
Purdue University
Purdue e-Pubs

Open Access Dissertations Theses and Dissertations

Spring 2015

SemCache: Semantics-Aware Caching for Efficient
GPU Offloading
Nabeel Al-Saber
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations

Part of the Computer Engineering Commons, and the Electrical and Computer Engineering
Commons

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Recommended Citation
Al-Saber, Nabeel, "SemCache: Semantics-Aware Caching for Efficient GPU Offloading" (2015). Open Access Dissertations. 413.
https://docs.lib.purdue.edu/open_access_dissertations/413

https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F413&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F413&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/etd?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F413&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F413&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F413&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F413&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F413&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations/413?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F413&utm_medium=PDF&utm_campaign=PDFCoverPages

PURDUE UNIVERSITY
GRADUATE SCHOOL

Thesis/Dissertation Acceptance

To the best of my knowledge and as understood by the student in the Thesis/Dissertation Agreement,

Publication Delay, and Certification/Disclaimer (Graduate School Form 32), this thesis/dissertation

adheres to the provisions of Purdue University’s “Policy on Integrity in Research” and the use of

copyrighted material.

Nabeel Al-Saber

SemCache: Semantics-Aware Caching for Efficient GPU Offloading

Doctor of Philosophy

MILIND KULKARNI

ARUN PRAKASH

SAMUEL P. MIDKIFF

MILIND KULKARNI

VIJAY S. PAI

Michael R. Melloch 03/02/2015

SEMCACHE: SEMANTICS-AWARE CACHING

FOR EFFICIENT GPU OFFLOADING

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Nabeel Al-Saber

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

May 2015

Purdue University

West Lafayette, Indiana

ii

This thesis is dedicated to my loving parents, my wife and my son. Thank you for

providing me with constant support and inspiration.

iii

ACKNOWLEDGMENTS

I would like to thank The Almighty, for all the blessings throughout my life.

Special thanks to my Advisor Professor Milind Kulkarni for his encouragement,

supervision and support through the Ph.D. program. I would like to thank my ad-

visory committee: Professor Samuel Midkiff, Professor Arun Prakash and Professor

Vijay S. Pai for their feedback and suggestions during this work.

This research is supported by the Department of Energy under contract DE-FC02-

12ER26104. The GPU hardware we used was provided by an equipment grant from

Nvidia.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . vii

LIST OF FIGURES . viii

ABSTRACT . x

1 INTRODUCTION . 1

1.1 Single GPU Offloading . 1

1.2 Multi-GPU Offloading . 3

1.3 Contributions . 4

2 BACKGROUND . 7

2.1 GP-GPU Computing . 7

2.2 Offloading Libraries to GPUs . 10

2.2.1 Multi-GPU drop-in libraries 12

3 RELATED WORK . 15

3.1 GPU Libraries and Programming Models 15

3.2 Automatic Communication Optimization 16

3.2.1 Compiler based automatic data management 16

3.2.2 DSM based automatic data management 17

3.3 Multi-GPU Programming Models 18

3.3.1 Task Programming Models 19

4 SEMCACHE . 23

4.1 High Level Overview . 23

4.2 Cache Design and Structure . 24

4.2.1 Managing available GPU memory 27

4.2.2 Determining Granularity . 27

4.3 SemCache Instrumentation and Protocols 28

v

Page

4.3.1 Write-back Protocol . 28

4.3.2 Write-through Protocol . 30

4.3.3 SemCache in Practice . 30

4.3.4 Instrumenting CPU Reads and Writes 32

4.4 Semantic Mapping with SemCache 35

4.5 Implementation . 37

4.6 SemCache Experimental Evaluation 44

4.6.1 Matrix Multiplication Test Case 44

4.6.2 Computational Mechanics Case Study 46

4.6.3 Linpack Benchmark . 53

5 SEMCACHE++ . 55

5.1 High Level Overview . 56

5.2 Cache Design and Structure . 57

5.2.1 Translating between CPU and GPU addresses and transferring
data . 59

5.3 Coherence Protocols and Instrumentation 60

5.3.1 Coherence Protocol . 60

5.3.2 Instrumentation . 61

5.4 Synchronization . 62

5.5 Adapting a library to use SemCache++ 63

5.5.1 Multi-GPU Decomposition and Scheduling 64

5.5.2 SemCache++ directives . 67

5.5.3 Using SemCache++ with complex memory structures 71

5.6 SemCache++ Experimental Evaluation 73

5.6.1 Microbenchmark performance evaluation 74

5.6.2 Case Study(I): Jacobi Iterative Solver 78

5.6.3 Case Study(II): Conjugate Gradient 79

6 AUTOMATIC CODE GENERATION AND SYNTHESIS 81

vi

Page

7 INTEGRATING SEMCACHE WITH TRILINOS 86

7.1 Kokkos Package . 86

7.2 Kokkos Integration with SemCache 88

7.2.1 Allocation . 88

7.2.2 Using SemCache with Kokkos 88

7.3 Experimental Results . 88

8 CONCLUSIONS . 91

LIST OF REFERENCES . 92

A SEMCACHE INTEGRATION CODE WITH KOKKOS 96

VITA . 101

vii

LIST OF TABLES

Table Page

3.1 Comparison between Multi-GPU Frameworks 22

4.1 Size of transferred data using CUBLAS versus SemCache (in GB) . . . 50

4.2 Data transfer time from CPU to GPU for CUBLAS versus SemCache with
overhead (in seconds) . 50

4.3 Operations count at runtime . 50

viii

LIST OF FIGURES

Figure Page

1.1 Simple example with repeated matrix multiplication 2

2.1 NVIDIA’s GPU Architecture [13] . 7

2.2 Floating-Point Operations per Second for the CPU and GPU [13] . . . 8

2.3 GPU Offloading [13] . 9

2.4 GPU connected to CPU using PCIe [13] 9

2.5 Communication comparison for optimized and un-optimized communica-
tion . 11

2.6 Communication comparison of Encapsulated Multi-GPU libraries and hand
tuned communication . 12

4.1 Structures of the Caching Directory . 25

4.2 Write-back protocol (States: GPU/CPU/Shared) 28

4.3 Write-through protocol (States: CPU/Shared) 30

4.4 SemCache communication model . 31

4.5 Caching Directory Components . 36

4.6 Matrix multiply using CUBLAS code 38

4.7 SemCache library interface . 38

4.8 Operations to implement write-back protocol 39

4.9 Implementation of SemCache matrix multiply (DGEMM) 41

4.10 Implementation of SemCache Page Fault Handler 43

4.11 Test case normalized execution time *(Communication in CUBLAS and
MAGMA is hand optimized) . 45

4.12 Test case communication results (N=4096) 46

4.13 Testing application normalized execution time 48

4.14 Computation time for factorization . 49

ix

Figure Page

4.15 Testing application normalized execution time for CUBLAS, SemCache
write-back and DSM . 52

4.16 Linpack execution time . 54

4.17 Size of transferred data to GPU using CUBLAS versus SemCache (in GB) 54

5.1 Multi-GPU offloading using the Caching Directory 56

5.2 Structure of Caching Directory . 58

5.3 Matrix decomposition . 64

5.4 SemCache++ Computation scheduling 66

5.5 GPU mapping . 68

5.6 Pseudocode of SemCache++ matrix multiply (DGEMM) 69

5.7 Operations to implement coherence protocol 70

5.8 Speedup of microbenchmark for different matrix sizes, normalized to UM
CUBLAS 1-GPU) . 75

5.9 Microbenchmark communication results for size N=6K 76

5.10 Microbenchmark performance on multiple GPUs for different matrix sizes,
speedups with respect to CUBLAS 1-GPU) 77

5.11 Speedup of Jacobi, normalized to unoptimized CUBLAS 78

5.12 Speedup of CG, normalized to (Hand-tuned 1-GPU) 80

6.1 Annotations for DGEMM CPU method 83

6.2 SemCache automatic generated code for DGEMM 83

6.3 Annotations for DGEMM CPU method with transformations 84

6.4 SemCache automatic generated code for DGEMM with transformations 85

7.1 Deep copy performance penalties associated with remapping array layouts
are avoided by using HostMirror views that have the same layout as a
device view but with member values residing in the host space. 87

7.2 SemCache Allocation in Kokkos HostSpace 88

7.3 SemCache Use in Kokkos . 89

7.4 Normalized execution time of CG . 90

x

ABSTRACT

Al-Saber, Nabeel Ph.D., Purdue University, May 2015. SemCache: Semantics-Aware
Caching for Efficient GPU Offloading. Major Professor: Milind Kulkarni.

Graphical Processing Units (GPUs) offer massive, highly-efficient parallelism,

making them an attractive target for computation-intensive applications. However,

GPUs have a separate memory space which introduces the complexity of manually

handling explicit data movements between GPU and CPU memory spaces. Although

GPU kernels/libraries have made it easy to improve application performance by of-

floading computation to GPUs, unfortunately it is very difficult to manually optimize

CPU-GPU communication between multiple kernel invocations to avoid redundant

communication when using these kernels with complex applications.

In this thesis, we introduce SemCache [1], a semantics-aware GPU cache that

automatically manages CPU-GPU communication in addition to optimizing commu-

nication by eliminating redundant transfers using caching. It uses library semantics

to determine the appropriate caching granularity for a given offloaded library (e.g.,

matrices). Our caching technique is efficient; it only tracks matrices instead of track-

ing every memory access at fine granularity. We applied SemCache to Basic Linear

Algebra Subprograms (BLAS) [2] library to provide a GPU drop-in replacement li-

brary.

SemCache++ [3] extends SemCache to support offloading to multiple GPUs. Sem-

Cache++ is used to build the first multi-GPU drop-in replacement library that (a)

uses the virtual memory to automatically manage and optimize multi-GPU commu-

nication and (b) requires no program rewriting or annotations. SemCache++ also

enables new features like asynchronous transfers, parallel execution and overlapping

communication with computation.

xi

Experimental results show that our system can dramatically reduce redundant

communication for real-world computational science application and deliver signifi-

cant performance improvements, beating GPU-based implementations like MAGMA [4],

CULA [5], CUBLAS and CUBLASXT [6].

1

1. INTRODUCTION

Graphics processing units (GPUs) offer massive, highly-efficient parallelism, making

them an attractive target for computation-intensive applications. Due to the difficulty

of programming GPUs, a practical option for leveraging their capabilities is to offload

computation using libraries. For example, there are many GPU implementations

of linear algebra libraries [4–7], which outperform CPU implementations of popular

libraries such as BLAS [2] and LAPACK [8] by taking advantage of the GPU’s parallel

hardware. Such GPU libraries allow existing applications written against the BLAS

and LAPACK APIs to easily benefit from execution on heterogeneous platforms: most

computation executes on the CPU, but invocations of BLAS methods are executed

on the GPU.

1.1 Single GPU Offloading

This library-based offloading approach to harnessing the power of GPUs has some

drawbacks. Notably, moving data back and forth between the CPU and the GPU

incurs significant expense, making optimizing this communication paramount when

library calls are composed. If successive library calls operate on the same data, the

data should be moved to the GPU just once, rather than separately for each call,

while data should only be transferred back to the CPU if a computation requires

it. Such optimization is in tension with the encapsulation objectives of library-based

offloading: if a programmer has to manually manage communication between the

CPU and GPU, she can no longer port her program to a heterogeneous system without

modification.

Consider the simple case of a series of matrix multiply operations, as shown in

Figure 1.1. Each matrix multiply requires that the source matrices be on the GPU

2

1 GEMM(A, B, C); //C = A * B

2 ...

3 GEMM(B, C, D); //D = B * C

4 ...

5 GEMM(C, D, E); //E = C * D

Fig. 1.1. Simple example with repeated matrix multiplication

and the result matrix be transferred back to the CPU. However, the näıve approach

of transferring the sources to the GPU and the results back on every operation results

in redundant communication. Some source matrices (e.g., B) are transferred to the

GPU twice, while other matrices (e.g., C in the second operation) are transferred to

the GPU even though they were computed on the GPU originally. A better approach

is to transfer B just once, and use it for both operations, while consuming C directly

from the GPU for the second operation.

There exist libraries of GPU kernels (e.g., CULA Standard Interface) that attempt

to ease the process of offloading computation to the GPU by automatically handling

data movement and execution on the GPU. Because these libraries target specific

operations (e.g., linear algebra), using them is often as simple as replacing opera-

tions in an application with equivalent GPU versions; in fact, because computational

applications are often already implemented with libraries such as BLAS [2] and LA-

PACK [8], CULA implementations of those operations can be used with essentially

no modifications to program code and no need for GPU expertise. Unfortunately,

such drop-in replacement libraries come with drawbacks. The libraries do not con-

sider the composition of library calls, instead implementing each offloaded operation

as a self-contained unit. As a result, the libraries do not consider the possibility of

redundant data movement across operations (in other words, they adopt the näıve

communication approach described above). Because each operation is offloaded in

isolation, the composition of operations may not be implemented efficiently.

3

To correctly minimize data movement and avoid redundancy when offloading

computation to the GPU, the composition of offloaded operations must be consid-

ered. While lower-level libraries (such as CUBLAS, CULA’s “device interface,” or

MAGMA [4]) give the programmer precise control over data movement (so that, e.g.,

he can avoid transferring matrix B to the GPU twice in the previous example), it is

often difficult to reason about which data movement might be redundant and which

might be necessary. This is especially true in large, modular applications, where oper-

ations might be quite distant from one another both in the code and during execution,

and where a single piece of static code may exhibit data redundancy based entirely

on when and where the code is invoked during execution (consider a method called

from several places in an application that performs several linear algebra operations

on matrices passed in as parameters). In such a scenario, any attempt to statically

determine whether communication is necessary is doomed to failure; simply provid-

ing low-level control of data movement is not enough to allow eliminating redundant

communication.

What is needed is an automatic approach to managing data movement between

GPU and CPU that can dynamically determine whether data movement is necessary

and hence provide drop-in replacements for computational libraries. Such an ap-

proach will allow programmers to achieve efficient communication for heterogeneous

computing without adopting a new programming model.

1.2 Multi-GPU Offloading

In recent years, Multi-GPU systems are becoming increasingly popular, with mul-

tiple GPUs available for computation offloading. Unfortunately, handling multi-GPU

systems is substantially harder than managing a single GPU, as now computation and

data need to be distributed across multiple GPUs. To simplify multi-GPU offloading,

libraries such as CUBLASXT [6], MAGMA [4], CULA [5] and FLAME [7], completely

encapsulate communication in their library calls: prior to invoking a method, data

4

is transferred to the GPU(s), and upon completion, data is transferred back. Such

encapsulation introduces significant overheads, as much of this data movement is re-

dundant. However, without encapsulation, managing data movement between kernels

is quite difficult in multi-GPU systems.

While there have been several attempts at developing multi-GPU frameworks that

can optimize communication more thoroughly, they are not well-suited to developing

library replacements. They either require adopting a new programming model [9,10]

or require annotating every CPU data access, including those outside the offloaded

library call [11]. The burden of rewriting an application or annotating large numbers

of data accesses makes these models hard to adopt for large applications. What is

needed is a framework for developing GPU libraries with the appearance of fully-

encapsulated library calls, but the performance of more tightly coupled interaction

between the CPU and GPU.

1.3 Contributions

In this thesis, we propose a semantics-aware GPU cache to reduce redundant

communication between the CPU and the GPU. At a high level, our software caching

approach treats the CPU and GPU memory spaces as two caches, and uses an MSI

(modified/shared/invalid) protocol to maintain coherence between them. When a

method is called to execute on the GPU, the cache state of the data used by the

method is inspected, and data is transferred to the GPU only if it does not already

reside there. When data is modified on the CPU, the cache is used to invalidate any

corresponding data on the GPU.

Crucially, the cache we develop is generic: the system itself is not tied to any

particular library. Instead, all of the semantic information is provided in the library

implementation, allowing the same caching system to be reused for different libraries,

in each case providing tuned cache implementations that use the correct granularity

for a given library.

5

This thesis makes the following contributions:

• The design and implementation of SemCache, a generic GPU cache that auto-

matically manages CPU-GPU communication and dynamically optimizes com-

munication. It is augmented with semantic information to provide tuned, library-

specific caching.

• A generalization of this caching solution (akin to memoization) that creates

semantic links between data on the CPU and GPU, allowing SemCache to

automatically eliminate redundant computation and translate between different

layouts.

• An annotated GPU BLAS library that provides a drop in replacement for ex-

isting BLAS libraries that, in conjunction with SemCache, delivers optimized

communication between the CPU and GPU.

• Experimental results showing, both for microbenchmarks and a large, real-world

computational science application, that SemCache can dramatically reduce re-

dundant communication, and deliver significant performance improvements,

beating not only CPU implementations but also GPU-based implementations

using existing, tuned libraries.

• An integration between Trilinos [12] and SemCache to enable CPU-GPU auto-

matic and optimized memory management.

SemCache++ extends SemCache to support multiple GPUs with the following

contributions:

• The design and implementation of SemCache++, a generic multi-GPU cache

that automatically manages communication between CPU and multiple GPUs

at variable granularity. SemCache++ enables multi-GPU caching to avoid com-

munication.

6

• SemCache++ exploits all devices (CPUs and GPUs) in parallel, and uses CUDA

streams to allow overlapping of communication and computation.

• A SemCache++-enabled multi-GPU BLAS library that provides a drop-in re-

placement for existing BLAS libraries.

• Experimental results showing that SemCache++ can dramatically reduce re-

dundant communication, and deliver significant performance improvements over

CUBLASXT, NVIDIA’s tuned multi-GPU BLAS library.

7

2. BACKGROUND

2.1 GP-GPU Computing

Over the past few years, Graphics Processing Units (GPUs) have become attrac-

tive platforms for computing. The programmable vector units on GPUs offer the

potential for massive, energy efficient parallelism. A GPU is generally composed of

hundreds of small cores grouped in highly parallel and highly multithreaded streaming

multiprocessors (SMs), a high speed interconnection network, and a device memory

(global memory) as shown in Figure 2.1.

Today, it is very common for phones, desktops, laptops, clusters, supercomputers,

and cloud environments to include both CPUs and GPUs. Originally, GPUs where

Fig. 2.1. NVIDIA’s GPU Architecture [13]

8

Fig. 2.2. Floating-Point Operations per Second for the CPU and GPU [13]

intended to speedup graphics processing but today they are also used in general

processing (GP) to accelerate data-parallel computations in scientific and engineering

applications. Figure 2.2 shows how the GPU performance outperforms the CPU.

There are two main downsides, to GP-GPU computing. First, to achieve their

energy efficiency, GPU cores are very simple, and only provide performance benefits

when executing carefully parallelized code. Hence, attempting to port general code

to GPUs is a tedious task, and often results in ineffective code. Instead, it is more

effective to execute only those portions of an application that are amenable to GPU-

style parallelism, such as linear algebra code, on the GPU, leaving the remainder of

the application code on the CPU as shown in Figure 2.3. Because writing efficient

implementations on a GPU is difficult even for algorithms well-suited to parallel exe-

cution, there has been a proliferation of libraries that provide GPU implementations

9

Fig. 2.3. GPU Offloading [13]

Fig. 2.4. GPU connected to CPU using PCIe [13]

of common linear algebra kernels (often providing the BLAS interface [2]), easing the

task of offloading these operations to the GPU.

The second downside to using GPUs for general purpose computing is that most

GPUs use separate memory from the CPU. In other words, the GPU uses a separate

address space from the CPU, and hence the two processing units cannot readily share

data. Instead, data must be explicitly transferred between the CPU and the GPU.

This limitation is especially problematic when only portions of a computation are

offloaded to the GPU: because both the CPU and the GPU perform operations on

the same data, the data must be transferred back and forth as necessary. Worse,

10

transferring data between CPU and GPU is slow, especially in comparison to the

speed of each processing unit’s own memory. The GPU is connected to the CPU

using the PCI express bus, Figure 2.4. The maximum theoretical bandwidth for

PCIe V2 is 8GB/s. Performing data transfers are often a significant cost of GPU

computation, and there have been several approaches that have attempted to avoid

even offloading computation when data transfer costs exceed the benefit of GPU

computation [14–16].

2.2 Offloading Libraries to GPUs

The necessity for explicit data movement between GPU and CPU makes providing

modular libraries that provide GPU kernels more difficult. Consider the example

code in Figure 1.1. As discussed in the introduction, there are several distinct linear

algebra operations performed in this example, each of which would be performed

by a different library call. In the interests of modularity and encapsulation, some

libraries handle communication between the CPU and GPU “under-the-hood” like

CULA standard interface. While this makes using the library easier, it results in

redundant communication. The library calls are implemented to execute in isolation,

and as self-contained units, they assume that the data resides on the CPU. When

invoking a method, a library call must (i) allocate space for the arguments and result

on the GPU; (ii) transfer the arguments from the CPU to the GPU; (iii) perform the

computation on the GPU; and (iv) transfer the result back to the CPU. As a result,

even if multiple library calls could make use of the same data, new space is allocated

and the data is transferred for each call. Hence, as we see in Figure 2.5(a), at each

call two matrices are transferred to the GPU and one is transferred back, for a total

of 9 matrix transfers.

Clearly, full encapsulation introduces too many performance problems. Instead,

other library approaches, such as CUBLAS [6], give the programmer control over data

allocation and movement. Hence, as in Figure 2.5(b), the programmer can explicitly

11

CPU

Send A, B

GPU

Start
C = A * B

D = B * C

E = C * D Receive E

(b) Communication optimized

CPU

Send A, B

GPU

Start
C = A * B

D = B * C

E = C * D

Receive C

Send B, C

Receive D

Send C, D

Receive E

(a) Communication un-optimized

Write/
Read E

Write/
Read E

Time

Savings

Fig. 2.5. Communication comparison for optimized and un-optimized
communication

transfer A and B to the GPU, allocate space for the results matrices in GPU memory

(assuming matrices fit in the GPU memory), and operate only in GPU memory

until the final result, E, is transferred back to the CPU. This results in the minimal

amount of communication, 3 matrix transfers. Unfortunately, forcing a programmer

to explicitly manage data requires the programmer to reason about the composition

of GPU operations. This is a global task that may be impractical for large codes.

In fact, for highly modular codes, it may not be possible to manually manage

data movement. Consider, for example, if the three matrix-multiply calls of our

example occurred during different invocations of the same larger method within an

application. In other words, the three matrix multiplies occurred from library calls

from the same line of code, just with different arguments. Clearly, there is no way

to introduce data transfer operations statically to such code to correctly transfer the

matrices only when necessary. Whether or not data needs to be transferred to the

GPU is a purely run-time property, based on what other library methods have been

called, and what arguments are being passed to a particular library invocation.

12

Fig. 2.6. Communication comparison of Encapsulated Multi-GPU
libraries and hand tuned communication

2.2.1 Multi-GPU drop-in libraries

The most popular approach to leveraging multiple GPUs is to provide libraries

that encapsulate the necessary decomposition and communication. CUBLASXT [17],

MAGMA [4] and CULA [5] all provide subsets of BLAS and LAPACK methods

that have been optimized for multiple GPUs. As described in the introduction, this

encapsulation carries with it a cost: each method call is optimized in isolation, so any

opportunities to identify and avoid redundant communication across library calls are

lost. Essentially, data is “based” at the CPU, and is only distributed among GPUs

for the duration of the method call, resulting in redundant communication of shared

operands across method calls, and unnecessary communication of result operands

when they are not necessary on the CPU.

To understand the difficulty of managing data movement between CPUs and mul-

tiple GPUs, consider distributing a series of matrix-vector multiplications (MVMs):

y = A ∗ x; z = A ∗ y. (This type of computation arises in algorithms such as Jacobi

iteration.) To distribute this computation across GPUs, each operation should be

decomposed. A natural decomposition is to split A horizontally into two submatrices

13

A1 and A2, sending one to each GPUs. x can then be sent to both GPUs, computing

y1 = A1 ∗ x and y2 = A2 ∗ x.

Figure 2.6 demonstrates two different ways that communication could be handled

for the remainder of this computation. If the MVM were fully-encapsulated, as in

Figure 2.6(a), y1 and y2 would be sent back to the CPU and combined into y. When

the second MVM is executed, A1 and A2 will be re-sent to each GPU, along with the

re-composed y. A more efficient approach is to leave A in its decomposed form on both

GPUs, as in Figure 2.6(b). When the second MVM is invoked, each GPU already

has part of y already resident, and need only receive the portion of y they do not

already have in order to complete their computation. This dramatically reduces the

amount of communication. However, organizing this computation and communication

correctly requires realizing that the communication of A is redundant and also that

only a portion of y need be communicated. Note that the situation only becomes

more complicated if the CPU requires access to the data as well: if code on the CPU

(i.e., not in library calls) accesses y between the two MVMs, then y must be fetched

back from the GPUs, but the programmer must realize that the portions of y on the

GPUs are still valid to avoid performing redundant communication for the second

MVM. All in all, efficiently managing communication imposes a significant burden

on the programmer.

In libraries such as CUBLASXT, this back-and-forth communication is hidden

through pipelining. The computation is broken into chunks, which are distributed

among the multiple GPUs. While each GPU is performing a chunk of computation,

input data for the next chunk is concurrently sent to the GPU and output data from

the previous chunk is retrieved from the GPU. Provided the computation is operating

over sufficient data, most of the communication cost can be completely overlapped

with computation. Note that the effectiveness of this overlap is dependent on properly

choosing the chunk size for pipelining—CUBLASXT leaves the selection of granularity

to the programmer, breaking the abstraction layer somewhat.

14

This pipelining strategy has a deleterious side effect: because the operands must

be transferred to the GPU for every method call, and the implementation relies on

overlapping communication with computation, the communication costs cannot be

hidden for small inputs. Moreover, some linear algebra methods, such as SAXPY,

simply do not contain enough computation to amortize the communication cost, re-

gardless of how large the input data is (because communication cost grows at the same

rate as computation time). Hence, such operations cannot be profitably executed on

the GPU, even if there is opportunity to exploit the computation resources of multiple

GPUs. As a result, CUBLASXT only provides multi-GPU implementations of BLAS

Level 3 methods, while other libraries such as MAGMA also only provide a subset of

LAPACK methods. The abstraction boundary imposed by the library interfaces to

linear algebra routines precludes exposing communication management to program-

mers; the only way to support computation offloading efficiently is to automate the

data management.

15

3. RELATED WORK

3.1 GPU Libraries and Programming Models

There are multiple libraries that optimize the performance of Linear Algebra Ker-

nels on GPUs. CUBLAS [6] is an implementation of BLAS [2] (Basic Linear Algebra

Subprograms) on top of the NVIDIA’s CUDA driver that allows access to the com-

putational resources of NVIDIA GPUs.

MAGMA [4] (Matrix Algebra on GPU and Multicore Architectures) is a hetero-

geneous algebra library as described on the authors’ website:

MAGMA is a collection of linear algebra libraries for heterogeneous

architectures. MAGMA is designed and implemented by the team that

developed LAPACK and ScaLAPACK, incorporating the latest develop-

ments in hybrid synchronization- and communication-avoiding algorithms,

as well as dynamic runtime systems. Interfaces for the current LAPACK

and BLAS standards are supported to allow computational scientists to

seamlessly port any linear algebra reliant software components to hetero-

geneous architectures.

MAGMA allows applications to fully exploit the power of current het-

erogeneous systems of multi/many-core CPUs and multi-GPUs to deliver

the fastest possible time to accurate solution within given energy con-

straints. MAGMA uses a hybridization methodology where algorithms

of interest are split into tasks of varying granularity and their execution

scheduled over the available hardware components. Scheduling can be

static or dynamic. In either case, small non-parallelizable tasks, often on

the critical path, are scheduled on the CPU, and larger more parallelizable

ones, often Level 3 BLAS, are scheduled on the GPU. [4]

16

CULA [5] have implemented hybrid GPU accelerated linear algebra routines (LA-

PACK and BLAS libraries). It provides a standard interface that needs no GPU

knowledge in addition to the advanced interface.

These approaches all focus on individual kernels; across kernels, data management

must be handled by the programmer.

Other programming models are designed to facilitate heterogeneous scheduling.

Intel’s Merge [18] is a programming model for heterogeneous multi-core systems.

Qilin is a generic programming system that can automatically map computations to

GPUs and CPUs through off-line trainings [14]. G-Charm [19] is a runtime system for

execution of message-driven parallel applications on hybrid systems. MDR [16] is a

performance model-driven runtime for heterogeneous parallel platforms. Such systems

try to optimize CPU-GPU communication across the entire program. However, to use

them, the programmer must rewrite their application using the specified programming

model. In contrast, we are targeting existing large-scale applications, with the goal

of optimizing communication without significant programmer effort.

3.2 Automatic Communication Optimization

3.2.1 Compiler based automatic data management

Prior work implemented automatic data management and communication opti-

mization systems for GPUs using compiler analysis with run-time support [20, 21].

Jablin et al. have developed a fully automatic CPU-GPU communication manage-

ment system (CGCM) [20]. CGCM manages data using a combined run-time and

compile-time system without programmer annotations. CGCM requires static anal-

ysis (type-inference and alias analysis) because it manages data and optimizes com-

munication at compile-time. The imprecision of static analysis limits CGCM’s ap-

plicability and performance. Similar to CGCM, AMM [21] uses compiler analysis

with run-time support. AMM improves on CGCM compiler analysis to better op-

timize data communication. The main limitation in these approaches is the use of

17

static compiler analysis. Such analysis does not scale to large programs because it

requires complex inter-procedural analysis and it can not accurately analyze recursive

data structures or data-structures with pointer and non-pointer types. In contrast,

SemCache uses virtual memory and a more sophisticated run-time system that keeps

tracks of data validity status and hence can better optimize communication with less

overhead than a static compiler analysis.

3.2.2 DSM based automatic data management

NVIDIA’s Unified Memory [13], DyManD [22] and GMAC [23] attempt to manage

communication between the GPU and CPU automatically by adopting distributed

shared memory (DSM) techniques [24,25]. These systems use the operating system’s

page-protection mechanism to detect when data needs to be transferred. Although

these techniques are fully automated, they require direct mappings between the CPU

and GPU memory spaces. Such single memory space models use the same masked

address for data allocated on the CPU and the GPU to simplify address transla-

tion. If this direct address mapping is extended to multiple GPUs, each GPU needs

to reserve the space for the entire matrix although only a sub-matrix is allocated

on each GPU, resulting in wasted GPU memory. As a result, the amount of data

shared between the CPU and GPU is limited to the GPU memory size; in fact, the

largest inputs that we used in our case study (Section 5.6.3) cannot be handled by

existing systems. Furthermore, this direct mapping precludes more complex semantic

mappings between the CPU and the GPU, such as transforming row-major layout to

column-major layout, or SemCache’s computation caching (Section 4.4).

The main drawback of CUDA’s Unified Memory is transferring matrices at the

granularity of pages. In SemCache, if the CPU accesses protected data, it page

faults and sends the data back to the CPU from the GPU. Transfers are done at

the granularity of matrices. However unlike SemCache, in UM transfers from the

GPU to the CPU are done at the granularity of pages. Although this approach

18

might be efficient for reading small data amounts, it is slow for large data. The high

number of page faults and the transfer of small data chunks slows down the transfer

process. In libraries like CUBLAS, matrices sizes are usually large and transfers at

the granularity of matrices is faster. SemCache uses library semantics to choose the

right granularity for data transfers. Recent researchers improved on the performance

of unified memory using prefetching and smarter page migration policies [26].

3.3 Multi-GPU Programming Models

Aside from using multi-GPU enabled libraries for offloading, another approach

to exploiting multiple GPUs is to use programming models that target general het-

erogeneous platforms. These approaches tend not to be suitable for library-based

offloading, for various reasons. Kim et al. develop compiler tools that can automat-

ically distribute an OpenCL kernel across multiple GPUs [27]. However, this work

focuses on splitting a single kernel across GPUs, and does not consider how to opti-

mize communication across kernels. MGPU [28] and Trilinos [12] libraries allow the

programmer to specify the communication at a high level and the library automati-

cally distributes and executes the workload on multiple GPUs. Unlike SemCache++,

such libraries depends on the programmer to manually optimize communication across

kernel calls.

VirtCL [29] is a framework for multi-GPU scheduling. It provides an abstraction

over OpenCL for scheduling and communication management on multiple GPUs.

The main limitation of VirtCL is that it does not automatically split single kernels

for execution among several devices. Unlike SemCache++, VirtCL can not speed up

a single application unless each kernel is manually split by the programmer.

StarSs [11] is a runtime system to decompose and execute the tasks on multiple

GPUs. It requires the programmer to annotate tasks with input/output information

in addition to specifying the data movement. StarSs caches data on the GPU to opti-

mize communication across tasks. Unlike drop-in replacement libraries such as those

19

provided by SemCache++, annotations are prune to errors and they are not enough

to automatically manage communication. While StarSs can be used to encapsulate

several tasks into library calls, all computation over the data accessed during those

calls must be annotated with StarSs directives, including computations meant to ex-

ecute on the CPU. If data is cached on the GPU, any CPU access to the data needs

to be annotated to maintain the coherence. Identifying such accesses for annotation

is not practical for large-scale applications.

3.3.1 Task Programming Models

StarPU [9] is a task programming library for hybrid architectures. StarPU is

described on the authors’ website as:

StarPU’s run-time and programming language extensions support

a task-based programming model. Applications submit computational

tasks, with CPU and/or GPU implementations, and StarPU schedules

these tasks and associated data transfers on available CPUs and GPUs.

The data that a task manipulates are automatically transferred among

accelerators and the main memory, so that programmers are freed from

the scheduling issues and technical details associated with these transfers.

StarPU offers a unified offloadable task abstraction named codelet.

Rather than rewriting the entire code, programmers can encapsulate ex-

isting functions within codelets. In case a codelet can run on heterogeneous

architectures, it is possible to specify one function for each architectures

(e.g. one function for CUDA and one function for CPUs). StarPU takes

care of scheduling and executing those codelets as efficiently as possible

over the entire machine, include multiple GPUs. One can even specify

several functions for each architecture, and StarPU will automatically de-

termine which version is best for each input size. To relieve programmers

from the burden of explicit data transfers, a high-level data management li-

20

brary enforces memory coherency over the machine: before a codelet starts

(e.g. on an accelerator), all its data are automatically made available on

the compute resource. Data are also kept on e.g. GPUs as long as they

are needed for further tasks. When a device runs out of memory, StarPU

uses an LRU strategy to evict unused data. StarPU also takes care of au-

tomatically prefetching data, which thus permits to overlap data transfers

with computations (including GPU-GPU direct transfers) to achieve the

most of the architecture. [9]

libFLAME [7] is a heterogeneous dense linear algebra library. libFLAME is de-

scribed on the authors’ website as:

libFLAME is a high performance dense linaer algebra library. The

libflame project has developed a runtime system, SuperMatrix, to detect

and analyze dependencies found within FLAME algorithms-by-blocks (al-

gorithms whose sub-problems operate only on block operands). The task

dependence information is captured in a Directed Acyclic Graph (DAG).

Once dependencies are known, the system schedules sub-operations to in-

dependent threads of execution. This system is completely abstracted from

the algorithm that is being parallelized and requires virtually no change

to the algorithm code, but at the same time exposes abundant high-level

parallelism. The run-time system uses a software cache to check whether

the tiles involved in the operation are already present in-core. Thus, actual

data transfers only occur for cache misses. An LRU replacement policy

decides which tile is moved back to disk in case there is no place left in

the cache to read a new tile, and this is also handled by the run-time.

The runtime also supports prefetching and overlapping computation with

communication. [7]

PTask [10] is a dataflow programming framework for GPUs that insulates the

programmer from low-level details such as device-management, data transfer, and

21

asynchrony. PTask is supported at the system call interface, so the OS can provide

isolation and fairness guarantees for GPU computations. PTask run-time automati-

cally optimize communication and avoids unnecessary data movement.

The fundamental drawback to these approaches is that they require writing the

entire program in a task-based programming model. Thus, these models cannot be

used to provide library-based offloading, as even the non-library portions of the appli-

cation must be modified to conform to the model, precluding a “drop-in” replacement

for existing linear algebra libraries.

These systems could be used to provide GPU replacements for libraries such as

BLAS and LAPACK: the rewritten or annotated code could be confined to the li-

brary code, providing full encapsulation and optimized communication between mul-

tiple routines inside a single library call. However, if the same data operated on by

the library call is also accessed outside the library, programmers are left with one

of two options: (i) rewrite or annotate non-library code, obviating the benefits of

library encapsulation; or (ii) give up on communication optimization between library

and non-library code, entailing redundant communication. The first option is not

compatible with our goal of developing “drop-in” replacement libraries that require

minimal program rewriting, while the second option leaves substantial opportunities

for optimization on the table.

Table 3.1 shows a comparison between prior multi-GPU libraries and systems and

SemCache++. SemCache++ is the only system that optimizations communication

without the need to rewrite the program using a different programing model or using

annotations for every data access.

22

Table 3.1
Comparison between Multi-GPU Frameworks

Framework Program

Rewrite/

Annotations

Drop-in Optimizes

comm-

unication

SemCache++ x X X

StarPU X x X

PTask X x X

StarSs X x X

MAGMA x X x

CUBLASXT x X x

OpenACC X x x

OpenCL X x x

Kokkos X x x

23

4. SEMCACHE

This section introduces SemCache [1], a variable-granularity, Semantics-aware Cache

that can be used to efficiently and easily manage sharing and transferring data be-

tween the disjoint CPU and GPU address spaces.

4.1 High Level Overview

A software cache between CPU and GPU, at a high level, is simple and intuitive.

One variant, using a MSI (modified, shared, invalid) protocol might operate as follows:

a given piece of memory (e.g., a contiguous block of memory, a page, etc.) is tracked

by a run-time system. The run-time tracks whether the contents of the piece of

memory are currently valid on both devices (shared), valid only on the GPU (modified

on the GPU, invalid on the CPU) or valid only on the CPU (invalid on the GPU,

modified on the CPU). Whenever memory is read on a particular device, the cache

can be consulted to determine whether the local memory has valid data; if not,

communication between GPU and CPU is necessary, and the cache state is changed

to shared. When a piece of memory is written on a device, the local cache state is

changed to modified, and the state for the other device is changed to invalid.

Such an implementation has been used in numerous previous projects targeting

different architectures, from distributed shared memory systems (e.g., [24, 25]) to

software caches between Cell processing units (e.g., [30, 31]). The downside to prior

implementations is that the granularity at which memory was tracked was constant

(e.g., an entire OS page, or a fixed-size block of contiguous memory). However, a

fixed granularity may not be appropriate for a given application. If the granularity of

the cache is too large (the blocks being tracked are too big), excessive communication

will happen, both from transferring unnecessary data and from performing too many

24

invalidations due to false sharing. If the granularity of the cache is too small, more

cache lookups will be necessary for a given set of operations, and communication will

be broken up into more transfers, resulting in more overhead. Unfortunately, it is

difficult to tell for a given application, what the appropriate cache granularity should

be, and different applications may require different granularities.

The key insight of SemCache is that when using libraries to offload computation

to GPUs, the correct granularity for a cache can be inferred. In particular, the ap-

propriate granularity for the cache should be the data structures operated on during

offloaded library calls. Moreover, the library’s semantics directly capture what the rel-

evant data structures are. As a result, by tying SemCache’s granularity to a library’s

semantics, we can track data at exactly the right granularity for a given application.

For example, when SemCache is used in conjunction with a linear algebra library,

the data structures being operated on are matrices; as a result, SemCache will track

data at the granularity of the matrices used in a particular application. In contrast,

if SemCache is used in conjunction with a graph library, the data structures being

operated on might be adjacency lists. SemCache will correctly track data at the

granularity of entire adjacency lists representing the graphs being operated on.

SemCache is composed of multiple, interlocking components: (a) a variable-

granularity cache structure and interfaces for performing cache lookups, triggering

data transfers, and performing invalidations; (b) a strategy for setting the granular-

ity of the cache based on library behavior; and (c) instrumentation and protocols for

tracking and maintaining the correct cache state for memory. The following subsec-

tions describe these components.

4.2 Cache Design and Structure

The basic design of SemCache is shown in Figure 4.1. There is a single data struc-

ture, consisting of a set of translation records that tracks the status of the various data

structures used in a program. Note that even though data may reside on either the

25

Main Memory GPU Memory Caching Directory

Matrix

Matrix

CPU

Start Address
Status CPU

End Address

GPU

Start Address

Cache Translation Record

Fig. 4.1. Structures of the Caching Directory

CPU or the GPU, it is the CPU that is in charge of maintaining the cache data, and

of performing all lookups and invalidations. This is due to the basic approach used for

GPGPU computation. Operations are dispatched to the GPU by transferring data (if

necessary) to the GPU and invoking a single kernel method. Once the kernel method

completes, control transfers back to the CPU and any necessary data is transferred

back. In other words, the CPU alone is responsible for controlling execution and for

transferring data between the two memory spaces. As a result, SemCache consists of

a single set of translation records maintained by the CPU.

The primary data structure of SemCache is the set of translation records that

maintain a mapping between CPU data and the corresponding data on the GPU, as

well as the current location of the data. In a sense, SemCache serves as a translation

lookaside buffer (TLB), except that its entries point to variable-length regions of

memory rather than fixed-size pages. The cache entries are hence indexed by both

a start address (cpus) and an end address (cpue) of the data’s location on the CPU.

Each entry also contains a status field (status) to keep track of the data’s status.

These statuses can be one of C, for valid only on the CPU, G, for valid only on the

26

GPU, or S, for valid at both locations. Finally, the translation record contains the

putative location of the same data on the GPU (gpus)
1.

SemCache’s interface provides a number of operations. A memory range [s, e)

refers to start and end addresses for a memory range on the CPU.

lookup(s, e) Retrieves the translation record associated with memory range [s, e).

If the memory range is not currently tracked, create a new entry for the range,

and set the status to C.

transferToGPU(entry) Assumes that the status of the entry is S or C. Transfers

the contents of memory range [cpus, cpue) on the CPU to the GPU, allocating

new space on the GPU. Sets the GPU start address appropriately. Sets the

status of the entry to S.

transferToCPU(entry) Assumes that the status of the entry is S or G. Transfers

the contents of memory range [gpus, gpus + (cpue − cpus)) from the GPU back

to the CPU. Sets the status of the entry to S.

invalidateOnGPU(entry) Sets the status of entry to C.

invalidateOnCPU(entry) Sets the status of entry to G.

SemCache maintains the invariant that the ranges tracked by its translation

records are disjoint. If a range being looked up is a subset of some tracked mem-

ory range, then lookup returns the entry associated with the larger memory range.

If a range being looked up spans multiple tracked ranges, SemCachemerges all the

matching translation records and creates a new record that tracks a range that spans

all of the merged records.

To perform lookups and merges efficiently, SemCache maintains the entries sorted

by start address. To look up the range [s, e), SemCache searches for the entry with

the largest start address less than or equal to s. If the end address of the found

1This location is putative because it is only valid if the status of the range is S or G; if the status
is C, the next time the data is sent to the GPU, new space will be allocated for the data

27

entry is less than or equal to s, SemCache creates a new entry for the range. If the

end address of the found entry is greater than or equal to e, it returns the entry.

If the end address of the found entry is greater than s and less than e, SemCache

iterates through the subsequent entries until it finds all the entries that overlap with

the current range. It then merges the ranges together, performing appropriate data

movement operations so that the eventual state of the new entry is C.

4.2.1 Managing available GPU memory

The amount of data sent to the GPU might be too large to fit the available GPU

memory. In such a situation, to allocate new data in the GPU memory, cached data

must to be freed. To determine which address ranges should be freed, SemCache uses

least-recently-used (LRU) policy. Any data accessed on the GPU is added to the end

of a queue. If the GPU memory is full, data at the head of the queue is removed. Note

that depending on the application other polices can be used. Multiple replacement

polices can be easily integrated with SemCache and the programmer can have the

option to choose between them.

4.2.2 Determining Granularity

SemCache by itself is simply a variable-granularity cache that supports a few

methods to transfer data between the CPU and GPU. The key to SemCache’s utility

is that the granularity of the cache is determined by the semantics of the GPU libraries

being used in a program. In particular, we note that the address ranges tracked by

the cache are determined during cache lookup: if a particular range has not been

seen before, a new entry for that range is created. Hence, if a library call takes as

input matrices A and B and produces as output a matrix C, the three matrices can

be individually tracked by performing lookups on their address ranges. For example,

if A were an n × n matrix (of floats), invoking lookup(A, A + sizeof(float) * n

* n) would cause SemCache to start tracking matrix A, and whether it existed on

28

GPU Read/Write

CPU

Write CPU

Write

CPU Read/Write

CPU/GPU Read

 S G

GPU Write

CPU Read

 C

GPU

Read

GPU

Write

Fig. 4.2. Write-back protocol (States: GPU/CPU/Shared)

the GPU or not. Note that the current implementation of SemCache only tracks

contiguous memory ranges; data structures that are not contiguous ranges have to be

tracked with multiple entries.

4.3 SemCache Instrumentation and Protocols

4.3.1 Write-back Protocol

The interfaces of SemCache can be used to implement a basic protocol to manage

data movement between the CPU and GPU. The protocol tracks reads and writes on

both devices, and transfers data when necessary. Figure 4.2 shows the basic protocol,

which behaves similarly to an MSI coherence protocol. Data that is computed on the

GPU remains on the GPU until the CPU needs to read it. Similarly, data computed

on the CPU remains on the CPU until the GPU needs it. If either the CPU or GPU

29

writes a piece of data, that data is invalidated on the other device. Adopting the

terminology of Quintana-Orti et al., we call this a write-back protocol [7].

To implement this protocol, SemCache provides an API that can be called before

CPU or GPU reads and writes to a range of data. The API looks up entries in the

caching directory and performs communication if required based on the data status.

writeCPU(s, e) Execute before writing CPU address range [s,e). It Looks up and

retrieves the translation record associated with memory range [s, e). If the

status is G, it is transferred back to the CPU. Finally, it is invalidated and the

status is set to C.

readCPU(s, e) Execute before reading CPU address range [s,e). It Looks up and

retrieves the translation record associated with memory range [s, e). If the

status is G, it is transferred back to the CPU. The status is set to S since it is

read only.

writeGPU(s, e) Called after a GPU method that writes [s,e). It Looks up and

retrieves the translation record associated with memory range [s, e). The status

is set to GPU only (G).

readGPU(s, e) Called before reading a GPU address range [s,e). It Looks up and

retrieves the translation record associated with memory range [s, e). If the

status is G, it is transferred back to the CPU. The status is set to shared (S).

Although writeGPU and readGPU can be easily embedded inside the GPU library

calls, writeCPU and readCPU are harder to insert before CPU reads and writes with-

out modifying the original code. SemCache runtime system can automatically invoke

the CPU reads and writes without modifying the original code as discussed in Sec-

tion 4.3.4. Additionally, Section 5.5.2 discusses how a library writer can use these

interface methods to manage data movement for a particular library.

30

GPU Read/Write

CPU Write

GPU Write

(updates CPU)

CPU Read/Write GPU/CPU Read

S C

Fig. 4.3. Write-through protocol (States: CPU/Shared)

4.3.2 Write-through Protocol

We introduce a further protocol simplification. Because reads on the CPU are

much more prevalent than writes, and because most results computed by the GPU

are eventually needed on the CPU, we eagerly transfer any data written by the GPU

during a library operation back to the CPU. This affects how library operations

that modify data are handled. In the write-back protocol, writeGPU is invoked to

invalidate the data on the CPU. In the write-through protocol, writeGPU is never

invoked, but instead readCPU is immediately called to transfer the data back to the

CPU. Section 5.5.2 gives a concrete example of how the implementation of a library

changes based on the protocol.

In the write-through protocol, data is never in the G state; it can only be in C

or S. The simplified protocol is shown in Figure 4.3. Because data is eagerly written

back to the CPU, we again adopt previous terminology and call this a write-through

protocol [7]. Note that because data is never in the G state, we no longer need to

instrument CPU reads, reducing instrumentation overheads.

4.3.3 SemCache in Practice

Figure 4.4 shows the data movement performed by our system on the simple

example of Figure 1.1 using the two different protocols. We note that when using

31

CPU

Send A, B

GPU

Start
C = A * B

D = B * C

E = C * D

Receive E

 CPU

Send A, B

GPU

Start
C = A * B

D = B * C

E = C * D

Receive C

Receive D

Receive E

(a) SemCache (Write Back) (b) SemCache (Write Through)

Write/

Read E
Write/
Read E

Fig. 4.4. SemCache communication model

the write-back protocol (Figure 4.4(a)), SemCache performs the minimum required

data movement (cf. Figure 2.5(b)). At the first invocation of matrix-multiply, A and

B are transferred to the GPU, and SemCache tracks them in S state. When C is

computed, it is tracked in G state. Because both B and C are current on the GPU,

later invocations of matrix multiply need not perform any more data transfer. Finally,

E will be transferred back to the CPU once that matrix is read by other portions of the

program. In the write-through protocol (Figure 4.4(b)), the amount of communication

from the CPU to the GPU is minimal. However, because GPU results are eagerly

communicated back to the CPU, we see that some extra communication is performed

from the GPU to the CPU.

Crucially, because all of the necessary instrumentation is either automatically

inserted or encapsulated in a GPU library (see Section 5.5.2), programmers can sim-

ply use SemCache-enhanced GPU libraries as drop-in replacements for their existing

libraries.

32

4.3.4 Instrumenting CPU Reads and Writes

SemCache provides two approaches to inserting instrumentation to implement the

write-back and write-through protocols: statically-inserted instrumentation (either by

the programmer or the compiler), and dynamic instrumentation using the operating

system’s page-protection facilities.

Statically-inserted Instrumentation

Conservatively, the programmer or compiler must guard every read or write on

the CPU with appropriate instrumentation. In practice, because data movement

between the CPU and GPU can only occur when GPU libraries are invoked, simple

analyses can reduce this instrumentation overhead. For example, any data that will

never be sent to the GPU (i.e., can never be passed to a method call executed on

the GPU) does not need to be instrumented. Furthermore, reads or writes to array

locations that occur in loops can be guarded by a single call, with the parameters

determined by array analyses that determine what portions of an array are accessed

in a loop. These analyses, of which many exist, are beyond the scope of this thesis;

we assume that such an analysis has already been performed, allowing array accesses

to be efficiently guarded.

The run-time nature of SemCache tolerates instrumentation imprecision. In par-

ticular, looking up address ranges that are not shared with the GPU does not in-

troduce extra communication, nor does invalidating the same range more than once;

these operations merely introduce extra caching overhead. Conservatively invalidating

an address region is also safe: while this unnecessary invalidation causes unnecessary

communication, it does not affect the correctness of the program.

Note also that although we instrument particular reads and writes, as well as

particular GPU operations, to perform our caching, the cache lookups, etc., are based

on address ranges. As a result, program behaviors such as aliasing do not present

33

correctness problems; the caching is performed based on the underlying memory, not

the specific name given to that memory.

Even after removing unnecessary instrumentation through the above analyses,

and avoiding the instrumentation of reads on the CPU with the write-through pro-

tocol, invoking writeCPU before every write to data that may reside on the GPU

still introduces unnecessary instrumentation. For example, on a write to data that

has already been invalidated on the GPU, it is redundant to look up the data and

“re-invalidate” it. Developing an analysis to remove redundant instrumentation is a

subject for future work.

Page-protection-based Instrumentation

Rather than using statically-inserted instrumentation of CPU reads and writes,

SemCache can also use the operating system’s virtual memory facilities to implement

the write-back and write-through protocols. The OS Memory protection is a typically

used to control memory access rights on a computer. Since the memory is organized as

pages, each page can be hold one of three states: no access, read only and read/write.

If a process accesses a protected page, the system triggers a page fault.

In SemCache, the page protection mechanism can be used to automatically invoke

readCPU and writeCPU. For each data structure that SemCache tracks on the CPU,

SemCache sets page protection flags for all the pages the data structure spans. The

page protection flags are set according to the state of the data structure as follows:

• If the structure is in G state, its pages are set to PROT NONE;

• if the structure is in S state, its pages are set to PROT READ;

• if the structure is in C state, the pages are set to PROT READ | PROT WRITE.

If a CPU access triggers a page fault, SemCache invokes readCPU or writeCPU

based on the required operation and the current state as follows:

34

• Write to a no access region or a read only region; it triggers writeCPU which

looks up the address that caused the page fault in the caching directory. If the

translation record is found, it transfers the matrix back from the GPU and the

submatrix status becomes CPU only (C). The structure’s page protection flags

are set to read/write.

• Read from a no access region; SemCache invokes readCPU which transfers the

submatrix back from the GPU and the submatrix status becomes shared (S).

The structure’s page protection flags are set to read only.

Note that although detection of accesses that require communication occurs at the

page granularity, communication does not: if a structure needs to be communicated

from the GPU to the CPU, SemCache transfers the entire structure, and changes

the status of all of the associated pages on the CPU. This preserves SemCache’s

variable-granularity advantages over systems like CUDA unified memory.

The main advantage of page-based invalidations over statically-inserted invali-

dations is that these invalidations are handled fully automatically; no additional

instrumentation or compiler analysis is required. However, they also have some dis-

advantages as well: to work correctly with page-protection operations, and to avoid

false sharing issues, page-based invalidations require that a program’s memory layout

must be changed to ensure that all data structures that may be communicated to the

GPU are page-aligned and padded out to page boundaries.

We note that this page-based strategy is similar to that used by DyManD [22].

However, unlike DyManD, SemCache still tracks data structures and maintains map-

pings between the CPU and GPU according to semantic information, rather than

requiring direct memory mapping between the CPU and GPU. In addition to allow-

ing programs whose working sets exceed GPU memory, SemCache’s approach allows

for semantic links to be formed between data on the CPU and data on the GPU, as

the next section explains.

35

4.4 Semantic Mapping with SemCache

This section discusses how the basic principles of SemCache can be extended and

generalized to achieve additional savings. In particular, we describe how ancillary

structures can be added to SemCache to allow it to “cache” the results of arbitrary

functional computations, essentially allowing SemCache to serve as a memoizing ser-

vice for GPU computations. This facility can be used for many purposes, from avoid-

ing expensive recomputations (e.g., storing only the factorized forms of matrices on

the GPU) to performing data layout transformations (e.g., mapping row-major data

structures on the CPU to column-major layouts on the GPU). In essence, instead of

directly mapping between CPU and GPU data, SemCache can create a semantic link

between data on the CPU and a transformed version of that data on the GPU.

To see how SemCache can create these semantic links, we note that memoization

effectively maps a particular input of a function to its pre-computed output. That

is, for a function f : X → Y , a memoized input x is used to look up its previously-

computed output y, rather than evaluating f(x). If we consider x as data residing

on the CPU, and y as data residing on the GPU, then we can abstract SemCache’s

default behavior as simply the memoization of the identity function f(x) = x. For

a given input (i.e., data on the CPU), SemCache provides the previously-computed

(i.e., previously-communicated) output (i.e.. data on the GPU). In other words,

SemCache is indexed by inputs on the CPU and provides a map to the results of the

identity function stored on the GPU.

We can see that there is no need for SemCache’s operation to be restricted to

memoizing the identity function on to the GPU. The results of other functions can be

memoized as well. Consider performing matrix factorization (e.g., LU factorization)

as an intermediate step in equation solve (GESV), the factorization is not saved. Such

factorizations on the GPU are time consuming, so repeatedly factorizing a matrix

can be wasteful. Instead, we can use an extended version of SemCache to cache the

36

results of the factorization on the GPU, instead of just the inputs to the factorization

operation.

Figure 4.5 shows how SemCache is extended. The same address ranges tracked by

the baseline cache are used to index into a computation cache, which stores the GPU

location of the results of a particular computation. Since this data is computation-

specific, each type of computation to be memoized will need separate lookup tables.

Note that the computation structures need not separately track the status of the

data. If the data in the main cache is ever invalidated on the GPU (i.e., its status

is changed to C), the corresponding entries in any computation caches are simply

removed.

To attempt to skip performing a GPU computation on an address range [s, e),

SemCache takes the following steps. First, the range is found in the main cache. If

the status of the range is S or G, the lookup is repeated in the computation cache,

and, if a result is found, the GPU computation can be elided. If the status of the

range is C, or there is no entry in the computation cache, the GPU computation is

performed, the status of the range is set to S, and the computation cache is updated.

Fig. 4.5. Caching Directory Components

37

We note that the particular set of lookups, and particular data stored, is based on

the semantics of the computation being cached. Using SemCache to create semantic

links hence requires adding instrumentation to GPU libraries to perform the neces-

sary lookups, etc. Nevertheless, this instrumentation can be completely encapsulated

in a library, and its effects need not be visible to the programmer, preserving the

library as a drop-in replacement.

4.5 Implementation

To demonstrate how SemCache can be used to improve the performance of GPU

computation libraries, we use it to produce a drop-in replacement for BLAS. This

allows programmers to replace BLAS calls in their code with calls to our library,

automatically offloading computation to the GPU and handling memory manage-

ment transparently. The GPU kernels of our library are based on the corresponding

CUBLAS implementations. Our library supports either the write-back protocol or

the write-through protocol, controlled by a compile-time flag. The implementation is

done in C on a LINUX OS. Since page-based invalidations are used, malloc calls must

be modified to page-aligned allocations and padded to page boundaries to avoid false

sharing, as described in Section 5.3.2. To provide page-aligned allocations, valloc

can be used instead of malloc and the size of data can be padded to page boundaries

using address masking.

Figure 4.6 shows the sequence of calls that would be required to use CUBLAS to

perform matrix multiply, with all communication explicitly managed by the program-

mer. In contrast, Figure 4.7 shows the interface for the SemCache-enhanced version

of matrix multiply.

Figure 4.8 shows SemCache API to implement the write back protocol. The

writeGPU and readGPU API are embedded inside the GPU library calls as shown in

Figure 5.6. The API looks up entries in the caching directory and performs commu-

38

1 cudaMalloc(A) // Allocate space on device mem.

2 cudaMalloc(B) // Allocate space on device mem.

3 cudaMalloc(C) // Allocate space on device mem.

4

5 cublasSetMatrix(A) //Move matrix A to device

6 cublasSetMatrix(B) //Move matrix B to device

7 cublasSetMatrix(C) //Move matrix C to device

8

9 cublasDgemm(TRANSA ,TRANSB ,M,N,K,ALPHA ,A,LDA ,B,LDB ,BETA ,C,LDC)

10

11 cublasGetMatrix(C) //Get matrix C from device

Fig. 4.6. Matrix multiply using CUBLAS code

1 SemCacheDgemm(TRANSA ,TRANSB ,M,N,K,ALPHA ,A,LDA ,B,LDB ,BETA ,C,LDC

)

Fig. 4.7. SemCache library interface

39

1 // execute before writing CPU address range [s,e)

2 TranslationRecord writeCPU(s, e) {

3 entry = lookup(s, e);

4 if (entry.status == G) //CPU data not current

5 transferToCPU(entry);

6 invalidateOnGPU(entry);

7 return entry;

8 }

9

10 // execute before reading CPU address range [s,e)

11 TranslationRecord readCPU(s, e) {

12 entry = lookup(s, e);

13 if (entry.status == G) //CPU data not current

14 transferToCPU(entry);

15 mprotect(s, entry.size , PROT_READ);

16 return entry;

17 }

18

19 // called after a GPU method that writes [s, e)

20 TranslationRecord writeGPU(s, e) {

21 entry = lookup(s, e);

22 invalidateOnCPU(entry);

23 mprotect(s, entry.size , PROT_NONE);

24 return entry;

25 }

26

27 // called before a GPU method that reads [s, e)

28 TranslationRecord readGPU(s, e) {

29 entry = lookup(s, e);

30 if (entry.status == C){ //GPU data not current

31 transferToGPU(entry);

32 mprotect(s, entry.size , PROT_READ);

33 }

34 return entry;

35 }

Fig. 4.8. Operations to implement write-back protocol

40

nication if required based on the data status. Any data replicated on both devices is

protected on the CPU to prevent future access to it. Any future access will have to

go through the coherence protocol to make sure the data on the device is up to date.

The POSIX operating system provides a method called mprotect which changes the

protection on region of memory (spanned by multiple pages) The protection can be

set to no access, read only and read/write. The API writeCPU and readCPU are

automatically invoked when a page fault occurs using SemCache runtime system as

shown in 4.10. Note that these methods return the translation record, as invoking

methods on the GPU may require knowing the addresses where the necessary data is

stored.

Figure 5.6 shows how matrix multiply is implemented. Under the hood, we still

invoke the CUBLAS matrix multiply method. However, all communication is man-

aged by SemCache, and is only performed when necessary. When SemCache is called,

the caching directory is searched for each matrix using the start and end address in

the main memory. The start address is the pointer address and the end address is

calculated using the matrix size. The cache keeps a record of the start and end ad-

dress in the main memory for each matrix accessed using our library. If the matrix

does not exist, it is transferred to the GPU and cached. A new record is created for

it in the cache. If the matrix is found in the cache and it is in S state, then it is

a hit and there is no need to transfer the matrix to the GPU. The matrix address

in the GPU memory is taken from the translation record. This address is used to

access the matrix using CUBLAS. If the matrix is not valid on the GPU (it is in C

state), it is transferred to the GPU and the record in the cache is updated. After all

of the matrices are transferred or located in the GPU memory, the CUBLAS call is

executed. Then the result is transferred back to the main memory.

CUBLAS does not provide an implementation of general equation solve (GESV),

instead only providing triangular solves for factorized matrices. While there exist

several efficient GPU implementations of LU factorization [4,32], our implementation

instead implements equation solve in two steps: we compute the LU factorization on

41

1 SemCacheDgemm(TRANSA ,TRANSB ,M,N,K,ALPHA ,

2 A,LDA ,B,LDB ,BETA ,C,LDC)

3 {

4 //A stored on CPU in memory range [A, A+(M*K*8))

5 //A will be read by GPU , its state will be "S"

6 entryA = readGPU(A, A + (M*K*sizeof(double)));

7

8 //B stored on CPU in memory range [B, B+(K*N*8))

9 //B will be read by GPU , its state will be "S"

10 entryB = readGPU(B, B + (K*N*sizeof(double)))

11

12 //C stored on CPU in memory range [C, C+(M*N*8))

13 //C will be read by GPU , its state will be "S"

14 entryC = readGPU(C, C + (M*N*sizeof(double)))

15

16 cublasDgemm(TRANSA ,TRANSB ,M,N,K,ALPHA ,

17 entryA.gpu_s ,LDA ,

18 entryB.gpu_s ,LDB ,BETA ,

19 entryC.gpu_s ,LDC)

20

21 //C was written by cublasDgemm

22 #ifdef WRITEBACK

23 //If we’re using write -back , writeGPU must be called to

invalidate , C state will be "G"

24 writeGPU(C, C + (M*N*sizeof(double)))

25 #else

26 //If we’re using write -through , we eagerly communicate to

the CPU , C state will be "S"

27 readCPU(C, C + (M*N*sizeof(double)))

28 #endif

29 }

Fig. 4.9. Implementation of SemCache matrix multiply (DGEMM)

42

the CPU, then perform the equation solve on the GPU using CUBLAS’s triangular-

solve routines. We then use SemCache’s computation caching capability to avoid

performing the factorization whenever possible. This implementation was chosen to

demonstrate SemCache’s generalized memoization ability.

Figure 4.10 shows how the page fault handler is initialized and used. The Init

function binds the page fault with the handling function. It is called once at the

initialization of the program. At runtime, when a page fault occurs fault handler

function is executed. The function has the address where the page fault happened. A

lookup in SemCache caching directory is performed using this address. If the address

falls into the range of any of the tracked data structures, the translation record for

that data structure is returned. The protection is removed from the data to prepare

it for receiving the updated data. Then, readCPU or writeCPU are invoked based on

the page fault type. The page fault type can be determined by inspecting a special

register. The register has three values each has a special meaning:

Value=4 The memory is set to no Access, the CPU needs read access.

Value=6 The memory is set to no Access, the CPU needs write access.

Value=7 The memory is set to read only, the CPU needs write access.

There is an overloaded version of readCPU or writeCPU which takes the translation

record as an input instead of looking up the data again.

Using SemCache with complex memory structures

SemCache current implementation supports contiguous data structures. How-

ever, SemCache low level API (readGPU and writeGPU) can be used to offload

non-contiguous data structures (i.e., trees and graphs) by invoking the appropriate

methods on each address range for the data structure. SemCache will automatically

transfer and track data. It becomes the library writer’s responsibility to build a

drop-in library using SemCache API.

43

1 static void fault_handler(int sig , siginfo_t *si , void *uap)

2 {

3 ucontext_t *context = (ucontext_t *) uap;

4 //Get the type of the page fault from the registers

5 int page_fault = context ->uc_mcontext.gregs[REG_ERR];

6 // lookup the page fault address in the caching directory and

return the corresponding translation record if found

7 TranslationRecord translationRecord =

8 lookupInCacheDir(si ->si_addr);

9 // remove the page protection for the entire data size

10 mprotect(translationRecord.HostStartAddress ,

translationRecord.Size_Padded , PROT_READ|PROT_WRITE)

11

12 if (page_fault == 4) { //No Access -> Needs Read Access

13 readCPU (& translationRecord);

14 }

15 else if (page_fault == 6) { //No Access -> Needs Write

Access

16 writeCPU (& translationRecord);

17 }

18 else if (page_fault == 7) {//Read Only -> Needs Write Access

19 invalidateOnGPU (& translationRecord);

20 }

21 }

22

23 static void Init() // InitHandler

24 {

25 struct sigaction sa;

26 sa.sa_flags = SA_SIGINFO;

27 sigemptyset (&sa.sa_mask);

28 // define the fault handler function

29 sa.sa_sigaction = fault_handler;

30 //bind the fault handler

31 if (sigaction(SIGSEGV , &sa , NULL) == -1){

32 perror("sigaction");

33 exit(EXIT_FAILURE);

34 }

35 }

Fig. 4.10. Implementation of SemCache Page Fault Handler

44

4.6 SemCache Experimental Evaluation

Experiments were run on a server with 24 AMD Opteron 6164 HE Processors (1.7

GHz, 512 KB L2 cache), 32 GB memory, running 64-bit Fedora Linux, and NVIDIA

Tesla C2070 card (6 GB memory) with a peak memory bandwidth of 144 GB/s.

Three libraries were used: CUBLAS version 4.0, CULA Dense R15 and MAGMA

version 1.2. Each test was run 3 times, distributed over a wide range of time, on an

unloaded machine and the median time selected.

We evaluated our library in two ways. First, we used a test case based on a series

of matrix multiplications (as in Figure 1.1). The simplicity of the test case allowed us

to perform several comparisons with other libraries, as well as test the two SemCache

protocols. Nevertheless, the primary target for our work is large-scale computational

applications where hand-tuning is infeasible. To study SemCache’s effectiveness in

this setting, we used our modified BLAS libraries (see Section 5.5.2) on a large-scale,

real-world computational mechanics application, which uses finite element methods

and domain decomposition to solve a structural dynamics problem.

As described in Section 4.3, SemCache can perform invalidations either with

statically-inserted instrumentation at CPU reads and writes, or using a page-protection-

based mechanism. We found empirically that the two approaches perform equiva-

lently; in the experiments presented here, we use page-protection automatic instru-

mentation to perform invalidations.

4.6.1 Matrix Multiplication Test Case

Figure 5.8 shows the total execution time for the test case. The results are collected

using CUBLAS, CULA Standard Interface (which automatically manages communi-

cation between the CPU and GPU), MAGMA and SemCache using both write-back

and write-through policies. Communication in CUBLAS and MAGMA are hand

tuned. The total execution time is normalized to CUBLAS execution time. The

best performance is achieved by hand tuning the memory transfers using CUBLAS.

45

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

512 1024 4096 8192

N
o

rm
a

li
z
e

d
 E

x
e

c
u

ti
o

n
 T

im
e

Matrix Size

CUBLAS* (Baseline) SemCache (WB) SemCache (WT) CULA MAGMA*

Fig. 4.11. Test case normalized execution time *(Communication in
CUBLAS and MAGMA is hand optimized)

CULA performance was slowed down due to the repeated unnecessary transfers. Sem-

Cache write-back performance matches the optimal communication performance us-

ing CUBLAS, but is slightly slower due to caching overhead. SemCache write-through

performance is the next closest to the optimal communication performance. The

slowdown is due to the eager copying back of the result to the CPU after each multi-

plication. MAGMA’s performance varies based on the matrix size (as it uses different

kernels tuned to different matrix sizes), but overall uses slower implementations than

CUBLAS.

Communication savings Figure 5.9 breaks down the communication performed

for a medium-sized squared matrix (N=4096), distinguishing between data sent and

data received. We collected data for CUBLAS, MAGMA, SemCache write-back,

SemCache write-through and CULA. Hand-tuned communication for CUBLAS and

MAGMA minimize the memory transfers. SemCache write-back performs exactly

as much communication as hand-tuned libraries. It performs the minimum amount

of data transfers, as the data is already cached on the GPU and is only sent back

when needed. In SemCache write-through, the data sent to the GPU is minimized.

46

0

50

100

150

200

250

300

350

400

CUBLAS, SemCache
(WB) & MAGMA

SemCache (WT) CULA

D
a
ta

 S
iz

e
 i

n
 M

B

Transferred To GPU

Received from GPU

Fig. 4.12. Test case communication results (N=4096)

However, data is always copied back, introducing redundant communication. CULA

shows the most overhead since matrices are sent to the GPU for every calculation.

The results are also sent back to main memory after each calculation, introducing

extra communication.

4.6.2 Computational Mechanics Case Study

We next tested SemCache’s performance in a real-world setting. We studied a large

computational mechanics application [33]. In this application, domain decomposition

is used for the simulation of structural dynamics problems. Domain decomposition

methods solve a boundary value problem by splitting it into smaller boundary value

problems on subdomains and iterating to coordinate the solution between adjacent

subdomains. Then the Newmark-beta method of numerical integration is used to

solve differential equations. The application we use solves the subdomains recursively.

This method was introduced by [34]. Typical structural dynamics problem include

simulation of the effect of cracks in structures, or buildings under stress.

Most of the application’s execution is spent performing linear algebra routines.

Three main double-precision linear algebra subroutines are used: matrix multiplica-

47

tions (DGEMM) and scalar multiplication/vector addition (DXPY) to couple and

update the subdomains results and equation solve (DGESV) to solve the system of

equations at each node. Because these operations make up a large fraction of the

application’s computation, they are attractive targets for offloading. However, opti-

mizing communication in this application is essentially impossible. The application

has tens of thousands lines of code, and the relationship between various linear algebra

operations is difficult to reason about due to recursive calls and multiple abstraction

layers.

We evaluated five versions of this application. A serial CPU version that performed

no offloading, a CUBLAS version with hand-inserted unoptimized communication

(communication can’t be optimized manually due to program abstraction), a CULA

version that simply replaces all CPU BLAS calls with CULA BLAS calls, a version

using our SemCache write-through library, and another version using our SemCache

write-back library.

The SemCache versions of the application exploit computation caching in two

ways. First, as described in Section 5.5.2, our implementation of equation solve lever-

ages SemCache’s computation-saving capabilities to memoize the results of matrix

factorization. Second, the baseline CPU version of the application uses row-major

storage for its matrices, while CUBLAS assumes column-major storage. SemCache

thus creates a semantic link between the two representations, avoiding performing

the transformation unless the data changes2.

We used three inputs with different characteristics, ranging across various sizes:

Rocket32, which has 7262 nodes and takes 246 seconds to run on the CPU; Cube14,

which has 3375 nodes and takes 130 seconds to run on the CPU; and Cube10, which

has 1331 nodes and takes 10 seconds to run on the CPU.

2Because the row-major/column-major transformation is only necessary due to an implementation
detail of the original application, we factor out the transformation time for the non-SemCache
versions in all our results.

48

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Rocket32 Cube14 Cube10

N
o

rm
a

li
z
e

d
 E

x
e
c

u
ti

o
n

 T
im

e

Inputs

CPU CULA CUBLAS (Baseline) SemCache(WT) SemCache(WB)

5.65 3.55 4.04

Fig. 4.13. Testing application normalized execution time

Execution time

Figure 4.13 shows the total execution time for the five variants of the application,

across the three inputs. Run time is normalized to the CUBLAS variant. All inputs

gained from three to six times speedups when running on the GPU over the CPU

version. CULA and CUBLAS performance was very similar. CULA uses CUBLAS

as an underlying library with a few additional optimizations. Both approaches incur

the cost of extra communication. Using SemCache with write-through policy, the

performance improved (30% to 40%) over the GPU CUBLAS baseline version due

to the communication savings from caching. SemCache with write-back gained an

additional 4–10% over write-through, as data was only transferred back to the CPU

when needed. The inputs speedup ranges are different based on the structure of input

and domain decomposition. Inputs whose subdomains have larger shared interfaces

generate more matrices that will be repeatedly reused. As a result, caching yields

more benefits.

49

0

0.5

1

1.5

2

2.5

3

3.5

Rocket32 Cube14 Cube10

C
o

m
p

u
ta

ti
o

n
 T

im
e
 i
n

 S
e
c
o

n
d

s

Inputs

CUBLAS

SemCache

Fig. 4.14. Computation time for factorization

Communication savings

Table 4.1 shows the amount of data transferred to the GPU. The SemCache results

show the optimal communication for the application since all of the calculations

were computed on the GPU and the hit rate was 100%. Using SemCache, more

than 80% of the unoptimized communication is reduced. Both write-through and

write-back policies reduced the size of the data sent to the GPU. Write-back policy

reduced the size of the data received from the GPU. These savings are a result of

eliminating redundant transfers since the data in the testing application is shared

between different subdomains. The same matrices will be reused multiple times for

different subdomains.

Computation caching

We evaluated the savings of performing computation saving for LU factorization.

Figure 4.14 shows the LU factorization time on the CPU for out testing applica-

tion. Using SemCache, repeated computations are eliminated since the factorized

50

Table 4.1
Size of transferred data using CUBLAS versus SemCache (in GB)

Input/Library CUBLAS SemCache

Sent Received Sent Received

Rocket32 23.70 5.58 2.02 2.45

Cube14 10.67 1.53 1.01 0.63

Cube10 3.01 0.33 0.29 0.13

Table 4.2
Data transfer time from CPU to GPU for CUBLAS versus SemCache
with overhead (in seconds)

Input/Library CUBLAS SemCache

Transfer Transfer Caching Over.

Rocket32 11.09 0.86 0.38

Cube14 5.27 0.47 0.05

Cube10 1.32 0.12 0.023

Table 4.3
Operations count at runtime

Input/Op. GEMM GESV XPY COPY Lookup

Rocket32 6720 1209 3520 480 30578

Cube14 944 233 688 104 4882

Cube10 470 131 394 62 2584

matrices are already cached. Fewer factorizations are needed, which reduces the total

computation time by more than 80% .

51

Caching overhead

Table 4.2 shows the data transfer time to GPU for different inputs. The results

show that the caching overhead is very low (less than 4% of SemCache total runtime).

The overhead comes mainly from searching and updating the cache directory. The

transfer time using our library including the caching overhead is significantly less

than the transfer time for CUBLAS without caching. We note, however, that our

low caching overhead is due to SemCache’s variable granularity, which requires fewer

invalidations and fewer lookups.

Instrumentation statistics

For our testing application, more than 10,000 lines of code and around 45 BLAS

and LAPACK calls are used. No writeCPU invalidations were needed because the all

of the calculations were computed on the GPU. For the write back protocol, reads

were instrumented using readCPU API. Seven API calls were needed.

Table 4.3 shows how many times matrix multiply (GEMM), equation solve (GESV),

scalar multiplication and vector addition (XPY), copy (COPY), lookup and invalida-

tion operations were executed. The lookup matches exactly the number of matrices

sent to the GPU (3 per GEMM, 2 per GESV, XPY and COPY).

Applicability

As discussed in the implementation section, SemCache is used as a drop-in library.

It simplifies programing GPUs and saves the programmer time. For example, offload-

ing each BLAS call to the GPU requires at least 5 lines of code (3 lines transferring

the matrices to the GPU, 1 line performing the computation using CUBLAS and 1

line sending the data back). This operation can be done in a single line using Sem-

Cache. The testing application, has 45 BLAS and LAPACK calls. Offloading these

calls to GPUs using CUDA requires at least 225 lines of code where doing this using

52

0

0.2

0.4

0.6

0.8

1

1.2

Cube14 Cube10

N
o

rm
a
li
z
e
d

 E
x
e
c
u

ti
o

n
 T

im
e

Inputs

CUBLAS (baseline) DSM SemCache(WB)

Fig. 4.15. Testing application normalized execution time for
CUBLAS, SemCache write-back and DSM

SemCache requires no code changes since the CPU calls can be dynamically linked

with SemCache library.

Comparison with fixed-granularity approaches

One of the primary advantages of SemCache over distributed-shared memory sys-

tems is its ability to track data and perform communication with variable granularity,

rather than using a fixed granularity. To quantify this benefit, we modified the page-

protection version of SemCache (Section 5.3.2) to perform communication in page-

sized chunks, rather than tracking entire data structures3. Figure 4.15 compares

the CUBLAS baseline with this DSM-like approach as well as SemCache’s variable-

granularity approach on our case study4. Clearly, fixed-granularity tracking does not

perform as well as SemCache.

3This variant is not strictly correct, as without transferring data at matrix granularity, the semantic
mapping between row-major and column-major representations cannot be maintained. Nevertheless,
this variant lets us explore the penalty of page-granularity caching.
4Due to limitations of the page-based approach, large inputs (such as Rocket32) cannot be run.

53

Interestingly, the total amount of data communicated is the same for both the

fixed-granularity and variable-granularity versions. The performance difference arises

because fixed-granularity tracking breaks that communication into more discrete com-

munication operations, incurring additional overhead. Clearly, taking advantage of

semantic information to perform variable-granularity tracking and communication

yields a notable performance benefit.

4.6.3 Linpack Benchmark

We also tested SemCache’s performance with High-Performance Linpack Bench-

mark for Distributed-Memory Computers which is often used to benchmark super-

computers. Linpack benchmark is a software package that solves a (random) dense

linear system in double precision arithmetic on distributed-memory computers. The

application uses BLAS library for matrix multiplication (DGEMM) and equation

solve (DTRSM) computations.

Since SemCache currently supports one GPU, we ran the application using a

single process. Different problem sizes (N) were used with varying block size (NB).

The results are collected using SemCache write-back policy.

Execution time

Figure 4.16 shows the total execution time for Linpack using different problem

sizes. All inputs gained from 13 to 16 times speedups when running on the GPU

using CUBLAS over the CPU version. Using SemCache the performance improved

(3% to 8%) over CUBLAS due to the communication savings from caching.

Communication savings

Figure 4.17 shows the amount of data transferred to the GPU. Using CUBLAS

to offload individual kernels results in redundant transfers. Using SemCache, more

54

0

1

2

3

4

5

6

7

8

N:3000, NB:200 N:4000, NB:300 N:5000, NB:400

Ex
ec

u
ti

o
n

 T
im

e

CPU

CUBLAS

SemCache

18.56 58.55 108.44

Fig. 4.16. Linpack execution time

0

0.2

0.4

0.6

0.8

1

1.2

N:3000, NB:200 N:4000, NB:300 N:5000, NB:400

D
at

a
Si

ze
 in

 G
B

CUBLAS

SemCache

Fig. 4.17. Size of transferred data to GPU using CUBLAS versus
SemCache (in GB)

than 7% to 8% of the unoptimized communication is reduced. Savings were achieved

from passing the result of the equation solve (DTRSM) subroutine to the matrix

multiplication (DGEMM) subroutine.

55

5. SEMCACHE++

This section introduces SemCache++ [3], an extension of SemCache (described in

Chapter 4) that supports multiple GPUs. SemCache++ automatically manages data

movement and synchronization across SemCache++-enabled library calls. These li-

braries can thus be used as direct replacements for CPU libraries, providing the

performance of hand-tuned multi-GPU implementations without breaking the ab-

straction boundaries of the library.

Unlike a single GPU implementation, there are many challenges in multi-GPU

implementation. The first challenge is workload distribution and scheduling between

multiple GPUs. There are multiple parallel algorithms for solving matrix computa-

tions on distributed systems. Choosing the right algorithm depends on the underlying

network and computing architecture. Many factors can be taken into consideration

to determine which distribution and scheduling algorithm should be used such as:

load balancing, optimizing communication and computation-communication ratio.

In addition to that, communication between different devices needs to be managed:

CPU to multi-GPU communication, GPU to GPU communication, multi-GPU to

CPU communication. All of these challenges make it very hard to program multiple

GPUs. The code to offload a single kernel to the GPU will become a program by

itself if expanded to multiple GPUs which makes it clear that abstraction is needed

and all complexities should be managed automatically inside the runtime system.

SemCache requires many changes to support multi-GPU offloading. Firstly, a

decomposition algorithm is used to divide the problem into subproblems. The algo-

rithm is chosen to maximize the communication computation overlapping. Secondly,

the caching directory will be modified to track submatrices on multiple GPUs and

their status. Thirdly, asynchronous transfers are scheduled using streams to allow

56

Fig. 5.1. Multi-GPU offloading using the Caching Directory

parallel execution, and overlapping communication with computation. Finally, syn-

chronization is used to prevent data races.

In this sections, these changes will be discussed in details to describe how Sem-

Cache++ is built.

5.1 High Level Overview

A SemCache++-enabled library looks, to a programmer, like a typical CPU li-

brary. SemCache++ directives (embedded in the library code, not exposed at the

interface level) specify what data (matrices) are read and written by the library call.

SemCache++ libraries provide multi-GPU implementations by decomposing the com-

putation into subtasks that operate over portions of the data (submatrices). These

computations are then distributed across multiple GPUs as part of the library im-

plementation (Section 5.5 discusses a concrete example of how such a library might

be implemented). Figure 5.1 shows a high overview of SemCache++ multi-GPU

offloading.

57

SemCache++ can also supports hybrid CPU/GPU execution. Since each subma-

trix is tracked and executed separately, the CPU can be also exploited in parallel

with multiple GPUs to compute part of the result.

SemCache++ manages communication by tracking the locations of the submatri-

ces, identifying whether it is on the CPU, or on one or more GPUs, or shared between

the CPU and GPUs. Data is not eagerly communicated, but instead it is only trans-

ferred if it is needed by a computation. Because the data remains distributed after a

library call completes, when a future library call is issued, the subtasks of that call

can be dispatched to appropriate GPUs to reduce communication.

SemCache++ then ensures that the CPU and GPU(s) maintain a consistent view

of data by transferring data back from the GPU(s) whenever the CPU requires the

data. As in SemCache, SemCache++ determines when a CPU reads or writes data

through the use of page protection. Note that while data on the GPUs is tracked

at the granularity of decomposed inputs (submatrices), data on the CPU is tracked

at the granularity of entire matrices. Thus, SemCache++ uses a two-level directory

structure to track data, as described next.

5.2 Cache Design and Structure

SemCache++ uses a directory structure to track the status of data that is used

during offloading operations. Figure 5.2 illustrates the design of this directory. As

mentioned above, SemCache++ uses a two-level structure: the first level of the direc-

tory tracks matrices at the granularity they are used in library calls, while the second

level is used to track the submatrices that are distributed across GPUs.

The first level of the directory tracks the matrices that are involved in offloading

operations, indexed by the CPU start address (CPUs) and CPU end address (CPUe).

This first level also records the number of rows in the matrix (nr), to support efficient

memory transfer, as described in Section 5.2.1. Finally, the first level records whether

the matrix is valid or invalid on the CPU.

58

Fig. 5.2. Structure of Caching Directory

SemCache++ assumes that matrices are stored contiguously in memory. When

an offloadable method is invoked, the directory can be queried to see if entries exist

for the matrix operands of the method. If not, an entry is created. Note that since

library methods operate on entire matrices (matrices are only decomposed for distri-

bution across multiple GPUs), lookups into the first level happen at the granularity

of matrices.

The first-level entry for a matrix points to a set of translation records for the

matrix. When a matrix is decomposed into submatrices and distributed across the

GPUs, each submatrix is assigned a record in this second level. A translation record

serves several purposes. First, it translates between the location of data on the CPU

and the corresponding location on the GPUs, facilitating data movement between

devices. Second, it keeps track of the coherence state of the data (i.e., where valid

copies of the submatrix reside). Finally, it tracks the ready state of the data (i.e.,

whether the data is available for use by a task). The following sections describe these

tasks in more detail.

When a task is launched to execute on a GPU, it uses SemCache++ directives

to identify which submatrices are needed for the computation. If the data is already

being tracked by the first level, SemCache++ checks the status of the required subma-

trices in the second level. If the data does not exist on the target GPU, communication

is performed.

59

5.2.1 Translating between CPU and GPU addresses and transferring data

A submatrix is a region of data within the range of a larger matrix. The submatrix

may be copied to the GPU as row tiles or column tiles, the translation record stores

the start address of the submatrix on the CPU as well as the number of rows and

columns. The submatrices are stored contiguously on the GPU, so the translation

record tracks the start address of the data on the GPU and the size of the data.

Because a submatrix may be replicated on multiple GPUs, the translation record

stores the GPU ID and the start address for each GPU the submatrix resides on.

This translation information is used to transfer data back and forth between the

CPU and GPUs, as well as for inter-GPU transfers. Inter-GPU transfers are straight-

forward. If the submatrix is being moved to a GPU that does not currently have a

copy of the submatrix, new space is allocated on that GPU and the translation record

is updated to reflect the location of that space. When moving a submatrix from the

CPU to the GPU, the row and column information stored in the translation record

for the submatrix are used to generate a cublasSetMatrix call, which provides a

single call to transfer an entire tile of a matrix to the specified GPU, allocating mem-

ory if necessary. Data tracking is done at the granularity of submatrices. When the

CPU requires access to region of data computed on the GPU, only the corresponding

submatrix is transferred back using a cublasGetMatrix call.

Managing available GPU memory

Using multiple GPUs increases the total available memory space. Kernels that do

not fit in a single GPU memory can be executed on multiple GPUs. Although multi-

GPU increases the caching space, data might occupy all of the free GPU memory.

In such a situation, to allocate new data in the GPU memory, cached data must be

freed. To determine which address ranges should be freed, SemCache++ uses least-

recently-used (LRU) policy similar to the policy adopted in SemCache as described

in Section 4.2.1.

60

5.3 Coherence Protocols and Instrumentation

5.3.1 Coherence Protocol

SemCache++ uses a modified MSI coherence protocol to track which devices have

valid copies of (sub)matrices. The states are tracked through the use of a valid bit

in the first level entry for a matrix, as well as a GPU Status field for each submatrix

in the second-level entry. The CPU valid bit in the first-level tracks whether or not

the matrix is available to the CPU to speedup the lookup process. It is set when all

submatrices have CPU only C status or shared S status. When the CPU valid bit

is unset, each submatrix can have a different status and the GPU Status field in the

second-level entry is used to determine the status as follows:

• C: Submatrix exclusive to CPU.

• S: Submatrix shared between CPU and GPU(s).

• G: Submatrix valid only on GPU(s).

The caching directory records transitions between states in the usual way, trig-

gering communication if necessary. If a task dispatched to a GPU reads a submatrix

that is not already on the GPU, then data is transferred (from the CPU if possible,

as GPU-GPU communication is often slower), an entry for the submatrix is created,

and the status in the second level is set to shared (S). SemCache++ allows multiple

copies of the same submatrix to exist in the shared status; if another GPU wants the

submatrix, then it receives a copy, too. However, like regular caches if a submatrix

needs to be written to, all shared copies of the submatrix are discarded and only one

submatrix holds a modified state (G).

If a matrix is read on the CPU while the first-level valid bit is unset, the GPU

status is checked in the second level entries. If the status is G, submatrices are

transferred from the GPU back to the CPU, the valid bit is set, and all submatrices

change status to shared (S state). If a matrix is written on the CPU, then the status

of the second level entries becomes C, with data transferred back from the GPUs if

61

necessary. Section 5.3.2 describes the CPU and GPU instrumentation that triggers

the state changes in the coherence protocol.

5.3.2 Instrumentation

Instrumenting GPU Reads and Writes

To be able to track the status of GPU data correctly, you need to determine

which data is read or written by the GPU. Prior work has used compiler analysis or

programmer annotations to determine if the operation is a read or a write [20–23].

Since SemCache++ focuses on libraries, it can use simple directives inserted into the

library code to indicate which matrices are read and written by the GPU, as well as

which submatrices are needed by tasks dispatched to various GPUs.

Instrumenting CPU Reads and Writes

Similar to SemCache, SemCache++ uses the operating system’s virtual memory

protection to instrument CPU reads and writes. Page protection can be used to limit

access to the CPU data which has been sent to the GPU. For each submatrix that

SemCache++ tracks on the CPU, SemCache++ sets page protection flags for all the

pages the submatrix spans. The page protection flags are set according to the state

of the data structure as follows:

• If the submatrix is in G state, its pages are set to NO ACCESS.

• If the submatrix is in S state, its pages are set to READ ACCESS.

• If the submatrix is in C state, the pages are set to READ and WRITE ACCESS.

If a CPU access triggers a page fault due to write to a no access region or a read

only region, SemCache++ looks up the address that caused the page fault in the

caching directory. If the translation record is found, it transfers the submatrix back

from the GPU and the submatrix status becomes CPU only (C). If a CPU access

62

triggers a page fault due to a read to a no access region, SemCache++ transfers the

submatrix back from the GPU and the submatrix status becomes shared (S).

In order to avoid false sharing between matrices, memory allocation should be

page-aligned and padded out to page boundaries.1 Depending on the matrix decom-

position, false sharing might also exit between submatrices which share the same

page. If a single submatrix is modified by a GPU, all of the pages the submatrix

spans are protected to no access. If this submatrix is invalidated, the other subma-

trix which shares the same page is conservatively invalidated and both submatrices

are transferred back to the CPU.

Page aligned memory allocation can introduce some wasted memory which is

negligible for larger data sizes. Usually, it is only profitable to offload medium to

large data structures on the GPU to take advantage of the parallelism, where this

overhead is minimal (<1% for 400x400 matrix). We note that this overhead is only

introduced on the CPU side. On the GPUs, sub-matrices are allocated in variable

sizes and do not have to be page aligned.

5.4 Synchronization

To facilitate parallelism, and the overlap of communication and computation,

these tasks are launched asynchronously, using CUDA’s streams. Moreover, this

overlap can occur across library methods, if a second library call uses the same sub-

matrices as the first library call.

Because tasks are launched asynchronously, and from multiple (possibly depen-

dent) library calls, it is important that tasks do not begin to execute until their

predecessor tasks complete. SemCache++ takes advantage of CUDA events: small

kernels that can be launched to streams and act as signals.

Each submatrix has an event handle associated with it, stored in the translation

record. Whenever a submatrix is sent to a GPU, or when a submatrix is computed

1While page aligning data requires some program modification, identifying allocations to modify is
significantly easier than, for example, identifying data accesses to annotate.

63

(modified) by a task, the operation is performed by dispatching the task to a stream on

the target GPU. The event handle associated with the submatrix is then dispatched to

the same stream using cudaEventRecord. The semantics of streams ensure that this

event will not trigger until the previous operation (communication or computation)

finishes. In other words, the event will not execute until the submatrix is up-to-date

on the target GPU.

Before a communication or computation operation that needs a submatrix is dis-

patched, SemCache++ must make sure that the submatrix is up-to-date. The sub-

matrix’s event handle is dispatched to a stream using cudaStreamWaitEvent. This

ensures that the operation will not commence until any previous cudaEventRecord

events associated with the same handle have completed (even if those events were

dispatched on different devices). Thus, tasks that require a submatrix will wait

until operations that compute or transfer that submatrix complete. Essentially, Sem-

Cache++ uses events as full/empty bits, ensuring that consumers of a submatrix wait

until producers complete.

Note that task-parallel systems (like StarSs and StarPU) use a complex schedul-

ing runtime to ensure that dependent tasks are executed safely [9, 11]. By taking

advantage of CUDA’s built-in stream and event constructs, SemCache++ is able to

execute tasks in parallel—even across library calls—while relying on the hardware to

properly synchronize tasks.

5.5 Adapting a library to use SemCache++

This section describes the process of building a library for multi-GPU offloading

using SemCache++. First, we describe how a DGEMM (matrix multiply) call can

be decomposed to distribute computations across multiple GPUs. Then we describe

how SemCache++ directives can be used to perform automatic data management

and synchronization.

64

5.5.1 Multi-GPU Decomposition and Scheduling

There are multiple parallel algorithms for solving matrix computations on dis-

tributed systems (i.e. ScaLAPACK [35]). Choosing the right algorithm depends on

the underlying network and computing architecture. Many factors can be taken into

consideration to determine which algorithm to use like load balancing, optimizing

communication and computation-communication ratio. SemCache++ is not tied to

a single algorithm, it can be used with any distribution algorithm. It can automati-

cally cache and manage the communication with any type of these algorithms. In our

implementation of DGEMM, we adopt a strategy similar to Song et al., which takes

advantage of locality to minimize communication [36].

Fig. 5.3. Matrix decomposition

65

DGEMM calculates C = α ∗ A ∗B + β ∗ C. The distribution of the computation

across N devices uses a straightforward decomposition. Each matrix is partitioned

into N2 submatrices (an N × N grid), each of which is tracked separately by Sem-

Cache++. For notational convenience, we consider that A’s submatrices are grouped

into N rows, A0, A1, . . . , AN−1, and B’s submatrices are grouped into N columns,

B0, B1, . . . , BN−1. The matrix multiplication is thus broken into N2 tasks, with a row

of A’s submatrices being multiplied by a column of B’s to produce a single submatrix

of C. The decomposition and computation are shown pictorially in Figure 5.3.

As in Song et al., the computation is scheduled by (conceptually) distributing

C’s submatrices to the N GPUs by dividing the grid of submatrices evenly by rows.

Tasks that compute each submatrix of C are then scheduled on the appropriate GPU.

Independent tasks are assigned to different streams on the GPU, allowing the compu-

tation of one C submatrix to be overlapped with communicating the operands from

B for the next task. Figure 5.4 shows how this pipelining can hide communication

overheads.

Note that once the computation is completed, each GPU holds a row of A’s

submatrices and all of B. These submatrices remain on the GPUs until another

device wants the data. If subsequent calls use the same matrices, mapping tasks to

the appropriate GPUs can avoid communication.

CUBLASXT uses a round robin static scheduling policy. Matrices are partitioned

based on the specified block size. The block size should be chosen to maximize

the overlap between communication and computation. Then the blocks are assigned

to the GPUs in a round robin order. Each GPU uses multiple streams. Unlike

SemCache++, CUBLASXT does not take locality into consideration which results in

excessive communication if the block mapping is not consistent. Consider mapping

matrix multiplication on two GPUs. SemCache++ assigns half of the result matrix

C to each GPU Fig. 5.5(a) and pipelines the execution on each GPU. CUBLASXT

assigns the blocks to the GPUs in a round robin order Fig. 5.5(b). This assignment

does not take into consideration data locality as a result it requires sending both

66

Fig. 5.4. SemCache++ Computation scheduling

67

matrices (A and B) to each GPU. Where in SemCache++, only half of matrix A is

being sent to each GPU.

For compute intensive computations like BLAS level 3, there are multiple levels

of overlapping GPU communication and computation. Within a single GPU and

across multiple GPUs. To take advantage of overlapping inside a single GPU multiple

streams are used. We initialize four streams on each GPU and divide the B matrix

into column partitions multiple of four. The partitions are sent asynchronously to the

GPU in a pipelined fashion to allow overlapping communication and computation.

The size of the partition should be chosen to maximize the overlap. Matrix A is

partitioned across multiple GPUs and it can be further divided inside each GPU to

maximize the overlap. For example, if the matrix in Figure 5.3 is distributed to four

GPUs. Each partition of rows from A is sent to a GPU, with a partition of columns

from matrix B. Matrix B partitions are sent to each GPU in a pipelined fashion

Figure 5.4. Each GPU will have a tile of the result (e.g. GPU0 will calculate C0,0 to

C0,3). The result tiles can be received in a pipelined order and overlapped with the

computations.

For less compute intensive BLAS routines like level 1 and 2, a simple decomposi-

tion can be used. Each matrix can be split by rows into multiple sub-matrices. The

number of sub-matrices is equal to the number of GPUs. Each GPU performs part

of the computation. Sending the data to the GPU can be pipelined but it has little

effect on the performance since the percentage of communication is much higher than

the computation.

5.5.2 SemCache++ directives

SemCache++’s API for identifying which computations a task need is similar to

the API defined in SemCache, extended to support multiple GPUs. SemCache++

requires that the programmer to specify the number of GPUs using the API method

SemCacheDeviceSelect (numberOfDevices, deviceIds). As in SemCache, readGPU

68

Fig. 5.5. GPU mapping

is used to indicate to SemCache++ that a region of memory (in this case, a subma-

trix) will be read during a GPU task; the only difference is that in SemCache++,

the GPU that will read the submatrix must be identified. Analogously, writeGPU is

used to indicate that a submatrix was modified by a particular GPU after a task,

potentially triggering invalidation of the submatrix on other GPUs or on the CPU.

Because it is common to distribute entire matrices at once, SemCache++ also

provides aggregate versions of readGPU and writeGPU that operate over a whole ma-

trix, decomposing and distributing the matrix across the GPUs. These aggregate

functions automatically decompose a matrix into N2 submatrices and distribute the

submatrices by rows or columns to the GPUs. Different decomposition and distribu-

tion algorithms exist in SemCache++. Since the decomposition algorithms are not

tightly coupled with SemCache++, new algorithms can be easily defined and used.

DecomposeRow and DecomposeCol distribute submatrices by rows and columns, re-

spectively. Figure 5.6 shows how these aggregate functions can be used to manage

submatrices for matrix multiply.

Inside the readGPU call, a lookup in the caching directory is performed using the

start and end address on the CPU and the translation record is returned if found. If

data does not exist on the GPU, the matrix is decomposed using the specified decom-

position algorithm and sent to multiple GPUs asynchronously as described previously.

If data already exist on the device, each submatrix record is inspected as follows: If a

69

1 SemCacheDgemm(TRANSA ,TRANSB ,M,N,K,ALPHA ,

2 A,LDA ,B,LDB ,BETA ,C,LDC)

3 {

4 //A stored in CPU memory range [A, A+(M*K*sizeof(double)))

5 //A will be decomposed to rows and sent to multiple GPUs ,

the submatrix states will be "S"

6 entryA = readGPU(A, M, K, DecomposeRow)

7

8 //B stored in CPU memory range [B, B+(K*N*sizeof(double)))

9 //B will be decomposed to cols and sent to multiple GPUs ,

the submatrix states will be "S"

10 entryB = readGPU(B, K, N, DecomposeCol)

11

12 //C stored in CPU memory range [C, C+(M*N*sizeof(double)))

13 //If BETA!=0, C will be decomposed to rows and sent to

multiple GPUs , the submatrix states will be "S"

14 entryC = readGPU(C, M, N, DecomposeRow)

15

16 foreach GPU{

17 foreach stream{

18 // Perform computation on submatrix

19 cublasDgemm(stream ,

20 TRANSA ,TRANSB ,Atiles ,Btiles ,K,ALPHA ,

21 entryA.subRecord.gpu_s ,LDA ,

22 entryB.subRecord.gpu_s ,LDB ,BETA ,

23 entryC.subRecord.gpu_s ,LDC)

24

25 //Issue synchronization event for submatrix C

26 cudaEventRecord(entryC.subRecord.sync_event , stream);

27 }

28 }

29 //C was written by cublasDgemm

30 //Each C submatrix state will be updated to GPU only "G"

31 writeGPU(C, M, N, DecomposeRow)

32

33 }

Fig. 5.6. Pseudocode of SemCache++ matrix multiply (DGEMM)

70

1 // called before a GPU method that reads [s, rows*cols)

2 TranslationRecord readGPU(s, rows , cols , decomposeAlg) {

3 entry = lookup(s, rows , cols);

4

5 if (entry.2 level == Null){ // Matrix does not exist on GPU

6 splitAndTransferToMultiGPUs(entry , decomposeAlg);

7 mprotect(s, entry.size , PROT_READ);

8 }

9 else{

10 foreach submatrix{

11 if (entry.2 level.GPU_Status != G || S){ //GPU submatrix

is not valid

12 TransferToGPU(entry .2level , decomposeAlg);

13 }

14 }

15 }

16 return entry;

17 }

18

19 // called before a CPU method that reads [s, rows*cols)

20 TranslationRecord readCPU(s, rows , cols , decomposeAlg) {

21 entry = lookup(s, rows , cols);

22

23 if (entry.valid == 0){ //CPU data not valid , GPU data

might be valid

24 foreach submatrix{

25 if(entry.2 level.GPU_Status != C) //if a submatrix is

not valid on CPU , send if from GPU to CPU

26 transferToCPU(entry .2Level);

27 }

28 }

29 }

30

31 return entry;

32 }

Fig. 5.7. Operations to implement coherence protocol

71

submatrix already resides on the designated GPU, no communication is necessary. If

the submatrix is not valid or not on the designated GPU, a synchronization event is

issued to ensure that the submatrix is up-to-date, communication is performed and

the directory state is updated appropriately. readGPU also page-protects the CPU

page(s) containing the matrix as read-only, as discussed in Section 5.3.2.

Pinned memory is used to allow overlapping transfers to multiple devices in paral-

lel, it also allows concurrent communication in both direction on Fermi GPUs. Pinned

memory allocates page-locked (non-swappable) memory which enables a DMA on the

GPU to request transfers to and from the host memory without the involvement of

the CPU.

Once all the data is transferred, the individual tasks are executed. Note that all of

these kernel invocations occur asynchronously, and hence can be executed simultane-

ously (there are no dependences in DGEMM). However, because subsequent library

calls might use the matrix C, after each task that computes C, cudaEventRecord

is called on the submatrix’s synchronization event so that later tasks wait until the

submatrix is computed.

Finally, writeGPU changes the state of all C submatrices to modified (G). To

ensure that CPU accesses to C wait until the computation is complete and then

transfer data back from the GPUs, writeGPU changes the page protection on C to no

access.

5.5.3 Using SemCache++ with complex memory structures

While SemCache++ provides helper methods to aid in distributed matrices across

multiple GPUs, not all data structures are amenable to such predictable partitioning

and distribution (e.g., 3D matrices, or irregular structures such as trees and graphs).

In such cases, SemCache++’s low level API (readGPU and writeGPU) can be used

to distribute those data structures by invoking the appropriate methods on each ad-

dress range for the data structure. It becomes the library writer’s responsibility to

72

appropriately distribute the data structure. For example, to distribute a 3D ma-

trix, SemCache++’s methods can be called individually on the address ranges for

each submatrix (multiple transfer calls are needed for non-contiguous matrices) to

transfer the matrix and distribute it according to the library writer’s distribution

algorithm. Performing distribution using the low-level methods obviates the benefits

of SemCache++’s distribution functions and multi-level state tracking, but does not

preclude the use of its automatic data movement capabilities.

Distributing sparse matrices

As an example of distributing more complex data structures, we have used Sem-

Cache++ to provide offloading support for sparse-matrix libraries. Sparse matrices

present an interesting challenge to most systems for managing communication be-

tween the CPU and the GPU because of their complex layout: a sparse matrix in

CSR form has a data array, a row sum array and a column index array. Splitting the

matrix between multiple GPUs requires carefully splitting the column index array

and recomputing the row sum array.

SemCache++ handles distributing sparse matrices by delegating the distribution

to the library implementation. The library can split the sparse matrix representation,

recalculating the index arrays for each submatrix as necessary. SemCache++ tracks

the individual arrays representing the sparse submatrix as separate submatrices. Re-

call that SemCache++ tracks submatrices according to a start address, number of

columns and number of rows. SemCache++’s tracking of sparse matrices hence works

as for any other data structure: if a task requires accessing the sparse matrix, the

library issues readGPU calls for each of the components of the sparse matrix, and

communication is performed as necessary.

This strategy for handling sparse matrices highlights a key advantage of Sem-

Cache++’s library-integrated approach to multi-GPU offloading over other approaches.

The index arrays that are distributed across GPUs have different contents than the

73

index array that resides on the CPU. Nevertheless, the abstract state of the sparse

array is the same: the same data is stored in two different representations, depend-

ing on whether it resides on the CPU or on the GPU. SemCache++ establishes a

semantic link between the two representations, allowing state changes on one device

(e.g., changing the contents of the sparse matrix on the CPU) to be reflected on other

devices (e.g., by invalidating all of the sparse submatrices on the GPUs). Note that

SemCache used the same notion of semantic links to allow, e.g., row-major matrices

on the CPU to be represented by column-major matrices on the GPU.

5.6 SemCache++ Experimental Evaluation

To evaluate SemCache++, we built multi-GPU implementations of the library

interfaces provided by CUBLAS and CUSPARSE (NVIDIA’s single-GPU linear alge-

bra libraries) using SemCache++ directives to manage communication and synchro-

nization. The internal, per-GPU tasks of the SemCache++ implementations were

used the single-GPU CUBLAS and CUSPARSE implementations, as described in

Section 5.5.2.

We evaluated three benchmarks: First, we looked at a microbenchmark that al-

lowed us to investigate the behavior of SemCache++ as well as other multi-GPU

libraries in depth. Next, we looked at two case studies of using SemCache++-enabled

libraries to offload computation in two solvers: Jacobi iterative solver (which used

dense matrices), and conjugate gradient (which used sparse matrices). The conju-

gate gradient code is taken directly from NVIDIA’s CUDA benchmark suite. We

compared the SemCache++ multi-GPU implementations to single-GPU implemen-

tations, as well as multi-GPU implementations that used StarPU and CUBLASXT,

NVIDIA’s tuned multi-GPU library.

We used two platforms to conduct our experiments. Most of our experiments were

performed on a server with AMD Opteron Processors and 32GB memory connected

via PCIe 2.0 to two NVIDIA Kepler K20 GPUs. These GPUs support compute

74

capability 3.5 (allowing us to use NVIDIA’s Unified Memory as a baseline). The

server runs 64-bit Fedora Linux and CUDA version 6. The second platform was used

to evaluate offloading to more than two GPUs but it does not support UM. The host

has AMD Opteron Processors and 64GB memory connected to eight Tesla M2090

GPUs in an external PCIe expansion chassis (PowerEdge C410x PCIe Expansion

Chassis) connected to the CPU using a host interface card (HIC) and iPASS cable.

While this platform let us scale to more GPUs, the external configuration of the

GPUs meant that communication between the host and the GPUs was much slower.

We refer to the first platform as kepler and the second as tesla.

5.6.1 Microbenchmark performance evaluation

To understand the behavior of SemCache++-enabled applications, we wrote a

simple microbenchmark that performs two matrix multiplies and a DAXPY: D =

AB + AC. Note that the two matrix multiplies share one of their operands (A),

and the DAXPY operates on the results of the two multiplications. As a baseline, we

used CUDA 6’s unified memory along with CUBLAS to implement a communication-

optimized single-GPU version of the microbenchmark. We compared this baseline to

SemCache++, CUBLASXT and StarPU using one and two GPUs. Unlike Sem-

Cache++ and CUBLASXT, StarPU implementation requires rewriting the bench-

mark using their programming model. CUBLASXT supports multi-GPU computa-

tion by carefully overlapping communication with computation. Its performance is

dependent on setting the block size for this pipelined schedule. Hence, we evaluate

several different block sizes for CUBLASXT on two GPUs. These experiments were

conducted on kepler.

Figure 5.8 shows the results of the microbenchmark experiment, looking at two

different matrix sizes (11K×11K matrices were the largest that could fit on a single

GPU for the microbenchmark). We see that even on a single GPU, both SemCache++

and CUBLASXT are faster than the baseline—this is because the baseline does not

75

Fig. 5.8. Speedup of microbenchmark for different matrix sizes, nor-
malized to UM CUBLAS 1-GPU)

overlap communication with computation, while both SemCache++ and CUBLASXT

do. SemCache++ is faster than CUBLASXT because it is able to minimize commu-

nication. The A matrix is cached on both GPUs, as are the results of the DGEMMs.

Hence, the DAXPY can be performed with no additional communication. In con-

trast, CUBLASXT, which does not leave the DGEMM results on the GPUs, must

communicate the results of the DGEMMs back to the GPUs to perform the DAXPY.

When scaling to two GPUs, we find that SemCache++’s advantage increases:

it is nearly 3× faster than the baseline, and 30-50% faster than CUBLASXT and

StarPU. StarPU is slightly faster than CUBLASXT because it avoids redundant com-

munication. However, StarPU communication/computation overlapping was limited

when synchronization was used to produce correct results which made it slower than

SemCache++. We note here a further problem of CUBLASXT’s reliance on compu-

tation/communication overlap: the optimal block size depends on the input matrix

size. In fact, the default block size for CUBLASXT (1K) results in slower perfor-

mance than a single GPU! This sort of tuning is not necessary for SemCache++,

76

Fig. 5.9. Microbenchmark communication results for size N=6K

which decomposes the matrix into equal blocks regardless of input size (as described

in Section 5.5.1). Instead, SemCache++ derives its performance improvement from

avoiding redundant communication entirely.

To better understand where SemCache++’s advantages lie, we investigated two

possible sources of performance improvement. First, we measured the performance

of a single matrix multiply using SemCache++’s library and using CUBLASXT. We

found that even with the optimal block size, SemCache++’s DGEMM implementa-

tion is slightly faster, about 10% for 11K matrices. We speculate this is because Sem-

Cache++ uses a simpler matrix distribution than CUBLASXT, resulting in slightly

more efficient communication of the matrix operands.

The remainder of SemCache++’s performance improvement comes from opti-

mized communication. Figure 5.9 shows the amount of data transferred to and from

the GPU for 6K×6K matrices. SemCache++ transfers significantly less data than

CUBLASXT and StarPU. Note that this figure reflects two sources of additional

communication. First, StarPU’s and CUBLASXT’s less efficient matrix decompo-

sition requires more communication to perform a matrix multiplication (this effect

is reflected in SemCache++’s 10%-faster DGEMM than CUBLASXT). Second, in

77

Fig. 5.10. Microbenchmark performance on multiple GPUs for differ-
ent matrix sizes, speedups with respect to CUBLAS 1-GPU)

the case of CUBLASXT, matrices are re-transferred across library calls, while Sem-

Cache++ avoids this communication.

Scalability: Finally, we investigated the scalability of our multi-GPU solution. Fig-

ure 5.10 shows the microbenchmark performance on the tesla platform, running on

up to 8 GPUs. For each matrix size, we show the best-performing CUBLASXT block

size. Speedups are limited because communication from the host to the external GPUs

is slow, and, unlike with internal GPUs that can take advantage of direct DMA trans-

fers, with external GPUs the bandwidth is divided and hence per-GPU bandwidth

decreases with scale. Nevertheless, with the largest matrices, where there is enough

computation to amortize the slow communication, we see that SemCache++ is able

to provide increasing performance up to 8 GPUs, and is faster than CUBLASXT

running on the same number of GPUs.

78

Fig. 5.11. Speedup of Jacobi, normalized to unoptimized CUBLAS

5.6.2 Case Study(I): Jacobi Iterative Solver

The Jacobi iterative solver performs the repeated MvM computation described in

the introduction. Figure 5.11 shows Jacobi performance for different vector sizes on

the tesla platform. Speedups are normalized to the unoptimized CUBLAS imple-

mentation. The unoptimized version provides encapsulation; the A matrix is sent to

the GPU in every iteration. Running the unoptimized CUBLAS implementation on

multiple GPUs did not gain any speedups because communication cost was dominant

so the results are not included in the figure. Running Jacobi using SemCache++ on a

single GPU achieved 20x speedup because matrix A is cached. For large vector sizes.

SemCache++ achieved linear speedups on multiple GPUs. As described in the intro-

duction, each GPU computes part of the vector in each iteration and SemCache++

automatically sends the partial vectors to each GPU using peer to peer transfers.

The communication is naturally overlapped, which minimizes the overhead. Note

that unlike in our microbenchmark, the ratio of computation to communication is

high enough that the slow PCIe bus does not limit scalability.

79

5.6.3 Case Study(II): Conjugate Gradient

NVIDIA provides two variants of conjugate gradient (CG) in its benchmark suite.

In the first, communication is hand-tuned, while in the second, unified memory is used

to manage communication. We use the first implementation as the baseline. Because

SemCache++ enables drop-in library replacements for BLAS operations, we were

able to directly use NVIDIA’s unified memory code with SemCache++ to provide

multi-GPU offloading.

CG uses CUBLAS and CUSPARSE libraries. Sparse matrix multiplication (SpMV)

from the CUSPARSE library uses Compressed Sparse Row (CSR) format for storing

matrices. The generated matrix is symmetric tridiagonal. Since the matrix is sym-

metric any split is balanced, we choose to split it by the number of GPUs. The rows

sum is calculated per split. SpMV requires the entire vector for the matrix multipli-

cation. Parts of the vector are computed on each GPU. SemCache++ detects from

the caching directory entries that the vector is split on multiple GPUs and it auto-

matically initiates communication to broadcast the vector to all GPUs. Each part of

the vector is communicated to the other GPUs using direct GPU to GPU communi-

cation. The transfers are overlapped in both directions to double the bandwidth. It

is important to note here that this is a general approach in SemCache++. It works

for any SpMV kernel, there are no special optimizations done for CG.

Figure 5.12 shows CG performance for different vector sizes. Speedups are normal-

ized to the hand-tuned implementation’s execution time on a single GPU. SemCache

performance on a single GPU is very close to hand-tuned performance, with 2% over-

head due to cache lookups. Unified Memory (UM) is slower than hand-tuned because

data transfers from the GPU to the CPU are done at the granularity of pages. Us-

ing SemCache++ with 2 GPUs we achieved 1.4x speedup on average over the single

GPU hand-tuned baseline version for vector sizes larger than one million. Note that

SemCache++ uses NVIDIA’s DirectGPU capabilities when transferring data between

GPUs. Nevertheless, for smaller matrix sizes, the overhead of peer-to-peer communi-

80

Fig. 5.12. Speedup of CG, normalized to (Hand-tuned 1-GPU)

cation between GPUs limits the performance improvement. These results are consis-

tent with the results of other multi-GPU conjugate gradient solvers [37], which found

that the main limiting factor for their speedup was peer-to-peer communication.

Large problem sizes: Multi-GPU execution can not only be used to improve per-

formance; it can also be used to run larger problem sizes than would fit on a single

GPU. Splitting the matrix on 2 GPUs enabled us to run CG with sizes double the

size that can fit in a single GPU. For example, we were able to run CG for a vector

size of 100M on a single GPU using either single-GPU implementation, while with

SemCache++ we were able to run double that size (200M) on two GPUs.

81

6. AUTOMATIC CODE GENERATION AND SYNTHESIS

SemCache takes advantage of library semantics to infer the caching granularity and

other required information like input/output matrices and their size. With addi-

tional information from the programmer (i.e., annotations), SemCache code can be

generated automatically. SemCache automatic code generation tool can save the pro-

grammer the effort to manually manage and optimize communication which improves

productivity and performance. Trying to optimize communication manually is not

feasible for large applications as we explained earlier, that’s why a library like Sem-

Cache is needed. SemCache can create a mapping between data on the CPU and the

GPU to automatically optimize communication.

Some cases where SemCache automatic code generation tool might be needed:

• If a programmer writes a new GPU library to replace a CPU library, he can

automatically generate custom SemCache code to manage communication for

his library.

• If the programmer needs to apply data transformations for each input/output,

he can use this tool to avoid rewriting SemCache interface to integrate these

transformations.

Using the automatic code generation tool also allows data transformations to be

applied for each input/output. Data transformations creates mappings between dif-

ferent CPU-GPU data representations. For example, non-contiguous structures on

the CPU like pointer-based graph representation can be mapped to a contiguous

structure on the GPU. Using such transformations in SemCache without using the

tool, requires breaking up the modularity of the library calls and prevents the pro-

grammer form using SemCache interface because these transformations need to be

82

integrated into the lookups and the communication operations. Instead, using this

tool can easily generate SemCache code with custom transformations inserted for

each input without the need to use the library interface or worrying about breaking

the modularity of the code. Transformations can be specified at a high level and the

tool can integrate it in the code automatically.

This tool can be easily used to map GPU libraries to CPU libraries. If a pro-

grammer writes a new GPU kernel to replace a CPU kernel, he can add annotations

to the CPU kernel and the SemCache mapping code can be automatically generated.

The code is generated once for each library and it could be reused.

The tool requires the following annotations:

• Input matrices and the size (dimensions) for each matrix

• Output matrices and the size (dimensions) for each matrix

• GPU method name

Other optional annotations are:

• Data transformations using a user defined transfer function. Different data

transformations can be specified for each input/output separately.

• CPU-GPU matching parameters order. (If not specified, the exact parameters

matching is expected)

To illustrate an example for SemCache code generation, we show in figure 6.1

how matrix multiplication subroutine from BLAS library can be annotated. Our tool

reads a header file which contains definitions for CPU methods. The file is parsed and

the library semantics are inferred from the code and from user annotations. Then the

mapping is made between the GPU method and the CPU method. Then SemCache

code is generated (figure 6.2) based on the inferred data.

83

1 #pragma matrix inputs:A<M*K>, B<K*N>, C<M*N>; outputs:C<M*N>;

2 #pragma GPUMethod CublasDgemm; ParameterMatch <1-0>

3 DGEMM(TRANSA ,TRANSB ,M,N,K,ALPHA , A,LDA , B,LDB ,BETA , C,LDC)

Fig. 6.1. Annotations for DGEMM CPU method

1 SemCacheDgemm(int ColumnMajor , char TRANSA , char TRANSB , int M

, int N, int K, double ALPHA , double* A, int LDA , double*

B, int LDB , double BETA , double* C, int LDC){

2 entryA = readGPU(A, A+ (M*K));

3 entryB = readGPU(B, B+ (K*N));

4 entryC = readGPU(C, C+ (M*N));

5 cublasDgemm(TRANSA , TRANSB , M, N, K, ALPHA , entryA.gpu_s ,

LDA , entryB.gpu_s , LDB , BETA , entryC.gpu_s , LDC);

6 writeGPU(C, C+ (M*N));

7 }

Fig. 6.2. SemCache automatic generated code for DGEMM

Figure 6.3 shows how transformations can be specified at a high level for the

DGEMM method. The input matrices are transformed from row major order to

column major order and vise versa for the output matrix. In addition to that, the

forward and reverse methods which implement the transformations are specified and

highlighted using annotations. Then the tool can integrate the transformations in

the generated code automatically (figure 6.4). The generated code unfolds methods

readGPU/writeGPU to insert transformations.

84

1 #pragma matrix inputs:A<M*K>, B<K*N>, C<M*N>; outputs:C<M*N>;

2 #pragma transformation

3 forward A: RowToColumn , B: RowToColumn , C: RowToColumn;

4 reverse C: ColumnToRow;

5 #pragma GPUMethod CublasDgemm;

6 DGEMM(TRANSA ,TRANSB ,M,N,K,ALPHA , A,LDA , B,LDB ,BETA , C,LDC)

7

8

9 Void RowToColumn(parameters){

10 // transform data from row major to column major

11 }

12

13

14 Void ColumnToRow(parameters){

15 // transform data from column major to row major

16 }

Fig. 6.3. Annotations for DGEMM CPU method with transformations

85

1 SemCacheDgemm(char TRANSA , char TRANSB , int M, int N, int K,

double ALPHA , double* A, int LDA , double* B, int LDB ,

double BETA , double* C, int LDC){

2 // unfold method readGPU(A, A+ (M*K))

3 entryA = lookup(A, A+ (M*K));

4 if (entryA.status == C){ //GPU data not current

5 RowToColumn(entryA);

6 transferToGPU(entryA); }

7 // unfold method readGPU(B, B+ (K*N))

8 entryB = lookup(B, B+ (K*N));

9 if (entryB.status == C){ //GPU data not current

10 RowToColumn(entryB);

11 transferToGPU(entryB); }

12 // unfold method readGPU(C, C+ (M*N))

13 entryC = lookup(C, C+ (M*N));

14 if (entryC.status == C){ //GPU data not current

15 RowToColumn(entryC);

16 transferToGPU(entryC); }

17

18 cublasDgemm(TRANSA , TRANSB , M, N, K, ALPHA , entryA.gpu_s ,

LDA , entryB.gpu_s , LDB , BETA , entryC.gpu_s , LDC);

19 // unfold method writeGPU(C, C+ (M*N))

20 # ifdef WRITEBACK

21 invalidateOnCPU(entryC);

22 # else

23 entryC = lookup(C, C+ (M*N));

24 if (entryC.status == G){

25 transferToCPU(entryC);

26 ColumnToRow(entryC); }

27 # endif

28 }

Fig. 6.4. SemCache automatic generated code for DGEMM with transformations

86

7. INTEGRATING SEMCACHE WITH TRILINOS

The Trilinos Project [12] is an effort to facilitate the design, development, integration

and ongoing support of mathematical software libraries. It provides parallel solver

algorithms and libraries within an object oriented software framework for the solution

of large-scale, complex multiphysics engineering and scientific applications. Trilinos

uses a two-level software structure designed around collections of packages. Pack-

ages exist underneath the Trilinos top level, which provides a common look-and-feel,

including configuration, documentation, licensing, and bug-tracking. Trilinos is an

open source platform written in C++.

Kokkos [38] is a package in Trilinos for manycore performance portability. Kokkos

provides an abstraction of the underlying hardware. It enables performance portable

user code which runs on CPUs or GPUs if that code is implemented with Kokkos

multidimensional arrays and parallel execution capabilities. It supports parallelism

using MPI, CUDA and threads.

Kokkos provides a high level API to allow the programmer to manage communica-

tion between the CPU and the GPU. The API requires the programmer to manually

specify transfers between different devices. As discussed in the introduction, manual

transfers are prune to errors and may result in extra communication. To address this

problem, SemCache is integrated with Kokkos to automatically control communica-

tion. In this section we discuss the Kokkos package and the integration details.

7.1 Kokkos Package

Kokkos supports a high performance computing (HPC) environment, a network

of compute nodes where each compute node contains one or more manycore devices.

An HPC application has two levels of parallelism: (1) distributed memory parallelism

87

typically supported through a Message Passing Interface (MPI) library and (2) thread

level parallelism on the manycore device.

Kokkos implements its own device-aware multidimensional array. The array layout

is optimized at compile-time for memory accesses. The arrays are implemented by the

C++ View template class. Each device has its own view of the data. Since different

data layouts may exist between the GPU view and the CPU view, Kokkos uses a

HostMirror view in the host memory space to store the devices layout.

1 typedef View <double **[8][3] , Device > my_array_type;

2

3 my_array_type a("a",N,M); // Allocate on Device

4

5 // m y _ a r r a y _ t y p e :: H o s t M i r r o r defines an array

6 // in host space with a layout mirroring

7 // m y _ a r r a y _ t y p e . If the device != host then

8 // c r e a t e _ m i r r o r _ v i e w allocates a compatible

9 // array , otherwise the input view is returned.

10 my_array_type :: HostMirror

11 host_a = create_mirror_view(a);

12

13 // Deep copy to a mirror does not require remap.

14 // If a == a_host deep copy is skipped.

15 deep_copy(a , host_a); // Copy device <- host

16 deep_copy(host_a , a); // Copy host <- device

Fig. 7.1. Deep copy performance penalties associated with remapping
array layouts are avoided by using HostMirror views that have the
same layout as a device view but with member values residing in the
host space.

Kokkos DualView container class to manage data structures which exist both on

Host and Device. The class contains both a GPU view and a CPU view of the data.

The Kokkos Vector class which is used to initialize arrays inherits the DualView class.

88

7.2 Kokkos Integration with SemCache

Kokkos DualView class can be accessed directly from vectors to manage commu-

nication. To enhance the properties of Kokkos DualView class, it extends SemCache

class which automatically handles communication. The integration code for Sem-

Cache with Kokkos is listed in appendix A.

7.2.1 Allocation

Allocation in Kokkos HostSpace is modified to page aligned using valloc and

padded to prevent false sharing as show in Figure 7.2.

1 #define PageMask (PageSize - 1LLU)

2 #define PageCeiling(ArraySize) ((ArraySize + PageSize - 1) & ~

PageMask)

3 ptr = valloc(PageCeiling(scalar_size * count_alloc));

Fig. 7.2. SemCache Allocation in Kokkos HostSpace

7.2.2 Using SemCache with Kokkos

Since SemCache extends the Vector properties, SemCache directives can be ac-

cessed directly from the vector. Before using a vector in GPU computations, read-

GPU() is called. If the vector stores the output result, writeGPU() is called after

the computation. Figure 7.3 shows how SemCache directives are used in a vector

addition example in Kokkos.

7.3 Experimental Results

MiniFE is a hybrid parallel (MPI+X) finite element application that constructs a

linear system of equations for a 3D heat diffusion problem and performs 200 iterations

89

1 template <typename VectorType >

2 void

3 waxpby(typename VectorType :: ScalarType alpha , VectorType& x,

4 typename VectorType :: ScalarType beta , VectorType& y,

5 VectorType& w)

6 {

7 int size = y.local_size <x.local_size?y.local_size:x.

local_size;

8

9 w.coefs.readGPU ();

10 x.coefs.readGPU ();

11 y.coefs.readGPU ();

12

13 if(alpha ==1.0)

14 Kokkos ::V_Add(w.coefs.d_view ,x.coefs.d_view ,beta ,y.coefs.

d_view ,size);

15 else

16 Kokkos ::V_Add(w.coefs.d_view ,alpha ,x.coefs.d_view ,beta ,y.

coefs.d_view ,size);

17 device_device_type ::fence ();

18

19 w.coefs.writeGPU ();

20 }

Fig. 7.3. SemCache Use in Kokkos

90

Fig. 7.4. Normalized execution time of CG

of a conjugate gradient (CG) solver on that linear system. It is designed to capture a

number of important characteristics of implicit parallel finite element codes. MiniFE

has been implemented in various programming models some of which are available at

mantevo.org.

Figure 7.4 shows the normalized execution time for conjugate gradient using two

different matrix sizes. We compare the performance of miniFE-Kokkos with miniFE-

Kokkos enhanced with SemCache and miniFE-Kokkos using Cuda Unified Memory.

The results are normalized to miniFE-Kokkos manual communication handling using

the Dual View Class as described in the previous section. The results show that

the overhead of SemCache is negligible (less than 5%), while the overhead for Cuda

Unified Memory is 50% or more. The slow down of Cuda UM is a result of tracking

and transferring data at page granularity. SemCache does not suffer from this problem

because it tracks and transfers data at the granularity of a matrix.

91

8. CONCLUSIONS

GPU libraries have made it easy to improve application performance by offloading

computation to the GPU. However, using such libraries still introduces the complexity

of managing explicit data movement. Unfortunately, when using these libraries with

complex applications with multiple levels of abstraction, it is very difficult to reason

about how multiple kernel invocations interact with one another, and hence avoid

redundant communication. This task is even harder in multi-GPU libraries since they

hide the complexity of decomposing data, distributing computations and handling

communication manually inside library calls. Such encapsulation prevents the reuse of

the data between successive kernel invocations resulting in redundant communication.

In this thesis, we introduced SemCache, a semantics-driven caching technique that

can automatically manage and optimize CPU-GPU communication. SemCache tunes

its granularity based on the semantics of the GPU libraries in an application. Sem-

Cache++ extends SemCache to support offloading to multiple GPU. SemCache++

is used to build the first multi-GPU drop-in replacement library that (a) uses the vir-

tual memory to automatically manage and optimize multi-GPU communication and

(b) requires no program rewriting or annotations. Our caching technique is efficient;

it only tracks matrices/sub-matrices instead of tracking every memory access at fine

granularity. We applied SemCache to Basic Linear Algebra Subprograms (BLAS) [2]

library to provide a GPU drop-in replacement library.

Experimental results show that our system can dramatically reduce redundant

communication for real-world computational science application and deliver signif-

icant performance improvements, beating GPU-based library implementations like

CULA [5], CUBLAS and CUBLASXT [6].

LIST OF REFERENCES

92

LIST OF REFERENCES

[1] N. AlSaber and M. Kulkarni, “Semcache: Semantics-aware caching for efficient
gpu offloading,” in Proceedings of the 27th International ACM Conference on
International Conference on Supercomputing, ICS ’13, (New York, NY, USA),
pp. 421–432, ACM, 2013.

[2] BLAS, “Basic linear algebra subprograms.” http://www.netlib.org/blas/.

[3] N. Al-Saber and M. Kulkarni, “Semcache++: Semantics-aware caching for effi-
cient multi-gpu offloading,” in Proceedings of the 20th ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming, PPoPP 2015, (New
York, NY, USA), pp. 255–256, ACM, 2015.

[4] P. D. S. Tomov, R. Nath and J. Dongarra., “MAGMA version 0.2 users’ guide.”
http://icl.eecs.utk.edu/magma/, 2009.

[5] J. R. Humphrey, D. K. Price, K. E. Spagnoli, A. L. Paolini, and E. J. Kelmelis,
“CULA: hybrid GPU accelerated linear algebra routines,” SPIE Defense and
Security Symposium (DSS), pp. 770502–770502–7, 2010.

[6] NVIDIA, “CUDA toolkit 4.0 CUBLAS library.” http://docs.nvidia.com/
cuda/cublas/index.html.

[7] G. Quintana-Ort́ı, F. D. Igual, E. S. Quintana-Ort́ı, and R. A. van de Geijn,
“Solving dense linear systems on platforms with multiple hardware accelerators,”
SIGPLAN Not., vol. 44, pp. 121–130, Feb. 2009.

[8] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen,
LAPACK users’ guide. Philadelphia, PA: Society for Industrial and Applied
Mathematics, third ed., 1999.

[9] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier, “Starpu: A unified
platform for task scheduling on heterogeneous multicore architectures,” in Euro-
Par 2009 Parallel Processing (H. Sips, D. Epema, and H.-X. Lin, eds.), vol. 5704
of Lecture Notes in Computer Science, pp. 863–874, Springer Berlin Heidelberg,
2009.

[10] C. J. Rossbach, J. Currey, M. Silberstein, B. Ray, and E. Witchel, “Ptask: Op-
erating system abstractions to manage gpus as compute devices,” in Proceedings
of the Twenty-Third ACM Symposium on Operating Systems Principles, SOSP
’11, (New York, NY, USA), pp. 233–248, ACM, 2011.

[11] E. Ayguadé, R. M. Badia, F. D. Igual, J. Labarta, R. Mayo, and E. S. Quintana-
Ort́ı, “An extension of the StarSs programming model for platforms with multiple
GPUs,” in Proceedings of the 15th International Euro-Par Conference on Parallel
Processing, Euro-Par ’09, pp. 851–862, 2009.

93

[12] M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu, T. G. Kolda,
R. B. Lehoucq, K. R. Long, R. P. Pawlowski, E. T. Phipps, A. G. Salinger, H. K.
Thornquist, R. S. Tuminaro, J. M. Willenbring, A. Williams, and K. S. Stanley,
“An overview of the trilinos project,” ACM Trans. Math. Softw., vol. 31, no. 3,
pp. 397–423, 2005.

[13] NVIDIA, “Cuda.” https://developer.nvidia.com/cuda-toolkit.

[14] C.-K. Luk, S. Hong, and H. Kim, “Qilin: exploiting parallelism on heteroge-
neous multiprocessors with adaptive mapping,” in Proceedings of the 42nd An-
nual IEEE/ACM International Symposium on Microarchitecture, MICRO 42,
pp. 45–55, 2009.

[15] C.-Y. Shei, P. Ratnalikar, and A. Chauhan, “Automating GPU computing in
MATLAB,” in Proceedings of the international conference on Supercomputing,
ICS ’11, pp. 245–254, 2011.

[16] J. A. Pienaar, A. Raghunathan, and S. Chakradhar, “MDR: performance model
driven runtime for heterogeneous parallel platforms,” in Proceedings of the in-
ternational conference on Supercomputing, ICS ’11, pp. 225–234, 2011.

[17] NVIDIA, “Cuda toolkit 6.0 cublasxt library.” https://developer.nvidia.com/
cublasxt, 2014.

[18] M. D. Linderman, J. D. Collins, H. Wang, and T. H. Meng, “Merge: a pro-
gramming model for heterogeneous multi-core systems,” SIGPLAN Not., vol. 43,
pp. 287–296, Mar. 2008.

[19] R. Vasudevan, S. S. Vadhiyar, and L. V. Kalé, “G-charm: an adaptive runtime
system for message-driven parallel applications on hybrid systems,” in Proceed-
ings of the 27th international ACM conference on International conference on
supercomputing, ICS ’13, (New York, NY, USA), pp. 349–358, ACM, 2013.

[20] T. B. Jablin, P. Prabhu, J. A. Jablin, N. P. Johnson, S. R. Beard, and D. I.
August, “Automatic CPU-GPU communication management and optimization,”
SIGPLAN Not., vol. 47, pp. 142–151, June 2011.

[21] S. Pai, R. Govindarajan, and M. J. Thazhuthaveetil, “Fast and efficient auto-
matic memory management for gpus using compiler-assisted runtime coherence
scheme,” in Proceedings of the 21st International Conference on Parallel Archi-
tectures and Compilation Techniques, PACT ’12, (New York, NY, USA), pp. 33–
42, ACM, 2012.

[22] T. B. Jablin, J. A. Jablin, P. Prabhu, F. Liu, and D. I. August, “Dynamically
managed data for CPU-GPU architectures,” in Proceedings of the Tenth Interna-
tional Symposium on Code Generation and Optimization, CGO ’12, pp. 165–174,
2012.

[23] I. Gelado, J. E. Stone, J. Cabezas, S. Patel, N. Navarro, and W.-m. W. Hwu,
“An asymmetric distributed shared memory model for heterogeneous parallel sys-
tems,” in Proceedings of the fifteenth edition of ASPLOS on Architectural support
for programming languages and operating systems, ASPLOS XV, pp. 347–358,
2010.

94

[24] C. Amza, A. L. Cox, H. Dwarkadas, P. Keleher, H. Lu, R. Rajamony, W. Yu,
and W. Zwaenepoel, “TreadMarks: Shared memory computing on networks of
workstations,” IEEE Computer, vol. 29, pp. 18–28, 1996.

[25] B. Nitzberg and V. Lo, “Distributed shared memory: a survey of issues and
algorithms,” Computer, vol. 24, pp. 52 –60, aug. 1991.

[26] N. Agarwal, D. Nellans, M. OConnor, S. W. Keckler, and T. F. Wenisch, “Un-
locking bandwidth for gpus in cc-numa systems,”

[27] J. Kim, H. Kim, J. H. Lee, and J. Lee, “Achieving a single compute device
image in opencl for multiple gpus,” in Proceedings of the 16th ACM Symposium
on Principles and Practice of Parallel Programming, PPoPP ’11, (New York,
NY, USA), pp. 277–288, ACM, 2011.

[28] S. Schaetz and M. Uecker, “A multi-gpu programming library for real-time
applications,” in Algorithms and Architectures for Parallel Processing (Y. Xi-
ang, I. Stojmenovic, B. Apduhan, G. Wang, K. Nakano, and A. Zomaya, eds.),
vol. 7439 of Lecture Notes in Computer Science, pp. 114–128, Springer Berlin
Heidelberg, 2012.

[29] Y.-P. You, H.-J. Wu, Y.-N. Tsai, and Y.-T. Chao, “Virtcl: A framework for
opencl device abstraction and management,” in Proceedings of the 20th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming,
PPoPP 2015, (New York, NY, USA), pp. 161–172, ACM, 2015.

[30] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer, and D. Shippy,
“Introduction to the Cell multiprocessor,” IBM Journal of Research and Devel-
opment, vol. 49, pp. 589 –604, july 2005.

[31] M. Gonzàlez, N. Vujic, X. Martorell, E. Ayguadé, A. E. Eichenberger, T. Chen,
Z. Sura, T. Zhang, K. O’Brien, and K. O’Brien, “Hybrid access-specific software
cache techniques for the Cell BE architecture,” in Proceedings of the 17th inter-
national conference on Parallel architectures and compilation techniques, PACT
’08, pp. 292–302, 2008.

[32] V. Volkov and J. W. Demmel, “Benchmarking GPUs to tune dense linear alge-
bra,” in Proceedings of the 2008 ACM/IEEE conference on Supercomputing, SC
’08, pp. 31:1–31:11, 2008.

[33] C. Liu, M. H. Jamal, M. Kulkarni, A. Prakash, and V. Pai, “Exploiting domain
knowledge to optimize parallel computational mechanics codes,” in Proceedings
of the 27th International ACM Conference on International Conference on Su-
percomputing, ICS ’13, (New York, NY, USA), pp. 25–36, ACM, 2013.

[34] A. Prakash and K. D. Hjelmstad, “A FETI-based multi-time-step coupling
method for Newmark schemes in structural dynamics,” International Journal
for Numerical Methods in Engineering, vol. 61, no. 13, pp. 2183–2204, 2004.

[35] O. Beaumont, V. Boudet, A. Petitet, F. Rastello, and Y. Robert, “A proposal
for a heterogeneous cluster scalapack (dense linear solvers),” Computers, IEEE
Transactions on, vol. 50, pp. 1052–1070, Oct 2001.

95

[36] F. Song, S. Tomov, and J. Dongarra, “Enabling and scaling matrix computations
on heterogeneous multi-core and multi-gpu systems,” in Proceedings of the 26th
ACM International Conference on Supercomputing, ICS ’12, (New York, NY,
USA), pp. 365–376, ACM, 2012.

[37] M. Verschoor and A. C. Jalba, “Analysis and performance estimation of the
conjugate gradient method on multiple {GPUs},” Parallel Computing, vol. 38,
no. 1011, pp. 552 – 575, 2012.

[38] H. C. Edwards, C. R. Trott, and D. Sunderland, “Kokkos: Enabling manycore
performance portability through polymorphic memory access patterns,” Journal
of Parallel and Distributed Computing, vol. 74, no. 12, pp. 3202 – 3216, 2014.
Domain-Specific Languages and High-Level Frameworks for High-Performance
Computing.

APPENDICES

96

A. SEMCACHE INTEGRATION CODE WITH KOKKOS

1 struct TranslationRecord{

2 void* HostStartAddress;

3 void* HostEndAddress;

4 void* DeviceStartAddress;

5 int Size;

6 int Size_Padded;

7 int DataType;

8 char Status;

9 };

10 std::list <TranslationRecord*> cacheDirList;

11

12 class SemCache{

13 public:

14 TranslationRecord mainEntry;

15

16 void SemCacheSet(void* _HostStartAddress , void*

_HostEndAddress , void* _DeviceStartAddress , int _Size ,

int _DataType){

17 mainEntry.HostStartAddress = _HostStartAddress;

18 mainEntry.HostEndAddress = _HostEndAddress;

19 mainEntry.DeviceStartAddress = _DeviceStartAddress;

20 mainEntry.Size = _Size;

21 mainEntry.DataType = _DataType;

22 mainEntry.Size_Padded = PageCeiling(_DataType * _Size);//

page aligned padding

23 }

24

25 static void invalidateOnGPU(TranslationRecord* entry) {

26 (*entry).Status = ’C’;

27 }

28 static void invalidateOnCPU(TranslationRecord* entry) {

29 (*entry).Status = ’G’;

97

30 }

31

32 // called after invoking a GPU method that writes [s, e)

33 void writeGPU () {

34 if(mainEntry.HostStartAddress == 0)

35 return;

36

37 TranslationRecord* entry = lookupAndAdd ();

38 invalidateOnCPU(entry);

39 improtect(mainEntry.HostStartAddress , mainEntry.

Size_Padded , PROT_NONE);

40 }

41

42 // called before invoking a GPU method that reads [s, e)

43 void readGPU () {

44 if(mainEntry.HostStartAddress == 0)

45 return;

46

47 TranslationRecord* entry = lookupAndAdd ();

48 if ((* entry).Status == ’C’){ //data not current on GPU

49

50 Kokkos ::Impl::DeepCopy <CudaSpace ,HostSpace >:: DeepCopy(

mainEntry.DeviceStartAddress , mainEntry.

HostStartAddress , mainEntry.Size * mainEntry.

DataType); // transferToGPU

51 DeepCopyTimer= gettimer () - DeepCopyTimer;

52 std::cout << " DeepCopy time:" << DeepCopyTimer << "\n";

53

54 //std::cout << "mprotect range " << &h_view (0) << "-" <<

&h_view (0)+(* entry).Size_Padded << " size:" << (*

entry).Size_Padded * (*entry).DataType << "\n";

55 mprotect(mainEntry.HostStartAddress , mainEntry.

Size_Padded , PROT_READ);

56

57 (* entry).Status = ’S’;

58 }

59 }

60

98

61 // execute after writing address range [s, e) on CPU

62 static void writeCPU(TranslationRecord* entry) {

63 // TranslationRecord* entry = lookupAndAdd ();

64 if ((* entry).Status == ’G’){ //data not current on CPU

65 Kokkos ::Impl::DeepCopy <HostSpace ,CudaSpace >:: DeepCopy(

entry ->HostStartAddress , entry ->DeviceStartAddress ,

entry ->Size * entry ->DataType);

66 }

67 invalidateOnGPU(entry);

68 }

69

70 // execute before reading address range [s, e) on CPU

71 static void readCPU(TranslationRecord* entry) {

72 // TranslationRecord* entry = lookupAndAdd ();

73 if ((* entry).Status == ’G’){ //data not current on CPU

74 Kokkos ::Impl::DeepCopy <HostSpace ,CudaSpace >:: DeepCopy(

entry ->HostStartAddress , entry ->DeviceStartAddress ,

entry ->Size * entry ->DataType);

75

76 (*entry).Status = ’S’;

77 }

78 mprotect(entry ->HostStartAddress , entry ->Size_Padded ,

PROT_READ);

79 }

80

81 TranslationRecord* lookupAndAdd (){

82 for (std::list <TranslationRecord *>:: iterator it=

cacheDirList.begin(); it != cacheDirList.end(); ++it){

83 if((*it)->HostStartAddress == mainEntry.

HostStartAddress){// && (cacheDir[x]. HostEndAddress

>= HostEndAddress)){

84 //std::cout << "=list start addr " << (*it)->

HostStartAddress << "\n";

85 TranslationRecord* tr = *it;

86 return tr;

87 }

88 }

89

99

90 mainEntry.Status = ’C’;

91 cacheDirList.push_back (& mainEntry);

92 return &mainEntry;

93 }

94

95 static TranslationRecord existsInCacheDirRange(void* CPUptr)

96 {

97 for (std::list <TranslationRecord *>:: iterator it=

cacheDirList.begin(); it != cacheDirList.end(); ++it){

98 if(((*it)->HostStartAddress <= CPUptr) && ((*it)->

HostEndAddress >= CPUptr)){

99 TranslationRecord* tr = *it;

100 return *tr;

101 }

102 }

103

104 std::cout << "SIG FAULT Address not found exiting \n";

105 exit(EXIT_FAILURE);

106 }

107

108 static void remove(void* CPUptr){

109 for (std::list <TranslationRecord *>:: iterator it=

cacheDirList.begin(); it != cacheDirList.end(); ++it){

110 if((*it)->HostStartAddress == CPUptr){

111 std::cout << "= remove list start addr " << (*it)->

HostStartAddress << "\n";

112 cacheDirList.erase(it);

113 }

114 }

115 }

116 static void handler(int sig , siginfo_t *si , void *uap)

117 {

118 ucontext_t *context = (ucontext_t *) uap;

119 int write_fault = context ->uc_mcontext.gregs[REG_ERR];

120

121 TranslationRecord translationRecord =

existsInCacheDirRange(si->si_addr);

122

100

123 if(mprotect(translationRecord.HostStartAddress ,

translationRecord.Size_Padded , PROT_READ|PROT_WRITE)

!= 0){

124 std::cout << "** mprotect free failed: " << "\n";

125 exit(EXIT_FAILURE);

126 }

127

128 if (write_fault == 4) //None -> Needs Read Access

129 {

130 readCPU (& translationRecord);

131 }

132 else if (write_fault == 6) //None -> Needs Write Access

133 {

134 writeCPU (& translationRecord);

135 }

136 else if (write_fault == 7) // ReadOnly -> Needs Write

Access

137 {

138 invalidateOnGPU (& translationRecord);// Status = ’C ’;

139 }

140 }

141

142 static void Init() // InitHandler

143 {

144 int pagesize = sysconf(_SC_PAGE_SIZE);

145 struct sigaction sa;

146 sa.sa_flags = SA_SIGINFO;

147 sigemptyset (&sa.sa_mask);

148 sa.sa_sigaction = handler;

149 if (sigaction(SIGSEGV , &sa, NULL) == -1){

150 perror("sigaction");

151 exit(EXIT_FAILURE);

152 }

153 }

154

155 };

VITA

101

VITA

Nabeel graduated in 2006 with a Bachelor in Computer Engineering from the

University of Jordan. In 2008, he received his masters degree in Computer Engineering

from New Jersey Institute of Technology. Nabeel worked at the industry for two years

as a senior software engineer. Then, he continued his Ph.D. in computer engineering

at Purdue University. His research focused on improving the performance of scientific

applications using heterogeneous platforms (GPGPU computing). The project was

funded by the Department of Energy with the collaboration of Sandia Labs. His

advisor is Professor Milind Kulkarni. Nabeel also worked as a teaching assistant at

Purdue. He received excellence in teaching award: ”Estus H. and Vashti L. Magoon

Award” in May 2012. In 2015, Nabeel was awarded his Ph.D. degree from Purdue

University. Nabeel plans to join Qualcomm after his graduation.

	Purdue University
	Purdue e-Pubs
	Spring 2015

	SemCache: Semantics-Aware Caching for Efficient GPU Offloading
	Nabeel Al-Saber
	Recommended Citation

