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ABSTRACT

Zhu, Jingyi Ph.D., Purdue University, December 2014. Nonparametric Variable Selec-
tion and Dimension Reduction Methods and Their Applications in Pharmacogenomics
. Major Professor: Jun Xie.

Nowadays it is common to collect large volumes of data in many fields with an

extensive amount of variables, but often a small or moderate number of samples. For

example, in the analysis of genomic data, the number of genes can be very large,

varying from tens of thousands to several millions, whereas the number of samples is

several hundreds to thousands. Pharmacogenomics is an example of genomics data

analysis that we are considering here. Pharmacogenomics research uses whole-genome

genetic information to predict individuals’ drug response. Because whole-genome data

are high dimensional and their relationships to drug response are complicated, we are

developing a variety of nonparametric methods, including variable selection using

local regression and extended dimension reduction techniques, to detect nonlinear

patterns in the relationship between genetic variants and clinical response.

High dimensional data analysis has become a popular research topic in the Statis-

tics society in recent years. However, the nature of high dimensional data makes

many traditional statistical methods fail, because most methods rely on the assump-

tion that the sample size n is larger than the variable dimension p. Consequently,

variable selection or dimension reduction is often the first step in high dimensional

data analysis. Meanwhile, another important issue arises as the choice of an ap-

propriate statistical modeling strategy for conducting variable selection or dimension

reduction. It has been found from our studies that the traditional parametric linear

model might not work well for detecting nonlinear patterns of relationships between

predictors and response. The limitations of the linear model and other parametric
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statistical approaches motivate us to consider nonparametric/nonlinear models for

conducting variable selection or dimension reduction.

The thesis is composed of two major parts. In the first part, we develop a non-

parametric predictive model of the response based on a small number of predictors,

which are selected from a nonparametric forward variable selection procedure. We

also propose strategies to identify subpopulations with enhanced treatment effects. In

the second part, we develop an alternating least squares method to extend the classi-

cal Sliced Inverse Regression (SIR) [Li, 1991] to the context of high dimensional data.

Both methods are demonstrated by simulation studies and a pharmacogenomics study

of bortezomib in multiple myeloma [Mulligan et al., 2007]. The proposed methods

have favorable performances compared to other existing approaches in the literature.
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1. NONPARAMETRIC VARIABLE SELECTION FOR

PREDICTIVE MODELS AND SUBPOPULATIONS IN CLINICAL

TRIALS

1.1 Introduction

Variable selection is often the first step in developing predictive models. There are

many reasons for focusing on a subset of predictors: the desire to develop statistical

procedures that are more efficient in making inferences, the interpretability of the

estimated predictive model, and the concern of making the statistical procedures

computationally effective and robust. The need of variable selection is stronger, when

we have high dimensional data with a large number of variables. Suppose that we

have a response variable Y , and a set of p predictors X1, . . . , Xp. The objective of

variable selection is to examine the relationship between Y and a subset of X1, . . . , Xp.

In sections 1.1.1 and 1.1.2, we review the existing variable selection methods in the

context of linear models. Specifically, the relationship between Y and X1, . . . , Xp

is modeled as Y = β1X1 + · · · + βpXp + ε, where ε is an error term following a

standard normal distribution, and β1, . . . , βp are the regression coefficients that we

want to estimate. Given a sample set of n subjects, Y = (Y1, . . . , Yn) and X =
1 X11 · · · X1p

1 X21 · · · X2p

...
...

...

1 Xn1 · · · Xnp

, the model can also be written in a matrix form, i.e., Y =

Xβ + ε.
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1.1.1 Classical variable selection methods

Traditionally, there are two major types of variable selection methods. The first

one is known as the best subset selection, which selects the best model among all

possible combinations of the predictors based on some specific selection criterion.

Examples of well-known selection criteria include the Akaike Information Criterion

(AIC), Bayesian Information Criterion (BIC), and Mallows’ Cp. All of these three

criteria consider a tradeoff between the goodness of fit of a model and its complexity.

Specifically, AIC is aimed at selecting a model that minimizes the expected estimated

Kullback-Leibler divergence of the fitted model from the true one [Akaike, 1973]. As

an alternative to AIC, BIC is developed to maximize the posterior probability under

the Bayesian framework and has a different representation of the model complexity

[Schwarz, 1978]. Mallow’s Cp is proposed to minimize the mean squared error of

prediction [Mallows, 1973]. The best subset selection is known to be computationally

expensive, which is impossible to implement when the dimension p grows large.

The other method is known as the heuristic variable selection procedure, which

is often employed to select a subset of predictors in a sequential order. The best

known examples of this procedure include forward selection, backward elimination,

and stepwise selection. The forward selection procedure starts from the null model

with no variable included, then adds the most significant variable to the model if its p-

value is below some pre-determined significant level. Variables are continually added

to the model one at a time until none of the remaining variables are significant when

added to the model. In contrast, the backward elimination procedure is conducted in

the opposite direction. It begins with the full model with all the variables included,

and excludes the least significant variable from the model at a chosen significant level.

This procedure continues to exclude variable from the model one at a time until all

the remaining variables are statistically significant. The stepwise selection approach

is a combination of forward selection and backward elimination, in the sense that it

allows movement in either direction by adding or dropping variables at various steps.
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It can either work as forward selection, but reconsider dropping variables already in

the model, if they are no longer significant when other variables are added, or as

backward elimination, but reconsider adding back variables excluded from the model

earlier if they later appear to be significant. Compared to the best subset selection,

the heuristic variable selection procedure is less computationally demanding, making

it feasible for selecting subsets among a large number of predictors. However, it is

not guaranteed to obtain the global optimal solution.

1.1.2 Regularization methods for variable selection

More recently, regularization methods have also been used as variable selection

approaches, for example, Least Absolute Shrinkage and Selection Operator (LASSO),

Smoothly Clipped Absolute Deviation (SCAD), elastic net, and Least Angle Regres-

sion (LARS). LASSO was proposed by Tibshirani [1996] in the context of linear

models to minimize the residual sum of squares (RSS) subject to a L1 penalty term

controlled by a regularization parameter. Mathematically, the LASSO estimates can

be obtained by minimizing the following constrained objective function

β̂LASSO = argminβ‖Y −Xβ‖2 s.t.

p∑
i=1

|βi| ≤ s ,

where s is a pre-determined positive constant. Or equivalently, we can find the LASSO

estimates by solving the following optimization problem,

β̂LASSO = argminβ

{
‖Y −Xβ‖2 + λ

p∑
i=1

|βi|

}
,

where λ is a nonnegative regularization parameter. As the regularization parameter λ

increases, the coefficient estimates are shrunk towards zero and some of them become

exactly zero, which can be excluded from the model. In the two extreme cases, if

the regularization parameter λ equals zero, LASSO is equivalent to ordinary least

squares (OLS). On the other hand, if the regularization parameter λ goes to infinity,

all the coefficients are shrunk to be zero, thus no predictor is included in the model.
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Elastic net was proposed by Zou and Hastie [2005] as an alternative to LASSO.

Mathematically, the elastic net is trying to solve the following optimization problem,

β̂elasticnet = argminβ‖Y −Xβ‖2 + λ1

p∑
i=1

|βi|+ λ2

p∑
i=1

‖βi‖2 ,

where λ1 and λ2 are two nonnegative regularization parameters for the L1 and L2

penalty terms respectively. Elastic net differs from LASSO in the sense that it com-

bines both L1 and L2 penalty terms, where the L1 penalty generates sparsity, and the

L2 penalty favors selection of a group of correlated predictors. Elastic net is known

to have a grouping effect, where a group of significant predictors is selected together,

whereas LASSO tends to select one predictor in a group but ignore the others. Fan

and Li [2001] proposed SCAD, which uses a penalized likelihood approach to select

significant predictors. The penalty function is specially defined to satisfy several good

properties, such as symmetry and nonconcaveness, so that the resulting estimator is

sparse, unbiased, and continuous. Fan and Li [2001] also proposed an oracle property

in terms of penalized least squares. If a method satisfies the oracle property, then

the coefficient estimates of the zero components in the model will converge to zero

with probability tending to 1 and the coefficient estimates of the nonzero components

can be obtained as if the true correct model is known in advance. Fan and Li [2001]

argued that a good variable selection method should favor the oracle property. It is

shown that SCAD satisfies the oracle property with a proper choice of the regulariza-

tion parameter while both LASSO and elastic net do not. Efron et al. [2004] proposed

LARS, which is a less greedy variable selection method compared to forward variable

selection. The LARS algorithm is approximately implemented as follows. It starts

with no variable in the model, and adds the variable which most correlates with the

response. The algorithm then moves in the direction of the first selected predictor

until some other variable is just as equally correlated with the current residual. Af-

ter the entering of the second predictor in the model, it keeps moving in a direction

such that the residual stays equally correlated with the first two predictors until the

third variable enters the model with the largest correlation with the residual among
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the remaining predictors. This procedure is repeated until some stopping criterion is

satisfied.

The regularization methods conduct variable selection only in linear or parametric

models. However, the linear relationship between Y and one or more predictors X

is often too simple to be proper in the complicated data analysis. The traditional

linear model does not work for detecting nonlinear patterns of the relationship be-

tween Y and X. The limitations of the linear model and other parametric statistical

approaches motivate our use of nonparametric methods to model the relationship

between Y and X.

1.1.3 Review on pharmacogenomics research

According to the definition of the American Medical Association (AMA), phar-

macogenomics is the study of genetic variations that influence individual response to

drugs. While a number of clinical and laboratory features such as age and disease

index provide prognostic information, they may still be unable to define the highest

risk patients most in need of novel therapies. It is anticipated that the pharma-

cogenomics research will help provide more precise prognostic and predictive tools

in patient treatments. The pharmacogenomics research will also contribute towards

facilitating the development of personalized medicine, which is tailored to the needs

of different individuals. Figure 1.1 shows a simple example, which is adapted from

http://psylab.idv.tw. When a group of patients are treated with a specific drug,

they will usually have different drug responses; some would be good responders, some

would be poor responders, and some would have adverse effects in the worst case.

As shown in Figure 1.1, it can be found through pharmacogenomic studies that pa-

tients’ genotypes are correlated with their corresponding drug responses. By utilizing

the findings from the pharmacogenomics research, medical treatments are developed

based on patients’ genotypes, namely, personalized medicine.
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Success in this important public health endeavor relies on efficient and accurate

statistical and computational methods in the analysis of genomic data and clinical

outcomes, which is essentially a predictive or regression problem. It is anticipated

that the effect of genetic variants on drug response is highly combinatorial and non-

linear. In a review article on bioinformatics challenges for genome-wide association

studies [Moore et al., 2010], the linear modeling framework is considered as a ma-

jor limitation of the current studies. We aim to develop a nonparametric predictive

model of clinical response using a large set of potential predictors, including the whole

genome genetic information as well as standard clinical and laboratory features. The

pharmacogenomics research provides a good application of the statistical methods for

high dimensional data, such as variable selection and dimension reduction developed

here.

Figure 1.1. Illustration of contributions of the pharmacogenomics re-
search towards the development of personalized medicine (cited from
http://psylab.idv.tw).

1.1.4 Review on subpopulation with enhanced treatment effect

In most clinical trials, there is much heterogeneity among individual outcomes

and the treatment effect may not be the same on all of the patients. If we could
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determine which patients will respond better to the treatment, ideally ahead of time,

but also possibly soon after the treatment is administered, the development and sub-

sequent utilization of the therapy would be dramatically improved. It is substantively

interesting but challenging to identify such patient subpopulations that will derive a

more pronounced benefit from the active treatment than the rest of patients. More

specifically, consider a clinical trial with patients’ drug response and a large number of

potential predictors, such as genetic information, clinical features, and demographic

information. We want to develop statistical methods to select predictive covariates

and consequently use them to define subpopulations with enhanced treatment effects.

The identification of subpopulation with enhanced treatment effect is recently

a popular topic in clinical practice and medical research. It relates to the efforts

in discovering patient-specific treatment strategy, or personalized medicine. Crump

et al. [2006] conducted statistical tests for the heterogeneity of treatment effects across

pre-specified patient subpopulations. Moineddin et al. [2008] proposed a multi-level

random-effect model to identify subpopulations from patient baseline characteristics.

Ruberg et al. [2010] and Foster et al. [2011] proposed to use a CART (Classification

and Regression Tree) approach to select predictors and consequently to use their

cut-off values to define subpopulations of patients. The tree splitting idea in CART

was further explored by Lipkovich et al. [2011]. Zhang et al. [2012] used a regression

model for the expected clinical response conditional on treatment and covariates. The

parametric regression model defines an optimal treatment regime, or equivalently,

subpopulations.

Here we propose a nonparametric method to model the expected response condi-

tional on a small set of selected covariates. We intend to relax any parametric model

assumptions, hence the method is not limited by misspecification of the regression

model for the response. Our method is a combination of forward variable selection

and nonparametric local regression. Forward variable selection is merely a heuristic

procedure, but it is easy to implement and can obtain a subset of predictors with

reasonably small prediction errors. Meanwhile, the use of nonparametric local regres-
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sion has the major advantage that we make fewer assumptions about the functional

form of the model for the clinical response. Our idea is in analogy with that of Zhang

et al. [2012] but generalizes their parametric regression model to a nonparametric

model. Specifically, Zhang et al. [2012] assumed a linear response model where the

parameters were estimated through least or generalized least squares. After we de-

veloped the method, we found that a similar idea had been suggested by Storlie and

Helton [2007] but under the context of reliability analysis. We demonstrate our vari-

able selection approach using data simulated from a simplified yet realistic clinical

trial. Our method has high accuracy in test data sets and performs comparably to

the CART method. We also implement our method in a pharmacogenomics study of

bortezomib in multiple myeloma [Mulligan et al., 2007] and compare it with another

existing method of linear predictive model. In the bortezomib example, our nonpara-

metric model with three predictors achieves the same prediction power as a linear

model with a large number of predictors (over 100).

1.2 Subpopulation definition in our method

Consider a randomized clinical trial. Each patient receives either an active treat-

ment or placebo at random. Let X = (X1, ..., Xp) denote a vector of p predictors

(genetic biomarkers, demographics, etc.), and Y denote a clinical response. In prin-

ciple, the clinical response Y has two components, Ytrt and Ycontrol, where Ytrt is the

clinical response if a patient receives the active treatment, and Ycontrol is the clinical

response if a patient receives the placebo. We consider two types of treatment effects:

the global treatment effect and the conditional treatment effect. The global treatment

effect is E(Ytrt − Ycontrol), where E(.) denotes the expectation of Y . The conditional

treatment effect is E(Ytrt − Ycontrol|X), where E(.|X) denotes the conditional expec-

tation of Y given X.

Denote the sample space of X as X . A partition of X defines subpopulations of

patients. A subpopulation with an enhanced treatment effect is defined as a patient
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group with covariates values in a subset of X that has a larger conditional treat-

ment effect than the global treatment effect. Formally, the subpopulation can be

represented as

S = {X ∈ X : E(Ytrt − Ycontrol|X) > E(Ytrt − Ycontrol)} .

This subpopulation definition is similar to the idea of optimal treatment regime used

in Zhang et al. [2012] except that Zhang et al. [2012] considered E(Ytrt − Ycontrol|X)

versus 0. We prefer to compare E(Ytrt − Ycontrol|X) to the global treatment effect

E(Ytrt − Ycontrol). In fact, without loss of generality, we assume E(Ytrt − Ycontrol) ≥ 0

throughout the paper. Therefore, our definition of subpopulation is more rigorous. If

we indeed have a clinical trial with E(Ytrt−Ycontrol) < 0, we will replace the inequality

by E(Ytrt − Ycontrol|X) > 0 in the above definition and modify our implementation

procedure accordingly.

Given a data set, i.e., a randomized clinical trial with n patients, we estimate

E(Ytrt − Ycontrol) by the difference of the sample means between the treatment and

the control groups. We estimate the conditional expectations E(Ytrt − Ycontrol|X) by

the difference of two nonparametric functions of X, one for E(Ytrt|X) and the other

for E(Ycontrol|X). More specifically, we have

S = {X ∈ X : ĝtrt(X)− ĝcontrol(X) > Ȳtrt − Ȳcontrol} ,

where ĝtrt(.) denotes the nonparametric estimate of E(Ytrt|X) in the treatment group,

and ĝcontrol(.) denotes the nonparametric estimate of E(Ycontrol|X) in the control

group, Ȳtrt and Ȳcontrol are the sample means of Y in the treatment and the con-

trol groups, respectively. Note that we are modeling the treatment and the control

groups separately, instead of considering a combined response model with covariates

X, a treatment variable, and their interactions. In fact, once we relax the parametric

model assumption, the model for the treatment group and that for the control group

are arbitrary functions and in different functional forms. Therefore, the interactions

of treatment and covariates on treatment effects are automatically incorporated. In
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the following, we develop a nonparametric variable selection approach to estimate

E(Ytrt|X) and E(Ycontrol|X), which provide predictive models for the response and

also derive the subpopulation S.

1.3 Variable selection via LOESS

We first describe the method of variable selection in the context of nonparametric

models. Let yi, i = 1, · · · , n, denote n measurements of the response variable Y . Let

xij, i = 1, · · · , n and j = 1, · · · , p, denote n observations of p potential predictors.

Without loss of generality we assume that the data of each predictor, x1j, · · · , xnj,

have been normalized so that all predictors have the same scale, for example, with

mean 0 and standard deviation 1.

1.3.1 Estimation via LOESS given a fixed set of predictors

Assume a given subset of multiple predictors, (X1, X2, ..., Xd), where d is the num-

ber of predictors in the model and is often limited to four. Let xi = (xi1, · · · , xid), i =

1, · · · , n, be n measurements of the selected predictors. Assume a model of the form

yi = g(xi) + εi ,

where g(.) is an unknown smooth function and εi’s are i.i.d. error terms with mean

0 and finite variance σ2 and independent of xi. The model assumption implies that

E(Y |X) = g(X). In our previous subpopulation discussions we have two such non-

parametric models, one for Ytrt and the other for Ycontrol. Cleveland [1979] proposed

the locally weighted scatterplot smoothing (LOWESS), a local regression method for

a response variable Y on a single predictor X. It was further generalized to mul-

tivariate predictors, known as LOESS [Cleveland and Devlin, 1988], to model the

relationship between a response variable Y and multiple predictors. With LOESS we

can estimate a large class of smooth functions without being restricted to a specific

class of parametric functions. The estimate of g at a single point x uses all neighbors
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around x, where the neighbors are decided by a span parameter. Each neighbor is

then weighted according to its distance from x by a kernel function. A linear or

quadratic function of x is fitted to Y using weighted least squares.

1.3.2 Forward selection criterion

We want to conduct forward variable selection using LOESS. Predictors are added

to the model one by one if they are statistically significant. The local regression

method implies that

ĝ(x) =
n∑
i=1

li(x)yi .

That is, the LOESS estimate ĝ(x), is a linear combination of the observed response yi

where li(x) depends on the observed predictor values in a neighborhood of x, but not

on yi. This form of local estimator will be specifically shown in Section 1.4. Let ŷi =

ĝ(xi) be the fitted values, ε̂i = yi − ŷi be the residuals, and denote y = (y1, · · · , yn)t,

ŷ = (ŷ1, · · · , ŷn)t, ε̂ = (ε̂1, · · · , ε̂n)t. Since each ŷi is a linear combination of y we

have ŷ = Ly where L is an n × n matrix and ε̂ = (I − L)y where I is the n × n

identity matrix. Suppose that one predictor has been selected and L1y is the vector

of its fitted values. We consider adding a second predictor into the model and let L2y

be the fitted values using the two predictors. We want to test a null hypothesis H0

of one predictor for y against an alternative hypothesis Ha of two predictors using

a nonparametric F -test. More specifically, let ytR1y = yt(I − L1)(I − L1)
ty and

ytR2y = yt(I − L2)(I − L2)
ty be the residual sum of squares of the two fits. Under

H0, we have the following test statistic

F̂ =
(ytR1y − ytR2y)/υ1

(ytR2y)/δ1
,

which approximately follows an F distribution with the degrees of freedom υ21/υ2

and δ21/δ2, where υ1 = trace(R1 − R2), υ2 = trace(R1 − R2)
2, δ1 = trace(R2), and

δ2 = trace(R2)
2 [Cleveland and Devlin, 1988]. The degrees of freedom are obtained

by generalizing the F -test statistic of parametric models to a nonparametric case.
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Another definition of the test statistic was used in Storlie and Helton [2007], with

different degrees of freedom defined by υ1 and δ1 for the F distribution under H0.

However, our simulations show that Storlie and Helton [2007] test statistic tends to

over-select variables, including more predictors in the model than needed.

We select the first predictor by comparing a null hypothesis of a constant model

to an alternative hypothesis of one predictor for Y . If the most significant single

predictor has a p-value less than a cutoff, e.g., 0.01, it is added into the model. Next

we consider adding a second predictor into the model. We conduct F -tests for all

possible second predictors. If none of the second predictors is significant, we end with

a model with only one predictor. Otherwise, we select the most significant one and

extend the model to two predictors. We continue using the nonparametric F -test as

the criterion to select significant predictors and this procedure stops if no predictor

is found to be significant.

1.3.3 Smoothing parameter selection

Nonparametric methods, including LOESS, use a smoothing parameter to con-

trol potential over-fitting of local regression. The smoothing parameter here is the

proportion of the neighbor points out of all data points that are used to fit g(x) at

x. It is referred to as the span parameter α. If α is too small insufficient data fall

within the neighborhood resulting in an over-fitting with large variance. On the other

hand, if α is too large the local regression may not fit data well resulting in a fit with

large bias. Thus the span parameter must be chosen to compromise the bias-variance

trade-off.

Commonly used criteria of selecting span parameters in general nonparametric

techniques, e.g., smoothing splines, include AIC and Generalized Cross Validation.
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In our method, we use an extended version of AIC, known as AICC . It was first

introduced by Hurvich and Tsai [1989] for a linear model,

AICC = log(σ̂2) +
1 + d/n

1− (d+ 2)/n

= log(σ̂2) + 1 +
2(d+ 1)

n− d− 2
,

where σ̂2 is the average of residual sum of squares and d is the number of variables

included in the model. Hurvich et al. [1998] further generalized AICC to the context

of nonparametric regression for span parameter selection. The AICC score for a local

estimate with the smoothing parameter α is

AICC(α) = log(σ̂2) +
1 + tr(Lα)/n

1− {tr(Lα) + 2}/n

= log(σ̂2) + 1 +
2{tr(Lα) + 1}
n− tr(Lα)− 2

,

where σ̂2 =
1

n

∑n
i=1(yi − ĝα(xi))

2 is the estimated error variance and Lα is the esti-

mation matrix L as defined in Section 1.3.2 but depends on α. It was shown in the

simulation study by Hurvich et al. [1998] that compared to the criterion of General-

ized Cross Validation or AIC, the use of AICC avoided the large variability and the

tendency to undersmooth. AICC is also easy to apply in practice since it is a function

of L only through its trace.

Ideally an optimal span parameter is chosen where the AICC score is minimized.

However, it is found from our study that AICC scores have several different patterns

as shown in Figure 1.2. For example, the reduction of AICC scores becomes negligible

near the upper boundary of the span parameter. Therefore minimizing AICC tends to

choose larger span parameters which may not be necessary. Here we define a modified

criterion that selects an optimal span parameter α̂ which is at least 0.2 and satisfies

α̂ = min
α
{argmin

α
AICC , argmax

α
4AICC , arg

α
{4AICC = 0}} . (1.1)

Looking for α that is the root of 4AICC = 0 is an alternative criterion to minimize

AICC . We also study the change of AICC , i.e., 4AICC , with large changes being
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favorable. In implementation, we consider a grid of the span parameter between 0.2

and 0.8, as suggested in Cleveland and Devlin [1988], and with an increment of 0.01.

We select the smallest α value in the range of 0.2 to 0.8, which either corresponds to

the minimum of AICC or the maximum change of AICC .
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Figure 1.2. Illustration of different patterns of AICC versus the span
parameter.

In our variable selection procedure, we first use (1.1) to select an optimal span

parameter for each candidate predictor Xi, i = 1, · · · , p. Let α̂1 be the optimal span

parameter for the most significant predictor at the first step. In the following steps,

the span parameter is chosen to be the maximum value between 0.2 and the power

of α̂1, i.e., α̂d1, where d is the number of predictors selected into the model and is up

to 4. This is a simple rule to consider cubic neighborhoods from multi-dimensional

predictors and use the same α̂1 value for all predictors added into the model. For

instance, assume we have α̂1 = 0.8 and d = 3. We will use α̂3
1 = 0.512 to define a

neighborhood when we estimate g(x) for any given value x in the 3-dimensional space

R3. More specifically, we use the amount of 0.512n observations around x to estimate

g(x), where Euclidean distance defines the neighbor points around x. This amount
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of neighbor points will further be weighted by a multivariate kernel functin, e.g., a

tricube kernel in R3, according to their Euclidean distance to x. An appropriately

chosen span parameter and a small number of predictors, i.e., d ≤ 4, help prevent

overfitting of the nonparametric model.

1.3.4 Predictive model for subpopulation

We fit predictive models for the treatment and the control groups separately after

selecting significant predictors for these two groups respectively. Let Xtrt be the

significant predictors for the treatment group and Xcontrol be the significant predictors

for the control group. Since it is possible that either Xtrt or Xcontrol is ∅, we define a

subset of the sample space X in three different ways.

1. Xtrt 6= ∅, but Xcontrol = ∅.

The subpopulation is defined as

S = {Xtrt ∈ X : ĝtrt(Xtrt) > Ȳtrt}.

2. Xtrt = ∅, but Xcontrol 6= ∅.

The subpopulation is defined as

S = {Xcontrol ∈ X : ĝcontrol(Xcontrol) < Ȳcontrol}.

3. Both of Xtrt and Xcontrol are 6= ∅.

Let X = (Xtrt,Xcontrol). The subpopulation is defined as

S = {X ∈ X : ĝtrt(Xtrt)− ĝcontrol(Xcontrol) > Ȳtrt − Ȳcontrol}.

Patients, whose covariates values are within the subset S such defined, correspond to

a subpopulation with enhanced treatment effects. These patiens will benefit the most

from the treatment and we should design a treatment regime to specifically assign

them the treatment.
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1.4 Property of local regression

In this section we provide properties of local regression after we select d variables,

where d is the number of significant predictors identified by the nonparametric variable

selection and d � p. We first show that the local function estimate ĝ(x) is linear in

Y = (Y1, · · · , Yn)t. Recall the nonparametric model

yi = g(xi) + εi .

Suppose x = (x1, · · · , xd)t is a point in Rd, where we want to estimate g(x). Given

the observed data {Xij}i=1,··· ,n,j=1,··· ,d, let

Xx =


1 X11 − x1 · · · X1d − xd
1 X21 − x1 · · · X2d − xd
...

...
...

1 Xn1 − x1 · · · Xnd − xd


be a matrix centered at x and B = αId be the bandwidth matrix with α as the

smoothing parameter. We consider LOESS as a class of kernel-type nonparametric

regression estimators, which is generally studied in Fan and Gijbels [1996]. Given a

kernel function K(u), for example, the tricube kernel,

W (u) =

(1− |u|3)3, if |u| ≤ 1;

0, otherwise

we define KB(u) =
1

|B|
K(B−1u). Furthermore let Wx = diag{KB(Xi − x)} denote

the n×n diagonal matrix of weights where Xi = (Xi1, · · · , Xid)
T . When we use local

linear estimate, the estimated function ĝ(.) has a linear form with an intercept β0 and

a slope vector β1.

Lemma 1 Let x = (x1, · · · , xd)T be a point in Rd. Then, ĝ(x) is a linear combination

of the response Y. That is, there exists a vector l(x) = {li(x)}ni=1 such that ĝ(x) =∑n
i=1 li(x)Yi. Furthermore l(x) has the following representation

l(x)T = eT1 (XT
xWxXx)−1XT

xWx,
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where e1 = (1, 0, · · · , 0)T is the d× 1 unit vector.

Proof The solution of the coefficients β = {β0, β1} corresponds to minimizing∑n
i=1{Yi − β0 − βT1 (Xi − x)}2KB(Xi − x). This is equivalent to solving a weighted

least-squares problem. The resulting coefficient estimates have the following form

β̂ = (XT
xWxXx)−1XT

xWxY.

The local linear estimate at x is just the intercept β̂0. If we use the matrix represen-

tation, the local linear estimate at x is

ĝ(x) = (1, 0, · · · , 0)T (XT
xWxXx)−1XT

xWxY

= eT1 (XT
xWxXx)−1XT

xWxY

In the following, we want to prove the asymptotic consistency of a LOESS es-

timate at a fixed point x = (x1, · · · , xd)t. Let f be the d-variate marginal density

function of X. We obtain the following theorem about the consistency of the local

regression estimate. The basic idea is that, the tricube kernel function that we use

and the smoothing parameter selected by AICC satisfy the regularity assumptions

for the general theorem of nonparametric estimation. The regularity assumptions

also guarantee that both the bias and variance of ĝ(x) go to zero as the sample size

n→∞.

Assume the following regularity conditions [Ruppert and Wand, 1994].

Assumption 1 The kernel K is a compactly supported, bounded kernel such that∫
uuTK(u)du = µ2(K)I, where µ2(K) 6= 0 is scalar and I is the d×d identity matrix.

In addition, all odd-order moments of K vanish, that is,
∫
ul11 · · ·u

ld
d K(u)du = 0 for

all nonnegative integers l1, · · · , ld such that their sum is odd.

Assumption 2 The point x is in the support of the density function f , i.e., supp(f).

At x, f is continuous and continuously differentiable and all second-order derivatives

of g are continuous. Recall that σ2 is the variance of the error term. Also, f(x) > 0

and σ2 > 0.
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Assumption 3 The sequence of bandwidth matrices B is such that n−1|B|−1 and

each entry of BBT tends to zero as n → ∞ with BBT remaining symmetric and

positive definite. Also, there is a fixed constant L such that the condition number of

BBT (i.e., the ratio of its largest to its smallest eigenvalue) is at most L for all n.

Lemma 2 [Ruppert and Wand, 1994] Let x be a fixed element in the interior of

supp(f). Assume that Assumption 1-3 hold. Then,

E{ĝ(x)− g(x)|X1, · · · ,Xn} =
1

2
µ2(K)tr{H(x)BBT}+ op{tr(BBT )},

where H(x) is the Hessian matrix of g at x,

and

V ar{ĝ(x)|X1, · · · ,Xn} =
1

n|B|
R(K)

σ2

f(x)
{1 + op(1)},

where R(K) =
∫
K2(u)du.

Theorem 1.4.1 (Consistency) Assume that the three regularity assumptions hold.

Then at each continuous point x in the interior of the support of the density function

f , the LOESS estimator ĝ(x) is asymptotically unbiased and consistent, i.e., for each

ε > 0,

lim
n→∞

P (|ĝ(x)− g(x)| > ε) = 0

Proof To prove Theorem 1.4.1 consider the conditional mean squared error of ĝ(x),

MSE(ĝ(x)|X1, · · · ,Xn) = V ar(ĝ(x)|X1, · · · ,Xn) + (Bias(ĝ(x)|X1, · · · ,Xn))2.

According to Lemma 1.4 we have

Bias(ĝ(x)|X1, · · · ,Xn) =
1

2
µ2(K)tr{H(x)BBT}

=
1

2d
µ2(K)tr(BBT )

d∑
i=1

∂2g

∂x2i
→ 0 as n→∞,
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since tr(BBT )→ 0 if each entry of BBT tends to zero as n→∞. Thus the LOESS

estimator ĝ(x) is asymptotically unbiased. Similarly,

V ar(ĝ(x)|X1, · · · ,Xn) =
1

n|B|
R(K)

σ2

f(x)
→ 0 as n→∞.

Hence, ĝ(x) is consistent.

1.5 Results

1.5.1 Simulation examples

We use data simulated from a simplified yet realistic clinical trial to demonstrate

our procedure. The data is from an open challenge of data analysis posted online by

Eli Lily & Company’s statistical group. It consists of n = 322 patients, each with

a response Y for the clinical outcome and 99 continuous predictors X1, X2, ..., X99.

There is another treatment index variable indicating whether a patient received an

active treatment or placebo, as randomly assigned at the beginning of the trial. There

are two data sets generated by two different response models. In the first data set

Y only depends on the predictor X19 and the ideal subpopulation with enhanced

treatment effect is X19 > −0.22. In the second data set, Y depends on two predictors

X30 and X43 and the ideal subpopulation with enhanced treatment effect is X30 >

−0.42 and X43 > −0.29.

In our exploratory data analysis we find that some predictors have extreme values

which may dramatically affect the model fitting. Therefore, we apply a 5IQR rule

(5 times interquartile range) to detect possible outliers and exclude them from the

following analysis. For the first data set we identify X19 as the most significant

predictor in the treatment group but no significant predictor in the control group.

Figure 1.3 shows that X19 can be clearly identified from the LOESS fit with a very

small p-value, less than 10−5, but it becomes insignificant in a linear model for Y . In

addition, if we consider both the treatment and the control arms and fit a combined

linear model with X19 and the treatment variable and their interaction, then only a
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main treatment effect is significant but not X19 nor the interaction. These results

indicate that a linear model is not able to identify any significant predictors for the

clinical response.
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Figure 1.3. Comparison of variable selection between simple linear regres-
sion (SLR) and LOESS. The p-values are obtained by SLR (left panel)
and LOESS (right panel) from the treatment group of the first data set.
The predictive covariate X19 is marked in both plots but is only significant
according to LOESS.

Applying our method in the first data set, we select one predictor, X19, for the

treatment group. The span parameter is chosen as α = 0.2 according to the AICC

criterion (1.1). No significant predictor is selected for the model of the control group.

Figure 1.4 shows a plot of nonparametric predictive model for the response in the

treatment group. The curve represents the predicted LOESS function versus X19,

with the dashed horizontal line as the sample mean of Y in the treatment group.

Whenever the LOESS curve crosses the horizontal line with large values, it defines a

subpopulation with enhanced treatment effect.

As shown in Figure 1.4, we identify subpopulations with enhanced treatment ef-

fects according to S = {Xtrt ∈ X : ĝtrt(Xtrt) > Ȳtrt}. To stabilize the prediction

results, we further apply a refinement procedure to validate or discard the identified

subpopulations. Specifically, in this example we first construct a number of nonover-

lapping subpopulation intervals. For each nonoverlapping interval, if it contains a

small number of observations (less than 4) or the length of the interval is small (less
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Figure 1.4. Subpopulation identification plot of the first data set in a
zoomed-in region not including large values of the predictor. The curve
represents the predicted LOESS curve, with the dashed horizontal line as
the sample mean of Y in the treatment group.
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than 0.1), we discard the corresponding interval. Otherwise we retain this interval.

Consequently, the subpopulation with enhanced treatment effect identified by our

procedure is X19 ∈ [−0.23, 0.49] and X19 ∈ [0.63, 10.85] for the first data set. A

careful examination of Figure 1.4 actually indicates that the fitted curve is above the

reference line for almost all values of X19 ≥ −0.23. Therefore, we may use the whole

set X19 ≥ −0.23 as the subpopulation.

For the second data set we identify X30 as the most significant predictor with a

p-value 3.67 × 10−5 for the treatment group at the first step of variable selection.

The span parameter is chosen as α = 0.5 according to the AICC criterion (1.1).

The predictor X43 has a p-value 0.00212 at the first step of variable selection but

it becomes insignificant with a p-value 0.23 at the second step of variable selection,

after X30 is already in the model. Therefore, we only select one predictor X30 for

the treatment group. No significant predictor is selected for the model of the control

group. We identify a subpopulation as X30 ≥ −0.37.

For these simulated studies, we know the ideal subpopulations hence use the truth

to assess our method and compare it with the CART approach. Table 1.1 shows

the prediction errors for the first data set, where the identified subpopulation of

X19 ∈ [−0.23, 0.49] and X19 ∈ [0.63, 10.85] is compared to the ideal subpopulation

defined byX19 > −0.22. We have an overall accuracy of 95% (Sensitivity=94%, Speci-

ficity=95%). If we use the whole set X19 ≥ −0.23 to define the subpopulation, as

indicated in Figure 1.4, then we obtain an overall accuracy of 98% (Sensitivity=100%,

Specificity=95%). These results are comparable to that of CART, as provided online

with the simulated data. Table 1.2 shows the prediction errors for the second data

set. The identified subpopulation by our procedure is compared to the ideal subpopu-

lation defined by X30 > −0.42 and X43 > −0.29. Table 1.2 also reports the prediction

errors of the CART method. Although we only select one predictor X30 for the second

data set, the performance of our procedure is promising with an overall accuracy of

82% (Sensitivity=94%, Specificity=70%), whereas the CART model has an overall

accuracy of 83% (Sens=100%, Spec=66%). Our nonparametric method with few se-
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lected variables provides good results of subpopulations in these examples, compared

to both the truth and a competing method.

To assess robustness of our proposed procedure we further implement 10-fold cross

validation. We randomly divide the data set into 10 subsets/folds, where nine folds

of the data form a training set to select variables and fit a model, and the remaining

one fold serves as a test set for prediction errors. We repeat the process 10 times with

each of the 10 folds as the test set. The predictions of whether an observation belongs

to the subpopulation are then combined together for these 10 simulations. Table 1.3

shows the results of cross validation for the first data set. Our proposed method

has an overall accuracy of 92% (Sensitivity=89%, Specificity=95%), indicating good

performances in replications. Table 1.4 shows the prediction errors of the second

data set using 10-fold cross validation. The overall accuracy of 79% is lower than

84% when we use all data to fit the predictive model (shown in Table 1.2). However,

the result of 10-fold cross validation shows that the procedure is reliable in multiple

replicates of the simulation.

1.5.2 Application in a pharmacogenomics example

We implement our method in a pharmacogenomics study of bortezomib in multiple

myeloma [Mulligan et al., 2007]. Multiple myeloma is an incurable malignancy and

bortezomib is the first therapeutic proteasome inhibitor tested in humans for treating

relapsed multiple myeloma. As the new active agent bortezomib is a therapeutic

choice in addition to the standard chemotherapy, there is a need to reliably identify

the patient population that will mostly benefit from the therapy. The data set of

this study is available at Gene Expression Omnibus (GSE9782). There are four

clinical trials conducted in multiple centers in the United States, Canada, Europe,

and Israel from June 2002 to October 2003, denoted as trial 024, trial 025, trial

039, and trial 040, with a total of 264 patients. The clinical outcome is a five-level

variable denoting a patient response after a therapy, ranging from progressive disease,
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Table 1.1
Subpopulation prediction table of the first data set.

Ideal

In S Not in S Total

Identified
In S 148 8 156

Not in S 9 157 166

Total 157 165 322

Sensitivity: 94%

Specificity: 95%

Positive Predictive Value: 95%

Negative Predictive Value: 95%

Accuracy: 95%
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Table 1.2
Comparison of subpopulation prediction table of the second data set. The
upper panel is the result from our method, and the lower panel is the result
from Eli Lily’s regression tree model.

Ideal

In S Not in S Total

Identified
In S 149 49 198

Not in S 10 114 124

Total 159 163 322

Sensitivity: 94%

Specificity: 70%

Positive Predictive Value: 75%

Negative Predictive Value: 92%

Accuracy: 82%

Ideal

In S Not in S Total

Identified
In S 159 55 214

Not in S 0 108 108

Total 159 163 322

Sensitivity: 100%

Specificity: 66%

Positive Predictive Value: 74%

Negative Predictive Value: 100%

Accuracy: 83%
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Table 1.3
Subpopulation prediction table of the first data set by using 10-fold cross
validation.

Ideal

In S Not in S Total

Identified
In S 140 8 148

Not in S 17 157 174

Total 157 165 322

Sensitivity: 89%

Specificity: 95%

Positive Predictive Value: 95%

Negative Predictive Value: 90%

Accuracy: 92%

Table 1.4
Subpopulation prediction table of the second data set by using 10-fold
cross validation.

Ideal

In S Not in S Total

Identified
In S 135 45 180

Not in S 24 118 142

Total 159 163 322

Sensitivity: 85%

Specificity: 72%

Positive Predictive Value: 75%

Negative Predictive Value: 83%

Accuracy: 79%
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no change, minimal response, partial response to complete response. The potential

predictors include 44,928 gene expression values.

In the clinical trials, most patients (169) received the new treatment bortezomib

but only 70 patients in trial 039 received chemotherapy as controls. Therefore, in

this study we focus on analysing only the treatment group, i.e., the novel therapy

bortezomib. The goal here is to construct predictive models for the clinical response

in the treatment group and identify patient subpopulations who respond the best to

the treatment, instead of comparing the treatment and the control groups.

In the exploratory study of Mulligan et al. [2007], the five-category clinical re-

sponse was simplified to two levels: progressive disease (PD) and response (R), ex-

cluding no change (NC) patients. Since the data is high dimensional with 44,928

genes but 264 patients, they applied a two-stage gene filtering method in which only

the 9200 gene probe sets with the strongest between-sample variance relative to their

in-sample replicate variance were retained. Among the 9200 genes only the top 100

differentially expressed genes with respect to clinical response (PD vs. R) by t-tests

were used as predictors in the predictive model. The data were also divided into a

training data set for trials 025 and 040, and a test data set for trial 039. Trial 024

was not used in the analysis due to a very small number of patients (7) with evalu-

able response. A linear predictor classifier [Wright et al., 2003] was developed on the

training data and was used to classify each patient to be either PD or R in the test

data. The classifier is based on a linear combination of the 100 predictors with each

being weighted by its t-test score.

In our procedure we use the original five-level clinical responses as the response

variable Y and encode the ordinal categories by values 1-5 such that progressive

disease (PD) is coded as 1, no change (NC) is coded as 2, minimal response (MR) is

coded as 3, partial response (PR) is coded as 4 and complete response (CR) is coded

as 5. We use the same gene filtering method of Mulligan et al. [2007] to keep only the

top 100 differentially expressed genes for further analysis. We also divide the data
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into a training data for trials 025 and 040 and a test data for trial 039. There are 91

observations in the training set and 71 in the test set.

We first conduct the nonparametric forward variable selection on the training data

to identify a small number of significant genes. Three genes are selected by the for-

ward variable selection when we set the significance level at 0.05. At the first step gene

219233 s at is selected with p-value 8.83× 10−6 from the F -test. At the second step

gene 212240 s at is selected with p-value 0.0076 from the F -test. At the third step

gene 200017 at is selected with the corresponding p-value of the F -test to be 0.042.

Gene 219233 s at, known as gasdermin B, may play a role as secretory or metabolic

product involved in secretory pathway. Gene 212240 s at, known as phosphoinosi-

tide 3-kinase regulatory subunit 1, has several important biological functions and is

necessary for the insulin-stimulated increase in glucose uptake and glycogen synthesis

in insulin-sensitive tissues. Gene 200017 at, known as ribosomal protein S27a, is a

component of the 40S subunit of the ribosome. Identification of these genes provides

a hint for further studies in myeloma and the treatment effect of bortezomib. They

will also be used to define subpopulations that benefit from bortezomib.

A predictive model with the three genes is fitted by LOESS. The span parameter

is chosen to be 0.8 at the first step of the variable selection according to AICC .

The span parameter is about 0.6, as the square of 0.8, at the second step and 0.5

(0.83 = 0.512) at the third step. The predictive model is used to predict patient

response in the test data. If the predicted clinical response value is less than or equal

to 2 it is classified as nonresponse (NR), which includes both PD and NC, otherwise

it is classified as response (R), which includes MR, PR and CR. A subpopulation can

be defined as S = {Xtrt ∈ X : ĝtrt(Xtrt) > 2}, which corresponds to the patient

subgroup that responds to the bortezomib treatment.

As demonstration, Figure 1.5 shows two plots of the nonparametric LOESS fit

for patient response in the test data, one projected on the two-dimensional space

consisting of the first predictor 219233 s at and the response Y , the other projected

on the three-dimensional space consisting of the first two predictors, 219233 s at and
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Figure 1.5. Predictive model and subpopulation identification of the
bortezomib data set. Left: Only the first significant predictor is used
in the plot, although three predictors are selected. The patients who are
responders are labelled by circles and the patients who are non-responders
are labelled by crosses. The curve represents the LOESS curve, but pro-
jected on the first predictor, with the dashed horizontal line as the cutoff
value 2. Right: The first two significant predictors are used to show the
LOESS curve projected on the three-dimensional space.
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Table 1.5
Comparison of prediction table of PD vs. R for the bortezomib data in
the pharmacogenomics example. The upper panel is the result from our
method and the lower panel is the result from Mulligan et al. [2007].

Actual

R PD Total

Predicted
R 37 13 50

PD 1 2 3

Total 38 15 53

Sensitivity: 97%

Specificity: 13%

Positive Predictive Value: 74%

Negative Predictive Value: 67%

Accuracy: 74%

Actual

R PD Total

Predicted
R 35 10 45

PD 3 5 8

Total 38 15 53

Sensitivity: 92%

Specificity: 33%

Positive Predictive Value: 78%

Negative Predictive Value: 63%

Accuracy: 75%
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212240 s at, and Y . In the two-dimensional plot, the patients who are responders are

labelled by circles and the patients who are non-responders (NC and PD) are labelled

by crosses. The dashed horizontal line displays the cutoff value 2. The patient

subpopulation is defined to be {X : ĝ(X) > 2}, where ĝ(.) is the predictive LOESS

function. We compare the prediction result of PD vs. R based on our predictive model

on the test data with the result from Mulligan et al. [2007] as shown in Table 1.5. In

summary, we identify 37 out of the 38 patients who are responders to the bortezomib

treatment and only one patient, who is a responder to the treatment, is incorrectly

classified as progressive disease (PD). Two out of the 15 patients who have PD to the

treatment are correctly classified, but the other 13 patients are incorrectly classified

as responders to the treatment. The overall accuracy of our prediction result is

74%, which is comparable to 75% of Mulligan et al. [2007]’s result. Thus, with a

nonparametric model a small number of predictors can achieve the same prediction

power as a linear model with a much larger number of predictors (100). Applying to

a new patient our model will predict whether or not it has a more pronounced benefit

from the bortezomib treatment.

1.6 Discussion

We perform a nonparametric forward variable selection procedure to identify sig-

nificant predictive covariates among a large set of potential predictors which may

include standard clinical and laboratory features and whole genome gene expression

measurements. Forward variable selection is merely a heuristic procedure but it has

the advantage of easy implementation in practice. It is not limited by high dimen-

sional predictors because it starts with a constant model with only an intercept and

will end up with selecting a small number of significant predictors. The local re-

gression method, LOESS, is computationally efficient, especially when we consider a

small number of significant predictors (≤ 4). In practice we recommend checking for

outliers before doing any analysis. We also need to pay attention to fitting a local
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regression in the boundary of data. While local linear regression has been shown to

provide a simple and effective way of modeling slopes in the boundary region and

reduce bias compared to other kernel estimates (e.g., Nadaraya-Watson estimate)

[Hastie and Loader, 1993], the mean squared error of the local linear regression may

still be big when data are sparse and of high curvature in the boundary. Fortunately,

the boundary effect is not severe in our examples. In general, visualization of the

data and their LOESS fitting in the boundary is always recommended.

While variable selection helps to build a predictive model based on a small num-

ber of significant predictors, an alternative approach is to consider that interesting

features of high-dimensional data are retrievable from low-dimension projections. In

the next chapter, we explore dimension reduction techniques in analysis of high di-

mensional but low sample size data.
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2. EXTENSION OF SLICED INVERSE REGRESSION FOR HIGH

DIMENSIONAL BUT LOW SAMPLE SIZE DATA

2.1 Introduction

High dimensional data analysis often suffers from the curse of dimensionality [Bell-

man, 1961], because any given size of data becomes sparse as the dimension increases.

In fact, the amount of data needed for an appropriate inference, either estimation or

prediction, grows exponentially with the dimension of variables. In practice, a sample

size is often comparable to or even less than the dimension of variables. Therefore,

direct application of many traditional statistical methods becomes problematic when

the dimension is large. In addition, large sample theory does not hold any more when

we have a relatively small sample size. We have discussed variable selection methods

in the previous chapter. As an alternative to variable selection methods, dimension

reduction techniques can be employed, which assume that high dimensional features

can be extracted from their low dimensional subspace. We are studying dimension

reduction methods in this chapter. Again, suppose that we have a response variable

Y , and a p-dimensional predictor X = (X1, . . . , Xp)
T , where p is a large number.

Consider a general regression model,

Y = f(β1X, . . . , βdX, ε), (2.1)

where the β’s are unknown row vectors, ε is an error term independent of X, and

f is an arbitrary unknown function on Rd+1. In practice, d is often a much smaller

number compared to the dimension p. If Model 2.1 holds, the projection of the p-

dimensional predictor X onto a d-dimensional subspace, i.e., β1X, . . . , βdX, captures

all the information we need about predicting the response variable Y , or equivalently,

the distribution of Y is independent of X given β1X, . . . , βdX. For many problems of
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interest, for example, classification and subpopulation identification, the dimension

reduction directions, β’s, are more important than the actual function f(.). We

do not need to estimate the general function f(.) but can still obtain a direction

for X to predict Y . In the pharmacogenomics example which we will revisit in the

application section of this chapter, we will conduct a classification analysis, to predict

response versus nonresponse patients, where we only need good estimators of β’s. We

can also incorporate dimension reduction techniques in identifying subpopulation.

Accordingly, how to obtain the estimates of β’s is the key issue of dimension reduction

methods. For simplicity, we often work on the standardized scale of X, denoted as

Z = Σ
−1/2
x (X− E(X)). Model 2.1 can be rewritten as

Y = f(η1Z, . . . , ηdZ, ε), (2.2)

where ηi = βiΣ
1/2
x , i = 1, . . . , d denotes the standardized dimension reduction direc-

tion. Note that Model 2.1 does not specify the functional form of f , which can be a

very general function of the predictors.

In order to find β’s in (2.1), several dimension reduction methods have been de-

veloped since early 1990s. Li [1991] first proposed Sliced Inverse Regression (SIR)

which conducted an eigenvalue decomposition of the conditional covariance matrix

cov(E(X|Y )). A detailed review of Li [1991]’s SIR can be found in Section 2.1.1. Fol-

lowing Li [1991]’s work, Cook and Weisberg [1991] proposed Sliced Average Variance

Estimation (SAVE), which used the second order moment var(X|Y ) instead of the

first order moment E(X|Y ). Li [1992] proposed principal Hessian direction (pHd),

where the dimension reduction directions were estimated through finding the eigen-

structure of a sample Hessian matrix. Bura and Cook [2001] proposed Parametric

Inverse Regression (PIR) which assumed a multivariate linear model for the p in-

verse regressions and fitted smooth parametric curves. Cook and Ni [2005] developed

Inverse Regression Estimation (IRE) by minimizing a quadratic discrepancy function.

In addition, the Sufficient Dimension Reduction (SDR) theory was established

(Cook [1994a],Cook [1998]), which introduced the concept of sufficiency in dimension

reduction methods. With respect to regression problems, a reduction R(X) of the



35

p-dimensional predictor X is sufficient if the conditional distribution of Y given X

is the same as the distribution of Y given R(X). Hence, SDR seeks to replace the

p-dimensional predictor vector with its projection onto a subspace of the predictor

space without loss of information on Y |X. In terms of statistical terminology, SDR

is to find a d-dimensional subspace S such that

Y ⊥ X|PSX, (2.3)

where ⊥ indicates independence, and PS represents a projection operator in the stan-

dard inner product. The projection subspace S satisfying (2.1) is called a dimension

reduction subspace for Y |X. There exist many dimension reduction subspaces satis-

fying (2.1), and the intersection of all these subspaces also satisfies (2.1) under mild

conditions [Cook, 1996]. Such intersection is defined as the central subspace, denoted

as SY |X, and its dimension, denoted as d = dim(SY |X). The central subspace can be

interpreted as the unique minimal subspace that preserves all the original informa-

tion of Y |X. Hence, the estimation of the central subspace becomes the main interest

of the SDR theory. We will focus on extension of Li [1991]’s dimension reduction

method in this dissertation, which is a simple and effective approach to obtain the

central subspace SY |X.

2.1.1 Sliced inverse regression

Li [1991] introduced Sliced Inverse Regression (SIR) as an effective dimension

reduction method of estimating the central subspace. Unlike many traditional statis-

tical methods where the response variable Y is regressed against the predictor X, SIR

considers the opposite way by regressing X against Y . As Y varies, E(X|Y ) forms

an inverse regression curve centered at E(X), and the main idea of SIR is to inves-

tigate the trajectory of the inverse regression curve. Before we describe the method

in detail, it is necessary to introduce the following condition which is a fundamental

probabilistic assumption required by SIR.
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Condition 1 (Condition 3.1; Li [1991]) For any b in Rp, the conditional expectation

E(bX|β1X, . . . , βdX) is linear in β1X, . . . , βdX; that is, there exist some constants

c0, c1, . . . , cd, E(bX|β1X, . . . , βdX) = c0 + c1β1X + · · ·+ cdβdX.

Condition 1 is commonly known as the linearity condition, which is satisfied when

the distribution of X is elliptically symmetric, for example, the normal distribution

[Li, 1991]. It is not a severe restriction because most low dimensional projections of

high dimensional data are close to normal [Hall and Li, 1993].

Theorem 2.1.1 (Theorem 3.1; Li [1991]) Under Model 2.1 and Condition 1 the

centered inverse regression curve E(X|Y )−E(X) is contained in the linear subspace

spanned by βiΣX(i = 1, . . . , d).

Corollary 1 (Corollary 3.1; Li [1991]) Under Model 2.2 and Condition 1 the stan-

dardized inverse regression curve E(Z|Y ) is contained in the linear subspace generated

by the standardized dimension reduction directions ηi(i = 1, . . . , d).

Corollary 1 indicates that any vector that is orthogonal to the space spanned by

η1, . . . , ηd is a degenerate direction for cov(E(Z|Y )). Therefore, we can use the eigen-

vectors of the covariance matrix cov(E(Z|Y )) to estimate the standardized dimension

reduction directions.

Remark 1 Corollary 1 implies that eigenvectors of cov(E(Z|Y )) is contained in the

central subspace SY |Z. As a result, we are able to obtain a proper subset of the central

subspace, which still yields important information about predicting the response Y .

Cook [2004] further assumed a coverage condition so that the subspace spanned by

E(Z|Y ) was equivalent to SY |Z. Cook [2004] also pointed out that this condition was

common in regression analysis based on SIR.

The implementation of the SIR algorithm on the standardized Z scale is as follows.

1. Obtain the standardized Z scale such that Z = Σ̂
−1/2
x (X − X̄), where Σ̂x is the

sample covariance matrix of X.
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2. Divide range of Y into H slices as equally as possible. Let nh be the number of

observations in slice h.

3. Within each slice, compute the sample mean of Z, which is denoted as Z̄h =

n−1h
∑

(i)∈sliceh Z(i).

4. Compute the weighted covariance matrix denoted as γ̂ for the slice means of Z,

whose weights are determined by the slice sizes:

γ̂ = n−1
H∑
h=1

nhZ̄hZ̄
T
h .

5. Conduct the eigenvalue decomposition of γ̂, and record its eigenvalues and eigen-

vectors.

6. The d eigenvectors associated with the largest d eigenvalues are the solution to

the standardized dimension reduction directions, η̂1, . . . , η̂d. The estimates of the

dimension reduction directions β1, . . . , βd can then be obtained by transforming

them back to the X scale, i.e., β̂i = Σ̂
−1/2
x η̂i, i = 1, . . . , d.

Theorem 2.1.1 also implies that we can obtain the estimates of the dimension

reduction directions directly instead of through the standardized Z scale. Since

cov(E(X|Y )) is degenerate in any direction that is orthogonal to βiΣx, i = 1, . . . , d,

we can solve the following generalized eigenvalue decomposition problem,

Γ̂βi = λiΣ̂xβi, i = 1, . . . , d , (2.4)

where Γ̂ = n−1
∑h

y=1 ny(X̄y − X̄)(X̄y − X̄)T is the empirical covariance matrix for

the slice means of X weighted by the slice sizes, λi, i = 1, . . . , d are the largest d

eigenvalues of Γ̂ relative to Σ̂x, and βi, i = 1, . . . , d are the d eigenvectors associated

with λi, i = 1, . . . , d.
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2.1.2 High dimensional cases

SIR was originally designed to work only for the classical data format when the

sample size n is larger than the predictor dimension p. Specifically, SIR uses sam-

ple covariance matrices and requires standardization of the predictors X. In case

of high dimensional analysis when the sample size n is less than the dimension p,

the sample covariance matrix of X as a p × p high dimensional matrix is not of full

rank and neither a consistent estimator of the true population covariance matrix of

X. Recently, work has been done to overcome the difficulties of SIR for high dimen-

sional analysis. Zhong et al. [2005] proposed a regularized SIR (RSIR) approach by

shrinking the sample covariance matrix of X towards a p × p identity matrix. This

new covariance estimate of X becomes nonsingular, which is then used to substitute

the sample covariance matrix of X to solve the generalized eigenvalue decomposition

problem. Li and Yin [2008] proposed another regularized SIR approach by solving

a constrained optimization problem based on the least squares formulation of SIR.

Specifically, their objective function is a combination of an equivalent form of the least

squares function derived from the original predictor scale and a L2 type penalty term,

and the basis estimates of the central subspace are obtained through alternating least

squares. An L1 type penalty term is further incorporated with the L2 type penalty

term for the purpose of achieving basis estimates and variable selection simultane-

ously. More discussions about these two methods can be found in Section 2.2. Wu

et al. [2008] proposed a nonlinear SIR (kSIR) method by using kernel methods and

regularization techniques. Essentially the kSIR method maps the original predictor

space to a possibly infinite-dimensional Hilbert space by exploiting a Mercer kernel.

The original SIR method by Li [1991] can then be applied on the mapped predictors

to obtain the dimension reduction directions. In addition, they also regularize the

sample covariance matrix of the mapped predictors towards the identity matrix due

to a possibly ill-conditioning problem in practice.
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2.1.3 Basic ideas of our proposed method

Motivated by Cook [2004] and Li and Yin [2008], our proposed method is de-

rived on the basis of least squares formulation of SIR and we estimate the dimension

reduction directions through alternating least squares. Bernard-Michel et al. [2008]

showed that Li and Yin [2008]’s regularized SIR estimate was either zero or did not

exist in practice. To overcome the issue, we start from the least squares function on

the original X scale instead of the standardized Z scale proposed by Cook [2004].

Moreover, we modify the L2 type penalty term as suggested by Bernard-Michel et al.

[2008]. We will introduce our proposed method in detail in the next section.

Remark 2 For a common research problem there are often multiple approaches for

a solution. In many cases, one approach is more general than the others in terms of

fewer assumptions, so that the approach can be applied in an extended scenario. What

we are doing here is one of the examples that demonstrates the general applicability

of the least squares method. Specifically, in situations where the sample size n is

larger than the variable dimension p, our proposed alternating least squares method

is equivalent to Zhong et al. [2005]’s RSIR. However, when the sample size n is less

than the variable dimension p, our method is more general than Zhong et al. [2005]’s

RSIR, because we overcome the limitation that the regularized covariance estimate is

a poor estimate of the population covariance matrix.

Remark 3 The equivalence between the alternating least squares method and the

original SIR [Li, 1991] is under a good condition that the covariance matrices, both

the original data covariance matrix and the conditional covariance matrix, are well-

conditioned and well-estimated. This is not the case when we have n < p. We claim

that the alternating least squares method is more general. In fact, the matrix de-

composition method cannot be applied when we have small sample sizes, because the

standard estimate of a population covariance matrix is not consistent. The proposed

alternating least squares method is able to avoid the estimation of the conditional co-
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variance matrix, but use iterative least squares regression for the bases of the reduced

dimension space.

2.2 Extended sliced inverse regression for high-dimensional data

In this section, we start with a discussion of extending SIR for high dimensional

but low sample size data through matrix decomposition. We then review the least

squares formulation of SIR proposed by Cook [2004] and introduce our proposed

method in detail. After that, we discuss strategies of selecting two important param-

eters for our proposed method, including the tuning parameter and the structural

dimension.

2.2.1 Matrix decomposition methods for high dimensional data

Recall that the central subspace SY |X is estimated by SIR through matrix de-

composition. Formula (2.4) shows that the estimated dimension reduction directions

correspond to the eigenvectors associated with the largest d eigenvalues of Γ̂ relative

to Σ̂x, where Γ̂ is the sample covariance matrix for the slice means of X weighted

by the slice sizes, and Σ̂x is the sample covariance matrix of X. For a classical data

format when n > p, the sample covariance matrix is often used to estimate the popu-

lation covariance matrix. It is shown that the sample covariance matrix is a consistent

estimate of the population covariance matrix and has an optimal convergence rate

of n−1/2 when the dimension p is fixed and does not depend on the sample size n.

However, the sample covariance matrix has several undesirable properties when p is

large.

1. As mentioned before, the sample covariance matrix is not of full rank when

n < p, thus its inverse does not exist.

2. Even if the sample covariance matrix is invertible, the expected value of its

inverse is a biased estimate for the theoretical inverse.
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3. Unless p/n → 0, the eigenvalues of the sample covariance matrix are more

spread out than the population eigenvalues, even asymptotically [Johnstone,

2001]. Consider a simple case where samples of size n are obtained from a

p-dimensional multivariate normal distribution with the mean vector ~µ and

the population covariance matrix as a p × p identity matrix I. Marĉenko

and Pastur [1967] showed that if p/n → c ∈ (0, 1), then the empirical dis-

tribution of the eigenvalues of the sample covariance matrix is supported on

((1−
√
c)2, (1 +

√
c)2). Thus the larger p/n, the more spread out the eigenval-

ues.

4. The sample eigenvectors are not consistent when p is large [Johnstone and Lu,

2004].

To overcome the limitation of the sample covariance matrix for high dimensional

but low sample size data, one possible approach of extending SIR is to find a better

estimate of the population covariance matrix. Ledoit and Wolf [2004] proposed a

well-conditioned estimator of the population covariance matrix when the dimension

p was relatively large, where a well-conditioned estimator was referred to that the

operation of its matrix inversion did not amplify the estimation error. Specifically,

the estimator ΣLedoit has the following form,

ΣLedoit = ρ1I + ρ2S, (2.5)

where I is the p × p identity matrix, S is the p × p sample covariance matrix, and

ρ1 and ρ2 are two positive parameters which control the amount of shrinkage of the

sample covariance matrix towards the identity matrix. Not only is this estimator

invertible when n < p, but also it is more accurate than the sample covariance matrix

asymptotically. It is also shown in Ledoit and Wolf [2004] that this estimator is an

optimal convex linear combination of the identity matrix and the sample covariance

matrix in terms of the quadratic loss when both n and p go to infinity. Zhong et al.

[2005] developed a regularized SIR (RSIR) method to overcome the singularity issue.
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Specifically, they replaced the sample covariance matrix Σ̂x with Σ̂x + sI, where s

is a prescribed nonnegative regularization parameter. It is actually a special case of

Ledoit and Wolf [2004]’s well conditioned estimator if ρ1 = s and ρ2 = 1 in (2.5).

When the sample covariance matrix Σ̂x is nonsingular, (2.4) can be modified to

the usual eigenvalue problem

Σ̂−1x Γ̂βi = λiβi, (2.6)

and this equivalent problem can be solved by many highly efficient and stable numer-

ical linear algebra algorithms. However, Σ̂x is indeed singular in the context of high

dimensional but low sample size data. Under such circumstances, the modification

from (2.4) to (2.6) is impossible and there is actually not a complete set of the eigen-

values for the original problem. In some cases, the missing eigenvalues are treated as

“infinite”. In other cases, the entire problem may be considered as poorly posed. In

order to be able to solve this problem numerically, people usually add some pertur-

bation to Σ̂x to make it nonsingular and replace the original generalized eigenvalue

problem with a nearby well posed problem. Zhong et al. [2005]’s regularized SIR

method is developed based on this technique. But how to choose the perturbation is

not an easy task and often requires some deep understanding of the problem itself.

For example, the common choice of the perturbation is to add λI to Σ̂x where λ ∈ R

is a parameter to control the degree of the perturbation. If a large λ is chosen, (2.4)

becomes much easier to solve, but the computed eigenvalues are not reliable and far

away from the original problem. On the contrary, a small λ may cause the computed

eigenvalues grow unboundedly. Therefore, the optimal λ has to be found by a suc-

cessive of numerical tests, which is computationally expensive. In analogy, how to

appropriately balance between I and S in (2.5) is found to be difficult in practice.

In addition to the type of regularized matrix estimators of Ledoit and Wolf [2004],

we can consider employing other estimation methods for a high dimensional co-

variance matrix. Bickel and Levina [2008] proposed to regularize the sample co-

variance matrix by hard thresholding, such that the resulting estimator satisfies

Thard(Σ̂x) = [σij1 (|σij| ≥ s)], where s denotes a positive hard thresholding param-



43

eter. Further, Rothman et al. [2010] proposed a class of generalized thresholding

operators for large covariance matrices, including hard thresholding [Bickel and Lev-

ina, 2008], soft thresholding, SCAD [Fan and Li, 2001], and adaptive LASSO [Zou,

2006]. In particular, if we regularize the sample covariance matrix by soft threshold-

ing, the corresponding estimator has the form Tsoft(Σ̂x) =
[
sign(σij) (|σij| − λ)+

]
,

where λ denotes a positive soft thresholding parameter. Even though Rothman et al.

[2010] have shown that the generalized thresholding of the sample covariance matrix

has good theoretical properties, for example, an optimal rate of convergence can be

achieved with respect to the spectral norm, it is not guaranteed that this covariance

estimator is positive definite, which is desirable for the generalized eigenvalue decom-

position. Rothman [2012] proposed a sparse positive definite covariance estimator

by solving a convex optimization problem. However, our simulation study indicates

that the computation of this covariance estimator is much slower than both the hard

and soft thresholdings, and the performance of the estimated dimension reduction

directions is merely comparable to that of hard or soft thresholdings.

The basis estimates of the central subspace SY |X can be obtained by substitut-

ing the sample covariance matrix of X in (2.4) with any of these high dimensional

covariance estimators. We have conducted a simple simulation study to compare the

performances between our proposed method and extended SIR through matrix de-

composition, which includes Zhong et al. [2005]’s regularized SIR and the extended

SIR through hard and soft thresholding the sample covariance matrices. We assume

that the predictors X follow i.i.d. standard normal distribution, and the response

variable Y only linearly depends on the first four predictors of X. The simulation

is repeated for 50 times, and we compute the corresponding canonical correlations

between the true and estimated projected directions for the first dimension reduction

direction. Figures 2.4 and 2.5 in Section 2.4 illustrate the canonical correlations be-

tween the estimated and true projected directions to assess the performances of the

extended SIR through matrix decomposition compared to our proposed method. It

can be seen that Zhong et al. [2005]’s regularized SIR method works similarly as our
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proposed method, whereas regularizing Σ̂x through hard or soft thresholding does

not work well. We also notice that the regularization of Σ̂x through hard or soft

thresholding fails to retain the positive definiteness in several complicated simulated

examples, thus does not work for the extension of SIR for high dimensional but low

sample size data.

2.2.2 Least squares formulation of SIR

Suppose that we have a response variable Y and a set of p predictors X =

(X1, . . . , Xp), and there are n independently and identically distributed (i.i.d.) sam-

ples of (X, Y ). Let Z denote the standardized scale of X such that Z = Σ
−1/2
x (X −

E(X)).

For simplicity, let us first consider the situation when we have the predictors

in the standardized scale Z. In the procedure of SIR, we divide the data into h

nonoverlapping slices according to the ordered values of Y . Let ~Zyj denote the jth

observation of Z in the yth slice, y = 1, . . . , h, j = 1, . . . , ny, where ny is the sample

size of the yth slice. For each observation ~Zyj, it hovers around its population mean

E(Z|y). Recall that the standardized inverse regression curve, i.e., E(Z|Y ), falls

into the central subspace SY |Z spanned by the columns of the p × d basis matrix

η = (η1, . . . , ηd). This indicates that E(Z|y) = ηρy, where ρy is a d-dimensional

column vector of coefficients. Therefore, The following model holds,

~Zyj = E(Z|y) + ~eyj

= ηρy + ~eyj ,

where ~eyj is an error term with E(~eyj) = ~0. The problem of estimating the dimen-

sion reduction directions, η, can be formulated as a least squares problem, with a

corresponding loss function as follows,

Ld(B, Cy) =
h∑
y=1

ny∑
j=1

‖~Zyj −BCy‖2 (2.7)
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over B ∈ Rp×d and C = (C1, . . . , Ch) ∈ Rd×h. The minimum solutions of B and

C are the desired η and ρ, respectively. Moreover, minimizing (2.7) is equivalent to

minimizing

L̃d(B, Cy) =
h∑
y=1

fy‖Z̄y −BCy‖2 , (2.8)

where fy =
ny
n

denotes the weight/proportion of slice y, and Z̄y denotes the average

of Z in the yth slice. In fact, we have

Ld(B, Cy) =
h∑
y=1

ny∑
j=1

‖~Zyj −BCy‖2

=
h∑
y=1

ny∑
j=1

‖(~Zyj − Z̄y) + (Z̄y −BCy)‖2

=
h∑
y=1

ny∑
j=1

‖~Zyj − Z̄y‖2 +
h∑
y=1

ny‖Z̄y −BCy‖2 ,

where the first term is a constant and the second term is proportional to (2.8). The

solution B̂ that minimizes (2.8) forms an estimate of the basis of SY |Z.

However, as mentioned before, if the sample size n is less than the variable dimen-

sion p, we cannot work on the standardized Z scale since the standardization requires

the inverse of Σx whose sample estimate Σ̂x becomes singular. Alternatively, Li and

Yin [2008] provided the least-squares formulation of SIR in the original predictor X

scale. Let β = (β1, . . . , βd) denote the p×d basis matrix of the central subspace SY |X,

which is related to η as η = Σ
1/2
x β. If we change the variable in (2.8) by substituting

Z̄y with Σ̂
−1/2
x X̄y where X̄y is the average of X in the yth slice, it leads to the following

loss function on the original X scale,

G(A,C) =
h∑
y=1

f̂y{(X̄y − X̄)− Σ̂xACy}T × Σ̂−1x {(X̄y − X̄)− Σ̂xACy} , (2.9)

where X̄ denotes the global average of X, A ∈ Rp×d, and C = (C1, . . . , Ch) ∈ Rd×h.

The solution Â that minimizes (2.9) forms an estimate of the basis of SY |X.

Further, Li and Yin [2008] derived a modified form of G(A,C):

G̃(A,C) =
h∑
y=1

f̂y‖(X̄y − X̄)− Σ̂xACy‖2 . (2.10)
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Li and Yin [2008] showed that G̃(A,C) and G(A,C) had the same minimum solution

but G̃(A,C) is easier to examine than G(A,C), as G̃(A,C) has the inverse covariance

matrix removed in its formulation.

2.2.3 Penalized alternating least squares method

Based on the least squares formulation of SIR, Li and Yin [2008] proposed an

alternating least squares method to obtain the basis estimates of SY |X when n < p.

They added a L2-type penalty τvec(A)Tvec(A) to the least squares function (2.10)

with τ as a tuning parameter and vec(.) as an operator that stacks all columns of

the matrix to a single vector. For a fixed τ , their algorithm alternates between

minimizing A and C until convergence. However, we find that there exist several

shortcomings in their method. First, Bernard-Michel et al. [2008] showed that Li

and Yin [2008]’s estimator either does not exist or is zero in theory. Second, we

argue that the equivalence between (2.9) and (2.10) does not necessarily hold when

a penalty is added. This can be illustrated in the following simple example. Suppose

x0 = argminf1(x) = argminf2(x), where f1 represents the function G in (2.9) and f2

represents the function G̃ in (2.10). After adding a penalty, e.g., g(x), we generally

do not have

argmin{f1(x) + g(x)} = argmin{f2(x) + g(x)} .

In fact, penalty in terms of norm can be considered as constrained minimization,

which is

min{f1(x)} s.t. norm(x) < τ ,

and

min{f2(x)} s.t. norm(x) < τ .

When τ is smaller than x0, these two minima may not be the same. Third, it is found

in our simulation study that the convergence rate of Li and Yin [2008]’s algorithm

tends to be extremely slow.
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Consequently, we go back to the original minimization function G(A,C) instead

of the modified form G̃(A,C) and add a new penalty term as suggested by Bernard-

Michel et al. [2008]. Specifically, our least squares objective function is

Hτ (A,C) = G(A,C) + τ

h∑
y=1

f̂y‖ACy‖2 . (2.11)

Remark 4 It is noted that Hτ is invariant to bijective transformations, i.e.,

Hτ (AM,M−1C) = Hτ (A,C) ,

for all regular d× d matrix M.

For a fixed τ , we follow the alternating least-squares idea from Li and Yin [2008]

and derive a new alternating least-squares algorithm for (2.11). Recall that

Hτ (A,C) =
h∑
y=1

f̂y{(X̄y−X̄)−Σ̂xACy}T×Σ̂−1x {(X̄y−X̄)−Σ̂xACy}+τ
h∑
y=1

f̂y‖ACy‖2 .

For the specific values of A = 0 and C = 0, we have

Hτ (0,0) =
h∑
y=1

f̂y{X̄y − X̄}T × Σ̂−1x {X̄y − X̄} .

Since Hτ (0,0) does not involve with either A or C, minimizing (2.11) is equivalent to

minA,C H̃τ (A,C) for a fixed τ , where H̃τ (A,C) = Hτ (A,C)−Hτ (0,0). We can easily
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show that by considering the difference, H̃τ (A,C), Σ̂−1x disappears from H̃τ (A,C).

Applying Kronecker product operations, we can then rewrite H̃τ (A,C) as follows.

H̃τ (A,C) =
h∑
y=1

f̂yC
T
y AT (Σ̂x + τIp)ACy − 2

h∑
y=1

f̂y(X̄y − X̄)TACy

=
h∑
y=1

f̂y{(Σ̂x + τIp)
1
2 ACy}T{(Σ̂x + τIp)

1
2 ACy)}

− 2
h∑
y=1

f̂y(X̄y − X̄)T IpACy

=
h∑
y=1

f̂y{(CT
y ⊗ (Σ̂x + τIp)

1
2 )vec(A)}T{(CT

y ⊗ (Σ̂x + τIp)
1
2 )vec(A)}

− 2
h∑
y=1

f̂y(X̄y − X̄)T (CT
y ⊗ Ip)vec(A)

=
h∑
y=1

f̂yvec(A)T (Cy ⊗ (Σ̂x + τIp)
1
2 )(CT

y ⊗ (Σ̂x + τIp)
1
2 )vec(A)

− 2
h∑
y=1

f̂y(X̄y − X̄)T (CT
y ⊗ Ip)vec(A)

=
h∑
y=1

f̂yvec(A)T (CyC
T
y ⊗ (Σ̂x + τIp))vec(A)

− 2
h∑
y=1

f̂yvec(A)T (Cy ⊗ Ip)(X̄y − X̄)

=vec(A)T (CDfC
T ⊗ (Σ̂x + τIp))vec(A)− 2vec(A)T (CDf ⊗ Ip)Ỹ ,

where ⊗ is the Kronecker product, Ỹ = vec(X̄1 − X̄, . . . , X̄h − X̄), and Df =

diag(f̂1, . . . , f̂h).

As a result, given A, the solution of C can be obtained as follows,

Ĉ = (Ĉ1, . . . , Ĉh), with

Ĉy = (AT (Σ̂x + τIp)
2A)−1AT (Σ̂x + τIp)(X̄y − X̄), y = 1, . . . , h .

Furthermore, given C, the solution of A is

vec(A) = {CDfC
T ⊗ (Σ̂x + τIp)}−1(CDf ⊗ Ip)Ỹ .
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We alternate between minimizing A and C until some convergence criterion is

satisfied. The details of implementing our penalized alternating least squares method

are shown as follows.

1. Input an initial value of A denoted as A0, the dimension d and the regularization

parameter τ .

2. At the ith iteration, i = 1, . . . :

2.1 Given Ai−1, update Ci as

Ĉ = (Ĉ1, . . . , Ĉh), with

Ĉy = (AT (Σ̂x + τIp)
2A)−1AT (Σ̂x + τIp)(X̄y − X̄), y = 1, . . . , h .

2.2 Given Ci, update Ai as

vec(A) = {CDfC
T ⊗ (Σ̂x + τIp)}−1(CDf ⊗ Ip)Ỹ ,

where ⊗ is the Kronecker product, Ỹ = vec(X̄1 − X̄, . . . , X̄h − X̄), and Df =

diag(f̂1, . . . , f̂h).

3. Repeat 2. until the difference between two successive objective function values

is negligible.

2.2.4 Tuning parameter selection

In this section we develop a strategy to select the tuning parameter τ for our new

alternating least squares method. Recall that our least squares objective function is

Hτ (A,C) = G(A,C) + τ

h∑
y=1

fy‖ACy‖2 .
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Assume the theoretic Σx and Σ−1x are known and Σ−1x can be decomposed as

Σ−1x = LTL. We can rewrite Hτ (A,C) in the following form.

Hτ (A,C) =
h∑
y=1

fy{L((X̄y − X̄)− ΣxACy)}T{L((X̄y − X̄)− ΣxACy)}

+ τ
h∑
y=1

fy‖ACy‖2

=
h∑
y=1

fy‖L((X̄y − X̄)− ΣxACy)‖2 + τ
h∑
y=1

fy‖ACy‖2

Let ζ = (ζ1, . . . , ζh), where ζy =
√
fyACy, y = 1, . . . , h. We have

Hτ (A,C) =
h∑
y=1

fy‖L((X̄y − X̄)− ΣxACy)‖2 + τ
h∑
y=1

ζTy ζy

= ‖W̃1/2(Ih ⊗ L)Ỹ − (Ih ⊗ L−T )vec(ζ)‖2 + τvec(ζ)Tvec(ζ) ,

where ⊗ is the Kronecker product, Ỹ = vec(X̄1− X̄, . . . , X̄h− X̄), W̃1/2 = D
1/2
f ⊗ Ip,

Ih is a h× h identity matrix and Df = diag(f1, . . . , fh).

This formulation is analogous to a ridge regression. More specifically, Hτ (A,C)

can be considered as a loss function corresponding to a ridge regression, where the

response variable is W̃1/2(Ih⊗L)Ỹ , and the predictor matrix is Ih⊗L−T . According

to Golub et al. [1979], a good ridge parameter λ̂ for solving the ridge regression

problem 1
n
‖y −Xβ‖2 + λ‖β‖2 can be chosen according to certain criterion, e.g., the

generalized cross validation (GCV), which is defined as

V (λ) =
1

n
‖(I−M(λ))y‖2/

[
1

n
Trace(I−M(λ))

]2
,

where M(λ) = X(XTX + nλI)−1XT .

In particular, for our ridge regression problem, λ corresponds to 1
n
τ , M(λ) corre-

sponds to S(τ), where S(τ) = (Ih ⊗ L−T )(Ih ⊗ Σx + τIph)
−1(Ih ⊗ L−1), and Iph is a

ph× ph identity matrix, and n corresponds to ph. The GCV criterion can be defined

as

GCV (τ) =
‖(Iph − S(τ))W̃1/2(Ih ⊗ L)Ỹ ‖2

ph(1− Trace(S(τ))/ph)2
.
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If Σx is decomposed as Σx = L∗L∗T , then L∗ = L−1 and L∗T = L−T . Conse-

quently, the GCV criterion can be modified as follows by simply replacing L with

L∗−1,

GCV (τ) =
‖(Iph − S(τ))W̃1/2(Ih ⊗ L∗−1)Ỹ ‖2

ph(1− Trace(S(τ))/ph)2
,

where S(τ) = (Ih ⊗ L∗T )(Ih ⊗ Σx + τIph)
−1(Ih ⊗ L∗).

In analogy, AIC and BIC can also be used to choose our tuning parameter τ ,

which are defined as

AIC = ph log(‖(Iph − S(τ))W̃1/2(Ih ⊗ L∗−1)Ỹ ‖2/ph) + 2Trace(S(τ)) ,

BIC = ph log(‖(Iph − S(τ))W̃1/2(Ih ⊗ L∗−1)Ỹ ‖2/ph) + Trace(S(τ)) log(ph) .

In our application, we use the sample covariance matrix Σ̂x to estimate Σx. We

already know that the sample covariance matrix is a bad estimate for a large pop-

ulation covariance matrix, thus it is not desirable to directly use it in the matrix

decomposition procedure for estimating the dimension reduction directions. On the

other hand, the selection of the tuning parameter τ is a relatively minor issue for

our proposed method, and we intend to use the sample covariance matrix as a sim-

ple covariance estimate here. If we conduct an eigenvalue decomposition on Σ̂x such

that Σ̂x = QΛQT , then L∗ satisfies the form L∗ = QΛ1/2. L∗−1 can be obtained by

computing the pseudo-inverse of L∗.

2.2.5 Choice of dimension for the subspace

The dimension d of the central subspace SY |X is the other important parameter to

be defined besides the tuning parameter τ . In this section we will discuss two criteria

for determining the dimension d. The dimension d is called the structural dimension

of the central subspace in the SDR theory.

Let Γ = cov(E(X|Y )) and Γ̂ as its sample estimator. Because Γ is a p× p matrix

of rank d, the smallest p− d eigenvalues of Γ should be zero. As a result, we conduct

the eigenvalue decomposition of Γ̂ and the number of nonzero eigenvalues of Γ̂, i.e.,
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d̃, can be considered as a rough estimate of the dimension d. It is obvious that if we

add an identity matrix Ip to Γ̂, d̃ is also equal to the number of eigenvalues of Γ̂ + Ip

which are greater than 1. Zhu et al. [2006] proposed a BIC-type criterion to obtain a

more accurate estimate of d, which is defined as

G(k) =
n

2

p∑
i=1+min(d̃+k)

(logν̂i + 1− ν̂i)−
Cnk(2p− k + 1)

2
, (2.12)

where k ∈ {0, 1, . . . , p− 1}, ν̂1, . . . , ν̂d̃ are the largest d̃ eigenvalues of Γ̂+Ip, and Cn is

some penalty constant. The estimated dimension d̂ is the one that maximizes (2.12)

over (0, 1, . . . , p− 1).

Alternatively, we propose a method to estimate the dimension of the subspace by

measuring the canonical correlations between the h centered sliced means of X, i.e.,

X̄1− X̄, . . . , X̄h− X̄, and β̂iΣ̂x, i = 1, . . . , d. Recall that Theorem 2.1.1 indicates that

E(X|Y ) − E(X) is a linear combination of βiΣx, i = 1, . . . , d. If the dimension d is

appropriately chosen, the largest canonical correlation between E(X|Y )−E(X) and

βiΣx, i = 1, . . . , d should be high. In practice, we substitute E(X|Y ) − E(X) and

Σx with their sample estimates respectively. Specifically, let m ∈ (1, . . . , d̃) denote

a candidate structural dimension value. After obtaining the estimated dimension

reduction directions β̂1, . . . , β̂m for a given m, we calculate the following statistic,

denoted as T ,

T = ρ1

{
(X̄1 − X̄, . . . , X̄h − X̄), (β̂1Σ̂x, . . . , β̂mΣ̂x)

}
,

where ρ1 {.} represents the first/maximum canonical correlation. Ideally, we prefer

to choose the smallest possible dimension m with a large value of T . Thus we plot T

against m to choose a proper dimension d.
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2.3 Discussion of Properties

2.3.1 Local convergence

In this section, we want to show the algorithmatic convergence, i.e., the solution

of our alternating least squares algorithm converges to the local minimum of our

objective function Hτ (A,C).

Suppose that we are now at the nth iteration such that we have obtained A(n) and

C(n). Based on our alternating least squares algorithm, we first update the solution

of C at the (n+ 1)th iteration, i.e., C(n+1). We know

Hτ (A
(n),C(n+1)) ≤ Hτ (A

(n),C(n)) , (2.13)

since C(n+1) is the least squares solution that minimizes Hτ (A
(n),C) for any C. After

updating C at the (n + 1)th iteration, we then need to update the solution of A at

the same iteration. Similarly, the following inequality holds.

Hτ (A
(n+1),C(n+1)) ≤ Hτ (A

(n),C(n+1)) , (2.14)

since A(n+1) is the solution that minimizes Hτ (A,C
(n+1)) for any A. By combining

(2.13) and (2.14), we then have

Hτ (A
(n+1),C(n+1)) ≤ Hτ (A

(n),C(n)) . (2.15)

Formula (2.15) suggests that the value of our objective function Hτ (A,C) de-

creases with each iteration and the solution of A reaches the local minimum when

the convergence criterion is satisfied.

2.3.2 Discussion of Statistical Property

Suppose that we work on the original X scale. Without loss of generality, we also

assume that X are already centered such that E(X) = 0. The data are divided into

h nonoverlapping slices according to the ordered values of Y . Let ~Xyj denote the jth

observation in the yth slice, y = 1, . . . , h, j = 1, . . . , ny, where ny is the sample size of
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the yth slice. We have used A ∈ Rp×d to denote the true basis matrix of the central

subspace SY |X so that SY |X is spanned by the columns of A. Recall that based on

the least squares formulation of SIR, we solve the following optimization problem up

to a constraint:

(Â, Ĉ) = argminA,C

h∑
y=1

ny∑
j=1

‖ ~Xyj − Σ̂xACy‖2 , (2.16)

where Â is the estimated p × d basis matrix of the central subspace SY |X and Ĉ =

(Ĉ1, . . . , Ĉh) estimates the corresponding d×h coefficient matrix of C = (C1, . . . , Ch).

According to Theorem 2.1.1, for a slice y, y = 1, . . . , h, we have

E(X|y) = ΣxACy , (2.17)

where Σx denotes the population covariance matrix of X.

Definition 2.3.1 Let P denote a joint probability distribution model of the predictors

X and the response Y . Suppose u,v ∈ Rp and are functions of (X, Y ). We define a

distance between u and v as

d(u,v) = E‖u− v‖2 , (2.18)

where E(.) represents the expectation with respect to the joint distribution P.

We now consider the following minimization problem:

min
ξ∈SY |X

d(X, ξ) , (2.19)

under the distance defined in (2.18). In the following we want to show that the

objective function of least squares for the dimension reduction directions is related to

a risk function of the estimated dimension reduction directions.

Lemma 3 Under Definition 2.3.1, E(X|y) is an orthogonal projection of X onto the

central subspace SY |X.



55

Proof Formula (2.19) is equivalent to minimizing EYEX|Y ‖X−ξ‖2 for any ξ ∈ SY |X.

Obviously, the theoretical solution of ξ is ξ0 ≡ E(X|y) = ΣxACy as E(X|y) ∈ SY |X

from Theorem 2.1.1. Therefore, ξ0 = E(X|y) is an orthogonal projection of X on

SY |X.

Based on (2.17), consider the following model

~Xyj = ΣxACy + ~eyj, j = 1, . . . , ny, (2.20)

where ~eyj represents the error term, with E(~eyj) = ~0. We further assume V ar(~eyj) =

σ2Ip. Then, E‖ ~Xyj − ΣxACy‖2 = pσ2.

Proposition 2.3.1 For a given slice y, the following relationship holds,

d( ~Xyj, ξ) = d(ξ, ξ0) + pσ2 ,

where ξ is any p-dimensional random column vector and ξ0 = ΣxACy, which is the

projection of ~Xyj on SY |X.

Proof Clearly, we have E‖ ~Xyj − ξ0‖2 = pσ2 and E(( ~Xyj − ξ0)T (ξ − ξ0)) = 0 from

Lemma 3. Thus,

d( ~Xyj, ξ) = E(‖ ~Xyj − ξ‖2)

= E(‖ ~Xyj − ξ0 + ξ0 − ξ‖2)

= E‖ξ − ξ0‖2 + E‖ ~Xyj − ξ0‖2 − 2E(( ~Xyj − ξ0)T (ξ − ξ0))

= d(ξ, ξ0) + pσ2.

Remark 5 Proposition 2.3.1 indicates that the population least squares function is

the risk function (the mean squared error of the estimate) under quadratic loss plus a

constant. In application, since the distribution of P is unknown, we instead work on

the empirical least squares function. Moreover, in the case of high dimensional but

low sample size data, we need to further work on a constrained least squares problem,

i.e., incorporating a L2-type penalty term to obtain the solution.
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2.4 Applications

2.4.1 Simulated examples

In this section, we present five simulated examples to validate our proposed

method. Denote the true dimension reduction directions as β, and the estimated

dimension reduction directions as β̂. Canonical correlations between the true and

projected dimension reduction directions, i.e., Xβ and Xβ̂ are used as a measure-

ment to assess the simulation performance. Both Example 1 and Example 2 assume

that the predictors are independent from each other; the response variable Y has a

linear relationship with the predictors X in Example 1 while the response model in

Example 2 includes a main effect and an interaction term. Examples 3 and 4 assume

that the predictors are correlated, and the response variable Y has a nonlinear rela-

tionship with the predictors X. The predictors X are generated from a four factor

model in Example 5, and the response model is a simple linear model.

Example 1 The data are generated from the following model,

Y = X1 +X2 +X3 +X4 + σ0ε ,

where both the predictors X = (X1, . . . , Xp)
T and the error term ε follow the standard

normal distribution, and the parameter σ0 defines a signal to noise ratio, which is set

to be 0.4.

The sample size n is chosen to be 100 and the predictor dimension p to be 500.

The central subspace is spanned by β1 = (1, 1, 1, 1, 0, . . . , 0)T , and the true struc-

tural dimension is d = 1. We implement our proposed method, Li and Yin [2008]’s

method, and Zhong et al. [2005]’s regularized SIR method and then compare their

performances of finding the dimension reduction directions. Figure 2.1 shows the

coefficients β̂’s for all predictors in one simulation. It indicates that all of the three

methods have very similar estimation results. We also repeat the simulation 50 times,

and compute the corresponding canonical correlations between the true and estimated



57

projection directions. Figure 2.2 shows the scatterplot matrix of canonical correla-

tions for the first dimension reduction direction, where dots above the diagonal line

indicate higher canonical correlations. Figure 2.3 shows the boxplot of these canon-

ical correlations. We find that the result of our proposed method is comparable to

that of Li and Yin [2008]. However, Li and Yin [2008]’s method suffers from an ex-

tremely slow convergence rate. Li and Yin [2008]’s method has not converged after

100 iteration steps. We do not think Li and Yin [2008]’s method is favorable and will

skip the simulations for Li and Yin [2008]’s method for Examples 2-5. On the other

hand, Zhong et al. [2005]’s regularized SIR method results in a few poor canonical

correlations compared to the other two methods.

Example 2 The data are generated from the following model,

Y = X1 +X1 ×X2 + σ0ε ,

where both the predictors X = (X1, . . . , Xp)
T and the error term ε follow the standard

normal distribution, and the parameter σ0 defines a signal to noise ratio, which is set

to be 0.4.

The sample size n is chosen to be 100 and the predictor dimension p to be 500. The

central subspace is spanned by β1 = (1, 0, 0, . . . , 0)T and β2 = (0, 1, 0, . . . , 0)T , and the

true structural dimension is d = 2. We repeat the simulations 50 times and compute

the corresponding canonical correlations between the true and estimated projection

directions for both our proposed method and Zhong et al. [2005]’s regularized SIR.

Figure 2.6 shows the scatterplot matrix of canonical correlations for the first and

second dimension reduction directions, as well as the average canonical correlations

of these two directions, where dots above the diagonal line indicate higher canonical

correlations. Figure 2.7 shows the boxplot of these canonical correlations. The simu-

lation results indicate that the performances of our proposed method and Zhong et al.

[2005]’s regularized SIR method are comparable, with our method slightly better.



58

0 100 200 300 400 500

−
0
.1

0
0.

00
0
.1

0

X Index

C
o
ef

fi
ci

en
t

X1
X2

X3

X4

0 100 200 300 400 500

−
0.

10
0.

00
0.

1
0

X Index

C
o
ef

fi
ci

en
t

X1
X2

X3

X4

Our method Li and Yin [2008]’s method

0 100 200 300 400 500

−
0
.1

0
0
.0

0
0.

10
0.

2
0

X Index

C
o
ef

fi
ci

en
t

X1X2

X3

X4

Zhong et al. [2005]’s RSIR

Figure 2.1. Comparison of coefficient estimates for the first dimension
reduction direction in Example 1. The upper panel displays the estimates
from our method (left) and Li and Yin [2008]’s method (right), and the
lower panel illustrates the estimate from Zhong et al. [2005]’s RSIR.
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Figure 2.2. Scatterplot comparing canonical correlations between the es-
timated and true projected directions for Example 1, with the reference
diagonal line passing through the origin. “cc.als” represents the canonical
correlations from our alternating least squares method, “cc.ridge” rep-
resents the canonical correlations from Li and Yin [2008]’s method, and
“cc.rsir” represents the canonical correlations from Zhong et al. [2005]’s
RSIR method.



60

ALS Ridge RSIR

0.
2

0.
4

0.
6

0.
8

C
an

on
ic

al
 c

or
re

la
ti
on

Figure 2.3. Boxplot comparing canonical correlations between the esti-
mated and true projected directions for Example 1. “ALS” represents our
alternating least squares method, “Ridge” represents Li and Yin [2008]’s
method, and “RSIR” represents Zhong et al. [2005]’s regularized SIR
method.
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Figure 2.4. Scatterplot comparing canonical correlations between the es-
timated and true projected directions for Example 1. “cc.als” represents
the canonical correlations from our alternating least squares method,
“cc.rsir” represents the canonical correlations from RSIR [Zhong et al.,
2005], “cc.hard” represents the canonical correlations based on the hard
thresholding estimator of the covariance matrix, and “cc.soft” represents
the canonical correlations based on the soft thresholding estimator of the
covariance matrix.
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Figure 2.5. Boxplot comparing canonical correlations between the esti-
mated and true projected directions for Example 1. “ALS” represents
our alternating least squares method, “Hard” represents hard threshold-
ing, “RSIR” represents Zhong et al. [2005]’s regularized SIR method, and
“Soft” represents soft thresholding.
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Figure 2.6. Scatterplot comparing canonical correlations between the es-
timated and true projected directions for Example 2. “cc.als” represents
the canonical correlations from our alternating least squares method, and
“cc.rsir” represents the corresponding canonical correlations from RSIR
[Zhong et al., 2005].
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Figure 2.7. Boxplot comparing canonical correlations between the esti-
mated and true projected directions for Example 2. “ALS” represents
our alternating least squares method, and “RSIR” represents Zhong et al.
[2005]’s regularized SIR method.
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Example 3 The data are generated from the following model,

β1 =
(1, 1, 1, 0, . . . , 0)T√

3
, U = βT1 X ,

Y = 2U + U2 + σ0ε ,

where the predictors X = (X1, . . . , Xp)
T follow a multivariate normal distribution with

zero mean and covariance matrix Σx =
{
σ2ρ|i−j|

}
i,j=1,...,p

, the error term ε follows the

standard normal distribution, and the parameter σ0 defines a signal to noise ratio,

which is set to be 0.4.

The sample size n is chosen to be 100 and the predictor dimension p to be 500.

The central subspace is spanned by β1 = (1, 1, 1, 0, . . . , 0)T , and the true structural

dimension is d = 1. We vary the value of ρ for different types of the covariance

matrix. First, assume that σ2 = 1 and ρ = 0.5, where the predictors are moderately

correlated. Second, assume that σ2 = 1 and ρ = 0.8, where the predictors are

highly correlated. We repeat the simulations 50 times and compute the corresponding

canonical correlations between the true and estimated projection directions for both

our proposed method and Zhong et al. [2005]’s regularized SIR. Figures 2.8 and 2.9

illustrate the canonical correlations when the predictors are moderately correlated

(ρ = 0.5), and the canonical correlations are visualized in Figures 2.10 and 2.11 when

the predictors are highly correlated (ρ = 0.8). More specifically, Figures 2.8 and 2.10

show the scatterplot matrix of canonical correlations for the first dimension reduction

direction, where dots above the diagonal line indicate higher canonical correlations,

and Figures 2.9 and 2.11 show the boxplot of these canonical correlations. These

plots indicate that the performance of our proposed method is similar to Zhong et al.

[2005]’s regularized SIR method in Example 3.

Example 4 The data are generated from the following model,

β1 = 10−1/2(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, . . . , 0)T ,

β2 = 10−1/2(1,−1, 1,−1, 1,−1, 1,−1, 1,−1, 0, . . . , 0)T ,

Y =
βT1 X

0.5 + (βT2 X + 1.5)2
+ σ0ε,
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Figure 2.8. Scatterplot comparing canonical correlations between the es-
timated and true projected directions when the predictors are moderately
correlated (ρ = 0.5) in Example 3. “cc.als” represents the canonical corre-
lations from our alternating least squares method, and “cc.rsir” represents
the corresponding canonical correlations from RSIR [Zhong et al., 2005].
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Figure 2.9. Boxplot comparing canonical correlations between the esti-
mated and true projected directions when the predictors are highly cor-
related (ρ = 0.5) in Example 3. “ALS” represents our alternating least
squares method, and “RSIR” represents Zhong et al. [2005]’s regularized
SIR method.
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Figure 2.10. Scatterplot comparing canonical correlations between the
estimated and true projected directions when the predictors are highly
correlated (ρ = 0.8) in Example 3. “cc.als” represents the canonical corre-
lations from our alternating least squares method, and “cc.rsir” represents
the corresponding canonical correlations from RSIR [Zhong et al., 2005].
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Figure 2.11. Boxplot comparing canonical correlations between the esti-
mated and true projected directions when the predictors are moderately
correlated (ρ = 0.8) in Example 3. “ALS” represents our alternating least
squares method, and “RSIR” represents Zhong et al. [2005]’s regularized
SIR method.
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where the predictors X = (X1, . . . , Xp)
T follow a multivariate normal distribution with

zero mean and covariance matrix Σx =
{
σ2ρ|i−j|

}
i,j=1,...,p

, the error term ε follows the

standard normal distribution, and the parameter σ0 defines a signal to noise ratio,

which is set to be 0.5.

The sample size n is chosen to be 100 and the predictor dimension p to be 500. The

central subspace is spanned by β1 = 10−1/2(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, . . . , 0)T and β2 =

10−1/2(1,−1, 1,−1, 1,−1, 1,−1, 1,−1, 0, . . . , 0)T , and the true structural dimension is

d = 2. Similar to the previous example, we assume σ2 = 1 but consider two values for

ρ, 0.5 and 0.8. We repeat the simulations 50 times and compute the corresponding

canonical correlations between the true and estimated projection directions for both

our proposed method and Zhong et al. [2005]’s regularized SIR. Figures 2.12 and 2.13

illustrate the canonical correlations when the predictors are moderately correlated

(ρ = 0.5), and the canonical correlations are visualized in Figures 2.14 and 2.15 when

the predictors are highly correlated (ρ = 0.8). More specifically, Figures 2.12 and 2.14

show the scatterplot matrix of average canonical correlations for the first and second

dimension reduction directions, where dots above the diagonal line indicate higher

canonical correlations. Figures 2.13 and 2.15 show the boxplot of these canonical

correlations. These plots indicate that the performance of our proposed method is

also similar to Zhong et al. [2005]’s regularized SIR method in Example 4.

Example 5 The data are generated from the following model [Johnstone, 2006],

Xij =
4∑

ν=1

bjνfνi + eij, i = 1, . . . , n, j = 1, . . . , p,

Y = X1 +X2 +X3 +X4 + σ0ε,

where bjν ∼ N(0.6, 0.42), fνi ∼ N(0, 0.012572), eij ∼ N(0, 0.06712), ε is the i.i.d. error

term following a standard normal distribution, and the parameter σ0 defines a signal

to noise ratio, which is set to be 0.5.

The sample size n is chosen to be 80 and the predictor dimension p to be 100. The

central subspace is spanned by β1 = (1, 1, 1, 1, 0, . . . , 0)T , and the true structural
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Figure 2.12. Scatterplot comparing canonical correlations between the es-
timated and true projected directions when the predictors are moderately
correlated (ρ = 0.5) in Example 4. “cc.als” represents the canonical corre-
lations from our alternating least squares method, and “cc.rsir” represents
the corresponding canonical correlations from RSIR [Zhong et al., 2005].
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Figure 2.13. Boxplot comparing canonical correlations between the esti-
mated and true projected directions when the predictors are moderately
correlated (ρ = 0.5) in Example 4. “ALS” represents our alternating least
squares method, and “RSIR” represents Zhong et al. [2005]’s regularized
SIR method.
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Figure 2.14. Scatterplot comparing canonical correlations between the
estimated and true projected directions when the predictors are highly
correlated (ρ = 0.8) in Example 4. “cc.als” represents the canonical cor-
relations from our alternating least squares, and “cc.rsir” represents the
corresponding canonical correlations from RSIR [Zhong et al., 2005].
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Figure 2.15. Boxplot comparing canonical correlations between the esti-
mated and true projected directions when the predictors are highly cor-
related (ρ = 0.8) in Example 4. “ALS” represents our alternating least
squares method, and “RSIR” represents Zhong et al. [2005]’s regularized
SIR method.
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dimension is d = 1. We repeat 50 simulations for both of our alternating least squares

method and Zhong et al. [2005]’s regularized SIR, and compute the corresponding

canonical correlations between the true and estimated projection directions for both

our proposed method and Zhong et al. [2005]’s regularized SIR. Figure 2.16 shows the

scatterplot of canonical correlations for the first dimension reduction direction, where

dots above the diagonal line indicate higher canonical correlations, and Figure 2.17

shows the boxplot of these canonical correlations.

Figures 2.16 and 2.17 indicate that our proposed method outperforms Zhong et al.

[2005]’s regularized SIR. It can be seen that in one of our simulations, the canonical

correlation between the estimated and true projection directions is approximately 0.6

for our method, whereas it is around 0 for Zhong et al. [2005]’s regularized SIR. In this

example the predictors X are constructed from a factor model of four independent

factors as described in Johnstone [2006]. It is shown by Johnstone [2006] that there is

a severe overestimation issue for the nonzero eigenvalues of the population covariance

matrix of X, thus the sample covariance matrix Σ̂x becomes a very bad estimate.

Zhong et al. [2005]’s regularized SIR adds a simple perturbation (sIp) to this bad

estimate to obtain a well conditioned covariance estimate. However, the unstable

performance of Zhong et al. [2005]’s method indicates that the perturbation seems to

be inappropriate for this example.

2.4.2 Application to the pharmacogenomics data

We implement our proposed alternating least squares method in the pharmacoge-

nomics study of bortezomib in multiple myeloma [Mulligan et al., 2007]. The data

set has been used in Section 4 of Chapter 1, thus we will skip the detailed descrip-

tion here. Recall that the data set consists of a five-level clinical response ranging

from progressive disease, no change, minimal response, partial response to complete

response, 44, 928 gene expression values and other clinical features. There are 264

patients in four clinical trials.
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Figure 2.16. Scatterplot comparing canonical correlations between the
estimated and true projected directions for Example 5. The vertical axis
represents the canonical correlations from our alternating least squares
method, and the horizontal axis represents the corresponding canonical
correlations from RSIR [Zhong et al., 2005].
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Figure 2.17. Boxplot comparing canonical correlations between the esti-
mated and true projected directions for Example 5.
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Mulligan et al. [2007] simplified the five-level clinical response to two levels (pro-

gressive disease (PD) and response (R), excluding no change (NC) patients) and used

a linear discriminant analysis to predict PD and R. Specifically, the 44, 928 genes were

preselected to retain the top 100 genes with the largest difference between PD and

R. A linear combination of these 100 genes were used to build a classifier function for

the simplified two-level response Y . Two of the four trials were used as a training

set and one trial as a test set such that there were 91 observations in the training set

and 71 in the test set.

In our procedure we treat the original five-level clinical response as the response

variable Y , and use the same set of the top 100 differentially expressed genes as

predictors. The training set is sliced into 5 pieces according to the ordinal values

of Y , and we employ techniques in Sections 2.2.4 and 2.2.5 to determine the tuning

parameter τ and the structural dimension d. Specifically, τ is chosen to be 5 and d

is determined to be 1. We then conduct dimension reduction through our proposed

method to estimate the dimension reduction direction β’s. The linear discriminant

analysis (LDA) is applied on the projected direction βX for the training set to build

a classifier for Y . The classifier is then used to make predictions on the test set

and the predicted result is compared to Mulligan et al. [2007]’s classification result

as shown in Table 2.1. In summary, we identify 37 out of the 38 patients who are

responders to the bortezomib treatment and only one patient, who is a responder

to the treatment, is incorrectly classified as progressive disease (PD). Six out of the

15 patients who have PD to the treatment are correctly classified, but the other 9

patients are incorrectly classified as responders to the treatment. The overall accuracy

of our prediction result is 81%, which is 6% higher compared to 75% of Mulligan et al.

[2007]’s result. Thus, by applying our proposed dimension reduction method which

extends SIR to high dimensional data, the one-dimensional projected direction, βX,

leads to better prediction than the other linear combination of the predictors.
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Table 2.1
Comparison of prediction table of PD vs. R for the bortezomib data in
the pharmacogenomics example. The upper panel is the result from our
alternating least squares method and the lower panel is the result from
Mulligan et al. [2007].

Actual

R PD Total

Predicted
R 37 9 46

PD 1 6 7

Total 38 15 53

Sensitivity: 97%

Specificity: 40%

Positive Predictive Value: 80%

Negative Predictive Value: 86%

Accuracy: 81%

Actual

R PD Total

Predicted
R 35 10 45

PD 3 5 8

Total 38 15 53

Sensitivity: 92%

Specificity: 33%

Positive Predictive Value: 78%

Negative Predictive Value: 63%

Accuracy: 75%
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2.5 Conclusion and discussion

Sliced Inverse Regression (SIR) is an effective dimension reduction method in

prediction, where a response variable is assumed to depend on a large number of

predictors through an unknown function. The original SIR extracts features of high

dimensional predictors from their low dimensional projections and is based on eigen-

value decomposition of the conditional sample covariance matrix. The difficulty of

estimating large covariance matrices and their inverses limits the application of SIR.

In our work we develop a new alternating least squares method based on the

least squares formulation of SIR. We borrow the idea of alternating least squares

from Li and Yin [2008], but solve a different constrained optimization problem with

a modified L2 type penalty term suggested by Bernard-Michel et al. [2008]. Our

proposed method is an iterative method, and it is shown that the solutions of our

algorithm converge to the local minimum. We also successfully sidestep the difficult

problem of estimating large covariance matrices and their inverses. Both simulation

examples and the application in a pharmacogenomics study of bortezomib in multiple

myeloma demonstrate the effectiveness of our method. By overcoming the limitation

of SIR for high dimensional data, our method brings the conventional dimension

reduction technique back to date for the challenges of high dimensional data analysis.
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