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ABSTRACT

Zhao, Bin Ph.D., Purdue University, December 2014. Image Analysis Using Visual
Saliency with Applications in Hazmat Sign Detection and Recognition. Major
Professor: Edward J. Delp.

Visual saliency is the perceptual process that makes attractive objects “stand

out” from their surroundings in the low-level human visual system. Visual saliency

has been modeled as a preprocessing step of the human visual system for selecting

the important visual information from a scene. We investigate bottom-up visual

saliency using spectral analysis approaches. We present separate and composite model

families that generalize existing frequency domain visual saliency models. We propose

several frequency domain visual saliency models to generate saliency maps using new

spectrum processing methods and an entropy-based saliency map selection approach.

A group of saliency map candidates are then obtained by inverse transform. A final

saliency map is selected among the candidates by minimizing the entropy of the

saliency map candidates. The proposed models based on the separate and composite

model families are also extended to various color spaces. We develop an evaluation

tool for benchmarking visual saliency models. Experimental results show that the

proposed models are more accurate and efficient than most state-of-the-art visual

saliency models in predicting eye fixation.

We use the above visual saliency models to detect the location of hazardous ma-

terial (hazmat) signs in complex scenes. We develop a hazmat sign location detection

and content recognition system using visual saliency. Saliency maps are employed to

extract salient regions that are likely to contain hazmat sign candidates and then use

a Fourier descriptor based contour matching method to locate the border of hazmat

signs in these regions. This visual saliency based approach is able to increase the
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accuracy of sign location detection, reduce the number of false positive objects, and

speed up the overall image analysis process. We also propose a color recognition

method to interpret the color inside the detected hazmat sign. Experimental results

show that our proposed hazmat sign location detection method is capable of detect-

ing and recognizing projective distorted, blurred, and shaded hazmat signs at various

distances.

In other work we investigate error concealment for scalable video coding (SVC).

When video compressed with SVC is transmitted over loss-prone networks, the de-

compressed video can suffer severe visual degradation across multiple frames. In order

to enhance the visual quality, we propose an inter-layer error concealment method us-

ing motion vector averaging and slice interleaving to deal with burst packet losses and

error propagation. Experimental results show that the proposed error concealment

methods outperform two existing methods.
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1. INTRODUCTION

1.1 Problem Statement

One of the objectives of public safety is to prevent and protect against events

that can jeopardize the safety and well being of the community. Hazardous ma-

terials can cause harm to humans and the environment if there is exposure to the

materials due to an accident or spill. In these cases first responders need procedures

for handling hazardous materials and documenting evidence of hazardous materials

accidents. The Emergency Response Guidebook (ERG), published by the U.S. De-

partment of Transportation (DOT) [1], contains information as to what equipment,

procedures and precautions should be used in handling hazardous materials. As one

might expect, the guidebook is large and requires time to search an index to determine

the best way to handle a particular hazardous material. The goal of this dissertation

is to develop an mobile-based hazardous sign detection and recognition system us-

ing computer vision and image analysis methods, capable of providing accurate and

useful guide information to the first responders in short time.

1.2 Visual Saliency

The human visual system (HVS) can rapidly process an enormous amount of visual

information, such as color, orientation, and edge [2]. With the help of visual selection

mechanisms in low-level HVS to reduce visual data, processing the large amount of

visual data in real-time is a relatively easy task for human, but an extremely difficult

task for computer. High-level cognitive and complex visual information processes,

like scene understanding and object recognition, rely on the visual data that has been

selected and transformed [3]. The notable Feature Integration Theory (FIT) describes
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visual attention as having two phases [4]. In the pre-attentive phase, the early vision

system can rapidly process an enormous amount of low-level visual features in parallel,

such as color, motion and edges [4]. Distinctive features (e.g., luminous color, high

velocity motion) will “stand out” automatically in the pre-attentive stage and then

the salient regions draw more attention. In the next phase, the visual cortex performs

more complex operations, such as object detection, tracking, recognition [5, 6].

There are close relations but also clear distinctions between visual attention and

visual saliency. Visual attention has been a broad concept covering many topics,

for instance, bottom-up/top-down, spatial/spatial-temporal, and overt/covert visual

attention [7–10]. Visual saliency is generally referring to bottom-up processes in

visual attention that select certain image regions more conspicuous, such as image

regions having different features from their surroundings. Bottom-up attention has

been mainly investigated in eye movement or fixation prediction on free-viewing of

images or videos and in stimuli-driven search tasks, like finding an odd object popping

out from their surroundings [9, 10]. Top-down attention deals with finding image

regions more relevant to high-level cognitive factors, like demands, expectations, and

current task. It has been studied in natural behaviors such as driving, shooting,

and interactive game playing [9, 10]. Bottom-up visual attention is mainly based on

the characteristics of visual stimuli, while top-down visual attention is determined

by cognitive phenomena such as knowledge, demands, rewards, expectations, and

goals [4]. Bottom-up visual attention is stimuli-driven, fast, and involuntary. Top-

down visual attention is task-driven, slow, and voluntary. Therefore computational

visual attention models often focus either on bottom-up or on top-down processes of

visual attention [9, 10]. In general, bottom-up visual attention is defined as visual

saliency and we use this definition in our work.
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1.3 Hazmat Sign Detection and Recognition

A federal law in the U.S. requires vehicles transporting hazardous materials must

carry a standard sign (i.e., hazmat sign) identifying the type of hazardous substance in

the event of an emergency [11]. Typical hazmat signs are shown in Figure 1.1. Hazmat

signs have identifying information described by the sign shape, color, symbols, and

numbers. In the event of an emergency, first responders have to browse the Emergency

Response Guidebook (ERG) to identify the material and determine what equipment,

procedures and precautions should be used in handling hazardous materials. This

process is slow and difficult for these who are not familiar with the guidebook.

There exist several mobile applications that provide access to this guidebook for

first responders in the field. For example, the official ERG 2012 mobile application

lets a user browse the ERG guidebook by United Nations (UN) identifier numbers,

template images, and guide pages [1]. The WISER (Wireless Information System for

Emergency Responders) mobile application lets a user browse the ERG guidebook by

known substance types and hazard classifications [12]. However, these mobile appli-

cations only provide ways of manually searching the guidebook. We have developed

a mobile-based system that makes use of image analysis methods to automatically

detect and recognize the hazmat sign in an image and quickly provide guide infor-

mation to users. We call this hazmat sign image analysis system MERGE (Mobile

Emergency Response GuidE) [13]. The MERGE mobile application is capable of de-

tecting hazmat signs from an image acquired using the mobile device and querying

an internal database to provide accurate and useful information to first responders

in real time [14, 15]. MERGE also provides a complete easily searchable version of

the Emergency Response Guidebook (ERG) [1] by UN identifier numbers, template

images, symbols, and classes.
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(a) An example of a haz-

mat sign used for a train

tank car.

(b) An Example of a haz-

mat sign used for a truck

trailer.

Fig. 1.1. Example of hazmat signs.

1.4 Error Concealment for Scalable Video Coding

With the rapid advancement of video coding, communication and networking

technologies, video transfer over the Internet has been widely used for a broad range

of social activities and applications. Users consume video via many types of terminals,

for example, HDTVs, laptops and smart phones. Scalable video coding (SVC) [16] has

been developed to deal with this heterogeneity in terminal types. An SVC encoder

can generate scalable bitstreams in terms of spatial, temporal and quality scalability.

The desired spatial resolution can then be extracted from the scalable bitstreams at

an SVC decoder. SVC video is usually encoded in a base layer and one or more

enhancement layers. Typically, the SVC decoder requires that the base layer frames

be delivered almost error-free and uses them to decode the enhancement layer frames.

Due to the nature of dynamic and lossy channels used for video delivery (partic-

ularly wireless channels), video bitstreams transmitted over packet networks usually

experience isolated and burst packet losses [17]. Moreover, once errors occur in video

bitstreams, they are prone to propagate from one frame to another due to motion-

compensated prediction used in SVC codec. These effects can result in severe visual

quality degradation of the decoded frames. Error concealment (EC) is an effective

scheme for error recovery. It reconstruct damaged regions can be ed from the cor-
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rectly received neighboring regions. Due to the layered structure of SVC, one can

exploit the spatial and temporal correlations of video frames between different layers

to improve the performance of single layer error concealment [18].

1.5 Contributions of This Thesis

In this thesis we describe several visual saliency models in the frequency domain in

Chapter 2, a hazmat sign image analysis system (MERGE) using visual saliency for

location detection and content recognition in Chapter 3, and several error concealment

methods for scalable video coding (SVC) in chapter 4.

For visual saliency models in the frequency domain, we develop separate and

composite visual saliency model families for frequency domain visual saliency models.

We propose six visual saliency models based on new spectrum processing methods

and an entropy-based saliency map selection approach. We propose an entropy-

based saliency map selection approach to select a “good” final saliency map among

the set of map candidates. A group of extended saliency models that extends each

proposed visual saliency models are also developed by incorporating both separate

and composite model families and using variant color spaces. Experimental results

show that the six best extended models are more accurate and efficient than most

state-of-the-art models in predicting eye fixation on standard image datasets.

For hazmat sign image analysis system (MERGE), we develop hazmat sign lo-

cation detection and content recognition methods based on visual saliency. We use

the one of our proposed frequency domain models to extract salient regions that are

likely to contain hazmat sign candidates and then use a Fourier descriptor based con-

tour matching method to locate the border of hazmat signs in these regions. This

visual saliency based approach is able to increase the accuracy of sign location de-

tection, significantly reduce the number of false positives, and speed up the image

analysis process. This approach improves the accuracy of existing methods presented

in [14, 15]. We also propose a color recognition method to interpret the color inside
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the detected hazmat signs. Our three image datasets consists of images taken in

the working field and outdoor field under variant lighting and weather conditions,

distances, and perspectives.

For error concealment for scalable video coding (SVC), we develop two error con-

cealment approaches robust to burst packet losses, i.e. inter-layer motion vector av-

eraging and slice interleaving using optimum ordering. A two-layer spatial-temporal

scalable video coding system are decribed to evaluate the existing and proposed error

concealment methods. Experimental results confirmed that the proposed error con-

cealment methods outperform two existing methods in reducing the impact of burst

packet losses and error propagation.

The main contributions of visual saliency models in the frequency domain are:

• We investigate bottom-up visual saliency using spectral analysis approaches.

• We develop separate and composite visual saliency model families for frequency

domain models.

• We propose six visual saliency models based on different spectrum processing.

• We propose an entropy-based saliency map selection approach.

• We develop an evaluation tool for benchmarking visual saliency models.

The main contributions of image analysis system for hazmat sign detection and

recognition are:

• We develop a hazmat sign location detection and content recognition system

using visual saliency.

• We used one of our proposed frequency domain models to extract salient regions.

• We developed a Fourier descriptor based contour matching method to locate

the border of hazmat signs.
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• We proposed a color recognition method to interpret the color inside the de-

tected hazmat signs.

• We collected three hazmat sign image datasets.

The main contributions of error concealment methods for SVC are:

• We investigated the impact of burst packet loss and error propagation in base

and enhancement layers.

• We explored inter-layer spatial and temporal correlations for error concealment

against burst packet loss.

• We proposed two error concealment methods to enhance error recovery and

visual quality:

• (1) Inter-layer motion vector averaging

• (2) Slice interleaving using optimum ordering

• We developed a two-layer spatial-temporal scalable video coding system for

evaluation.

1.6 Publications Resulting from This Thesis

Conference Papers

1. Bin Zhao and Edward J. Delp, “Visual Saliency Models Based on Spectrum

Processing,” Proceedings of the IEEE Winter Conference on Applications of

Computer Vision, Waikoloa Beach, HI, USA, January 2015. (Accepted)

2. Bin Zhao, Albert Parra, and Edward J. Delp, “Mobile-Based Hazmat Sign

Detection and Recognition,” Proceedings of the IEEE Global Conference on

Signal and Information Processing, no. 6736996, pp. 735-738, Austin, TX,

USA, December 2013. (Invited Paper)
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3. Bin Zhao and Edward J. Delp, “Inter-layer Error Concealment for Scalable

Video Coding,” Proceedings of the IEEE International Conference on Multime-

dia and Expo, no. 6607539, pp. 1-6, San Jose, CA, USA, July 2013.

4. Bin Zhao, “Interleaving-Based Error Concealment for Scalable Video Coding

System,” Proceedings of the IEEE Visual Communications and Image Process-

ing Conference, no. 6115965, pp. 1-4, Tainan City, Taiwan, November 2011.

5. Albert Parra, Bin Zhao, Joonsoo Kim, and Edward J. Delp, “Recognition,

Segmentation and Retrieval of Gang Graffiti Images on a Mobile Device,” Pro-

ceedings of the IEEE International Conference on Technologies for Homeland

Security, no. 6698996, pp. 178-183, Waltham, MA, USA, November 2013.

6. Albert Parra, Bin Zhao, Andrew Haddad, Mireille Boutin, and Edward J.

Delp, “Hazardous Material Sign Detection and Recognition,” Proceedings of the

IEEE International Conference on Image Processing, no. 6738544, pp. 2640-

2644, Melbourne, Australia, September 2013.

Journal Papers

1. Bin Zhao and Edward J. Delp, “Biologically-Inspired Visual Saliency Models

Using Spectrum Processing,” in preparation.

2. Bin Zhao, Albert Parra, and Edward J. Delp, “Hazmat Sign Detection and

Recognition Using Visual Saliency,” in preparation.
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2. VISUAL SALIENCY MODELS IN

THE FREQUENCY DOMAIN

2.1 Visual Saliency

Visual saliency is the perceptual process that makes attractive objects “stand

out” from their surroundings in the low-level human visual system. Visual saliency

has been modeled as a preprocessing step of the human visual system for selecting

the important visual information from a scene [3]. It is often referred to as bottom-

up, low-level, stimulus-driven visual information processing. A master map of the

“salient objects” [4] or a saliency map [3] is generated by the early vision system to

indicate the locations of salient regions in a scene. High-level, cognitive and more

complex visual information interpretation are mostly focused on the selected salient

regions [3]. Visual saliency has been investigated in multiple fields including cognitive

psychology, neuroscience, computer vision, and image/video processing [7–10]. We

limit ourselves to focus on computational visual saliency models that are capable of

computing saliency maps from input image or video. Visual saliency models are used

in many applications including image and video compression [19, 20], content-aware

image resizing [21], object extraction [22], object recognition [23], and traffic sign

analysis [24].

Many visual saliency models have been proposed to emulate how the human vi-

sual system perceives and processes visual information [7–10]. For example, a notable

Saliency-Based Visual Attention (SBVA) model is proposed in [25] using intensity,

color and orientation features with a subsampled Gaussian pyramid. In [26] a Graph-

Based Visual Saliency (GBVS) method forms the activation map from each feature

map based on graph theory. A model of Attention based on Information Maxi-

mization (AIM) is presented in [27] using Independent Component Analysis (ICA)
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based feature extraction, joint likelihood, and self-information. A Dynamic Visual

Attention (DVA) model based on the rarity of features is proposed in [28], which em-

ploys Incremental Coding Length (ICL) to measure the perspective entropy gain of

each feature. A Frequency-Tuned Saliency Detection (FTSD) approach is introduced

by [29] using low-level features of color and luminance. Two similar saliency models

are developed using the Phase spectrum of the Fourier Transform (PFT) [30] and the

Quaternion Fourier Transform (PQFT) [31] respectively to predict salient regions in

the spatio-temporal domain. Two biologically plausible visual saliency approaches,

frequency domain divisive normalization (FDN) and piecewise FDN (PFDN) meth-

ods, are proposed in [32], where PFDN has better performance and provides better

biological plausibility. In [33] an Discrete Cosine Transform (DCT) based Image Sig-

nature (IS) method generates a saliency map using the inverse DCT of the signs in

the cosine spectrum for image figure-ground separation. A quaternion DCT (QDCT)

based image signature approach is developed by [34] using signum function and the

inverse QDCT to compute a visual saliency map. A saliency detector based on the

Scale-Space Analysis (SSA) of hypercomplex Fourier transform spectrum is presented

in [35] using the convolution of the image amplitude spectrum with low-pass Gaussian

kernels.

The focus of this chapter is to investigate low-complexity bottom-up visual saliency

models in the frequency domain. The phase and amplitude spectrums of an image

has been utilized for frequency domain saliency models. Most existing models keep

the original phase spectrum and only modify the amplitude spectrum to generate

saliency maps. We propose six visual saliency models based on new spectrum pro-

cessing methods and an entropy-based saliency map selection approach. Six frequency

domain saliency models are proposed using six new frequency spectrum processing

methods, i.e. Gamma Corrected Spectrum (GCS) model, Gamma Corrected Log

Spectrum (GCLS) model, Low-Pass Filtered Spectrum (LPFS) model, Low-Pass Fil-

tered Log Spectrum (LPFLS) model, Gaussian Filtered Spectrum (GFS) model, and

Gaussian Filtered Log Spectrum (GFLS) model. A set of saliency map candidates are
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generated by inverse transform using a set of modified amplitude spectrums and the

original phase spectrum. An entropy-based approach is proposed to select a “good” fi-

nal saliency map by minimizing the entropy among the set of saliency map candidates.

A group of extended saliency models that extends each proposed visual saliency mod-

els are also developed by incorporating both separate and composite model families

and using variant color spaces. The state-of-the-art frequency domain saliency models

are capable of providing accurate prediction of human eye fixation/tracking data on

the eye fixation image datasets. We did a comprehensive evaluation of the six best ex-

tended saliency models (GCS-FT-Lab, GCLS-FT-Lab, LPFS-FT-Lab, LPFLS-HFT-

IRGBY, GFS-FT-Lab, and GFLS-HFT-IRGBY) by comparing with 10 state-of-the-

art saliency models using two standard image datasets. Based on our analysis on

the comparison results and the eye fixation distribution of the datasets, we are able

to explain why the performance of some visual saliency models vary over different

standard image datasets.

2.2 Visual Saliency Model Families

We investigate bottom-up visual saliency using spectral analysis approaches and

generalize existing visual saliency models in the frequency domain shown in Fig-

ure 2.1. The existing visual saliency models in the frequency domain described above

fall into two categories: (1) Some frequency domain models generate the final saliency

map using separate color channel images. They use the spectrum of each color chan-

nel image individually and then fuse the individual saliency maps into the final map

(e.g. [30,33]). (2) The other frequency domain models determine salient regions using

a composite image representation. They usually merge color channel images into a

quaternion image and then use the Hypercomplex Fourier Transform (HFT) [36, 37]

to obtain the quaternion spectrum (e.g. [31, 35]). Note that the ideas of separate

and composite processes have been alternatively presented in existing frequency do-

main models and they are generalized and considered as different spatial domain
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and frequency domain operations in Figure 2.1. We then develop both separate and

composite visual saliency model families to differentiate frequency domain models in

Figure 2.2.

Fig. 2.1. The generalization of visual saliency models in the frequency domain.

(a) The separate visual saliency model family.

(b) The composite visual saliency model family.

Fig. 2.2. Two visual saliency model families in the frequency domain.
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2.2.1 Separate Visual Saliency Model Family

An image is first mapped into a specific color space and then each color channel

image is separately transformed by T1 into the frequency domain. The amplitude and

phase spectrums of each color channel are independently processed. The modified am-

plitude and phase spectrums are separately inverse transformed by T−11 to generate

a color channel saliency map. A fusion process is used to normalize and combine the

color channel saliency maps into an intermediate saliency map. A weighted summa-

tion approach is often used (e.g., average is used in [33]). S(x, y) =
∑3

k=1wkS(x, y, k),

where wk is the weight for each channel saliency map S(x, y, k). The final saliency

map is generated after saliecy map selection and post-processing, such as border

cut [38], blurring/smoothing [33], and center-bias setting [26]. Note that T1 is a low-

complexity transform, e.g. the Fourier Transform (FT) is used in [30] and the Discrete

Cosine Transform (DCT) used in [33].

2.2.2 Composite Visual Saliency Model Family

An image is first mapped into a specific color space and then the color channel

images are composed into a quaternion image. This is transformed by T2 into the

frequency domain, usually the Hypercomplex Fourier Transform (HFT) [36, 37] is

utilized. The quaternion amplitude and phase spectrums in a hypercomplex axis

are also independently processed. The modified quaternion amplitude and phase

spectrums are inverse transformed by T−12 to form an intermediate saliency map.

Similarly, the final saliency map is generated after saliency map selection and post-

processing. Some existing saliency models are based on this composite model family

as described in [31, 35, 39].
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2.2.3 Connections Between Visual Saliency Model Families and Early

Human Visual System

The two proposed visual saliency model families belong to “biologically plausible”

models. The basic idea of biologically plausible models is to develop bottom-up

visual saliency models by modeling some key components of the low-level human

visual system. The three well-studied key components in the primary visual pathway

of the human visual system are the Retina in the eye, the Lateral Geniculate Nucleus

(LGN) and the Primary Visual Cortex (V1) [7]. The retina can be considered as a

feature collector in the eyes. Visual signals collected by the retina are received by the

LGN and transmitted to the V1 cortex. The V1 cortex is the first visual information

processing module at low level for facilitating high level analysis. V1 creates a general,

pre-attentive saliency map [40], with the receptive field location of the most active V1

neuron responding to a region of scene most likely to be selected [41]. Figure 2.3(a)

and Figure 2.3(b) illustrate the primary visual pathway of the human visual system

and the three key components.

Because the retina, LGN, and V1 cortex are the key components in the primary

visual pathway, we focus on them to present an analogy between the visual saliency

model families and the early human visual system. Cones and rods are two types

of photoreceptors (specialized retinal neurons capable of phototransduction) turning

the light into signals in the retina. Cones are located in the central part of the

retina, called fovea, and rods are in the surrounding area of the fovea [42]. Cones

are responsible for color vision at high light levels and high spatial acuteness. Rods

are used for achromatic vision at very low light levels and low spatial acuteness.

There are three types of cones in the retina related to perception of colors. They

are conventionally labeled according to the wavelengths of the peaks of their spectral

sensitivities: short-wavelength cone (S-cone), middle-wavelength cone (M-cone), and

long-wavelength cone (L-cone) [43]. Based on the related work [44, 45], a pioneering

work [46, 47] first introduce a combination of the Fourier (amplitude) transform and
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then log polar mapping for modeling the primary visual information processing in the

V1 cortex area. It has been demonstrated that the primary visual information from

the retina and the LGN is processed and analyzed in the V1 cortex by orientation

and frequency bands in the Fourier plane [48].

The color space conversions in the proposed model families correspond to modeling

the three types of cones’ color functionalities in the retina. LGN is considered as

an component that transmits visual signals from the retina to the V1 cortex. The

spatial domain operations in the proposed model families correspond to modeling

the rearrangement and transmission three-channel visual signals in LGN. It needs

further research on the LGN for such spatial domain operations to determine if it use

the separate or composite representation. The transform and spectrum processing

in the frequency domain of the proposed model families correspond to modeling the

primary visual information processing in the V1 cortex. Biologically plausible choices

of the building blocks of the two model families still await further investigation and

evidence. Inspired by the facts that a logarithm (log) conversion of contrast data is

used in [44] and the log polar mapping is presented in [46, 49, 50], we will develop

our visual saliency models using both original spectrum and log spectrum in the two

model families.
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(a) The primary visual pathway of the human visual system.

(b) The Retina in the eye, the Lateral Geniculate

Nucleus (LGN) and the Primary Visual Cortex

(V1).

Fig. 2.3. The primary visual pathway of the human visual system and
the three key components.
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2.2.4 Color Spaces

Most visual saliency models are based on particular color spaces. A color space

is a geometric representation of colors in a space, usually of three dimensions that

refers to three color channels [51, 52]. The color space is spanned by a set of basis

functions that are known as color matching functions. A color space is composed of

all 3-channel representations of possible colors in the space.

The RGB color space is an additive color space based on three color primaries,

i.e. red, green, and blue. Most people are familiar with the RGB color space. Com-

puter monitors, digital cameras and scanners use RGB primaries. Many variants of

the RGB color space have been proposed with some of them being adopted by in-

ternational standard organizations [53]. These RGB color spaces are often used for

image/video capture, representation, and display.

The Lab (CIE L∗a∗b∗) color space is used because it respectably represents hu-

man perceptual uniformity for color difference measurements [52]. The Lab color

space is used for model chromatic adaptation, model response compression, and use-

ful color difference measurement. CIE stands for the International Commission on

Illumination or in French, the Commission Internationale de l’Eclairage (CIE). The

L∗ component reflects human perception of lightness while the a∗ and b∗ components

approximate the human chromatic opponent system.

L∗ = 116f(
Y

Yn
)− 16, (2.1)

a∗ = 500[f(
X

Xn
)− f(

Y

Yn
)], (2.2)

b∗ = 200[f(
Y

Yn
)− f(

Z

Zn
)]. (2.3)
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where Xn, Yn and Zn are the tristimulus values of CIE XY Z color space with

a specific reference white point (the subscript n means normalized values). The

CIE XY Z color space includes almost all color sensations that an average person can

experience and it serves as a standard reference defining many other color spaces [52].

The IRGBY opponent color space is also employed because there exists a color

double-opponent system in human visual cortex for the red/green, green/red, blue/yellow,

and yellow/blue color pairs [54]. The IRGBY opponent color space is defined as fol-

lows. Let r, g, and b denote the red, green, and blue color primaries, four color

features are first generated as follows (negative values are set to zero).

Red : R = r − g + b

2
, (2.6)

Green : G = g − r + b

2
, (2.7)

Blue : B = b− r + g

2
, (2.8)

Y ellow : Y =
r + g

2
− |r − g|

2
− b. (2.9)

The intensity channel I is the average of the red, green, and blue color compo-

nents in Equation (2.10), Red-Green channel RG are used to simultaneously account

for red/green and green/red double opponency in Equation (2.11) and Blue-Yellow

channel BY for blue/yellow and yellow/blue for double opponency in Equation (2.12).

I =
r + g + b

3
, (2.10)

RG = R−G, (2.11)

BY = B − Y. (2.12)
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2.2.5 Quaternion Representation

Quaternion Definitions

Developed byWilliam R. Hamilton [55], the quaternion represents a four-dimensional

(4D) algebra Q over the real numbers R and are an extension of the two-dimensional

(2D) complex numbers C. A quaternion q is defined as q = a + bi + cj + dk ∈ Q,

where a, b, c, d ∈ R, 1, i, j, and k denote the four basis, and i2 = j2 = k2 = ijk = −1

(ij = −ji = k, jk = −kj = i, ki = −ik = j). The addition (sum) of two quaternions

q1 and q2 (q1, q2 ∈ Q) is defined as follows:

q1 + q2 = (a1 + b1i+ c1j + d1k) + (a2 + b2i+ c2j + d2k) (2.13)

= (a1 + a2) + (b1 + b2)i+ (c1 + c2)j + (d1 + d2)k. (2.14)

The multiplication (product) of two quaternions q1 and q2 (q1, q2 ∈ Q) is defined

as follows:

q1q2 = (a1 + b1i+ c1j + d1k)(a2 + b2i+ c2j + d2k) (2.15)

= a1a2 − b1b2 − c1c2 − d1d2

+(a1b2 + b1a2 + c1d2 − d1c2)i

+(a1c2 − b1d2 + c1a2 + d1b2)j

+(a1d2 + b1c2 − c1b2 + d1a2)k. (2.16)

Under addition and multiplication, quaternions have all the properties of a field,

except multiplication (product) is not commutative. For example, by definition ij = k

while ji = −k. Therefore, we have to distinguish between left-sided and right-sided

multiplications in the following (marked by L and R, respectively). A quaternion q is

known as real if q = a+ 0i+ 0j + 0k and pure imaginary if q = 0 + bi+ cj + dk. We

can define the operators Re(q) = a and Im(q) = bi + cj + dk that extract the real

part and the imaginary part from a quaternion q = a+ bi+ cj + dk. As for complex

numbers, we can define a conjugate quaternion q∗ = a − bi − cj − dk as well as the

norm |q| = √
qq∗.
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Quaternion Image

Every image f(m,n, c) ∈ RM×N×C with at most four channels, i.e. C ≤ 4, can

be represented using a M × N quaternion matrix fQ(m,n) in the conventional and

symplectic forms [37].

fQ(m,n) = f4(m,n) + f1(m,n)i+ f2(m,n)j + f3(m,n)k (2.17)

= f4(m,n) + f1(m,n)i+ (f2(m,n)j + f3(m,n)i)j, (2.18)

where fc(m,n) denotes the M×N matrix of the c-th image channel. It is common

to represent the (potential) 4-th image channel as the scalar part f4(m,n), because

when using this definition it is capable of working with pure quaternions (f4(m,n) =

0) for the most common color spaces such as, e.g., RGB and Lab.

Weighted Quaternion Image

The quaternion definition was extended to include weights of importance for fea-

ture channels [56] et The relative importance of the feature channels for the visual

saliency can be modeled by introducing a weight vector of quaternion components

w = [w1 w2 w3 w4]
T into Equation (2.17) and (2.18).

fQ(m,n) = w4f4(m,n) + w1f1(m,n)i+ w2f2(m,n)j + w3f3(m,n)k (2.19)

= w4f4(m,n) + w1f1(m,n)i+ (w2f2(m,n)j + w3f3(m,n)i)j. (2.20)

When using unit weights for equal contribution of each feature channel, Equa-

tion (2.17) and (2.18) are special cases of Equation (2.19) and (2.20).

Hypercomplex Fourier Transform (HFT)

Following the definition of the Hypercomplex Fourier Transform (HFT) [36, 37],

equivalently Quaternion Discrete Fourier Transform (QDFT), we can transform an
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M ×N quaternion spatial matrix fQ(m,n) into a quaternion spectral matrix, either

F L
Q(u, v) or F

R
Q (u, v), due to the non-commutative multiplication rule of quaternions

in Section 2.2.5. There exist two forms of Forward Hypercomplex Fourier Trans-

form (FHFT) or Forward Quaternion Discrete Fourier Transform (FQDFT)

using either left-sided multiplication or right-sided multiplication:

F L
Q(u, v) =

1√
MN

M−1∑
m=0

N−1∑
n=0

exp
(
−q̂2π(

mv

M
+

nu

N
)
)
fL
Q(m,n), (2.21)

FR
Q (u, v) =

1√
MN

M−1∑
m=0

N−1∑
n=0

fR
Q(m,n)exp

(
−q̂2π(

mv

M
+

nu

N
)
)
. (2.22)

The corresponding Inverse Hypercomplex Fourier Transform (IHFT) or

Inverse Quaternion Discrete Fourier Transform (IQDFT) is defined as follows:

fL
Q(m,n) =

1√
MN

N−1∑
u=0

M−1∑
v=0

exp
(
q̂2π(

mv

M
+

nu

N
)
)
F L
Q(u, v), (2.23)

fR
Q(m,n) =

1√
MN

N−1∑
u=0

M−1∑
v=0

FR
Q (u, v)exp

(
q̂2π(

mv

M
+

nu

N
)
)
. (2.24)

Here, q̂ is a unit pure quaternion that serves as an axis of the transform space

and determines a direction in a color space for color images [37]. The choice of q̂ is

arbitrary, but it consequently can influence the results of quaternion-based transform.

An obvious axis choice for color images is the direction corresponding to the luminance

axis. For example, a good axis candidate would be the “gray line” in RGB color

space and thus q̂ = (i+ j + k)/
√
3. In fact, this would decompose a color image into

luminance and chrominance color components [57].

Quaternion Discrete Cosine Transform (QDCT)

Following the definition of the Quaternion Discrete Cosine Transform (QDCT) [34,

58], we can transform an M×N quaternion spatial matrix fQ(m,n) into a quaternion
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spectral matrix, either F L
Q(u, v) or F

R
Q (u, v), due to the non-commutative multiplica-

tion rule of quaternions in Section 2.2.5. There exist two forms of Forward Quater-

nion Discrete Cosine Transform (FQDCT) using either left-sided multiplication

or right-sided multiplication:

F L
Q(u, v) = αM

u αN
v

M−1∑
m=0

N−1∑
n=0

q̂fQ(m,n) cos

(
π(2m+ 1)u

2M

)
cos

(
π(2n+ 1)v

2N

)
, (2.25)

FR
Q (u, v) = αM

u αN
v

M−1∑
m=0

N−1∑
n=0

fQ(m,n)q̂ cos

(
π(2m+ 1)u

2M

)
cos

(
π(2n+ 1)v

2N

)
, (2.26)

αM
u =

⎧⎪⎨
⎪⎩
√

1
M
, if u = 0,√

2
M
, if u �= 0,

(2.27)

αN
v =

⎧⎪⎨
⎪⎩
√

1
N
, if v = 0,√

2
N
, if v �= 0.

(2.28)

According to FQDCT, there are also two forms of Inverse Quaternion Discrete

Cosine Transform (IQDCT) as follows.

fL
Q(m,n) =

M−1∑
u=0

N−1∑
v=0

αM
u αN

v q̂F
L
Q(u, v) cos

(
π(2v + 1)u

2M

)
cos

(
π(2n+ 1)m

2N

)
, (2.29)

fR
Q (m,n) =

M−1∑
u=0

N−1∑
v=0

αM
u αN

v F
R
Q (u, v)q̂ cos

(
π(2v + 1)u

2M

)
cos

(
π(2n+ 1)m

2N

)
. (2.30)

When comparing the QDCT and HFT (equivalently QDFT), the transform basis

q̂ cos
(

π(2m+1)u
2M

)
cos

(
π(2n+1)v

2N

)
of QDCT is distinct from the one exp

(−q̂2π(mv
M

+ nu
N
)
)

of HFT because QDCT’s basis is real-valued instead of HFT’s is hypercomplex-valued.

The factors αM
u and αN

v of QDCT are also different from the factor 1√
MN

of HFT.

However, both definitions share the concept of a unit pure quaternion q̂ that serves

as a transformation axis [57].
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2.3 Proposed Visual Saliency Models

2.3.1 Spectral Analysis Approaches

We investigate bottom-up visual saliency and develop new visual saliency models

using spectral analysis approaches. Theoretically, the spatial variations of visual

information in an image can be broken down to frequency components, each being

characterized by an amplitude and a phase. The amplitude spectrum describes how

much energy of each sinusoidal component is present in an image and the phase

spectrum specifies where each of the sinusoidal components resides in the image [59].

Based on A. V. Oppenheim’s early discovery [60, 61], the phase spectrum specifies

important visual saliency information that indicates where the “proto-objects” or

salient regions are located in the spatial domain [30,33]. Figure 2.4 demonstrates that

phase spectrum contains important visual saliency information. A primary saliency

map is obtained only by phase spectrum from frequency domain reconstruction. When

the waveform is a positive or negative pulse function, this map contains the largest

sharp spikes at the jump edges of the input pulse function. This is because a variety of

sinusoidal components contribute the phase changes at the jump edges. In contrast,

when the input is a periodic sinusoidal function of a fixed frequency, there is no

significant spike in the middle of the map. Compared with the entire waveform, more

distinct or less repeated segment contains more visual saliency information at the

same location.

The amplitude spectrum also contains both saliency (distinct patterns) and non-

saliency (repeated patterns) information. The sharp peaks or spikes in the amplitude

spectrum correspond to non-saliency which should be suppressed for saliency detec-

tion [35]. Figure 2.5 demonstrates an example of amplitude spectrum contains both

saliency and non-saliency information. The input signal (1st row) is a periodic si-

nusoidal function of a fixed frequency, but there is a short segment where another

sinusoidal function of different frequency signal is replaced. The short segment is

quite distinct from the entire signal, so a good saliency model should be able to de-
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Fig. 2.4. Examples of phase spectrum contains important visual
saliency information. Reproduced from [30]

Fig. 2.5. An example of amplitude spectrum contains both saliency
and non-saliency information. Reproduced from [35]
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tect it. The amplitude spectrum of the above mixed sinusoidal signal is shown in the

2nd row. There are three very sharp spikes (labeled by solid boxes), one of which

corresponds to the constant component (Direct Current (DC) component) at zero

frequency and the other two spikes correspond to the repeated component (periodic

component). In addition, there are two rounded maxima (labeled by dashed boxes)

corresponding to the salient segment. The amplitude spectrum is then filtered by a

Gaussian kernel (3rd row) and a primary saliency map of the mixed sinusoidal signal

is generated by the filtered amplitude and original phase spectrum (4th row). Both

the constant and the repeated components are largely suppressed while the salient

segment is well preserved. The primary saliency map enhanced by post-processing is

shown in the 5th row.

Therefore, most frequency domain visual saliency models perform certain process-

ing on the amplitude spectrum but keep the phase spectrum unchanged to generate

saliency maps. Given an image f(x, y), it is transformed into the frequency domain

to obtain its frequency spectrum F(u, v) = T [f(x, y)]. The amplitude spectrum

A(u, v) = |F(u, v)| and the phase spectrum P(u, v) = angle(F(u, v)) are obtained,

and if necessary the log amplitude spectrum is obtained: L(u, v) = loge(A(u, v)) =

loge(|F(u, v)|). In our proposed models, the Fourier Transform (FT) [62] is used for

the separate model family and the Hypercomplex Fourier Transform (HFT) [36, 37]

is employed for the composite model family. The inverse transform can be written as

follows:

f(x, y) = T−1[F(u, v)], (2.31)

⇔ f(x, y) = T−1[A(u, v) · exp(i · P(u, v))], (2.32)

⇔ f(x, y) = T−1[exp(L(u, v) + i · P(u, v))]. (2.33)
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2.3.2 Entropy-Based Saliency Map Selection

Entropy is a statistical measure of randomness. Entropy Hf is based on the

distribution of the values of f . Let L be the number of gray levels of a grayscale

image f(x, y) of size M × N . The priori probability Pf,g is defined by the total

number of occurrences Cf,g (pixel counts in histogram) of the gray level g divided by

the total number of pixels M×N of the grayscale image f(x, y). When the histogram

of the grayscale image f(x, y) is given, the entropy Hf is determined as follows.

Hf = −
L∑

g=1

Pf,glog2(Pf,g), (2.34)

Pf,g =
Cf,g

M ×N
. (2.35)

The saliency map can be considered as a probability map whose values range from

0 to 1. In a typical saliency map, the higher salient regions would be assigned larger

values and the rest of non-salient regions would be very small values. We observed that

the closer values would be clustered in closer locations in a saliency map. In general, a

saliency map is generated with low grades of fragment and randomness. According to

the definition of entropy, we can use the entropy of generated saliency maps to select

a “good” saliency map of the lowest fragment and randomness. The entropy of this

saliency map would be relatively smaller than the one of other saliency maps, which

could correspond to high efficient perceptive coding and low energy cost [63, 64].

Based on above analysis, we propose an entropy-based saliency map selection

approach. An output saliency map S ′(x, y, k′) is selected by minimizing the entropy

H(S(x, y, k)) among the group of saliency map candidates.

k′ = argmin
k

{H(S(x, y, k))}, (2.36)

H(S) = −
L∑

g=1

PS,glog2(PS,g), (2.37)
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PS,g =
CS,g

M ×N
, (2.38)

where H(S(x, y, k)) is the entropy of each saliency map candidate S(x, y, k).

2.3.3 Post-Processing

To achieve a better visual illustration, the final saliency map is generated after

some post-processing [10]. As introduced in [65], usually each element in the saliency

map is squared individually and then the saliency map is saliency map is convoluted

with a Gaussian burring kernel bopt(x, y) with an optimal sigma σopt determined by

experiments.

S ′′(x, y, k′) = bopt(x, y) � ‖S ′(x, y, k′)‖2, (2.39)

where bopt(x, y) is a Gaussian burring kernel with optimal sigma σopt, � denotes

the convolution operation and ‖ · ‖2 denotes the square of each element individually.

bopt(x, y) =
1

2πσ2
opt

exp

(−(x2 + y2)

2σ2
opt

)
. (2.40)

We generate the kernel bopt(x, y) with the same size of the output saliency map by

sampling continuous Gaussian distributed values into discrete Gaussian distributed

values at the points of each pixel. The Gaussian values of this kernel are normalized

again by dividing each element by the sum of all elements in the kernel. In order to

further improve the output saliency map, other post-processing steps may be used,

e.g. border cut [38] and center-bias setting [26].

2.3.4 Visual Saliency Model Using Gamma Corrected Spectrum (GCS)

Gamma correction is a nonlinear operation used to modify the luminance or tris-

timulus values in an image display system [66]. It is defined by two reversible power

functions as follows.
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Vout = (Vin)
γ , (2.41)

Vin = (Vout)
1

γ , (2.42)

where Vout and Vin are the input and output values. Under common illumination

conditions, the human visual systems follows an approximate power function, namely

the psychophysical power law, developed by Stanley S. Stevens [67]. Gamma correc-

tion is used to compensate for the human visual system, in order to maximize the use

of the bits or bandwidth according to how humans perceive light or color [66].

We propose a visual saliency model using Gamma Corrected Spectrum (GCS). A

set of gamma corrections with different gamma values γk are utilized to modify the

amplitude spectrum while keeping the phase spectrum unchanged. Saliency map can-

didates S(x, y, k) can be constructed by the inverse transform of the gamma corrected

amplitude spectrums AGCS(u, v, k) with the original phase spectrum P(u, v).

AGCS(u, v, k) = (A(u, v))γk , (2.43)

S(x, y, k) = T−1[(A(u, v))γk · exp(i · P(u, v))], (2.44)

S(x, y, k) = T−1[exp(L(u, v) · γk + i · P(u, v))], (2.45)

where k is an index k = {0, . . . , K} and γk = k
16
. K is determined by the largest

dimension of the size of the saliency map, K = �log4(max(H,W ))	 + 1, where W

and H are the width and height of the saliency map. For example, if the size of

the saliency map is 64 × 48, K = 4, k = {0, 1, 2, 3, 4}, and γk = {0, 1
16
, 1
8
, 1
4
, 1
2
}. An

output saliency map S ′(x, y, k′) is selected by minimizing the entropy H(S(x, y, k))

among the set of candidates using the same Equation (2.36) and (2.37). The final

GCS saliency map is generated by Equation (2.39).
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2.3.5 Visual Saliency Model Using Gamma Corrected Log Spectrum (GCLS)

Following our Gamma Corrected Spectrum (GCS) model, we also develop a visual

saliency model using the Gamma Corrected Log Spectrum (GCLS). A set of gamma

corrections with different gamma values γk are used to modify the log amplitude

spectrum while keeping the phase spectrum unchanged. For convenience, we only

describe the main steps in the following equations.

LGCLS(u, v, k) = (L(u, v))γk , (2.46)

S(x, y, k) = T−1[exp((L(u, v))γk + i · P(u, v))], (2.47)

We use the same parameter settings as the GCS model and an output saliency

map S ′(x, y, k′) is generated by the same selection approach as Equation (2.36). The

final GCLS saliency map is obtained by Equation (2.39).

2.3.6 Visual Saliency Model Using Low-Pass Filtered Spectrum (LPFS)

The amplitude spectrum contains some information related to non-salient and

salient regions. ¿From our spectral analysis, the sharp peaks or spikes in the amplitude

spectrum are strongly related to repeated patterns (non-salient regions) while the

other entities correspond to distinct patterns (salient regions). In order to discard

non-salient regions and maintain the salient regions, a low-pass filter (LPF) can be

used to suppress sharp peaks or spikes to generate saliency map. We design a low-

pass filter LPF (u, v, k) in the frequency domain based on the k-th root of a two-

dimensional (2D) cosine function.

LPF (u, v, k) =

(
1

4
(1 + cos(u))(1 + cos(v))

) 1

k

, (2.48)

lpf(x, y, k) =

(
1

16
(δ(x− 1) + 2δ(x) + δ(x+ 1))(δ(y − 1) + 2δ(y) + δ(y + 1))

) 1

k

,(2.49)
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where (u, v) ∈ [−π,+π] and 1
k
denotes the k-th root of the 2D cosine function.

This low-pass filter with frequency response LPF (ej0, ej0) = 1, LPF (eju, e±jπ) = 0

and LPF (e±jπ, ejv) = 0 in the frequency domain. Note that when k = 1, this LPF

in the frequency domain corresponds to a 2D Finite Impulse Response (FIR) filter

lpf(x, y, 1) in the spatial domain.

LPF (u, v, 1) =
1

4
(1 + cos(u))(1 + cos(v)), (2.50)

lpf(x, y, 1) =
1

16

⎡
⎢⎢⎢⎣
1 2 1

2 4 2

1 2 1

⎤
⎥⎥⎥⎦ . (2.51)

This continuous low-pass filter in the frequency domain is sampled to generate a

discrete low-pass filter for each sampled frequency element. We remove the square

border elements within four lines on each side whose values equal or very close to

zero and then obtain a discrete low-pass filter LPF (u, v, k) with the same size of the

amplitude spectrum. The values of the sampled frequency elements are normalized

again by dividing each element by the sum of all elements in the LPF (u, v, k).

We propose a visual saliency model using Low-Pass Filtered Spectrum (LPFS). A

set of low-pass filters LPF (u, v, k) of various k-th roots of the 2D cosine function are

used to filter the amplitude spectrum while keeping the phase spectrum unchanged.

Saliency map candidates S(x, y, k) can be constructed by the inverse transform of

the Gaussian filtered amplitude spectrums ALPFS(u, v, k) with the original phase

spectrum P(u, v).

ALPFS(u, v, k) = A(u, v) � LPF (u, v, k), (2.52)

S(x, y, k) = T−1[A(u, v) � LPF (u, v, k) · exp(i · P(u, v))], (2.53)

where 1
k
denotes the k-th root in the low-pass filter LPF (u, v, k) and k = 4n−1, n =

{1, . . . , N}. N is determined by the largest dimension of the size of the saliency
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map, N = �log4(max(H,W ))	 + 2, where W and H are the width and height of

the saliency map. For example, if the size of the saliency map is 64 × 48, N = 5,

n = {1, 2, 3, 4, 5}, and k = {1, 4, 16, 64, 256}. An output saliency map S ′(x, y, k′) is

selected by minimizing the entropy H(S(x, y, k)) among the set of candidates using

the same Equation (2.36) and (2.37). The final LPFS saliency map is generated by

Equation (2.39).

2.3.7 Visual Saliency Model Using Low-Pass Filtered Log Spectrum (LPFLS)

Following our Low-Pass Filtered Spectrum (LPFS) model, we also develop a visual

saliency model using the Low-Pass Filtered Log Spectrum (LPFLS). A set of low-pass

filters LPF (u, v, k) of various k-th roots of a 2D cosine function are employed to

filter the log amplitude spectrum while keeping the phase spectrum unchanged. For

convenience, we only describe the main steps in the following equations.

LLPFLS(u, v, k) = L(u, v) � LPF (u, v, k), (2.54)

S(x, y, k) = T−1[exp(L(u, v) � LPF (u, v, k) + i · P(u, v))]. (2.55)

We use the same parameter settings as the LPFS model and an output saliency

map S ′(x, y, k′) is generated by the same selection approach as Equation (2.36). The

final LPFLS saliency map is obtained by Equation (2.39).

2.3.8 Visual Saliency Model Using Gaussian Filtered Spectrum (GFS)

Inspired by the related work [35], we propose another visual saliency model using a

Gaussian Filtered Spectrum (GFS). A set of Gaussian filters GF (u, v, k) with various

standard deviations σk are used to filter the amplitude spectrum while keeping the

phase spectrum unchanged. Saliency map candidates S(x, y, k) can be constructed

by the inverse transform of the Gaussian filtered amplitude spectrums AGFS(u, v, k)

with the original phase spectrum P(u, v).
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AGFS(u, v, k) = A(u, v) � GF (u, v, k), (2.56)

S(x, y, k) = T−1[A(u, v) � GF (u, v, k) · exp(i · P(u, v))], (2.57)

where k is an index k = {1, . . . , K} and σk = 4k−1. K is determined by the largest

dimension of the size of the saliency map, K = �log4(max(H,W ))	 + 2, where W

and H are the width and height of the saliency map. For example, if the size of the

saliency map is 64 × 48, K = 5, k = {1, 2, 3, 4, 5}, and σk = {1, 4, 16, 64, 256}. An

output saliency map S ′(x, y, k′) is selected by minimizing the entropy H(S(x, y, k))

among the set of candidates using the same Equation (2.36) and (2.37). The final

GFS saliency map is generated by Equation (2.39).

2.3.9 Visual Saliency Model Using Gaussian Filtered Log Spectrum (GFLS)

Following our Gaussian Filtered Spectrum (GFS) model, we also develop a visual

saliency model using the Gaussian Filtered Log Spectrum (GFLS). A set of Gaussian

filters GF (u, v, k) with various standard deviations σk are used to filter the log am-

plitude spectrum while keeping the phase spectrum unchanged. For convenience, we

only describe the main steps in the following equations.

LGFLS(u, v, k) = L(u, v) � GF (u, v, k), (2.58)

S(x, y, k) = T−1[exp(L(u, v) � GF (u, v, k) + i · P(u, v))]. (2.59)

We use the same parameter settings as the GFS model and an output saliency

map S ′(x, y, k′) is generated by the same selection approach as Equation (2.36). The

final GFLS saliency map is obtained by Equation (2.39).

2.3.10 Naming Convention of the Extended Models

We also develop several extended models by extending our proposed models to fit

both separate and composite model families and variant color spaces. The naming
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convention of extended models is defined as “A-B-C”, where A represents a

proposed model’s abbreviation (i.e. GCS, GCLS, LPFS, LPFLS, GFS, and GFLS) or

an existing model’s abbreviation (i.e. IS and SSA); B represents a specific transform

used for an extended model (FT and DCT used for separate model family while

HFT used for composite model family); C represents a particular color space used

for an extended model, including Lab, IRGBY, and RGB color spaces.

2.3.11 Visual Saliency Model Evaluation

Popular evaluation measures for visual saliency model comparison are briefly re-

viewed. We discuss some challenges and open issues in model comparison and then

explained some ways to resolve them. Experimental results of comprehensive model

evaluations are shown next in Section 2.4.

The motivation for evaluating models with more than one measure is to ensure

that the main conclusions are independent of the choice of qualitative measures. A

ground-truth saliency map is denoted by G, which is based on the eye fixation array

of an image built by inserting 1s at fixation locations and 0s at the other locations.

The ground-truth saliency map G is usually computed by convoluting the eye fixation

array with a certain Gaussian kernel for smoothing. An estimated saliency map is

denoted by S, which is generated by a visual saliency model.

Normalized Scanpath Saliency (NSS)

Normalized scanpath saliency is the average of the response values at human eye

positions (xh, yh) in a model’s saliency map S [68]. Its values are normalized to have

zero mean and unit standard deviation.

NSS(G, S) =
1

σS
(S(xh, yh)− μS), (2.60)



34

where μS and σS are the mean and the standard deviation of the values in the

saliency map S. NSS is computed once for each saccade and subsequently the mean

and standard error are computed across the set of NSS scores. When NSS = 1, the

subjects’s eye positions fall in a region whose predicted saliency is one standard devi-

ation above average. NSS ≥ 1 indicates that the saliency map exhibits significantly

higher saliency values at human fixated locations compared to other locations. NSS

≤ 0 means that the model performs no better than picking a random position and

hence is at chance in predicting human gaze.

Kullback-Leibler (KL) Divergence

The KL divergence is usually used to measure distance between two probability

distributions. Using similar concept, it is used to measure the distance between

distributions of saliency values at human versus random eye positions [69, 70]. The

saliency magnitude at each sampled location is first normalized in the range [0, 1]. The

histogram of these magnitudes in l bins in the range [0, 1] across all eye movements

is calculated. Hk and Rk are the fraction of points in the bin k for salient and

random points respectively. The symmetric KL divergence (relative entropy) using

the difference between these histograms is defined as follows.

KL =
1

2

l∑
k=1

(
Hklog2

(
Hk

Rk

)
+Rklog2

(
Rk

Hk

))
. (2.61)

Linear Correlation Coefficient (CC)

The linear correlation coefficient measures the strength of a linear relationship

between two saliency maps [71].

CC(G, S) =

∑
x,y(G(x, y)− μG) · (S(x, y)− μS)√

σ2
G · σ2

S

, (2.62)
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where μG and μS are the means while σ2
G and σ2

S are the variances of the G and S

saliency maps, respectively. When CC is close to +1 or 1 there is almost a perfectly

linear relationship between the two saliency maps.

Area Under The Curve (AUC)

AUC is the area under the Receiver Operating Characteristics (ROC) [72]. In the

context of saliency map evaluation, eye fixation points are considered as the positive

set and some points from the image are sampled to form the negative set [73]. The

saliency map S is then treated as a binary classifier to separate the positive samples

from the negative samples. By thresholding the saliency map at variant threshold

levels and plotting True Positive Rate (TPR) against False Positive Rate (FPR), an

ROC is obtained for each image.

TPR =
TP

TP + FN
, (2.63)

FPR =
FP

FP + TN
, (2.64)

where TP is the number of true positives, FP is the number of false positives, TN

is the number of true negatives, and FN is the number of false negatives. Figure 2.6

demonstrates the classification of true positive, false positive, true negative, and false

negative. The area underneath of each ROC is calculated for an image and the the

final AUC score is averaged over all images. Perfect prediction corresponds to a score

of 1 while a score of 0.5 indicates chance level.

Shuffled Area Under The Curve (sAUC)

As [10,38,73] pointed out, human eye fixations are often biased toward the center of

an image and this strong center-bias do significantly affect the performance evaluation

of visual saliency models using above evaluation measures. Based on [38,73], a shuffled

Area Under The Curve (sAUC) is proposed to resolve this issue. In order to remove



36

Fig. 2.6. The classification of true positive, false positive, true nega-
tive, and false negative.

this center-bias effect, no pixel point from the image is used as a valid sample in

this case and only eye fixation points are considered as either positive samples or

negative samples. The positive sample set is composed of the eye fixation points of all

subjects on that image. The negative sample set contains the union of all eye fixation

points across all images from the same image dataset, but excludes those points in

the positive sample set. Figure 2.7 illustrates an example of some prerequisites for

computing sAUC score. Note that the positive and a negative sample sets in (C) and

(D) are both Gaussian blurred and represented as heat maps for clear display, but

the sAUC calculation is based on the actual eye fixation points. Each saliency map

is first thresholded into a binarized map, which is employed as a binary classifier to

separate the positive samples from negative samples. At a particular threshold level,

the True Positive Rate (TPR) is the proportion of the positive samples that fall in the

positive (white) region of the binarized map among all positive samples. Similarly, the

False Positive Rate (FPR) is the proportion of the negative samples that fall in the

positive (white) region of the binarized map among all negative samples. We calculate
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a pair of TPR and FPR to obtain a point on the Receiver Operating Characteristics

(ROC) [72] (TPR versus FPR) based on a binarized map from a certain threshold.

TPR =
TP

TP + FN
, (2.65)

FPR =
FP

FP + TN
, (2.66)

where TP is the number of true positives, FP is the number of false positives,

TN is the number of true negatives, and FN is the number of false negatives.

Thresholding the saliency map at many threshold levels obtains a group of points

on the ROC and connecting these points yields a shuffled ROC. The area under this

curve is called the shuffled Area Under Curve (sAUC). The sAUC scores < 0.5

indicate a negative correlation while the sAUC scores > 0.5 indicate a positive

correlation. Perfect prediction leads to a sAUC score of 1.0 and chance level yields

0.5. Figure 2.8 demonstrates an example of the shuffled ROC used for computing the

sAUC score. The blue curve shows the shuffled ROC of the generated saliency map

for this image while the red reference line indicating the shuffled ROC of chance level.

The sAUC score of the black curve is 0.6329 and the one of the red reference line is

0.5.

All of above evaluation measures (except the sAUC) are significantly affected by

the center-bias and sAUC is more robust to center-bias and border effect [10]. The

sAUC score provides a good evaluation measure of the saliency map to accurately

predict where eye fixations occurred on an image. In order to fairly evaluate the

consistency between a saliency map and a set of fixations of an image dataset, we

employ shuffled Area Under Curve (sAUC) score as the evaluation measure in

our experiments.

2.3.12 Parameter Issues

Another issue regarding fair model comparison is how to adjust the parame-

ters of saliency models for different image datasets. It has been shown that blur-
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Fig. 2.7. An example of some prerequisites for computing sAUC score.
(A) The generated saliency map on a certain image, (B) The bina-
rized saliency map thresholded at 0.5, (C) The positive sample set
of eye fixation points only on this image (Gaussian blurred heat map
representation), (D) The negative sample set of eye fixation points
containing all fixation points across the entire image dataset but ex-
cluding those points in the positive sample set (Gaussian blurred heat
map representation). Reproduced from [33]

ring/smoothing the resulting saliency maps has a significant influence on the sAUC

score of visual saliency models [33]. Some models provided the best settings of pa-

rameters for one image dataset, but sometime it’s not a good settings for other
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Fig. 2.8. An example of the shuffled ROC used for computing
the sAUC score (true positive rate (TPR) versus false positive rate
(FPR)). Reproduced from [33]

image datasets. We need to tune each model to achieve its best performance for

a certain image dataset by searching and selecting the optimal scale of Gaussian

blurring/smoothing. Ultimately, the model parameter issue will be better resolved

through an online challenge, where researchers can tune their own models to achieve

the best performance for different image datasets and share the resulting saliency

maps.
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2.4 Experimental Results

Previous studies have shown that top-ranked visual saliency models are capable

of providing significantly accurate prediction of human eye fixation on natural images

in free viewing [7–10]. To evaluate the performance of our visual saliency models, we

did experiments to compare the proposed visual saliency models with some state-of-

the-art models. Our experiment is to use the proposed and existing visual saliency

models to predict human eye fixation on two standard image datasets. It should

be noted we did not do any actual eye fixation studies but used standard datasets.

We implemented all the extended models in MATLAB and set the saliency map’s

resolution to 64 × 48 pixels in all the experiments. We used the original MATLAB

implementation of models with the default settings and the recommended saliency

map’s resolution. The experiments were executed on a backend server with four

quad-core 3.2GHz CPU and 32GB RAM.

2.4.1 Predicting Eye Fixation

Eye Fixation Image Datasets

We adopted the shuffled AUC (sAUC) score [38, 73] as the evaluation measure

and developed an evaluation tool for benchmarking visual saliency models based on a

standard benchmark [33]. We did several experiments in predicting eye fixation using

two standard image datasets. (1) The Bruce and Tsotsos (BT) dataset [27] is the most

widely used dataset for comparing visual saliency models. It contains 120 color images

with resolution of 681x511 pixels from indoor and outdoor scenes and the eye fixation

data is based on 20 subjects. (2) The Li et al.’s (Li) dataset [35] is a new dataset

containing 235 color images with resolution of 640x480 pixels in six categories. 50

images with large salient regions, 80 with intermediate salient regions, 60 with small

salient regions, 15 with cluttered backgrounds, 15 with repeating distractors, and 15

with both large and small salient regions. Because blurring/smoothing the resulting
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saliency maps is an important factor for fair comparison [33], we tune up each model

to achieve its best performance for above image datasets by searching and selecting

the optimal parameter of Gaussian blurring/smoothing. We blurred the saliency map

of each model by convoluting them with a series of Gaussian kernels with different

standard deviations σ (from 0.005 to 0.1 in steps of 0.005) in terms of the largest

dimension of an image. In our experiments, we kept all post-processing settings of

each model as original except the blurring/smoothing parameter.

Comparison of Extended Models

We made a systematic comparison of the six groups of 36 extended saliency models

that extends the proposed six visual saliency models by incorporating both separate

and composite model families and using variant color spaces. Note that naming

convention of extended models based on the six proposed models is provided in Sec-

tion 2.3.10. 18 FT-based extended models using the separate visual saliency model

family are compared with the baseline model SBVA(Itti) [25]. 18 HFT-based ex-

tended models using the composite visual saliency model family are also compared

with the baseline model SBVA(Itti) [25]. Based on the two standard image datasets,

Figure 2.9 and Figure 2.11 demonstrate the sAUC score of the FT-based extended

models while Figure 2.10 and Figure 2.12 illustrate the sAUC score of the HFT-based

extended models. Given the six groups of extended saliency models, the rank of

the extended models, the maximum sAUC score, and the optimal Gaussian standard

deviations σopt associated are shown in from Table 2.1 to Table 2.6. The results in-

dicate that the Lab and IRGBY color spaces work better with the FT-based models

in the separate model family and that the IRGBY color space works better with the

HFT-based models in the composite model family. Regarding the three color spaces,

Lab-based and IRGBY-based extended models are generally better than RGB-based

extended models in predicting human eye fixation. For the six groups of extended

saliency models, Table 2.7 shows the summary of the best extended models in the
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same model group. We select the best extended model in each group for next ex-

periments, i.e. GCS-FT-Lab, GCLS-FT-Lab, LPFS-FT-Lab, LPFLS-HFT-IRGBY,

GFS-FT-Lab, and GFLS-HFT-IRGBY.
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Fig. 2.9. The sAUC score of each FT-based model in the separate
model family (BT dataset).
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model family (BT dataset).
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Fig. 2.12. The sAUC score of each HFT-based model in the composite
model family (Li dataset).
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Table 2.1
The rank of extended GCS models, the maximum sAUC score, and
the associated Gaussian σopt (in image largest dimension).

Image GCS-FT GCS-HFT GCS-FT GCS-HFT GCS-FT GCS-HFT

Dataset -Lab -Lab -IRGBY -IRGBY -RGB -RGB

BT [27] Rank 1 3 2 4 6 5

Max sAUC 0.7135 0.7038 0.7105 0.7037 0.6944 0.6995

σopt 0.045 0.040 0.045 0.040 0.040 0.040

Li [35] Rank 1 5 3 2 6 4

Max sAUC 0.6805 0.6748 0.6786 0.6789 0.6739 0.6755

σopt 0.050 0.050 0.050 0.050 0.050 0.050

Table 2.2
The rank of extended GCLS models, the maximum sAUC score, and
the associated Gaussian σopt (in image largest dimension).

Image GCLS-FT GCLS-HFT GCLS-FT GCLS-HFT GCLS-FT GCLS-HFT

Dataset -Lab -Lab -IRGBY -IRGBY -RGB -RGB

BT [27] Rank 1 4 2 3 6 5

Max sAUC 0.7138 0.7034 0.7103 0.7038 0.6941 0.6994

σopt 0.040 0.040 0.040 0.040 0.040 0.040

Li [35] Rank 1 5 3 2 6 4

Max sAUC 0.6803 0.6749 0.6779 0.6788 0.6736 0.6754

σopt 0.050 0.050 0.050 0.050 0.050 0.050
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Table 2.3
The rank of extended LPFS models, the maximum sAUC score, and
the associated Gaussian σopt (in image largest dimension).

Image LPFS-FT LPFS-HFT LPFS-FT LPFS-HFT LPFS-FT LPFS-HFT

Dataset -Lab -Lab -IRGBY -IRGBY -RGB -RGB

BT [27] Rank 1 3 2 4 6 5

Max sAUC 0.7084 0.7037 0.7040 0.7030 0.6924 0.6984

σopt 0.045 0.040 0.040 0.040 0.040 0.040

Li [35] Rank 2 4 3 1 6 5

Max sAUC 0.6767 0.6762 0.6775 0.6787 0.6718 0.6752

σopt 0.050 0.050 0.050 0.050 0.050 0.050

Table 2.4
The rank of extended LPFLS models, the maximum sAUC score, and
the associated Gaussian σopt (in image largest dimension).

Image LPFLS-FT LPFLS-HFT LPFLS-FT LPFLS-HFT LPFLS-FT LPFLS-HFT

Dataset -Lab -Lab -IRGBY -IRGBY -RGB -RGB

BT [27] Rank 5 3 2 1 6 4

Max sAUC 0.6950 0.7010 0.7027 0.7031 0.6897 0.6985

σopt 0.045 0.045 0.040 0.040 0.040 0.040

Li [35] Rank 6 3 2 1 5 4

Max sAUC 0.6704 0.6766 0.6774 0.6787 0.6712 0.6751

σopt 0.045 0.050 0.050 0.050 0.050 0.050
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Table 2.5
The rank of extended GFS models, the maximum sAUC score, and
the associated Gaussian σopt (in image largest dimension).

Image GFS-FT GFS-HFT GFS-FT GFS-HFT GFS-FT GFS-HFT

Dataset -Lab -Lab -IRGBY -IRGBY -RGB -RGB

BT [27] Rank 1 3 2 4 6 5

Max sAUC 0.7087 0.7036 0.7044 0.7029 0.6927 0.6993

σopt 0.045 0.040 0.040 0.040 0.040 0.040

Li [35] Rank 2 4 2 1 6 5

Max sAUC 0.6780 0.6777 0.6780 0.6804 0.6727 0.6765

σopt 0.050 0.050 0.050 0.050 0.050 0.050

Table 2.6
The rank of extended GFLS models, the maximum sAUC score, and
the associated Gaussian σopt (in image largest dimension).

Image GFLS-FT GFLS-HFT GFLS-FT GFLS-HFT GFLS-FT GFLS-HFT

Dataset -Lab -Lab -IRGBY -IRGBY -RGB -RGB

BT [27] Rank 5 3 2 1 6 4

Max sAUC 0.6916 0.7006 0.7024 0.7030 0.6890 0.6986

σopt 0.045 0.040 0.040 0.040 0.045 0.040

Li [35] Rank 6 3 2 1 5 4

Max sAUC 0.6695 0.6766 0.6772 0.6803 0.6719 0.6763

σopt 0.045 0.050 0.050 0.050 0.050 0.050
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Table 2.7
The summary of the best extended models: The rank in the same
model group, the maximum sAUC score, and the associated Gaussian
σopt (in image largest dimension).

Image GCS-FT GCLS-FT LPFS-FT LPFLS-HFT GFS-FT GFLS-HFT

Dataset -Lab -Lab -Lab -IRGBY -Lab -IRGBY

BT [27] Rank 1 1 1 1 1 1

Max sAUC 0.7135 0.7138 0.7084 0.7031 0.7087 0.7030

σopt 0.045 0.040 0.045 0.040 0.045 0.040

Li [35] Rank 1 1 2 1 2 1

Max sAUC 0.6805 0.6803 0.6767 0.6787 0.6780 0.6803

σopt 0.050 0.050 0.050 0.050 0.050 0.050
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Comparison with Other Models

We did a comprehensive evaluation of the six best extended saliency models

(GCS-FT-Lab, GCLS-FT-Lab, LPFS-FT-Lab, LPFLS-HFT-IRGBY, GFS-FT-Lab,

and GFLS-HFT-IRGBY) by comparing with 10 saliency models from the literature

using two standard image datasets. The 10 models compared in this experiment are:

SBVA(Itti) [25], AIM [27], FTSD [29], PFDN [32], SR [65], PFT [30], PQFT [31],

QDCT [34], IS-DCT-Lab [33], SSA-HFT-IRGBY [35] The SBVA(Itti) and AIM are

spatial domain models while the FTSD, PFDN, SR, PFT, PQFT, IS-DCT-Lab, SSA-

HFT-IRGBY and the six best extended models are all frequency domain models.

Figure 2.13 and Figure 2.15 demonstrate the sAUC score of each model based on

the two standard image datasets. Figure 2.14 and Figure 2.16 illustrate the average

execution time per image of each model. Note that the time axis lower than 0.3

second uses a linear scale but it higher than 0.3 second is defined in a non-linear scale

based on the largest value of the average execution time per image. Figure 2.13 and

Figure 2.15 demonstrate the sAUC score of each model based on the two standard

image datasets. Figure 2.14 and Figure 2.16 illustrate the average execution time per

image of each model. Figure 2.17, Figure 2.18, and Figure 2.19 illustrate examples

of saliency maps from different visual saliency models for the same images in the BT

dataset. Figure 2.20, Figure 2.21, and Figure 2.22 illustrate examples of saliency maps

from different visual saliency models for the same images in the Li dataset. Note that

the table in the middle indicates the locations of the saliency maps corresponding to

which visual saliency models.
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Fig. 2.13. The sAUC score of each model (BT dataset).
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Fig. 2.14. The average execution time of each model (BT dataset).
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Fig. 2.15. The sAUC score of each model (Li dataset).
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Fig. 2.16. The average execution time of each model (Li dataset).
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Fig. 2.17. Examples of saliency maps from different models for two
images (BT dataset).
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Fig. 2.18. Examples of saliency maps from different models for two
images (BT dataset).
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Fig. 2.19. Examples of saliency maps from different models for two
images (BT dataset).
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Fig. 2.20. Examples of saliency maps from different models for two
images (Li dataset).



59

Fig. 2.21. Examples of saliency maps from different models for two
images (Li dataset).
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Fig. 2.22. Examples of saliency maps from different models for two
images (Li dataset).
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Table 2.8 shows the rank of each saliency model, the maximum sAUC score, and

the optimal Gaussian standard deviations σopt associated. The results show that

the six best extended models are generally better than most state-of-the-art models

because they are ranked in the top 8 out of all the 16 models for the BT dataset

and the top 7 out of all the 16 models for the Li dataset. Among the existing

models, IS-DCT-Lab [33], SSA-HFT-IRGBY [35], and QDCT [34] models performed

better than the rest while SBVA(Itti) [25], FTSD [29], SR [65], PFT [30] models

are ranked at the bottom. The proposed GCS-FT-Lab model has the highest sAUC

score for the Li dataset and is ranked the 2nd place among all models for the BT

dataset. The proposed GCLS-FT-Lab model has the highest sAUC score for the BT

dataset and is ranked the 2nd place among all models for the Li dataset. The QDCT

model has higher sAUC scores for the two datasets and it is ranked the 6th place

for the BT dataset and the 9th place for the Li dataset. The two spatial domain

models, SBVA(Itti) and AIM, have relatively low sAUC scores for the two datasets

and they are the two slowest models in terms of average computing time per image

in Figure 2.14 and Figure 2.16. For the BT dataset, SBVA(Itti) is about 8.9x slower

and AIM is about 150.0x than the proposed GCS-FT-Lab model. For the Li dataset,

SBVA(Itti) is about 8.8x slower and AIM is about 133.4x than the proposed GCS-

FT-Lab model. Moreover, the GCS-FT-Lab and GCLS-FT-Lab models are the two

most accurate ones in predicting eye fixation. Since the GCS-FT-Lab model has lower

complexity and is more efficient than GCLS-FT-Lab model, we select GCS-FT-Lab

model as the best one of all the 16 models.
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Table 2.8
The rank of each saliency model, the maximum sAUC score, and the associated Gaussian σopt (in image
largest dimension).

Image SBVA AIM FTSD PFDN SR PFT PQFT QDCT IS-DCT SSA-HFT GCS-FT GCLS-FT LPFS-FT LPFLS-HFT GFS-FT GFLS-HFT

Dataset [25] [27] [29] [32] [65] [30] [31] [34] -Lab [33] -IRGBY [35] -Lab -Lab -Lab -IRGBY -Lab -IRGBY

BT [27] Rank 15 10 16 9 13 13 12 6 3 11 2 1 5 7 4 8

Max sAUC 0.6453 0.6956 0.5883 0.7015 0.6898 0.6898 0.6906 0.7041 0.7111 0.6932 0.7135 0.7138 0.7084 0.7031 0.7087 0.7030

σopt 0.030 0.030 0.040 0.045 0.040 0.040 0.040 0.040 0.040 0.040 0.045 0.040 0.045 0.040 0.045 0.040

Li [35] Rank 15 11 16 12 13 14 10 9 8 4 1 2 7 5 6 2

Max sAUC 0.6525 0.6727 0.6186 0.6724 0.6649 0.6639 0.6742 0.6757 0.6758 0.6795 0.6805 0.6803 0.6767 0.6787 0.6780 0.6803

σopt 0.035 0.040 0.045 0.050 0.055 0.050 0.050 0.050 0.050 0.045 0.050 0.050 0.050 0.050 0.050 0.050
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Discussion

Our proposed GCS-FT-Lab and GCLS-FT-Lab models both achieve the top per-

formance for the two standard image datasets. Their performance is nearly consistent

over the two datasets but the performance of some visual saliency models vary over

different image datasets. The IS-DCT-Lab model [33] is among the top 3 models

for the BT dataset but results in average capability for the Li dataset. The SSA-

HFT-IRGBY model [35] is among the top 3 models for the Li dataset but performs

in the lower middle for the BT dataset. A reason could be that the two standard

image datasets have different distributions of eye fixation due to the characteristics

of the image datasets in terms of image/feature statistics, object/scene varieties, and

eye tracking biases. Figure 2.23 and Figure 2.24 illustrate the distribution and the

Gaussian blurred heat map representation of eye fixation of all the images in the two

datasets. The eye fixation of the BT dataset are less center-biased than the ones of

the Li dataset. We observed that the BT dataset images contain more sparse and

small salient objects while the Li dataset images include more dense and large salient

objects. This indicates that the IS-DCT-Lab model is good at detecting sparse and

small salient objects, the SSA-HFT-IRGBY model works better in capturing dense

and large salient objects, and the proposed GCS-FT-Lab model and GCLS-FT-Lab

models are good at both tasks.

Note that our GFLS-HFT-IRGBY model is similar to the SSA-HFT-IRGBY

model [35] using the same transform and color space. But it is different from the SSA-

HFT-IRGBY model in the way that the output saliency map is selected by minimizing

entropy directly. When the spectrum scale-space is constructed to select an optimal

scale for SSA-HFT-IRGBY model, an additional Gaussian kernel is used to filter each

saliency map candidate and then minimizing entropy is employed [35]. However, our

experimental results indicate that the additional Gaussian filtering provides a limited

benefit in predicting dense eye fixation but has a significant disadvantage in predicting

sparse eye fixation.
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Fig. 2.23. The distribution of eye fixation of all the images in BT
dataset (left) and Li dataset (right).

Fig. 2.24. The Gaussian blurred heat map representation of eye fix-
ation of all the images in BT dataset (left) and Li dataset (right),
where the Gaussian σ = 0.005 (in image largest dimension).
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3. HAZMAT SIGN DETECTION AND RECOGNITION

USING VISUAL SALIENCY

Two typical hazmat signs used for a train tank car and a truck trailer are shown

in Figure 3.1. Hazmat signs have identifying visual information that can be distin-

guished from their surroundings by specific colors, shapes, symbols, and numbers.

However, there exist challenges for successful detection and recognition of hazmat

signs in complex scenes. Hazmat signs are usually divided into three separate parts

by placard holders with two horizontal strips. Various lighting and weather condi-

tions can deteriorate their color and shape over time. Additionally image distortions

may occur, such as blur and change in contrast.

(a) An example of haz-

mat sign used for a train

tank car.

(b) An example of a haz-

mat sign used for a truck

trailer.

Fig. 3.1. Examples of two hazmat signs divided into three separate parts.

In this chapter we describe a hazmat sign location detection and content recog-

nition system using visual saliency. In [14, 15] we reported some preliminary results

on this topic. We use saliency maps to denote regions likely containing hazmat signs

in complex scenes and use a convex quadrilateral shape detector to find hazmat sign

candidates in these regions. Based on our previous work [14, 15], we propose a new
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approach to hazmat sign location detection using a new visual saliency model pro-

posed in Chapter 2 and a Fourier descriptor based contour matching method [74].

We use the best of our proposed frequency domain models to extract salient regions

that are likely to contain hazmat sign candidates and then use a Fourier descriptor

based contour matching method to locate the border of hazmat signs in these regions.

This visual saliency based approach is able to significantly increase the accuracy of

sign location detection, reduce the number of false positive objects, and speed up

the overall image analysis process. It uses contour-based shape representation and

correlation matching based on the magnitude and phase of the Fourier descriptor of

extracted contours. Closed contours are extracted from color channel images using

adaptive thresholding, image binarization, morphological operation and connected

component analysis. Experimental results show that our proposed hazmat sign lo-

cation detection method is capable of detecting and recognizing projective distorted,

blurred, and shaded hazmat signs in complex scenes.

3.1 Review of Existing Sign Detection and Recognition Methods

3.1.1 Sign Location Detection

Sign location detection approaches can be divided into three categories: color-

based methods [75], shape-based methods [76] and vision-based methods [24]. Color-

based methods take advantage of the fact that signs often have highly visible contrast-

ing colors. These specific colors are used for sign location detection. For example,

a color histogram backprojection method is used in [77] to detect interesting regions

possibly containing hazmat signs. In [78] sign location detection is performed using

a color-based segmentation method as a preprocessing step for shape detection. The

luminance homogeneity of blocks is used in [79] to identify homogenous regions as the

first step towards detection of information signs containing text. In [80] several color

components are used to segment traffic signs in various weather conditions. However,

color-based methods are not robust to lighting conditions and illumination changes.
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Shape-based approaches first generate an edge map and then use shape charac-

teristics to find signs. For example, in [81] triangular, square and octagonal road

signs are detected by exploiting the properties of symmetry and edge orientations

exhibited by equiangular polygons. A shape classification method of a road-sign de-

tection system in [82] is based on linear and Gaussian-kernel support vector machines

(SVM). In [83] the authors present a system for detection and recognition of road

signs with red boundaries and black symbols inside. Pictograms are extracted from

the black regions and then matched against templates in a database. They propose

a fuzzy shape detector and a recognition approach that uses template matching to

recognize rotated and affine transformed road signs. In [84] the authors propose a

system for automatic detection and recognition of traffic signs based on maximally

stable extremal regions (MSERs) and a cascade of SVM classifiers trained using his-

togram of oriented gradient (HOG) features. The system works on images taken from

vehicles, operates under a range of weather conditions, runs at an average speed of

20 frames per second, and recognizes all classes of ideogram-based (nontext) traffic

symbols from an online road sign database. In most cases shape-based methods are

invariant to translation, rotation, and scaling, while in some situations to partial oc-

clusions. Because color-based or shape-based sign location detection methods have

both strengths and disadvantages, most color-based approaches take shape into ac-

count after using color features while some shape-based detectors also integrate some

color aspects.

Vision-based approaches approaches utilize selective visual attention models, which

imitate human early visual processing in order to overcome the above problems in

complex scenes. Many vision-based traffic sign location detection and analysis meth-

ods are using visual saliency models to generate saliency maps that denote areas

where signs are likely to be found [24]. For example, in [85] a saliency map of road

traffic signs is constructed by a weighted sum of color and edge feature maps. A

traffic sign recognition system in [86] uses a visual attention system to denote regions

with possible candidates. In our previous work [14, 15] we proposed several image
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analysis methods using visual saliency for hazmat sign location detection and context

recognition. This extended work makes use of our proposed visual saliency models to

construct a saliency map as a part of hazmat sign location detection method.

3.1.2 Sign Recognition

Sign recognition methods can be classified into: geometric constraint methods,

boosted cascades of features, and statistical moments [24, 79, 87].

Methods based on geometric constraints include the use of Hough-like meth-

ods [88, 89], contour fitting [90, 91], or radial symmetry detectors [92, 93]. These

approaches apply constraints on the object to be detected, such as little or no affine

transformations, uniform contours, or uniform lightning conditions. Although these

conditions are usually met, they cannot be generalized. For example, [89] presents an

analysis of Hough-like methods and confirms that the detection of signs under real-

world conditions is still unstable. A novel Hough-like technique for detecting circular

and triangular shapes is also proposed, in order to overcome some of the limitations

exposed.

Methods based on the boosted cascades of features commonly use the Viola-

Jones framework [94–96]. These approaches often use object detectors with Haar-like

wavelets of different shapes, and produce better results when the feature set is large.

For example, in [95] a system for detection, tracking, and classification of U.S. speed

signs is presented. A classifier similar to the Viola-Jones detector is used to discard

objects other than speed signs in a dataset of more than 100,000 images. In [96]

the detection is based on a boosted detectors cascade, trained with a version of Ad-

aboost, which allows the use of large feature spaces. The system is robust to noise,

affine deformation, partial occlusions, and reduced illumination.

Methods based on statistical moments [97–99] use the central moments of the

projections of the object to be detected. They can be used to check the orientation of

the object, or to distinguish between different shapes such as circles, squares, triangles,
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or octagons. These methods are not robust to projective distortions or non-uniform

lightning conditions. For example, in [99] a mobile-based sign interpretation system

uses detection of shapes with an approximate rotational symmetry, such as squares

or equilateral triangles. It is based on comparing the magnitude of the coefficients of

the Fourier series of the centralized moments of the Radon transform of the image

after segmentation. The experimental results show that the method is not robust to

projective distortions.

3.1.3 Shape Descriptors

Shape is an important low level object and image feature [76, 100–102]. Shape

can be described using “shape descriptor,” which can be generally classified into two

methods: contour-based methods and region-based methods [103]. Contour-based

methods only exploit the boundary information while region-based methods exploit

all the pixels within a region. Contour-based methods are widely used in many appli-

cations because of their computational efficiency but they may fail when objects have

low resolution. The Fourier descriptors (FD) is a classic and still popular method for

contour description [104, 105]. The key idea is to use the Fourier transform of the

periodic representation of the contour, which results in a shape descriptor in the fre-

quency domain. The low-frequency components of the descriptor contain information

about the general shape of the contour while the finer details are described in the high-

frequency components [74]. Although shape descriptors obtained from contour-based

methods are not generally robust to noise [106], the Fourier descriptor overcomes noise

sensitivity by usually using only the first few low frequency coefficients to describe

the shape [74, 103, 107]. The FD is also compact and easy to normalize. In addition,

it has been shown that the FD outperforms many other shape descriptors [106, 108].

Existing work on Fourier descriptor (FD) includes methods for generating de-

scriptors invariant to geometric transformations and matching methods for shape

similarity and matching. For example, a new Fourier descriptor for image retrieval
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is proposed in [109] by exploiting the benefits of both the wavelet and Fourier trans-

forms. A complex wavelet transform is first used on the shape boundary and then the

Fourier transform of the wavelet coefficients at multiple scales is employed. Since FD

is used at multiple scales, the shape retrieval accuracy improves with respect to using

ordinary FD. FD feature vectors are analyzed for pedestrian shape representation

and recognition [110]. The results show that only ten descriptors of both low and

high frequency components of pedestrian and vehicle shapes are enough for accurate

shape recognition. The fast FD of some shapes are presented in [111] based on chain

codes and the Fourier transform for shape recognition. It is shown that the first ten

terms of Fourier coefficients are enough to approximate the shapes. In [74] a method

using the Fourier transform of local regions is developed to describe the contours in

these regions. A correlation-based contour matching method is also proposed in [74]

using both magnitude and phase information of Fourier descriptors for recognizing

road signs.

3.2 Review of Existing Hazmat Sign Detection and Recognition Systems

Although there exist several mobile-based applications that provide easy access

to the Emergency Response Guidebook (ERG) guidebook [1, 12], they only provide

manually browsing functionality. There are a few methods in the literature dealing

with sign detection and recognition, but we are only aware of two other published

papers with application to hazmat signs [77, 112].

3.2.1 Hazmat Sign Detection Based on SURF and HBP

In [77] the hazmat sign detection is done using color histogram back-projection

(HBP) and Speeded Up Robust Feature (SURF) [113] matching. The method was

implemented and tested on an autonomous mobile robot for the 2008 RoboCup World

Championship. Histogram back-projection is used to detect regions of interest in the

image and remove the background of the scene. A background image without a sign,
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h(x, y), is used as a ground-truth to isolate the hazmat sign when it appears on the

scene and an image of it is captured, f(x, y). This is done by determining the euclidean

distance of the color coordinates of each pixel within h(x, y) and the corresponding

pixel within f(x, y). A threshold K is used to create a binary mask of the hazmat

sign by the use of an indicator function δ(x, y) = {(x, y) s.t. |f(x, y)− h(x, y)| > K}.
Several color histograms are then estimated for the U and V channels on the YUV

color space, and summed up to create a single histogram Ho(U, V ) for every sign on

the image. A threshold θ(Ho, ε) is used for Ho(U, V ), resulting in a binary indicator

function πo(U, V ), which specifies which pixels form part of a sign. The value of ε is

manually set to 0.05. Finally, morphological filters are used to segment the masked

regions from the background and create one or more regions of interest to be used as

inputs to the matching process using SURF features.

SURF matching is used to find interest points and retrieve images from a database.

After the region of interest is determined from the image containing a hazmat signs,

multiple interest points are found using SURF. Interest points surrounding regions

that overlap the region of interest are discarded, since the do not provide enough infor-

mation about the sign. For the remaining interest points, their corresponding feature

vectors are matched against all features of all images in a database corresponding to

the colors found on the first step.

The experiments were done using a stereo camera system consisting of two cameras

with a resolution of 1024 × 768 pixels. The tests consisted of detecting five different

hazmat signs in 240 images. The images were taken at 1, 1.5 and 2 meters, with a

maximum distortion of 30◦. The results show a detection accuracy of 92% from 1

meter, 52% from 1.5 meters, and less than 20% from 2 meters. The running time

ranges from 1 to 1.6 second on a 2.7GHz Intel CPU.
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3.2.2 Hazmat Sign Detection Based on HOG

In [112] hazmat sign detection using sliding windows and Histogram of Oriented

Gradients (HOG) [114] is described. The method was implemented and tested on a

wheeled USAR robot for the 2010 RoboCup World Championship.

The authors use the sliding window approach to exhaustively scan every pixel

over a range of positions and scales, with steps of 8 pixels and relative scale factors

of 1.05. For each position and scale a discriminative Support Vector Machine (SVM)

classifier is used to make binary decisions about the presence or absence of an object.

In order to describe the contents of the image at each particular location a HOG

descriptor is used along with color histograms in the Lab color space to distinguish

between multiple hazmat signs. For each hazmat sign hypothesis of the HOG based

detector, the color histogram is used to do the final classification by applying a k-

nearest neighbor approach in combination with χ2-distance.

The experimental results show a recognition rate of 37.5% using histograms based

on entire sliding windows and a recognition rate of 58.3% using sub-region based

histograms. Region-based histograms provide better representation of the image since

they are capable of capturing the spatial distribution of colors within the detection

window.

3.2.3 Comparison to MERGE

We proposed a hazmat sign location detection and content recognition system,

known as MERGE (Mobile Emergency Response GuidE) [13]. Although all methods

above are deployed on mobile environments, MERGE is intended for real-time use

by first responders, while [77] and [112] were intended for use in a very specific

context. The sign detection method proposed in [77] uses a ground-truth image

of the background to aid in detection when the hazmat sign appears. This is not a

feasible assumption in MERGE, since the first responders are expected to take images

of hazmat signs in a large variety of scenarios. In [112] a dataset of 1480 daylight
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images is used for both people and hazmat sign recognition. However, the authors do

not specify how many images contain hazmat signs, or at what distances the signs

are located. They do not provide information about the resolution of the images or

the cameras used for acquisition. In MERGE no assumptions on the background

are made in order to detect the sign. Instead, color information is used to detect

candidate regions using a saliency map model.

Once the hazmat sign is detected [77] uses image matching based on SURF fea-

tures, and [112] uses HOG and color histogram descriptors, both being very time

consuming task. This step is not done in MERGE. Currently, the color of the hazmat

sign is considered to be uniform, and the detection is made at different color channels.

The recognition of non-uniformly-colored placards is presented as part of the future

work.

The goal of MERGE is to be able to detect hazmat signs at long distances. Our

experimental results show successfully detecting hazmat signs in some cases at more

than 100 feet. However, the experiments in [77] can only be considered successful at

1.5 meters, and the accuracy reported by [112] is very low. Finally, the execution

time of the overall process of our hazmat sign image analysis system MERGE is

several seconds, comparable with the hazmat sign image analysis system in [77]. No

execution time is reported in [112].
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3.3 Proposed Hazmat Sign Detection and Recognition System

3.3.1 MERGE System Overview1

Figure 3.2 shows the overview of our proposed hazmat sign location detection

and content recognition system, known as MERGE (Mobile Emergency Response

GuidE) [13]. It consists of an application running on an Android/iOS mobile device2

and a backend server where many image analysis operations are done [14,15]. There

are two basic operational modes of our MERGE system: analysis of hazmat sign

images and searching internal database. The first mode includes capturing or selecting

an hazmat sign image from the mobile device and performing image analysis on the

backend server. Hazmat sign detection and recognition are done on the backend

server and the results are sent back to the mobile device [14, 15]. The second mode

includes searching the internal database to obtain guide information about a specific

hazmat sign. We designed an internal database based on the contents of the 2012

ERG guidebook. As shown in Figure 3.3, hazmat signs can be manually searched by

UN identifier numbers, template images, symbols, and classes.

Figure 3.4 shows the operational workflow and user interface at each step. The

image analysis results are used for matching related guide pages and querying internal

database to retrieve guide information. We display guide information about poten-

tial hazards, public safety and emergency response. All the information is from the

internal database on the mobile application. A suggested evacuation region is also

displayed on a map based on the chemical found, the size of the chemical spill, the

time of the day, and a weather-aware chemical spreading webservice.

1The work in this section was developed by the author jointly with my colleagues Albert Parra

and Joonsoo Kim.
2The Android application was developed by my colleague Albert Parra and the iOS application

was developed by my colleague Joonsoo Kim.
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Fig. 3.2. Hazmat sign location detection and content recognition system.
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Fig. 3.3. Manually search hazmat signs by UN identifier numbers,
template images, symbols, and classes.
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Fig. 3.4. Mobile application user interface at each step.
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3.4 Hazmat Sign Detection and Recognition Method 1

We use visual saliency based methods and generate saliency maps using color

spaces. Spatial domain visual saliency models usually have high computational cost

and variant parameters for multiple feature maps, which make them impractical to

meet our needs. Frequency domain visual saliency models with fast computation

with high prediction accuracy could be suitable for our application. Our proposed

hazmat sign detection and recognition method is based on visual saliency. We use

two existing visual saliency models to generate saliency maps denoting salient regions

likely containing hazmat signs in complex scenes and develop a convex quadrilateral

shape detection method to extract the border of hazmat signs in these regions. The

block diagram in Figure 3.5 shows the building blocks of the proposed hazmat sign

detection and recognition method 1.

Fig. 3.5. Proposed hazmat sign detection and recognition method 1.
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3.4.1 Saliency Map Generation

We use two existing visual saliency models to generate saliency maps from images

represented in both Lab and RGB color spaces, because we observed that color signs

have strong visual responses in Lab color space while white signs have strong visual

responses in RGB color space from our experiments. In each color space, two saliency

maps are generated separately using two visual saliency models, i.e. IS model [33]

and SSA model [35] respectively. The saliency maps assign higher saliency value

(ranging from lowest 0 to highest 1) to more visually attractive regions that are

likely containing hazmat signs in complex scenes. Note that the original SSA method

uses the IRGBY color space [35]. We modified this method to use Lab and RGB

color components with different weights ([1
2
, 1
4
, 1
4
] for Lab and [1

3
, 1
3
, 1
3
] for RGB). The

proposed hazmat sign detection method using the four saliency maps (two from Lab

and two from RGB), denoted as the combined method IS+SSA(Lab+RGB), has good

performance in the experiments. (see Section 3.6)

3.4.2 Salient Region Extraction

We threshold each saliency map to create a binary mask to extract the salient

regions from the original image. The threshold T1 is determined as k times the

average saliency value of a given saliency map.

T1 =
k

W ×H

W∑
x=1

H∑
y=1

S(x, y), (3.1)

where W and H are the width and height of the saliency map, S(x, y) is the

saliency value at position (x, y) and k is empirically determined for the combined

detection method IS+SSA(Lab+RGB), i.e. k = 4.5 for IS models and k = 3.5 for

SSA models, which provides a good trade-off between hazmat sign coverage and com-

putational cost of extracted salient regions in the experiments. (see Section 3.6) The
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following processing can take advantages of local distinctive features in the extracted

salient regions instead of the entire input image.

3.4.3 Convex Quadrilateral Shape Detection3

For each salient region found, we detect hazmat sign candidates in specific color

channels. We used black and white information from grayscale image, and red, green

and blue channels from RGB color space. Note that the possible colors for hazmat

signs also include yellow and orange, but these can be obtained by transforming

the image from RGB to a hue-based color space and then segment the hue channel.

The grayscale image and the color channels are thresholded to account for highly

chromatic areas using an empirically determined threshold T2 (85 for black, 170 for

white, and 127 for color). Each binarized region is morphologically opened to remove

small objects and morphologically dilated to merge areas that may belong to the

same object. We then retrieve contours from the resulting binary image using the

border following technique proposed in [115]. For each contour, we use the Hough

Transform [116] to find straight lines that approximate the contour as a polygon. The

intersections of these lines are the corners of the polygon which can be used to discard

non-quadrilateral shapes. If the contour is approximated by four vertices, we find its

convex hull [117]. If the convex hull still has four vertices, we check the angles formed

by the intersection of its points. If each of these angles is in the range 90◦± 1.5◦, and

the ratio of the sides formed by the convex hull is in the range 1 ± 0.5, we assume

that the convex quadrilateral is a hazmat sign candidate.

3.4.4 Duplicate Sign Removal

To remove duplicate sign candidates from different color channel images, we first

check all candidates passed the contour matching and estimate their minimal bound-

ing boxes. Any disqualified candidate with the aspect ratio of its bounding box

3The work in this section was developed by the author jointly with my colleague Albert Parra.
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greater than 1.3 will be discarded. We then remove the duplicate sign candidates

that correspond to the same sign. This can be done by first dividing all candidates

that are overlapped more than 50% into multiple groups and then finding the optimal

diamond-shaped box for each group, whose four nodes are closest to the centroid of

its group. Each optimal diamond-shaped box is considered to be the location of a

detected hazmat sign.

3.4.5 Color Recognition4

Because signs are detected in specific color channels, the color is recognized directly

from the color channel where the sign was identified (black or white for grayscale and

red, green or blue for RGB). The recognized color is used for queuing the mobile

database for sign category identification and providing the general guide information

based on the 2012 ERG guidebook. Figure 3.6(a) illustrates a successful detection

of two signs using the previous Method 1, one of which is affected by projective and

rotational distortion. Figure 3.6(b) illustrates a true positive and a false positive from

the previous Method 1.

(a) Two true positives. (b) One true positive and one false positive.

Fig. 3.6. Examples of image analysis.

4The work in this section was developed by the author jointly with my colleague Albert Parra.
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3.5 Hazmat Sign Detection and Recognition Method 2

We use our proposed frequency domain models in Chapter 2 to extract salient

regions that are likely to contain hazmat sign candidates and develop a Fourier de-

scriptor based contour matching method to extract the border of hazmat signs in these

regions. Based on our previous work [14], we propose a new approach to hazmat sign

location detection using a Fourier descriptor based contour matching method [74].

It uses contour-based shape representation and correlation matching based on the

magnitude and phase of the Fourier descriptor of extracted contours. The existing

method used to detect road signs in [74] cannot be directly used for hazmat sign

location detection. Hazmat signs mounted on vehicles are usually enclosed in a plac-

ard holders with two horizontal strips that divide a hazmat sign into three separate

parts as shown in Figure 3.1. In our case we need to use morphological operations to

merge separate parts that belong to a whole hazmat sign and then employ connected

component analysis to determine the boundary of the whole hazmat sign. Closed

contours are extracted from color channel images using adaptive thresholding, image

binarization, morphological operation and connected component analysis.

Fourier Descriptor (FD) is used to describe the shape of the extracted contours

through the Fourier transform [104, 105]. It has been proven to be a state-of-the-art

contour-based sign detection methods in terms of accuracy and tolerance of rotated,

scaled, and noisy signs [74, 105, 110]. In order to determine if an extracted contour

correspond to a hazmat sign, we need to compare its FD against the FD of the

contour of a shape template or a predefined shape contour. In our case, the shape

template of hazmat signs is represented by a diamond shaped binary image as shown

in Figure 3.7.

Contour matching can be done in the spatial or frequency domain. We use match-

ing in the frequency domain for two reasons. First, matching in the frequency domain

is scale independent, as opposed to spatial domain matching. Second, matching in

the spatial domain involves scanning an image multiple times modifying the scale
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Fig. 3.7. A diamond shaped binary image represents the shape tem-
plate of a hazmat sign.

and rotation of the shape template. Frequency domain matching methods have been

shown to be more computationally efficient when working with images of high res-

olution [118, 119]. FD-based matching is usually done by using only the magnitude

and ignoring the phase information. By discarding the phase information, rotation

and starting point invariance can be achieved [120]. However, because variant shapes

can have similar magnitude but different phase information, this makes FD-based

magnitude-only matching less accurate [74]. A correlation-based contour matching

method is proposed in [74] using both magnitude and phase information of Fourier

descriptors for recognizing road signs. It is shown that the normalized FDs are invari-

ant to scaling and the correlation-based contour matching using both magnitude and

phase information is invariant to rotation and starting point. We use this frequency

domain contour matching method [74] to detect the location of hazmat signs based

on a diamond shaped template. The block diagram in Figure 3.8 shows the building

blocks of the proposed hazmat sign detection and recognition method 2.

3.5.1 Saliency Map Generation

We use our proposed frequency domain models to generate saliency maps from

input images represented in both Lab and RGB color spaces, because we observed

that color signs have strong visual responses in Lab color space while white signs

have strong visual responses in RGB color space from our experiments. In each color
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Fig. 3.8. Proposed hazmat sign detection and recognition method 2.

space, a saliency map is generated separately using the proposed Gamma Corrected

Spectrum (GCS) visual saliency model, i.e. either GCS-FT-Lab model or GCS-FT-

RGB model. (see Section 2.3.4) Two saliency maps, one from Lab color space and the

other from RGB color space, assign higher saliency value (ranging from lowest 0 to

highest 1) to more visually attractive regions that are likely containing hazmat signs in

complex scenes. The proposed hazmat sign detection method using the two saliency

maps, denoted as the combined method GCS(Lab+RGB), has the best performance

in our experiments. (see Section 3.6)
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3.5.2 Salient Region Extraction

We threshold each saliency map to create a binary mask to extract the salient

regions from the original image. The threshold T1 is determined as k times the

average saliency value of a given saliency map.

T1 =
k

W ×H

W∑
x=1

H∑
y=1

S(x, y), (3.2)

where W and H are the width and height of the saliency map, S(x, y) is the

saliency value at position (x, y) and k is empirically determined for the combined

detection method GCS(Lab+RGB), i.e. k = 2.0 for GCS-FT-Lab model and k =

2.0 for GCS-FT-RGB model, which provides a good trade-off between hazmat sign

coverage and computational cost in extracted salient regions in our experiments. (see

Section 3.6) The following processing can take advantages of local distinctive features

in the extracted salient regions instead of the entire input image.

3.5.3 Contour Extraction

The hazmat signs in our dataset contain either one or two of the following colors:

white, red, green, blue, and yellow. In order to obtain strong visual responses of

certain colors of hazmat signs, we transform an extracted salient region of the input

image into several channel images in different color spaces. The white signs can

be detected in the grayscale channel image. The red, green and blue signs can be

detected in R, G, B channel images from the RGB color space. The yellow signs can

be detected in the Y channel image from the CMYK color space. We process each

channel image of the extracted salient region separately in the following.

In order to binarize each channel image of the salient region ASR
k , we propose

a new adaptive thresholding method that is a modification of Otsu’s thresholding

method [121]. Since images containing hazmat signs are likely acquired with various

lighting conditions, directly using Otsu’s thresholding method on the channel image
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does not produce accurate results when images contain variable illumination [122].

For each channel image, Ii, i ∈ [1, 5], we first use a histogram of 256 bins for the

[0,255] grayscale values to characterize pixel distribution and then obtain the median

of the pixel counts of all bins NMED
i . Second, we find the starting location of two

significant peaks TL
i and TH

i at the low and high ends of the histogram by checking

the change of pixel counts between two adjoining bins. The two index thresholds TL
i

and TH
i are selected to clip the histogram.

NMED
i = median

(N (Bj
i )
)
, (3.3)

TL
i = argminj

(|N (Bj
i )−N (Bj

i − 1)| > FB ·NMED
i

)
, j ∈ [3, 128], (3.4)

TH
i = argmaxj

(|N (Bj
i )−N (Bj

i + 1)| > FB ·NMED
i

)
, j ∈ [129, 254],(3.5)

where N (Bj
i ) is the pixel count of the j-th bin in the histogram of the i-th channel

image, FB = 0.05 is a factor to determine index thresholds TL
i and TH

i with respect

to NMED
i (empirically obtained by searching good values in our experiments), TL

i is

the starting location of the low-end significant peak (the index threshold of a low-

end bin), and TH
i is the starting location of the high-end significant peak (the index

threshold of a high-end bin). For each color channel image, we modify its histogram

by clipping the pixel counts N (Bj
i ) of the low-end and high-end bins into 0s based

on the two index thresholds TL
i and TH

i .

N ′(Bj
i ) =

⎧⎨
⎩ 0 Bj

i ≤ TL
i or Bj

i ≥ TH
i

N (Bj
i ) otherwise

(3.6)

The modified histogram with new pixel counts N ′(Bj
i ) for all 256 bins is used with

the original Otsu’s method [121] to generate an adaptive threshold TBW
i . Finally,

each original channel image Ii is then binarized using TBW
i . Figure 3.9 illustrates

an example of image binarization using the proposed adaptive thresholding method

comparing with using Ostu’s method for a red channel image of an extracted salient

region. Note that our proposed adaptive thresholding method is capable of adapting
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to local histogram and intensity features in the extracted salient regions instead of

the entire image. The original Otsu’s method fails to find a good threshold because

of a large number of pixels in other regions also having high intensity values in the

red channel of the entire image.

As we mentioned before, morphological operations are used to extract the whole

area of the hazmat sign from the binarized channel images. First, we use a flood-fill

operation to fill holes [123] in the binarized channel images of an extracted salient

region ASR
k . A hole is a set of background pixels surrounded by foreground pixels. We

use this operation to fill up missing pixels of UN identifier numbers and symbols that

are removed due to different colors. Next, we use morphological dilation with a SED-

pixel diamond shaped structuring element to enlarge the boundaries of foreground

areas [123, 124], where SED is the size of the diamond shaped structuring element

(pixel distance from the origin to the vertex). The shape of the structuring element

we used is same diamond as hazmat sign. We use this dilation to merge three separate

parts of a whole hazmat sign that divided by the placard holders with two horizontal

strips.

SED = min
(
7, FSE · N (ASR

k )
)
, (3.7)

where N (ASR
k ) is the total number of pixels in the salient region ASR

k and FSE =

0.0025% is a factor to determine the size of the diamond shaped structuring element

SED with respect to the percentage of the total number of pixels in ASR
k , which is

empirically determined by searching good values in our experiments.

We use connected component analysis to determine the boundary of the entire

hazmat sign in the binarized channel images. We remove small connected components

containing less than TCC = 200 pixels, which is less than the minimum number of

pixels on a hazmat sign in our image datasets. Finally, we obtain closed contours

by tracing the exterior boundaries of the connected components [124, 125] in each

binarized channel image separately. Table 3.1 lists all the thresholds and parameters

we used including empirically obtained ones.
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Table 3.1
Thresholds and parameters used in our proposed method. Automat-
ically determined ones are denoted by *.

Symbol Description Value

NMED
i Median of the pixel counts of all bins *

TL
i Low index threshold to clip the histogram *

TH
i High index threshold to clip the histogram *

TBW
i Adaptive threshold to binarize channel images *

SED Size of the diamond shaped structuring element *

FB Factor to determine index thresholds TL
i and TH

i 0.05

FSE Factor to determine the size of the structuring element SED 0.0025%

TCC Threshold to remove small connected components 200

Te Threshold for correlation-based matching cost e 1.751
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(a) Original image (b) Extracted saliency regions

(c) Histogram of the saliency region in red channel

(d) Otsu’s method (e) Proposed method

Fig. 3.9. Example of image binarization using the proposed adaptive
thresholding method comparing with using Ostu’s method.
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3.5.4 Fourier Descriptor Generation

The Fourier Descriptor (FD) describes the shape of an object using a set of the

Fourier transform coefficients of the object’s contour [104, 105]. Given the extracted

contour c(k) has N pixels, numbered from 0 to N − 1, a set of pixel coordinates

describing the contour c(k) can be defined as follows.

c(k) = (x(k), y(k)) = x(k) + iy(k), (3.8)

where k = 0, 1, 2, . . . , N − 1. The Fourier transform of the contour points c(k)

generates a set of complex numbers C(v) which are the Fourier descriptors of the

contour.

C(v) = F(c(k)) =
1

N

N−1∑
k=0

c(k)exp

(
−i2πvk

N

)
, (3.9)

where v = 0, 1, 2, . . . , N − 1. In order to describe the shape of a closed contour

generally, the Fourier descriptor have to be modified to make it invariant to translation

and scaling [74,109–111]. To achieve translation invariance, the DC Fourier coefficient

C(0) is set to zero C(0) = 0. All points on the contour are then shifted from its original

coordinate to (0, 0). The closed contour represented by the remaining Alternating

Current (AC) Fourier coefficients is invariant against translation, but it’s still affected

by scaling due to the magnitude of each AC coefficient. To achieve scaling invariance,

the remaining AC Fourier coefficients C(v) are normalized by
√∑N−1

v=1 |C(v)|2. The

modified Fourier descriptor C ′(v) of the extracted contour c(k) are obtained as follows.

C ′(v) =

⎧⎨
⎩

0, if v = 0,

C(v)√∑N−1

v=1
|C(v)|2

, if v �= 0,
(3.10)

where C(v) is the original Fourier coefficients. The low frequency components of

Fourier descriptors C ′(v) contain information about the general shape of the contour

while the high frequency components contain finer details. Therefore, the first P
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modified AC Fourier descriptors can be used to create an approximate reconstruction

b̂(k) of the original contour points c(k) for contour matching.

ĉ(k) =
1

P

P∑
v=0

C ′(v)exp
(
i2πvk

N

)
, (3.11)

where k = 0, 1, 2, . . . , N − 1.

3.5.5 Correlation-Based Contour Matching5

We use the correlation-based contour matching method [74] to locate the border of

hazmat signs based on a diamond shaped template. To achieve the rotation and start-

ing point invariance, the correlation-based contour matching using both magnitude

and phase information is required for hazmat sign location detection. The mod-

ified Fourier descriptors of extracted contours and the template contour can been

obtained in previous steps and their magnitude and phase information is used to

compute cross-correlation by employing complex conjugate multiplication XY . This

correlation-based contour matching method is able to achieve translation, scaling, ro-

tation and starting point variances. The cross-correlation rTE(l) between an extracted

contour cE and the template contour cT is defined as follows.

rTE(l) =

∫ K

0

cT (k)cE(l + k)dk

=
N−1∑
v=0

C ′T (v)C
′
E(v)exp

(
−i2πvl

K

)
(3.12)

= F−1{C ′TC ′E}(v). (3.13)

By using the first P modified Alternating Current (AC) Fourier descriptors with

both magnitude and phase information, this simplified contour matching method is

5The work in this section was developed by the author jointly with my colleague Kharittha

Thongkor.
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able to approximately achieve translation, scaling, rotation and starting point vari-

ances. We say “approximately” because we are only using the first few modified

Fourier descriptors to describe the shape of the closed contour. In order to determine

the appropriate number P of modified AC Fourier descriptors needed for contour

matching, we examined the shape variations from a group of reconstructed contours of

the template diamond-shaped contour by varying the number of modified AC Fourier

descriptors we used. Figure 3.10 illustrates the shape variations of using the first 4,

8, 16, 32, 50 and 100 modified AC Fourier descriptors to reconstruct the template

contour of diamond shape. It is shown that using the first 8 modified AC Fourier

descriptors is a good approximation of the contour of the diamond shaped template.

Using more Fourier descriptors than necessary leads to increasing computational cost

with limited additional benefit [106]. Because using more modified AC Fourier de-

scriptors does not significantly improve the matching performance, we only use the

first 8 AC Fourier descriptors in our experiments.

(a) 4 (b) 8 (c) 16

(d) 32 (e) 50 (f) 100

Fig. 3.10. The the shape variations of using the first 4, 8, 16, 32, 50
and 100 AC Fourier coefficients.

The modified Fourier descriptors of all the contours are used to match against the

ones of the template contour of hazmat signs in Figure 3.7. To decide if an extracted
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contour cE is a good match of a hazmat sign, we check the results of a correlation-

based matching cost function. The matching cost e is based on the cross-correlation

rTE(l) of two modified Fourier descriptors between an extracted contour cE and the

template contour cT .

e = 2− 2max
l

|rTE(l)|, (3.14)

where rTE(l) is the cross-correlation between an extracted contour cE and the

template contour cT . If the matching cost e is lower than an empirically obtained

threshold Te, we accept the extracted contour cE as the border of a hazmat sign that

represents the location of that sign in the input image. If the matching cost e is

higher than the threshold Te, we reject the extracted contour cE and do nothing in

the following. In order to determine the threshold Te, we calculate the correlation-

based matching cost e between the contours of some shapes shown in Figure 3.11

and the contour of the diamond shaped template in Figure 3.7. Because the cost of

matching a general diamond shape (including the rotation as a square shape) against

the diamond shaped template is not greater than 1.750, we then set Te = 1.751.

Note that the contours of other shapes in Figure 3.11 are only used to determine the

threshold Te. We keep updating a list of borders representing the sign locations till

all the extracted contours in all saliency regions are matched against the template

contour. We then obtain the cropped hazmat sign images using the accepted contours

in the border list to crop the pixels of hazmat signs from the original image.

3.5.6 Duplicate Sign Removal

To remove duplicate sign candidates from different channel images, we first check

all candidates passed the contour matching and estimate their minimal bounding

boxes. Any disqualified candidate with the aspect ratio of its bounding box greater

than 1.25 will be discarded. We then remove the duplicate sign candidates that

correspond to the same sign. This can be done by first dividing all candidates that
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(a) 1.667 (b) 1.750 (c) 1.925 (d) 1.942

(e) 1.953 (f) 1.961 (g) 1.973 (h) 1.974

Fig. 3.11. Comparison of the contours of some shapes and their matching costs e.

are overlapped more than 75% into multiple groups and then finding the optimal

diamond-shaped box for each group, whose four nodes are closest to the centroid of

its group. Each optimal diamond-shaped box is considered to be the location of a

detected hazmat sign.
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3.5.7 Color Recognition

The HSV color space (Hue, Saturation, Value) is often used for recognizing colors

in the Hue (H) channel similar to a color wheel. As Hue (H) varies from 0 to 1,

the corresponding colors vary from red through yellow, green, cyan, blue, magenta,

and back to red (there are actually red colors both at 0 and 1). As Saturation (S)

varies from 0 to 1, the corresponding colors (hues) vary from unsaturated (shades of

gray) to fully saturated (no white component). Saturation can be considered as the

purity of a color. As Value (V), roughly equivalent to brightness, varies from 0 to

1, the corresponding colors become increasingly brighter. The brightest areas of the

value channel correspond to the brightest colors in the original image. Figure 3.12

illustrates the Hue, Saturation, Value of the HSV color space.

Fig. 3.12. Hazmat sign detection and recognition system.

The color of a hazmat sign can be recognized in HSV color space. We convert

a cropped hazmat sign image from RGB to HSV color space and extract the three

channel images separately. The white hazmat sign can be first determined from the

Saturation (S) and Value (V) channel images of the cropped image. Then other
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Table 3.2
The color look-up table based on the 32 uniform distributed hue segments.

Recognized Colors Red(1) Orange Yellow Green Blue Red(2)

Hue Segment Range 0∼0.03125 0.03125∼0.09375 0.09375∼0.25 0.25∼0.5 0.5∼0.75 0.75∼1

Hue Segment Indexes 1 2,3 4∼8 9∼16 17∼24 25∼32

colorful hazmat sign can be recognized from the masked regions of the Hue (H)

channel image of the cropped image. This can be done by an image masking method

using image thresholding on saturation and value channel images because white’s

saturation is close to 0 and its value is close to 1. We compute the histograms of the

saturation and value channel images of the cropped image and then employ the Otsu’s

thresholding method [121] to binarize the channel images and obtain two masks of

resultant regions whose saturation and value are greater than their thresholds. A

combined mask is obtained by AND operations of saturation and value masks and it

denotes the mask of color regions in the cropped image since the Saturation (S) and

Value (V) channels are both orthogonal to the Hue (H) channel. The masked color

regions is used to check if the hazmat sign is white or other color. A hazmat sign is

considered as white if the size of the masked color regions is less than 0.4% of the

number of pixels in the cropped image, otherwise it is considered as other color in

the following.

To determine the color (except white) of the masked color regions, we first define

a set of K uniform distributed hue segments by equally dividing the whole range of

the hue channel (from 0 to 1). A histogram of K bins of the hue segments is used to

characterize the hue distribution of the cropped hazmat sign image. We find the index

Bk of the maximum number of pixel counts in the histogram and use it to determine

the color (except white) of the hazmat sign by searching Bk in an empirically obtained

color look-up table in Table 3.2 based on the K bins of the hue segments. The size

of look-up table is determined by the number of hue segments K and we use K = 32

in our color recognition method. Some examples of the proposed color recognition
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method for white and colorful hazmat signs at 50 feet are illustrated from Figure 3.13

to Figure 3.16 respectively (The hazmat sign images with 4-digit UNID were captured

by 5 MP camera on an HTC Wildfire mobile telephone (2592×1952) and the ones

with warning text were captured by a 5 MP camera on a Samsung Galaxy Nexus

mobile telephone (2592×1944)). The recognized color is used for queuing the mobile

database for sign category identification and providing the general guide information

based on the 2012 ERG guidebook.
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Fig. 3.13. Examples of the proposed color recognition method for two
white hazmat signs at 50 feet.
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Fig. 3.14. Examples of the proposed color recognition method for two
red hazmat signs at 50 feet.
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Fig. 3.15. Examples of the proposed color recognition method for
orange and yellow hazmat signs at 50 feet.
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Fig. 3.16. Examples of the proposed color recognition method for
green and blue hazmat signs at 50 feet.
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3.6 Experimental Results

We did two experiments to investigate the performance and accuracy of our pro-

posed hazmat sign detection and recognition method. The tests were executed on a

Galaxy Nexus mobile telephone with a dual-core 1.2GHz CPU and 1GB RAM and

a backend server with a quad-core 2.4GHz CPU and 4GB RAM. The first experi-

ment consisted of generating saliency maps using different visual saliency models and

evaluating their performance of locating hazmat signs based on ground-truth infor-

mation. The second experiment consisted of hazmat sign detection and recognition

on our image datasets and comparing the results with ground-truth information. The

ground-truth information include the image resolution, the number of pixels on the

sign, the distance from the camera to the sign, sign color, and sign location in the

image.

3.6.1 Image Datasets

Our first image dataset (Dataset-1) consisted of 50 images, each containing one or

more hazmat signs in a complex scene (62 hazmat signs in total). The hazmat sign

images were captured by a third party under various lighting conditions, distances

and perspectives using three different cameras: a 5 MP camera on an HTC Wildfire

mobile telephone (2592×1952), an 8.2 MP Kodak Easyshare C813 digital camera

(3296×2472), and a 16 MP Nikon Coolpix S800c digital camera (1600×1200) (MP

stands for Mega Pixel). Among the 50 images, 23 were reported at 10-50 feet, 23 at

50-100 feet, and 4 at 100-150 feet. Among the 62 hazmat signs, 2 had low resolution,

11 had projective distortion, 8 were blurred, and 6 were shaded. This image dataset

contains images of red, yellow, and white hazmat signs. Figure 3.17 illustrates some

examples of the first image dataset (Dataset-1) in different conditions.

Our second image dataset (Dataset-2) consisted of 100 images, each containing one

or more hazmat signs in a complex scene (111 hazmat signs in total). The hazmat sign

images were captured by a third party under various lighting conditions, distances
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Fig. 3.17. Examples of the first image dataset (Dataset-1) in different
conditions (left to right then top to bottom): low resolution, perspec-
tive distortion; blurred sign, shaded sign.

and perspectives using the 16 MP Nikon Coolpix S800c digital camera, including

36 low resolution 2 MP images (1600×1200) and 64 full resolution 16 MP images

(4608×3456) from the same camera. Among the 100 images, 22 were reported at 10-

50 feet, 35 at 50-100 feet, and 43 at 100-150 feet. Among the 111 hazmat signs, 46 had

low resolution, 25 had projective distortion, 12 were blurred, and 17 were shaded. This

image dataset contains images of red and white hazmat signs. Figure 3.18 illustrates

some examples of the second image dataset (Dataset-2) in different conditions.

Our third image dataset (Dataset-3) consisted of 252 images, each containing only

one hazmat sign in a complex scene (252 hazmat signs in total). We use 6 available

hazmat signs in different colors for this image dataset, including red, green, blue,

orange, yellow, and white. All of them have a warning text in the middle of the signs
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Fig. 3.18. Examples of the second image dataset (Dataset-2) in dif-
ferent conditions (left to right then top to bottom): low resolution,
perspective distortion; blurred sign, shaded sign.

often used by truck trailer. The images were acquired by us in the outdoor field under

various lighting conditions and distances. We took the images at various distances

with ground-truth measurement, i.e. 10, 25, 50, 75, 100, 125, and 150 feet. The

hazmat sign images were captured by us using 3 different cameras: a 5 MP camera

on an HTC Wildfire mobile telephone (2592×1952), a 5 MP camera on a Samsung

Galaxy Nexus mobile telephone (2592×1944), and a 10 MP Canon PowerShot S95

digital camera (3648×2736) (MP stands for Mega Pixel). At each distance, 36 images

were taken by the 3 cameras in both portrait mode and landscape mode (12 images

of the 6 hazmat signs in each scene). Among the 252 images, 36 were measured and

captured in a straight view at 10 feet, 36 at 25 feet, 36 at 50 feet, 36 at 75 feet,

36 at 100 feet, 36 at 125 feet, and 36 at 150 feet. The 252 hazmat signs have clear

appearances without any shape distortion in the images. This image dataset contains

images of red, green, blue, orange, yellow, and white hazmat signs. Figure 3.19 and

Figure 3.20 illustrate some examples of the 6 signs of the third image dataset (Dataset-
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3) at 10 feet in portrait an landscape mode respectively (Images were captured by

the 5 MP camera on a Samsung Galaxy Nexus mobile telephone).

The distance information of the first and second image datasets (Dataset-1 and

Dataset-2) is visually estimated and thus not reliable. The images were also acquired

by a third party in the working field, under various lighting and weather conditions,

distances, and perspectives. The distance information of the third image dataset

(Dataset-3) is reliable and obtained with ground-truth measurement. The images

were acquired by us in the outdoor field under various lighting conditions and dis-

tances.

Fig. 3.19. Examples of the 6 signs of Dataset-3 at 10 feet in portrait
mode (left to right then top to bottom): red sign, green sign, blue
sign; orange sign, yellow sign, white sign.
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Fig. 3.20. Examples of the 6 signs of Dataset-3 at 10 feet in landscape
mode (left to right then top to bottom): red sign, green sign, blue sign;
orange sign, yellow sign, white sign.
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Figure 3.21 illustrate some bounding box images for a typical STOP sign and a

hazmat sign at the same distance 25, 50, 100, and 150 feet. Table 3.3 shows the

relation among the image resolution of a certain camera, the distance from a camera

to a hazmat sign, and the number of pixels on a hazmat sign. It also reports the

pixel ratio of STOP and hazmat sign by comparing it to a typical STOP sign at each

distance. On average, a typical STOP sign contains 5.60 times pixels than a hazmat

sign at the same distance.

Fig. 3.21. Examples of bounding box images for a typical STOP sign
and a hazmat sign at the same distance 25, 50, 100, and 150 feet.
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Table 3.3
The relation among the image resolution, the distance from a camera to a hazmat sign, and the number of
pixels on a hazmat sign in the third image dataset (Dataset-3) with comparison to a typical STOP sign.

Camera (Image Resolution) 10 feet 25 feet 50 feet 75 feet 100 feet 125 feet 150 feet

Canon PowerShot S95 (3648×2736) 90312 14450 3444 1458 840 512 364

Hazmat Sign Bounding Box (Pixel Ratio=0.5) 425×425 170×170 83×83 54×54 41×41 32×32 27×27

HTC Wildfire (2592×1952) 57800 9522 2312 1012 578 364 242

Hazmat Sign Bounding Box (Pixel Ratio=0.5) 340×340 138×138 68×68 45×45 34×34 27×27 22×22

Samsung Galaxy Nexus (2592×1944) 56112 9248 2244 1012 578 364 242

Hazmat Sign Bounding Box (Pixel Ratio=0.5) 335×335 136×136 67×67 45×45 34×34 27×27 22×22

Samsung Galaxy Nexus (2592×1944) 298235 50952 12738 5845 3288 1989 1393

STOP Sign Bounding Box (Pixel Ratio=0.82843) 600×600 248×248 124×124 84×84 63×63 49×49 41×41

Pixel Ratio of STOP and Hazmat Sign (Avg=5.60) 5.315 5.510 5.676 5.776 5.689 5.464 5.756
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3.6.2 The First Experiment

In the first experiment, we tested our best GCS visual saliency models and 4

state-of-the-art models, including SBVA [25], GBVS [26], IS-DCT-Lab [33], SSA-

HFT-IRGBY [35], by hazmat sign image dataset. This experiment consisted of eval-

uating their performance using a hazmat sign image dataset and scoring the resultant

saliency maps in locating hazmat signs based on ground-truth information. We use

the first hazmat sign image dataset (Dataset-1) for evaluation and it consists of 50

images and 62 hazmat signs in total.

The saliency models are evaluated in the experiment are: SBVA [25], GBVS [26],

IS [33], SSA [35]. We classified the resulting saliency maps into four categories:

good, fair, bad, and lost. For each sign, we assigned 3 points for a good saliency

map (sign was mostly contained in high salient regions SRhigh), 2 points for a fair

saliency map (sign was mostly contained in middle salient regions SRmiddle), 1 point

for a bad saliency map (sign was mostly contained in low salient regions SRlow),

and 0 points for a lost saliency map (sign was mostly contained in non-salient regions

SRnon). The type of salient regions are distinguished by a set of predefined thresholds

(The multiples of the average saliency value of a given saliency map based on the

Equation 3.2).
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SRhigh = {
⋃
(x,y)

S(x, y)|Thigh � S(x, y) � 1}, (3.15)

SRmiddle = {
⋃
(x,y)

S(x, y)|Tmiddle � S(x, y) < Thigh}, (3.16)

SRlow = {
⋃
(x,y)

S(x, y)|Tlow � S(x, y) < Tmiddle}, (3.17)

SRnon = {
⋃
(x,y)

S(x, y)|0 � S(x, y) < Tlow}, (3.18)

Thigh =
4

W ×H

W∑
x=1

H∑
y=1

S(x, y), (3.19)

Tmiddle =
2

W ×H

W∑
x=1

H∑
y=1

S(x, y), (3.20)

Tlow =
1

W ×H

W∑
x=1

H∑
y=1

S(x, y), (3.21)

where W and H are the width and height of the saliency map, S(x, y) is the

saliency value at position (x, y). Since saliency map is a probability map for predicting

the location of eye fixations in a scene, high salient regions are defined as their saliency

values are not less than the threshold Thigh, middle salient regions are between the

threshold Thigh and Tmiddle, low salient regions are between the threshold Tmiddle and

Tlow, and non-salient regions are between the threshold Tlow and 0. Examples of the

four categories of saliency maps (good, fair, bad, lost) with our defined four types

of salient regions (high, middle, low, non) are demonstrated from Figure 3.22 to

Figure 3.25.

We evaluated above saliency map methods based on average execution times, the

distribution of above categories and the calculated score. Table 3.4 shows the results

of the visual saliency models in locating hazmat signs. The score of each saliency map

method is calculated as the sum of the points assigned for all 62 hazmat signs, which

ranges from 0 to 186. Note that the SBVA and the GBVS methods use one color

space. Compared with the SBVA and the GBVS methods using one color space, the IS

and the SSA methods using one color space have comparable scores, while the IS and
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Table 3.4
Average execution time (in seconds), distribution and score of the
saliency models (color spaces) in the first image dataset (Dataset-1).

Saliency Map Time Good Fair Bad Lost Score

SBVA(IRGBY) 2.07 28 16 12 6 128

GBVS(IRGBY) 3.36 25 15 15 7 120

IS(Lab) 0.39 27 5 20 10 111

IS(RGB) 0.36 22 7 27 6 107

SSA(Lab) 0.55 33 8 12 9 127

SSA(RGB) 0.53 38 5 8 11 132

IS+SSA(Lab+RGB) 1.83 41 6 8 7 143

GCS(Lab) 0.43 37 10 8 7 139

GCS(RGB) 0.41 28 16 12 6 128

GCS(Lab+RGB) 0.84 52 6 1 3 169



112

Fig. 3.22. An example of good saliency map with the four types of
salient regions (top to bottom then left to right): original image, good
saliency map; high salient regions, middle salient regions; low salient
regions, non-salient regions.

the SSA methods using two color spaces have higher scores. The GCS(Lab+RGB)

and the IS+SSA(Lab+RGB) methods using two color spaces run 2.46 and 1.13 times

faster than the SBVA method and 4.0 and 1.84 times faster than the GBVS method

respectively. The results verified that the proposed GCS(Lab+RGB) model, com-

bining GCS-FT-Lab and GCS-FT-RGB models, can improve the score of generated
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Fig. 3.23. An example of fair saliency map with the four types of
salient regions (top to bottom then left to right): original image, fair
saliency map; high salient regions, middle salient regions; low salient
regions, non-salient regions.

saliency maps, while still running faster than SBVA and GBVS methods. Figure 3.26

and Figure 3.27 illustrate examples of saliency maps from different methods for the

same hazmat sign images in portrait mode and landscape mode. Note that the table

in the middle indicates the locations of the saliency maps corresponding to which

methods.
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Fig. 3.24. An example of bad saliency map with the four types of
salient regions (top to bottom then left to right): original image, bad
saliency map; high salient regions, middle salient regions; low salient
regions, non-salient regions.
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Fig. 3.25. An example of lost saliency map with the four types of
salient regions (top to bottom then left to right): original image, lost
saliency map; high salient regions, middle salient regions; low salient
regions, non-salient regions.
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Fig. 3.26. Examples of saliency maps from different methods for two
hazmat sign images in portrait mode.
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Fig. 3.27. Examples of saliency maps from different methods for two
hazmat sign images in landscape mode.
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3.6.3 The Second Experiment

In the second experiment, we evaluate the performance of our hazmat sign detec-

tion and recognition methods in detecting and recognizing hazmat signs in complex

scenes. We employ the following quantitative measurements to evaluate the previous

Method 1 and the proposed Method 2.

Accuracy =
The Number of Correct Resultant Signs

The Total Number of Signs
, (3.22)

Mistakenness =
The Number of False Positive Objects

The Total Number of Signs
, (3.23)

Sign-Coverage =
The Number of Signs Covered in Extracted Salient Regions

The Total Number of Signs
,(3.24)

Pixel-Usage =
The Number of Pixels Used in Extracted Salient Regions

The Total Number of Pixels in The Image
. (3.25)

Table 3.5 illustrates the performance of the generated saliency maps and salient

region extraction methods in terms of the pixel usage and sign coverage in the ex-

tracted salient regions of complex scenes. For the three image datasets, the previous

Method 1 using four saliency maps obtains the average pixel usage 13.81% and the

average sign coverage 96.24%, while the proposed Method 2 using two saliency maps

achieves the average pixel usage 10.98% and the average sign coverage 97.41%. Haz-

mat sign image analysis focusing on the extracted salient regions can achieve good

sign coverage and further speed up the overall image analysis process by using only

a small portion of pixels, instead of using the entire pixels in an image.
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Table 3.5
The pixel usage and sign coverage in the extracted salient regions for the three image datasets.

Dataset-1 Dataset-1 Dataset-2 Dataset-2 Dataset-3 Dataset-3 Average Average

Proposed Method Pixel Usage Sign Coverage Pixel Usage Sign Coverage Pixel Usage Sign Coverage Pixel Usage Sign Coverage

IS+SSA(Lab+RGB) Sal. Maps 15.29% 98.39%(61/62) 14.63% 95.50%(106/111) 11.52% 96.03%(242/252) 13.81% 96.24%(409/425)

GCS(Lab+RGB) Sal. Maps 12.52% 98.39%(61/62) 11.73% 96.40%(107/111) 8.70% 97.62%(246/252) 10.98% 97.41%(414/425)
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The accuracy of sign location detection is significantly related to the image res-

olution of a certain camera, the distance from a camera to a hazmat sign, and the

number of pixels on a hazmat sign. We then determine the color recognition accuracy

based on how many signs were correctly color recognized after a successful sign loca-

tion detection. Note that we used the recognized color inside the sign, not text or UN

identifier numbers, queuing the mobile database for sign category identification and

providing the general guide information. Therefore the overall accuracy is equivalent

to the color recognition accuracy in our experiments.

Table 3.6 illustrates the image analysis results of the proposed methods for the first

image dataset (Dataset-1). The previous Method 1 using the IS+SSA(Lab+RGB)

model has the location detection accuracy 64.52% and the color recognition accuracy

45.16% for all 62 hazmat signs. The proposed Method 2 using our GCS(Lab+RGB)

model obtains the location detection accuracy 67.74% and the color recognition ac-

curacy 61.29%, while the same method without using saliency maps yields 56.45%

and 50.00% respectively. Table 3.7 demonstrates the image analysis results of the

proposed methods for the second image dataset (Dataset-2). The previous Method

1 using the IS+SSA(Lab+RGB) model has the location detection accuracy 40.54%

and the color recognition accuracy 29.73% for all 111 hazmat signs. The proposed

Method 2 using our GCS(Lab+RGB) model obtain the location detection accuracy

54.05% and the color recognition accuracy 53.15%, while the same method without

using saliency maps yields 43.24% and 42.34% respectively. Compared with our pre-

vious Method 1 using the IS+SSA(Lab+RGB) model with four saliency maps, our

proposed Method 2 using our GCS(Lab+RGB) model with two saliency maps has

higher accuracy of sign location detection in general. Our experimental results con-

firmed that the proposed visual saliency based image analysis methods can increase

the accuracy of sign location detection and reduce the false positive (FP) objects.

For our third image dataset (Dataset-3), Table 3.8, Table 3.9 and Table 3.10 show

more image analysis results of the proposed methods at variant distances for the third

image dataset (Dataset-3), including the mistakenness of false positive (FP) objects,
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Table 3.6
Image analysis results for the first image dataset (Dataset-1).

Total FP Object FP Object Location Location Color Color Overall

Proposed Method Signs Extracted Mistakenness Detected Accuracy Recognized Accuracy Accuracy

Method 1 IS+SSA(Lab+RGB) Sal. Maps 62 10 16.13% 40 64.52% 28 45.16% 45.16%

Method 2 without Sal. Maps 62 32 51.61% 35 56.45% 31 50.00% 50.00%

Method 2 GCS(Lab+RGB) Sal. Maps 62 21 33.87% 42 67.74% 38 61.29% 61.29%
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Table 3.7
Image analysis results for the second image dataset (Dataset-2).

Total FP Object FP Object Location Location Color Color Overall

Proposed Method Signs Extracted Mistakenness Detected Accuracy Recognized Accuracy Accuracy

Method 1 IS+SSA(Lab+RGB) Sal. Maps 111 24 21.62% 45 40.54% 33 29.73% 29.73%

Method 2 without Sal. Maps 111 81 72.97% 48 43.24% 47 42.34% 42.34%

Method 2 GCS(Lab+RGB) Sal. Maps 111 45 40.54% 60 54.05% 59 53.15% 53.15%
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the location detection accuracy, the color recognition accuracy, and the overall process

accuracy. The previous Method 1 using the IS+SSA(Lab+RGB) model has the av-

erage location detection accuracy 56.75% and the average color recognition accuracy

19.05% for all 252 hazmat signs. The proposed Method 2 using our GCS(Lab+RGB)

model achieves the average location detection accuracy 96.83% and the average color

recognition accuracy 90.87%, while the same method using saliency maps obtains

87.70% and 82.54% respectively. The previous Method 1 has high location accuracy

at short distances but decreases after 50 feet and fails to detect sign location after

125 feet. The proposed Method 2 achieve relatively consistent location accuracy at

all distances from 10 feet to 150 feet, because we used the adaptive contour extrac-

tion method within more accurate saliency regions and the robust contour matching

method based on Fourier descriptors.

For the overall process of our hazmat sign image analysis system, the average

execution time of the previous Method 1 and the one of the proposed Method 2

are 5.88 and 5.28 seconds respectively for the first image dataset (Dataset-1), 18.95

and 16.45 seconds respectively for the second image dataset (Dataset-2), while 10.24

and 8.98 seconds respectively for the third image dataset (Dataset-3). The average

execution time of the proposed Method 2 without using saliency maps are 8.49, 26.52,

and 14.36 seconds for the three image datasets respectively. Our experimental results

verified that the proposed visual saliency based methods can speed up the overall

image analysis process. With better location detection accuracy and color recognition

accuracy, the proposed Method 2 using the GCS(Lab+RGB) model is faster than

the previous Method 1 using the IS+SSA(Lab+RGB) model and more suitable for

practical applications and uses.
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Table 3.8
Image analysis results of Method 1 using four saliency maps for the third image dataset (Dataset-3).

Method 1 Total FP Object FP Object Location Location Color Color Overall

IS+SSA(Lab+RGB) Sal. Maps Signs Extracted Mistakenness Detected Accuracy Recognized Accuracy Accuracy

10 feet 36 8 22.22% 36 100.00% 10 27.78% 27.78%

25 feet 36 4 11.11% 36 100.00% 16 44.44% 44.44%

50 feet 36 2 5.56% 34 94.44% 10 27.78% 27.78%

75 feet 36 1 2.78% 23 63.89% 7 19.44% 19.44%

100 feet 36 1 2.78% 11 30.56% 3 8.33% 8.33%

125 feet 36 4 11.11% 3 8.33% 2 5.56% 5.56%

150 feet 36 4 11.11% 0 0.00% 0 0.00% 0.00%

Average 252 24 9.52% 143 56.75% 48 19.05% 19.05%
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Table 3.9
Image analysis results of Method 2 without using saliency maps for the third image dataset (Dataset-3).

Method 2 Total FP Object FP Object Location Location Color Color Overall

without using Sal. Maps Signs Extracted Mistakenness Detected Accuracy Recognized Accuracy Accuracy

10 feet 36 4 11.11% 33 91.67% 29 80.56% 80.56%

25 feet 36 50 138.89% 26 72.22% 26 72.22% 72.22%

50 feet 36 3 8.33% 34 94.44% 33 91.67% 91.67%

75 feet 36 5 13.89% 32 88.89% 30 83.33% 83.33%

100 feet 36 3 8.33% 34 94.44% 32 88.89% 88.89%

125 feet 36 9 25.00% 30 83.33% 28 77.78% 77.78%

150 feet 36 3 8.33% 32 88.89% 30 83.33% 83.33%

Average 252 77 30.56% 221 87.70% 208 82.54% 82.54%



126

Table 3.10
Image analysis results of Method 2 using two saliency maps for the third image dataset (Dataset-3).

Method 2 Total FP Object FP Object Location Location Color Color Overall

GCS(Lab+RGB) Sal. Maps Signs Extracted Mistakenness Detected Accuracy Recognized Accuracy Accuracy

10 feet 36 0 0.00% 36 100.00% 32 88.89% 88.89%

25 feet 36 1 2.78% 36 100.00% 36 100.00% 100.00%

50 feet 36 0 0.00% 36 100.00% 35 97.22% 97.22%

75 feet 36 1 2.78% 36 100.00% 34 94.44% 94.44%

100 feet 36 7 19.44% 33 91.67% 31 86.11% 86.11%

125 feet 36 20 55.56% 33 91.67% 30 83.33% 83.33%

150 feet 36 19 52.78% 34 94.44% 31 86.11% 86.11%

Average 252 48 19.05% 244 96.83% 229 90.87% 90.87%
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Discussion

¿From the experiments our accuracy ranged from approximately 90% for images

taken is a controlled test environment to approximately 60% for image acquired in

a more “typical” operating scenario. The accuracy we obtained in a more typical

operating scenario would not be acceptable for many situations. The overall accu-

racy of our hazmat sign image analysis system is affected by the location and color

recognition accuracy. The accuracy of sign location detection is significantly related

to the image resolution of the camera, the distance from the camera to a hazmat sign,

and the number of pixels forming the hazmat sign. As mentioned above, we show the

relation between these factors in Table 3.3. The location detection accuracy of the

first Dataset-1 67.74% and the second Dataset-2 54.05% were lower than the average

one of the third Dataset-3 96.83%, because there are a large number of blurred, low

resolution, and perspective distorted hazmat signs contained in the first Dataset-1

and the second Dataset-2. Note that hazmat signs in the third Dataset-3 were ac-

quired in a controlled test environment without any shape distortion in the images.

The location detection accuracy deteriorates due to the loss of boundary contours for

blurred and low resolution hazmat signs and poor correlation in contour matching for

perspective distorted hazmat signs.

The color recognition accuracy is based on how many signs were correctly color

recognized after a successful sign location detection. The color recognition accuracy of

the first Dataset-1 61.29% and the second Dataset-2 53.15% were also lower than the

average one of the third Dataset-3 90.87%, because the color recognition accuracy will

not exceed the previous location detection accuracy. The color recognition accuracy

is also degraded by the absence of color calibration for hazmat sign images, especially

for shaded signs, which cause our color recognition method to misidentify the sign

color.

The location detection accuracy could be improved by using supper-resolution

image reconstruction methods [126, 127] to refine hazmat sign images at the step of
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image preprocessing. The color recognition accuracy could be increased by employing

proper color calibration methods [51] at the step of image acquisition. Therefore we

could further improve the overall accuracy of our hazmat sign image analysis system.
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4. ERROR CONCEALMENT FOR

SCALABLE VIDEO CODING

A Scalable video coding (SVC) decoder typically requires that the base layer frames

be delivered almost error-free and uses them to decode the enhancement layer frames.

Due to the nature of dynamic and lossy channels used for video delivery (particularly

wireless channels), video bitstreams transmitted over packet networks usually expe-

rience isolated and burst packet losses [17]. An accurate distortion model for the

effect of different packet loss patterns on the encoded video was proposed in [128]. It

confirmed that a burst packet loss produces a larger distortion than an equal number

of isolated packet losses. Moreover, once errors occur in video bitstreams, they are

prone to propagate from one frame to another due to motion-compensated prediction

used in SVC codec. These effects can result in severe visual quality degradation of

the decoded frames.

Error concealment (EC) is an effective scheme for error recovery, which imposes

small complexity on the decoder and provides a flexible solution to the above prob-

lems [129, 130]. By the use of error concealment methods, damaged regions can be

reconstructed from the correctly received neighboring regions. Due to the layered

structure of SVC, it is advantageous to recover the damaged frames in one layer us-

ing the available frames in other layers. It has been shown that one can exploit the

spatial and temporal correlations of video frames between different layers to improve

the performance of single layer error concealment [18].

Slice structuring [130] is a useful strategy to reduce error propagation from a

damaged slice/packet to subsequent slices/packets from burst packet losses. Slice

interleaving (SI) [131] and flexible macroblock ordering (FMO) [132] are two com-

mon slice structuring schemes. Interleaving approach has been exploited for slice
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structuring and packetization. A near-optimal packet interleaving method was pro-

posed in [133] based on an optimization criteria in terms of temporal neighbor packet

distance. Another packetization method was introduced in [134] based on optimal

packetization masks, which aims to simultaneously maximize the intra-partition dis-

tance and distribute neighboring coefficients equally among different packets. The

FMO technique has been employed to independently assign each macroblock (MB)

of a frame to a certain slice group (SG) by a macroblock allocation map (MBAmap).

The H.264/AVC video coding standard specifies seven types of FMO to support error

resilience [132]. FMO Type 1 is also known as scattered or dispersed slices. The

effect of error propagation between frames has been investigated in [135] and a more

suitable MBAmap with a reduced effect of error propagation can be generated based

on the evaluation of each macroblock’s importance. In [136], an adaptive MBAmap

updating scheme is proposed to reduce the computational cost of FMO and a slice

matching error concealment method is also introduced. In [137], a new FMO method

was proposed by solving an optimization problem of optimal MB labeling for burst

packet loss resilience.

In this chapter, a two-layer spatial-temporal SVC system is developed for inter-

layer error concealment. The enhancement layer has high spatial resolution at high

frame rate (e.g. 30 fps) and the base layer has low resolution at low frame rate (e.g.

15 fps). It is assumed that the packet delivery of the base layer is loss-prone the

same way as the enhancement layer. In this scenario, three inter-layer error conceal-

ment methods are proposed using two new approaches. (1) Motion vector averaging

using adaptively averaging over multiple types of motion vectors in different layers

for the recovery of lost motion vectors. (2) Slice interleaving utilizing an optimum

ordering technique to make the average distance between two contiguous slices as far

as possible. The proposed error concealment method is capable of decoding the SVC

bitstreams under burst packet losses and reconstructing the damaged frames with

enhanced visual quality. The effect of burst packet losses and error propagation on
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video frames in both layers is investigated regarding two existing and three proposed

error concealment methods.

4.1 Error Concealment Methods

4.1.1 Conventional Error Concealment Methods

The SVC reference codec, Joint Scalable Video Model (JSVM), introduced four

non-normative error concealment (EC) methods [138] to address the problem of error

recovery. (1) Picture copy (PC): Each pixel value of the concealed frame is copied

from the corresponding pixel of the first frame in the reference frame list 0. (2)

Temporal direct motion vector generation (TD): This predicts a missing frame using

two reference frame lists and generates the desired missing motion vectors by scaling

the motion vectors inferred from its neighboring reference frames. (3) Motion and

residual upsampling or base layer skip (BLSkip): This conceals a lost enhancement

layer frame from the predicted P- or B-frames. The residuals and motion vectors of

the base layer will be up-sampled to higher resolution for the enhancement layer. (4)

Reconstruction base layer upsampling (RU): The base layer frame is reconstructed

and up-sampled using a 6-tap H.264/AVC filter for the lost enhancement layer frame.

In addition, a new intra-layer method was introduced in [18]. (5) Motion copy (MC):

The reconstruction of the last key frame is re-used as the reference. Motion vectors

are re-generated by copying the motion field of the last key frame. Single-layer EC

methods include FC, TD and MC, while inter-layer EC methods include BLSkip and

RU. The experimental results in [18] concluded that the BLSkip-based method is a

desirable SVC EC tool.

4.1.2 Related Work

Motion vector error concealment has been an active research area for many years.

A block-based motion vector extrapolation (MVE) method was proposed in [139].
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Some MVs of correlated MBs in the previous frame are first extrapolated to the

current damaged frame and then the lost MV of the damaged MB is replaced by the

best MV of the motion extrapolated MB with the largest overlapped area. A pixel-

based MVE (PMVE) method was introduced [140] by extending the block-based

MVE method [139] to the pixel level. A hybrid MVE (HMVE) scheme was proposed

in [141] based on the pixel-based and block-based MVE, which is able to discard the

wrongly extrapolated MVs in order to obtain more accurate MV. In [142], a block-

based motion projection (MP) approach was proposed to reconstruct the lost MV of

the damaged block based on its qualified temporal blocks’ MVs and spatial neighbors’

MVs. In general, block-based MVE and MP methods are similar in terms of that

they all used MVs from the projected blocks in previous frame and select the best

MV of the block with the largest overlapped area. But MP employs a post-processing

stage and median filtering is capable of refining the reconstructed MV field.

The visual quality of the error concealed regions can be further improved with

the help of slice interleaving. It is aimed at spreading contiguous slices over different

packets against packet losses, so that damaged regions can be surrounded by some cor-

rectly received regions. A simple slice interleaving approach was used in [131], where

each slice consists of disjoint single lines of macroblocks in a frame. In [128], a packet

interleaver was presented to interleave the packets before transmission and cope with

burst packet losses, where packets are first loaded into the block interleaver in rows

and are transmitted by columns. A distance-based slice interleaving method [143]

was proposed to rearrange independently decodable slices of consecutive frames into

packets according to an optimal interleaving structure for packetization. Each slice is

interleaved by achieving the maximum minimal distance between contiguous slices.



133

4.1.3 Proposed Error Concealment Methods

In burst packet loss environments three inter-layer error concealment methods are

proposed using two new approaches: (1) adaptively averaging over multiple types of

motion vectors in different layers and (2) slice interleaving by an optimum ordering

technique.

Motion Vector Averaging

We propose a new inter-layer motion vector averaging approach to reconstruct

lost motion vectors. It uses a 4x4 block for the base layer and an 8x8 block for

the enhancement layer as the basic concealment units. As shown in Figure 4.1, this

inter-layer motion vector averaging approach exploits the spatial and temporal cor-

relations of motion vectors between the two layers (co-located motion vectors MV BL
e

and MV EL
o/e , where MVo and MVe denote motion vectors for a specific odd and even

frame number respectively) and also uses a predictive motion vector MV EL
Pred and a

median motion vector MV
EL/BL
Med . MV EL

Pred is a weighted average of the motion vec-

tors of four projection-overlapped blocks in a reference frame fEL
r and each weight

w(i) is the ratio of the size of each overlapped portion to the projection block size.

MV
EL/BL
Med is obtained based on the MVE [139] estimated (MV

EL/BL
MV E ) and its neigh-

bors’ (MV
EL/BL
Nb ) motion vectors in the same EL/BL frame f

EL/BL
c respectively. Our

method recovers a lost motion vector in one layer by adaptively averaging over multi-

ple types of motion vectors in two layers using a multi-hypothesis parameter α ∈ [0, 1].

Note that �∗
 represents the rounding function of ∗ to the nearest integer, s denotes

the s-neighborhood adjoining blocks s ∈ {4, 8}, and MVMed = Median{MV (k)} =

(Median{MV x(k)},Median{MV y(k)}) = (MV x
Med,MV y

Med) for k ∈ {1, 2, · · · , s}.
Base Layer (BL): The lost motion vector MV BL

e in the BL current frame fBL
c

can be recovered in two cases. In case 1, if MV BL
e is lost but MV EL

e is correctly

received, MV BL
e can be reconstructed by adaptively averaging over two synthetic

motion vectors. One is an aggregative motion vector by combining an approximate
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Fig. 4.1. The proposed inter-layer motion vector averaging approach
using adaptively averaging over multiple types of motion vectors in
two layers.

motion vector 1
2
MV EL

e in the EL corresponding frame fEL
c and a predictive motion

vector 1
2
MV EL

Pred in the EL reference frame fEL
r . The other is a median motion vector

MV BL
Med based on the MVE estimated and s neighbors’ motion vectors in the same

BL frame. In case 2, if MV EL
e and MV BL

e are both lost, MV BL
e can be reconstructed

using the median median motion vector MV BL
Med in the same BL frame.

BL Case 1: If MV BL
e is lost but MV EL

e is correctly received,

MV BL
e = �α(1

2
MV EL

e +
1

2
MV EL

Pred) + (1− α)MV BL
Med
, (4.1)

MV EL
Pred =

∑
i

w(i) ∗MV EL
o (i)/

∑
i

w(i), (4.2)

MV BL
Med = Median{MV BL

MV E

⋃
MV BL

Nb (k)}. (4.3)

BL Case 2: If MV BL
e and MV EL

e are both lost,

MV BL
e = MV BL

Med. (4.4)
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Enhancement Layer (EL): The lost motion vector MV EL
o/e in the EL current

frame fEL
c can be reconstructed in two cases, where MV EL

o/e denotes either MV EL
o

or MV EL
e for a specific odd or even frame number. In case 1, if MV EL

o/e is lost but

MV BL
e is correctly received, MV EL

o/e can be recovered by adaptively averaging over two

synthetic motion vectors. One is an approximate motion vector 2∗ 1
2
MV BL

e = MV BL
e

in BL corresponding frame fBL
c . The other is a median motion vector MV EL

o/e,Med based

on the MVE estimated and s neighbors’ motion vectors in the same EL odd/even

frame. In case 2, if MV BL
e and MV EL

o/e are both lost, MV EL
o/e can be recovered using

the median motion vector MV EL
o/e,Med in the same EL odd/even frame.

EL Case 1: If MV EL
o/e is lost but MV BL

e is correctly received,

MV EL
o/e = �αMV BL

e + (1− α)MV EL
o/e,Med
, (4.5)

MV EL
o/e,Med = Median{MV EL

MV E

⋃
MV EL

o/e,Nb(k)}. (4.6)

EL Case 2: If MV EL
o/e and MV BL

e are both lost,

MV EL
o/e = MV EL

o/e,Med. (4.7)

Slice Interleaving

In order to improve the performance against burst packet losses and reduce error

propagation across multiple frames, a new slice interleaving approach is developed to

make the average distance between two contiguous slices as far as possible. The slice

tool can be used at the encoder to generate independently decodable slices with the

cost of some loss in coding efficiency. The main idea of this approach is to rearrange

the slices according to a predefined interleaving structure, which would be designed

in such a way that the contiguous slices are distributed as far as possible. In [144],

an optimum ordering technique was developed for dispersed-dot ordered dithering for

halftone image processing. The method was used for obtaining the optimum index

for adding dots to lattices. The optimum index matrix is a square matrix and devised

with a simple rule: First, fill each cell of the matrix with a successive integer (e.g.
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starting from 1 in raster scanning order). Second, reorder them such that the average

distance between two successive numbers is as far as possible in the matrix. It can be

rotated or mirrored without affecting the property of maximizing average distance.

The optimum index matrix can be defined recursively and three concrete examples

are illustrated in Figure 4.2.

A2 =

⎡
⎣ 1 4

3 2

⎤
⎦ , A2n =

⎡
⎣ 4× An − 3 4× An

4× An − 1 4× An − 2

⎤
⎦ . (4.8)

Fig. 4.2. Optimum index matrixes of different size.

We propose a new slice interleaving approach for a set of contiguous slices in a

group of pictures (GOP) using the optimum ordering technique described above. The

number of contiguous slices in one frame is designed to be equal to the number of

consecutive frames in a GOP, hence a set of contiguous slices in a GOP can be repre-

sented by a square matrix. Figure 4.3 illustrates an example of slice interleaving with

an 8x8 optimum index matrix for a set of 64 contiguous slices among 8 consecutive

frames in a GOP. The frame numbers of a group of consecutive frames are denoted in

a temporally ascending order along the horizontal axis. The slice numbers of a set of

contiguous slices, which are labeled by successive integers, are denoted in a spatially

ascending order along the vertical axis. Contiguous slices in one frame are rearranged

into disjoint positions by maximizing the average distance between each other. Each
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frame consists of a few independently decodable slices and each slice is encapsuled in

a network abstraction layer unit (NALU). Slice interleaving is performed by a square

interleaver on a set of NALUs containing contiguous slices after initial placement.

Each NALU containing a single slice is interleaved according to the optimum index

matrix and then packetized in raster scan order.

Fig. 4.3. The proposed slice interleaving scheme in a GOP (8 frames).

Similarly, flexible macroblock ordering (FMO) is capable of distributing adjoining

macroblock errors to the entire frame as equally as possible to avoid error accu-

mulation in a certain region. The FMO tool can be used at the encoder to assign

each macroblock of a frame to a certain slice group by a macroblock allocation map

(MBAmap), which requires additional computation and causes some loss in coding

efficiency. For further comparison, FMO Type 1 [132] is used to generate two slice

groups and each one contains four independently dispersed slices (totally 8 slices per

frame), which is complied with our proposed slice interleaving approach.
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4.2 System Implementation

A two-layer spatial-temporal scalable video coding (SVC) system was developed

based on JSVM 9.8 [145], which was the last version officially supporting error con-

cealment tools. Sixty-four independently decodable slices in a GOP (8 frames in BL

and EL separately) are interleaved using the 8x8 optimum index matrix in Figure 4.3

at the encoder and correspondingly de-interleaved at the decoder. Each interleaved

slice was encapsulated into a single NALU during packetization. The parameters and

syntax elements of the 8x8 optimum index matrix and FMO Type 1 are independently

encoded into a picture parameter set (PPS) and transmitted to the decoder. The ex-

tra bits used for encoding these information were counted in the total bitrates. We

modified the JSVM reference decoder to deal with lost NALUs and conceal damaged

frames. It is able to manage the order of the NALUs received at decoder and iden-

tify the decoding information of the layer and slice in the received NALUs. Similar

to [146], a block-based status map is developed for each layer to inform the decoder

to decode available blocks and conceal lost blocks. The status map is reinitialized at

the beginning of decoding each slice.

Burst packet losses were simulated by removing NALUs from the encoded SVC

bitstreams based on random burst packet losses at different rates. Gilbert’s two-state

Markov model [147, 148] was used to independently generate random burst packet

loss patterns. This model can reasonably approximate Internet transmission [17].

In the good state G, all packets are correctly received, while in the bad state B,

all packets are lost. Two transition probabilities, pGB for going from G to B and

pBG for going from B to G, are sufficient to define the model. Moreover, other two

quantities are preferred to use: average burst packet loss probability PB = Pr(B) =

pGB/(pGB + pBG), the same as the well-defined burst packet loss rate (BPLR), and

average burst packet loss length LB = 1/pBG. The network simulation parameters

are defined using a pair (PB, LB). In our experiments, SVC video transmission over

burst packet loss channels are simulated in two scenarios: first corresponding to
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(PB, LB) = (10%, 5) and second corresponding to (PB, LB) = (20%, 4). Damaged

frame are recovered by different error concealment methods, including three proposed

inter-layer methods using the two new approaches and FMO described above, i.e. (1)

motion vector averaging (MVAvg), (2) motion vector averaging and slice interleaving

(MVAvg+SliceIntlv) and (3) motion vector averaging, slice interleaving and FMO

(MVAvg+SliceIntlv+FMO), and two existing methods, i.e. (4) motion copy (MC) [18]

and (5) motion projection (MP) [142]. Because the original MC and MP methods

are developed for single-layer error concealment, the BLSkip-based extensions [18] of

the two methods are developed for inter-layer EC.
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4.3 Experimental Results

Three video sequences with 300 frames, i.e. Bus, Football and Foreman, were used

to test our SVC system. The Bus sequence contains slow and homogenous motion

while the Football sequence has fast and chaotic motion. The Foreman sequence

involves normal motion and scene changes. Our experiments used the same quan-

tization parameter (QP) for encoding BL and EL frames (QP=28, 32, 36 and 40)

to evaluate different error concealment methods, running on a Linux desktop with a

2.8 GHz Quad-core CPU and 4 GB RAM. The frame coding structure was “IPP· · · ”
with I-frame refresh after 2 successive P-frame GOPs in BL and 4 successive P-frame

GOPs in EL. For low complexity, we constantly set the parameter α = 0.5 and em-

ployed the 4-neighborhood of adjoining blocks s = 4. The average PSNR value of the

Y component (Y-PSNR) of damaged frames was used as an objective visual quality

measurement. The Y-PSNR was obtained by averaging the results of 50 random

burst packet loss patterns at each BPLR to ensure statistical significance of the re-

sults. Each burst packet loss pattern has 20 temporally circular shifts across the

entire frames, in total 20×50=1000 realizations of burst packet losses at a BPLR.

Table 4.1 demonstrates the average decoding time per frame of the existing and

proposed error concealment methods. The results show that the computational time

of the proposed MVAvg method is slightly longer than the MP and MC method.

It can be observed that the decoding delay (time difference between MVAvg-based

methods) caused by slice de-interleaving is relatively shorter than that introduced by

FMO.

The Y-PSNR of the first 60 frames of BL and EL Football sequence are illustrated

in Figure 4.4 and 4.5 with two concrete burst packet loss patterns at BPLR 10% and

20%, where the vertical dash lines indicate the damaged frames where burst packet

losses occurred. The visual quality in the enhancement layer is recovered slightly

faster than that in the base layer and the Y-PSNR drop in the enhancement layer

is comparatively smaller than that in the base layer. Visual distortion due to poorly
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Table 4.1
Average Decoding Time per Frame of the Existing and Proposed Error
Concealment Methods (in Milliseconds)

Bus Football Foreman

Motion Copy (MC) 16.36 16.59 16.25

Motion Projection (MP) 17.33 17.82 17.14

MVAvg 17.94 18.53 17.68

MVAvg+SliceIntlv 19.95 20.60 19.72

MVAvg+SliceIntlv+FMO 24.08 24.76 23.87

concealed motion vectors is barely observed in the proposed three methods, except

for fast moving objects.
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Compared with the perfect reconstruction from the error-free channel, the oper-

ational rate-distortion (RD) plots for various error concealment methods are shown

in Figure 4.6, 4.7 and 4.8. The proposed MVAvg method based on motion vec-

tor averaging is more effective than two existing methods in reducing the visual

quality degradation caused by burst packet losses and error propagation. The RD

plots illustrate that the Y-PSNR of the proposed MVAvg method is 0.9dB-3.2dB

higher than the existing MC method and is 0.3dB-2.1dB higher than the existing MP

method. The proposed MVAvg+SliceIntlv+FMO and MVAvg+SliceIntlv methods

outperform the other methods in significantly improving the visual quality. In fact,

the RD plots of the two methods are very close at low bitrate and low BPLR. The

MVAvg+SliceIntlv+FMO method is superior to the MVAvg+SliceIntlv method only

at high bitrate and high BPLR, because additional bit overhead for encoding FMO in-

formation undermines the coding efficiency at low bitrate. Therefore, considering the

tradeoff between complexity and performance, The the proposed MVAvg+SliceIntlv

method is more suitable for low burst packet loss channel.
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Fig. 4.6. Rate-Distortion of the Bus sequence (BPLR=10%, 20%).
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Fig. 4.7. Rate-Distortion of the Football sequence (BPLR=10%, 20%).
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Fig. 4.8. Rate-Distortion of the Foreman sequence (BPLR=10%, 20%).
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5. CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

In this thesis we describe several visual saliency models in the frequency domain in

Chapter 2, a hazmat sign image analysis system (MERGE) using visual saliency for

location detection and content recognition in Chapter 3, and several error concealment

methods for scalable video coding (SVC) in chapter 4.

For visual saliency models in the frequency domain, we develop separate and

composite visual saliency model families for frequency domain visual saliency models.

We propose six visual saliency models based on new spectrum processing methods

and an entropy-based saliency map selection approach. We propose an entropy-

based saliency map selection approach to select a “good” final saliency map among

the set of map candidates. A group of extended saliency models that extends each

proposed visual saliency models are also developed by incorporating both separate

and composite model families and using variant color spaces. Experimental results

show that the six best extended models are more accurate and efficient than most

state-of-the-art models in predicting eye fixation on standard image datasets.

For hazmat sign image analysis system (MERGE), we develop hazmat sign lo-

cation detection and content recognition methods based on visual saliency. We use

the one of our proposed frequency domain models to extract salient regions that are

likely to contain hazmat sign candidates and then use a Fourier descriptor based con-

tour matching method to locate the border of hazmat signs in these regions. This

visual saliency based approach is able to increase the accuracy of sign location de-

tection, significantly reduce the number of false positives, and speed up the image

analysis process. This approach improves the accuracy of existing methods presented

in [14, 15]. We also propose a color recognition method to interpret the color inside
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the detected hazmat signs. Our three image datasets consists of images taken in

the working field and outdoor field under variant lighting and weather conditions,

distances, and perspectives.

For error concealment for scalable video coding (SVC), we develop two error con-

cealment approaches robust to burst packet losses, i.e. inter-layer motion vector av-

eraging and slice interleaving using optimum ordering. A two-layer spatial-temporal

scalable video coding system are decribed to evaluate the existing and proposed error

concealment methods. Experimental results confirmed that the proposed error con-

cealment methods outperform two existing methods in reducing the impact of burst

packet losses and error propagation.

The main contributions of visual saliency models in the frequency domain are:

• We investigate bottom-up visual saliency using spectral analysis approaches.

• We develop separate and composite visual saliency model families for frequency

domain models.

• We propose six visual saliency models based on different spectrum processing.

• We propose an entropy-based saliency map selection approach.

• We develop an evaluation tool for benchmarking visual saliency models.

The main contributions of image analysis system for hazmat sign detection and

recognition are:

• We develop a hazmat sign location detection and content recognition system

using visual saliency.

• We used one of our proposed frequency domain models to extract salient regions.

• We developed a Fourier descriptor based contour matching method to locate

the border of hazmat signs.
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• We proposed a color recognition method to interpret the color inside the de-

tected hazmat signs.

• We collected three hazmat sign image datasets.

The main contributions of error concealment methods for SVC are:

• We investigated the impact of burst packet loss and error propagation in base

and enhancement layers.

• We explored inter-layer spatial and temporal correlations for error concealment

against burst packet loss.

• We proposed two error concealment methods to enhance error recovery and

visual quality:

• (1) Inter-layer motion vector averaging

• (2) Slice interleaving using optimum ordering

• We developed a two-layer spatial-temporal scalable video coding system for

evaluation.

5.2 Future Work

Our long term goal for MERGE is to develop a hazmat sign image analysis sys-

tem capable of automatically recognizing hazmat signs from images acquired up to

300 feet and providing real-time guide information to first responders to identify the

hazardous materials and determine what specialty equipment, procedures and pre-

cautions should be taken in the event of an emergency.

One problem is the overall accuracy of our hazmat sign image analysis methods.

The accuracy needs to be improved. This can be done by improving our current sign

location detection approach and developing more robust color recognition techniques.

We may be able to use supper-resolution image reconstruction methods [126, 127] to
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refine the hazmat sign images. It can improve the location detection accuracy at even

longer distances and it is more useful for blurred and low resolution hazmat signs.

We can also employ proper color calibration [51]. This can help the color recognition

technique to recognize colored hazmat signs more accurately. One could also use

character recognition methods to interpret the text inside the detected hazmat signs

when the image resolution is relatively high.

For visual saliency models in the frequency domain, one direction of future work

is testing our proposed visual saliency models using more eye fixation image datasets.

One could also study the tradeoff between accuracy and speed of the proposed fre-

quency domain saliency models for practical applications. Another direction is com-

bining several saliency models to achieve better accuracy of predicting eye fixation

and hazmat sign image analysis.

For error concealment for scalable video coding (SVC), one direction of future work

is testing our proposed error concealment models on high resolution video sequences.
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A. MERGE IMAGE ACQUISITION PROTOCOL

This Appendix describes the protocol used for acquiring test images for the MERGE

project. The images are used for testing various functions of the MERGE image

analysis system.

• Persons involved

– 1 MERGE staff member

• Equipment/Materials needed

– Pens or pencils

– 1 Mobile Telephone with Android OS

∗ Built-in camera (1MPx and above)

∗ 3G/4G/WiFi data connection

∗ GPS

– 1 Digital Camera with Android OS

∗ 3G/4G/WiFi data connection

∗ GPS

– Image Recording Forms

– External Hard Drive

1) Preliminaries (Internet connection required)

a) Check Date and Time settings on the Android mobile telephone and the

digital camera, and ensure date, time, and time zone are set to automatic

(network-provided).

b) Make sure the Android mobile telephone and the digital camera’s batteries

are fully charged.
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c) Make sure the GPS is enabled on the Android mobile telephone and the

digital camera.

d) Verify all equipments/materials above are available.

e) Turn flash feature off on the Android mobile telephone and the digital cam-

era.

f) Note: The Image Taker will need to fill out an Image Recording Form for

each hazmat sign.

2) Set up environment

a) Stand in front of the hazmat sign, far enough so that the camera can cap-

ture all the content, up to 200 feet from the sign for the Android mobile

phone, and up to 500 feet from the sign for the digital camera. Stand prefer-

ably perpendicular to the surface containing the sign. Limited angles are

permitted (45 degrees), as shown in Figure A.1.

b) Make sure weather conditions do not obstruct the view of the hazmat sign.

c) Make sure there are no objects between the camera and the hazmat sign

that partially or completely obstruct the view of the hazmat sign.

3) Taking Images of Hazmat Signs

a) Launch the MERGE application on the Android mobile telephone and the

digital camera, and login using the Image Taker’s ID and password. If this

is the first time that the Image Taker is logging into the application, an

Internet connection will be required to connect with the MERGE database

on the server. From then on, the Image Taker’s credential will be stored on

the Android device for future use without an Internet connection.

b) Select the “Capture Image” option from the MERGE main screen. The

camera activity is then initialized. Note that a new directory with the name

MERGE will be created on the Android device’s image gallery, where all the

images taken using the MERGE application will be stored. Please refer to
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this directory when copying the images to the external hard drive (Section

5a).

c) Prepare for taking the image (position the camera as desired, within the

recommended distance and angle from the hazmat sign). Make sure all the

contents of the hazmat sign can be seen on the device screen.

d) Take an image of the hazmat sign, trying to hold the device as much as

stable. The image can be retaken as many times as needed by tapping on

the retake option on the camera activity.

e) Tap on the OK button on the camera activity to save the current image. The

image will be automatically uploaded to the server and analyzed. The Image

Taker should see a notification dialog with the text “Uploading image...”

followed by another notification dialog with the text “Analyzing image...”.

If no Internet connection is available at the time, a warning dialog with

the text “No Internet connection available” will be shown to the Image

Taker. However, the image is stored in the Android device, and it can be

uploaded and analyzed in the future using the “Browse Image” option from

the MERGE main screen. If the image has not been uploaded to the server,

check the box “Not Successfully Uploaded” on the Image Recording Form.

f) If no Internet connection is available at the time, a warning dialog with

the text “No Internet connection available” will be shown to the Image

Taker. In this case, the captured image is stored in the device, and it can

be uploaded and analyzed in the future using the “Browse Image” option

from the MERGE main screen.

g) Please take different images for the same sign, at different distances (10-150

ft) and angles of view (0-45◦), and then write down an Image ID shown on

the top bar / pop-up window on the result screen, an approximate Angle

of View between your viewpoint and the perpendicular plane of the hazmat

sign’s surface, and an approximate Distance from your viewpoint to the

hazmat sign on the Image Recording Form (e.g., 123456, 15◦, and 125 ft).
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h) Please take at least one image with No Zoom when using the digital camera,

and then check the box “No Zoom” on the Image Recording Form. Also

take some images using the Optical Zoom when using the digital camera (NO

Digital Zoom), and then check the box “Zoom” and mark on an approximate

Zoom Value in a box on the Image Recording Form (e.g., 3/4 of the entire

optical zoom range).

4) Completing the Image Recording Form (Figure A.2)

a) Record Date (MM/DD/YYYY), Starting Time (HH:MM:SS), the Make and

Model of the device used to capture the images (e.g., HTC Desire) and the

Image Taker’s Name and Affiliation on the Image Recording Form.

b) Complete the “Ground Truth Information” section on the Image Recording

Form with ground-truth information associated with each hazmat sign in

the captured image. This includes:

• The Total number of existing hazmat signs in the captured image

• For each existing hazmat sign

– Hazmat sign number of an existing hazmat sign in the captured image

– Color(s): color(s) found in the hazmat sign (NOT including hazmat

sign frame)

– UN Identification number (UNID) (Figure A.3(a))

– Symbol (Figure A.3(b))

– Class (Figure A.3(c))

– Text (Figure A.3(d))

– Comments: Additional information of the hazmat sign that does not

fit in the previous fields.

c) Complete the “Image Analysis Results” section on the Image Recording

Form with information retrieved from the server after a captured or browsed

image has been analyzed. This includes:

• The Image ID of the captured image
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• The Total number of highlighted hazmat signs from image analysis

• For each returned hazmat sign

– Hazmat sign number of a highlighted hazmat sign shown in the result

screen

– Color(s): color(s) shown in the result screen

– Text: text shown in the result screen

– No hazmat signs found: Check this box if a dialog containing “No

hazmat signs found” is shown to the Image Taker after uploading an

image to the server, meaning that no hazmat signs have been found

in the current image.

There are two cases of image analysis results, hazmat sign found (left) and not

found (right), shown in Figure A.4. Figures A.5 and A.6 show two examples of

completed Image Recording Forms for the two different cases.

Fig. A.1. Top view of the setup environment.
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Image Recording Form 

 

Image Taker Name:    ID:   Affiliation: 

Date:  / /   Starting Time:  : : 

Device Make:     Device Model: 

Ground Truth Information Angle of View ° Distance ft 

Image 

ID 

Hazmat Sign 

Number 

Total Num. of 

Hazmat Signs 
Color(s) UNID Symbol Class Text Comments 

         

Image Analysis Results No Zoom [    ] Zoom [    ] 1/4 1/2 3/4 Full 

Image 

ID 

Hazmat Sign 

Number 

Total Num. of 

Hazmat Signs 
Color(s) UNID Symbol Class Text 

No hazmat 

signs found 

        [    ] 

Ground Truth Information Angle of View ° Distance ft 

Image 

ID 

Hazmat Sign 

Number 

Total Num. of 

Hazmat Signs 
Color(s) UNID Symbol Class Text Comments 

         

Image Analysis Results No Zoom [    ] Zoom [    ] 1/4 1/2 3/4 Full 

Image 

ID 

Hazmat Sign 

Number 

Total Num. of 

Hazmat Signs 
Color(s) UNID Symbol Class Text 

No hazmat 

signs found 

        [    ] 

Ground Truth Information Angle of View ° Distance ft 

Image 

ID 

Hazmat Sign 

Number 

Total Num. of 

Hazmat Signs 
Color(s) UNID Symbol Class Text Comments 

         

Image Analysis Results No Zoom [    ] Zoom [    ] 1/4 1/2 3/4 Full 

Image 

ID 

Hazmat Sign 

Number 

Total Num. of 

Hazmat Signs 
Color(s) UNID Symbol Class Text 

No hazmat 

signs found 

        [    ] 

Ground Truth Information Angle of View ° Distance ft 

Image 

ID 

Hazmat Sign 

Number 

Total Num. of 

Hazmat Signs 
Color(s) UNID Symbol Class Text Comments 

         

Image Analysis Results No Zoom [    ] Zoom [    ] 1/4 1/2 3/4 Full 

Image 

ID 

Hazmat Sign 

Number 

Total Num. of 

Hazmat Signs 
Color(s) UNID Symbol Class Text 

No hazmat 

signs found 

        [    ] 

 

Fig. A.2. Image recording form for the MERGE project.
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(a) UNID (b) Symbol (c) Class (d) Text

Fig. A.3. Hazmat sign identifiers.

Fig. A.4. Examples and screenshots of the two cases of image analysis
results, hazmat sign found (left) and not found (right).
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Fig. A.5. Examples of completed image recording form for hazmat
sign found in Figure A.4 (left).

Fig. A.6. Examples of completed image recording form for hazmat
sign not found in Figure A.4 (right).
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