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ABSTRACT

Zeng, Juan Ph.D., Purdue University, December 2014. Modeling and Characteriza-
tion of Non-Ideal Effects in High-Performance RF MEMS Tuners. Major Professor:
Dimitrios Peroulis.

Abstract: The emerging standards for the next-generation wireless communication

system demand for multi-band RF front-ends. Reconfigurable RF devices based on

MEMS technology have emerged with the potential to significantly reduce the system

complexity and cost. Robust operation of RF MEMS tuners under the non-ideal

effects due to fabrication uncertainties and environmental variations is critical in

achieving reliable RF MEMS reconfigurable devices. Therefore, it is essential to

model and characterize these non-ideal effects, and further to alleviate these non-

ideal effects by design optimization.

In this dissertation, the effects of non-perfect anchor support, residual stress, and

temperature sensibility of MEMS tuners have been studied. The anchor supports of

MEMS beams, which are widely used as tunable components, are often far from the

ideally assumed built-in or step-up conditions. An equation-based nonlinear model

for inclined supports in non-flat fixed-fixed beams has been developed and validated

by experimental results. Residual stress developed during the fabrication presents the

major challenges in developing reliable MEMS tuners. An efficient extraction method

for in-plane residual stress has been proposed using a single beam test structure. This

method has been demonstrated by wafer-scale measurements of electrostatically ac-

tuated beams. The statistic and spatial distribution of extracted residual stresses on

a quarter wafer is presented, and the accuracy of this method is evaluated by uncer-

tainty analysis. With the awareness the residual stress effects, the design optimization

has been conducted for designing stress-tolerant micro-corrugated diaphragm tuners



xv

used in tunable cavity resonators/filters. Furthermore, the temperature sensitivity

issue results from the mismatch of material properties between the structure mate-

rial and substrate has been discussed and a thermally-stable RF MEMS tuner based

on a nonuniform micro-corrugated diaphragm has been proposed and experimentally

validated over a wide temperature variation.
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1. INTRODUCTION

1.1 Motivation

The rapid development of wireless communication technology has led to tremen-

dous growth of emerging consumer and military applications of radio-frequency (RF)

and microwave devices and systems. Fig. 1.1 presents the standards and frequencies

of different wireless communication networks, which include personal area networks

(PAN), local area networks (LAN), metropolitan area networks (PAN), and wide area

networks (WAN) [1]. As frequency bands and new communication standards continue

to proliferate, RF front-ends are required to operate over different frequency bands

and to support a number of wireless standards. A ubiquitous example is the RF

transceiver in an iPhone 6 Plus smart phone which is adaptable to multi-band oper-

ation (Fig. 1.2). Therefore, the next generation wireless communication puts higher

demands on the RF front-ends, featuring small size, low weight, added functionality

and low cost.

In the traditional parallel path structures, an RF signal from each standard is

processed using a separate signal path. As a consequence, a number of duplicate

antennas, switches, power amplifiers, and filters are needed. As a result, the power

consumption, cost, and total size of the RF front-end increases as more standards are

included. By sharing tunable building blocks between various standards, a reconfig-

urable system could greatly reduce the chip area and cost [3]. With the use of RF

MEMS technology, reconfigurable building blocks such as tunable matching networks,

filters, phase shifters and power amplifiers (PAs) can be realized for high-performance

RF MEMS front-ends with the potential to be integrated with CMOS [4, 5]. Nowa-

days, the RF front-end implementation has been a combination of parallel structures

and several shared tunable components. The diaphragm in Fig. 1.3 illustrates a mod-
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munication standards demands for multi-band and multi-standard de-
vices [1].
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ern smart phone front-end structure with GSM and WCDMA bands. A broadband

antenna is shared by multiple frequency bands, and antenna switching arrays are used

to select the desired signal path. If more tunable devices, such as the tunable filters,

are employed to replace all the discrete components, the system complexity will be

further reduced.

Atenna

Antenna 

Switch

Mode/Band 

Swithes

Rx Di!erential 

Switches

Fig. 1.3. A modern smart phone front-end diagram with GSM and
WCDMA bands using parallel structures and several shared tunable
components [6]. Tunable filters are desired to replace the discrete
filters in the red dashed blocks.

RF microelectromechanical systems (MEMS) technology has emerged as the en-

abling technology for realizing reconfigurable wireless communication systems using

high-performance tunable RF components [7]. Still, RF MEMS tunable blocks are

not yet in wide production because there are non-ideal effects in these devices which

cause stability and reliability issues. To fill the gap between prototypes and commer-
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cial products, it is necessary to first fully characterize these non-ideal effects. This

dissertation focuses on the modeling and characterization of non-ideal effects in RF

MEMS tuners, and on the design optimization to improve the tolerance of the devices

to fabrication variabilities and environmental effects.

1.2 RF MEMS Tunable Components

RF MEMS is one of the most promising technology in the RF and microwave

area, providing low insertion loss, low power consumption, very high isolation, high

power handling, high quality factor and good tunability [5]. These devices are fabri-

cated with semiconductor surface micromachining and bulk micromachining processes

which can be compatible with the fabrication of intergraded circuits. Unlike tradi-

tional electronic devices, RF MEMS components utilize their mechanical movement

to provide RF functionalities and serve as low loss and linear tuning schemes.

(a) (b)

(c) (d)

Fig. 1.4. Examples of RF MEMS tunable elements in the form of (a)
a capacitive switch [8], (b) a metal contact switch [9], (c) a switched
capacitor [10], and (d) an analog variable capacitor [11].
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The MEMS capacitive bridge is the basic and essential tuning element in most

tunable RF MEMS applications. A MEMS capacitive bridge consists of a suspended

beam or plate and an actuation electrode. The bias voltage applied between the

bridge and electrode generates an electrostatic force and deflects the micro bridge

accordingly. There are mainly four different designs for MEMS capacitive bridges

as shown in Fig. 1.4 [5]. When biased with discrete high/low voltages, the micro

bridge can operate as a capacitive switch (Fig. 1.4(a)), or a metal contact switch

(Fig. 1.4(b)), or a switched capacitor (Fig. 1.4(c)). The micro bridge has up/down

states when the bias voltage is off/on, and can realize digital tuning. For exam-

ple, digital impedance tuners have been implemented with capacitive switches loaded

short-circuited shunt stubs whose electrical lengths were controlled by the switching

states of the MEMS bridges [12,13]. An analog variable capacitor (or a varactor) can

be implemented when the micro bridge is biased with continuous voltage before con-

tact occurs (Fig. 1.4(d)). Analog impedance tuners using MEMS variable capacitors

have also been demonstrated with a wide tuning range [14]. The capacitive bridge

can be used as a tunable capacitor or switch to change the load of resonators to fulfill

a digital or analog tunable filter built with the resonators.

Tunable filters based on MEMS capacitive tuners have been demonstrated with

different types of resonators, such as coplanar waveguide (CPW) resonators [15],

microstrip resonators [16,17] and evanescent-mode cavity resonators [18–20]. Among

these implementations, the tunable cavity resonators/filters offer high-Q (> 400 -

1,000) and wide tuning range (> 2:1) from L- to W- band [20]. As shown in Fig. 1.5,

continuously tunable cavity resonators/filters have been implemented using different

tuning elements including cantilever tuners, beam tuners and diaphragm tuners.

1.3 Non-Ideal Effects in RF MEMS Tuners

As discussed previously, there are non-ideal effects in MEMS devices, such as

fabrication variabilities [24], temperature sensitivities [10], dielectric charging [25],
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(a)

(b)

(c)

(d)

Diaphragm 

Tuner

Beam Tuner Array

Cantilever Tuner

Diaphragm Tuner

Fig. 1.5. Examples of continuous tunable cavity resonators/filters us-
ing (a), (d) a MEMS diaphragm tuner [18,21], (b) a MEMS cantilever
tuner [22], and (c) a MEMS fixed-fixed beam tuner array [23].

contact wear [26], material fatigue and creep [27]. These non-ideal effects could cause

performance degradation or even device failure. To design RF MEMS devices with

good performance and reliability, these issues need to be effectively addressed.

In this dissertation, we focus on the non-ideal effects in capacitive RF MEMS

tuners and cover non-perfect anchor effects, in-plane residual stress issues and temper-

ature sensitivity. Non-perfect anchors alter the boundary conditions of the suspended

bridge, and directly affect the accuracy of the device modeling using beam or plat

theory. Residual stress could arise from the mismatch of both thermal coefficients

of expansion (TCE) and crystal lattice periods between the substrate and the struc-

tural materials. Consequently, it is have to avoid in practically important fabrication

processes [28]. For a fixed-fixed beam or peripherally clamped diaphragm, residual
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stress is one of the key parameters in establishing structure reliability and function-

ality. Tensile residual stress increases the membrane stiffness and thus increases its

actuation voltage. For non-planar devices, residual stress leads to a zero-load de-

flection, which could cause unwanted device topology. Therefore, knowledge of the

fabrication-process-induced residual stress is crucial to the proper modeling and de-

sign of the MEMS devices. For devices that operate in environments with large tem-

perature variations, thermally-induced stresses may change the device performance.

For example, if excessive compressive stress is generated, buckling or even failure of

the device may occur. The fixed-fixed micro beams or plates typically have a marked

sensitivity to temperature since the device stress changes over temperature due to

the mismatch of the thermal expansion coefficient between the MEMS structural ma-

terial and the substrate. In most practical cases, stress becomes compressive at high

temperatures, and causes stress-induced offsets and stiffness variations. With the

awareness of the in-plane residual stress and the temperature sensitivity, we perform

design optimization to alleviate these non-ideal effects.

1.4 Dissertation Overview

The main objectives of this dissertation are a) to comprehensively model and

characterize the non-ideal effects in RF MEMS tuners arising from fabrication un-

certainties for accurate prediction of device performance, and b) to present design

optimization strategies with the awareness that inevitable non-idealities will exist in

RF MEMS tuners. The remaining of this dissertation is organized as follows:

Chapter 2 presents an equation-based nonlinear model for inclined supports in

non-flat fixed-fixed beams. Practical fabrication processes often result in inclined

beam supports which significantly influence the post-release performance of the beam.

This chapter addresses this non-ideal effect and models the mechanical and electrome-

chanical effects of inclined supports for the first time. Specifically, we calculate and

validate the effects of residual stress and loading on the post-release beam behavior
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including their nonlinear large-displacement characteristics. In addition the model

accounts for non-flat beam profiles caused by residual stress and/or a non-flat sacri-

ficial layer profile. The calculated beam displacements agree well with FEM models

in both the linear and nonlinear regimes. Furthermore, this model is experimentally

validated by comparing predicted beam displacements to measured results.

Chapter 3 reports on the extraction of residual stress in thin films of electro-

statically actuated fixed-fixed beam structures using a wafer-scale technique. The

nondestructive and automated measurements are taken at room temperature and di-

rectly at the beam itself without any additional test structures. Accurate extraction

results are achieved by simultaneously incorporating non-idealities such as inclined

supports, non-flat beam profiles and fringing fields in the reduced-order numerical

model. Through the use of a custom scripting automation program, the geometries

and displacement-voltage curves of fixed-fixed beams are measured using a confocal

microscope. This technique has been demonstrated by applying it to wafer-scale mea-

surements of nickel beams. The statistical distribution and the spatial distribution

of residual stress over a 4-inch quarter wafer piece is presented. Detailed uncertainty

analysis has been conducted, and it reveals that inaccurate modeling of the non-ideal

effects, especially the non-flat profile and the inclined supports, results in significant

errors in the extracted residual stress.

Following the residual stress characterization and discussion in Chapter 3, the

design optimization of a MEMS diaphragm tuner for stress reduction is presented

in Chapter 4. This MEMS diaphragm tuner is used in evanescent-mode cavity res-

onators/filters that require large tuning displacement. Attention has been paid to

the nonlinear stretching behavior in the large displacement regime and the presence

of residual stress. By introducing corrugations into the diaphragm design, stiffen-

ing effects caused by residual stress can be alleviated and the nonlinear stiffness of

the diaphragm under large deflection can be greatly reduced by choosing appropriate

corrugation geometries. With the aid of automated batch mode FEM simulations, a

parametric study has been performed which reveals that the corrugation depth and
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the corrugation range are the most important geometric parameters in corrugated

diaphragm design. Using the linear and nonlinear stiffness coefficients extracted from

simulations, the tradeoff between the pull-in voltage and the tuning range of the

capacitive MEMS tuner has been analyzed. The systematic study of the effects of

corrugation geometries on the pull-in voltage and the tuning range provides guidelines

for design optimization.

Chapter 5 presents for the first time a thermally-stable capacitive MEMS tuner

based on a circular nonuniform micro-corrugated diaphragm (NMCD) suitable for

evanescent-mode resonators/filters which require a large tuning displacement ( >

10 µm). Through design optimization of the proposed NMCD by finite-element sim-

ulations, the temperature stability of the tuner can be greatly improved. Enhanced

temperature stability allows the RF MEMS tuner to be continuously tunable in the

full desired range with a greatly reduced variation of required actuation voltage. This

design is experimentally validated by optical and electrostatic measurements with a

temperature variation up to ∼ 100◦C.

Chapter 6 summaries the work presented in this dissertation.
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2. AN EQUATION-BASED NONLINEAR MODEL FOR

INCLINED SUPPORTS IN NON-FLAT MEMS

FIXED-FIXED BEAMS

2.1 Introduction

Surface micromachined fixed-fixed beams with anchor supports are widely used

in many microstructures, such as switches [29, 30], filters [31, 32] and test devices for

determination of thin-film material properties [24, 33–35]. Anchor supports of such

beams are not always vertical as designed. Instead, they can be inclined as illustrated

in Fig. 2.1(a). This is often due to the shape of the sacrificial layer during fabrica-

tion. For example, it has been proven that the topologies of the spin-on layers (e.g.,

photoresist) strongly depend on the process conditions. Consequently, the inclina-

tion angles at the edges of the patterned photoresist are highly dependent on baking

temperature and time [36–39]. The inclination of these supports has nontrivial impli-

cations on performance metrics of beams, including, for example, the pull-in voltage

of electrostatically actuated fixed-fixed beam switches [40, 41]. Furthermore, when

the beam is used as a test structure, significant errors in extracting material proper-

ties may occur if the supports are not properly modeled. Therefore, the inclination

of supports must be taken into account in beam modeling.

Several efforts have been made on studying the anchor compliance and on mod-

eling supports as summarized in Table 2.1. All published equation-based approaches

proposed for support modeling assumed vertical supports [42–45]. Mullen et al. mod-

eled the vertical supports using a rotational spring and an axial spring [42, 43], and

the values of the spring constants were obtained by matching a linear elastic model

to finite-element-method (FEM) results. In [46], the response of the supports was

modeled by an elastic matrix and its values were obtained by FEM simulations. The
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elastic matrix was geometry-dependent, and therefore, FEM simulations were re-

quired for each beam with different geometries. Furthermore, the effects of the axial

compliance on beam deflections were discussed only in the case that no external load

was applied, and the non-flat initial beam shape were purely from the residual stress.

The approach based on solving the entire beam and support structure by FEM simu-

lations [47] can take into account the shape of the support, but it is computationally

expensive. Another approach used a torsional stiffness as boundary conditions to

model the rotational compliance but neglected the translational and axial compliance

of the supports [33,45,48–50]. The boundary torsional stiffness was assumed constant

and independent of load and residual stress. In [51], the boundary compliance was

studied by assuming constant rotational stiffness and transversal spring stiffness as

boundary conditions, but it didn’t show how the boundary stiffness can be obtained.

Substrate
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Fig. 2.1. (a) Schematic of a fixed-fixed beam with flat pre-release
profile and inclined supports, (b) model for the inclined support, and
(c) model for half of the horizontal beam.

The inclined supports shown in Fig. 2.1 and Fig. 2.2 are more realistic but have

not been investigated yet in the literature. This chapter models the inclined supports

in a fixed-fixed beam as two cantilevers coupled with a horizontal beam, as also pre-
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Fig. 2.2. Model for the inclined support and the electrostatically
actuated beam with (a) an initially downward post-release profile,
and (b) an initially upward post-release profile.

sented in [52]. Section 2.2 presents an inclined-support beam model suitable for beams

with stress-induced non-flat profiles (i.e., flat pre-release profiles) and under purely

mechanical loads (concentrated or distributed), as shown in Fig. 2.1. This model

accounts for support compliance, stress-induced non-flat beam profile, and stretching

nonlinearity associated with large-displacement. In addition, the support compliance

in this case can be represented by a coupling matrix whose value depends solely on

the material properties and the geometry of the supports. Base on the discussion in

Section 2.2, Section 2.3 introduces a more advanced reduced-order electromechani-

cal model that covers the more complicated case of arbitrary non-flat beam profiles

(Fig. 2.2). Electrostatic forces and the resulting additional nonlinearities are also

included in this second model. The rotational compliance of supports in this model is

represented by a torsional stiffness that is employed in the Galerkin method for solv-

ing the beam model. Both models are compared to and verified by FEM simulations
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in Section 2.4. Moreover, experimental data validate the electromechanical model in

Section 2.5.

2.2 Mechanical Model for Beams with Inclined Supports and Stress-

induced Non-flatness

Fig. 2.1(a) shows a fixed-fixed beam with inclined supports in its pre-release state.

The beam has thickness h and width b, and it is deposited on a sacrificial layer with

thickness of g0. The design length of the beam is L0, but the inclination of supports

with with angle α shortens the effective beam length to L. Due to the residual stress

developed during the beam deposition process, this beam will show a stress-induced

non-flat profile after it is released. This section presents a mechanical model for

beams with inclined supports and stress-induced non-flatness. Throughout the work,

Euler-Bernoulli beam theory is used in the beam and support modeling.

2.2.1 Beam Model

The beam model accounts for the boundary compliance and the nonlinear depen-

dence of the vertical deflection on the axial stress. Because of the symmetry, only

half of the beam is modeled as shown in Fig. 2.1(c). The deflection of the beam w(x)

is described by the following coupled nonlinear integro-differential equations [46]:

d3w

dx3
+ β2dw

dx
= − V

EI
(2.1)

Px =
Ebh

L

[
2δa −

∫ L/2

0

(
dw

dx

)2

dx

]
− σrbh (2.2)

β =
√
Px/EI (2.3)

where I = bh3/12 is the moment of inertia, V (x) is the shear force, Px is the axial

force of the beam, δa is the node translation along x-axis at joint node B, and σr is the

residual stress of the beam in the pre-release state. The axial force Px includes the

forces due to axial compliance of the supports, beam stretching, and residual stress.
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For a wide beam (b ≥ 5h), a plane strain condition is assumed by using an effective

Young’s modulus E = E0/(1 − ν2), where E0 is the Young’s modulus and ν is the

Poisson’s ratio. For a narrow beam (b < 5h), E = E0 [24].

The boundary conditions for half of the beam are as follows:

w (0) = δt (2.4)

dw

dx

∣∣∣∣
x=L/2

= 0 (2.5)

(−EI)
d2w

dx2

∣∣∣∣
x=0

= MB (2.6)

where δt is the translational displacement caused by the support compliance at the

beam boundary and MB is the reaction moment at the joint node B.

The deflection of the beam w(x) described by (2.1) is solved for two symmetric

loading conditions: the concentrated loading and the partially distributed uniform

loading.

When the beam is loaded with a centered concentrated force FL, the reaction force

at the joint node B is NL = FL/2. The shear force is V (x) = FL/2 for 0 ≤ x < L/2.

For given constants Px and β, the solution for the beam deflection takes the following

form:

w(x) = C1 sin (βx) + C2 cos (βx)−
NL

Px

x+ C3 (2.7)

where C1 − C3 are determined by the boundary conditions in (2.4) and their expres-

sions are:

C1 =
βMB sin (βL/2) +NL

βPxcos (βL/2)
(2.8)

C2 =
MB

Px

(2.9)

C3 = δt −
MB

Px

(2.10)

For a centered partially distributed uniform load with pressure u and span W,

NL = ubW/2, and the shear force is:
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V (x) =


ubW

2
, for 0 ≤ x ≤ x1

ubW

2
− ub (x− x1) , for x1 ≤ x ≤ L

2

(2.11)

where x1 = (L − W )/2. Assuming that Px and β are constant, we can derive the

solution for the beam deflection as:

w(x) =



D1 sin (βx)

+D2 cos (βx)

−NL

Px

x+D3, for 0 ≤ x ≤ x1

D4 sin [β (x− x1)]

+D5 cos [β (x− x1)]

+
NL

WPx

(x− x1)
2

−NL

Px

(x− x1) +D6, for x1 ≤ x ≤ L
2

(2.12)

where the expressions for coefficients D1 −D6 can be solved based on the boundary

conditions in (2.4) and the following equations which satisfy the continuity relation-

ship of w (x), w′ (x), and w′′ (x) at the point x = x1:

D5 +D6 = D1 sin (βx1) +D2 cos (βx1)−
NL

Px

x1 +D3 (2.13)

βD4 −
NL

Px

= βD1 cos (βx1)− βD2 sin (βx1)−
NL

Px

(2.14)

β2D5 −
2NL

WPx

= β2D1 sin (βx1) + β2D2 cos (βx1) (2.15)
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By solving the boundary conditions in (2.4) and (2.13), we can obtain D1 − D6

as follows:

D1 =
2NL sin (βW/2) +MBWβ2 sin (βL/2)

β2WPx cos (βL/2)
(2.16)

D2 =
MB

Px

(2.17)

D3 = δt −
MB

Px

(2.18)

D4 =
sin (βW/2)

β2WPx cos (βL/2)

×
[
2NL cos

(
βL− βW

2

)
+ β2WMB

]
(2.19)

D5 =
NL

β2WPx

+
NL cos (βL/2− βW ) + β2MBW cos (βW/2)

β2WPx cos (βL/2)
(2.20)

D6 = δt −
2MB + (L−W )NL

2Px

− 2NL

β2WPx

(2.21)

2.2.2 Model for Inclined Supports

A new coordinate system is defined for the inclined support as shown in Fig. 2.1(b).

The support is modeled as a cantilever with inclination angle α. The length of

the support Ls equals (g0 + h/2)/ sin (α). The following coupled integro-differential

equations describe the behavior of the inclined support:

d3η

dε3
+ γ2dη

dε
= − Vη

EI
(2.22)

Vη = −Px sin (α) +NL cos (α) (2.23)

Pε = Px cos (α) +NL sin (α) (2.24)

γ =
√
Pε/EI (2.25)

where η(ε) is the deflection of the supports along η-axis, and Pε and Vη are the forces

acting on the support along ε-axis and η-axis, respectively. The support is fixed in
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one end, and loaded with force Pε, Vη, and moment MB at the other end. Therefore,

it is subjected to the following boundary conditions:

η (0) = 0 (2.26)

dη

dε

∣∣∣∣
ε=0

= 0 (2.27)

(−EI)
d2η

dε2

∣∣∣∣
ε=Ls

= MB (2.28)

When Vη, Pε and γ are assumed constant, the solution for the deflection of the

inclined support is:

η(ε) = A1 sin (γε) + A2 cos (γε)−
Vη

Pε

ε+ A3 (2.29)

where A1 − A3 are constant coefficients determined by the boundary conditions in

(2.26), and are given by:

A1 =
Vη

γPε

(2.30)

A2 =
γMB − Vη sin (γLs)

γPε cos (γLs)
(2.31)

A3 =
−γMB + Vη sin (γLs)

γPε cos (γLs)
(2.32)

However, in most practical cases, the support length Ls is considerably smaller

than the beam length L, and consequently the small deflection assumption holds for

the support. Therefore, the effect of the axial force on the inclined support can be

neglected by discarding the second term on the left-hand side of (2.22). With this

simplication, the solution for the support deflection becomes:

η(ε) = − Vη

6EI
ε3 +B1ε

2 +B2ε+B3 (2.33)

where B1−B3 are determined by the boundary conditions in (2.26) and are as follows:

B1 =
VηLs −MB

2EI
(2.34)

B2 = 0 (2.35)

B3 = 0 (2.36)
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2.2.3 Coupling Between Beam and Supports

The deformation of the inclined supports at the joint points B and B’ (where

the horizontal beam connects with the supports) indicates the boundary compliance

of the horizontal beam. The beam and the inclined supports are coupled by the

continuity relationships at the joint node B as follows:

δa = η (Ls) sinα (2.37)

δt = w (0) = η (Ls) cosα (2.38)

θB =
dw

dx

∣∣∣∣
x=0

=
dη

dε

∣∣∣∣
ε=Ls

(2.39)

where δa, δt and θB are the axial, translational and rotational deformations at the

beam boundary. By substituting (2.29) into (2.37) and reordering the equations, we

define a coupling matrix Kij as:


δa

δt

θB

 =


K11 −K11 tan (α) K13

K11

tan (α)
−K11

K13

tan (α)
−K13

tan (α)
K13 K33



NL

Px

MB

 (2.40)

where

K11 =
tan (γLs)− γLs

γPε

sin (α) cos (α) (2.41)

K13 = −1− cos (γLs)

Pε cos (γLs)
sin (α) (2.42)

K33 = − γ sin (γLs)

Pε cos (γLs)
(2.43)

For given α, there are only three independent parameters K11, K13 and K33 in the

coupling matrix. The coupling matrix can be simplified as follows if (2.33) is used

instead of (2.29):
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K0
11 =

L3
s

3EI
sin (α) cos (α) (2.44)

K0
13 = − L2

s

2EI
sin (α) (2.45)

K0
33 = − Ls

EI
(2.46)

In (2.44), the coupling matrix is independent of external load and the axial force,

and it is only determined by the material properties and the support geometry. This

simplification makes the inclined support model applicable to the electromechanical

beam model as detailed in the following section.

From (2.1) and (2.22), we notice that the axial force Px, and consequently β, γ, Vη,

and Pε are nonlinearly coupled with the beam deflection w(x). To solve the system

of nonlinear integro-differential equations, one can use graphical method as follows.

First, Px is assigned with a trial value. The value of β, γ, Vη and Pε are related

to Px by (2.1c) and (2.22b-2.22d), respectively. Second, MB can be obtained by

solving (2.37c), and δa, δt and θB are calculated by (2.40). Then, the beam deflection

w(x) is calculated using (2.7) for a concentrated load or (2.12) for a distributed load.

The calculated δa and w(x) are used in return to compute the axial force Px using

(2.1b). When the difference between the resulting value of Px and the assigned value

satisfies a given accuracy constraint (0.5% is used here), this value of Px is taken to

be the solution for Px, and the final solution of the beam deflection w(x) is obtained.

Although Px and Pε are assumed positive (i.e., β and γ are real), the solution for the

beam deflection w(x) is valid for both positive and negative axial force since the sine

and cosine functions can be converted to their hyperbolic counterparts when β and

γ are imaginary.

Although the beam model is solved for symmetric loadings (concentrated or dis-

tributed), which are the most common cases in MEMS fixed-fixed beam applications,

this approach can be applied to more general non-symmetric loading cases by using

different boundary conditions. Without symmetry, the symmetric condition for the

beam in (2.4) needs to be substituted by the boundary condition of the beam at
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x = L. Additional integro-differential equations as in (2.22) need to be added for

modeling the other support. Moreover, the solutions must satisfy the continuity rela-

tionships of w (x), w′ (x), and w′′ (x) at the point where the nonsymmetric loading is

applied. By applying the same procedures described in the previous paragraph, the

solutions for non-symmetric loading can be obtained.

2.3 Electromechanical Model for Beams with Inclined Supports and Ar-

bitrary Non-flatness

Besides the stress-induced curvature, non-flat beam profiles may also result from

uneven sacrificial layers. In our case, the unevenness of the sacrificial layer is caused

by the electrode underneath the beam for electrostatic actuation. This section devel-

ops an reduced-order electromechanical model for beams with inclined supports and

arbitrary shaped profiles.

2.3.1 Electromechanical Beam Model

The beam model is adapted from a reduced-order numerical model by Snow and

Bajaj [49, 50]. Snow’s model accounts for a variety of non-ideal conditions, includ-

ing: boundary torsional compliance, nonlinear stretching, initial stress, initial profile,

electrostatic fringing field, and finite electrodes. However, the axial compliance of the

supports is neglected and it assumes a priori knowledge of the boundary torsional

stiffness. The adapted model accurately predict the static behaviors of beams elec-

trostatically actuated by taking into account the axial compliance of the supports,

and using the boundary conditions provided by the support model as discussed in

Section 2.2.

As shown in Fig. 2.2, w (x) is defined as the relative vertical displacement from its

post-release position v (x), instead of its pre-release position as in Section 2.2. The

beam deflection is described by the following coupled integro-differential equations:
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EI
d4w

dx4
+ Pw

(
d2w

dx2
− d2v

dx2

)
−N0

d2w

dx2

=
ϵ0bV

2

2 (g0 + v − w)2
[
1 + 0.24A0 (g0 + v − w)0.76

]
× [H (x− x1)−H (x− x2)] (2.47)

Pw =
2Ebh

L
δaw − Ebh

2L

×
∫ L

0

[(
dw

dx

)2

− 2

(
dw

dx

)(
dv

dx

)]
dx (2.48)

N0 = σ0bh (2.49)

A0 = 0.85
1

b0.76
+ 2.5

h0.24

b
(2.50)

where Pw is the axial force from the nonlinear stretching of the beam and from the

axial compliance δaw at the beam boundary. The force N0 from the initial stress

σ0 keeps the beam in a stable position v (x) after the beam is released. The total

axial force is Px = Pw − σ0bh. It is worth to notice that the initial stress σ0 in the

post-release beam is smaller in magnitude than the residual stress σr in its pre-release

state, since the beam deflects vertically when it is released and the stress is relaxed.

The Heaviside step functions in (2.47a) describe the finite electrode under the beam

spanning from x1 to x2. V is the actuation voltage applied, and ϵ0 is the permittivity

of free space. The beam profile with arbitrary non-flatness is described by a Fourier

series:

v (x) ≈
M∑
i=1

pi sin (iπx) (2.51)

where the sine series has been chosen to approximate a non-zero derivative of v (x)

at beam boundaries, and the coefficients pi are:

pi = 2

∫ 1

0

v (x) sin (iπx) dx (2.52)

Non-dimensional variables are introduced to make (2.47) more convenient to solve,

and are defined as follows:
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x̂ =
x

L
, x̂1 =

x1

L
, x̂2 =

x2

L
,

ŵ =
w

g0
, v̂ =

v

g0
, δ̂aw =

δaw
L

.
(2.53)

Substituting (2.53) into (2.47), we obtain:

EI
d4ŵ

dx̂4
− N̂0

d2ŵ

dx̂2
+

(
d2ŵ

dx̂2
− d2v̂

dx̂2

)
×

{
α0δ̂aw − α1

∫ 1

0

[(
dŵ

dx̂

)2

− 2

(
dŵ

dx̂

)(
dv̂

dx̂

)]
dx̂

}

=
α2V

2

2 (1 + v̂ − ŵ)2
[
1 + A1 (1 + v̂ − ŵ)0.76

]
× [H (x̂− x̂1)−H (x̂− x̂2)] (2.54)

where

α0 =
24L2

h2
, α1 =

6g20
h2

, α2 =
6ϵ0L

4

Eh3g30

N̂0 =
N0L

2

EI
, A1 = 0.24A0g

0.76
0

(2.55)

To solve the integro-differential equations in (2.54), they are rendered them into a

system of ordinary differential equations by utilizing global basis functions using the

Galerkin method [50]. It is assumed that the solution for the beam model is a linear

combination of the translational displacement from the support compliance and the

linear mode shapes of the undamped, straight beam, as follows:

ŵ (x) ≈ δ̂tw +
M∑
i=1

uiϕi (x) (2.56)

where δ̂tw = δtw/g0, and ϕi (x) is the ith linear undamped mode shape of the beam,

and governed by:
d4ϕi

dx̂4
= N̂

d2ϕi

dx̂2
+ ω2

i ϕi (2.57)

where ωi is the ith natural frequency. The boundary conditions for solving (2.57) and

(2.54) are required to be applicable to the Galerkin method and also to satisfy the

beam-support coupling as discussed below.
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2.3.2 Coupling between Beam and Supports

The support deformation is calculated using the same model presented in Sec-

tion 2.2.2. However, the coupling relationships need to be modified for the elec-

tromechanical beam model. As shown in Fig. 2.2, when the beam rests at its initial

post-release position v (x) before being actuated, the deformed beam and supports are

in equilibrium with NL = 0, Px = −σ0bh andMB = MB0. When the beam is actuated

by an electrostatic force Fe, the beam and the support deflect to a new stable position

with NL = Fe/2, Px = −σ0bh+ Pw and MB = MB0 +Mw. Pw and Mw are the axial

force and moment resulting from the relative beam deflection w (x), respectively. Pw

is given by (2.47b), and Mw = −EIw′′ (0). δaw, δtw, and θBw are defined to denote the

relative axial displacement, translational displacement and angle rotation away from

the initial position of the support, respectively. Since the simplified coupling matrix

in (2.44) is independent of external load and the axial force,the relative displacement

and rotation of the support can be calculated as follows without knowing the initial

position of the support:


δaw

δtw

θBw

 =


K0

11 −K0
11 tan (α) K0

13

K0
11

tan (α)
−K0

11

K0
13

tan (α)

−K0
13

tan (α)
K0

13 K0
33



NL

Pw

Mw

 (2.58)

where NL is the reaction force when an actuation voltage V is applied:

NL =
ϵ0bV

2

4

∫ L

0

1 + 0.24A0 (g0 + v − w)0.76

(g0 + v − w)2
dx (2.59)

The beam deflection w (x) satisfies the coupling relationships between the beam

and the support as follows:

w (0) = w (L) = δtw
dw

dx

∣∣∣∣
x=0

= − dw

dx

∣∣∣∣
x=L

= θBw (2.60)

However, the Galerkin method used for solving the beam deflection w (x) requires

the boundary conditions to be applicable to each mode shape and also their linear
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combination. Therefore, (2.60) cannot be directly used. To adapt to the Galerkin

method, a boundary torsional stiffness kT is defined to present the rotational compli-

ance of the supports:

kT = −Mw

θBw

(2.61)

Therefore, the non-dimensional boundary conditions for solving (2.57) is:

ϕi (0) = 0, ϕi (1) = 0

ϕ′′
i (0) =

LkT
EI

ϕ′
i (0) , ϕ

′′
i (1) = −LkT

EI
ϕ′
i (1) (2.62)

which guarantees that the non-dimensional beam displacement ŵ satisfies:

ŵ (0) = δ̂tw ŵ (1) = δ̂tw

ŵ′′ (0) =
LkT
EI

ŵ′ (0) , ŵ′′ (1) = −LkT
EI

ŵ′ (1) (2.63)

We will show in Section 2.5 that the boundary torsional stiffness kT for inclined

supports is not only a function of the beam’s material properties and geometries, but

is also associated with the electrostatic loading.

2.4 Results and Discussion

In this section, the numerical results of the mechanical model described in Sec-

tion 2.2 and the electromechanical model described in Section 2.3 are presented. The

accuracy of the numerical results is verified by comparing to FEM simulations under

different loading conditions.

2.4.1 Results for Beams with Inclined Supports and Stress-induced Non-

flatness

The stress-induced non-flat profiles are calculated by the model presented in Sec-

tion 2.2 for a 400-µm-long beam with inclined supports (α = 10◦) and are plotted in

Fig. 2.3(a). By referring to Fig. 2.3(b), the vertical deflection of the beam relaxes the

residual stress. When the beam is under a compressive stress, the beam has larger
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stress-induced deflection compared with the case of a tensile stress with the same

magnitude, and consequently, more stress relaxation.
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Fig. 2.3. (a) Post-release beam shapes caused by different residual
stresses, and (b) post-release axial stress v.s. residual stress, for a
400-µm-long beam (h = 2 µm, b = 120 µm, g0 = 3 µm, α = 10◦).

The simplification made for the coupling matrix is verified by comparing the Kij

values and the beam displacements when (2.41) and (2.44) are used, respectively. As

shown in Fig. 2.4(a), the differences of the coupling parameters in (2.41) and (2.44)

are less than 4.0% for residual stress ranging from −30 MPa to 30 MPa. The beam

displacements calculated using the coupling parameters in (2.41) only differ from the

results calculated using (2.44) by 0.72%, as shown in Fig. 2.4(b), which indicates that
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Fig. 2.4. (a) Calculated results of coupling parameters. (Kij and K0
ij

are shown in (2.41)-(2.43) and (2.44)-(2.46), respectively.) (b) Cal-
culated results of displacement versus load curves by using different
coupling parameters in (2.41)-(2.43) and (2.44)-(2.46), respectively.
(L = 400 µm, α = 10◦, h = 2 µm, b = 120 µm, g0 = 3 µm. The beam
deflects under a distributed load with W = 270 µm)

coupling parameters can be simplified by using (2.44). Therefore, (2.44) is used in

the following calculations.

For beams with stress-induced non-flat profiles, the commercially available finite-

element software ANSYS [53] is utilized to simulate the deflection curves in both

linear and nonlinear regimes. The beams are assumed to be subjected to imperfect
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fabrication processes resulting in varying degrees of support inclination and thus vary-

ing effective beam lengths. The other dimensions are assumed to remain the same as

designed. Therefore, we study the effects of the inclined supports by examining beams

with their different inclination angles and different lengths as listed in Table 2.2. The

beam width b and the span of pressure W in the case of distributed loading are

assumed to scale proportionally to the beam length. The beams are made of nickel

which has Young’s modulus of E0 = 200 GPa, Poisson’s ratio of ν = 0.3 and density

of 8910 kg/m3 [54]. A residual stress of −10 MPa is assumed for all beams. We use

a 3-D 3-Node beam element BEAM 189 which includes the nonlinear effects of the

axial stress due to residual stress and large displacements.The inclined supports and

the horizontal beam are meshed with 50 and 200 beam elements, respectively, and

nonlinear analyses are performed.

Table 2.2.
Beam dimensions for FEM simulations.

α L [µm] g0 [µm] h [µm] b [µm] W [µm]

10◦/45◦/90◦ 200 3 2 60 135

400 3 2 120 270

600 3 2 180 405

The beam deflection curves in both linear and nonlinear regimes are plotted and

compared to FEM results for concentrated load in Fig. 2.5 (a)-(c), and for distributed

load in Fig. 2.5 (d)-(f). Since the axial force Px is solved numerically by assuming

an accuracy constraint (0.5% in this model), the sensitivity of displacements to Px

is studied, which shows the displacement variation is < 0.2% when Px changes by

0.5%. The predicted results from the beam model match the FEM results well with

an average error of 1.1%. The effect of the support inclination manifests itself in the

beam deflections as plotted in Fig. 2.5, and is explained as follows. When inclination

angle of supports (α) is the only variable geometry, the boundary compliance and the
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post-release stress change with the support inclination. The boundary compliance

increases with α reduces according to (2.40) and (2.44), which leads to a larger beam

deflection. On the other hand, the increased boundary compliance relaxes more

compressive residual stress and leads to a smaller beam deflection. For short beams

as in Fig. 2.5 (a) and (d), the increase of boundary compliance is dominant over

the stress-relaxation, and therefore, beams with smaller α have larger deflections.

However, for long beams as in Fig. 2.5 (c) and (f), the stress-relaxation is more

dominant and beams with smaller α deflect less. It can be noticed from Fig. 2.5

that the stress-relaxation increases with longer beams and causes a larger stress-

induced initial deflection which may cause bifurcation in the deflection curves. As

shown in Fig. 2.5(c) and (f), bifurcation occurs in the calculated deflection curves,

which show multiple solutions of beam displacement for a given load. However, the

solutions plotted with the dashed lines are unstable, and when the load increases to

a critical value, the beam will snap to the next stable position, which is referred to

as the “snap-through” phenomenon [50]. For beams with all lengths, the effects of

the support inclination are more prominent for shallow inclination angles (α < 45◦).

From the analyses of the beam deflection curves, physical insights can be gained into

the effects of the support inclination on the boundary compliance and axial stress

state in the beam.

2.4.2 Results for Electrostatically Actuated Beams with Inclined Sup-

ports and Arbitrary Non-flatness

To verify the electromechanical model for beams with non-flat profiles, a full 3-D

electromechanical simulation is performed in CoventorWare [55]. The beam is made

of nickel with the same material properties as described in Section 2.4.1, and it has

an initial stress (σ0) of −8.2 MPa. Its dimensions are the same as the 400-µm-long

beam in Table 2.2 with α = 10◦. The gold electrode is 270-µm wide, and it is covered

with a 0.2-µm-thick silicon nitride film. The beam and the electrode are meshed with
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Fig. 2.5. Simulated deflection versus load curves for beams with (a),
(d) L = 200µm, (b), (e) L = 400µm, (c), (f) L = 600µm. A com-
pressive residual stress σr = −10 MPa is assumed. (a) - (c) are for
concentrated load at the center of the beam, and (d) - (f) are for the
partially distributed uniform load. The points represent ANSYS sim-
ulation results, and the solid lines represent results of the analytical
model described in Section 2.2.

Manhattan brick elements with a size of 5µm × 5µm × 0.5µm. Fig. 2.6(a) shows

the CoventorWare model, and the initially non-flat profile of the beam including the
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inclined supports is recorded along the x-direction as plotted in Fig. 2.6(b). Since

the beam profile is symmetric, only odd terms of the Fourier series are nontrivial.

The approximated profiles of the horizontal beam with different numbers of Fourier

modes using (2.51) are compared in Fig. 2.6(c), which shows that the beam profile

can be accurately described by three Fourier modes (also see Fig. 2.7(a)).
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Fig. 2.6. (a) Model for beam with non-flat profile in CoventorWare
[55], (b) initial profile of the beam, and (c) the approximated profiles
of the horizontal beam in the red dashed box in (b) with different
numbers of Fourier modes using (2.51).

The displacement-voltage curve from the electromechanical simulations in Coven-

torWare is plotted in Fig. 2.7(a), which predicts a pull-in voltage of 41.25 V. The

displacement-voltage relationship is also calculated numerically using the model in
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Fig. 2.7. (a) Calculated displacement vs. voltage curves compared to
FEM simulations, and (b) axial stress vs. displacements.

Section 2.3 by employing different numbers of Fourier modes for describing the beam

profile. As shown in Fig. 2.7(a), the numerical results reach convergence when three

Fourier modes are used and the predicted pull-in voltage is 40.83 V, which agrees

with the FEM results within 1.0%. Fig. 2.7(b) shows the total axial stress and the

axial stress caused by the axial displacement of the support (δtw). The axial and

translational displacements of the inclined supports are in the order of nanometers.

However, an axial displacement of 1 nm corresponds to 0.52 MPa axial stress for a

400-µm-long beam. The change of axial stress due to the axial displacement is larger

for short beams. Therefore, the axial compliance of the supports needs to be modeled,

especially for short beams with low initial stress.

The reduced-order electromechanical model is more computationally efficient com-

pared to FE simulations. For the beam in Fig. 2.6, the CoventorWare simulation
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needs 28 minutes, while our reduced-order model only takes 1.9 minutes to obtain

the displacement-voltage curve, which shows an improvement of 15× for the compu-

tational efficiency. In addition, the FE method requires extra time for building the

3D model, while our numerical model can automatically read in the geometrical data

for simulations.

2.5 Experimental Results

In this section, the electromechanical model described in Section 2.3 is experi-

mentally validated by applying it for the analysis of electrostatically actuated MEMS

beams with inclined supports and non-flat profiles.

2.5.1 Fabrication Process and Measurements

The microbeams under test, as shown in Fig. 2.8, are fabricated on a p-type high-

resistivity oxidized silicon substrate with a 500-nm-thick thermally grown silicon-

dioxide film [56]. First, a 1-µm-thick Au film is sputtered and lifted-off to define the

actuation electrodes and electrical connections of the beam. Then, a 0.2-µm-thick

silicon nitride film is deposited and patterned to cover the actuation electrodes. The

anchors are then patterned through a 3-µm-thick photoresist sacrificial layer. The

sacrificial layer is hard baked at 190◦C for 5 minutes. After a seed-layer of 50-nm

sputtered Ti and 30-nm evaporated Ni is deposited on the whole sample, a 6-µm-

thick photoresist layer is shaped to form the electroplating mold on the seed layer.

The Ni electroplating is carried out in a nickel-sulfamate bath with pH value of 4

at 50◦C. A 2-µm-thick Ni layer is selectively electroplated on the seed layer based

on the photoresist mold. After the removal of the photoresist mold, the Ni and Ti

seed layers are stripped with HCl : H2O = 1 : 1 and HF : H2O = 1 : 20 at room

temperature, respectively. The photoresist sacrificial layer is removed by immersion

in photoresist-stripper-2000 at 75◦C for 24 hours. Finally, the fabrication process
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is completed by drying in a critical-point-dryer. Beams with two different lengths

(400 µm and 500 µm) are fabricated with the same width of 120 µm.

Actuation electrode

Nickel beam

(a)

(b)

Fig. 2.8. (a) 3-D confocal-microscopy image, and (b) top view
confocal-microscopy image of a fixed-fixed beam with inclined sup-
ports.

The ideal patterned photoresist layer shown in Fig. 2.9(a) is conformal with the

underlying topology. However, the actual topology of photoresist sacrificial layer

critically depends on the process conditions, and the inclination angles at the edges of

the patterned photoresist are highly dependent on baking temperature and time [36–

39]. The actual shape of the photoresist layer after reflow is suggested by Fig. 2.9(b),

and the beam deposited on top follows this shape.

The geometric parameters are measured optically using a confocal laser scanning

microscope LEXT OLS3100 from Olympus [57], which creates a high-quality 3-D

image of the measured device by scanning discrete planes along z-axis with a lateral

resolution of ± 60 nm. For a 20× objective with a numerical aperture of 0.46 used

in our measurement, a vertical resolution of ∼ ± 20 nm can be expected [58]. Higher

resolution is available with higher magnification objectives, but the 20× objective is



35
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(b)

Si-substrate

OxideGold Photoresist

Silicon nitride

Fig. 2.9. (a) The ideal patterned photoresist layer, and (b) the actual
photoresist layer.
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using seven Fourier modes in (2.51)).

selected because of the working distance required for landing probes to apply voltages.

The accuracy of the beam thickness and height is
√
2 (± 20 nm) = ± 28 nm since a
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subtraction for measuring the distance between two plane locations is needed. The

gap between the beam and the actuation electrode cannot be shown explicitly in the

3-D image. Thus, in order to obtain the mid-point gap (G0 = g0+vmax), we measured

the height from the top of the beam to the actuation electrode at the mid-point of

the beam, and subtracted the nickel thickness (h) from the measured height assuming

that the electroplating is uniform. The indirect measurement leads to the accuracy

of the gap to be
√
2 (± 28 nm) = ± 40 nm.

Table 2.3 summaries the measured geometric parameters for six beams studied in

this chapter. The uncertainty indicates the systematic error due to the accuracy of

the confocal microscope, without the random error included. The beam profiles are

recorded along the beam as shown by the red dashed line in Fig. 2.8(b). Fig. 2.10

shows two examples of beam profiles. The approximated beam profiles are plotted in

dashed lines, and the blue dashed lines are the tangent lines of the inclined supports

at the points where the supports are fixed. The angle between the tangent line and

the horizontal axis defines the inclination angle of the support. For the beams listed

in Table 2.3, the uncertainty of the inclination angle (α) is ± 0.12◦ depending on the

lateral and vertical resolutions of the geometric measurements.

The displacement-voltage measurement is conducted by applying a DC voltage

between the beam and the actuation electrode through two probes. The displacements

are measured at the center of the beam for each voltage applied. The data collection

for each beam is conducted automatically with the aid of a custom scripting software

without moving the sample or changing any settings of the confocal microscope.

2.5.2 Displacement Curves and Effects of Support Compliance

The displacement-voltage curves are calculated by the beam model described in

Section 2.3 using the measured geometric values listed in Table 2.3. The only unknown

in the beam model is the initial stress σ0 of the beam, and its value can be extracted

by matching the predicted displacement from the beam model to the experimental
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result at a single voltage point. If all measured displacements are used instead of a

single displacement measurement, taking Beam 1 for example, the extracted residual

stress changes by −0.08 MPa, which leads to a variation of 0.1% in the predicted dis-

placements. The displacement-voltage curve changes less than 0.2% corresponding to

the measurement uncertainty of ± 0.12◦ for the inclination angle. Fig. 2.11 shows the

calculated and measured curves of displacement vs. actuation voltage, and they are

in good agreement with an average error of 5.2%. All these beams have compressive

initial stresses, which explains the upward deflected initial shapes of the beams. For

beams with the same length and inclination angle of supports, higher compressive

stress leads to higher initial deflection. Since the electrostatic force is proportional to

the square of the gap, higher initial deflection leads to lower electrostatic force when

the same voltage is applied, and consequently, smaller vertical displacement.

The effects of the inclined supports on beam deflections are illustrated in Fig. 2.12,

in which three different types of boundary conditions are examined for Beam 3. The

fixed boundary model implies that all degrees of freedom at the beam boundary are

constraint to zero. The vertical support model in [45] used only a constant torsional

stiffness at the boundary given by kT = 4EI/(g0 + h). The resulting displacement-

voltage curves are compared in Fig. 2.12(a). The fixed boundary model renders larger

displacements compared with the inclined support model. It can be explained by ex-

amining the axial stress of the beam as plotted in Fig. 2.12(b). When the inclined

support model is used, the axial force calculated by (2.47b) takes into account both

the nonlinear stretching of the beam and the axial displacement δaw from the inclined

support. However, the nonlinear stretching of the beam for the downward deflection

shortens the arc-length of the beam compared with the initial position v (x) and re-

sults in a compressive stress. The axial displacement δaw shown in Fig. 2.12(c) results

in a relaxation of this compressive stress. The total axial stress is still compressive,

but it is smaller than the fixed boundary case that ignores the δaw effect. In other

words, in both the fixed boundary model and the vertical support model, it is as-

sumed that there is no axial compliance (δaw = 0), and the axial stress changes only
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Fig. 2.11. Experimental and calculated displacement vs. voltage
curves for (a) Beam 1, (b) Beam 2, (c) Beam 3, (d) Beam 4, (e)
Beam 5, and (f) Beam 6. The error bars correspond to the measure-
ment uncertainty of ± 40 nm.

by the nonlinear stretching of the beam. Therefore, the fixed boundary model and the

vertical support model generate higher compressive stresses than the inclined support
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supports.

model as shown in Fig. 2.12(b), and consequently, larger displacements as shown in

Fig. 2.12(a).

It is also worth noticing that the translation displacement at the beam boundary

is linearly related to the axial displacement by δtw = δaw/tan (α), and therefore, δtw is
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also in the nanometer scale. The torsional stiffness kT at the beam boundary plotted

in Fig. 2.12(c) is not constant. It is because the rotation angle at the beam boundary

θBw is caused by vertical load force, axial force, and moment as calculated in (2.58).

With the increased actuation voltage, the rotation angle due to the electrostatic force

increases and dominates, and therefore, by the definition of kT in (2.61), kT decreases.

2.6 Conclusion

This chapter presents an equation-based nonlinear model for inclined supports

in MEMS fixed-fixed beams. The effects of the inclined-support compliance on the

post-release stress relaxation and on the beam deflections are discussed. This model

accounts for non-flat beam profiles caused by residual stress and/or an uneven sac-

rificial layer topology. The nonlinear effects due to stretching and residual stress are

included. In the mechanical beam model, the inclined-support compliance can be

represented by a constant coupling matrix whose value is independent of external

loads. The support compliance causes stress-induced deflections which leads to stress

relaxation. For the electromechanical beam model, the rotational support compliance

is represented by a torsional stiffness which is employed by the Galerkin method for

solving the model. We find that the torsional stiffness varies with the electrostatic

loading, the stress state, and the initial beam profiles. We also show that the in-

clination angles of the supports have great effect on beam deflections, especially for

shallow angles less than 45◦. The calculated beam displacements agree with FEM

simulations to within 1.1% in both the linear and nonlinear regimes. Furthermore,

the displacement-voltage curves from the electro-mechanical beam model are experi-

mentally validated with an average error of 5.2%.
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3. RESIDUAL STRESS EXTRACTION OF MEMS

BEAMS USING A WAFER-SCALE TECHNIQUE

3.1 Introduction

Thin films in MEMS devices tend to exhibit length-scale-dependent and process-

dependent mechanical properties which are often quite different than bulk properties

[59]. The performance of typical MEMS devices highly depends on the properties

of their structural materials. For example, the residual stress in electrostatically

actuated RF MEMS switches is a key parameter in determining the pull-in voltages

and switching time [60]. Therefore, it is imperative to monitor the residual stress at

wafer-scale level for predicting the performance and reliability of devices. This chapter

reports on the extraction of residual stress in fixed-fixed beams using a wafer-scale

technique.

A wafer-scale extraction technique requires automated testing, fast data acquisi-

tion and cost-effective implementation. Table 3.1 summarizes the limitations of the

existing techniques for residual stress extraction. In general, these techniques were all

nondestructive, since destructive tests cannot be repeated for verification and the de-

bris could lead to potential failure of other active devices on the wafer. There are three

main categories of residual stress extraction methods for free-standing thin-films:

static mechanical, electrostatical/pull-in, and dynamic resonant. The first category

using mechanical loads included bulge test [61–64], nanoindentation test [65, 66],and

microtensile/microbending test [67–70]. The challenge of applying small mechan-

ical loads with high resolution in microscale testing demanded for special sample

preparations or special test fixtures, which increased the design complexity and char-

acterization cost. Chen [71] reported an extraction method by measuring thermal

deflections at different temperatures up to 103◦C. However, this method was not
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applicable to devices which cannot sustain high temperatures, and the required it-

erative simulations of computationally expensive finite-element-model (FEM) made

it impractical for wafer-scale measurements. In [33], Fachin presented an approach

without any external loads required, and only the post-release beam deformations due

to compressive stresses were measured, which precluded itself from extracting tensile

stresses.

Electrical input signals utilized in the second category can be applied easily, and

therefore are preferred in large-scale tests. The M-test proposed by Osterberg [72],

which measured pull-in voltages of electrostatically actuated beams, achieved fast

data acquisition by only using standard electrical test equipment and a microscope.

However, the pull-in behavior led to contact wear and dielectric charging issues, and

the test structures containing a group of beams occupied a large area on the wafer.

To improve the verifiability of the test, the beam deformations below the pull-in

limit were recorded for extracting the residual stress [34, 73, 74], but multiple beams

were still required for these techniques. In [75], a method using a single beam was

presented, but it relied on iterative FEM simulations. In addition, the initial beam

curvature was not included in the beam model which degenerated the accuracy of the

results. The last category involves dynamic tests, in which the test structures were

powered into vibration, and the fundamental resonant frequency [76, 77] or multiple

eigenmodes [48, 78] were measured to determine the residual stress. However, in

[76–78], the effects of anchor compliance and non-flat initial profiles of test structures

were neglected. The initial profile of the testing beam was taken into account in [48]

by a presumed arc shape, which might not follow the actual irregular beam profiles

and result in non-negligible errors of the extracted residual stress. In addition, the

eigenmodes of the beam becomes less sensitive when boundary spring stiffness is

small, and therefore, leading to larger errors of the predicted residual stress by the

method in [48] for beams with small boundary stiffness.

In order to accurately quantify the residual stress at wafer-scale, an efficient extrac-

tion technique is developed in this chapter. It employs a comprehensive reduced-order



45

beam model and electrostatic measurements taken at room temperature with only one

beam required. Neither modification to the regular fabrication processes nor special

specimen preparation is required. The key to this technique lies in the recognition that

for an electrostatically actuated fixed-fixed beam with a given value of residual stress,

there exists a unique displacement-voltage curve. The residual stress is determined

by iterating its value to match the simulated displacement-voltage curve to measure-

ments. Non-ideal effects of beams, such as non-ideal anchor supports, initially curved

beam profiles and electrostatic fringing fields, are characterized for accurate residual

stress extraction. With the aid of a custom scripting software program collecting ex-

perimental data automatically, and an efficient optimization algorithm for automatic

extraction, the wafer-scale characterization of residual stress can be achieved.

3.2 Extraction Methodology

3.2.1 Comprehensive Reduced-order Models and Characterization of Non-

ideal Effects of Fixed-Fixed Beams

The extraction of the residual stress requires a large number of iterative simula-

tions and thus an efficient simulation package is desirable for wafer-scale extraction

implementation. A reduced-order numerical model as described in [50, 52] is used

here. Compared to computationally expensive FEM codes, this model effectively

predicts beam behaviors while being comprehensive enough to incorporate the multi-

physics phenomena and non-ideal conditions including non-vertical supports, initially

non-flat beam profiles, and electrostatic fringing fields.

The anchor supports in MEMS beams cannot be assumed ideally rigid, and ad-

ditionally, these supports are not always vertical as assumed in most beam mod-

els [34, 45, 79, 80]. Instead, they can be inclined as illustrated in Fig. 3.1(a). This is

often due to the shape of the sacrificial layer during fabrication. The topologies of

the spin-on layers (e.g., photoresist) strongly depend on the process conditions. The

compliance of these supports has nontrivial implications on beam performance, and
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Fig. 3.1. (a) Schematic for a fixed-fixed beam with inclined supports
and a non-flat profile, (b) model for the inclined support, and (c)
model for the horizontal beam with a non-flat profile.

therefore, significant errors in extracting residual stress may occur if the supports are

not properly modeled. Therefore, a model for inclined supports developed in [52] is

used. The inclined supports are modeled as cantilever beams (Fig. 3.1(b)) connected

to a horizontal beam with non-flat profiles (Fig. 3.1(c)). When the beam is actuated

by an electrostatic force Fe, the beam deflects away from its initial post-release posi-

tion v (x). For a beam deflection w (x), the support has relative axial displacement

δaw, translational displacement δtw and angle rotation θBw caused by the moment

Mw, axial force Pw and reaction force NL = Fe/2 at the joint node where the support

connects to the horizontal beam. The Euler-Bernoulli equations for all beams are

simultaneously solved to calculate the compliance of the supports as:


δaw

δtw

θBw

 =

 Kij



NL

Pw

Mw

 (3.1)
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where [Kij] is the coupling matrix as defined in [52], and Mw = −EIw′′ (0). For

a beam with thickness h and width b, I = bh3/12 is the moment of inertia, and

E is the effective Young’s modulus. A beam is considered wide when the width is

much larger than its thickness (b ≥ 5h) and a plane strain condition is assumed with

E = E0/(1 − ν2), where E0 is the Young’s modulus and ν is the Poisson’s ratio.

For a narrow beam (b < 5h), E = E0 [72]. It is worth to notice that Mw and Pw

are the moments and axial force only due to the vertical beam displacement w(x),

respectively. With a residual stress σ0, the total axial force is Px = Pw + σ0bh.

To adapt to the Galerkin method for solving the beam model [49,50], a boundary

torsional stiffness kT is defined to present the rotational compliance of the supports

which may vary with the beam displacement and residual stress:

kT = −Mw

θBw

(3.2)

The inclination of supports not only changes the boundary compliance of the

horizontal beam, but also shortens the effective length (Leff ) of the beam to:

Leff = L0 − 2
gc

tanα
(3.3)

where gc = g0 + h/2, and g0 is the flat initial gap.

Another non-ideality is the non-flat initial profile of the beam, which can signif-

icantly affect the displacement-voltage relationship since the electrostatic force is a

quadratic function of the gap between the beam and the actuation electrode. When

considering an initially curved beam, most of the works assumed the shape of the

beam [33, 81], but in this paper, we use a Fourier sine series which can approach

any symmetric shape of beam profiles. When the initial beam profile is recorded as

a function of position v(x), where x is the axis along the beam, the Fourier series

coefficients can be calculated by:

pi = 2

∫ 1

0

v (x) sin (iπx) dx (3.4)

To accurately model the electrostatic force exerted on the beam, a modified elec-

trode width, instead of its physical size (W0 = x2 − x1) as shown in Fig. 3.1(c), is
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used in the reduced-order model. Although the fringing fields in-plane with the beam

cross sections has been included in the reduced-order model, the complex fringing

effects arising from the finite width of the actuation electrode is neglected. In addi-

tion, the presence of the high dielectric-constant substrate distorts the electric fields

compared to the case with dielectrics made of air or vacuum, and thus changes the

electrostatic force. To compensate for these effects, an equivalent electrode width

W is introduced, which is determined by matching the simulated capacitance and

electrostatic force from the reduced-order model to the results of FEM simulations

for the device structure.

3.2.2 Extraction of Residual Stress

The procedure of residual stress extraction starts with optical measurements of the

geometric parameters of a beam. Then the gap at the center of the beam is measured

when a DC actuation voltage is applied between the beam and the electrode. By

changing the actuation voltage incrementally and recording the corresponding gap, a

gap versus voltage curve is obtained.

The extraction technique for residual stress is illustrated by the flowchart in

Fig. 3.2 [82]. Assuming all material properties expect the residual stress are known,

with the experimental geometric data, the parameters modeling the non-ideal effects,

namely, Fourier coefficients pi, effective length Leff and equivalent electrode width

W, can be calculated accordingly. Then, starting from an initial guess for residual

stress, the displacement-voltage curve is simulated by the reduced-order model, and

the value of the residual stress (σ0) is iterated using an optimization function im-

plemented in MATLAB [83] until the best fit between the simulated and measured

displacement-voltage curves with the smallest root-mean-square (RMS) fitting error

is found, and this value is taken to be the best estimate of the residual stress. When

a large number of beams are measured for wafer-scale extraction, the beams are num-

bered and the experimental data is tabulated in a spreadsheet. Simulation scripts
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are developed which can read the input data and searching for the optimal value of

residual stress automatically by specifying the beam numbers.
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Fig. 3.2. Flow chart of the residual stress extraction technique.

3.3 Fabrication and Measurement

Typical RF MEMS capacitive beam switches as shown in Fig. 3.3(c) are fabricated

using the same process described in Chapter 2. Beams with two different lengths

(400 µm and 500 µm) are fabricated with the same width of 120 µm. The geometric

parameters of the devices are measured optically using the confocal laser scanning

microscope LEXT OLS3100 from Olympus. The geometric measurement methods

and accuracy are the same as discussed in Chapter 2.

A measurement setup shown in Fig. 3.3 is used to collect the displacement-voltage

curves. A Keithley 2410-C DC power supply is used to provide the actuation volt-

age between the beam and the actuation electrode through two probes. A custom



50
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sample under test

(a)

(b)
probes

(c)

Fig. 3.3. (a) Measurement setup, (b) closeup of the objective and
wafer, and (c) a 3-D image of the MEMS fixed-fixed beam.

scripting software program is developed to automate the data collection in the mea-

surements. The power supply is controlled to change the DC voltage incrementally,

and the confocal microscope is programmed to take a new scan once the voltage is

increased.

3.4 Results and Discussion

3.4.1 Geometric Measurement Data

The geometric data of 87 beams on a quarter-wafer are measured using the LEXT

confocal microscope and their mean values and standard deviations are summarized

in Table 3.2, assuming that each parameter follows a normal distribution. L0 is the

physical beam length (Fig. 3.1(a)). As shown later in Section 3.4.2, the beam profile

is symmetric but not initially flat across the length. Therefore, the initial mid-beam

gap (G0 = g0+vmax) is determined by both the initial flat gap (g0) and the additional



51

gap (vmax) due to the non-flat profile. Among all geometric parameters, the beam

thickness (h) and the initial mid-beam gap are the most important in determining the

beam deflection. Their histograms for all measured beams are shown in Fig. 3.4. The

nearly normal distribution of the measured beam geometries indicate the uncertainties

due to the non-ideal fabrication process.

Table 3.2.
Geometric measurement data (± indicates one standard deviation level).

Geometric Parameter Measurement Value

Beam Length (L0) 495.10 ± 0.67 µm

395.59 ± 0.79 µm

Beam Width (b) 122.79 ± 0.40 µm

Beam Thickness (h) 1.83 ± 0.28 µm

Initial Gap (G0 = g0 + vmax) 4.62 ± 0.57 µm

Initial Flat Gap (g0) 2.84 ± 0.26 µm

3.4.2 Characterization of Non-ideal Effects

The non-ideal effects of the beams can be characterized with the measured geo-

metric data as discussed in Section 3.2. Fig. 3.5 shows examples of measured beam

profiles and the beam model used in the reduced-order numerical simulation for both

400 µm and 500 µm beams. The middle section of each beam profile curves up where

there is an actuation electrode beneath it. The anchor supports are not ideally verti-

cal, but are inclined towards the center of the beam. The blue dashed line in Fig. 3.5

is the tangent line of the inclined support at the point where the anchor is fixed, and

the angle between the tangent line and the horizontal axis defines the inclined angle

of the support α which is about 10◦. The beam is assumed being anchored at the

points where the horizontal level (the red dashed line) which indicates the initial flat
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Fig. 3.4. Histogram of measured (a) beam thickness and (b) initial
gap at the center of the beam.

gap (g0) meets the two tangent lines of the supports at both sides of the beam. In

the beam model, the effective beam length Leff is calculated by (3.3).

The non-flat profile of the beam is approximated by a finite Fourier sinusoid series

calculated from (3.4). A Fourier series with more modes describes the beam profile

more accurately, and thus yields more accurate result of extracted residual stress.

However, the computation time for the beam model increases with the increase of the

Fourier modes used. Therefore, a Fourier series with 7 modes is used in simulations

as a tradeoff between accuracy and computation efficiency (see Section 3.5.3). The

profile for each beam model in Fig. 3.5 is constructed by these Fourier coefficients,

which closely resembles the measured profiles.

The equivalent electrode width for accurate modeling of the electrostatic force

is studied. The physical width of the electrode is designed to be W0 = 270 µm.

As shown in Fig. 3.6, the capacitance and electrostatic force from the reduced-order

model are compared to the results of 3-D FEM simulations by CoventorWare [55].
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Fig. 3.5. Measured profiles and beam model with non-flat profiles and
inclined supports.
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The capacitance and the electrostatic force are best matched when the electrode

width in the reduced-order model is increased by 6.36% and 4.19%, respectively.

W = 287.16 µm (for electrostatic force matching) provides closer match of the gap

versus voltage relationship between the reduced-order and 3-D models. Therefore, an

equivalent electrode width of W = 287.16 µm is used in the reduced-order numerical

model for the extraction of residual stress.
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Fig. 3.6. Curve fitting for equivalent electrode width by matching (a)
capacitance and (b) electrostatic force from reduced-order model to
FEM simulations.

3.4.3 Results of Extracted Residual Stresses

The extraction of residual stress is performed for all 87 beams measured. The

nickel beams have density of 8913 kg/m3 and Poisson’s ratio of ν = 0.3. For any

value of a fixed Young’s modulus E0, there must be a value of the residual stress (σ0)

that provides the best fit to the measured gap versus actuation voltage curve with the
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smallest RMS fitting error as shown in Fig. 3.7(b). Therefore, the E0 and σ0 cannot

be decoupled and extracted simultaneously by this method. For a electroplated nickel

thin film, the value of E0 differs from the bulk material value and is related to plating

conditions [84]. For the nickel beams in our study, E0 = 199.9 GPa is used which is

determined in [54]. The searching for the optimal value of residual stress is illustrated

by an example shown in Fig. 3.7(a). With the geometric data and other material

properties determined, the reduced-order numerical model predicts a corresponding

displacement-voltage curve for each value of residual stress. The best fit between the

simulated and measured displacement-voltage curves gives the result of the extracted

residual stress.

For all the 87 beams measured, the color-scaled results of the extracted residual

stress (σ0) ranging from −12.8 MPa to 13.6 MPa are shown with respect to the

location of beams on the wafer in Fig. 3.8. A histogram of the extracted residual

stress are plotted in Fig. 3.9. The positive values represent tensile stresses while

negative ones are compressive stresses. The values of residual stress exhibit a nearly

normal distribution with a mean value of −1.7 MPa and a standard deviation of

5.9 MPa which indicates the variability of the residual stresses on the wafer.

The stress level of the electroplated film depends practically on process conditions,

such as bath composition, current density, and temperature [84]. Using a nickel

sulfamate solution, the stress level of the nickel layer may be tuned from tensile to

compressive stress by process parameters. The electroplating process described in

Section 3.3 is developed for a low-stress nickel layer. The extracted values of residual

stress (σ0) fall in the expected range. As shown in Fig. 3.8, in the electroplating

process, the cathode is clamped at the edge of the wafer for the electrical connection

to a thin seed layer of 50-nm sputtered Ti and 30-nm evaporated Ni. The high

resistance of the thin seed layer leads to larger current densities, thus higher residual

stresses [84–86], near the cathode electrical contact.
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Fig. 3.7. An example of (a) the best fit of the simulated and measured
displacement versus voltage curves with the optimal value of residual
stress σ0, and (b) the curve fitting error versus residual stress σ0.

3.5 Uncertainty Analysis

The uncertainties of the extracted residual stress are analyzed by calculating the

sensitivity of the results to the variations of input parameters. There are three main

categories of uncertainties: the measurement uncertainty of the geometric parameters,

the uncertainty of the material properties used, and the uncertainty in modeling the

non-ideal effects. A 500 µm sample beam, with geometric data around the mean val-
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Fig. 3.8. Beam locations on the wafer and color-scaled results of the
extracted residual stress σ0.

ues listed in Table 3.2 and residual stress of −5.5 MPa, is selected for the uncertainty

analysis of the stress extraction technique. The measured displacement-voltage curve

is shown in Fig. 3.7(a). By varying each input parameter individually, the sensitivity

of the extracted residual stress to each input parameter can be estimated.

3.5.1 Uncertainties Due to Geometric Measurements

The sensitivities of the extracted residual stress to the beam thickness (h) and

the initial gap (g0) are plotted in Fig. 3.10. The total initial gap (G0) includes both
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the initial flat gap (g0) and the additional gap (vmax) due to the non-flat profile. The

effects of the non-flat profile will be analyzed later in Section 3.5.3. The variations

of the extracted residual stress due to the measurement uncertainties of the beam

length and width are neglected, since the lateral measurement accuracy of ± 0.6 µm

is small enough compared to the lateral beam geometries, which are 120 µm wide and

400/500 µm long.

By referring to the Euler-Bernoulli beam equation, we know that for an electro-

statically actuated beam, its displacement is proportional to the 3rd order of the

beam thickness h and is inversely proportional to the square of the gap between the

beam and the actuation electrode. With the increase of thickness h, the beam be-

comes harder to bend, and therefore the extracted result of σ0 decreases (a larger

compressive stress) to match the measured displacement-voltage curve. According to
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Fig. 3.10. Extracted residual stress versus the variation of (a) the
beam thickness h and (b) the initial beam flat gap g0.

Fig. 3.10(a), a measurement uncertainty of ± 28 nm for the beam thickness corre-

sponds to ± 0.6 MPa variation of the extracted residual stress. Since the electrostatic

force exerted on the beam is inversely proportional to the square of the gap, the beam

defects less if the initial gap g0 increases. As a results, a smaller residual stress is

required to compensate for the decrease of the beam displacement. Fig. 3.10(b) in-

dicates the uncertainty of the residual stress is ± 0.7 MPa due to the ± 40 nm

measurement accuracy of the initial gap.

The residual stress is extracted by matching the simulated and measured displacement-

voltage curves, and therefore, the variation of the measured displacements directly

affect the results of the residual stress. Theoretically, only one measurement of the

displacement at a certain voltage is necessary to determine the residual stress since

it is the only unknown in the inputs to simulation the displace-voltage relationship.

However, we measured beam displacements at multiple voltages and extracted resid-

ual stress by matching the simulations to the measured displacement-voltage curve

(Fig. 3.7) to minimize the uncertainty of extracted stress due to the error of the dis-
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placement measurements. In Fig. 3.11, the black curve shows that if only the last

displacement is used for stress extraction, the variation of the displacement measure-

ment ± 40 nm results in an uncertainty of ± 0.5 MPa for the extracted stress. This

uncertainty reduces to ± 0.2 MPa when five measurements are used as indicated by

the red curve in Fig. 3.11.
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Fig. 3.11. Extracted residual stress versus the variation of measured
beam displacements (the black curve presents the case when only the
last displacement measurement in Fig. 3.7(a) is used for stress extrac-
tion, and the red curve presents the case when all five measurements
are used).

3.5.2 Uncertainty Due to Material Properties

The residual stress extraction requires predetermined Young’s modulus E0 for the

thin-film nickel, and therefore the uncertainty due to the accuracy of the experimental

results of Young’s modulus needs to be analyzed. Fig. 3.12 shows that, for E0 =

199.9 GPa and with a variation of ± 10%, the extracted residual stress decreases

linearly with the increase of E0. If the variation of E0 is kept within ± 1.1 GPa
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(±0.55%) [54], the uncertainty of the residual stress due to E0 is ± 0.1 MPa. The

beams in this study is considered as wide beams (b ≥ 5h ) and a plane modulus

E = E0/(1− ν2) is used in the simulation. If the plane strain condition is neglected,

with ν = 0.3, the extracted residual stress will have an error of 3.0 MPa.
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Fig. 3.12. Extracted residual stress versus the variation of Young’s modulus E0.

3.5.3 Uncertainties Due to Non-ideal Effects Modeling

The non-ideal effects are discussed in Section 3.4.2 and the uncertainties due to

the non-ideal effects modeling are analyzed below. Fig. 3.13(a) indicates how the

results of residual stress vary with the number of Fourier modes used to represent the

beam profiles. According to (3.4), when i is even (i = 2, 4, 6, ...), the corresponding

Fourier coefficient pi is 0 for symmetric beam profiles, and therefore it has no impact

on the shape of the profiles. Consequently, the results of residual stress are the same

when the number of Fourier modes used in the simulation are n and (n+1) (n is

an odd integer). The computation time for stress extraction increases exponentially

with the number of Fourier modes used, therefore, there is a tradeoff between the

accuracy and the computation efficiency. For small numbers of Fourier modes (<7),

the extracted residual stress varies dramatically with the number of Fourier modes,

which indicates the results are not convergent. The variation of the residual stress is
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0.2 MPa when the number of Fourier modes increases to 9 from 7, and it is 0.1 MPa

when the number of Fourier modes increases to 11 from 9. Therefore, we choose to

use 7 Fourier modes. Most of the publications made assumptions about the shapes

of the beams, such as a circular arch [81] or a sinusoidal shape [33], which were

close to the case when only one Fourier mode is used to describe the beam profile in

the reduced-order numerical model. The corresponding error of the residual stress is

about 10.6 MPa due to the inaccurate modeling of the beam profile.
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Fig. 3.13. Extracted residual stress versus the variation of (a) the
number of Fourier modes describing the beam profile and (b) the
equivalent electrode width.

In Section 3.4, it is shown that an equivalent electrode width which is 6.36% wider

than its physical size is used in the simulation in order to account for the additional

fringing field effect not included in the reduced-order model. Fig. 3.13(b) presents

how the extracted residual stress changes with the value used for the electrode width.

If the additional fringing field effect is neglected and the physical size of the electrode

width is used (∆W = 0), the extracted residual stress will decrease by 1.1 MPa

comparing to the case when the equivalent electrode width (∆W = 6.36%) is used.
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The modeling of the inclined supports provides the boundary conditions for solving

the displacement-voltage curves of the horizontal beam, and therefore, directly affects

the results of the extracted residual stress. The variation of σ0 due to the inclination

angle of the supports α is plotted in Fig. 3.14(a). It should be noticed that the

variation of α not only changes Leff but also affects the compliance of the supports

[52]. If α varies by ± 1◦, σ0 will change by ± 0.4 MPa.
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Fig. 3.14. Extracted residual stress versus the variation of (a) in-
clination angle α of the supports and (b) boundary torsion stiffness
kT .

In the complete model for the inclined supports in fixed-fixed beams, the boundary

torsional stiffness kT is not constant, but is a function of both the beam displacements

and residual stress, as shown in Fig. 3.15. In the reduced-order numerical model, the

most time-consuming step the is calculation of the beam’s eigenmodes and eigenfre-

quencies for given boundary conditions and residual stress. Since kT is calculated

numerically which involves iterative computing of eigenmodes and eigenfrequencies,

the stress extraction wouldn’t be computationally efficient if the exact value of kT

is calculated at each displacement with each assumed residual stress in the iterative

simulations. For this particular beam used for uncertainty analysis, with an initial
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Fig. 3.15. The boundary torsion stiffness kT as a function of beam
displacements at different residual stresses.

stress value of −5 MPa assumed for the optimization code, the extraction of residual

stress is −5.7 MPa, and it takes 7 hours and 48 minutes. Therefore, it is desirable

that a constant torsion spring stiffness can be used without greatly compromising the

accuracy of the extracted residual stress. If a constant torsion spring stiffness is used,

the variation of the extracted residual stress due to the torsion-spring stiffness (kT )

is shown in Fig. 3.14(b). It shows that if kT is small enough or large enough, the

extracted residual stress is not sensitive to kT . For the beams in our study, kT falls

within the range from 10−6 N×m/rad to 10−5 N×m/rad, which is large enough so

that a constant value of kT can be used to improve efficiency of the stress extraction.

We choose to calculate the value of kT for zero residual stress at the largest displace-

ment. This simplification reduces the time of stress extraction by 24× with a result

of −5.5 MPa which is 0.2 MPa smaller compared with the result when the complete

model for the inclined supports is used. Therefore, it is valid that a constant torsional

boundary stiffness for extracting residual stress.
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Fig. 3.16. (a) Beam model with vertical support model in [45], and
(b) histogram of extracted values of residual stress σ0 using vertical
beam model in (a).

If the inclination of the supports is neglected and α is assumed to be 90◦, the

effective length is misinterpreted as the nominal design value (Leff = L0), as shown

in Fig. 3.16(a). Using a boundary torsion stiffness calculated for vertical supports

in [45], the mean value of extracted residual stresses for 87 beams increases to 9.6 MPa

(Fig. 3.16(b)). Furthermore, if an ideal boundary model, as shown in Fig. 3.17(a), is

used (Leff = L0, kT → ∞), the histogram for 87 beams plotted in Fig. 3.17(b) shows

the mean value of the resulting residual stress extracted increases to 9.4 MPa.
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3.6 Conclusion

A wafer-scale technique for extracting residual stress has been developed which

employs a reduced-order computationally efficient beam model and requires only one

beam itself for the extraction. Accurate extraction results are achieved by simulta-

neously incorporating non-idealities such as inclined supports, non-flat beam profiles

and fringing fields in the reduced-order numerical model. Through the use of a cus-

tom scripting automation program, the geometries and displacement-voltage curves

of fixed-fixed beams are measured using a confocal microscope. This technique has
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been demonstrated by applying to 87 nickel beams on a 4-inch quarter wafer piece.

For all the extracted residual stress, the distribution with respect to the location

and the statistic distribution has been presented. The uncertainty analysis shows

that accurate geometric measurements, especially the beam thickness and gap, and a

comprehensive modeling of non-idealities are necessary to achieve accurate quantifi-

cation of residual stresses.



68

4. UNIFORM MICRO-CORRUGATED DIAPHRAGM

DESIGN FOR STRESS TOLERANT MEMS TUNERS

4.1 Introduction

Widely tunable filters with low insertion loss are essential components in realizing

reconfigurable RF-front ends. Evanescent-mode cavity resonators/filters have been

successfully demonstrated recently with advantages of wide tuning range, high quality

factor, small size, and high power handling capability [18, 19, 21, 87]. It is evident in

literature that resonant behavior for evanescent modes which is below the cutoff of the

cavity waveguide is possible if appropriate loading conditions can be realized [88,89].

Fig. 4.1 shows the side view of an evanescent-mode cavity resonator schematically.

The conductor-walled cylinder cavity is loaded by a conductive post that serves as

an effective shunt capacitor whose capacitance is determined by the gap between the

post and the ceiling diaphragm. The post and the cavity sidewall can be modeled as a

shorted coaxial line to provide an effective inductor [88, 90]. The resonant frequency

is determined by the equivalent capacitance and inductance. Therefore, frequency

tuning can be achieved by a diaphragm tuner which can be used to change the gap

between the post and the diaphragm. Electrostatically actuated diaphragm tuner is

favored for its high precision, high reliability, and near-zero hysteresis [90]. In the

design of the electrostatic MEMS tuner, important parameters include tuning range,

actuation voltage, and temperature stability [90]. In this chapter, we focus on the

design optimization to achieve high tuning range while maintaining low actuation

voltage. Temperature stability issue will be tackled in the next chapter.

The pull-in instability of electrostatic actuation dictates that the diaphragm can-

not be continuously tuned through the entire gap between the diaphragm and bias
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Fig. 4.1. Schematic side view of the tunable evanescent-mode res-
onator with capacitive RF MEMS tuner.

electrode. The maximum displacement the diaphragm can travel directly relates to

the tuning ratio of the resonator which is roughly given by:

Rmax ≈
√

gRF + wm

gRF

(4.1)

where gRF is the initial gap between the diaphragm and the capacitive post, and wm

is the maximum diaphragm displacement before pull-in occurs.

Given gRF = 2 µm, to achieve a tuning ratio of > 3 : 1, a minimum wm of

16 µm is required. Such large deflections present challenges to the design of the

MEMS tuner especially when a reasonably low actuation voltage is required. Such

large displacements many induce excessively high stretching in flat diaphragms which

results in large stiffness and nonlinear behavior. In addition, the stiffness of a flat

diaphragm is a strong function of the residual stress which is often unavoidable in

fabrication process [7]. The large stiffness of the diaphragm also leads to a high

actuation voltage of the tuner.

Corrugated diaphragms have been employed to alleviate the stress stiffening prob-

lem of flat diaphragms under residual stress and at large displacements [21, 91]. The

corrugated structure elongates the profile length in the radial direction and thus ef-

fectively reduces the stretching stiffness in the radial direction due to residual stress

and large displacements. Due to the geometric complexity of corrugated diaphragms,
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only limited analytical models have been proposed for the prediction of the stiffness

with respect to geometric parameters.

In this chapter, the stress-reduction effects of corrugated diaphragms are investi-

gated through a systematic parametric study based on finite-element-model (FEM)

simulations. The relationship between the stiffness of corrugated diaphragms and the

geometric design of corrugations is investigated, and optimal designs are discussed.

4.2 Capacitive MEMS Tuner with Nonlinear Diaphragm Deformations

4.2.1 Linear and Nonlinear Stiffness of Diaphragms

For diaphragms designed to operate in the large deflection regime, both linear

and nonlinear effects need to be investigated. In the case of small deflections, bend-

ing stiffness dominates and the load-deflection behavior can be described by a linear

stiffness coefficient k1. As deflection increases, the stretching-induced stress of the

diaphragm can no longer be neglected. This stretching stiffness causes the nonlinear-

ity in the large deflection regime and therefore, a nonlinear stiffness coefficient k3 is

introduced to account for this nonlinearity. In general, for a diaphragm with a radius

R and under a uniformly distributed pressure P , the load-deflection behavior can be

approximated by the following relationship [92]:

Fm = k1(w − w0) + k3(w − w0)
3 (4.2)

where F = πR2P is the total loading force on the diaphragm, w is the center displace-

ment of the diaphragm, and w0 is the residual-stress-induced initial center deflection.

The stiffness coefficients k1 and k3 are functions of the diaphragm’s geometry and

material properties. The in-plane residual stress adds resistance to bending, and

therefore, changes the linear stiffness coefficient k1.
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4.2.2 Analytical Models

The analytical models found in the literature for corrugated diaphragms are re-

viewed in this section. Fig. 4.2 shows common shapes of corrugation profiles. A list

of important parameters for all corrugation shapes is as follows:

R diaphragm radius
h diaphragm radius
Hc corrugation depth
Rc radius of corrugated area from the anchor
Lc corrugation wavelength
s profile length of each corrugation

s

L
c

H
c

h

d
c

w
c

(a)  sinusoidal

(b) trapezoidal

(c) rectangular

θ H
c

H
c

L
c

Fig. 4.2. Common shapes of corrugation profiles.

The effect of residual stress σr on the diaphragm stiffness has been investigated

and the existing analytical models are summarized in Table 4.1.

Analytical Model for Flat Diaphragms

The case of a flat diaphragm is included as a comparison with the micro-corrugated

diaphragms. For a flat circular diaphragm, which has clamped edges and without
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Table 4.1.
Analytical models for stiffness of corrugated diaphragms.

Analytical k1 Models
Analytical k3

Model

Model # #1 #2 #3 –

σr = 0 σr > 0 σr >> 0 independent of σr

Rc ≥ 0.85R, Any Rc < R Rc ≥ 0.85R,

Assumptions independent of Rc small Hc independent of Rc

sinusoidal corrugations
trapezoidal

corrugations

sinusoidal

corrugations

initial stress, the relationship between a uniform pressure P and the resulting center

deflection w can be expressed by [92]:

PR4

Eh4
=

16

3 (1− ν2)

(w
h

)
+

7− ν

3 (1− ν)

(w
h

)3

(4.3)

where E, ν , R and h are the Young’s modulus, Poisson’s ratio, radius and thickness

of the diaphragm, respectively. It can be seen from (4.3) that for small deflections

(w/h << 1) the load-deflection is approximately linear. The nonlinear term becomes

larger as the deflection increases.

With a tensile residual stress of σr, the general load-deflection expression in (4.3)

is modified to account for the bending resistance due to the residual stress by adding

an extra term, expressed as [7]:

PR4

Eh4
=

[
16

3 (1− ν2)
+

4R2

(1− ν)Eh2
σr

](w
h

)
+

7− ν

3 (1− ν)

(w
h

)3

(4.4)

The tensile residual stress in a flat diaphragm will not cause any out-of-plane

displacement (w0 = 0). The stiffness coefficients for flat diaphragms can be derived

by recording (4.4):
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k1 = k′
1 + k′′

1 =
16Eh3π

3 (1− ν2)R2
+

4hπ

(1− ν)
σr (4.5)

k3 =
(7− ν)Ehπ

3 (1− ν)R2
(4.6)

Analytical Model for Corrugated Diaphragm without Residual Stress

The available theory of the general load-deflection characteristics for a periphery-

clamped circular corrugated diaphragm was derived based on the assumption that

the diaphragm has negligible flat center zone (Rc ≥ 0.85R) and has a sinusoidal

corrugation profile [92,93]. It is also assumed that there is no residual stress (σr = 0)

in the diaphragm and thus there is no stress-induced initial deflection (w0 = 0). The

load-deflection equation is:

PR4

Eh4
= Ap

(w
h

)
+Bp

(w
h

)3

(4.7)

where Ap is the dimensionless linear coefficient of stiffness and Bp is the dimensionless

non-linear tension coefficient especially defined for corrugated diaphragms as follows:

Ap =
2(3 + q)(1 + q)

3(1− ν2/q2)
(4.8)

Bp =
32

q2 − 9

[
1

6
−

(
3− ν

(q − ν)(q + 3)

)]
(4.9)

and the corrugation profile factor q is determined by the corrugation depth Hc, cor-

rugation spatial wavelength Lc and profile length for each corrugation s [92]:

q =

√
s

Lc

(
1 + 1.5

H2
c

h2

)
(4.10)

where s/Lc for a trapezoidal corrugation profile shown in Fig. 4.2(b) is:

s

Lc

=
Lc − 2Hc/ tan θ + 2Hc/ sin θ

Lc

(4.11)
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Fig. 4.3. An element of a (a) flat diaphragm and (b) corrugated
diaphragm showing the bending and stretching in both radial and
tangential directions [92].

While (4.10) is derived for a sinusoidal corrugation profile, for shallow corruga-

tions, the shape of the corrugations has little influence on the profile factor q and the

performance characteristics of the diaphragm [92].

The stiffness coefficients based on the analytical model in (4.7) are:

k1 = k′
1 =

Eh3π

R2
Ap (4.12)

k3 =
Ehπ

R2
Bp (4.13)

As shown in Fig. 4.3, when loads are applied, the diaphragms are bent in both

the radial and tangential directions. In the tangential direction, the bending stiffness

of a corrugated diaphragm is much larger than that of a flat diaphragm. On the

other hand, the stretching stiffness in the radial direction of a corrugated diaphragm

is much smaller than that of a flat diaphragm. Therefore, when there is no residual

stress, a corrugated diaphragm has a larger linear stiffness coefficient k1 and a smaller

nonlinear stiffness, compared to the case of a flat diaphragm in (4.5).

Analytical Model for Stress Reduction Effect of Corrugated Diaphragm

Although the deposition conditions are carefully controlled to lower the residual

stress, extremely low stress (≤5 MPa) is very difficult to achieve [7]. For both flat
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and corrugated diaphragms, a tensile stress increases the resistance to bending (higher

linear stiffness), while a compressive stress makes the diaphragms easier to bend and

causes buckling when it exceeds a critical value. Typical micro-fabrication techniques

result in tensile residual stress of a few tens of MPa [94], which has a nonnegligible

influence on the stiffness of the diaphragms, and therefore, needs to be taken in to

account. Despite the increased bending stiffness in the tangential direction due to the

corrugated structure, it has been shown that when an initial residual stress exists,

the corrugations can effectively reduce the stress stiffening effect from the residual

stress. Therefore, a corrugated diaphragm with residual stress has lower stiffness

than a flat diaphragm with the same residual stress for given geometric parameters

and material properties [95–97]. Stress reduction of the corrugated structures has

been investigated by Scheeper [98] and Fuldner [99]. Due to the complexity of corru-

gated diaphragm structures, these analytical models only provide rough estimations

of the linear stiffness of corrugated diaphragms with residual stress. The nonlinear

coefficients are assumed to be independent of residual stress.

In [98], a corrugated diaphragm with tensile residual stress σr is treated as the

superposition of a linear model of a corrugated diaphragm without residual stress,

and the linear flat diaphragm model with a reduced initial tensile stress σrBp/2.83.

The superposition is based on the assumption that the corrugated diaphragm can

be approximated by a fictitious flat diaphragm, which locally has the same radial

and tangential bending rigidity as the corrugated diaphragm, and the superposition

is only valid in the linear regime. The deflection of a corrugated diaphragm with a

residual stress σr in the linear regime was approximated by:

P = 4
h2

R2

w

h

(
σr

Bp

2.83
+

Ap

4
E
h2

R2

)
(4.14)

where Ap and Bp are defined in (4.8) and (4.9), respectively. Therefore, the linear

stiffness coefficient is:

k1 = k′
1 + k′′

1 =
Eh3π

R2
Ap +

4πhBp

2.83
σr (4.15)
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In [99], a stress reduction ratio of a corrugated diaphragm with a trapezoidal

profile is derived mathematically. The diaphragm is partially corrugated with N

corrugations. This derivation assumes the corrugation depth Hc is much smaller than

the bottom width of the trapezoidal profile wc. A stress reduction ratio η is given by:

η = 1 + 6 sin (θ)

(
Hc

h

)2
Nwc

R−N(wc + dc)
(4.16)

where θ is the sidewall angle of the trapezoidal corrugations and wc, dc are the cor-

rugation width and distance of the trapezoidal profile, respectively.

This model assumes a high residual stress and shallow corrugations, and thus

the increased bending stiffness due to corrugations in the tangential direction can be

neglected. The corrugated diaphragm with residual stress σr is then approximated

by a flat diaphragm with a reduced stress σr/η in equilibrium, and the linear stiffness

is only determined by the stress as follows:

k1 = k′′
1 =

4πhσr

η
(4.17)

These two analytical models for the stress-reduction effect of corrugated diaphragms

neglect the stress-induced initial offset w0. These analytical models will be compared

to FEM simulations and their limitations are discussed in Section 4.4.

4.2.3 Electrostatic Tuning of Diaphragms with Nonlinearity

The capacitive MEMS tuner can be continuously tuned electrostatically when the

actuation voltage is lower than the pull-in voltage (Vpi). It is in general desirable to

keep the actuation voltage at a reasonably low value. The tuning range of the MEMS

tuner is determined by the maximum displacement the diaphragm travels before pull-

in occurs. The pull-in voltage and tuning range of MEMS tuners are derived in this

section.

With the parallel plate capacitance approximation, the electrostatic force acting

on the diaphragm for an actuation voltage V is given by [7]:

Fe =
ε0εrπR

2V 2

2 (g0 − w)2
(4.18)
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where ε0 is the free-space permittivity, εr is the relative permittivity (εr = 1 for air),

w is the center deflection of the diaphragm, and g0 is the initial gap between the

electrode and the diaphragm (as shown in Fig. 4.1). The mechanical restoring force

of the diaphragm is given by (4.2) and the total force on the diaphragm should be

zero:

F = Fe − Fm =
ε0εrπR

2V 2

2 (g0 − w)2
−
[
k1(w − w0) + k3(w − w0)

3
]
= 0 (4.19)

By introducing the normalized parameters ŵ = w/g0, ŵ0 = w0/g0, k̂1 = k1g0, and

k̂3 = k3g
3
0, (4.19) can be re-written as:

F =
ε0εrπR

2V 2

2g20 (1− ŵ)2
−
[
k̂1(ŵ − ŵ0) + k̂3(ŵ − ŵ0)

3
]
= 0 (4.20)

When the displacement of the diaphragm increases to wm, the restoring force

cannot balance the electrostatic force and the pull-in phenomenon occurs. At the

maximum tuning displacement w = wm, the following equations are satisfied [7]:

∂F

∂ŵ

∣∣∣∣
ŵ=ŵm

= 0 (4.21)

where 0 < ŵm = wm/g0 < 1 is the tuning range of the diaphragm. By substituting

(4.20) into (4.21), we can solve for ŵm by:

2
[
k̂1(ŵm − ŵ0) + k̂3(ŵm − ŵ0)

3
]

1− ŵm

=
[
k̂1 + 3k̂3(ŵm − ŵ0)

2
]

(4.22)

The maximum tuning displacement wm is usually designed to be > 10µm for the

evanescent-mode resonator/filter application. The stress-induced initial offset w0 is

∼ 1-2 µm for a tensile stress of a few tens of MPa. We learn from (4.22) that when

the nonlinear behavior of the diaphragm is dominant (k̂3 >> k̂1), ŵm → 3/5; and

when the linear behavior is dominant (k̂3 << k̂1), ŵm → 1/3. The tuning range

of the diaphragm (ŵm = wm/g0) is a function of the normalized nonlinear to linear

stiffness coefficients ratio (k̂3/k̂1) as shown in Fig. 4.4.
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Fig. 4.4. Tuning range (wm/g0) versus the normalized nonlinear to
linear stiffness coefficients ratio (k̂3/k̂1).

After determining the tuning range ŵm, we can substitute it back into (4.20) and

solve for the pull-in voltage Vpi:

Vpi =

√√√√2g20 (1− ŵm)
2
[
k̂1(ŵ − ŵ0) + k̂3(ŵ − ŵ0)3

]
ε0εrπR2

(4.23)

In order to satisfy the design requirements for the tuning range and action voltage,

we need to carefully choose the initial gap g0 and design the diaphragm with proper

stiffness.

4.3 Finite Element Model for Corrugated Diaphragms

4.3.1 Simulation Setup for Parametric Study

Due to the complex 3-D geometry of the corrugated diaphragm, FEM simulations

are performed using ANSYS Parametric Design Language (APDL) [53]. The script-

based simulation allows ANSYS program to be linked with MATLAB [83] program

for systematically changing the geometric parameters of corrugated diaphragms as

shown in the flowchart in Fig. 4.5 [100]. In this way, the parametric study can be

performed efficiently.



79

Define Geometric Parameters

(i = 1, 2, …, M)

Completed?

No

Yes

Generate Axisymmetric Geometry of UMCD, 

Assign Element Types and Create Meshing for FEM 

Apply B.C.s and Loadings

Run FEM Simula!ons

Output Data File

Error Message 

& Error Flag

Analyze Results

Processed Results Data File

UMCD Coordinate File

i == M?

Exit

Yes

No

i ++

MATLAB

ANSYS

APDL

MATLAB

i = 1

Fig. 4.5. Flow chart of parametric study for corrugated diaphragm
stiffness based on FEM simulations.

In order to reduce the computation time, the axisymmetry of the diaphragm is

utilized by choosing a higher order 2-D, 8-node element PLANE183 with the axisym-

metric option activated. In the simulations, only the trapezoidal corrugations are

considered and a meshed axisymmetric model for a corrugated diaphragm is shown

in Fig. 4.6. Appropriate boundary conditions are assigned: the surface where the
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diaphragm attached to the substrate at the outter rim edge of the diaphragm is fixed

in both horizontal direction (x-axis) and vertical direction (y-axis).
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Fig. 4.6. (a) Schematic model for micro-corrugated diaphragm show-
ing the geometric parameters, and (b) finite element model in ANSYS
showing the axisymmetric element and meshing.

The geometric and material properties assumed in the simulations are listed in

Table 4.2, unless stated otherwise. The stiffness coefficients can be extracted by fitting

(4.2) to the simulated load-deflection curves, as shown by the example in Fig. 4.7.

4.3.2 Comparison of FEM with Analytical Models

The stiffness of corrugated diaphragms from the analytical models summarized in

Table 4.1 are compared to FEM simulations for diaphragms both with and without

residual stress.
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Table 4.2.
Dimensions and material properties used in FEM simulations for
micro-corrugated diaphragms.

Parameter Value

Geometric Radius R 900 µm

Attributes Thickness h 1 µm

Corrugation Depth Hc 5 µm

Corrugation Range Rc 400 µm

Corrugation Wavelength Lc 100 µm

Corrugation Number N 4

Corrugation Sidewall Angle θ 45 ◦

Corrugation width (wc)
1
2
(Lc − 2Hc/ tan θ)

Corrugation distance (dc)
1
2
(Lc − 2Hc/ tan θ)

Material Young’s Modulus E 57 GPa

Properties Poisson’s ratio ν 0.42

Residual Stress σr 30 MPa

Corrugated Diaphragms without Residual Stress

First, in the case of stress-free corrugated diaphragms, the analytical k1 model #2

regresses to model #1, but model #3 will generate zero linear stiffness since it assumes

that the linear stiffness only depends on the stress term. Therefore, for linear stiffness

coefficient, only the k1 model #1 in (4.12) is compared to the extracted results from

the FEM simulations. In addition, the k1 model #1 and the k3 model assume that the

corrugations span almost across the whole diaphragm (Rc ≥ 0.85R), and therefore,

Rc = 800 µm is used in simulations.

The stiffness coefficients are plotted for different corrugation depths in Fig. 4.8. A

zero corrugation depth implies a flat diaphragm. The model by (4.12) underestimates
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Fig. 4.7. An example of load-deflection curve and curve fitting for
extracting linear and nonlinear stiffness coefficients.

the linear stiffness coefficient k1 and yields an error of ∼ 45% at Hc = 5 µm. This

difference might be due to the fact that the analytical model assumes a sinusoidal

corrugation shape, while trapezoidal corrugations are used in FEM simulations. The

nonlinear coefficient from (4.13) agrees with FEM results well in this case.

From (4.12) and (4.13), we learn that the only decisive geometry-related parameter

for the analytical stiffness coefficients of stress-free corrugated diaphragms is the

corrugation profile factor q, which highly depends on Hc/h, and is not related to

Rc. However, FEM simulations show that both k1 and k3 vary with the range of

the corrugations Rc (Fig. 4.9). FEM results in Fig. 4.10 show that the stiffness

coefficients are less sensitive to the change of the corrugation wavelength with a fix

range of corrugations. From (4.11), we know that the corrugation profile factor q ≈ 1

for shallow corrugations, and therefore, the change of Lc will not affect the stiffness

coefficient significantly.
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Fig. 4.8. Comparison of FEM and analytical model for (a) linear
stiffness coefficient and (b) nonlinear stiffness coefficient versus cor-
rugation depth Hc with σr = 0 MPa and Rc = 800 µm.

Corrugated Diaphragms with Residual Stress

With the presence of residual stress, (4.12) is not valid since the assumption

σr = 0 doesn’t holds, and therefore, only the analytical k1 models in (4.15) and

(4.17) are compared with FEM results. For the nonlinear stiffness coefficient k3, it is

assumed to be independent of the residual stress, and thus (4.13) is also used for the

diaphragms with residual stress. It is worth to notice that in all analytical models, the

stress-induced deformation of the diaphragm is neglected. However, the corrugated
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Fig. 4.9. Comparison of FEM and analytical model for (a) linear
stiffness coefficient and (b) nonlinear stiffness coefficient versus cor-
rugation range Rc with σr = 0 MPa and Rc = 800 µm.

diaphragm cannot keep its initial corrugated shape due to the residual stress, and

this deformation may affect the stiffness of the diaphragm.

The linear and nonlinear stiffness coefficients from analytical models are compared

with FEM results with varying corrugation depth in Fig. 4.11. For small Hc, the

analytical k1 models in (4.15) and (4.17) both show that larger Hc has higher stress

reduction effect and thus lower k1, which agrees with the trend of FEM simulations

shown in Fig. 4.11(a). If Hc increases further, k1 model #2 and the FEM results show

slight increase of k1, which is due to the increasing bending stiffness of the corrugations

in tangential direction. Since k1 model #3 only accounts for the stiffness caused by
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Fig. 4.10. Comparison of FEM and analytical model for (a) linear
stiffness coefficient and (b) nonlinear stiffness coefficient versus cor-
rugation wavelength Lc with σr = 0 MPa and Rc = 800 µm.

the residual stress while neglecting the stiffness due to the corrugations, it cannot

predict this trend. Although the nonlinear stiffness k3 is assumed to be independent

of residual stress, FEM simulations in Fig. 4.11(b) indicate that k3 does increase if

there is a tensile residual stress, especially when Hc is small. Therefore, (4.13) cannot

be applied to the case of stressed diaphragm with shallow corrugations.

In Fig. 4.12, when the corrugation range Rc increases up to 400 µm, both simulated

k1 and k3 decrease, but k1 increases if the corrugations span a larger range Rc >

400 µm due to the increase bending stiffness of the corrugations. The results from
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Fig. 4.11. Comparison of FEM and analytical model for (a) linear
stiffness coefficient and (b) nonlinear stiffness coefficient versus cor-
rugation depth Hc with σr = 30 MPa.

(4.15) and (4.13) are constant since Rc is not a variable included in two equations,

but they provide close approximation to FEM simulations for larger Rc where the

assumption Rc ≥ 0.85R holds. The result by (4.17) shows the same trend as FEM

simulations for Rc < 400 µm, but it shows further increase of k1 for larger Rc since

it neglects the stiffness due to the corrugations.

The effects of different corrugation wavelengths are studied for two cases of fixed

corrugation range: Rc = 400 µm, and Rc = 800 µm, as plotted in Fig. 4.13 and

Fig. 4.14, respectively. The analytical results by (4.15) and (4.13) are closer to FEM

simulations for the case ofRc = 800 µm since it satisfies the assumption ofRc ≥ 0.85R.
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stiffness coefficient and (b) nonlinear stiffness coefficient versus cor-
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But (4.17) shows closer approximation simulation for the case of Rc = 400 µm since

further increase of Rc will lead to larger bending stiffness of corrugations which is

neglected in the model by (4.17). Furthermore, (4.17) is derived based on the beam

theory instead of the plate theory. Therefore, it cannot model the effect of Lc well.

In conclusion, because of the assumptions and simplifications made in analytical

models, they cannot simultaneously model the effects of all geometric parameters

and the residual stress accurately. To systematically study the effects of geometric

parameters for design optimization, a parametric study based on FEM simulations is

performed.
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Fig. 4.13. Comparison of FEM and analytical model for (a) linear
stiffness coefficient and (b) nonlinear stiffness coefficient versus cor-
rugation wavelength Lc with σr = 30 MPa and Rc = 400 µm.

4.4 Parametric Study for Design Optimization

In this section, a parametric study of the uniform micro-corrugated diaphragm is

performed to show the dependence of diaphragm stiffness on geometric parameters.

The parametric study provides guidelines for design optimization of low-voltage, high-

tuning-range capacitive MEMS tuners.
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4.4.1 Stiffness versus Corrugation Depth

The dependence of the linear and nonlinear stiffness coefficients on the corruga-

tion depth is shown in Fig. 4.15 for diaphragms with different residual stresses. The

linear stiffness can be effectively reduced by increasing the corrugation depth up to

an optimal value. Further increase of the corrugation depth will result in large linear

stiffness due to the increased bending stiffness of the corrugations in the tangential

direction. Large residual stress requires a larger optimal value of Hc to reach the min-
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Fig. 4.15. (a) Linear stiffness coefficient and (b) nonlinear stiffness
coefficient versus corrugation depth Hc with different residual stress
σr.

imum linear stiffness, as shown in Fig. 4.16. This optimal value of Hc also decreases

with the increase of the corrugation range Rc.

The nonlinear stiffness can be reduced by increasing the corrugation depth Hc. In

analytical models, it is assumed that k3 is independent of the residual stress. However,

Fig. 4.15(b) shows that k3 changes with the residual stress, which might be due to the

deformed initial shape of the corrugated diaphragms caused by the residual stress.

4.4.2 Stiffness versus Corrugation Range

The range of corrugation Rc is another important design parameter in determining

the stiffness of the diaphragms. The linear and nonlinear stiffnesses are plotted as a

function of both Rc and Hc in Fig. 4.17. For a given Hc, there is an optimal value of

Rc to minimize the linear stiffness. This indicates that a small corrugation range is
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not sufficient to release the residual stress, but if the corrugation range is too wide,

the bending stiffness of corrugations will be dominant and leads to an increase of

k1. Therefore, we don’t want the corrugations to span over the whole diaphragm,

but choose a value just sufficient for stress reduction. The nonlinear stiffness k3

decreases with the increase of Rc for any value of Hc. It is also worth to notice that

the corrugation range Rc is less influential than the corrugation depth Hc on the

diaphragm stiffness. Therefore, more attention should be paid on choosing the right

value of Hc and on controlling the geometry uncertainty during fabrication process.

4.4.3 Stiffness versus Corrugation Wavelength

For a given corrugation range, varying the corrugation wavelength Lc changes

the number of corrugations within the fixed range. Fig. 4.18 shows that for shallow

corrugations (Hc = 1 µm), denser corrugations (i.e. smaller Lc) can reduce both k1

and k3. However, the bending stiffness of corrugations in the tangential direction

increases with deeper corrugations. Therefore, for Hc ≥ 3 µm, k1 raises slightly if the
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Fig. 4.17. (a)Linear stiffness coefficient and (b) nonlinear stiffness
coefficient versus corrugation range Rc and corrugation depth Hc.

corrugations are too dense. The change of stiffness due to the corrugation wavelength

is negligible for deeper corrugations Hc ≥ 5 µm since the corrugation depth is large

enough to release residual stress.
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4.4.4 Effect of Corrugation Shapes

The sidewall angles of the corrugations alters the shape of the corrugations from a

rectangular profile to a trapezoidal one. These corrugation profiles are most practical

in micro-fabrication. Fig. 4.19 shows that corrugations with shallow sidewall angles

(θ < 20◦) are less efficient in relaxing stress. When the corrugations approach a

vertical profile, they become harder to bend in the tangential direction, and therefore,

k1 increases. Corrugations with sidewall angles within 20◦ ≤ θ ≤ 50◦ are most efficient
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for stress relaxation. Comparing to other geometric parameters, the change of stiffness

due to the sidewall angle can be neglected for θ ≥ 20◦.
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Fig. 4.19. Linear and nonlinear stiffness coefficients versus corrugation
sidewall angle θ.

4.5 Tradeoff Between Tuning Range and Pull-in Voltage

By using the linear and nonlinear coefficients extracted from FEM simulations, we

can calculate the tuning range and pull-in voltage of the MEMS tuners using (4.22)

and (4.23), respectively. The parametric study shows that the corrugation depth Hc

and the corrugation range Rc are the two most important geometric parameters in

determining the stiffness of corrugated diaphragms. Therefore, the pull-in voltage

and tuning range are plotted against Hc and Rc as shown in Fig. 4.20 assuming a

residual stress of σr = 30 MPa, and a initial DC gap of g0 = 35µm.

It is clear that there is a tradeoff between the pull-in voltage and tuning range. We

cannot simultaneously achieve the minimum pull-in voltage and the maximum tuning

range. If the minimum pull-in voltage is required, Hc = 6 µm and Rc = 400 µm,

which yields a pull-in voltage of 104.8 V and a normalized tuning range of 0.44. If the
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Fig. 4.20. Contour plots of (a) pull-in voltage Vpi and (b) tuning range
(wm/g0) versus corrugation depth Hc and corrugation range Rc for g0
= 35 µm.

maximum tuning range is needed, Hc = 7 µm and Rc = 100 µm, which corresponds

to a pull-in voltage of 179.1 V and a normalized tuning range of 0.54. According to

(4.1), in order to achieve a tuning ratio of > 3 : 1, wm > 16 µm is required, assuming

gRF = 2 µm. To allow some design margin, we target for a tuning range of wm/g0 ≥

0.5. From the contour plot in Fig. 4.20, we can find that the lowest pull-in voltage is
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110.1 V for wm/g0 = 0.5 required by choosing Hc = 5 µm and Rc = 400 µm. This

design provides a good compromise between the pull-in voltage and the tuning range.

If a flat diaphragm with the same size is used, the pull-in voltage is as high as 677.6

V with a tuning range of 0.41. Therefore, corrugated diaphragms with proper design

can efficiently reduce the pull-in voltage while maintaining a high tuning range.

4.6 Conclusions

By introducing corrugated structures into the diaphragm design, the stiffening

effects caused by the residual stress can be alleviated and the nonlinear stiffness of

the diaphragm under large deflection can be greatly reduced by properly choosing

corrugation geometries. With the aid of automated batch mode FEM simulations, a

parametric study has been performed and it shows that the corrugation depth and

the corrugation range are the most important geometric parameters in corrugated

diaphragm design. Using the linear and nonlinear stiffness coefficients extracted from

simulations, the tradeoff between the pull-in voltage and the tuning range of the

capacitive MEMS tuner has been analyzed. The systematic study of the effects of

corrugation geometries on the pull-in voltage and the tuning range provides guidelines

for design optimizations.
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5. THERMAL-STABLE NONUNIFORM

MICRO-CORRUGATED CAPACITIVE MEMS TUNER

5.1 Introduction

Uniform micro-corrugated diaphragms (UMCDs) have been successfully demon-

strated as MEMS tuners for evanescent-mode cavity resonators/filters with high tun-

ing range and low tuning voltage [21,87]. As shown in Fig. 5.1, the micro-corrugated

structure effectively relaxes stresses, and thus, reduces the sensitivity of the tuner’s

stiffness to stress and temperature [21, 87, 92]. However, this stress reduction is ac-

companied by a stress-induced vertical displacement which becomes prominent under

compressive stresses. The fabricated diaphragm has a typical tensile residual stress

of a few tens of MPa, and thus exhibits a relatively flat profiles with a center dis-

placement of 1∼2 µm. The residual stress changes over temperature due to the

mismatch of the thermal coefficient of expansion (TCE) between the MEMS material

and substrate. In most practical cases, the residual stress becomes compressive at

high temperatures, and causes a large temperature-induced offset with respect to the

diaphragm position at the reference temperature. This offset is > 10 µm for a stress

of −30 MPa (Fig. 5.1). Such a significant downward offset may directly alter the

frequency response of resonators/filters and greatly reduce the tuning range. There-

fore, stable diaphragm position over temperature is a key factor in design robust

MEMS tuners, which is critical in achieving temperature-stable resonators/filters.

Thermally-stable diaphragms in literature have been designed only for small dis-

placements (< 1 µm) [10,101,102], and moreover, the temperature-induced offsets at

high temperatures haven’t been fully characterized.

In this chapter, we present the first thermally-stable nonuniform micro-corrugated

diaphragms (NMCD) designed for a capacitive MEMS tuner with a large tuning
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Fig. 5.1. Stress-induced center displacement versus stress for UMCD.
The inserts illustrate (a) the dimensions of the UMCD, and the stress
distribution for the UMCD under (b) 30 MPa (tensile stress) and (c)
−30 MPa (compressive stress). The deformations are shown with ten
times magnification.

displacement (> 10 µm). This NMCD has measured center offset < 1.1 µm with a

temperature variation of ∆T = 100 ◦C, which is reduced by 13.5 times compared with

the case of UMCDs. Experimental results show that the enhanced thermal stability

of NMCD allows its operation in environments with large temperature variations.

5.2 Design of Nonuniform Micro-corrugated Diaphragms

5.2.1 Optimization of Dimensions for Minimizing Temperature Offsets

The microscopy images and the schematic of the symmetric cross-section for the

circular NMCD are shown in Fig. 5.2 (a) and (d) [103]. Improved thermal stability is

achieved by introducing a deep corrugation closest to the anchor of the diaphragm.

This corrugation is optimized to generate an opposite temperature-induced offset to
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Fig. 5.2. (a) Microscopy image showing the top view, (b) SEM image
showing the side view with zoom-in image in (c) showing the corru-
gations, and (d) schematic view of half of the symmetric cross-section
of NMCD.

the one caused by all the other uniform corrugations, and consequently, minimizes

the offset of the diaphragm.

This technique is demonstrated by a diaphragm designed for an evanescent-mode

resonator operating in K/Ka band. In order to optimize the dimensions of the first

deep corrugation, finite-element (FE) simulations of the NMCD are performed in

ANSYS [53]. This circular diaphragm is made of a 1-µm-thick gold layer with a radius

ofR = 900 µm, and is anchored at the surface attached to the substrate. There are five

shallow uniform corrugations designed for stress reduction with a corrugation depth

of Hs = 5 µm, and equal corrugation width and corrugation distance of ws = ds =

55 µm. The corrugation sidewall is inclined with α = 45 ◦ due to the etching process.

The simulation model assumes a Young’s modulus of E0 = 57 GPa and a Poisson’s

ratio of ν = 0.42 for gold diaphragm [104].
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Fig. 5.3. Simulated center offset versus the deep corrugation width
(wd) with different d0 at (a) 150 ◦C and (b) 0 ◦C (Hd = 15 µm, T0 =
22 ◦C).

Simulation results in Fig. 5.3 show that the temperature-induced center offset is

a function of both the deep corrugation width (wd) and the different distance of the

large corrugation to the anchor (d0). With a deep corrugation depth Hd = 15 µm,

there is an optimal value of wd for a given value of d0 ≤ 15 µm for minimizing the

offset at both low temperatures (0 ◦C) and high temperatures (150 ◦C). This optimal

value doesn’t exist for d0 ≥ 20 µm. This can be explained as follows: the stress of

diaphragm is much larger close to the anchor than close to the center (Fig. 5.1(b) and
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(a)

(b)

@T = T
0

@∆T = 100°C

@∆T = 100°C

Fig. 5.4. Quarter-symmetry model showing the deformed shapes of
(a) NMCD and (b) UMCD at ∆T = 100 ◦C (T0 = 22 ◦C). The
deformations are magnified by five times.

(c)), and the force and moment due to the stress cause the deformation of the non-

planar corrugated structure. Therefore, if the deep corrugation is not placed close

enough to the anchor, the deformation from the deep corrugation cannot compensate

the offset caused by other uniform corrugations. The distance d0 = 15 µm is chosen

for our design to guarantee that the deep corrugation can be fully released during the

fabrication, and thus the optimal value for the deep corrugation width is wd = 5 µm.

The simulated center offset for this design is < 0.5 µm in the temperature range from

0 ◦C to 150 ◦C. The simulated shape of NMCD (Fig. 5.4 (a)) and UMCD (Fig. 5.4

(b)) intuitively show that the NMCD is more stable than the UMCD under a large

temperature variation.
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5.3 Fabrication Process

The advanced micro-fabrication process for the capacitive MEMS tuner with

NMCD is done by ZhengAn Yang. Both NMCDs and UMCDs are fabricated on

the same wafer with the same fabrication process shown in Fig. 5.5. Starting with

a 300-µm-thick double-side-polished and oxidized silicon wafer (Fig. 5.5(a)), the top

oxide layer is first patterned and 5-µm uniform shallow corrugation profile is defined

by TMAH etching (Fig. 5.5(b)). After thermal oxidation, a 15-µm deep corrugation

is etched using the same technique (Fig. 5.5(c) and (d)). UMCD samples are fabri-

cated on the same wafer without having deep corrugation feature on the second mask.

Buffered-oxide-etching removes the top oxide layer and then sputtering a 1-µm-thick

gold layer forms the diaphragm with the shape of corrugations transferred from the

Si substrate (Fig. 5.5(e)). Releasing holes were patterned on the diaphragm area fol-

lowed by backside silicon deep reactive ion etching (DRIE) to create a tunnel for bias

electrode insert and approach the diaphragm. DRIE was stopped with a thin layer

of silicon remained under the gold film (Fig. 5.5(f)). The diaphragm is released using

XeF2 to remove the thin layer of silicon underneath the center of the diaphragm.

The diaphragm is fixed to the silicon substrate at its perimeter (Fig. 5.5(g)). During

the last step, a backside electrode made of a gold-coated silicon piece with a DRIE

etched post is inserted (Fig. 5.5(h)).

5.4 Experimental Results

5.4.1 Measurements of Temperature-Induced Center Offset

The center offsets with respect to the unbiased initial position of the diaphragms at

room temperature (T0 = 22 ◦C) were measured using a confocal microscope for both

NMCD and UMCD with a temperature variation up to ∆T = 100 ◦C. The UMCD

and NMCD were placed on a ceramic micro-hotplate at the same time for temperature

control. The hotplate was placed under a confocal microscope, and heat-insulation



103

Fig. 5.5. Fabrication flow of the capacitive MEMS tuner with NMCD:
(a) silicon wafer with double side SiO2, (b) TMAH etching, (c) ther-
mal oxidation, (d) TMAH etching, (e) sputter and etch release holes,
(f) deep reactive ion etch (DRIE), (g)XeF2 silicon etch, and (h) insert
back side electrode.

pad was placed underneath the hotplate. When temperature is increased gradually

from room temperature T0 = 22 ◦C, the confocal microscope scanned a 3-D image of

the device at each temperature, and the height difference between the center of the

diaphragm and the gold on the substrate was recorded. The temperature-induced

center offset was obtained by calculating the change of the center height with respect

to the value at reference temperature T0 = 22 ◦C. Because of the releasing hole at

the center of the diaphragm (Fig. 5.2(a)), measurements cannot be taken exactly at

the center but was taken around that releasing hole.

The temperature-induced center offsets were measured from room temperature up

to T = 122 ◦C. The results for NMCD and UMCD are compared to ANSYS simula-

tions and are plotted in Fig. 5.6. The measurements show a good agreement to the
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Fig. 5.6. Simulated and measured center offset for NMCD and UMCD
(∆T = T − T0, with T0 = 22 ◦C).

simulation results. With a temperature variation of ∆T = 100 ◦C, the UMCD has

a measured downward center offset about 14.9 µm, while the NMCD shows an im-

provement of 13.5× with an upward center offset around 1.1 µm. Therefore, the deep

corrugation with optimized dimensions in NMCD effectively reduces the temperature-

induced offset or, in other words, greatly increases the stability of the diaphragm’s

center position and thus stability of the resonator/filter’s performance in an environ-

ment with a large temperature variation.

5.4.2 Electrostatic Tuning of the MEMS Tuners

When the MEMS tuner is assembled into an evanescent-mode cavity resonator,

the center of the diaphragm is aligned with the loading post in the conductor-walled

cavity [21,87]. The gap between the post and the diaphragm determines the loading

capacitance and therefore the resonant frequency. The resonator is calibrated with

respect to the initial position of the diaphragm at the reference temperature (T = T0).

To achieve frequency tuning, the MEMS tuner is actuated electrostatically by an in-

serted backside electrode (Fig. 5.5(h)) to change the gap between the loading post

and the diaphragm. When an actuation voltage is applied between the diaphragm
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and the backside electrode, the consequent electrostatic force deforms the diaphragm

away from its initial position towards the backside electrode and away from the post.

The increased gap between the post and the diaphragm leads to a decreased loading

capacitance, and consequently an increased resonant frequency. Therefore, stabiliz-

ing the diaphragm’s displacements over temperature variation is the key factor in

improving the temperature stability of the resonator.

The electrostatic measurements were conducted by using two probes mounted

on the stage of the microscope and adapted to fit into the working distance of the

microscope. The same setup used for the measurements of center offset described

above was used for temperature control. The displacement versus actuation voltage

curves were measured at the reference room temperature T0 22 ◦C and at increased

temperature with ∆T = 45 ◦C. As shown in Fig. 5.7(a), the displacement of NMCD

changes continuously as the actuation voltage increases, and the voltage required for

a 10-µm tuning displacement is 240 V at the room temperature (T = T0). With a

temperature increase of ∆T = 45 ◦C, its center position shifts upwards by 0.3 µm (also

shown in Fig. 5.6). Since this small temperature-induced offset is upward, it can be

compensated by a small bias voltage and therefore the NMCD can still be tuned over

the entire desired tuning range. At the increased temperature, the NMCD requires

an actuation voltage of 215 V to reach a 10-µm tuning displacement, which changes

by 10.4%. The decrease of the required voltage is due to the reduced diaphragm

stiffness. As temperature increases, the residual stress in the diaphragm becomes

more compressive which leads to a reduced diaphragm stiffness.

The MEMS tuner with UMCD is also measured for comparison as shown in Fig. 5.7

(b). At ∆T = 45 ◦C, the UMCD has a downward center offset of 7.5 µm. Such a

large downward offset cannot be compensated by the bias voltage and thus greatly

reduces the tuning range by 75% compared with the desired range. If the temperature

is further increased, the center offset will make the diaphragm deforms out of the

desired range, and thus lead to the resonator’s failure of operation in the desired

frequency range. In addition, the required voltage to tune the UMCD to a 10-µm
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Fig. 5.7. Measured and calculated tuning displacement versus actu-
ation voltage curves for capacitive tuners with (a) NMCD, and (b)
UMCD (∆T = T −T0, with T0 = 22 ◦C). The blue solid lines and the
red dashed lines are calculated results by using (4.19) for the case of
∆T = 0◦C and ∆T = 45◦C, respectively.

displacement (with respect to the initial position at T = T0) changes by 51.5% from

330 V (at T = T0) to 160 V (at ∆T = 45 ◦C).

The measured tuning displacement versus actuation voltage curves are compared

to calculated results as shown in Fig. 5.7. With the stiffness coefficients k1 and k3

and the initial offset w0 obtained by ANSYS simulations, the displacement-voltage
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relationship can be calculated using (4.19). The experimental results show a good

agreement with the calculated results. Therefore, it confirms that the parallel-plate

model described by (4.19) provides a good approximation of the displacement-voltage

relationship for the capacitive MEMS tuner.

5.5 Conclusions

In this chapter we propose a thermally-stable capacitive MEMS tuner with a large

tuning displacement for evanescent-mode cavity resonators/filters. Through the op-

timization of the proposed NMCD by FE simulations, the temperature stability of

the tuner can be great improved. This design of MEMS tuner with NMCD is exper-

imentally validated. The temperature-induced center offsets of the diaphragms are

measured at a series of high temperatures. With ∆T = 100 ◦C, the center offset of the

NMCD is 1.1 µm which is reduced by 13.5 times compared with that of a UMCD. The

measured electrostatic tuning of the capacitive MEMS tuners demonstrates that the

thermally-stable NMCD allows the diaphragm to be continuously tunable in its full

desired range with a reduced variation of actuation voltage over a wide temperature

range.
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6. SUMMARY

6.1 Dissertation Summary

Non-idealities in RF MEMS tuners cause performance degradation or even device

failure. To design RF MEMS tuners with high performance and reliability, this disser-

tation presents the modeling and characterization of non-ideal effects of non-perfect

anchors, in-plane residual stress and temperature sensitivity. With the awareness of

the unavoidable non-ideal effects arising from the fabrication uncertainties and en-

vironmental variations, this dissertation further present the design optimization to

alleviate residual stress issues and temperature sensitivity of RF MEMS diaphragm

tuners.

The non-ideal effects of inclined supports in fixed-fixed MEMS beams arising from

practical fabrication have been investigated by an equation-based nonlinear model.

The calculated beam displacements agree with FEM models to within 1.1% in both

the linear and nonlinear regimes. Furthermore, experimentally-obtained displace-

ments of six fabricated beams with inclined supports agree to within 5.2% with the

presented model. With this comprehensive model developed, the wafer-scale extrac-

tion technique for residual stress technique based on electrostatically actuated fixed-

fixed beam structures has been demonstrated. The ∼ 90 beams on a 4-inch quarter

wafer piece have been characterized and the extracted residual stress values vary

between −12.8 MPa and 13.6 MPa. The residual stresses for these beams follow a

nearly normal distribution with a mean value of −1.7 MPa and a standard devia-

tion of 5.9 MPa which represents the variability of the residual stresses across the

wafer. Detailed uncertainty analysis reveals that inaccurate modeling of the non-

ideal effects, especially the non-flat profile and the inclined supports, will result in

significant errors in the extracted residual stress. To alleviate the residual stress ef-
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fects, design optimization has been conducted for a MEMS diaphragm tuner used

in cavity resonators/filters. The tradeoff between pull-in voltage and tuning range

of the capacitive RF MEMS tuner has been analyzed through a parametric study.

The systematic study of the effects of corrugation geometries on the pull-in voltage

and the tuning range provides guidelines for design optimizations. Furthermore, a

thermally-stable capacitive RF MEMS tuner is proposed based on a circular NMCD

suitable for resonators/filters which require a large tuning displacement (> 10 µm).

The measured temperature-induced center offset of the NMCD is reduced by 13.5 ×

with a temperature variation of ∆T = 100◦C compared with the case of UMCDs,

which allows the NMCD to be continuously tunable in its full desired range. More-

over, the change of actuation voltage required for maintaining a 10-µm diaphragm

deflection is reduced from 51.5% to 10.4% with ∆T = 45◦C.

6.2 Contributions

The contributions of this dissertation are listed as follows:

• Chapter 2: The presence of the inclined supports and the resulting non-ideal

effects have been brought into attention. We have modeled the mechanical and

electromechanical effects of inclined supports for the first time. This proposed

model calculates and validates the effects of residual stress and loading on the

post-release beam behavior including their nonlinear large-displacement charac-

teristics. The non-flat beam profiles caused by residual stress and/or a non-flat

sacrificial layer profile has also be accounted for in this model.

• Chapter 3: A wafer-scale extraction technique for residual stress based on elec-

trostatically actuated fixed-fixed beam structures has been demonstrated and

the wafer-scale extraction results have been reported for the first time. The sta-

tistical distribution and spatial distribution of the residual stress on a quarter-

wafer piece have been presented. Detailed uncertainty analysis reveals that

inaccurate modeling of the non-ideal effects, especially the non-flat profile and
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the inclined supports, will result in significant errors in the extracted residual

stress.

• Chapter 4: The design optimization for RF MEMS tuners based on corrugated

diaphragms has been conducted through systematic parametric study and trade-

off analysis. It has been shown that the corrugation depth and the corrugation

range are the most important geometric parameters in corrugated diaphragm

design. The design tradeoff between the tuning voltage and tuning range needs

to be taken into consideration during design process.

• Chapter 5: The first thermally-stable capacitive MEMS tuner based on a circu-

lar NMCD has been demonstrated. This MEMS tuner is suitable for application

requiring a large tuning displacement (> 10 µm), such as the evanescent-mode

resonators/filters. The enhanced temperature stability allows the RF MEMS

tuner to be continuously tunable in the full desired range with a reduced vari-

ation of required actuation voltage.

6.3 Future Work

6.3.1 Full Characterization of Thermally-Stable Cavity Filters Based on

RF MEMS Tuner

The temperature-stability of the diaphragm RF MEMS tuner presented in Chap-

ter 5 has been experimentally validated. As an RF MEMS tuner is used in high-Q

resonators/filters, a full characterization is necessary. Since the RF MEMS tuner is

used to tune the capacitance between the diaphragm and the loading post in the

cavity, instead of the capacitance between the diaphragm and the biasing electrodes,

the RF characterization of the tuner needs to be conducted by assembling the tuner

with the cavity. The insertion loss [105] and intermodulation [106] need to be char-

acterized.
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With the temperature-stable diaphragm RF MEMS tuner demonstrated with con-

tinuous tunability over a wide temperature range, it can be employed to design cavity

resonators/filters with enhanced temperature stability. The frequency response of the

tunable resonators/filters can be measured when temperature varies to validate the

design. Special attention should be paid to the design of measurement setup to mini-

mize the frequency shift caused by the temperature sensitivity of the test setup other

than that of the diaphragm itself.

6.3.2 Uncertainty Quantification of RF MEMS Tuners

In Chapter 4, the performance of the RF MEMS tuners has been analyzed with

respective to the variations of each geometric parameters separately. This study

allows the determination of the important design parameters. To further evaluate the

uncertainty of the tuning voltage and tuning range of the RF MEMS tuners under a

given variability in geometric parameters and material properties, it is necessary to

perform uncertainty quantification analysis.

Since stochastic simulations are required for uncertainty quantification analysis, it

is essential to develop computation-efficient modeling of the tuner devices. An closed-

form analytical model with sufficient accuracy is ideal. One solution is to modify the

existing analytical model by adding fitted coefficients to increase its accuracy. On the

other hand, more efficient sampling algorithm should be chosen to reduce the number

of simulations needed for obtaining the output probability density functions (PDFs).

6.3.3 Automated Wafer-Scale Test Methodology for RF MEMS Tuners

The wafer-scale evaluation of geometric parameters and material properties is

desired to efficiently characterize the fabrication variabilities. With experimentally-

obtained data, device simulations can be done with process corners to ensure adequate

design margin. In Chapter 3, a methodology for residual stress extraction technique

has been presented which is suitable for automated wafer-scale applications. Other
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material properties such as Young’s modulus may also vary from batch-to-batch,

wafer-to-wafer, or even within a wafer piece. Therefore, automated wafer-scale test

methodologies for geometric parameters and material properties need to be developed.
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