits use,
distribution and reproduction in any medium, provided the original work is properly cited
and is not used for commercial purposes.(see below)

Creative Commons Attribution­Non­Commercial­NoDerivs License

The Creative Commons Attribution Non­Commercial­NoDerivs License (CC­BY­NC­ND)
permits use, distribution and reproduction in any medium, provided the original work is
properly cited, is not used for commercial purposes and no modifications or adaptations are
made. (see below)

Use by non­commercial users

For non­commercial and non­promotional purposes, individual users may access, download,
copy, display and redistribute to colleagues Wiley Open Access articles, as well as adapt,
translate, text­ and data­mine the content subject to the following conditions:
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The authors' moral rights are not compromised. These rights include the right of
"paternity" (also known as "attribution" ­ the right for the author to be identified as
such) and "integrity" (the right for the author not to have the work altered in such a
way that the author's reputation or integrity may be impugned). 

Where content in the article is identified as belonging to a third party, it is the
obligation of the user to ensure that any reuse complies with the copyright policies of
the owner of that content. 

If article content is copied, downloaded or otherwise reused for non­commercial
research and education purposes, a link to the appropriate bibliographic citation
(authors, journal, article title, volume, issue, page numbers, DOI and the link to the
definitive published version on Wiley Online Library) should be maintained.
Copyright notices and disclaimers must not be deleted. 

Any translations, for which a prior translation agreement with Wiley has not been
agreed, must prominently display the statement: "This is an unofficial translation of an
article that appeared in a Wiley publication. The publisher has not endorsed this
translation." 

Use by commercial "for­profit" organisations

Use of Wiley Open Access articles for commercial, promotional, or marketing purposes
requires further explicit permission from Wiley and will be subject to a fee. Commercial
purposes include:

Copying or downloading of articles, or linking to such articles for further
redistribution, sale or licensing; 

Copying, downloading or posting by a site or service that incorporates advertising
with such content; 

The inclusion or incorporation of article content in other works or services (other than
normal quotations with an appropriate citation) that is then available for sale or
licensing, for a fee (for example, a compilation produced for marketing purposes,
inclusion in a sales pack) 

Use of article content (other than normal quotations with appropriate citation) by for­
profit organisations for promotional purposes 

Linking to article content in e­mails redistributed for promotional, marketing or
educational purposes; 

Use for the purposes of monetary reward by means of sale, resale, licence, loan,
transfer or other form of commercial exploitation such as marketing products 

Print reprints of Wiley Open Access articles can be purchased from:
corporatesales@wiley.com 

Further details can be found on Wiley Online Library
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Other Terms and Conditions: 

v1.9
Questions? customercare@copyright.com or +1­855­239­3415 (toll free in the US) or
+1­978­646­2777.

Gratis licenses (referencing $0 in the Total field) are free. Please retain this printable
license for your reference. No payment is required.
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