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ABSTRACT

Wu, Jianqing Ph.D., Purdue University, December 2014. Essays on Pricing of Cardinality
Bundles. Major Professors: Karthik Kannan and Mohit Tawarmalani.

This dissertation studies the pricing of cardinality bundles, where firms set prices

that depend only on the size of the purchased bundle, a practice that is increasingly being

adopted by industry. The first essay develops a fast combinatorial technique to obtain the

optimal prices for cardinality bundles. The second essay extend the basic model to solve

the problem when there exists fixed costs or economies of scale. The third essay relax a key

assumption in cardinality bundling literature, which restricts each consumer to purchase no

more than one bundle.
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1. INTRODUCTION

We study the pricing of cardinality bundles, where firms set prices that depend only on

the size of the purchased bundle. The cardinality bundling (CB) problem we study was

originally proposed by [1] and it involves consumers having a specific preference structure

called Spence-Mirrlees Single Crossing Property (SCP).

In Chapter 2, we show that the optimal prices to the problem can be obtained in

strongly polynomial time. The solution approach we developed is useful in developing an

algorithm to solve the quantity-discount problem proposed by [2].

In Chapter 3, we studies the pricing for cardinality bundles (CB) when bundling

involves complex costs. We first extend the existing CB model to allow fixed costs in adding

additional bundles. We show that CB problem with fixed costs can be solved as a shortest-

path problem. We then extend the CB model in another way to solve CB problem with

submodular cost structure. Such analysis is especially useful when there exists economies

of scale in production.

The existing analytical framework lacks sub-additivity constraints on bundle pric-

ing, which limits its application in reality. In Chapter 4, we solve the CB problem with

additional constraints on bundle prices. We first study the CB problem with marginal de-

creasing prices and prove that it is a shortest-path problem. Second, we propose a dynamic

programming algorithm to solve the CB problem with unit decreasing prices. Third, we
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analyze the CB problem with sub-additive prices and convert its MINLP formulation to

a mixed-integer programming (MIP) one. Finally, we provide analytical and numerical

analysis on the gaps between different CB models.
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2. CARDINALITY BUNDLING WITH SPANCE-MIRRLEES

RESERVATION PRICES

2.1 Introduction

Bundling and its benefits have been studied extensively in the literature. For ex-

ample, [3] show that when products are synergistic, offering bundles of products can yield

higher profits than selling them separately. The earliest work on bundling [?, e.g.,]]stigler01,

adams01, mcafee01 focused on mixed bundling, wherein every combination of goods is

sold at a possibly different price. However, because the number of combinations quickly

increases with the number of goods, the pricing problem becomes intractable except for a

small number of goods [4]. So, alternate bundling schemes – such as component pricing,

where only the components are sold; or pure bundling, where only the bundle is sold –

have also been studied and deployed. The focus of this work is to study another bundling

scheme called cardinality bundling or, in short, CB.

In CB, bundles of equal cardinality or size are sold at the same price. That is, for a

firm that sells J goods, consumer may purchase any one good for a listed price, a bundle of

any two goods for a different price, and so on and so forth. In contrast to mixed bundling

(which requires pricing 2J − 1 bundles), CB only requires prices for J bundles. Perhaps

because of the simplicity of the pricing scheme, CB has been adopted in practice. Pricing
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for theme parks within entertainment complexes such as Disney World are based on CB.

Consumers can purchase multi-day (2, 3, 4 or 5 day) passes and can choose to visit any of

the four theme parks each day. Similarly, Eastlink cable TV allows its consumers to choose

their channel combinations within the cardinality bundles (12 or 20 channels) purchased.

The current literature on CB is relatively sparse and we review it briefly here. Most

relevant to the current paper is [1], where they study the pricing of cardinality bundles

assuming that each consumer is restricted to buy at most one bundle. They explore condi-

tions under which CB can attain the same profit as mixed bundling. Further assuming that

consumers’ reservation price satisfy Spence-Mirrlees Single Crossing Property (SCP), they

propose and analyze a readily computable pricing strategy. [5] also restrict the consumer

to purchase at most one bundle and seek to solve the CB pricing problem as a nonlinear

mixed-integer program. They use Lagrangian relaxation, subgradient ascent, and heuristic

methods to derive bounds for the problem. [6] consider a CB model where unit prices for

bundles decrease with increasing size. They use computations and real data to argue that

profit from their CB model is almost the same as that from mixed bundling.

We begin by considering the model and the proposed pricing strategy of [1] for

cardinality bundles assuming that reservation prices follow SCP. We show that the optimal

prices can be obtained in polynomial time, by solving a linear programming (LP) problem.

In contrast, the techniques proposed in [1] may not generate optimal prices. The LP refor-

mulation provides many insights into cardinality bundling. It paves the way for developing

useful approximation schemes for the continuous case (see [2] and Section 2.3), allows us

to extend our analysis to models with complex cost structures, such as fixed costs for bun-



5

dle setup or variable costs with economies of scale (as discussed in Chapter 3), and reveals

valid inequalities that help determine prices that disincentivize consumers from purchasing

more than one bundle .

2.2 CB Discrete Case: Model & Analysis

A customized cardinality bundling strategy models a situation where a vendor offers

a menu of products that may be purchased in a bundle, whose price is determined by its size.

The consumer is free to choose any products as long as the number of goods she chooses

matches the bundle size for which she has paid. This model was originally proposed by [1],

where they assume that the consumers can be ordered such that a consumer of higher type

not only assigns a higher value to bundles of a given size but also derives higher marginal

value from increasing the bundle size. When the consumers can be ordered this way, their

reservation prices are said to satisfy the Spence-Mirrlees Single Crossing Property (SCP).

In this section, we consider the cardinality bundling problem, which is modeled to

optimally choose the sizes and prices of the bundles a vendor should offer in the market.

Our basic model is the same as that in [1] and we review it here for the sake of completeness.

Consider a vendor who sells J products and assume that there are I consumers in the

market. In the following, we denote the bundle of size j as Bundle j. We assume WLOG

that all bundles, 1, . . . , J are offered in the market and the vendor decides their prices.

We denote the price of Bundle j as pj . Obviously, the consumer does not pay anything

for Bundle 0, whose price is therefore fixed at 0. We assume that the cost of the Bundle

j for vendor is cj and that the total cost to the vendor is the sum of the costs for all the
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bundles sold. Clearly, c0 is 0. The model makes a reasonable assumption that a consumer’s

willingness-to-pay (WTP) is non-decreasing with the bundle size,1 which would be trivially

true if extra units can be freely disposed. The model further assumes that each consumer

can purchase at most one bundle.

Let wij ≥ 0 denote the WTP of Consumer i for Bundle j. For every i, we set wi0 to

zero to denote that consumers, who do not purchase anything, do not derive any value out

of the vendor’s products. Since WTPs are non-decreasing with bundle size, wij ≥ wij′ for

j ≥ j′. Since the choice of the bundle rests with the consumer, if Consumer i purchases

Bundle ji, this bundle must maximize her consumer surplus, i.e., ji ∈ arg maxj{wij − pj}.

Let Ji be the set of bundles Consumer i prefers with price vector p. If |Ji| > 1, we assume

that Consumer i purchases a Bundle ji that belongs to arg maxj{pj − cj | j ∈ Ji}, i.e.,

the surplus-maximizing bundle that yields the most profit to the vendor. This assumption

is typical in the literature and is without loss of generality.2

1 [1] imposes WTP for each consumer to be concave in j, which we relax in our model.
2To see this, let J ′(j) = {j′ | pj′ − cj′ < pj − cj} be the set of bundles that provides less profit to vendor
than j. Observe that since the number of consumers and bundles is finite, there exists an ε > 0 such that even
if the price of a bundle that a consumer does not prefer is reduced by Jε, the consumer continues to prefer
the bundles in Ji after the change. Now, consider a new pricing scheme p′, where the price of Bundle j is set
to p′j = pj − |J ′(j)|ε. Then, it is easy to verify that, when the prices are p′, Consumer i prefers the Bundle
ji ∈ arg max{pj − cj | j ∈ Ji} over other bundles in Ji and, since |J ′(j)| < J , this preference is also over
bundles not in Ji. Further, the vendor does not lose more than JIε in the profit when he prices the bundles
using p′ instead of p. Since ε can be chosen to be arbitrarily small, this yields a sequence of solutions for
which vendor’s profit converges to the one obtained under our assumption.
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Let xij be 1 if Consumer i ∈ {1, 2, . . . , I} buys Bundle j ∈ {0, 1, 2, . . . , J} and 0

otherwise. Then, CBP can be formulated as follows [?, see]]hitt01:

CBP1 : Max
xij ,pj

I∑
i=1

J∑
j=0

xij(pj − cj)

s.t.
J∑

j′=0

(wij′ − pj′)xij′ ≥ wij − pj ∀i, ∀j (2.1)

J∑
j=0

xij = 1 ∀i (2.2)

p0 = 0 (2.3)

xij ∈ {0, 1} ∀i, ∀j. (2.4)

Let (x∗, p∗) be a solution that generates the maximum profit for the vendor. Assuming

(3.2), Constraints (3.1) enforce incentive compatability (IC) and individual rationality (IR)

for Consumer i. The left hand side models the consumer surplus from the purchase deci-

sion and the right hand side models the consumer surplus from the purchase of alternate

bundles. The case with j = 0 ensures that consumer only purchases bundles with non-

negative surplus. Constraints (3.2) enforce that each consumer purchases only one bundle.

Observe that CBP1 is a mixed integer nonlinear program (MINLP) since the price vector

pj and consumer decisions xij are variables and their products appear in the objective and

in Constraint (3.1).

Like in other nonlinear pricing problems, [1] assume that consumer valuations sat-

isfy the Spence-Mirrlees Single Crossing Property (SCP) [?, see]]spence01. We also make
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the same assumption, which imposes the following ordering on the consumers’ WTP for

the bundles:

wij ≥ wi′j ∀i > i′, (2.5)

wij − wij′ ≥ wi′j − wi′j′ ∀i > i′, ∀j > j′. (2.6)

The interpretation of these conditions is straightforward. A consumer with a higher index

has a (weakly) higher WTP for any bundle. Also, the WTP exhibits increasing differ-

ences, i.e., as bundle size increases, the WTP for a higher-indexed consumer increases

more rapidly than the WTP for a lower-indexed consumer. Essentially, this assumption

states that consumers can be ordered by types, with higher type consumers valuing the

products and marginal changes in bundle sizes more than the lower type ones. Before we

develop an efficient solution for this problem, we review the currently available approaches

using examples.

Table 2.1.: Willingness-to-pay for Example 2.2.1

Bundle Consumers’ WTP
size I1 I2 I3 I4

0 0 0 0 0
1 26 36 58 120
2 47 62 91 180
3 58 77 113 221
4 62 83 123 240

Example 2.2.1 Consider a scenario with I = 4 consumers, J = 4 bundle sizes, and costs

cj = 0 for all j. Suppose the WTP for the consumers are as given in Table 3.1. It can be
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verified easily that they satisfy SCP. We use BARON [7] to solve the MINLP formulation of

CBP1. (Note that BARON guarantees that it finds the global optimal solution at termina-

tion.) The optimal solution thus found is to set p∗1 = p∗2 = 47, p∗3 = 62, and p∗4 = 72. It is

easy to check that, with these prices, Consumer 1, 2, 3, and 4 buy Bundles 2, 3, 4, and 4

respectively. The optimal profit for the vendor is 253.3

We now make a small change to the setting of Example 2.2.1 and illustrate that the

optimal assignment for a consumer depends on the WTP of all other consumers.

Example 2.2.2 In the setting of Example 2.2.1, change w41 from 120 to 100, so that WTPs

still satisfy SCP. If CBP1 is now solved using BARON, the optimal solution assigns Con-

sumer 1 to Bundle 0 yielding a profit of 256.4 There is no optimal allocation that assigns

3Result 3 in [1] claims that the following approach optimally solves CBP1, which we show later isn’t always
the case. Consumer i is assigned to the largest bundle size j that satisfies the following condition:

(I − i+ 1)(wij − wi,j−1)− (I − i)(wi+1,j − wi+1,j−1) ≥ cj − cj−1. (2.7)

We remark that, when Consumer i is assigned a bundle, the WTP of consumers other than i and i + 1 are
ignored. Here, the right hand side is 0 since we assume cj′ = 0 for all 1 ≤ j′ ≤ J . The left hand side values
are shown in Table 2.2.

Table 2.2.: Left hand side values of Equation (2.7)

Bundle LHS values
size I1 I2 I3 I4
0
1 -4 -8 16 120
2 6 12 -14 60
3 -1 1 3 41
4 -2 -2 1 19

For Example 2.2.1, the above approach yields the same solution as the optimal solution found earlier using
BARON.
4The optimal assignment of Consumer 1, 2, 3, and 4 is to Bundles 0, 0, 1, and 4 respectively. The correspond-
ing prices are p∗1 = 58 and p∗2 = p∗3 = p∗4 = 198.
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Bundle 2 to Consumer 1.5 Any allocation that ignores the WTP of Consumer 4 while allo-

cating bundle to Consumer 1 will thus not yield optimal profit. 6,7

The only available approaches to solve CBP1 use either an MINLP solver or a MIP

solver on a linearization of CBP1 that does not use a global solver on CBP1 directly. The

MINLP-/MIP-based approach is, however, not amenable to comparative statics because

global optimality certificates are typically neither small nor easy to obtain. In this section,

we develop an alternate solution approach that is efficient, guarantees optimality, and is

amenable to comparative statics.

2.2.1 Properties of the Optimal Solution

First, we identify some properties of the optimal solution.8

Proposition 2.2.1 There exists an optimal pricing scheme that is nondecreasing with bun-

dle size.

Proposition 2.2.2 There exists an optimal solution to CBP1 that satisfies:

J∑
j′=j

xi+1j′ ≥
J∑

j′=j

xi,j′ i = 1, . . . , I − 1, ∀j. (2.8)

That is, there exists an optimal solution where the mapping from consumer types to bundle

sizes is non-decreasing, i.e., for any i < I , if Consumer i buys Bundle j, then Consumer
5In fact, if Consumer 1 is restricted to purchase Bundle 2, the vendor cannot obtain a profit more than 253.
6 [1] claims that it is optimal to assign Consumer 1 to Bundle 2 even in this case. This is so, because for
i = 1, Equation (2.7) is independent of w41. However, as shown above, this is not an optimal assignment.
7In the proof of Result 3, [1] modify the procedure when higher type consumers do not buy larger sized
bundles. This modification does not apply here.
8All the proofs are provided in the appendix.
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i + 1 buys a Bundle j′ such that j′ ≥ j. Further, for any given price vector, there exists a

feasible allocation of bundle sizes to consumer types that is non-decreasing.

Proposition 2.2.3 There exists an optimal pricing scheme such that if two bundle sizes j

and j′ are bought by some consumers and j′ > j then pj′ − cj′ > pj − cj .

Proposition 2.2.4 Among the consumers purchasing a non-zero bundle size, the lowest

indexed one is charged at her WTP in every optimal solution.

Proposition 2.2.2 is particularly interesting, since it provides redundant, yet rather

important, constraints that facilitate the solution of CBP1. Further, Proposition 2.2.2 ap-

plies to other bundling problems where WTPs follow SCP, including those where con-

sumers may purchase more than one bundle [8]. Propositions 2.2.1, 2.2.2, and 2.2.3 imply

that prices are higher for larger-sized bundles purchased; the higher type consumers pur-

chase weakly larger-sized bundles; and the profits also increase with the purchased bundle

sizes.

2.2.2 A Solution Approach

In this section, we refromulate CBP1 so as to develop a solution approach. A key

step in reformulating the problem is that optimal profit satisfies a substructure optimality

condition that is totally unimodular. Then, we show that there exists a simple approach to

solve the dual of the reformulation.
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Reformulating the MINLP to a 0-1 IP

We first provide some intuition into what makes it possible to solve CBP1 quickly.

First, assume that the vendor fixes a certain bundle size that the first consumer will pur-

chase. Since the first consumer must purchase one of Bundles 0, . . . , J , this yields J + 1

problems for the vendor to solve. The key property that enables the vendor to solve the

problem is that once the first consumer is allocated Bundle j, the remaining problem can

be solved by solving a smaller cardinality bundling problem, i.e., one which has Consumers

2, . . . , I and Bundles j, . . . , J . This subproblem can then be solved recursively using the

same technique. Before we provide a formal proof of our algorithm, we build some intu-

ition into the problem structure.

Consider the cardinality bundling problem where the vendor only considers Con-

sumers i′, . . . , I and prices the bundles so that each of these consumers buys one of the

Bundles j′, . . . , J . To accomplish this, by Proposition 2.2.2, it suffices to restrict i′ to pur-

chase a bundle of size at least j′ and to remove Consumers 1, . . . , i′ − 1. More generally,

assume that the vendor wishes to ensure that i′ buys one of the options from a set of bundle

sizes, say J ′. Then, the corresponding problem can be formulated by adding the constraint,∑
j∈J ′ xi′j = 1, to CBP1. We denote this problem as CBP(i′, j′ | J ′) and the correspond-

ing optimal profit as ΠCBP(i′,j′|J ′). Obviously, ΠCBP(i′,j′|{j′,...,J}) = maxj≥j′ Π
CBP(i′,j′|{j}).9

Therefore, it suffices to find a way to solve CBP(i′, j′ | {j′}), whose solution can in turn

be obtained by solving CBP(i′ + 1, j′ | {j′, . . . , J}). As it turns out, this is because the

9Further, by Proposition 2.2.2, ΠCBP(i′,j′|{j}) = ΠCBP(i′,j|{j}) because if i purchases j, then every higher
type consumer purchases a bundle j or, higher and j ≥ j′.



13

purchasing decision of Consumers i′ + 1, . . . , I are the same in the two problems. If we

denote the set {j′, . . . , J} as j′≥:

ΠCBP(i′,j′|{j′}) = ΠCBP(i′+1,j′|j′≥) + (wi′j′ − cj′)︸ ︷︷ ︸
sale of j′ to i′

+ (I − i′)(wi′+1j′ − wi′j′)︸ ︷︷ ︸
restrictions on prices

. (2.9)

The first adjustment is because of the revenue and cost from selling j′ to i′ and the second is

because the price of Bundle j′ is constrained to the WTP of Consumer i′ in CBP(i′, j′ | {j′})

whereas it is constrained to the WTP of Consumer i′+1 in CBP(i′ + 1, j′ | j′≥). In order to

make the result also apply to the case when i′ = I , we define wI+1j = wIj . To capture this

difference succinctly, we let vi′j′ denote wi′j′ − (I − i′)(wi′+1j′ − wi′j′) and rewrite (2.9)

as: ΠCBP(i′,j′|{j′}) = ΠCBP(i′+1,j′|j′≥) + (vi′j′ − cj′).

Now, we formally show that the cardinality bundling problem can be linearized into

a 0-1 integer program using the above notation.

Proposition 2.2.5 CBP1 can be reformulated as the following 0-1 integer linear problem:

CBP2 : Maxxij

{
I∑
i=1

J∑
j=0

(vij − cj)xij

∣∣∣∣∣ (3.2), (3.4), (3.7)

}
.

Let x∗ be an optimal solution to CBP2. Let {i0, . . . , ik} be the lowest type consumers that

purchase a certain bundle size and, for any j, let r′(j) = arg minr

{
ir |
∑J

j′=j x
∗
ij′ = 1

}
.
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If there is no feasible solution, set pj = wIJ + ε for an arbitrary ε > 0. Otherwise, let

j(i) =
∑J

j=0 jxij and

pj = wi0j(i0) +

r′(j)∑
r=1

(
wirj(ir) − wirj(ir−1)

)
. (2.10)

Converting CBP1 into CBP2 is possible because
∑I

i=1

∑J
j=0 vijxij captures the

total revenue for any feasible xij . Thus, vij is the incremental revenue from selling Bundle

j to Consumer i.

We return to the setting of Example 2.2.2 to illustrate the application of Proposi-

tion 2.2.5 and compute the maximum profit for the vendor in this case. Table 2.3 shows vij

values for Example 2.2.2. So, to compute the profit, the appropriate vij values are summed

up. For example, if a vendor tries to serve Consumers 1, 2, 3, 4 with Bundles 1, 2, 3, 4

respectively, then the total vendor profit is v11 + v22 + v33 + v44 = 245. The maximum

profit is the summation of vij that yields the maximum value and is such that xij satisfy

Constraints (3.2), (3.4), and (3.7). In particular, this implies that the only admissible strate-

gies are such that higher type consumers are served larger-sized bundles. In this case, the

maximum profit evaluates to v1,0 + v2,0 + v3,1 + v4,4 = 256.

Table 2.3.: Computing vij for Example 2.2.2

Bundle vij
size I1 I2 I3 I4

0 0 0 0 0
1 -4 -8 16 100
2 2 4 2 180
3 1 5 5 221
4 -1 3 6 240
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In fact, CBP2 can be solved without the binary restrictions (3.4) because its con-

straint matrix is totally unimodular.

Proposition 2.2.6 The constraint matrix of CBP2 is totally unimodular.

Since the constraint matrix of CBP2 is totally unimodular, we can relax its binary

restrictions.

Linear Program

Next, we reformulate CBP2 as a linear program (LP).

Proposition 2.2.7 Let aij =
∑J

j′=j xi+1,j′−
∑J

j′=j xij′ , where xI+1,j,∀j 6= J is understood

to be 0 and xI+1,J is understood to be 1. Then, CBP2 is equivalent to the following CBP2a:

CBP2a : Max
xij ,aij

I∑
i=1

J∑
j=0

(vij − cj)xij

s.t. aij − ai,j+1 + xij − xi+1,j = 0 ∀(i, j) 6= (I, J) (2.11)

aIJ + xIJ = 1 (2.12)

aiJ+1 = 0 ∀i (2.13)

aij ≥ 0; xij ≥ 0 ∀i, ∀j. (2.14)

Recall that the original cardinality bundling problem appeared to be an MINLP problem,

which has now been transformed into an LP, CBP2a. Therefore, we are now able to draw

upon the general comparative static results from the LP literature and apply them to the

CBP context to generate managerial insights. In the following subsection, we develop a
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few related insights. However, before we proceed, we formally show next that CBP2a can

be solved “fast.”

Theorem 2.2.3 CBP2d is the dual of CBP2a and can be solved within O(IJ) time.

CBP2d : Min
lij

lI,J

s.t. lij ≥ lij−1 i = 0, . . . , I; j = 1, . . . , J (2.15)

lij ≥ li−1j + vij − cj i = 1, . . . , I; j = 0, . . . , J (2.16)

l00 = 0.

2.2.3 Comparative Statics

Invoking the sensitivity results from LP, we can infer that the vendor profit is con-

cave in cj and convex in vij [?, Theorem 5.3 in ]]btt97. In the following paragraphs, we

consider some additional comparative static results.

Consider the cost parameters first. We say that for any two cost vectors c′ and c′′,

the marginal cost of c′ is less than that of c′′ if for all j ≥ 1, c′j − c′j−1 ≤ c′′j − c′′j−1. We say

the marginal cost is strictly less if the inequality is strict. Although the solution approach

of [1] is inadequate, their insight regarding the weak reduction in the size of cardinality

bundles with increasing marginal cost still holds.

Corollary 2.2.4 Assume that marginal cost of c′ is less than that of c′′. Then, for every

optimal allocation x′ with c′ there exists an optimal allocation s with c′′ such that each

consumer is allocated a bundle of weakly smaller size in s than in x′. Similarly, for every
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optimal allocation x′′ with c′′ there exists an optimal allocation t with c′ such that each

consumer is allocated a bundle of weakly larger size in t than in x′′. If the marginal cost of

c′ is strictly less than that of c′′ then every optimal allocation x′ with c′ allocates a bundle

of size no smaller than any optimal allocation x′′ with c′′.

Next, we study how changes to consumers’ WTP affect the solution (e.g., when

the vendor pursues advertising efforts). Since CBP2d is convex in vij and vij is a linear

transformation ofwij , CBP2d is convex in WTP [?, Theorem 3.2.2 in ]]bv04, and therefore,

so it is in CBP2. Notice, when WTPs do not satisfy SCP, CBP2 may not be convex in the

WTPs.10

Increasing WTP (even if it is subject to SCP) does not guarantee an increase in ven-

dor profit. From Examples 2.2.1 and 2.2.2, it should be clear that increasing the consumers’

WTP can decrease the profit. However, increasing consumers’ WTP (of course, subject to

SCP) on the purchased bundles will always increase vendor profits. So, it is important for

the vendors to target the WTP increases.

10In the following example, we illustrate that when WTPs do not satisfy SCP, CBP2 may not be convex in
the WTPs. Consider a scenario with I = 2 consumers, J = 3 bundle sizes, and costs cj = 0 for all j.
Suppose W1 is one WTP matrix as given in the second and third columns of Table 2.4 and W2 is another
WTP matrix as given in the fourth and fifth columns of Table 2.4. Notice, the WTP of Consumer 1 inW2 is
the same as that of Consumer 2 inW1 and the WTP of Consumer 2 inW2 is the same as that of Consumer
1 in W1. The optimal solutions for both problems are p∗1 = p∗2 = 12, p∗3 = 34 and the optimal profits are
Π∗1 = Π∗2 = 46. LetW3 = 1

2W1 + 1
2W2, as shown in the last two columns in Table 2.4. The optimal solution

is p∗1 = p∗2 = p∗3 = 26 and the optimal profit is Π∗3 = 52 > 1
2Π∗1 + 1

2Π∗2.

Table 2.4.: Willingness-to-pay

Bundle W1 W2 W3

size I1 I2 I ′1 I ′2 I ′′1 I ′′2
1 10 16 16 10 13 13
2 12 18 18 12 15 15
3 12 40 40 12 26 26
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Next, consider the scenario when the vendor cannot increase the WTPs but can

only shift the WTP from one consumer type to the other (for example, vendor pursues

homogenization efforts). We first study the profit implications in the context of information

goods, where cj = 0 ∀j. Letw denote a given I×J WTP matrix. Definew′ =W(i1, i2, w)

as a function which maps w to another I × J matrix w′, such that, for any j,

w′ij =


wij if i < i1 or i > i2

1
i2−i1+1

∑i2
i′=i1

wi′j if i1 ≤ i ≤ i2.

That is, consumers indexed between i1 and i2 are homogenized so that their individual

WTPs in the transformed setting is the average of their original WTPs; whereas the other

consumers remain unaffected. Let Π∗CBP (w) denote the optimal profit of a CBP problem

for a given w WTP matrix.

Proposition 2.2.8 When cj = 0, for each i′, Π∗CBP (W(i′, I, w)) ≥ Π∗CBP (w).

Proposition 2.2.8 shows that homogenizing improves the vendor profit only if it involves

the highest consumer type.11 A corollary is that homogenizing across all consumer types

11We illustrate that merging may decrease the vendor profit when the highest consumer types are not involved
by using the following example.

Table 2.5.: Willingness-to-pay

Bundle WTP
size I1 I2 I3
1 2 10 13
2 4 12 20

Consider a scenario with I = 3 consumers, J = 2 bundle sizes, and costs cj = 0 for all j. Suppose the WTP
for the consumers are as given in Table 2.5. Obviously, the optimal solution is p∗1 = 10, p∗2 = 17 and the
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(i.e., using W(1, I, w) as WTP) will weakly increase the profit. Notice that, if costs are

non-zero, even when the highest consumer type is included for homogenization, the vendor

profit can decrease.12

Apart from the comparative static results, we were also interested in exploring the

relationship between vij and wij terms. In doing so, we discovered a result that may

be tangential to the analysis thusfar but useful (for computational purposes) in quickly

generating example values of WTPs satisfying SCP. As mentioned before, given WTPs,

vij = wij − (I − i)(wi+1j − wij). So,

I∑
i′=i

vi′j ==
I∑
i′=i

(I − i′ − 1)wij −
I∑

i′=i+1

(I − i′ − 1)wij = (I − i− 1)wij.

Therefore,

wij =
1

I − i− 1

I∑
i′=i

vi′j. (2.17)

This shows that there is a one-to-one linear transformation relating w to v. Given the

relationship, we show next that we may choose v arbitrarily for the first I − 1 consumers

and still find WTPs that satisfy SCP and are increasing in j.

Proposition 2.2.9 Given vij for i ∈ {1, . . . , I − 1} and j ∈ {1, . . . , J}, there exist wij for

i ∈ {1, . . . , I} amd j ∈ {0, . . . , J} that satisfy SCP and are increasing in j.

optimal profit is 27. If we merge Consumer 1 and 2, then w′11 = w′21 = 6, w′12 = w′22 = 8, which leads to a
new optimal solution of p′∗1 = 6, p′∗2 = 13 and a lower optimal profit of 25.
12Consider a scenario with I = 2, J = 1, and costs c1 = 10. Suppose w11 = 4 and w21 = 20. the optimal
solution is p∗1 = 20 and the optimal profit is 10. If we merge Consumer 1 and 2, then w′11 = w′21 = 12,
which leads to a new optimal solution of p′∗1 = 12 and a lower optimal profit of 4.
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2.3 Continuous Case: Model and Analysis

We now investigate a continuous version of the problem treated in Section 3.2. One

application of the continuous problem is in quantity discount pricing, which was explored

by [2].13 The continuous version can also be applied in cardinality bundling, when the

goods are not discrete. For example, many restaurants charge based on weight (for e.g.,

kilos in Brazil) regardless of the kind of food chosen by the consumer on their plate. The

main difference is that bundle sizes are not restricted to integer values 1, . . . , J but can take

any real value. The problem for the vendor is then to identify the optimal pricing function

for all real-valued sizes, which turns out to be significantly more difficult. Nevertheless, we

show that the new insights developed in Section 3.2 can be used to approach this problem.

2.3.1 Prior Related Work

The model here is similar to that in the previous section except that we use a con-

tinuous variable y ∈ R+ to represent the bundle sizes, instead of using an index j to denote

discrete sizes. Every variable that had an index j before now becomes a function of y in-

stead. In particular: p(y) represents the price of bundle size y; c(y) the cost of Bundle y;

wi(y) the Consumer i’s WTP for bundle size y. We also define yi to denote the bundle size

Consumer i purchases and corresponds to j(i) =
∑J

j=0 jxij in the discrete case. [2] also

assumes WTPs satisfy SCP and models it as w′i(y) < w′i+1(y) for all y. We relax these con-

13The discrete case analyzed in [1] was heavily inspired by [2].
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ditions slightly to the weak inequality and generalize them to the non-differentiable case as

follows:14

0 = wi(0) ≤ wi(y) ≤ wi+1(y) ∀y (2.18)

wi(y + d)− wi(y) ≤ wi+1(y + d)− wi+1(y) ∀y ∀d ≥ 0. (2.19)

Assuming p(0) = 0, the vendor’s decision problem is then as follows:

CBPc1 : Max
yi,p(y)

I∑
i=1

(p(yi)− c(yi))

s.t. wi(yi)− p(yi) ≥ wi(y)− p(y) ∀i ∀y. (2.20)

We first review the approach suggested in [2]. Assuming that WTPs satisfy SCP

conditions with a strict inequality, he shows that every optimal solution must satisfy yi+1 ≥

yi for all i < I−1. Then, given yi, i = 1, . . . , I , he substitutes the optimal prices, obtaining

the optimization problem in the space of y variables. Then, the paper ignores the constraints

yi+1 ≥ yi to obtain an unconstrained optimization problem and sets its derivative to zero,

yielding the following local optimality condition:

(I − i+ 1)w′i(yi)− (I − i)w′i+1(yi) = c′(yi). (2.21)

14Since w′i(y) ≤ w′i+1(y) for all y, it follows that
∫ d

y
w′i(y

′)dy′ ≤
∫ d

y
w′i+1(y′)dy′ for all y and d, which

in turn implies that wi(y + d) − wi(y) ≤ wi+1(y + d) − wi+1(y) for all y and d. On the other hand,
wi+1(y+d)−wi+1(y) ≥ wi(y+d)−wi(y) implies that limd→0

wi+1(y+d)−wi+1(y)
d ≥ limd→0

wi(y+d)−wi(y)
d

or that w′i+1(y) ≥ w′i(y).
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We now interpret the approach of [2] using our results in Section 3.2. Assume that

the optimal bundle sizes the consumers buy are given by y∗i , i = 1, . . . , I . Then, CBPc1

restricted to these bundle sizes reduces to a discrete problem. Since y∗i , i = 1, . . . , I must be

optimal to this restricted problem, the results of our previous section still apply. Therefore,

with the slightly relaxed SCP conditions (2.18) and (2.19), the results of [2] still hold. In

particular, Proposition 2.2.2 shows that there exists an optimal solution with y∗i+1 ≥ y∗i for

all i < I and Proposition 2.2.5 shows that CBPc1 can be rewritten as:

CBPcy : Max
yi

I∑
i=1

(vi(yi)− c(yi))

s.t. yi+1 ≥ yi 1 ≤ i ≤ I − 1, (2.22)

where vi(yi) = wi(yi) − (I − i)(wi+1(y) − wi(y)) and wI+1(y) is assumed to be wI(y).

Then, Equation (2.21) is the same as setting the derivative of the objective of CBPcy to

zero, i.e., v′i(yi) = c′(yi).15

Solving (2.21) may not seem hard since each consumer’s decision is independent of

others. However, this approach only works if Constraints (2.22) are automatically satisfied

by the solution. Otherwise, the optimality conditions do not decompose. Once the optimal

Lagrangian multipliers are known, the remaining optimality conditions (those of the inner

problem of the Lagrangian dual) can still be decomposed. However, for a given i, the La-

grangian multiplier of yi+1 ≥ yi gets multiplied with the decision of both Consumers i and

15More generally, when v and c are not necessarily differentiable, then the above optimality condition gener-
alizes to zero belonging to the subdifferential of vi(yi)− c(yi).
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i + 1. Therefore, the problem of determining the optimal multipliers links the consumers

together.

Besides Constraints (2.22) being ignored in the optimality conditions, there is an-

other subtle issue with [2]’s approach. The optimality condition in (2.21) is a local opti-

mality condition, which would be reasonable, if the objective had a unique local maximum

(for example if it was strictly concave). However, as shown in the next example, vi(·) is

often nonconvex, and there may be many points where the derivative of the objective of

CBPcy is zero.

Example 2.3.1 In CBPc1, assume that consumers can choose any bundle size y, as long

as 0 ≤ y ≤ J , where J is an even number, and let c(y) be identically zero. Let wi(y) =

1 + I
I−i+1

(πy + log(1 + y)) − cos(πy) ∀i. Each consumer’s WTP is increasing in y and

the WTPs satisfy SCP. It follows that vi(y) = 1 − cos(πy). Therefore, if yi is even, it

satisfies (2.21). Since every consumer can be assigned Bundles {0, 2, . . . , J},
(
J
2

+ 1
)I

solutions satisfy Condition (2.21). Moreover, let J = 4I − 2, and observe that there are

exponentially many solutions that satisfy Condition (2.21) and satisfy Constraint (2.22). To

see this, consider 2I solutions obtained by allocating bundle sizes in {4(i − 1), 4i − 2} to

Consumer i.

[2] does not mention the fact that there may be many solutions that satisfy Condition (2.21).

There is, thus, no guidance available on selecting the best solution among them. If one ig-

nores Constraint (2.22), this situation can be remedied by selecting, for Consumer i, the

bundle size yi that maximizes vi(y)− ci(y) by solving a one-dimensional global optimiza-

tion problem. However, in the presence of Constraint (2.22), the situation is significantly
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more complex. Thus, the approach based on Condition (2.21) is deficient in that it ignores

Constraint (2.22) and does not provide any way of selecting the global optimal solution

from many possible local optima.

2.3.2 Reformulation and Approximation

We assume that the vendor only provides bundles of size Y or smaller. This as-

sumption is reasonable since the vendor is typically limited by a production capacity. In

other words, we include the constraint 0 ≤ yi ≤ Y for all i in CBPcy. As illustrated in

Section 2.3.1, solving CBPc1 is challenging since it requires the determination of the opti-

mal price function p(y) instead of pricing a discrete set of bundles and has infinitely many

incentive compatability constraints of the type (3.33), one for each y. These issues can be

somewhat sidestepped by reformulating CBPc1 as CBPcy which has finitely many con-

tinuous variables. However, since the resulting functions vi(·) are in general non-convex,

the problem remains challenging to solve, especially in the presence of Constraints (2.22).

First, we remark that it is possible to extend the approach used in formulating

CBP2d to solve the continuous case. In particular, the problem aims to find functions

li(·), i = 1, . . . , I , such that:

CBPcyd : min
li(y)

lI(Y )

s.t. li(y) ≥ li−1(y) + vi(y)− c(y) i = 1, . . . , I, 0 ≤ y ≤ Y (2.23)

l0(y) = 0 0 ≤ y ≤ Y (2.24)

li(y) is non-negative and non-decreasing i = 1, . . . , I, 0 ≤ y ≤ Y (2.25)
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The above approach solves the continuous cardinality bundling problem by computing

li(y) = sup{li−1(y′) + vi(y
′)− c(y′) | y′ ≤ y} for each i.

We remark that the convex reformulation CBP2 (without the integrality constraints)

for the discrete case does not extend easily to the continuous case. Note that, for CBP2,

the bundle size that Consumer i buys is yi =
∑J

j=0 jxij . At the binary values of xij ,

these reduce to
∑J

j=0 jxi+1j ≥
∑J

j=0 jxij . However, when xij take continuous values,

Constraints (3.7) are tighter:
∑J

j=0 jxi+1j =
∑J

j=1

∑j
j′=1 xi+1j =

∑J
j′=1

∑J
j=j′ xi+1j ≥∑J

j′=1

∑J
j=j′ xij =

∑J
j=1

∑j
j′=1 xij =

∑J
j=0 jxij , where the inequality follows from Con-

straints (3.7). The converse does not hold for continuous values of xij .16 This explains why

CBPcy is not convex although CBP2 is a convex program when the superfluous binary

restrictions are removed.

For a set, S, let conv(S) and projx S denote respectively the convex hull of S and

the projection of S to the space of x variables. Let {kj}Jj=0 ∈ [0, Y ]J+1, where 0 = k0 <

· · · < kJ = Y . Consider y′ ∈ RI , with 0 ≤ y′i ≤ Y for all i that satisfies Constraints (2.22)

and extend y′ to (y′, x′) ∈ RI × RI×J so that

x′ij =



0 if y′i ≤ kj−1 or y′i ≥ kj+1

y′i−kj−1

kj−1−kj if kj−1 < y′i < kj

kj+1−y′i
kj+1−kj if kj ≤ y′i < kj+1,

(2.26)

16To see this, let J = 2 and define xi0 = xi2 = 0.5, xi1 = xi+1,0 = xi+1,2 = 0, and xi+1,1 = 1. Then,
although

∑J
j=0 jxij ≤

∑J
j=0 jxi+1j , xiJ 6≤ xi+1J .
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where k−1 and kJ+1 are understood to be 0 and Y + 1 respectively. Define

S =

(y, x)

∣∣∣∣∣∣∣∣∣∣
yi =

J∑
j=0

kjxij,∀i;
J∑
j=0

kjxij ≥
J∑
j=0

kjxi+1j, i = 1, . . . , I − 1

J∑
j=0

xij = 1,∀i; xijxij′ = 0,∀i, j, j′ ≥ j + 2; xij ≥ 0,∀i, j

 ,

(2.27)

and observe that (y′, x′) is the only solution in S that projects to y′. Next, we compute

conv(S).

Lemma 2.3.2 The convex hull of S is given by:

S ′ =

(y, x)

∣∣∣∣∣∣∣∣∣∣
yi =

J∑
j=0

kjxij,∀i;
J∑

j′=j

xij′ ≤
J∑

j′=j

xi+1j′ ,∀j, i = 1, . . . , I − 1;

J∑
j=0

xij = 1,∀i; xij ≥ 0,∀i, j

 .

(2.28)

Let A = {y | (2.22), 0 ≤ yi ≤ Y, ∀i}. Then, projy S
′ = projy S = A. Further,

conv(projx S) = projx S
′.

By Lemma 2.3.2, the continuous cardinality bundling problem can be written as:

CBPcx : Maxxij

{
I∑
i=1

(
vi

(
J∑
j=0

kjxij

)
− c

(
J∑
j=0

kjxij

)) ∣∣∣∣∣ x ∈ projx S.

}
.17

17Maxxij

{∑I
i=1

(
v
(∑J

j=0 kjxij
)
− c
(∑J

j=0 kjxij
)) ∣∣∣ (y, x) ∈ S

}
is a reformulation of

Maxyi

{∑I
i=1

(
v(yi)− c(yi)

) ∣∣ y ∈ A}, which reduces to CBPcx since the objective only depends
on x.
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We now show that when wi(·) and c(·) are piecewise linear functions whose break-

points form a subset of {k1, . . . , kJ}, then CBPcx can be solved quickly. First, observe

that kj ≤ y ≤ kj+1,

wi(y) =
kj+1 − y
kj+1 − kj

wi(kj)+
y − kj
kj+1 − kj

wi(kj+1) = xijwi(kj)+xij+1wi(kj+1) =
J∑

j′=0

xij′wi(kj′),

where the second equality is from (2.26), and the third equality is because it follows from

(2.26) that xij′ = 0 for all j′ 6∈ {j, j + 1}. Similarly c(y) =
∑J

j=0 xijc(kj). We define

wij = wi(kj), cj = c(kj), and vij = wij − (I − i)(wi+1j −wij), where wI+1j is understood

to be wIj . Then, CBPcx can be rewritten as:

CBPcxL : Maxxij

{
I∑
i=1

J∑
j=0

(vij − cj)xij

∣∣∣∣∣ x ∈ projx S.

}

Now, since the objective is linear, by Lemma 2.3.2, we replace projx S with projx S
′ and

rewrite CBPcxL as:

CBPcxL2 : Maxxij

{
I∑
i=1

J∑
j=0

(vij − cj)xij

∣∣∣∣∣ x ∈ projx S
′

}
.

Thus, we have shown the following result.

Theorem 2.3.3 When wi(·) and c(·) are piecewise linear functions, whose breakpoints

form a subset of {k1, . . . , kJ}, the continuous cardinality bundling problem can be solved

as CBPcxL2.



28

Observe that CBPcxL2 is identical to the discrete cardinality bundling problem CBP2 for

which we developed anO(IJ) algorithm in Section 2.2.2. Therefore, it follows from Theo-

rem 2.3.3 that the continuous cardinality bundling problem with piecewise-linear functions

can be solved in O(IJ) time.

Corollary 2.3.4 When wi(·) and c(·) are piecewise linear functions, whose breakpoints

form a subset of {k1, . . . , kJ}, there exists an optimal solution where every consumer pur-

chases a bundle in {k1, . . . , kJ}, i.e., yi ∈ {k1, . . . , kJ} for all i.

Now, we relax the assumption that wi and c are piecewise linear functions and

consider the more general case of Lipschitz continuous functions. Recall that a function

f(x) is said to be Lipschitz continuous with Lipschitz constant Lf on an interval [a, b], if

there is a non-negative constant Lf such that |f(x1)− f(x2)| ≤ Lf |x1 − x2| for all x1, x2

that belong to [a, b]. We assume thatwi(y) and c(y) are Lipschitz continuous with Lipschitz

constant β. We will construct piecewise linear approximation for wi(y) (resp. c(y)). Say,

we wish to approximate the solution within ε. Then, we choose k = ε
I(2I+1)β

and J = dY
k
e.

We let kj = jk for j ∈ 0, . . . , J − 1 and kJ = Y . Then, for kj ≤ y ≤ kj+1, we define

wki (y) =
kj+1 − y
kj+1 − kj

wi(kj) +
y − kj
kj+1 − kj

wi(kj+1), ck(y) =
kj+1 − y
kj+1 − kj

c(kj) +
y − kj
kj+1 − kj

c(kj+1).

Observe that wki (·) and ck(·) are piecewise linear functions. Let Πc be the optimal value of

CBPcx and Πk denote the optimal profit when wki (y) and ck(y) are the WTP for Consumer

i and the cost for producing y.
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Theorem 2.3.5 For a given ε, define k = ε
I(2I+1)β

. Then, Πk ≤ Πc ≤ Πk + ε. Further, Πk

can be computed in O
(
I2(I+2)βY

ε
+ I
)

time.

2.4 Conclusion

Pricing of cardinality bundles has not been widely studied in literature although this

bundling scheme is increasingly being adopted in industry. Our paper provides a compre-

hensive analysis of the problem when the consumer’s willingness to pay satisfies Spence-

Mirrlees condition and consumers are restricted to buy only one bundle. In this paper,

we first study the cardinality bundling problem in the context of discrete bundle sizes, the

problem first considered in [1]. We provide a solution approach that can solve the problem

efficiently. Then we use the underline structures from the discrete problem to revisit the

quantity discount problem proposed in [2] and derive insights and solution approaches.
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3. CARDINALITY BUNDLES WITH COMPLEX COSTS

3.1 Introduction

Cardinality bundling, or, in short, CB, is a kind of bundling strategy where bundles

of equal cardinality or size are sold at the same price. One example of how firms adopt CB

is the way Disney World sells themepark tickets. Consumers can purchase multi-day (2, 3,

4 or 5 day) passes from Disney World. A consumer who purchases a 2-day pass can choose

any two themeparks and enter each one for one day. Similarly, a consumer who purchases

a 3-day pass can choose any three themeparks and enter each one for one day, and so on so

forth. The key characteristic of CB is that the vendor only prices for the cardinality of its

goods and let consumers choose the combination of goods they want under the cardinality.

In fact, CB has been adopted by a variety of firms in practice. For example, Eastlink,

a cable TV service provider in Canada, sells bundles of either 12 channels or 20 channels

and let consumers pick which channels they would like to include in the proposed bundles.

Similarly, Netflix, the online DVD rental firm, prices subscription options based on the

number of DVDs a consumers rents each time.

Actually several other types of bundling have been adopted in practice. The first

one is mixed bundling, wherein every possible combination of goods is sold at a possibly

different price. Mixed bundling is the most profitable bundling strategy. However, [4]
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shows that the pricing problem for mixed bundling is only tractable when the number of

goods is small. Other two types of bundling considered are: component bundling and

pure bundling. In component bundling, individual components, rather than the bundles,

are priced. In pure bundling, only a bundle with all possible products is sold. Pricing for

these two types of bundling is relatively easy. But in most cases, these two strategies do

not guarantee optimal profits. [6] shows that in many cases CB is close to the profitability

of mixed bundling and more profitable than component pricing and pure bundling.

The models presented in this paper extend the CB models in [9]. Before we go into

the details of [9], we first review the literature on CB. [1] is the first analytical modeling

paper which studies the pricing of CB. They build the basic CB model assuming that con-

sumers’ reservation price satisfy Spence-Mirrlees Single Crossing Property (SCP). Their

basic model and the SCP assumption are also used in [9] and this paper. They also explore

the properties of the optimal solution for the CB problem. [5] relax the SCP assumption and

propose a nonlinear mixed-integer programming approach to analyze the CB problem. [6]

use computational and empirical results to show that in many cases, CB is as profitable as

mixed bundling.

[9] solve the basic models of CB problem. They first consider the model presented

in [1] and show that it can be solved as a linear programming (LP) problem within polyno-

mial time. They also consider a continuous version of the CB problem where the vendor

can price bundle sizes at continuous values rather than being restricted to integer values,

same as the quantity discount problem that is explored by [2].
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This paper extends [9] in three ways. First, we show that the basic CB model

in [9] can be reformulated as a shortest-path problem. The network structure underlying

the shortest-path formulation provides many insights into cardinality bundling . Second,

we modify the model to include a fixed costs for the vendor to add an additional bundle and

show that with the fixed costs, the problem can still be solved as a shortest-path problem.

We notice that [5] has a similar setting of including fixed costs. The third extension is to

analyze the CB problem without additively separable cost structure. We prove that even

without additively separable cost structure, if the production cost is submodular, the above

two kinds of problems are still solvable in strong polynomial time. Solutions we developed

here can be implemented to a wide scope of industries where economies of scale exists in

production.

3.2 Basic Model and a Shortest-Path Reformulation

In this section we first review the model and some important results from [9].1 Then

we show that the problem can be reformulated as a shortest-path problem. The shortest-

path structure we develop here not only reveals a simple structure for the CB problem, but

also paves a way to solve more complicated problems in the following sections.

3.2.1 Basic Model

The model is developed from a vendor’s perspective who sells J products to I

consumers in the market. In the following, we denote the bundle of size j as Bundle j.

1Please refer to [9] for a complete version of the mode setup and analyses.
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WLOG, all bundles, 1, . . . , J are assumed to be offered in the market. We denote the price

of Bundle j as pj and the cost of Bundle j as cj . The vendor’s objective is to maximize the

profit, which is calculated as the sum of all prices for all the bundles sold minus the sum

of all the costs for the corresponding bundles. We use Bundle 0 to represent consumers’

choice of not purchasing and set p0 = 0 and c0 = 0.

We denote the willingness-to-pay (WTP) of Consumer i for Bundle j as wij . For

each consumer i, WTP is assumed to be non-decreasing with the bundle size and wi0

is assumed to be zero. Each consumer i is assumed to only purchase one bundle, j ∈

{0, 1, 2, . . . , J}, that maximizes her surplus calculated as wij − pj . Let xij be 1 if Con-

sumer i ∈ {1, 2, . . . , I} buys Bundle j ∈ {0, 1, 2, . . . , J} and 0 otherwise. Then, CBP can

be formulated as follows [?, see]]hitt01:

Let xij be 1 if Consumer i ∈ {1, 2, . . . , I} buys Bundle j ∈ {0, 1, 2, . . . , J} and 0

otherwise. Then, the problem can be formulated as follows [?, see]]ktw14a:

CBP1 : Max
xij ,pj

I∑
i=1

J∑
j=0

xij(pj − cj)

s.t.
J∑

j′=0

(wij′ − pj′)xij′ ≥ wij − pj ∀i, ∀j (3.1)

J∑
j=0

xij = 1 ∀i (3.2)

p0 = 0 (3.3)

xij ∈ {0, 1} ∀i, ∀j. (3.4)
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Constraints (3.2) represents the assumption that each consumer purchases one bundle. Con-

straints (3.1) requires that consumer surplus from the purchased bundle to be no less than

that from any other alternatives.

Following [9], we assume that consumer valuations satisfy the Spence-Mirrlees

Single Crossing Property (SCP) [?, see]]spence01, stating that consumers can be ordered

by types. Higher type consumers (with higher indexes) are willing to pay more on each

bundle size than lower type consumers (with lower indexes) do, and more for each addition

unit. Thus, we impose the following ordering on the consumers’ WTP for the bundles:

wij ≥ wi′j ∀i > i′, (3.5)

wij − wij′ ≥ wi′j − wi′j′ ∀i > i′, ∀j > j′. (3.6)

In [9], the authors explore a few properties of the optimal solution of CBP1. Next,

we review one of those properties that is especially useful in the extended models which

will be discussed later on. Proposition 4 in [9] states that consumers with higher indexes

always purchase bundle sizes larger than consumers with lower indexes. Thus, we can add

the following redundant yet useful constraints into the model:

J∑
j′=j

xi+1j′ ≥
J∑

j′=j

xi,j′ i = 1, . . . , I − 1, ∀j. (3.7)
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Notice, the proof of this proposition still holds even if there are fixed costs in the model

(discussed in Section 3.3) or the costs have a general submodular form (discussed in Sec-

tion 3.4).

3.2.2 A Shortest-Path Reformulation

[9] demonstrates that a solution to CBP1 can be obtained by solving a linear pro-

gramming problem. Next, we show that CBP1 can also be solved as a shortest path prob-

lem.

Following [9], we use the following formulation to linearly transform the WTP

matrix wij to another matrix vij:

vij = wi,j + (I − i)(wi,j − wi+1,j) (3.8)

The way we transformwij to vij plays an important role in developing the solution approach

for CBP1. A detailed discussion on the definition of vij and its implications is provided

in [9]. In short, vij captures that when the vendor allocates Consumer i to purchase Bun-

dle j, how his revenue will change. It combines the gain from the bundle sold and the

loss from vendor’s decremental ability to extract surplus from consumers other than i. by

transforming wij to vij , we are able to reformulate CBP1 to a shortest-path formulation.
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Theorem 3.2.1 CBP1 is equivalent to the following shortest path problem on a graph

which has 2I(J + 1) + 2 nodes and (I + 2)(J + 1) + (I − 1)(J + 1)(J + 2)/2 edges:

CBP3 : Minxij ,χijj′
−

I∑
i=1

J∑
j=0

(vij − cj)xij

s.t.
J∑
j=0

χ00j = 1 (3.9)

χ00j = x1j (3.10)
J∑
j=0

χIjJ = 1 (3.11)

χIjJ = xIj (3.12)

xij =
J∑

j′=j

χijj′ ∀i∀j (3.13)

j∑
j′=0

χi−1,j′,j = xij ∀i ∀j (3.14)

χijj′ ∈ {0, 1} ∀i ∀j ∀j′ ≥ j. (3.15)

The problem formulation in Theorem 3.2.1 can be seen as a shortest-path problem on a

suitable acyclic network. Therefore, one can use a combinatorial algorithm that traverses

the vertices in the order generated by a topological sort and finds the shortest path in linear

time.

Example 3.2.2 Consider a scenario with I = 4 consumers, J = 4 bundle sizes, and costs

cj = 0 for all j. Suppose the WTP for the consumers are as given in Table 3.1. It can be

verified easily that they satisfy SCP. The corresponding vij values are also shown in Table

3.1.
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Table 3.1.: WTP and vij values for Example 3.2.2

Bundle Consumers’ WTP
size I1 I2 I3 I4

0 0 0 0 0
1 26 36 58 100
2 47 62 91 180
3 58 77 113 221
4 62 83 123 240

Bundle vij
size I1 I2 I3 I4

0 0 0 0 0
1 -4 -8 16 100
2 2 4 2 180
3 1 5 5 221
4 -1 3 6 240

We illustrate the shortest-path structure of CBP3 on Example 3.2.2.Figure 3.1 illustrates

the associated network where the source node is the top-left node and the sink node is

the bottom-right node. One unit of flow starts from the source node, travels through the

network, and finally arrives at the sink node. Each edge in the network is directed from

left to right. Observe that, the edges in the network point sideways or downwards, but not

upwards. It is consistent with Proposition 4 in [9], stating that the consumers with higher

indexes purchase weakly larger sized bundles than consumers with lower indexes. The

network has a multipartite structure, each partition corresponding to a consumer. Apart

from the source node and the sink node, there are 2I(J + 1) nodes, with two nodes for

each pair of consumer and bundle size. There are two types of edges in the network, solid

and dotted. The solid edges connect two nodes that correspond to Consumer i purchasing

Bundle j and the dotted edges connect the different partitions of the network. The variable

xij indicates the flow on the solid edge, and χijj′ is the flow on the dotted edge that connects

the end node of the edge with xij flow with the start node of the edge with xi+1,j′ flow. The

per unit cost of flow through the solid edge is −vij + cj whereas there is no cost for the

flow through the dotted edge. In Figure 3.1, there are two numbers shown above each
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solid edge. The number outside the parenthesis is the cost per unit flow on the edge. The

number inside the parenthesis is the shortest distance to this node from the source node. The

actual assignment of consumers to bundles is obtained from the nodes that the shortest path

visits.Observe that, the shortest path can be computed by keeping track of the predecessor

of each node.

x10

x11

x12

x13

x14

x20 x30 x40

x21 x31 x41

x22 x32 x42

x23 x33 x43

x24 x34 x44

0 0 0 0

4 8 -16 -100

-2 -4 -2 -180

-1 -5 -5 -221

1 -3 -6 -240

(0)

(4)

(-2)
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(1)

(0)
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(-7)

(-5)

(0)

(-16)

(-8)

(-12)

(-13)

(0)

(-116)

(-196)

(-237)

(-256)

Figure 3.1.: The shortest path problem formulation for Example 3.2.2

We remarked earlier that the algorithm for solving the shortest path problem on an

acyclic network takes linear time. Since this network has O(IJ2) edges, a straightforward

implementation takes this much time. However, we can exploit the network structure to

make the algorithm faster. We traverse the nodes, one consumer at a time, from left to

right. For each consumer, we visit the nodes from smallest bundle size to largest bundle

size. For each pair of consumer and bundle sizes, (i, j), there are two nodes, namely the

start and end node of the edge with xij flow. We denote the longest path to the start node

of (i+ 1, j) as lij . Then, define lij = max{lij−1, li−1j + vij − cj}, where l0j is understood

to be zero. These computations take O(IJ) time and solve CBP3. The formulation of this

method is exactly the same as that of CBP2b given in [9].
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3.3 Fixed Costs

In this section, we discuss the CB problem with fixed costs in setting up each bundle

size. Such an extension is particularly important to vendors, such as on-line music stores,

who could provide a huge amount of bundle sizes in the market. In fact, vendors in many

industries will limit the number of bundles they provide to the consumers. For example,

Eastlink only sells bundles of 1 channel, 12 channels, and 20 channels in the market. One

important reason is that setting up and managing each additional bundle size is costly to

the vendor. We notice that the nonlinear mix-integer model developed in [5] has a constant

fixed cost to add each additional bundle size. Next, we modify CBP1 to handle the situation

when the vendor incurs a fixed cost fj if at least one consumer is allocated to Bundle j. All

the other settings and assumptions in CBP1 are not changed.

Let oj be 1 if Bundle j ∈ {0, 1, . . . , J} is available in the market and 0 otherwise.

Then, the CB problem with fixed costs can be formulated as follows:

CBPf : Max
xij ,pj ,oj

I∑
i=1

J∑
j=0

xij(pj − cj)−
J∑
j=0

fjoj

s.t. (3.1), (3.2), (4.2), (3.4)

xij ≤ oj ∀i;∀j (3.16)

oj ∈ {0, 1} ∀i, ∀j. (3.17)

Constraints (3.16) requires Bundle j to be available on the market if it is purchased by

any consumer. The additional item −
∑J

j=0 fjoj in the objective function represents the

deduction in profit due to the fixed costs. Obviously, if fj = 0 ∀j, then CBPf is same as
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CBP1. Interestingly, we can modify the shortest-path formation CBP3 to make it be able

to solve CBPf.

Theorem 3.3.1 CBPf is equivalent to the following shortest path problem on a graph

which has 2I(J + 1) + 2 nodes and (I + 2)(J + 1) + (I − 1)(J + 1)(J + 2)/2 edges:

CBP3f : Minxij ,χijj′
−

I∑
i=1

J∑
j=0

(vij − cj)xij +
I∑
i=1

J∑
j=0

J∑
j′=j+1

χijj′fj′

s.t. (3.9), (3.10), (3.11), (3.12), (3.13), (3.14), (3.15).

Observe that the only difference between CBP3 and CBP3f is that there is an additional

item in the objective function of CBP3f: +
∑I

i=1

∑J
j=0

∑J
j′=j+1 χijj′fj . The interpretation

of this change is actually straightforward. In any solution of CBP3f, when χijj′ = 1 for

some i, j, and j′ > j, it captures that conditionally on Consumer i is allocated to Bundle j,

Consumer i+ 1 is allocated to a larger size Bundle j′ larger than Bundle j. As a result, the

vendor incurs a fixed cost fj′ to make Bundle j′ available and thus reduces his profit by the

same amount.

We now add fixed costs to Example 3.2.2 to illustrate the underlining shortest-path

structure of CBP3f.

Example 3.3.2 In the setting of Example 3.2.2, add f1 = 2, f2 = 5, f3 = 4, and f4 = 3 as

fixed costs for setting each bundle size accordingly.

Figure 3.2 illustrates the associated network of CBP3f. It is quite similar as the

network of CBP3 shown in Figure 3.1. The only difference is that in Figure 3.1, there is
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Figure 3.2.: The shortest path problem formulation for Example 3.3.2

no cost for any dotted edges, but in Figure 3.2, each downwards dotted edge has a cost for

the flow to go through. Each downwards edge represents that the next consumer purchases

a different bundle size than the one purchased by the the previous consumer, and therefore,

the vendor need to incur a corresponding fixed cost to make this bundle size available.

Notice that the all there is no cost for any sidewards dotted edge, representing that if the

next consumer makes the same purchase decision as the previous consumer, the vendor will

not incur any new fixed cost. Same as CBP3, the shortest path on this graph represents the

optimal solution of CBP3f.

We next show that there exists a fast algorithm to solve CBP3. We next show that

CBP3f can be reformulated to the following CBP3a, and then show that there exists a fast

algorithm to solve the dual of it.

Proposition 3.3.1 ∀i ∈ {1, 2, . . . , I}, ∀j ∈ {0, 1, . . . , J}, Let aij = xij, bij =
∑j−1

j′=0 xij′−∑j−1
j′=0 xi+1,j′ , cij =

∑j−1
j′=0 χi−1,j′j, and dij = xi−1,j , where x0j, ∀j and χ0jj′ , ∀j, ∀j′ are
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understood to be 0. Let aI+1,j = bI+1,j = cI+1,j = dI+1,j = 0, ∀j{0, 1, . . . , J + 1}, and

ai,J+1 = bi,J+1 = ci,J+1 = di,J+1 = 0, ∀i{1, 2, . . . , I + 1}. Then, CBP3f is equivalent to

the following CBP3a:

CBP3a : Max
aij ,bij ,cij ,dij

I∑
i=1

J∑
j=0

(vij − cj − fj)cij +
I∑
i=1

J∑
j=0

(vij − cj)dij

s.t. aij + bij − bi,j+1 − ci+1,j = 0 ∀i, ∀j (3.18)

−ai,j+1 + cij + dij − di+1,j = 0 ∀i, ∀j (3.19)

aIJ + bIJ + cIJ + dIJ = 1 ∀i, ∀j (3.20)

aij ≥ 0; bij ≥ 0; cij ≥ 0; dij ≥ 0 ∀i, ∀j. (3.21)

Theorem 3.3.3 CBP3d is the dual of CBP3a and can be solved within O(IJ) time.

CBP3d : Min
l1ij ,l

2
ij

z

s.t. l1ij ≥ l1ij−1 i = 0, . . . , I; j = 1, . . . , J (3.22)

l1ij ≥ l2ij−1 i = 0, . . . , I; j = 1, . . . , J (3.23)

l2ij ≥ l1i−1j + vij − cj − fj i = 1, . . . , I; j = 0, . . . , J (3.24)

l2ij ≥ l2i−1j + vij − cj i = 1, . . . , I; j = 0, . . . , J (3.25)

z ≥ l1IJ (3.26)

z ≥ l2IJ (3.27)

l100 = l200 = 0.
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3.4 Submodular Cost Function

In this section, we go back to assume there are no fixed costs and focus on another

extension on bundle costs. In [9], the authors solve CB problems with both the discrete

bundle sizes and the continuous bundle sizes. For both cases, the authors assume a separa-

ble cost structure, i.e., the cost of goods sold to a consumer depends only on the bundle size

she buys. As mentioned before, this cost structure was studied earlier by [1] and [2]. Ob-

serve also that the shortest-path algorithm applies even if the costs are consumer-specific,

i.e., cj are replaced with cij . Nevertheless, cost structures, such as scale economies, cannot

be accommodated even with consumer-specific costs. For example, these models cannot

capture a cost-component that is concave in the sum of the bundle sizes sold to the con-

sumers. This is because the cost of selling an additional unit to a consumer depends on

what other consumers purchase. In this section, we extend our analyses to a more general

cost structure. We remark that although we express these changes in terms of costs, they

can also be used to model additional value generated for the vendor by sale of extra goods

to consumers. For example, these ideas can be used to model a convex value function that

depends on the total sales, which may capture benefits due to externalities or larger market

presence.

3.4.1 Discrete Case

In this section, we consider the discrete case where Bundles 0, . . . , J are offered by

the vendor, and a cost function C ′(j1, . . . , jI) – where, for each i, ji represents the bundle
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size allocated to Consumer i – is submodular in {j1, . . . , jI}. We define zij =
∑J

j′=j xij .

Then, observe that xij = zij − zij+1, where ziJ+1 is understood to be zero. Also, observe

that the bundle ji that Consumer i purchases is:

ji =
J∑
j=0

jxij =
J∑
j=1

j∑
j′=1

xij =
J∑

j′=1

J∑
j=j′

xij =
J∑

j′=1

zij′ . (3.28)

If we define C(z) = C ′
(∑J

j=1 zij, . . . ,
∑J

j=1 zIj

)
, then the vendor’s decision problem is:

CBPg : Maxzij

I∑
i=1

J∑
j=0

vij(zij − zij+1)− C(z)

s.t. zi0 = 1 ∀i (3.29)

zij ≥ zij+1 ∀i; ∀j ≤ J − 1 (3.30)

zij ≤ zi+1j ∀i ≤ I − 1; ∀j (3.31)

zij ∈ {0, 1} ∀i; ∀j. (3.32)

Given the definition of zij , Constraint (3.29), Constraint (3.31), and Constraint (3.30) are

equivalent to Constraint (3.2), Constraint (3.7), and the non-negativity of xij variables re-

spectively. Therefore:

Proposition 3.4.1 The feasible region of CBPg (resp., relaxation of CBPg with no inte-

grality constraints on z) is obtained via a one-to-one linear transformation zij =
∑J

j′=j xij

from the feasible region of CBP2 (resp., relaxation of CBPg with no integrality constraints

on x).
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We next show that the feasible region of CBPg forms a lattice family [10]. A family

C of sets is called a lattice family if for all A, B ∈ C, it holds that A ∪ B, A ∩ B ∈ C. A

set A can be mapped into binary values using its incidence vector, i.e., a vector χA whose

entries are labeled with the elements of the universal set and χAi = 1 ⇔ i ∈ A, otherwise

χAi = 0. We claim that the binary solutions feasible to CBPg are incidence vectors of a

lattice family. In order to show this, consider two feasible solutions z1 and z2 and construct

z′ (resp., z′′) such that z′ij = max{z1
ij, z

2
ij} (resp., z′′ij = min{z1

ij, z
2
ij}). We verify that z′

and z′′ are feasible to CBPg. First consider z′. Constraints (3.29) and (3.32) are obviously

satisfied. The following shows that z′ satisfies Constraint (3.30): z′ij = max{z1
ij, z

2
ij} ≥

max{z1
ij+1, z

2
ij} ≥ max{z1

ij+1, z
2
ij+1} = z′ij+1, where the inequalities follow because z1

and z2 satisfy Constraint (3.30). Similarly, it follows that z′ satisfies Constraint (3.31). The

arguments for showing feasibility of z′′ are similar. We refer to z′ (respectively, z′′) as the

join (respectively, the meet) of z1 and z2 and denote it as z1 ∨ z2 (respectively, z1 ∧ z2).

Proposition 3.4.2 For any z in the feasible region of CBPg and i ∈ {1, . . . , I}, let ji be

as given in (3.28). Then, C(z) is submodular over the feasible region of CBPg.

We remark that Proposition 3.4.2 only shows the submodularity of C(z) for points

feasible to CBPg.2 We now show that CBPg can be solved in strongly polynomial time,

which thereby yields an efficient algorithm for the vendor to price the bundles.

2Consider, for example, allocations x1 and x2 such that, for some i, x1i1 = 0.5, x1i3 = 0.5, and x2i2 = 1. Let
z1 and z2 be the corresponding solutions in the z-space and define z′ = z1 ∨ z2 and z′′ = z1 ∧ z2. Then, it
follows that z1i = (1, 1, 0.5, 0.5) and z2i = (1, 1, 1, 0). Using (3.28), the first solution corresponds to j1i = 2,
and the second solution also corresponds to j2i = 2. But, z′i = (1, 1, 1, 0.5) and z′′i = (1, 1, 0.5, 0) and the
corresponding j′i = 2.5 whereas j′′i = 1.5. Therefore, for general z, the submodularity does not follow.



46

Theorem 3.4.1 If C(z) is submodular over the feasible region of CBPg, and for a given

z, C(z) can be evaluated in strongly polynomial time, then CBPg can be solved in strongly

polynomial time.

We remark that the algorithm that is used in Theorem 3.4.1 to solve CBPg in poly-

nomial time is based on extending C(z) from the lattice family to a submodular function

over [0, 1]I×(J+1), which still attains the same maximum. Then, the new function can be

maximized in polynomial time using the algorithm of [11] or [12]. Exposing the structure

of this problem brings many tools from supermodular optimization that can be used to bear

on the cardinality bundling problem. For example, one can readily say that the optimal

solutions of CBPg forms a non-empty subcomplete lattice of its feasible set [?, Corollary

2.7.1 in]]t98.

We now consider a more interesting application. Assume that C(z) = C ′′(m, z)

where m are some parameters of the cost function. Assume C ′′(m, z) is submodular in

(−m, z) space. Then, it follows from Theorem 2.7.6 in [13] that the optimal solution is a

supermodular function of m. In the setting of Section 3.2, this can be interpreted by letting

m denote the marginal cost vector, i.e., mj = cj − cj−1. Assume now two settings, with

marginal costs m1 and m2 and assume m1 ≥ m2. Then, the reduction in profit for an

increase in m1 by some ∆ is no more than the reduction in profit for an increase in m2 by

the same ∆.

In this setting, we can also extend the result of Corollary 11 in [9]. According to

this corrollary, if the marginal cost decreases, then every consumer will shift to purchase

weakly larger sized bundles. First, we provide a standard definition of set ordering. Given
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two sets of allocationsX ′ andX ′′ we say that a setX ′ v X ′′, or thatX ′ is smaller thanX ′′,

if for every allocation z′ ∈ X ′ and z′′ ∈ X ′′, it holds that z′ ∧ z′′ ∈ X ′ and z′ ∨ z′′ ∈ X ′′.

Corollary 3.4.2 If C ′′(m, z) is submodular in (m, z) then the set of optimal solutions of

CBPg are increasing in m, i.e., consumers buy non-increasing bundle sizes with increase

in m. Let m1 > m2 and assume that C ′′(m, z) has strictly increasing differences in (m, z).

If z′ (resp. z′′) is an optimal solution to CBPg with m1 (resp. m2) then z′ ≥ z′′.

3.4.2 Continuous Case

In this section, we explore the extension of the continuous case to allow for sub-

modular cost functions. The continuous case with separable costs are discussed in [9].

Here we first briefly review the model. The model is similar to CBP1 except that we use

a continuous variable y ∈ R+ to represent the bundle sizes, instead of using an index j to

denote discrete sizes. Then all the other variables xij and pj , and parameters wij that are

previously indexed with j ,now become a function of y: xi(y), p(y), and wi(y). Thus the

continuous problem can be modeled as:

CBPc1 : Max
yi,p(y)

I∑
i=1

(p(yi)− c(yi))

s.t. wi(yi)− p(yi) ≥ wi(y)− p(y) ∀i ∀y. (3.33)

Next, based on CBPc1, we discuss the continuous case with submodular cost func-

tion. As before, we define vi(y) = wi(y)−(I−i)(wi+1(y)−wi(y)) for all i, wherewI+1(y)

is assumed to be wI(y). Then, , we reformulate the cardinality bundling problem as:
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CBPgcy : Maxyi

I∑
i=1

vi(yi)− C ′(y1, . . . , yI)

s.t. yi+1 ≥ yi 1 ≤ i ≤ I − 1 (3.34)

0 ≤ yi ≤ Y ∀i, (3.35)

where we assume that C ′(y) is submodular in y. Let k(·) : {0, . . . , J} → [0, Y ] be such

that 0 = k(0) < · · · < k(J) = Y . We assume that for all i, wi(y) are piecewise-linear with

breakpoints that belong to {k(0), . . . , k(J)}. In [9], we also assumed piecewise-linearity

for the cost. We extend this assumption to the current setting. Observe that this requires

some detail since C ′(·) is now a multi-dimensional function.

Consider a y ∈ RI that is feasible to CBPgcy. For each i, let a(yi) = arg minj{yi−

k(j) | k(j) ≤ yi}. If k(a(yi)) = Y define g(yi) = 0, otherwise define g(yi) = yi−k(a(yi))
k(a(yi)+1)−k(a(yi))

.

Assume that π = (π(1), . . . , π(I)) is a permutation of {1, . . . , I} that sorts g(yi) such

that g(yπ(1)) ≥ · · · ≥ g(yπ(I)). If g(yi) = g(yi′) for some i < i′, we assume that

π−1(i′) < π−1(i). Let ei be a unit vector such that eii = 1 and eii′ = 0 for i 6= i′. For

r = 0, . . . , I , define ar = (a(y1), . . . , a(yI)) +
∑r

i=1 e
π(i). Let yr be defined so that

yri = k(ari ) if ari ≤ J and yri = Y otherwise. It is clear that, for all i, yri ∈ {k0, . . . , kJ}.

Therefore, yr satisfies Constraint (3.35). We now argue that ari ≤ ari+1 for i ≤ I − 1. Ob-

serve that this implies that yr satisfies Constraint (3.34) and is feasible to CBPgcy because

k(j) ≤ k(j′) for j < j′.

Lemma 3.4.3 ari ≤ ari+1 for i ≤ I − 1. Consequently, yr is feasible to CBPgcy.
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For notational convenience, define π(0) = 0, π(I + 1) = I + 1, g(y0) = 1, and

g(yI+1) = 0. We now assume that C ′(y) ≥
∑I

r=0

(
g(yπ(r))− g(yπ(r+1))

)
C ′(yr). For ex-

ample, we discuss later that this property is satisfied by piecewise linear or concave cost

functions. Observe that, for all r, g(yπ(r))−g(yπ(r+1)) ≥ 0 and
∑I

r=0

(
g(yπ(r))− g(yπ(r+1))

)
=

g(y0)− g(yI+1) = 1. Furthermore

I∑
r=0

(
g(yπ(r))− g(yπ(r+1))

)
yri

= k(a(yi))

π−1(i)−1∑
r=0

(
g(yπ(r))− g(yπ(r+1))

)
+ k(a(yi) + 1)

I∑
r=π−1(i)

(
g(yπ(r))− g(yπ(r+1))

)
= k(a(yi))(1− g(yi)) + k(a(yi) + 1)g(yi)

= yi.

(3.36)

Therefore, y can be expressed as a convex combination of feasible points yr, r = 0, . . . , I

and we have assumed that the convex combination underestimates the cost. This hypothesis

is sufficient to show that the solution of the continuous cardinality bundling problem can

be restricted to lie on the breakpoints.

Theorem 3.4.4 Assume wi(·) are piecewise linear with breakpoints in {k(0), . . . , k(J)}.

Further, assume thatC ′(y) is submodular andC ′(y) ≥
∑I

r=0

(
g(yπ(r))− g(yπ(r+1))

)
C ′(yr).
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Then, there exists an optimal solution y∗ to CBPgcy that is such that, for all i, y∗i ∈

{k(0), . . . , k(J)}. Let z∗ be optimal to

CBPgcz : Maxzij

{
I∑
i=1

J∑
j=0

vij(zij − zij+1)− C(z) | (3.29), (3.30), (3.31), (3.32)

}
,

where, C(z) = C ′
(∑J

j=1

(
k(j)− k(j − 1)

)
z1j, . . . ,

∑J
j=1

(
k(j)− k(j − 1)

)
zIj

)
. Then,

y∗ may be chosen such that y∗i =
∑J

j=1

(
k(j)− k(j − 1)

)
z∗ij .

Since, by Theorem 3.4.1, CBPgcz can be solved in strongly polynomial time, we

have the following:

Corollary 3.4.5 Assume wi(·) are piecewise linear with breakpoints in {k(0), . . . , k(J)}.

Further, assume thatC ′(y) is submodular andC ′(y) ≥
∑I

r=0

(
g(yπ(r))− g(yπ(r+1))

)
C ′(yr).

Then, CBPgcy can be solved in strongly polynomial time (assuming k(0), . . . , k(J) are

part of the input).

We remark that Theorem 3.4.4 generalizes Theorem 16 and Corollary 17 in [9]. This is be-

cause the cost functions treated in [9] are additively separable, i.e., sum of one-dimensional

functions, which are always submodular. Further, piecewise-linearity assumed in [9] is

a special case of the requirement C ′(y) ≥
∑I

r=0

(
g(yπ(r))− g(yπ(r+1))

)
C ′(yr) in Theo-

rem 3.4.4. In fact, in the case of one-dimensional functions, the right-hand side is precisely

the piecewise linear function with breakpoints at (k(0), . . . , k(J)). Since the inequality

holds trivially, the generalization follows. Similarly, the following result can be easily

obtained.
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Corollary 3.4.6 Assume wi(·) are piecewise linear with breakpoints in {k(0), . . . , k(J)}.

Further, assume that C ′(y) is concave and submodular. Then, CBPgcy can be solved using

CBPgcz in strongly polynomial time (assuming k(0), . . . , k(J) are part of the input).

Now, we consider the general case, where the WTP and cost functions are not

necessarily piecewise-linear. We assume thatwi(·) andC ′(·) are Liptschitz continuous with

Lipschitz constant β, i.e., for all i, |wi(yi) − wi(y′i)| ≤ β|yi − y′i| and |C ′(y) − C ′(y′)| ≤

β‖y − y′‖. We show that Theorem 3.4.4 gives an approach to approximate the solution

of this more general problem. We construct piecewise-linear approximations of wi(y) and

C ′(·). Assume we choose k = ε
2β(I2+

√
I)β

and J = dY
k
e. We let k(j) = jk for j =

0, . . . , J − 1 and k(J) = Y . Then, we define: wki (y) =
kj+1−y
kj+1−kjwi(k(j)) +

y−kj
kj+1−kjwi(k(j+

1)) and C ′k(y) =
∑I

r=0

(
g(yπ(r))− g(yπ(r+1))

)
C ′(yr). Observe that wki (·) and C ′k(·)

satisfy the hypotheses of Theorem 3.4.4. Let Πc be the optimal value of CBPgcy and Πk

denote the optimal profit when wki (·) and C ′k(·) are the WTP for Consumer i and the cost

function respectively.

Theorem 3.4.7 For a given ε, define k = ε
2β(I2+

√
I)β

. Then, Πk ≤ Πc ≤ Πk + ε. Further,

Πk can be computed in time that is polynomial in I , Y , β, 1
ε
, and the time taken by the

oracle call to compute C ′(y).

3.5 Conclusion

In this paper, we first extend the existing CB model to allow fixed costs in adding

additional bundles. We show that CB problem with fixed costs can be solved as a shortest-
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path problem. We then extend the CB model in another way to solve CB problem with sub-

modular cost structure. Such an analysis is especially useful when there exists economies

of scale in production.
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4. CARDINALITY BUNDLES WITH CONSTRAINED PRICES

4.1 Introduction

This paper studies a bundling schemed called cardinality bundling (CB). in CB,

vendors price for the number of goods and let consumers choose with specific products

they what. Pricing for toppings of pizza is a simple example of CB. In many pizza stores,

consumers are priced for the number of toppings regardless of the specific topping types.

Similarly, Disney World uses CB to sell theme park tickets. Instead of selling tickets for

each park separately, Disney World prices consumers for the number of visits to all its

theme parks. More generally, information goods providers such as Netflix and Block-

buster, telecommunication service providers such as AT&T, and cable TV providers such

as Eastlink, are also implementing CB in selling their products or services.

We next briefly review the literature on CB. [1] develop the first cardinality bundling

model. They discover some properties for the optimal solution of cardinality bundling

problem with assuming that consumers’ willingness-to-pays follow Spence-Mirrlees Sin-

gle Crossing Property (SCP). [6] show that the profitability of CB is more than component

pricing and pure bundling, and is close to that of mixed bundling by using computational

and empirical approaches. [9] analytically studies the optimal pricing strategies for CB

problems with SCP consumer valuations. They show that the optimal prices to the prob-
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lem can be obtained, in strongly polynomial time, by solving a linear programming (LP)

problem. Based on the network structure underlying the dual of the LP formulation, they

develop an algorithm to solve the quantity-discount problem proposed by [2].

The models in [1] and [9] assume that each consumer can only purchase no more

than one bundle. This assumption is valid in some industries. For example, each home

usually has no more than one cable TV connection and therefore is only able to purchase

at most one cable TV bundle. Other examples include toppings of pizza and cellular data

pricing plans. However, in some other industries, consumers are not restricted to only pur-

chase one bundle. For example, consumers can easily purchase multiple bundles of songs

at on-line music stores. As a result, the insights obtained by these works do not necessarily

extend to situations when the consumers may purchase more than one bundle. In this paper,

we relax the one bundle per consumer assumption. We introduce sub-additive constraints

on bundle prices to ensure that the consumer incentive compatibility is not violated even if

consumers are allowed to purchase more than one bundle of goods.

In reality, three main types of sub-additive price schemes are used in different in-

dustries. (1) Marginal decreasing prices (MDP) where the marginal price of each additional

unit is weakly decreasing, which is also known as multiple-part tariff pricing [14]. (2) Unit

decreasing prices where the unit price of each bundle is weakly decreasing. Since this type

of price scheme is first introduced by [6] as bundle-size pricing (BSP), we also call it BSP

in this paper. (3) General form of sub-additive prices (CBSP) where the price of any bundle

is no less than the total price of any two other bundles which can together form the previous

one. In this paper, we study these various kinds of CB problems with different constraints
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on bundle prices. In order to get tractable and meaningful results, we additionally assume

Spence-Mirrlees Single Crossing Property (SCP) on consumers’ reservation price. We first

develop a shortest-path solution approach for MDP. Second, we propose a dynamic pro-

gramming algorithm to solve BSP. Third, we analyze the CB problem with sub-additive

prices and convert its MINLP formulation to a mixed-integer programming (MIP) one.

Finally, we provide analytical and numerical analysis on the gaps between different CB

models.

4.2 Marginal Decreasing Prices (MDP)

4.2.1 Model

In this section, we consider the cardinality bundling problem with marginal de-

creasing prices. The model is built upon that in [9] and we review it here for the sake of

completeness. In this model, a vendor implements cardinality bundling to sell his goods

and seeks a optimal price scheme for each bundle size to maximize his profit. Each con-

sumer makes her purchase decision to maximize her consumer surplus. If a consumer gets

negative surplus from all the bundle sizes, she will purchase nothing.

In this section, the vendor imposes marginal decreasing prices, or MDP, to insure

that for each additional unit, the marginal price is no more than that of the previous unit. It

is straightforward that if the marginal price for each additional unit is weakly decreasing,

than the price of any bundle will always be weakly less than the total price of any other two
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smaller-sized bundles which can form the previous one. As a result, any rational consumer

will never purchase more than one bundle.

Let i ∈ {1, . . . , I} denote consumer indexes and j ∈ {0, . . . , J} denote bundle

size indexes. Notice, Bundle 0 is included in the model to represent consumer’s choice of

purchasing nothing. Let pj and cj denote the price and cost of Bundle j. Let wij ≥ 0 be

the willingness-to-pay of Consumer i for Bundle j. Let xij be a binary variable indicating

whether Consumer i purchases Bundle j. Then, MDP can be formulated as follows:

MDP1 : Max
xij ,pj

I∑
i=1

J∑
j=0

xij(pj − cj)

s.t.
J∑

j′=0

(wij′ − pj′)xij′ ≥ wij − pj ∀i, ∀j (4.1)

p0 = 0 (4.2)

pj − pj−1 ≤ pj−1 − pj−2 ∀j ≥ 2 (4.3)
J∑
j=0

xij = 1 ∀i (4.4)

xij ∈ {0, 1} ∀i, ∀j. (4.5)

Following [1] and [9], we also assume that consumers’ WTP follows the Spence-

Mirrlees Single Crossing Property (SCP):

wij ≥ wi′j ∀i > i′, (4.6)

wij − wij′ ≥ wi′j − wi′j′ ∀i > i′, ∀j > j′. (4.7)
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4.2.2 Properties of the Optimal Solution

First, we identify some properties of the optimal solution.1 Let wmij = wij −

wi,j−1 ∀i ∀j ≥ 1 and wmi0 = 0 be the marginal WTP of each consumer i for each ad-

ditional unit of goods j. Let pmj be the marginal price for each unit of goods j. Similarly,

let cmj be the marginal cost for each unit of goods j.

Proposition 4.2.1 There exists an optimal solution to MDP1 that satisfies:

J∑
j′=j

xi+1j′ ≥
J∑

j′=j

xi,j′ i = 1, . . . , I − 1, ∀j. (4.8)

Proposition 4.2.2 There exists an optimal pricing scheme such that if two bundle sizes j

and j′ are bought by some consumers and j′ > j then pj′ − cj′ > pj − cj .

Lemma 4.2.1 Among the consumers purchasing a non-zero bundle size, the lowest indexed

one is charged at her WTP in every optimal solution.

Proposition 4.2.1, 4.2.2, and Lemma 4.2.1 are proved in [9] when there is no con-

straints on bundle prices. In this paper, we show that in CB models such as MDP, BSP,

or CBSP, where the bundle prices are constrained with various kinds of conditions, Propo-

sition 4.2.1, 4.2.2, and Lemma 4.2.1 are still valid and therefore can be useful to derive

solution approaches for these problems.

In MDP1, we have an additional property that plays a critical roll to solve the

problem.

1All the proofs are omitted.
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Proposition 4.2.3 In the optimal solution, pm∗j , the optimal marginal price for any unit j,

satisfies the following condition:

pm∗1 ∈ {wm11, · · · , wmI1}, pm∗j ∈ {wm1j, · · · , wmi′j, pm∗j−1}∀j ≥ 2,

where i′ = arg Maxi{wmij ≤ pm∗j−1}. That is, the optimal marginal price for any unit j is

priced at the same marginal price as Bundle j − 1, or at some consumer’s marginal WTP

on Bundle j that is no more than pm∗j−1.

By Proposition 4.2.3, we know that pm∗1 ∈ {wm11, · · · , wmi′1}, or, the marginal price

of the first unit is priced at one consumer’s marginal WTP for the first unit. Next, we

can easily get pm∗2 ∈ {wm11, · · · , wmI1, wm12, · · · , wmI2}, or, the marginal price of the first unit

is priced at one consumer’s marginal WTP for the first two units. Recursively, we have

pm∗j ∈ {wm11, · · · , wmI1, wm12, · · · , wmI2,

· · · , wm1j, · · · , wmIj}.

Proposition 4.2.4 Let vjij′ = (I − i′ + 1)(wmij′ − cmj ) where i′ = arg Mini′′{wmi′′j ≥ wmij }.

vjij′ capture how the total profit will change if the marginal price of Bundle j is priced at

the marginal WTP of Consumer i for Bundle j′.

Next, we convert MDP1 to a shortest path problem. Let xjij′ , j′ ≤ j be a binary

variable to indicate whether the marginal price of Bundle j is priced at the marginal WTP

of Consumer i for Bundle j′. Let chiĩj̃
′

jij′ , j
′ ≤ j, j̃′ ≤ j − 1 be a binary variable to indicate

whether the marginal price of Bundle j is priced at wmij′ while that of Bundle j− 1 is priced

at wm
ĩj̃′

. Let vĩj̃
′

jij′ , j
′ ≤ j, j̃′ ≤ j − 1 captures how the total profit will change if χĩj̃

′

jij′ = 1.
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vĩj̃
′

jij′ =



0 if wmij′ = wm
ĩj̃′

0 if wmij′ ≤ wm
ĩj̃′

and j′ = j

−
∑I

i=1wiJ otherwise.

(4.9)

Then we can reformulate MDP1 to the following shortest-path problem:

Theorem 4.2.2 MDP1 is equivalent to the following shortest path problem on a graph

which has (I + 1)I(J + 1) + 2 nodes and no more than I3(J + 1)2/2 edges:

MDP2 : Min
xjij′ ,χ

ĩj̃′
jij′

−
J∑
j=0

I∑
i=1

j∑
j′=1

vjij′xjij′ −
J∑
j=0

I∑
ĩ=1

j−1∑
j̃′=1

I∑
i=1

j∑
j′=1

vĩj̃
′

jij′χ
ĩj̃′

jij′

s.t.
I∑
i=1

x1i1 = 1 (4.10)

J∑
j′=1

I∑
i=1

xJij′ = 1 (4.11)

I∑
ĩ=1

j−1∑
j̃′=1

χĩj̃
′

jij′ = xjij′ , ∀i ∀j ∀j′ ≤ j (4.12)

xjĩj̃′ =
I∑
i=1

j∑
j′=1

χĩj̃
′

jij′ , ∀ĩ ∀j ∀j̃′ ≤ j − 1 (4.13)

χĩj̃
′

jij′ ∈ {0, 1} ∀i ∀j ∀j
′ ≤ j ∀ĩ ∀j̃′ ≤ j − 1. (4.14)

4.3 Unit Decreasing Prices (BSP)

Instead of imposing the marginal decreasing prices, another way to solving the

problem without the single bundle restriction on the consumer is to impose a non-increasing
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unit price constraint on the prices set by the vendor. In such a case, naturally, no consumer

will have an incentive to buy more than one bundle to form the bundle of her desired

size. [6] considers such a restriction, pj
j
≥ pj+1

(j+1)
∀j ≤ J − 1, in their cardinality bundling

formulation and refer to it as the Bundle-Size Pricing (BSP). The vendor’s decision problem

is then

BSP1 : Max
xij ,pj

I∑
i=1

J∑
j=0

xij(pj − cj)

s.t. (4.1), (4.2), (4.4), (4.5),

pj/j ≥ pj+1/(j + 1) ∀j ≤ J − 1 (4.15)

The non-increasing unit price constraint is specified in Equation (4.15). Because of this

constraint, the problem does not retain the structure of the shortest-path problem for MDP1.

Notice, Proposition 4.2.1, 4.2.2, and Lemma 4.2.1 are still valid under BSP1 but Propo-

sition 4.2.3 is not valid anymore. We next develop some new properties for BSP1. From

now on, we relax the concavity assumption on consumers’ WTP.

Proposition 4.3.1 For a given price scheme, assume that Bundle j is purchased by some

consumer(s). Also assume that pj+1, pj+2, · · · , pJ are all high enough so that no consumer

purchase any bundle size greater than j. If we reduce pj+1 to a certain level such that some

consumer change to purchase pj+1, then this consumer purchases Bundle j before pj+1 is

changed.
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Next, we develop a unit-price based dynamic programming algorithm for solving

BSP1 when the costs are separable in bundle sizes. In this algorithm, the unit prices can

only take discrete values. The feasible set of unit prices correspond to a grid of length ε.

There are total K points on the grid. K is determined by K = WIJ/ε, where WIJ is last

consumer’s willingness-to-pay for the largest bundle size. We use the variable k = 1 to

denote the individual grid points and uk as the corresponding unit price. largest bundle

size. We use k = 0, 1, . . . , K for grid step index and uk for unit price on grid step k.

According to the definition of BSP, all bundle sizes are available in the market and

the unit price of each bundle is no more than a smaller-sized bundle. Our algorithm start

with finding out the maximum total profit when the unit price of Bundle 1 is priced at uk

and the unit price of any other larger-sized bundle is also priced at uk. This situation is

same as providing all bundles with the same unit price uk. For each grid index k, we can

easily find out which consumer i is the lowest type consumer starting to purchase and how

many units she want to purchase according to her WTP. Similarly, we can also find out how

many units each other higher type consumer purchases and then get the total profit by the

vendor. We denote this profit value as Πi1k. More generally, let Πijk be the maximum total

profit if bundle size j is the first one to be provided at unit price uk (i.e., the unit price of any

smaller-sized bundle is greater than uk) and consumer i is the first one to start purchasing

this bundle.

We have already show how to calculate Πi1k ∀i, ∀k. We can then calculate

Πi2k ∀i, ∀k, based on Πi1k results. We use a function ∆(i, 2, k, i′, 1, k′) to calculate the

change in total profit for a reducing in unit price. It basically calculates which consumers
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will switch from purchasing Bundle 1 to Bundle 2 because of the availability of Bundle 2

and how many units each of these consumers purchase with the new unit price. Therefore,

we have Πi2k = max Πi′1k′ + ∆(i, 2, k, i′, 1, k′). By using the same recursive logic, we

can continue to calculate Πijk for any larger bundle size j as well and can finally find the

optimal solution for the BSP problem.

The pseudo-code for the algorithm is shown as follows:

for i, j; i <= I, j <= J do
u0 = wij/j;
πijK = Π(i, j);
for i1, j1, k1; i ≤ i1 ≤ I, j ≤ j1 ≤ J, k1 ≤ K do

for i2, j2, k2; i2 ≤ i1, j2 ≤ j1, k2 ≤ k1 do
Πtemp = Πi2j2k2 + ∆(i2, j2, k2, i1, j1, k1)
if Πtemp ≥ Πi1j1k1 then

Πi1j1k1 = Πtemp

end if
end for

end for
if maxk{ΠIJk} > Πmax then

Πmax = maxk{ΠIJk};
end if

end for
Algorithm 1: A Dynamic Programming Algorithm for BSP

Theorem 4.3.1 When the costs are separable in bundle sizes, for any given total error εt,

let the grid step length parameter be ε = 2εt/(J + 1)JI . Then the proposed algorithm

guarantees that the gap between the optimal profit and the solution generated by the al-

gorithm is no more than εt. Moreover, the computation complexity is O(I3J4K2), where

K = WIJ/ε.
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4.4 Sub-Additive Price (CBSP)

In the previous section, we remove consumers’ incentives to purchase more than

one bundle by imposing the non-decreasing unit price constraint. However, in some cases

it may be a more strict constraint than necessary. The following example illustrates that the

non-decreasing unit price constraint may reduce vendor’s profits.

Example 4.4.1 A music store can offer a single song for $4 each, and a bundle size 10 for

$10. If someone wants 11 songs, she needs to pay $14 to get a bundle and a single song,

which has a higher unit price than that of bundle size 10. Imposing the non-decreasing unit

price constraint in this scenario will reduce vendor’s profits.

To overcome this issue, we propose a CBSP model, cardinality bundling problems

with sub-additive prices, in this section. Formulating the CBSP problem is similar to BSP1,

except replacing the non-increasing unit price Constraints (4.15) with the following price

sub-additivity constraints:

pj ≤ pj′ + pj−j′ ∀j ∀j′ <
1

2
(j + 1)

Proposition 4.4.1 Solutions to CBP and BSP are respectively the lower and upper bounds

for CBSP.

CBP is the CB problem without any constraints on bundle prices. It is easy to understand

the rationale behind this result. On one hand, CBP is the same problem as CBSP except

that the price sub-additivity constraints are relaxed. One the other hand, price constraints
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in BSP are stricter constraints than sub-additivity constraints in CBSP, leading to an under-

estimation of CBSP.

When the costs are separable, it is possible to create an MIP formulation. Notice

that the nonlinearity of the objective function in CBSP comes from xijpj . Therefore, we

introduce qij = xijpj to replace all the nonlinear items. By adding Constraints (4.20) -

(4.23), we can reformulate CBSP as an MIP:

CBSP1 : Max
xij ,qij

I∑
i=1

J∑
j=0

qij − xijcj

s.t.
J∑
j=0

xij = 1 ∀i (4.16)

J∑
j′=0

(wij′xij′ − qij′) ≥ wij − pj ∀i, ∀j (4.17)

pj ≤ pj′ + pj−j′ ∀j ∀j′ <
1

2
(j + 1) (4.18)

pj ≤ pj+1 ∀j ≤ J − 1 (4.19)

qij ≥ xijp
L
j ∀j (4.20)

qij ≤ xijp
U
j ∀j (4.21)

qij ≥ xijp
U
j + pj − pUj ∀j (4.22)

qij ≤ xijp
L
j + pj − pLj ∀j. (4.23)

Here, pLj and pUj are upper and lower bound for each pj . Constraints (4.20) - (4.23) ensure

that if xij = 0, then qij = 0, and if xij = 1, then qij = pj . Therefore, MIP formulation

CBSP1 always has the same solution as the MINLP CBSP problem.
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4.5 Gap Analyses

Table 4.1.: Comparison of CBP, CBSP, and BSP

Optimal profit Gap
Problem No. Problem size(I,J) CBP CBSP BSP CBP BSP

1 20,20 152.384 149.884 148.679 1.67% -0.80%
2 20,20 0.8 0.78 0.775 2.56% -0.64%
3 20,20 16.199 16.123 16.119 0.47% -0.02%
4 20,20 22.536 22.536 22.504 0.00% -0.14%
5 20,20 39.435 39.014 38.902 1.08% -0.29%

Average 46.271 45.667 45.396 1.16% -0.38%

We also numerically evaluated how well the three mechanisms compare when the

costs are zero. Table 4.1 shows five numerical examples with 20 consumers and 20 bundles

sizes. All consumers’ WTP is randomly generated according to SCP. In Column three to

five, optimal profits for CBP, CBSP, and BSP are shown. We can see that for all the prob-

lems, CBP optimal value is (weakly) greater than that of CBSP which is (weakly) greater

than that of BSP. We observe that the gaps can be large when using CBP compared to BSP.

To investigate this issue further, we have also theoretically analyzed the gap between CBP

and CBSP, and that between BSP and CBSP when the costs are separable in bundle sizes.

Let Π∗CBP , Π∗BSP , and Π∗CBSP be the optimal profits if the vendor implements CBP, BSP,

or CBSP respectively.

Proposition 4.5.1 When the costs are separable in bundle sizes:

• The gap between the optimal profits of CBP and CBSP can be infinity.

max

{
Π∗CBP
Π∗CBSP

}
=∞.
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• The gap between the optimal profits of CBSP and BSP is smaller than a factor of 8.

max

{
Π∗CBSP
Π∗BSP

}
≤ 8.

4.6 Conclusion

In this study, we first study the CB problem with marginal decreasing prices and

prove that it is a shortest-path problem. Second, we propose a dynamic programming

algorithm to solve the CB problem with unit decreasing prices. Third, we analyze the CB

problem with sub-additive prices and convert its MINLP formulation to a mixed-integer

programming (MIP) one. Finally, we provide analytical and numerical analysis on the

gaps between different CB models. We reconcile the differences in the optimal solutions

obtained via different formulations of cardinality bundling in the literature.

There are several ways to extend the current study. First, there is still room to im-

prove the performance of proposed dynamic programming algorithm for the BSP problem

by combining it with LP cuttings. Second, CBSP problem has only been converted to an

MIP, which is still N-P hard. Third, the gap analysis between MDP to BSP is still miss-

ing. Last but not least, analyzing cardinality bundling problems without Spence-Mirrlees

condition can provide a wider application of these pricing schemes in reality.



APPENDICES
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A. Proof of Proposition 2.2.1

Proof Assume p′ is an optimal price vector that is not non-decreasing and k, the smallest

index for which p′k > p′k+1, is the largest among all optimal price vectors. We claim that

for every feasible solution to CBP1 and for all i, xik = 0. Otherwise, Constraint (3.2)

implies that xik′ = 0 for all k′ 6= k. Since wik ≤ wik+1, wik − p′k < wik+1 − p′k+1 which

violates Constraint (3.1). Therefore, xik = 0. Consider now a price vector p such that

pj = p′j for all j 6= k and pk = pk+1. Let (x, p′) be feasible to CBP1. Since xik = 0,

the objective value for x is the same for both p′ and p. We claim that (x, p) is also feasible

to CBP1 and therefore the optimal value with price p does not decrease. This is because∑J
j′=0(wij′ − pj′)xij′ ≥

∑J
j′=0(wij′ − p′j′)xij′ ≥ wik+1 − p′k+1 ≥ wik − pk, where the first

inequality follows since p′ ≥ p, the second because (x, p′) is feasible, and the last because

wik+1 ≥ wik and pk = p′k+1. Further, existence of k′ > k such that pk′ > pk′+1 contradicts

the choice of p′. Therefore, p must be non-decreasing.
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B. Proof of Proposition 2.2.2

Proof We show the result for a fixed price vector. Then, the first part follows by applying

the argument to an optimal price vector. Observe that there are finitely many solutions to

CBP1 in the x-space for a given p. We consider the allocations that yield the most profit

and order them arbitrarily. Let jk(i′) denote the bundle Consumer i′ buys in the kth such

solution to CBP1. Then, let k′ = arg maxk mini′′
{
i′′ | jk(i′′) > jk(i

′′ + 1)
}

. This means

that k′ is the optimal solution where the first consumer that buys a larger sized bundle than

her immediate successor is of the highest type. Let i ∈ arg mini′′{i′′ | jk′(i′′) > jk′(i
′′+1)}.

Now, construct the solution j(·) where j(i′) = jk′(i
′) when i′ 6= i+ 1 and j(i+ 1) = jk′(i).

We show that j(·) is a feasible assignment of bundles to consumers which achieves at least

the same objective function value, thus deriving a contradiction to the choice of k′. Since

we do not change the assignment for any i′ 6= i+1, we only need to verify that j(·) satisfies

wi+1j(i+1)−pj(i+1) ≥ wi+1j−pj for all j. Now, consider the following chain of inequalities:

0 ≥ wi+1jk′ (i)
− pjk′ (i) − wi+1jk′ (i+1) + pjk′ (i+1)

≥ wijk′ (i) − pjk′ (i) − wijk′ (i+1) + pjk′ (i+1)

≥ 0,



69

where the first inequality follows because i + 1 chooses jk′(i + 1), the second inequality

because jk′(i) > jk′(i+1) implies by SCP thatwi+1jk′ (i)
−wi+1jk′ (i+1) ≥ wijk′ (i)−wijk′ (i+1)

and the last inequality because i chooses jk′(i). Therefore, equality holds throughout.

Then, for any j, it follows that

wi+1j(i+1) − pj(i+1) = wi+1jk′ (i)
− pjk′ (i) = wi+1jk′ (i+1) − pjk′ (i+1) ≥ wi+1j − pj,

where the first equality follows because j(i + 1) = jk′(i), the second equality follows

from the argument above, and the first inequality because i + 1 chooses jk′(i + 1) under

the feasible solution jk′(·). Therefore, we have shown that j(·) is a feasible assignment

of bundles to consumers. Now, we show that the corresponding objective value does not

decrease. This follows since

∑
i′

(
pj(i′) − cj(i′)

)
=
∑
i′ 6=i+1

(
pjk′ (i′) − cjk′ (i′)

)
+ pjk′ (i) − cjk′ (i) ≥

∑
i′

(
pjk′ (i′) − cjk′ (i′)

)
,

where the first equality follows by the definition of j(·). The first inequality follows because

pjk′ (i)− cjk′ (i) ≥ pjk′ (i+1)− cjk′ (i+1) is implied by wijk′ (i)−pjk′ (i)−wijk′ (i+1) +pjk′ (i+1) = 0

and optimality of jk′(·) for p. Otherwise, jk′(i + 1) yields the same surplus to i′ as jk′(i),

which means j′(i′) = jk′(i
′) for i′ 6= i and j′(i) = jk′(i + 1) is feasible, yielding a strictly

higher objective value than jk′(·).
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C. Proof of Proposition 2.2.3

Proof Consider an optimal solution such that no other optimal solution allocates a subset

of the bundle sizes to the consumers. Assume that the bundle sizes sold are {jk, . . . , j1}

where jk < · · · < j1 and the corresponding price vector is p′. If J 6∈ {jk, . . . , j1}, we

assume without loss of generality that p′J = wIJ + ε for some ε > 0. Similarly, we assume

that for j 6∈ {jk, . . . , j1} ∪ {J}, the price is min{pj′ | ∃j′ ≥ j, j′ ∈ {jk, . . . , j1} ∪ {J}}.

So, by optimality of j′, no consumer purchases any bundles not in {jk, . . . , j1}.

We assume that k ≥ 2 since there is nothing to show otherwise. We show by

induction on r that p′jr+1
− cjr+1 < p′jr − cjr for all r < k. Consider r = 1. By Proposi-

tion 2.2.2, Consumers i, . . . , I purchase Bundle j1 for some i ≤ I . Construct a price vector

p′′ where p′′j = p′j for j < j1 and p′′j1 = wIj1 + ε. Any consumer that does not purchase j1

does not alter her decision since the surplus of non-preferred bundles only decreased with

p′′. Since Consumer i − 1 continues to buy Bundle j2, by Proposition 2.2.2, Consumers

i, . . . , I only consider bundles j2 or higher. Since j1 does not offer any surplus, all these

consumers will purchase Bundle j2. Observe that p′j2 − cj2 ≤ p′j1 − cj1 . Otherwise, the

optimal solution with p′′ attains a strictly higher profit. If p′j2 − cj2 = p′j1 − cj1 , the optimal

profit attained with p′′ is the same as that with p′. However, this contradicts the selection of

the optimal solution with minimal number of bundles allocated to consumers. Therefore,

p′j2 − cj2 < p′j1 − cj1 . Now, for the induction step, we assume that p′jr − cjr < p′jr−1
− cjr−1
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and show that p′jr+1
− cjr+1 < p′jr − cjr . Let {i1, . . . , it} be the consumers that purchase

Bundle jr. Then, consider the price vector p′′ such that p′′j = p′j for j 6= jr and p′′jr = p′jr−1
.

Observe that any consumer who does not purchase jr does not change their decision since,

by Proposition 2.2.1, the surplus of non-preferred items only reduced with the price change.

It follows from Proposition 2.2.2 that any consumer in {i1, . . . , it} now purchases one of

the bundles {jr+1, jr, jr−1}. We first show that with p′′, no consumer strictly prefers jr. Let

i ∈ {i1, . . . , it}. Then, wijr − p′′jr = wijr − p′jr−1
≤ wijr−1 − p′jr−1

= wijr−1 − p′′jr−1
. There-

fore, Consumer i weakly prefers Bundle jr−1 over jr under price p′′. Since we assumed

that consumers purchase bundle sizes that offer most profit to the vendor (among the sizes

that offer maximum surplus), it follows from the induction hypothesis that each consumer

prefers Bundle jr−1 over jr. Now, assume that p′jr+1
− cjr+1 ≥ p′jr − cjr , i.e., Bundle jr+1

offers more profit to the vendor as compared to jr. Since all the consumers in {i1, . . . , it}

now purchase either Bundle jr−1 or jr+1, both of which offer either same or more profit to

the vendor compared to p′jr − cjr , the profit under p′′ must be optimal, and thus contradicts

the minimality of the bundles allocated to consumers. Therefore, p′jr+1
− cjr+1 < p′jr − cjr .
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D. Proof of Proposition 2.2.4

Proof Let i1 be the lowest indexed consumer who purchases a bundle of non-zero size,

say j1 > 0. Let p∗ be the optimal price vector. Clearly, p∗j1 ≤ wi1j1 . Now, assume that

p∗j1 < wi1j1 . Consider p′ = p∗ + ∆, where ∆ = wi1j1 − p∗j1 > 0 and a consumer i′ that

purchased a bundle, j′ > 0. Then, wi′j′ − p∗j′ ≥ wi′j1 − p∗j1 ≥ wij1 − p∗j1 = ∆, where the

first inequality is because i′ prefers j′ over j1 and the second inequality follows from SCP

and i′ > i1. Therefore, wi′j′ − p′j′ = wi′j′ − p∗j′ − ∆ ≥ 0. This shows that any consumer

that purchases j′ with p∗ still prefers j′ to not purchasing anything. For any consumer,

the relative preference between bundles of non-zero size does not change. Therefore, all

consumers that purchased any product still purchase the same product. The consumers that

did not purchase a product with p∗ do not have incentive to purchase a product with p′

because the surpluses have reduced. Therefore, the consumer purchasing decisions do not

change. If I ′ is the set of consumers that purchase a bundle of non-zero size, the vendor

makes an additional |I ′|∆ profit due to the increase in price. Since i1 ∈ I ′, it follows that

|I ′| ≥ 1. However, this yields a contradiction to the optimality of p∗ since p′ yields a strictly

higher profit.
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E. Proof of Proposition 2.2.5

Proof For a given x that satisfies (3.2), (3.4), and (3.7), we obtain the optimal prices. Let

J ′ be the set of bundles of non-zero size that some consumers buy. We will derive the prices

for the bundles in J ′ by solving an optimization model. Given the prices of the bundles in

J ′, we show how to price the remaining bundles. If J 6∈ J ′, the price for Bundle J is

assigned to be wIJ + ε. The price of Bundle 0 is fixed at 0. Now consider a remaining

bundle, j ∈ {1, . . . , J}\(J ′ ∪ {J}). The vendor does not want any consumer to purchase

this bundle. Therefore, he may price j at the price of Bundle j′ = min{j′′ | j′′ ≥ j, j′′ ∈

J ′ ∪ {J}}. Since j ≤ J , it follows that the minimum in the definition of j′ is attained.

Now, we compute prices for the bundles in J ′ by solving CBP1 with x variables

fixed to the values given. To emphasize that optimization is in the space of the p variables,

we refer to this formulation as CBPp. We will show that CBPp can be reformulated into

a model that is much simpler. We replace the consumers that do not purchase any bundle

with the highest type consumer that does not purchase any bundle. (Clearly, if this con-

sumer does not have an incentive to purchase a bundle, the lower-type consumers will not

either.) If every consumer purchases some bundle, we create a consumer whose WTP for

all bundles is 0 and therefore does not buy any bundle. Then, we reindex the consumers to
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1, . . . , I ′. We denote the reindexed WTP as w′ and w′I′+1j = w′I′j . We denote by j(i) the

bundle that is assigned to Consumer i. We reformulate CBPp as:

CBP1a : Max
pj(i)

I′∑
i=1

(pj(i) − cj(i)) (E.1)

s.t. w′ij(i) − pj(i) ≥ w′ij(i′) − pj(i′) 1 ≤ i, i′ ≤ I ′ (E.2)

p0 = 0 (E.3)

It can be verified easily that CBP1a and CBPp are equivalent. We assume without loss of

generality, by re-indexing the bundles, that the bundles sizes are {0, 1, . . . , |J ′|}.

Let {i0, i1, . . . , iJ ′} be the lowest-type consumers who buy Bundle j, where by

definition, i0 = 1. Now, we rewrite Constraint (E.2) as w′ij(i) − pj(i) ≥ w′ij − pj for all i

and j ∈ {0, . . . , |J ′|}. Since the constraint for j = j(i) holds trivially, we decompose this

constraint for a Consumer i as follows:

w′ij(i) − pj(i) ≥ w′ij − pj ∀j < j(i) (E.4)

w′ij(i) − pj(i) ≥ w′ij − pj ∀j > j(i). (E.5)

We show that all constraints in (E.4) are redundant except those corresponding to some

i ∈ {i1, . . . , i|J ′|} and j = j(i) − 1. Note that there is no constraint of the type (E.4) for

i = 1. Observe that:

w′ij(i)−w′ij =

j(i)−1∑
j′=j

(w′ij′+1−w′ij) ≥
j(i)−1∑
j′=j

(w′ij′+1j
′+1−w′ij′+1j

′) ≥
j(i)−1∑
j′=j

(pj′+1−pj′) = pj(i)−pj,
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where the first inequality is because of SCP and ij′ ≤ i for all j′ ≤ j(i), and the second

inequality uses (E.4) for some i ∈ {i1, . . . , i|J ′|} and where j = j(i) − 1. Therefore, we

replace (E.4) by the following:

w′ijj − pj ≥ w′ijj−1 − pj−1 1 ≤ j ≤ |J ′|. (E.6)

We will now show that in every optimal solution the inequalities in (E.6) are binding. We

consider a feasible p to CBP1a where at least one of the (E.6) is not binding. Then, we

show that p is not optimal by constructing p′ which is feasible, has at least one more (E.6)

binding, and has a higher objective function value than p. Let j′ = arg min{j | w′ijj−pj >

w′ijj−1 − pj−1}, the index of the first inequality that is not binding, and ∆ = w′ij′j′ − pj′ >

w′ij′j′−1−pj′−1. Then, consider the price vector p′, where p′j = pj for j < j′ and p′j = pj+∆

otherwise. Then, it is easy to see that for j 6= j′, the left hand side of (E.6) changes by the

same amount as the right hand side. Therefore, if the inequality was binding for p then it

remains binding for p′. Further, the adjustment of p′j′ guarantees that (E.6) is binding for

j = j′. Now, we show that p′ is also feasible to (E.5). If j(i) < j′ the inequality follows

since the surplus of bundles that the consumer does not buy only increases. If j(i) ≥ j′,

then both sides of the inequality decrease by the same amount. Therefore, the constraint

holds. Now,

I′∑
i=1

pj(i) − cj(i) <
ij′−1∑
i=1

(p′j(i) − c′j(i)) +
I′∑

i=ij′

(p′j(i) − c′j(i)),

where the inequality follows because ij′ ≤ I ′ and p′i > pi for i ≥ ij′ .
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Constraint (E.5) is redundant since:

w′ij − w′ij(i) =

j∑
j′=j(i)+1

(w′ij′ − w′ij′−1)

≤
j∑

j′=j(i)+1

(w′ij′j′ − w
′
ij′j
′−1)

=

j∑
j′=j(i)+1

(pj′ − pj′−1)

= pj − pj(i).

Here, the first inequality follows from SCP and that ij′ ≥ i whenever j′ ≥ j(i) + 1, the

second equality because (E.6) is tight at an optimal solution.

For any j ∈ J ′, we give a closed-form formula for pj . Since pj(1) = 0 and Con-

straint (E.6) is binding,

pj =

j∑
r=1

(
w′irj(ir) − w′irj(ir−1)

)
.
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It is easy to verify that the above formula is equivalent to (2.10). We define i|J ′|+1 = I ′+ 1

and let w′I′+1j = w′I′j . We now evaluate the objective function value for CBP1a.

I′∑
i=1

(
pj(i) − cj(i)

)
=

|J ′|∑
j=1

ij+1−1∑
i=ij

pj −
I∑
i=1

J∑
j=1

cijxij

=

|J ′|∑
j=1

ij+1−1∑
i=ij

j∑
r=1

(
w′irj(ir) − w′irj(ir−1)

)
−

I∑
i=1

J∑
j=1

cijxij

=

|J ′|∑
r=1

|J ′|∑
j=r

ij+1−1∑
i=ij

(
w′irj(ir) − w′irj(ir−1)

)
−

I∑
i=1

J∑
j=1

cijxij

=

|J ′|∑
r=1

(
(I ′ − ir + 1)w′irj(ir) − (I ′ − ir+1 + 1)w′ir+1j(ir)

)
−

I∑
i=1

J∑
j=1

cijxij

=

|J ′|∑
r=1

ir+1−1∑
i=ir

(
(I ′ − i+ 1)w′irj(ir) − (I ′ − i)w′ir+1j(ir)

)
−

I∑
i=1

J∑
j=1

cijxij

=
I∑
i=1

J∑
j=1

(vij − cij)xij.

Here, the forth equality uses w′10 = 0 and w′I′+1j = w′I′j . By Proposition 2.2.2, every

consumer i′, who purchases a bundle of non-zero size, is reindexed to some consumer in

{1, . . . , I ′}. Let this index be i and observe that I − i′ = I ′− i. Therefore, the last equality

follows.
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F. Proof of Proposition 2.2.6

Proof Consider any subset, T of the allocation variables, xij . By Theorem III.1.2.7 in

[15], the constraint matrix of CBP2 is totally unimodular if and only if T can be partitioned

into two subsets T1 and T2 such that for every constraint,
∑I

i=1

∑J
j=1 dijxij ≤ d0, in CBP2:

∣∣∣∣∣∣
∑

(i,j)∈T1

dij −
∑

(i,j)∈T2

dij

∣∣∣∣∣∣ ≤ 1. (F.1)

We construct such a partition. For Consumer i, let T contain {xij1 . . . , xijki}. If ki is odd,

we include {xij1 , xij3 , . . . , xijki} in T1. Otherwise, we include {xij2 , xij4 , . . . , xijki}. The

remaining variables are in T2. We do the same for every consumer. Now, consider the

variables in T that have a non-zero coefficient in Constraint (3.7). Among these, let the

number of variables for Consumer i that belong to T1 (resp. T2) be ai (resp. bi). Clearly,

bi ∈ {ai − 1, ai} and the same conclusion holds for Consumer i+ 1’s allocation. Then, for

Constraint (3.7), the sum of the coefficients for variables in T1 minus the sum of coefficients

for variables in T2 equals ai − bi − ai+1 + bi+1. Then,

−1 ≤ −ai+1 + bi+1 ≤ ai − bi − ai+1 + bi+1 ≤ ai − bi ≤ 1.
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We have thus verified (F.1) for Constraint (3.7). Verification for Constraint (3.2) is easy

since dki
2
e − bki

2
c ≤ 1. Further, (F.1) holds trivially for bound constraints since they have

only one variable with non-zero coefficient.
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G. Proof of Proposition 2.2.7

Proof We first show that CBP2 can be reformulated to the following problem:

CBP2b : Max
xij

I∑
i=1

J∑
j=0

(vij − cj)xij

s.t. (3.7)

J∑
j=0

xIj ≤ 1 (G.1)

xij ≥ 0 ∀i, ∀j. (G.2)

First, observe that xij ≤
∑J

j′=0 xij = 1. Therefore, xij ≤ 1 can be dropped from CBP2.

Obviously, (G.1) is implied by (3.2). Therefore, CBP2b is a relaxation of CBP2. We now

show the reverse inclusion. We next prove that (3.2) is also implied by (G.1) and (3.7).

Clearly, for any i,
J∑
j=0

xij ≤
J∑
j=0

xIj ≤ 1.

The first inequality follows from (3.7) and the second from (G.1). Since xi0 does not

appears in the objective function of CBP2, if
∑J

j=0 xij < 1 for some i, we can set xi0 =

1 −
∑J

j=0 xij and make
∑J

j=0 xij = 1 without affecting the objective value or any other

constraints. Therefore, CBP2b is equivalent to CBP2.
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Next, we prove that CBP2a is equivalent to CBP2b. Given a solution x feasible

to CBP2b. We show that we can construct (a, x) that is feasible to CBP2a that has the

same objective. Let aij =
∑J

j′=j xi+1,j′ −
∑J

j′=j xij′ . Here, xI+1,J is assumed to be 1 and

xI+1,j,∀j 6= J is 0. Observe that (2.11) is satisfied by definition:

aij − ai,j+1 + xij − xi+1,j

=
J∑

j′=j

xi+1,j′ −
J∑

j′=j

xij′ − (
J∑

j′=j+1

xi+1,j′ −
J∑

j′=j+1

xij′) + xij − xi+1,j

= xi+1,j − xij + xij − xi+1,j

= 0.

Further, (2.12) is satisfied because of aIJ + xIJ = 1− xIJ + xIJ = 1. (2.14) follows from

(3.7) and (G.2).

Let (a, x) be a feasible solution to CBP2a. Observe that 0 ≤ aij = aij − aiJ =∑J
j′=j xi+1,j′−

∑J
j′=j xij′ . The first inequality is by (2.14), first equality is by (2.13), second

equality is by summing (2.11) for j′ from j to J . Therefore, x satisfies (3.7). Now, consider

0 ≤ aI0 = aI0 − aIJ + aIJ = 0−
J−1∑
j′=0

xIj′ + 1− xIJ ,

where the first inequality is by (2.14), second equality is by summing (2.11) for j′ from j

to J − 1 with (2.12). Therefore, x satisfies (G.1). Clearly, xij ≥ 0 by (2.14). Since the

objective depends only on x, we have shown that x is feasible to CBP2b with the same

objective value as (a, x) in CBP2a. Therefore, we have shown the converse.
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H. Proof of Theorem 2.2.3

Proof Let lij, (i, j) 6= (IJ) be the multiplier for each constraint in (2.11) with correspond-

ing (i, j) and lIJ for (2.12). Then we can easily get that CBP2d is the dual of CBP2a.

We next show that there exists an optimal solution to CBP2d such that for each

(i, j), lij = max{lij−1, li−1j + vij − cj}, where l0j is understood to be zero. Clearly, in any

feasible solution, we have lij ≥ max{lij−1, li−1j+vij−cj} ∀i; ∀j because otherwise either

(2.15) or (2.16) cannot hold. Assume l∗ is an optimal solution containing some l∗ij values

such that l∗ij > max{l∗ij−1, l
∗
i−1j + vij − cj}. Let ĵ = arg min{j | l∗ij > max{l∗ij−1, l

∗
i−1j +

vij − cj}} and î = arg min{i | l∗
iĵ
> max{l∗

iĵ−1
, l∗
i−1ĵ

+ viĵ − cĵ}}. Clearly, (̂i, ĵ) 6= (I, J)

because otherwise we can get a better solution l∗′IJ = max{l∗IJ−1, l
∗
I−1J + vIJ − cJ} < l∗IJ

without violating any of the constraints. If we create a new solution l̂ such that l̂ij =

l∗ij ∀(i, j) 6= (̂i, ĵ) and l̂̂iĵ = max{l̂̂iĵ−1, l̂̂i−1ĵ + vîĵ − cĵ} = max{l∗
îĵ−1

, l∗ˆi−1ĵ
+ vîĵ − cĵ}, we

argue that l̂ is also feasible. Changing l∗
îĵ

to l̂̂iĵ only affects four constraints: (1) l̂̂iĵ ≥ l∗
îĵ−1

;

(2) l̂̂iĵ ≥ l∗
î−1ĵ

+ vîĵ − cĵ; (3) l∗
îĵ+1
≥ l̂̂iĵ; and (4) l∗

î+1ĵ
≥ l̂̂iĵ + vî+1ĵ − cĵ . Clearly, the

first two inequalities still hold because of the definition of l̂̂iĵ . The last two inequalities

also hold because the left-hand-side values of both are not changed and the right-hand-

side values are reduced. Since the objective value lIJ is not affected, l̂ is also an optimal

solution. By using the same procedure, we can sequentially update all l∗ij values such that

l∗ij > max{l∗ij−1, l
∗
i−1j + vij − cj} to l∗′ij = max{l∗ij−1, l

∗
i−1j + vij − cj} while maintaining



83

the optimality of the solution. Finally, we can obtain an optimal solution in which for each

(i, j), lij = max{lij−1, li−1j + vij − cj}.

Now we illustrate how to use lij = max{lij−1, li−1j+vij−cj} to quickly find out the

optimal solution. we start with i = 0: l0j = max{l0j−1, 0} = max{max{l0j−2, 0}, 0} =

. . . = 0. Next, we have l10 = max{0, l00 + v10 − c0} = 0. If l1j−1 is known, then we

can calculate l1j = max{l1j−1, l0j + v1j − cj}. Thus, we can calculate l1j ∀j in J + 1

step. Sequentially, we can calculate l2j, . . . , lIj and finally reach lIJ in (I+1)(J+1) steps.

Therefore, the computational complexity for CBP2d is O(IJ).
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I. Proof of Corollary 2.2.4

Proof Let c′ and c′′ be two (non-decreasing) cost vectors such that, for any j ≥ 1, c′j −

c′j−1 ≤ c′′j − c′′j−1. Let x′ be optimal with c′. For c′′, we construct an optimal allocation,

s, where consumers purchase bundles of weakly decreasing size compared to x′. Assume,

x′′ is optimal with cost c′′ and some consumer purchases a bundle smaller than in x′. Since

c0 = 0,

I∑
i=1

J∑
j=1

cjx
′
ij =

I∑
i=1

J∑
j=1

(cj−c0)x′ij =
I∑
i=1

J∑
j=1

x′ij

j∑
j′=1

(cj′−cj′−1) =
I∑
i=1

J∑
j′=1

(cj′−cj′−1)
J∑

j=j′

x′ij.

(I.1)

Now, consider

sij = min

{
J∑

j′=j

x′ij′ ,
J∑

j′=j

x′′ij′

}
−min

{
J∑

j′=j+1

x′ij′ ,
J∑

j′=j+1

x′′ij′

}

and let

tij = max

{
J∑

j′=j

x′ij′ ,

J∑
j′=j

x′′ij′

}
−max

{
J∑

j′=j+1

x′ij′ ,
J∑

j′=j+1

x′′ij′

}
.
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Both sij and tij are feasible and sij + tij = x′ij + x′′ij . Then:

I∑
i=1

J∑
j=1

vij(sij + tij)−
I∑
i=1

J∑
j=1

[
(c′j − c′j−1)

J∑
j′=j

tij′ + (c′′j − c′′j−1)
J∑

j′=j

sij′

]

≤
I∑
i=1

J∑
j=1

vij(x
′
ij + x′′ij)−

I∑
i=1

J∑
j=1

[
(c′j − c′j−1)

J∑
j′=j

x′ij′ + (c′′j − c′′j−1)
J∑

j′=j

x′′ij′

]

≤
I∑
i=1

J∑
j=1

vij(sij + tij)−
I∑
i=1

J∑
j=1

[
(c′j − c′j−1)

J∑
j′=j

tij′ + (c′′j − c′′j−1)
J∑

j′=j

sij′

]
,

(I.2)

where the first inequality is by optimality of x′ with cost c′ and the optimality of x′′ with

cost c′′ and the second inequality follows sij + tij = x′ij +x′′ij and rearrangement inequality

because c′j−c′j−1 ≤ c′′j−c′′j−1,
∑J

j′=j sij′ = min
{∑J

j′=j x
′
ij′ ,
∑J

j′=j x
′′
ij′

}
, and

∑J
j′=j tij′ =

max
{∑J

j′=j x
′
ij′ ,
∑J

j′=j x
′′
ij′

}
. Therefore, equality holds throughout. Since x′ and x′′ are

optimal with c′ and c′′ respectively, s is a feasible allocation which yields optimal profit to

the vendor when the cost is c′′. Since

j∑
j′=0

sij′ = 1−min

{
J∑

j′=j+1

x′ij′ ,
J∑

j′=j+1

x′′ij′

}
≥ 1−

J∑
j′=j+1

x′ij′ =

j∑
j′=0

x′ij′ ,

it follows that s allocates smaller bundle sizes to all consumers compared to x′. Similarly,

for every optimal allocation x′′ with c′′, there exists an optimal allocation t with c′ where

each consumer buys a bundle of size at least as large as in x′′.

Moreover, if c′j−c′j−1 < c′′j−c′′j−1 and there is a consumer i such that
∑J

j′=j x
′
ij = 0

and
∑J

j′=j x
′′
ij′ = 1, then the second inequality in (I.2) is strict and yields a contradiction.

Therefore, if the marginal cost of selling an additional unit (from j − 1 to j) with c′ is

strictly smaller than that with c′′, then no consumer purchases a bundle size less than j
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with c′ but at least j with c′′. If, for all j ≥ 1, c′j − c′j−1 < c′′j − c′′j−1, then with c′ no

consumer purchases a bundle size smaller than with c′′. Or, in every optimal solution with

c′ consumers purchase a bundle size smaller than in any optimal solution with c′′.
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J. Proof of Proposition 2.2.8

Proof Letw be an arbitrary set of WTPs satisfying SCP and v be a set of the corresponding

vij values. Consider w′ = W(i′, I, w), wherein WTPs of consumers indexed i′ through I

are homogenized. Then, the corresponding v′ij values of w′ can be written as:

v′ij =



vij if i ≤ i′ − 2

(I − i′ + 2)wi′−1j −
∑I

i′′=i′ wi′′j if i = i′ − 1

1
I−i′+1

∑I
i′′=i′ wi′′j if i ≥ i′.

Call the CBP problem with WTPs w as CBP (w) and that with w′ as CBP (w′). Let

j(i) denote the bundle size that Consumer i purchases in an optimal solution of CBP (w).

Consider an allocation j′(i) such that j′(i) = j(i) when i < i′ and j′(i) = J when i ≥ i′.

Obviously, j′(i) is a feasible bundle allocation for CBP (w′). We next show that j′(i) in
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CBP (w′) leads to a profit
∑I

i=1 v
′
ij′(i) that is weakly higher than

∑I
i=1 vij(i), the optimal

profit of CBP (w).

I∑
i=1

v′ij′(i) =
i′−2∑
i=1

v′ij′(i) + +v′i′−1,j(i′−1) +
I∑
i=i′

v′ij′(i)

=
i′−2∑
i=1

vij(i) + (I − i′ + 2)wi′−1,j(i′−1) +
I∑
i=i′

(wiJ − wij(i′−1))

≥
i′−2∑
i=1

vij(i) + (I − i′ + 2)wi′−1,j(i′−1) +
I∑
i=i′

(wij(i) − wij(i′−1))

=
i′−2∑
i=1

vij(i) + (I − i′ + 2)wi′−1,j(i′−1) +
I∑
i=i′

i∑
i′′=i′

(wij(i′′) − wi,j(i′′−1))

≥
i′−2∑
i=1

vij(i) + (I − i′ + 2)wi′−1,j(i′−1) +
I∑
i=i′

i∑
i′′=i′

(wi′′j(i′′) − wi′′j(i′′−1))

=
i′−2∑
i=1

vij(i) + (I − i′ + 2)wi′−1,j(i′−1) +
I∑
i=i′

(I − i+ 1)(wij(i) − wi−1j(i))

=
I∑
i=1

vij(i),

wherein the equalities are because of either reorganization or by invoking the definitions;

the first inequality is because wiJ ≥ wij(i) ∀i; and the second inequality is due to SCP.
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K. Proof of Proposition 2.2.9

Proof From Equation (2.17), wij =
∑I

i′=i vi′j . We only need to fix vIj for all j to define

the WTPs, wij for all i and j. We will show that for large enough vIj , the corresponding

WTPs are non-decreasing in j and satisfy SCP. Observe that:

wij+1 − wij =
1

I − i+ 1

I∑
i′=i

(vi′j+1 − vi′j).

Therefore, w1j+1 − w1j ≥ 0 is equivalent to vIj+1 − vIj ≥ −
∑I−1

i′=1(vi′j+1 − vi′j). We

define v̄j+1 =
∑I−1

i′=1(vi′j+1 − vi′j). Further, in order that w satisfy SCP, we require that

(wi+1j+1 − wi+1j)− (wij+1 − wij) ≥ 0. This simplifies to:

0 ≤ (I−i+1)
I∑

i′=i+1

(vi′j+1−vi′j)−(I−i)
I∑
i′=i

(vi′j+1−vi′j) =
I∑

i′=i+1

(vi′j+1−vi′j)−(I−i)(vij+1−vij).

In other words,

vIj+1 − vIj ≥ (I − i)(vij+1 − vij)−
I−1∑
i′=i+1

(vi′j+1 − vi′j).

We define v′j+1 = maxi

{
(I − i)(vij+1 − vij)−

∑I−1
i′=i+1(vi′j+1 − vi′j)

}
. Then, we may

define vIj =
∑j

j′=1 max{v̄j, v′j} to ensure that WTPs satisfy SCP and are non-decreasing

in j.
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L. Proof of Lemma 2.3.2

Proof To show that S ′ = conv(S), we show that vert(S ′) ⊆ S ⊆ S ′, where vert(S ′) are

the vertices of S ′. Then, the result follows because S ′ is bounded, conv(S ′) = conv(vert(S ′)) ⊆

conv(S) ⊆ conv(S ′) = S ′, and conv(S ′) = S ′. We first show that S ⊆ S ′. Let (y′, x′) ∈ S.

Then, y′ satisfies (2.22) and x′ is as defined in (2.26). We show that (y′, x′) ∈ S ′. For that,

we need to show that
∑J

j′=j x
′
ij ≤

∑J
j′=j x

′
i+1j for all j. Let j1 be such that kj1 ≤ y′i ≤

kj1+1. Because of (2.26), for 0 ≤ j ≤ j1,
∑J

j′=j x
′
i+1j = 1 ≥

∑J
j′=j x

′
ij . For j > j1 + 1,∑J

j′=j x
′
ij = 0 ≤

∑J
j′=j x

′
i+1j . Therefore, we only need to consider j = j1 + 1. Then,

kj1 + (kj1+1 − kj1)x′ij1+1 =
J∑
j=0

kjx
′
ij ≤

J∑
j=0

kjx
′
i+1j = kj1 +

J∑
j=j1+1

(kj − kj−1)
J∑

j′=j

xi+1j′

≤ kj1 + (kj1+1 − kj1)
J∑

j=j1+1

xi+1j1+1

Since kj1+1 − kj1 > 0, it follows that

J∑
j=j1+1

x′ij = x′ij1+1 ≤
J∑

j=j1+1

xi+1j1+1.

Now, we show that vert(S ′) ⊆ S. Let (y′, x′) ∈ vert(S ′). Obviously, x′ ∈ vert(projx(S
′)).

However, by Proposition 2.2.6, the constraint matrix defining projx(S
′) is totally unimod-
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ular. Therefore, x′ is binary-valued. Then, it follows from
∑J

j=0 xij = 1 that xijxij′ = 0

for all j 6= j′. Finally,

J∑
j=0

kjxij =
J∑
j=1

j∑
j′=1

(kj′ − kj′−1)xij =
J∑

j′=1

(kj′ − kj′−1)
J∑

j=j′

xij ≤
J∑

j′=1

(kj′ − kj′−1)
J∑

j=j′

xi+1j

=
J∑
j=1

j∑
j′=1

(kj′ − kj′−1)xi+1j =
J∑
j=0

kjxi+1j,

where the inequality follows because kj′ ≥ kj′−1 and
∑J

j=j′ xij ≤
∑J

j=j′ xi+1j .

We now show that projy(S
′) = projy(S) = A. Towards this end, we prove that

projy(S) ⊆ A. Let (y, x) ∈ S. It follows that 0 ≤ yi ≤ Y because 0 = k0

∑J
j=0 xij ≤∑J

j=0 kjxij ≤ kJ
∑J

j=0 xij = Y . Also, yi ≤ yi+1 follows directly from
∑J

j=0 kjxij ≤∑J
j=0 kjxi+1j . SinceA ⊆ projy(S) follows directly from (2.26), it follows that projy(S) =

A. Then, projy(S
′) = A follows from

projy(S
′) = projy(conv(S)) = conv(projy(S)) = conv(A) = A,

where the second equality because a linear transformation commutes with convexification,

the third equality because projy(S) = A and the last equality because A is convex. The

last statement in the lemma follows from conv(projx(S)) = projx(conv(S)) = projx(S
′).
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M. Proof of Theorem 2.3.5

Proof We first show that Πk ≤ Πc. Define wij = wki (kj), cj = ck(kj), and vij = wij −

(I − i)(wi+1j − wij). Then, we solve CBP2 to find Πk and the optimal solution xij for

all i, j. The prices pj are assumed to satisfy Proposition 2.2.3. Now, for any y′ ∈ [0, Y ],

define p′(y′) = min{p(kj) | kj ≥ y′, j = 0, . . . , J}. Observe that since y ≤ Y = kJ ,

the minimum in the formula is attained. Let yi =
∑J

j=0 kjxij . We claim that (y, p′) is

feasible to CBPc1 and has an objective value of Πk. Consider Constraints (3.33). Let

kj′−1 < y ≤ kj′ for some j′. Then, since (x, p) is feasible to CBP1, it follows that

wi(yi)− p′(yi) =
J∑
j=0

(wij − pj)xij ≥ wij′ − pj′ = wi(kj′)− p′(kj′) ≥ wi(y)− p′(y).

The objective function value of (y, p′) is then

I∑
i=1

(p′(yi)− c(yi)) =
I∑
i=1

J∑
j=0

(pj − cj)xij = Πk.

Since (y, p′) is feasible to CBPc1 and has an objective value of Πk, it follows that the

optimal value Πc to CBPc1 is at least Πk.

Now, we show that Πc ≤ Πk + ε. Let (y′, p′) be the optimal assignment and price

for CBPc1. Now consider CBPc1 where the wi(·) and c(·) functions are replaced with

wki (·) and ck(·) and call this problem Q. Since wki (·) and ck(·) are piecewise-linear with
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breakpoints in {k1, . . . , kJ}, it follows from Theorem 2.3.3 that the optimal value of Q is

Πk. Now, we define p′′(y) = min{p(y′i)− iδ | y′i ≥ y, i = 0, . . . , I+ 1}, where y′0 and y′I+1

are assumed to be 0 and Y respectively and δ will be fixed later. Assume p′′(·) is the price

in Q. We show that there is a feasible solution (y′′, p′′) to Q, where y′′i ∈ {y′1, . . . , y′I} for

each i. Instead, let yi be an allocation to Consumer i such that y′i′−1 < yi < y′i′ . However,

wki (yi)− p′′(yi) ≤ wki (y
′
i′)− p′′(y′i′),

where the inequality follows since yi < y′i′ implies that wki (yi) ≤ wki (y
′
i′) and the definition

of p′′(·) implies that p′′(yi) = p′′(y′i′). Therefore, the consumer may substitute y′i′ for

yi without loss of surplus. Now, observe that the choice set of each consumer is finite,

therefore there exists a bundle size that provides maximum surplus to the consumer. Now,

we show that, by suitably choosing δ, we can ensure that there exists a feasible solution

that satisfies y′′i ≥ y′i for all i. Assume otherwise and consider a Consumer i who purchases

y′′i = y′i′ < y′i. First, observe that Lipschitz continuity of wi(·) and c(·) guarantees that for

any y,

|wi(y)− wki (y)| ≤ max{wki (kj+1)− wi(y), wi(y)− wki (kj)}

= max{wi(kj+1)− wi(y), wi(y)− wi(kj)} ≤ kβ

(M.1)

|c(y)− ck(y)| ≤ max{|c(y)− ck(kj)|, |ck(kj+1)− c(y)|}

= max{|c(y)− c(kj)|, |c(kj+1)− c(y)|} ≤ kβ,

(M.2)
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where j is chosen such that kj ≤ y < kj+1. The first inequality follows since wk is non-

decreasing and the first equality because wi(·) (resp. c(·)) match wk(·) (resp. ck(·)) at all

y ∈ {k1, . . . , kJ}. Then, choosing δ = 2kβ it follows that:

wki (y
′
i′)− p′′(y′i′) = wki (y

′
i′)− (p(y′i′)− i′δ) ≤ wi(y

′
i′) + kβ − (p(y′i′)− i′δ)

≤ wi(y
′
i) + kβ − (p(y′i)− i′δ) ≤ wki (y

′
i) + 2kβ − (p(y′i)− i′δ)

≤ wki (y
′
i) + 2kβ − (i− i′)δ − (p(y′i)− iδ) ≤ wki (y

′
i)− p′′(y′i).

Therefore, no consumer purchases a smaller sized bundle and so, for any i′ > i:

p′′(y′i′)−ck(y′i′) ≥ p(y′i′)−c(y′i′)−i′δ−kβ ≥ p(yi)−c(yi)−i′δ−kβ ≥ p(yi)−c(yi)−(2I+1)kβ,

where the first inequality follows from the definition of p′′ and (M.2) and the second in-

equality from Proposition 2.2.3 and i′ > i, and the third inequality because δ = 2kβ.

Therefore,

Πk ≥ Πc − I(2I + 1)kβ = Πc − ε.

Because J = dY
k
e and CBP2 can be solved in O(IJ) time, CBPc1 can be approximated

within ε in O
(
I2(I+2)βY

ε
+ I
)

time.
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N. Proof of Theorem 3.2.1

Proof According to Proposition 7 in [9], we prove that we can reformulate the MINLP

CBP1 into the following 0-1 IP problem CBP2:

CBP2 : Maxxij

{
I∑
i=1

J∑
j=0

(vij − cj)xij

∣∣∣∣∣ (3.2), (3.4), (3.7)

}
.

We add the following χ variables to CBP2 and reformulate the problem into CBP3:

χ00j = x1j∀j, χijj′ = xijxi+1,j′1 ≤ i < I ∀j ∀j′ ≥ j, and χIjJ = xIj∀j.

(N.1)

We show that constraints of CBP3 are implied by CBP2 and (N.1). Constraints

(3.10), (3.12), and (3.15) follow from (N.1) and (3.4). Constraint (3.9) holds since
∑J

j=0 χ00j =∑J
j=0 x1j = 1, where the equalities are due to (N.1) and (3.2) respectively. Constraint

(3.11) holds since
∑J

j=0 χIjJ =
∑J

j=0 xIj = 1, where the equalities are due to (N.1) and

(3.2) respectively. Constraint (3.13) and (3.14) hold because:

xij = xij

J∑
j′=j

xij′ ≤ xij

J∑
j′=j

xi+1j′ =
J∑

j′=j

χijj′ = xij

J∑
j′=j

xi+1j′ ≤ xij

J∑
j′=0

xi+1j′ = xij

xij = xij

j∑
j′=0

xij′ ≤ xij

j∑
j′=0

xi−1j′ =

j∑
j′=0

χi−1j′j = xij

j∑
j′=0

xi−1j′ ≤ xij

J∑
j′=0

xi−1j′ = xij,
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imply that equality holds throughout. In both cases, the first equality holds because (3.4)

and (3.2) imply that x2
ij = xij and xijxij′ = 0 if j′ 6= j. The first inequality follows from

(3.7) (and (3.2) in the second case), the second and third equalities from (N.1), the second

inequality from (3.4) and the last equality from (3.2).

Now, we show that Constraints (3.9)-(3.15) imply constraints of CBP2. We use

induction on i to show (3.2). The base case follows since
∑J

j=0 x1j =
∑J

j=0 x00j = 1. For

the induction step, we assume
∑J

j=0 xij = 1 and show
∑J

j=0 xi+1j = 1. Then,

J∑
j=0

xi+1j =
J∑
j=0

j∑
j′=0

χij′j =
J∑

j′=0

J∑
j=j′

χij′j =
J∑

j′=0

xij′ = 1,

where the first equality follows from (3.14), the third equality by (3.13), and the last equal-

ity by induction. Constraint (3.7) follows because
∑J

j1=j xij1 =
∑J

j1=j

∑j1
j2=0 χi−1j2j1 ≥∑J

j1=j

∑j1
j2=j χi−1j2j1 =

∑J
j2=j

∑J
j1=j2

χi−1j2j1 =
∑J

j2=j xi−1j2 , where the first equality

follows from (3.14), the first inequality since some terms are dropped, and the last equal-

ity from (3.13). Constraint (3.4) follows since xij is non-negative and integer-valued by

Constraints (3.15) and (3.13) and it cannot take a value larger than one by (3.2).
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O. Proof of Proposition 3.4.2

Proof Define fi(z) =
∑J

j′=1 zij′ and f(z) = (f1(z), . . . , fI(z)). For z′ and z′′ feasible to

CBPg,

C(z′) + C(z′′) = C ′(f(z′)) + C ′(f(z′′))

≥ C ′(max{f1(z′), f1(z′′)}, . . . ,max{fI(z′), fI(z′′)})

+ C ′(min{f1(z′), f1(z′′)}, . . . ,min{fI(z′), fI(z′′)})

= C(z′ ∨ z′′) + C(z′ ∧ z′′), (O.1)

since C ′ is submodular.
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P. Proof of Theorem 3.4.1

Proof It follows from (49.25) in [10] that a supermodular function can be maximized over

a lattice family in strongly polynomial time if the following two conditions hold. First, there

is an oracle to compute the supermodular function in strongly polynomial time. This is true

by assumption. Second, the lattice family C̆ is described using the smallest set, the largest

set and a pre-order � such that if u � v ⇔ each U ∈ C̆ containing v also contains u. For

us, the smallest element corresponds to the case when all consumers purchase nothing, i.e.,

zij = 0 for all j ≥ 1. The largest element is when all consumers purchase bundle size J ,

i.e., zij = 1 for all j ≤ J . For the pre-order �, observe that if zij = 1, then zi′j′ = 1 for

all i′ ≥ i and j′ ≤ j and for all i′ if j′ = 0. In other words, (i′, j′) � (i, j) if and only if

either i′ ≥ i and j′ ≤ j or j′ = 0. If zij = 1 then zi′j′ = 1 using Constraints (3.29), (3.30),

and (3.31). Now, consider (i′, j′) 6� (i, j). Then, we show that there is a feasible allocation

that sets zi′j′ = 0 but zij = 1. From the definition of the pre-order, we know that j′ > 0

and either i′ < i or j′ > j. In either case, the sought solution is one where Consumers

1, . . . , i− 1 purchase nothing and Consumers i, . . . , I purchase Bundle j.
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Q. Proof of Corollary 3.4.2

Proof The two results follow from Lemma 2.8.1 and Theorem 2.8.4 in [13] respectively.
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R. Proof of Lemma 3.4.3

Proof We prove by induction on r. Consider y0. Since y1 ≤ · · · ≤ yI , it follows that

a(y1) ≤ · · · ≤ a(yI). Now, assume that yr−1 is feasible to CBPgcy. We show that

ari ≤ ari+1 for i ≤ I − 1. The inequality holds by induction whenever i 6∈ {π(r), π(r)− 1}

because ari′ = ar−1
i′ for all i′ 6= π(r). For i = π(r) − 1, it follows because arπ(r)−1 =

ar−1
π(r)−1 ≤ ar−1

π(r) < arπ(r), where the first inequality follows from induction. Now, consider

i = π(r). Assume π−1(i + 1) < π−1(i) = r. Then, ari+1 = a0
i+1 + 1 ≥ a0

i + 1 = arr,

where the inequality follows by the base case. Now, assume that π−1(i+ 1) > π−1(i) = r.

Then, a0
i ≤ a0

i+1 because yi ≤ yi+1. If a0
i < a0

i+1, the result follows since ari+1 = a0
i+1 and

ari = a0
i + 1. We show that a0

i cannot equal a0
i+1. Otherwise, a(yi+1) = a(yi) and yi+1 ≥ yi

yield g(yi+1) ≥ g(yi) and thus a contradiction to π−1(i + 1) > π−1(i) using the definition

of π.



101

S. Proof of Theorem 3.4.4

Proof We describe the architecture of the proof. We construct a relaxation of CBPgcy,

which we call CBPgcyR. Then, we relax CBPgcyR to CBPgczR which has the same

objective value as CBPgcz. This shows that the objective value of CBPgcy is no more

than that of CBPgcz. Finally, we show the converse and recover the optimal solution y∗ of

CBPgcy from the optimal solution z∗ of CBPgcz. Let

C ′′(y) =
I∑
r=0

(
g(yπ(r))− g(yπ(r+1))

)
C ′(yr). (S.1)

Let Feas(Q) be the feasible region for any problemQ. Consider the following optimization

problem:

CBPgcyR : Maxyi

{
I∑
i=1

vi(yi)− C ′′(y) | (3.34), (3.35)

}
.
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Observe that CBPgcyR is a relaxation of CBPgcy, because C ′′(y) ≤ C ′(y) and, therefore,

the objective function value is overestimated. For any y ∈ Feas(CBPgcy), define zij as

follows

zij =



1 if j ≤ a(yi)

g(yi) if j = a(yi) + 1

0 otherwise,

(S.2)

and observe that
∑J

j=1

(
k(j) − k(j − 1)

)
zij = yi. Since wi is piecewise-linear, wi(yi) =

wi(k(a(yi)))+g(yi)
(
wi(k(a(yi))+1)−wi(k(a(yi)))

)
=
∑J

j=1

(
wi(k(j))−wi(k(j−1))

)
zij .

For all j, define wij = wi(k(j)) and, as before, vij = wij − (I − i)(wi+1j − wij), where

wI+1j is assumed to be wIj . Then, vi(yi) =
∑J

j=0 vij(zij − zij+1).

Now, consider CBPgcz, where we replace (3.32) with 0 ≤ zij ≤ 1, call the re-

sulting feasible region R, and extend C(z) over all of R. Observe that, as in the proof of

Proposition 3.4.2, C(·) restricted to binary vertices is submodular.

To extendC(z) toR, we construct the convex envelope ofC(z) restricted to Feas(CBPgcz)

over R. For any z ∈ R, let γz(·, ·) : {1, . . . , I} × {1, . . . , J} → {1, . . . , IJ} be a one-

to-one mapping such that γz(i, j) ≥ γz(i
′, j′) whenever zi,j ≤ zi′,j′ . In addition, we re-

quire that ties such as zi,j = zi′,j′ are resolved in the following manner. If i′ > i then

γz(i, j) > γz(i
′, j′). Otherwise, if i′ = i and j′ < j then γz(i, j) > γz(i

′, j′). Observe that

this definition guarantees that γz(i + 1, j) < γz(i, j) and γz(i, j − 1) < γz(i, j). Let z0

be defined such that zi0 = 1 for all i, and zij = 0 otherwise. For r = 1, . . . , IJ , define
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zr = z0 +
∑r

s=1 e
γ−1
z (s). Observe that, for all r, zr is feasible to CBPgcz, because of the

definition of γz. Then, using the insight from Corollary 2.3 in [16], we extend

C̆(z) = C(z0) +
IJ∑
r=1

[
zγ−1

z (r)

(
C(zr)− C(zr−1)

)]
. (S.3)

When z is binary, it is a vertex of R and C̆(z) = C(z). So, C̆(z) is a valid extension for

C(z) and

CBPgczR : Maxzij

I∑
i=1

J∑
j=0

vij(zij − zij+1)− C̆(z)

s.t. (3.29), (3.30), (3.31)

0 ≤ zij ≤ 1 ∀i; ∀j (S.4)

is a relaxation of CBPgcz. We now show that CBPgczR is also a relaxation of CBPgcyR.

We begin by showing that for each y ∈ Feas(CBPgcy), if z is defined as in (S.2), then

C̆(z) = C ′′(y). The result is clear if y ∈ {k(0), . . . , k(J)}I since in this case, C̆(z) =

C(z) = C ′(y) = C ′(y0) = C ′′(y), where the first equality follows since z is a vertex of

R, the second equality because of the definition of C(z), and the third equality because

y0 = y. Since g(y0) = 1 and g(yi) = 0, for 1 ≤ i ≤ I , the last equality follows.

When, y 6∈ {k(0), . . . , k(J)}I , we define zij as in (S.2). Let I ′ ⊆ {1, . . . , I} be the set

of consumers for which g(yi) 6∈ {0, 1}, i.e., yi 6∈ {k(0), . . . , k(J)}. It follows from the

definition of γ that for any i, i′ ∈ I ′, γz(i, a(yi) + 1) ≥ γz(i
′, a(yi′) + 1) if and only

if (i) g(yi) < g(yi′), or (ii) g(yi) = g(yi′) and i < i′. However, this implies that for
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i ∈ I ′, the relative ordering of γz(i, a(yi) + 1) for 1 ≤ i ≤ I is consistent with π−1(i).

Let t be the smallest value such that zγ−1(t) 6∈ {0, 1}. Then, it follows that for i ∈ I ′,

γ(i, a(yi) + 1) = π−1(i) + t − 1. Since, for r = 0, . . . , |I ′|, yr ∈ {k(0), . . . , k(J)}I ,

it follows from the discussion above that C(zr+t−1) = C ′(yr) for r = 0, . . . , |I ′|. Let

zγ−1
z (I+1) = 0 and observe that

C̆(z) = C(zt−1) +

t+|I′|−1∑
r=t

zγ−1
z (r)

(
C(zr)− C(zr−1)

)
= (1− zγ−1

z (t))C(zt−1) +

t+|I′|−1∑
r=t

(
zγ−1

z (r) − zγ−1
z (r+1)

)
C(zr)

= (1− g(yπ(1))C
′(y0) +

|I′|∑
r=1

(
g(yπ(r))− g(yπ(r+1))

)
C ′(yr)

=

|I′|∑
r=0

(
g(yπ(r))− g(yπ(r+1))

)
C ′(yr)

=
I∑
r=0

(
g(yπ(r))− g(yπ(r+1))

)
C ′(yr) = C ′′(y),

where the first equality is from (S.3) and that zγ−1
z (r) = 0 for r ≥ t+|I ′|; the second follows

by rearranging terms and because the definition of I ′ implies that zγ−1
z (t+|I′|) = 0; the third

is by realizing that zγ−1
z (r) = g(yπ(r−t+1)) for r = t, . . . , t+|I ′|−1 and C(zr) = C ′(yr−t+1)

for r = t − 1, . . . , t + |I ′| − 1; the fourth is because g(yπ(0)) = 1 and g(yπ(I+1)) = 0; the

fifth is because the terms in the summation with r > |I ′| are zero; and the final is by (S.1).

Thus, we have shown that, for any y ∈ Feas(CBPgcy), if z is defined as in (S.2), then

C̆(z) = C ′′(y) ≤ C ′(y). Finally, observe that we already showed that piecewise-linearity

of wi(·) implies that vi(yi) =
∑J

j=0 vij(zij − zij+1).
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We have thus shown CBPgczR is a relaxation of CBPgcy. Now, we show that

there exists an optimal solution in CBPgczR where each zij is binary. Assume that this

is not the case. Now, take an optimal solution z̄, compute the corresponding γz̄(i, j) map-

ping and z̄0, . . . , z̄IJ . We show that z̄0
ij +

∑IJ
r=1

[
z̄γ−1

z̄ (r)

(
z̄rij − z̄r−1

ij

)]
= z̄ij . First ob-

serve that all terms in the summation, except when r = γz̄(i, j), are zero since z̄rij =

z̄r−1
ij otherwise. When r = γz̄(i, j), the term yields z̄ij because z̄rij = 1 and z̄r−1

ij =

0. We have shown binary z0, . . . , zr that are feasible to CBPgcz such that (z̄, C̆(z̄)) ∈

conv
((
z̄0, C(z̄0)

)
, . . . ,

(
z̄IJ , C(z̄IJ)

))
. Then, let F (z) =

∑I
i=1

∑J
j=0 vij(zij − zij+1) −

C̆(z) be the objective function of CBPgczR and note that we have shown that there exist

λ0, . . . , λIJ , each non-negative, such that
∑IJ

r=0 λIJ = 1 and (z̄, F (z̄)) =
∑IJ

r=0 λr(z̄
r, F (z̄r)).

In particular, λ0 = (1− z̄γz̄(1)); λr = (z̄γz̄(r) − z̄γz̄(r+1)) for r = 1, . . . , IJ − 1; and λIJ =

z̄γz̄(IJ). Therefore, F (z̄) =
∑IJ

r=0 λrF (z̄r) ≤
∑IJ

r=0 λr maxr′ F (z̄r
′
) = maxr′ F (z̄r

′
), i.e.,

there exists one of z̄0, . . . , z̄IJ , say zr, that achieves the same objective function value as

z̄. Since z̄r is feasible to CBPgcz with the same objective value as in CBPgczR, it follows

that the optimal value of CBPgcz matches that of CBPgczR.

We showed that the optimal value of CBPgcy is no more than that of CBPgcz.

We now show the converse. Consider z′ feasible to CBPgcz and let yi =
∑J

j=1(k(j) −

k(j−1))zij . By definition ofC(·) and piecewise-linearity ofwi(·), y has the same objective

function value in CBPgcy as does z in CBPgcz. Further, y is feasible to CBPgcy. Observe

that, y satisfies (3.34) because yi =
∑J

j=1(k(j) − k(j − 1))zij ≤
∑J

j=1(k(j) − k(j −

1))zi+1j = yi+1, because k(j) > k(j − 1) and zi+1j ≥ zij . Also, y satisfies (3.35) because

0 ≤
∑J

j=1(k(j)− k(j − 1))zij ≤
∑J

j=1(k(j)− k(j − 1)) = k(J)− k(0) = Y .
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T. Proof of Corollary 3.4.6

Proof If C ′(y) ≥
∑I

r=0

(
g(yπ(r))− g(yπ(r+1))

)
C ′(yr) then the result follows from Theo-

rem 3.4.1 and Corollary 3.4.5. Observe that g(yπ(r)) ≥ g(yπ(r+1)) and
∑I

r=0

(
g(yπ(r))− g(yπ(r+1))

)
=

1. Therefore, it follows from (3.36) that y ∈ conv(y0, . . . , yI). By Lemma 3.4.3, y0, . . . , yI

are feasible to CBPgcy. Then, C ′(y) ≥
∑I

r=0

(
g(yπ(r))− g(yπ(r+1))

)
C ′(yr), because

C ′(·) is concave.
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U. Proof of Theorem 3.4.7

Proof Assume y′ is the optimal solution to CBPgcy. Let {i1, . . . , ik} be the lowest-type

consumers that purchase a bundle of a certain size. The pricing p then follows from Propo-

sition 7 in [9]:

pj = wi0j(i0) +

r′(j)∑
r=1

(
wirj(ir) − wirj(ir−1)

)
. (U.1)

More formally, for any s such that 0 ≤ s ≤ Y , define r′(s) = arg minr{ir | y′ir ≥ ys}, i.e.,

the lowest-type consumer who purchases a bundle of larger size. If there is no consumer

that purchases a bundle of size s or larger, we define its price to be wIY + δ for some δ > 0.

Otherwise, we define ps =
∑r′(s)

r=1

(
(wir(y

′
ir)− wir(y

′
ir−1

)
)
.

We denote CBPgcy with WTPs replaced with wk(·) and cost replaced with C ′k(y)

as Problem T. We now construct a feasible solution to T by providing a pricing strategy such

that, for all i, Consumer i still purchases y′i. For this we again utilize (U.1). For bundle

size s, we set the price to pks =
∑r′(s)

r=1

(
(wkir(y

′
ir)− w

k
ir(y

′
ir−1

)
)
. It follows from Proposition

7 in [9] that Consumer i continues to purchase bundle size y′i in Problem T. For any s
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satisfying 0 ≤ s ≤ Y , let sk = max{k(j) | k(j) ≤ s} and s′k = min{k(j) | k(j) ≥ s}.

Then, for any i:

|wki (s)− wi(s)| = |wki (s)− wki (sk) + wi(sk)− wi(s)|

≤ max{wki (s)− wki (sk), wi(s)− wi(sk)}

≤ max{wki (s′k)− wki (sk), wi(s)− wi(sk)}

= wi(s
′
k)− wi(sk)

≤ kβ,

(U.2)

where the first equality follows because wki (sk) = wi(sk); the first inequality because

wki (s) − wki (sk) ≥ 0 and wi(sk) − wi(s) ≤ 0; the second inequality because wki (s
′
k) ≥

wki (s) ≥ wki (sk); the second equality because wki (s
′
k) = wi(s

′
k), wki (sk) = wi(sk) and

wi(s
′
k) ≥ wi(s) ≥ wi(sk); and the last inequality because of Lipschitz continuity of w.

Observe that

ps − pks =

r′(s)∑
r=1

(
wir(y

′
ir)− w

k
ir(y

′
ir)− wir(y

′
ir−1

) + wkir(y
′
ir−1

)
)

≤
r′(s)∑
r=1

(
|wir(y′ir)− w

k
ir(y

′
ir)|+ |wir(y

′
ir−1

)− wkir(y
′
ir−1

)|
)

≤ 2kIβ,
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where the last inequality follows from (U.2). Consider a vector y feasible to CBPgcy

and construct y0, . . . yI as described before Lemma 3.4.3. Let t1 = arg min{C ′(t) | t ∈

{y0, . . . , yI}} and t2 = arg max{C ′(t) | t ∈ {y0, . . . , yI}}. Then:

|C ′k(y)− C ′(y)| = |C ′k(y)− C ′k(t1) + C ′i(t
1)− C ′(s)|

≤ |C ′k(y)− C ′k(t1)|+ |C ′(t1)− C ′(y)|

≤ |C ′k(t2)− C ′k(t1)|+ |C ′(t1)− C ′(y)|

≤ |C ′(t2)− C ′(t1)|+ |C ′(t1)− C ′(y)|

≤ 2
√
Ikβ

(U.3)

where the second inequality follows from (3.36) and sinceC ′k is linear in conv{y0, . . . , yI},

the second equality follows since C ′k(·) matches C ′(·) at each of {y0, . . . , yI}, and the

last inequality follows because ‖t2 − t1‖ ≤
√
Ik and ‖y − t1‖ ≤

√
Ik. Therefore,

Πk ≥ Πc − 2kβ(I2 +
√
I). Since k = ε

2β(I2+
√
I)

, Πk ≥ Πc + ε. Since the optimal so-

lution of T occurs at the breakpoints, it is also feasible to CBPgcy, as long as the price

of the intermediate sizes is set high enough (to that of the next breakpoint). Therefore,

Πk ≤ Πc.

Finally, observe that, by Theorem 3.4.1, CBPgcz can be solved in time polynomial

in I and J and the oracle time to compute C ′(y). Then, the algorithm is polynomial in I ,

Y , β, 1
ε

because J = dY
k
e implies that J ≤ 2Y β(I2+

√
I)

ε
+ 1.
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