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ABSTRACT

Wang, Libo Ph.D., Purdue University, December 2014. Identification of Genomic
Factors Using Family-Based Association Studies. Major Professor: Dabao Zhang
and Min Zhang.

Genome-wide association studies become increasingly popular and important for

detecting genetic associations of complex traits. However, it is well known that spuri-

ous associations could arise from statistical analysis without proper consideration of

genetic relatedness of samples. Many methods have been proposed to guard against

these spurious associations. Here we focus on multi-locus association studies of quan-

titative traits and the case-control status, and propose algorithms that take into

consideration of genetic related samples to address possible confounding issues. As

supervised dimension reduction methods, these algorithms performs well to conduct

association studies with a large number of biomarkers but a relative small number of

samples.

Recently, Linear mixed models have demonstrated its efficiency in GWAS of quan-

titative traits with multiple levels of sample structures. Most of the current mixed

model based methods such as EMMA, EMMAX, and GEMMA, can be viewed as

single-locus methods by testing each SNP separately. Complex traits, however, are

known to be controlled by multiple loci, thus including multiple loci in the statistical

model seems more appropriate. In the first part of my dissertation, we propose an

algorithm that extends penalized orthogonal component regression to family-based

association studies (fPOCRE) of continuous traits. While multiple loci can be in-

vestigated at the same time, the sample relatedness is modeled through the kinship

matrix and the shared confounding effects are included as random effects in the linear

mixed model. Our proposed algorithm simultaneously selects biomarkers and con-

structs their linear combinations as components which optimally account for variation
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in traits. We compare fPOCRE with EMMAX, which is one of the most frequently

used single-locus approach, and also compare it with MLMM, a recently developed

multi-locus approach. Our simulation study demonstrates fPOCRE has promising

performance over both EMMAX and MLMM in terms of higher power and fewer

false positives when causal effects are from clusters of correlated SNPs. Real data are

analyzed to illustrate the proposed approach and provide further comparisons.

Case-control association study is a widely used study design in genetic epidemi-

ology and pharmacology and this study design is also susceptible to the potential

confounding by sample structure. In the second part of my dissertation, we employ

a multi-locus generalized estimation equation (GEE) model to study genetic associa-

tions of binary traits, capturing multiple levels of the sample structure with working

correlation matrix. The kinship matrix is used to model the working correlation

matrix, and the penalized orthogonal-components regression method is developed to

build such a multi-locus GEE model (aka GEE-POCRE). GEE-POCRE is compared

with gPOCRE, a multi-locus method that does not consider pedigree information,

also compared with TDT, FBAT, and ROADTRIPS that are single-locus methods

considering sample structure. In our simulation studies, GEE-POCRE demonstrates

good performance in terms of protecting against spurious associations caused by the

sample structure as well as having increased power.
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1. INTRODUCTION

This chapter is served as an introduction by reviewing the problem of confounding in

genetic association studies, which arises principally because of the population struc-

ture, family structure and cryptic relatedness. Moreover, it will also cover many of

the existing solutions to this problem, such as genomic control, structured association,

principle component analysis etc.

1.1 Spurious Associations Due to Genetic Relatedness of Samples

Genetic association studies are designed to identify genetic loci that contribute to

the phenotypic outcomes of interest. The associations of interest are causal, finding

loci whose different alleles have different effects. It is often that causal genetic loci

are not directly genotyped in the study sample, in such cases, the associations can

be found through closely link loci. Spurious associations are findings that are neither

causal or nearby loci and they may arise when confounding factors are ignored. While

population structure, family structure and cryptic relatedness describe different as-

pects of genetic relatedness among study subjects, they usually bring up confounding

effects which, when ignored in association study, may result in misleading conclusions

(Astle and Balding 2009).

A confounder is defined as a factor that is associated with both the exposure

and the phenotype of interest. It is known that allele frequencies would vary among

populations of different genetic ancestry and similarly, the trait of interest often varies

among populations of different genetic ancestry. Therefore, SNPs that represent the

sample genetic ancestry would become confounders that bias the association between

the causal genetic factors and the phenotype of interest. For example, in a GWA

study of the phenotype “eating more rice” (the phenotype of interest), the goal is



2

to find genetic markers (the exposure) that cause “eating more rice”. The study

samples are drawn from both north and south part of China and it is well known that

southern Chinese eat more rice historically. Many alleles that are associated with

southern Chinese (confounder) tend to show associations with the study phenotype,

however, they are not the genetic factors that cause “eating more rice”.

GWAS have been intensely developed recently, however, they still show limited

successes. One of the many reasons is that spurious associations may occur due

to structured samples. Even though McCarthy et al. (2008) concluded that the

population structure should not have a big impact on the results of association studies

when the cases and controls are well-matched, however, when the sample size increases

so as to detect weak signals, even in populations with modest levels of structure,

increasing false positives would be expected. The vulnerability of association studies

to confounding effects caused by population structure has long been recognized. In

a famous example, Knowler et al. (1988) found a significant association between

an immunoglobulin haplotype and type II diabetes using samples drawn from native

North Americans with some European ancestry, later the association disappeared

when population structure was controlled.

Family structure refers to the genetic relatedness due to family structure among

study samples and cryptic relatedness refers to the presence of close relatives in a sam-

ple of unrelated individuals (Price et al. 2010). While population structure describes

a more distant common ancestry of large groups of individuals, cryptic relatedness

refers to recent common ancestry among smaller groups of individuals (Astle and

Balding 2009). Cryptic relatedness could cause spurious association in a way similar

as population structure because of unmatched studies samples. Devlin and Roeder

(1999) stated that cryptic relatedness would generate a more severe confounding

problem than population structure if not properly handled.



3

1.2 Family-Based Association Test

Several methods have been proposed to conduct family-based association test so as

to obviate the concerns about the confounding effects induced by structured samples.

TDT compares the proportion of alleles transmitted versus the proportion of alleles

not transmitted from the parents to the affected offspring (Spielman et al. 1993).

Rabinowitz and Laird (2000) and Laird et al. (2000) proposed FBAT on the basis of

the TDT method. It is a unified approach to family-based association tests, and can

accommodate data with different combinations of family structure including nuclear

families. FBAT applies to different phenotypes including case-control status, and

can employ different genetic models including the additive model (Wu et al. 2005).

Because of the independence among unlinked loci according to Mendel’s second law,

FBAT is immune to confounding due to sample structure.

1.3 Association Testing Methods for Population-Based Samples

Despite the ability of family-based linkage and association tests to handle the con-

founding issue, however, the power is limited by the sample size obtainable to detect

relatively weak signals. Complex traits are known to be controlled by multiple loci

with weak effects, many researchers, therefore, have turned to population-based asso-

ciation methods for its improved power to identify causal variants lying underneath

the trait. Unfortunately, population-based study designs are susceptible to spurious

associations due to hidden sample structure and many methods have been developed

to tackle this problem. Here we discuss some commonly used association methods

to identify causal genetic variants to the phenotype of interest while simultaneously

controlling for the sample structure in population-based study designs.
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1.3.1 Genomic Control

Genomic control (GC) proposed by Devlin and Roeder (1999) is one of the earliest

methods that uses genomic information to correct for population structure. GC uses

a set of random non-candidate markers to estimate an inflation factor λ and there is

no population structure if λ equals one. GC scales the original χ2 test statistic by the

inflation factor λ, and the resultant test statistic follows a non-central χ2 distribution.

Though it is sufficient to adjust the test statistic by the estimated λ when the non-

centrality parameter is small (Tiwari, 2008), this method suffers from loss of power

when the non-centrality parameter is truly large. It is also noticeable that GC is a

uniform adjustment to all the testing loci thus does not change their rankings. This

makes GC less competitive compared with other association methods that explicitly

account for population structure in the model itself. However, GC is a relatively easy

method to implement and interpret and it requires a small number of markers.

1.3.2 Structured Association

Pritchard et al. (2000) introduced structured association (SA) that uses a set of

random markers to estimate population structure of studying samples collected from

unknown ancestry. This approach is also called an “island model” by assuming a fixed

number of sub-populations/islands, and each individual is assigned to a cluster with

a probability of a membership. More generally, assuming population admixture, SA

can be viewed as a regression method by incorporating sub-populations as covariates.

Similar to GC, SA can be effective using only hundreds of SNPs, however, unlike GC’s

simplicity, it can be slow to implement. Moreover, it is not appropriate to assume

that only a limited number of ancestry groups exist for human populations.
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1.3.3 Principle Component Analysis

Principle component analysis (PCA) is another popular tool to detect and adjust

for underlying population admixture using genome-wide data (Price et al. 2006).

PCA calculates continuous axes of genetic variation that maximize the variability be-

tween individuals, and reduces the data to a smaller number of dimensions. Similar

to SA, PCs are included as covariates in a regression model to adjust for underlying

population structure. Using top PCs to infer sub-population admixture is computa-

tional efficient. However, like SA, PCA only partially captures the multiple levels of

the sample structure by assuming a limited number of ancestral populations.

1.3.4 Mixed Model Based Approaches

Single-Locus Mixed-Model

Yu et al. (2005) proposed to explicitly use kinship matrix in linear mixed models

so as to model confounding effects induced by different levels of sample structure, in-

cluding population structure, family structure and cryptic relatedness. A linear mixed

model is composed of fixed effects and random effects: the effects of the candidate

SNP, optional covariates, i.e. age and gender, are considered as fixed; confounding

effects induced by sample structure are modeled as random effects and their corre-

lations are described by kinship matrix (Prince et al. 2010). Linear mixed models

are theoretically attractive but computationally intensive. The computation time in-

creases with the cube of the number of individuals (Zhang et al. 2010). With this

observation in mind, Kang et al. (2008) developed the efficient mixed model asso-

ciation (EMMA) by taking use of eigen-decomposition of the kinship matrix so as

to facilitate global optimization of the likelihood function. Furthermore, Kang et al.

(2010) proposed EMMA eXpedited (EMMAX) which is an approximate method that

significantly reduces the computational time for analyzing large GWAS data sets. It
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does not re-estimate variance parameters for every testing locus by assuming that

effects of every SNP is very small.

Multi-Locus Mixed-Model

Complex traits are known to be controlled by several genetic factors. A gained

power would be expected by testing all the loci simultaneously when compared with

single-locus methods. With this observation in mind, Vincent et al. (2013) proposed

a multi-locus stepwise mixed model regression (MLMM). The proposed MLMM al-

gorithm does forward inclusion and stops when the genetic variance is zero, then

performs backward elimination from the last model. Both extended Bayesian infor-

mation criterion (eBIC) and multiple-Bonferroni criterion are suggested to choose the

optimal model with eBIC slightly more stringent. Compared to single-locus mixed

model methods, MLMM has more power and makes fewer false discoveries.

1.4 Variable Selection with High-Dimensional Data

1.4.1 Penalized Likelihood Methods

Nowadays with high-throughput technology, high-dimensional data are becoming

increasingly common in many areas of disease related studies. The goal of high-

dimensional data analyses is to uncover the underlying structure that regulates the

trait of interest. One of the many obstacles associated with analyzing large p small n

data is how to select important variables that have non-zero effects. Many variable

selection techniques have been developed to tackle this problem.

One way of doing variable selection in high-dimensional data is using the penalized

likelihood method which does variable selection and estimation simultaneously. Let-

ting `(β) be the negative log-likelihood function, the maximum likelihood estimator

is obtained as

β̂ = arg min
β
`(β). (1.1)
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A penalty function Pλ(β) is added to the objective function to obtain sparse estimators

and we have the following new objective function

β̂ = arg min
β

(`(β) + Pλ(β)) , (1.2)

where λ ≥ 0 is the tuning parameter, with larger λ leading to a more sparse model.

LASSO proposed by Tibshirani (1996) is probably the most well known penalty

function which puts an `1-norm on the coefficients and can be denoted as Pλ(β) =

λ
p∑
j=1

|βj|. Even though LASSO is relative easy to compute, however, it is known for

lacking of grouped ability, only able to select one variable from a group of highly

correlated predictors (Zhang et al. 2008). It is also known that LASSO estimates are

biased and not consistent. Over the years, many methods have been proposed that

use various penalty function to improve the performance, such as adaptive LASSO,

smoothly clipped absolute deviation (SCAD), and minimax concave penalty (MCP)

etc.

Zou (2006) proposed adaptive LASSO which puts weights ŵ on the coefficients.

The penalty function is expressed as Pλ(β) = λ
p∑
j=1

ŵj|βj|, where ŵj = 1/|β̂cj |γ and

λ is the tuning parameter. β̂c is any consistent estimator. Estimates from ordinary

least square can be used if the sample size is larger than the number of variables,

otherwise, ridge regression estimates are suggested.

Developed by Fan and Li (2001), SCAD penalty is defined as

Pλ(β) =

p∑
j=1

Pλ,j(βj; a),

where, with a > 2 and λ > 0,

Pλ,j(βj; a) =


λ|βj|, |βj| < λ;

−(β2
j − 2aλ|βj|+ λ2)/[2(a− 1)], λ < |βj| ≤ aλ;

(a+ 1)λ2/2, |βj| > aλ.

SCAD has the ability to produce unbiased and sparse estimators, moreover, it enjoys

oracle properties.
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1.4.2 Supervised Dimension Reduction Methods

An alternative way in analyzing large p small n problem is to reduce the dimension

by constructing components. The key is using a low-dimensional space to represent

the information contained in the original high-dimensional space. Partial least square

(PLS) method (Wold et al. 1984) is an efficient supervised dimension reduction

method, however, it does not produce sparsely estimated coefficients. Zhang et al.

(2008) developed Penalized Orthogonal Components Regression (POCRE) to enable

PLS for variable selection.

As shown in Zhang et al. (2008), POCRE seeks to construct a sequence of penal-

ized orthogonal components. The loading of each constructed component is obtained

by maximizing the correlation between the response and the component, and a penalty

function is imposed to help identify sparse predictors for each component. POCRE is

easy to implement and fast to compute. Moreover, unlike LASSO, POCRE has the

ability to group highly correlated predictors. The model is expressed as

Y = Xβ + ε, (1.3)

where Y is the response vector, X is the n × p design matrix, β is the p × 1 fixed

effect vector, and ε is the residual vector with V ar(ε) = σ2
e . Moreover, ε is assumed

to be independent of the columns of the design matrix X. POCRE starts with

X1 = X and proceeds to build a sequence of orthogonal components. Assuming the

first k − 1 orthogonal components have been constructed, we proceed to build the

kth component Xkωk. The loading ωk is calculated as ωk = ν
‖ν‖ where ν minimizes

−2νTXT
k Y Y

TXkα + ‖ν‖2 + Pλ(ν), subject to ‖α‖ = 1, Pλ(ν) is a penalty function

with tuning parameter λ and the current implementation includes empirical bayes

thresholding (Johnstone and Silverman 2004), L1 Penalty (Tibshirani 1996), SCAD

(Fan and Li 2001), and MCP (Zhang 2010).
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1.5 Motivation for Dissertation Research

The Multi-Locus Mixed Model (MLMM) has drawn a lot of attention since it

first appeared. Its very nature of being a multi-locus testing method separates itself

from many other existing single-locus methods, i.e. EMMA, EMMAX, GEMMA. It is

noted by the authors that LASSO-type penalization methods are worth to investigate

since stepwise regression can not explore all the different combinations of the variable

spaces (Vincent et al. 2012). However, LASSO-type penalization methods is known

for lacking grouping property, and this hinders the application of LASSO to many

biological studies due to sharing pathways of many genetic factors (Zhang et al. 2008).

An approach that uses a variable selection algorithm suitable for structured predictors

in conjunction with linear mixed model could potentially improves the performance.

The linear mixed model that explicitly uses the kinship matrix may help solve the

confounding problem of the association study with quantitative traits. However if it

concerns case-control family data, which is a common study design in genome-wide

association studies, how to simultaneously avoid spurious associations and improve

power becomes a challenge. Current methods that based on TDT-type of associa-

tion tests are essentially single-locus analyses, making them less powerful. With the

similar insights of authors of MLMM, an advanced statistical method that models

multiple loci simultaneously to fully utilize the information contained in the data

would potentially make great improvements over existing methods.

The rest of the dissertation is organized as following. Chapter 2 describes our

proposed algorithm fPOCRE which is a penalized multi-locus method that constructs

orthogonal components assuming a linear mixed model. The proposed algorithm

is compared with other popular methods in both simulation studies and real data

analyses. It is followed by Chapter 3, which describes our proposed GEE-POCRE

that does the variable selection through a penalization function under the generalized

estimating equation (GEE) model. GEE has long been recognized in longitudinal

study of case-control analyses to handle correlated data. The proposed algorithm
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has great potential to prevent spurious associations due to sample structure in the

case-control study design. Finally, Chapter 4 summarizes my research and lists some

future potential researches.
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2. A MULTI-LOCUS METHOD FOR FAMILY-BASED

GENOME-WIDE ASSOCIATION STUDY

In this chapter, we describe the details of the proposed family-based penalized or-

thogonal components regression (fPOCRE) in genome-wide association studies with

quantitative traits. While multiple loci can be investigated at the same time, the

sample relatedness is modeled through the kinship matrix and the shared confound-

ing effects are included as random effects in the linear mixed model. Our proposed

algorithm simultaneously selects biomarkers and constructs their linear combinations

as components which optimally account for variation in traits. We compare fPOCRE

with two other methods based on linear mixed models, i.e., EMMAX, a single-locus

approach, and MLMM, a recently developed multi-locus approach. Our simulation

study demonstrates that fPOCRE has promising performance over these two popular

methods in terms of improved power and low false positives when the causal effects

are from clusters of correlated SNPs. Real data analyses are used to illustrate the

proposed approach and provide further comparisons.

We start this chapter with the motivation of our novel algorithm. Section 2.2

describes our proposed fPOCRE for the linear mixed model. The full details on the

algorithm are provided in Section 2.3. Section 2.4 and Section 2.5 contain the results

of simulations and real data analyses respectively.

2.1 Introduction and Motivation

With the recent advances in high-throughput biotechnologies, genome-wide asso-

ciation studies (GWAS) are becoming more and more popular in analyzing underlying

genetics of both disease status and quantitative traits. However with the presence

of population stratification, and additional complexities such as family structure or
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cryptic relatedness, GWAS could produce false signals if not handled properly (Yu et

al. 2005). Several methods have been proposed to address this problem, for example,

Transmission Disequilibrium Test (TDT) (Spielman et al. 1993), and Family-Based

Association Test (FBAT) (Rabinowitz and Laird, 2000; Laird et al. 2000). FBAT

covers TDT as a special case and is known for its ability to prevent spurious associ-

ation due to population structure. However, it only applies to certain study design

which is not always attainable and usually presents a small sample compared to a

large sample in a population study design.

A widely used approach to detect the existence of population structure is to com-

pute the genomic control parameter λGC (Devlin and Roeder 1999). This method

could also be used to correct for population structure. However, it usually does not

maximize the power of detecting true associations, and also does not change the rank

of the detected signals. Other approaches, including structured association (Pritchard

et al. 2000) and principle component analysis (Price et al. 2006), are only able to

correct for population structure, but not family structure and cryptic relatedness.

Recently linear mixed model has been demonstrated as a way to simultaneously

address confounding due to population structure, family structure and cryptic relat-

edness (Yu et al. 2005). The random effects in the linear mixed model can be used

to model the sample relationship, which is described by the kinship matrix. EMMA

(Kang et al. 2008) and EMMAX (Kang et al. 2010) are the two frequently used algo-

rithms that account for the confounding factors with random effects in mixed model,

with EMMAX being more computationally efficient. Even though these methods

have been shown to have improved ability to reduce both false positives and false

negatives, they are essentially still single-locus methods. It loses power when com-

paring to multi-locus methods. With this observation in mind, Vincent et al.(2013)

proposed a stepwise multi-locus approach (MLMM) based on a linear mixed model.

However, Breiman (1996) showed that classical stepwise regression is unstable due

to the reason that modifying a single observation could produce an entirely different
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model, and collinearity between variables makes this problem even worse because the

correlation among the predictors could affect the order of selected signals.

Utilizing sparsity principle, penalized regression methods, especially those based

on the LASSO algorithm (Tibshirani 1996), have received a lot of attention in recent

years. It gains its popularity due to the fact these methods could simultaneous do

variable selection and coefficient estimation in the large p small n scenario. However

it is also known that LASSO is lack of the ability to select a group of correlated causal

predictors (Zou and Hastie 2005). An alternative way to analyzing the large p small

n problem is to reduce the predictor dimension by constructing components, such as

partial least square (PLS) method (Wold et al. 1984) that is a supervised dimension

reduction technique. Penalized orthogonal components regression (POCRE)(Zhang

et al. 2009) is one of those notable PLS-based penalization methods which can ef-

fectively handle highly correlated covarites in high dimensional analyses. With these

observations in mind, we propose an algorithm that extends penalized orthogonal

components regression in the context of linear mixed model for family-based associa-

tion studies (fPOCRE). This hybrid algorithm could take the advantage of both the

linear mixed model and the penalized regression.

2.2 Extending the Penalized Orthogonal Components Regression to Family-

Based Genome-Wide Association Studies

A linear mixed model can be expressed as (Pinheiro and Bates 2000, Ch.2)

Y = Xβ + Zu+ ε, ε ∼ N(0, σ2
eIn), (2.1)

where Y is an n× 1 column vector, X is an n× p design matrix of the fixed effects,

β is a p × 1 vector representing coefficients of fixed effects, Z is the design matrix

of the random effects, u is an n × 1 random effect vector, and ε is an n × 1 vector

representing residual effect. The random effect u and residual effect ε are assumed to

be independent. We further assume that

u ∼ N
(
0, τσ2

eK
)
,
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where K is the n × n kinship matrix estimated from either pedigree or genomic

information, τ is the ratio between the genetic variance σ2
u and the residual variance

σ2
e .

Note that Z is an n × n incidence matrix mapping each observed phenotype to

one of the observations, therefore it is an identity matrix I in the model. Then the

proposed linear mixed model can be re-expressed as

Y = Xβ + u+ ε = Xβ + ε∗, (2.2)

where ε∗ = u + ε. As it is the sum of two independent multivariate normal vectors,

it is independently distributed as multivariate normal with mean 0 and variance-

covariance matrix σ2
eV, where V = I + τK. Therefore we have Y following a multi-

variate normal distribution with mean Xβ and the variance-covariance matrix σ2
eV,

and that is Y ∼ N(Xβ, σ2
eV).

The corresponding likelihood function could be written as

L(β, τ, σ2
e) = (2πσ2

e)
−n/2 exp(

(Y −Xβ)TV−1(Y −Xβ)

−2σ2
e

)|V|−1/2. (2.3)

For a given value of τ , the values of β and σ2
e that maximize the likelihood function

can be written as

β̂(τ) = (XTV−1X)−1XTV−1Y, (2.4)

σ̂2
e(τ) =

(Y −Xβ̂)TV−1(Y −Xβ̂)

n
. (2.5)

Using these expressions, the profiled log-likelihood can be derived as

logL(τ) = −n
2

log(2πσ̂2
e)−

n

2
− 1

2
log |V|. (2.6)

Hence, the MLE of τ is found by maximizing the objective function (2.6) w.r.t. τ ,

and the MLEs of β and σ2
e are estimated according to (2.4) and (2.5). This iterative

procedure works well when the sample size n is reasonably larger than the number

of predictors p, however, with nowadays technology, the large p small n issue is quite
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common, which makes finding MLE of β an ill-conditioned problem. Therefore, it

is nature for us to think of using a penalization step to help produce a legitimately

estimated β.

With an initial estimation of τ , we define

Ỹ = V−1/2Y, (2.7)

and

X̃ = V−1/2X. (2.8)

Then components of Ỹ are independent, specifically Ỹ ∼ N(X̃β, σ2
eIn). POCRE

can be henceforth applied to construct a sequence of orthogonal components for the

purpose of estimating β. Starting with X1 = X̃, Y1 = Ỹ , we build the first orthogo-

nal component X1ω1, where ω1 is the leading eigenvector of cov(Y1,X1)T cov(Y1,X1).

Assuming that the first k − 1 components are constructed, now we proceed to find

the k-th component, first we remove Xk−1ωk−1 from Xk−1 and define Xk = Xk−1 −

Xk−1ωk−1 so that Xk is orthogonal to the previously constructed component. In

a similar manner, Yk is calculated by removing Xk−1ωk−1 from Yk−1 so that Yk

is uncorrelated to Xk−1ωk−1. Then ωk is calculated as the leading eigenvector of

cov(Yk,Xk)
T cov(Yk,Xk). This procedure continues until there is no more correlation

between the residual Yk and Xk. To enforce sparsity, the loadings are estimated as

ωk = ν
‖ν‖ where ν minimizes −2νTXT

k Y Y
TXkα + ‖ν‖2 + Pλ(ν), subject to ‖α‖ = 1,

here Pλ(ν) is a penalty function with tuning parameter λ. Currently, the penalty

functions that have been implemented are L1, SCAD, MCP, EBT and EBTZ which

is EBT with a z-transformation. This whole procedure provides us a data-driven

sparse estimate of β,

β̂ =
l∑

j=1

ζjωjQj, (2.9)

where ζ1 = Ip×p, ζj+1 = ζj(I − ωjPj), Pj = ηTj Xj/η
T
j ηj, Qj = ηTj Yj/η

T
j ηj, ηj = Xjωj,

and ωj = ν
‖ν‖ .



16

The residuals R are then obtained as R = Y − Xβ̂ = u + ε = ε∗ ∼ N(0, σ2
eV),

which is a random intercept model. As we described previously, τ can be estimated by

maximizing the profiled log-likelihood function in (2.6). V is then updated according

to this newly estimated τ . We iteratively update β and τ , and stop whenever τ con-

verges. The final estimate of β is calculated by constructing a sequence of penalized

orthogonal components using the converged τ . Next section describes our proposed

algorithm in details.

2.3 The Algorithm

Without loss of generality, we assume that both X and Y are centered, and L1

penalty is applied to enforce sparsity. Algorithms using other penalty functions are

similar. First of all, we eigen-decompose the kinship matrix and have K = UDUT ,

where columns of U are the eigenvectors and D is a diagonal matrix whose entries are

the eigenvalues of K. For each fixed tuning parameter λ in L1 penalty, the fPOCRE

algorithm proceeds as follows,

0. Set initial value τ (0) = 0 if this is the first λ being considered, otherwise, let

τ (0) be the one estimated from previous λ. Let k represents the number of iterations,

and it starts with k = 0;

1. With τ = τ (k), obtain β by constructing penalized orthogonal components in

regressing Ỹ = (I + τD)−1UTY against X̃ = (I + τD)−1UTX;

2. Update R = Ỹ − X̃β̂, and obtain τ (k+1) by maximizing the following profiled

log-likelihood,

τ = arg min
τ

{
n

2
log(

RT (I + τD)−1R

n
) +

1

2
log |I + τD|

}
; (2.10)

3. Iterate 1-2 until τ (k) converges.

The proposed algorithm starts with λ = 1 with increment δ and continues until

no features are being selected, then decreases from λ = 1 with decrement δ, the

algorithm continues until the number of selected features are more than n/ log n.
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Notice that the algorithm described above requires the choice of the regularization

parameter λ, extended BIC (eBIC) proposed by Chen and Chen (2008) is suggested

to help us choose the appropriate model for its effectiveness of variable selection in

the large p small n problem. The eBIC algorithm is defined as

eBICγ = −2 logL+ k log n+ 2γ log

(
p

k

)
, (2.11)

where L is the likelihood function of the linear mixed model, and k is the number of

features being selected. We elicit γ from 0 to 1, with EBIC0 exactly the BIC.

2.4 Simulation Studies

To maintain the unique structure of the genetic information associated with real

pedigree data, the simulated data were generated by adding effects to the real Ara-

bidopsis genetic information (Horton et al. 2012). Our proposed fPOCRE is com-

pared with EMMAX which is an efficient single-locus mixed model approach that

takes care of the relatedness among samples, as well as MLMM, a multi-locus mixed

model approach that uses kinship matrix to capture the sample relatedness. We set

up two simulation scenarios, and simulate 100 data sets in each case. In the first sim-

ulation scenario, a set of phenotypes is simulated by adding fixed effects to a group

of 12 SNPs that are mildly to highly correlated. In the second simulation scenario,

phenotypes are simulated from three different linkage groups, with 11 SNPs in the

first group, seven SNPs in the second group, and 10 SNPs in the last group.

Case I. A Cluster of Mildly to Highly Correlated SNPs

We select a group of 12 SNPs, which are mildly to highly correlated. The minimum

pairwise correlation among these 12 SNPs is 0.31 and the highest pair is 0.95. The

phenotypic values are simulated by assuming fixed effects of these 12 SNPs, and

random effects which are correlated according to the kinship matrix. Specifically, the

underlying true model is assumed as

Y =
12∑
j=1

Xj + u+ ε, ε ∼ N(0, 5), u ∼ N(0, 5τK),
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where K is the kinship matrix estimated from the genetic information, and τ is the

ratio between the genetic variation and the residual variation. τ represents different

levels of the signal-to-noise ratio, and is pre-specified at τ = 0.5, 1, 5, 10, 20, 50, and

100 respectively.

When it comes to fPOCRE, the result depends on the type of penalization func-

tions used, e.g. L1, SCAD, MCP, EBT, EBTZ penalty, and it also depends on the

parameter γ used in eBIC to select the optimal model. The γ choices we consider for

fPOCRE in our simulation studies are from 0 to 1 with step size at 0.1. Although

MLMM only implements eBIC with γ = 1, we modified MLMM to allow eBIC taking

different γ values so that we could have a thorough comparison. False Discovery Rate

(FDR) is employed to adjust multiple testings in EMMAX, and two sets of EMMAX

results are reported, one by controlling FDR at 0.05 and the other one at 0.1.

Since fPOCRE with L1, SCAD and MCP penalty perform similarly, and fPOCRE

with EBT and EBTZ penalty work similarly (results not shown here), we henceforth

only show the results of fPOCRE with L1 and EBTZ penalty.

Figure 2.1 and Figure 2.2 compare results of fPOCRE(L1), fPOCRE(EBTZ), and

MLMM with different choices of γ. Figure 2.1 illustrates how the mean true pos-

itives of fPOCRE and MLMM changes with γ in eBIC increases, and Figure 2.2

illustrates how the mean false positives of fPOCRE and MLMM changes with γ in

eBIC increases. Knowing that the larger the γ in eBIC, the more stringent model is,

therefore less signals are found. We observe that fPOCRE with a smaller γ performs

better than the one with a larger γ. Among all the γ used in the simulation study,

fPOCRE with γ = 0.1 performs the best. On the other hand, MLMM with a larger

γ outperforms the one with a smaller value, this is probably the reason that MLMM

algorithm uses γ = 1 as the only value in their eBIC implementation of choosing the

best model. Additionally, fPOCRE has a better performance than MLMM in terms

of having a higher number of true detections and a lower number of false selections.

When γ is smaller, the difference between fPOCRE and MLMM is bigger.
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in the simulation study of a cluster of 12 SNPs
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Table 2.1.: Performance comparison in analyzing a cluster of 12 mild to high corre-

lated SNPs. Reported are the mean true positives (TP) across 100 simulated data

sets with standard errors presented in the parentheses.

Method τ = 0.5 τ = 1 τ = 5 τ = 10

fPOCRE(L1)γ=0.1 11.71(0.07) 11.49(0.09) 9.63(0.15) 8.01(0.18)

fPOCRE(L1)γ=1 7.80(0.23) 6.58(0.24) 2.77(0.20) 1.56(0.11)

fPOCRE(EBTZ)γ=0.1 11.58(0.07) 11.38(0.11) 9.69(0.16) 8.10(0.18)

fPOCRE(EBTZ)γ=1 7.84(0.22) 7.23(0.23) 2.83(0.20) 1.75(0.10)

MLMMγ=0.1 4.82(0.11) 4.86(0.10) 4.02(0.07) 3.38(0.06)

MLMMγ=1 3.99(0.07) 3.89(0.06) 3.21(0.05) 2.69(0.06)

EMMAX(FDR=0.05) 12.00(0.00) 12.00(0.00) 12.00(0.00) 12.00(0.00)

EMMAX(FDR=0.1) 12.00(0.00) 12.00(0.00) 12.00(0.00) 12.00(0.00)

Method τ = 15 τ = 20 τ = 50 τ = 100

fPOCRE(L1)γ=0.1 6.65(0.23) 5.68(0.22) 2.34(0.15) 3.10(0.34)

fPOCRE(L1)γ=1 1.32(0.07) 1.33(0.06) 1.46(0.08) 1.13(0.07)

fPOCRE(EBTZ)γ=0.1 6.83(0.20) 5.85(0.22) 2.87(0.20) 2.54(0.15)

fPOCRE(EBTZ)γ=1 1.99(0.13) 1.92(0.13) 2.02(0.12) 1.07(0.10)

MLMMγ=0.1 2.98(0.07) 2.78(0.07) 1.75(0.06) 1.26(0.05)

MLMMγ=1 2.30(0.05) 2.01(0.05) 1.14(0.03) 1.01(0.01)

EMMAX(FDR=0.05) 12.00(0.00) 12.00(0.00) 11.98(0.14) 10.99(1.24)

EMMAX(FDR=0.1) 12.00(0.00) 12.00(0.00) 11.99(0.10) 11.28(1.06)
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Table 2.2.: Performance comparison in a cluster of 12 mild to high correlated SNPs.

Reported are the mean false positives (FP) across 100 simulated data sets with stan-

dard errors presented in the parentheses.

Method τ = 0.5 τ = 1 τ = 5 τ = 10

fPOCRE(L1)γ=0.1 0.34(0.06) 0.31(0.06) 0.13(0.04) 0.07(0.03)

fPOCRE(L1)γ=1 0.01(0.01) 0.00(0.00) 0.00(0.00) 0.00(0.00)

fPOCRE(EBTZ)γ=0.1 0.53(0.08) 0.34(0.06) 0.16(0.04) 0.08(0.03)

fPOCRE(EBTZ)γ=1 0.02(0.01) 0.01(0.01) 0.00(0.00) 0.00(0.00)

MLMMγ=0.1 5.93(0.46) 8.53(0.45) 13.95(0.24) 15.15(0.17)

MLMMγ=1 0.40(0.06) 0.36(0.06) 0.18(0.04) 0.15(0.04)

EMMAX(FDR=0.05) 43.96(3.83) 43.52(3.85) 38.14(4.12) 32.78(4.43)

EMMAX(FDR=0.1) 53.55(5.97) 52.70(5.82) 46.04(5.26) 39.55(5.97)

Method τ = 15 τ = 20 τ = 50 τ = 100

fPOCRE(L1)γ=0.1 0.04(0.02) 0.02(0.01) 0.00(0.00) 5.44(1.37)

fPOCRE(L1)γ=1 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00)

fPOCRE(EBTZ)γ=0.1 0.03(0.02) 0.01(0.01) 0.01(0.01) 0.01(0.01)

fPOCRE(EBTZ)γ=1 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00)

MLMMγ=0.1 15.85(0.11) 16.08(0.10) 17.22(0.07) 17.74(0.05)

MLMMγ=1 0.17(0.05) 0.11(0.03) 0.07(0.03) 0.03(0.02)

EMMAX(FDR=0.05) 28.78(4.64) 25.59(3.94) 13.98(4.57) 5.78(3.58)

EMMAX(FDR=0.1) 34.57(5.80) 30.90(5.63) 17.67(5.44) 8.29(4.95)
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The true positives results of a cluster of 12 correlated SNPs simulation study are

summarized in Table 2.1 and the false positives results are in Table 2.2. We present

the results of fPOCRE using L1 and EBTZ penalty with γ = 0.1 and γ = 1, MLMM

results with γ = 0.1 and γ = 1, in additional to the results above, we also include two

sets of EMMAX results at different FDR level to adjust for multiple comparisons. It

shows that EMMAX produces really high false positives across all the τ considered

compared with fPOCRE and MLMM. The number of false positives decreases when

the ratio between the genetic variation and the residual variation increases. On the

other hand, MLMM has low power compared with fPOCRE and EMMAX, and is only

able to find at most one third of the total signals in this simulation study. In all of

different τ settings. fPOCRE is the one with both a high detection rate and low false

positives compared to its two competitors. Among fPOCRE algorithms itself, models

with different penalization functions, fPOCRE(L1)γ=0.1 gives slightly higher TP than

fPOCRE(ebtz)γ=0.1 when the ratio between genetic variation and residual variation is

relatively small, such as 0.5 and 1. With this ratio getting larger, fPOCRE(ebtz)γ=0.1

performs better in terms of having higher TP. Furthermore, fPOCRE(L1)γ=0.1 gener-

ally has similar FP or a bit lower FP when compared with fPOCRE(ebtz)γ=0.1 except

the case when true τ = 100.

Case II. Three Linkage Groups

We select a total of 28 SNPs in three different linkage groups: the first group

has 11 SNPs, the second group has seven SNPs, and the last group has 10 SNPs.

The phenotypic values are simulated by assuming fixed effects of these 28 SNPs, and

random effects which are correlated according to the kinship matrix. Specifically, the

underlying true model is assumed as

Y =
28∑
j=1

Xj + u+ ε, ε ∼ N(0, 5), u ∼ N(0, 5τK),

where K is the kinship matrix estimated from genetic information, τ is the ratio

between genetic variation and residual variation. While τ represents different levels
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of the signal-to-noise ratio, it is pre-specified at τ = 0.5, 1, 5, 10, 20, 50, and 100

respectively.

Table 2.3.: Performance comparison in the three linkage groups simulation study. Re-

ported are the mean true positives (TP) across 100 simulated data sets with standard

errors presented in the parentheses.

Method τ = 0.5 τ = 1 τ = 5 τ = 10

fPOCRE(L1)γ=0.1 19.12(0.75) 19.13(0.82) 17.81(1.32) 16.27(1.77)

fPOCRE(L1)γ=1 16.06(2.13) 15.31(3.26) 4.63(5.61) 1.50(0.91)

fPOCRE(EBTZ)γ=0.1 18.46(0.97) 18.45(0.90) 17.44(1.10) 16.26(1.58)

fPOCRE(EBTZ)γ=1 16.96(1.63) 16.19(2.78) 4.81(5.61) 2.16(2.01)

MLMMγ=0.1 8.55(2.39) 8.03(2.04) 6.47(1.46) 5.31(1.21)

MLMMγ=1 7.31(1.91) 6.66(1.75) 5.02(1.10) 4.17(0.80)

EMMAX(FDR=0.05) 18.91(0.57) 18.85(0.58) 18.54(0.69) 18.14(0.75)

EMMAX(FDR=0.1) 19.28(0.57) 19.24(0.55) 18.94(0.72) 18.59(0.75)

Method τ = 15 τ = 20 τ = 50 τ = 100

fPOCRE(L1)γ=0.1 15.49(1.76) 14.65(2.01) 7.44(5.96) 7.43(5.60)

fPOCRE(L1)γ=1 1.51(0.52) 1.51(0.62) 1.57(0.70) 1.28(0.85)

fPOCRE(EBTZ)γ=0.1 15.51(1.64) 14.03(2.61) 5.73(4.89) 3.89(3.42)

fPOCRE(EBTZ)γ=1 1.84(0.42) 1.86(0.58) 1.88(0.74) 1.14(1.00)

MLMMγ=0.1 4.79(0.95) 4.22(0.95) 3.06(0.89) 2.11(0.83)

MLMMγ=1 3.76(0.79) 3.42(0.78) 2.04(0.72) 1.31(0.46)

EMMAX(FDR=0.05) 17.80(0.93) 17.25(1.23) 13.37(2.43) 10.46(2.36)

EMMAX(FDR=0.1) 18.18(0.90) 17.83(1.06) 14.29(2.50) 11.04(2.30)

The results of the three linkage groups are shown in Table 2.3 and Table 2.4.

Similar to what we observe in the one linkage group simulation study, even though

EMMAX has good power but with the cost of greatly increased false positives. On the

other hand, MLMM with γ = 1 has relatively low false detections, but suffers from loss

of power. fPOCRE with γ = 0.1 has both good power and reduced false discoveries
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Table 2.4.: Performance comparison in the three linkage groups simulation study. Re-

ported are the mean false positives (FP) across 100 simulated data sets with standard

errors presented in the parentheses.

Method τ = 0.5 τ = 1 τ = 5 τ = 10

fPOCRE(L1)γ=0.1 3.52(2.24) 3.30(2.03) 1.95(1.71) 1.51(1.46)

fPOCRE(L1)γ=1 0.70(0.89) 0.57(0.85) 0.04(0.20) 0.00(0.00)

fPOCRE(EBTZ)γ=0.1 3.01(2.54) 2.36(1.81) 1.86(1.35) 1.98(2.07)

fPOCRE(EBTZ)γ=1 1.05(0.93) 0.78(0.83) 0.08(0.31) 0.00(0.00)

MLMMγ=0.1 11.42(5.86) 13.62(6.15) 20.07(4.07) 22.23(3.72)

MLMMγ=1 1.67(1.21) 1.66(1.22) 1.15(0.85) 0.74(0.68)

EMMAX(FDR=0.05) 35.39(3.65) 34.52(3.89) 29.46(5.02) 24.56(5.22)

EMMAX(FDR=0.1) 46.17(6.00) 45.59(6.32) 39.15(6.35) 33.45(7.04)

Method τ = 15 τ = 20 τ = 50 τ = 100

fPOCRE(L1)γ=0.1 1.54(1.58) 1.45(1.61) 2.04(6.80) 13.62(16.73)

fPOCRE(L1)γ=1 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00)

fPOCRE(EBTZ)γ=0.1 2.14(1.96) 1.70(1.81) 0.47(1.31) 2.67(9.36)

fPOCRE(EBTZ)γ=1 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00)

MLMMγ=0.1 23.67(2.57) 24.24(2.16) 25.84(1.24) 26.81(0.95)

MLMMγ=1 0.52(0.69) 0.38(0.58) 0.27(0.53) 0.08(0.27)

EMMAX(FDR=0.05) 20.92(5.33) 17.96(5.50) 7.31(4.04) 2.73(2.75)

EMMAX(FDR=0.1) 28.41(7.43) 24.46(6.98) 11.16(5.76) 4.91(5.31)
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in all the different τ settings considered. Again in general, fPOCRE(L1)γ=0.1 gives

slightly higher true positives over fPOCRE(EBTZ)γ=0.1.
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Figure 2.3.: True positives of fPOCRE(L1), fPOCRE(EBTZ) and MLMM algorithms

in the simulation study of three linkage groups
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Figure 2.4.: False positives of fPOCRE(L1), fPOCRE(EBTZ) and MLMM algorithms

in the simulation study of three linkage groups
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Figure 2.3 and Figure 2.4 compare the mean true positives and false positives

of fPOCRE and MLMM with γ increases. Similar to the conclusion we draw from

the first simulation study, fPOCRE outperforms MLMM in terms of having a larger

number of true positives and a lower number of false positives. When gamma is

smaller, the difference between fPOCRE and MLMM is bigger.

2.5 Real Data Analyses

2.5.1 Application to the Regional Mapping Panel A. Thaliana Data Set

Horton et al. 2012 studied high-resolution description of the global pattern of

genetic variation using worldwide Arabidopsis thaliana accessions from the Regional

Mapping panel. There are 336 A. thaliana samples measured with sodium accumula-

tion, and genotyped at 200155 SNPs. We apply both fPOCRE using L1 penalty and

MLMM algorithms to this data set. When applying MLMM algorithm, we notice

that a pre-determined step-size needs to be given before applying MLMM, and there

is no good thumb of rule to choose prior to this selection, we use step size 10 in this

Arabidopsis sodium level analysis. The results are presented in Table 2.5.

fPOCREγ=0.1 identifies six signals while MLMMγ=1 finds four SNPs. The SNP

(chromosome 4: 6,392,280) resides in the first exon of gene AtHKT1;1 that is previ-

ously reported for association with sodium accumulation is identified by both fPOCRE

and MLMM methods. fPOCREγ=0.1 selects three more SNPs that are near the gene

AtHKT1;1 and they are all within 50kb of the SNP (chromosome 4: 6,392,280), while

MLMMγ=1 selects two more SNPs that are nearby. Furthermore, fPOCRE is much

more computational efficient, it takes about one minute to finish analyzing this data,

MLMM on the other hand uses about 13 minutes. The computational improvement

will be more obvious with a much larger data set.

In hypothesis testing, p-value is a popular indicator to quantify statistical signifi-

cance. We then try to assign a p-value to the SNPs we find. Recently, Meinshausen

et al. (2009) has proposed a multi-split method to assign statistical significance and
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Table 2.5.: Arabidopsis real data analysis results. Reported are the coefficient esti-

mates, with p-values in the parenthesis.

Chr Physical Position fPOCREγ=0.1(p-value*) MLMMγ=1(p-value**)

2 12471135 26.18(1.33E-02) -

3 7966725 83.71(2.99E-02) -

3 21670298 - 252.20(1.68E-07)

4 6388940 235.63(2.27E-02) -

4 6392280 485.27(4.36E-09) 616.44(3.93E-27)

4 6418442 82.52(1.48E-07) 272.97(3.82E-15)

4 6719618 326.62(2.89E-02) 323.61(3.03E-08)

*p-values are calculated using the 10-split method

**p-values are calculated from the final model with selected SNPs

construct p-values for high-dimensional analyses where the number of predictors may

be much larger than the sample size. In each split, the data is divided into two parts,

fPOCRE uses the first part and builds a statistical model, then a classical variable

selection technique is applied to the selected variables using the data from the second

part. The method has the property of asymptotic error control and model selection

consistency. Here we apply multi-split method with a total of 10 splitting. Reported

are the ones with a p-value less than 0.05.

2.5.2 Application to the Heterogeneous Mice Data

Mouse is an important model organism for understanding gene functions in mam-

mals and population structure would be expected in data sets with heterogeneous

mice. Legarra et al. 2008; Valdar et al. 2006 performed a genome-wide association

study using heterogeneous mice data that generated from eight inbred lines. A total

of 1872 mice with pedigree information are genotyped at 11730 SNPs. We apply both
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fPOCRE with L1 penalty and MLMM with step size 10 to study the potential causal

SNPs of the weight growth slope.

After the analysis, two SNPs on chromosome 18 (18:57650519, rs3705107 and

18:63716343, rs3023468) are chosen by fPOCREγ=0.1 model, where the SNP rs3705107

is near the previously identified 95% confidence interval of the QTL (18:55704779-

57510467, Valdar et al. 2006) influencing the weight growth slope. On the other

hand, nothing is selected by MLMMγ=1. Detailed results could be found in Table 2.6.

P-values associated with fPOCRE results are calculated through the multi-splitting

method with 10 splits.

Table 2.6.: fPOCRE results of heterogeneous mouse data. Reported are the coefficient

estimates, with p-values in the parenthesis

Chromosome SNP Physical Position Genetic Map Beta(p-value*)

18 rs3705107 57650519 36.85 3.61E-03(3.88E-02)

18 rs3023468 63716343 44.56 4.24E-03(2.75E-02)

*p-values are calculated using the 10-split method

2.6 Conclusion

In summary, we have presented an efficient feature selection method for family

data in the large p small n scenario. Our proposed approach is a hybrid of the pe-

nalization method and the linear mixed model and is computationally tractable for

moderately large data set which is quite common due to nowadays high throughput

technology. The fPOCRE algorithm works by simultaneously incorporating tens of

thousands of genetic markers in a single statistical model, building orthogonal com-

ponents where a penalty is included to force most regression coefficient to be exactly

zero. Being a multi-locus algorithm separates us from most of other algorithms that

are also in the linear mixed model framework. Our new analytical procedure has more
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power and the potential to add a significant number of discoveries in a genome-wide

association study. It also appears to be less open to false positives than the single-

locus based methods EMMAX when a non-zero correlation structure exists between

associated markers and the underlying genetic architecture is polygenic. MLMM,

a stepwise linear mixed model regression which is also a multi-SNP algorithm has

been shown to perform well in GWAS. However, it suffers from instability of stepwise

regression and loss of power when variables are correlated.

Our simulation study demonstrates fPOCRE has promising performance over both

EMMAX and MLMM in terms of improved power and reduced false positives when

the causal effects are from structurally correlated SNPs. Simulations based on the

real genetic structure with different genetic variation to residual variation ratios are

used to compare the performance of different methods. In general, fPOCRE with L1

penalty would be suggested for its computational efficiency. The final model is chosen

by eBIC, and a larger tuning parameter (γ) is recommended if the false discovery rate

is more concerned, otherwise, smaller values can increase power in order to detect

weaker signals.

An Arabidopsis and a heterogeneous mouse data have been used to demonstrate

the advantages of using fPOCRE. A reported association of the Arabidopsis sodium

accumulation is confirmed in both fPOCRE and MLMM results. The optimal fPOCRE

model includes three additional SNPs that are within the associated region. On the

other hand, MLMM finds two more genetic markers in the same genetic region. In our

mouse data analysis, one of our two findings locates in a previous reported association

region, however, MLMM finds none. Moreover, our proposed algorithm fPOCRE is

computational efficient and runs much faster than the MLMM in all our real data

analyses.

The proposed hybrid algorithm provides a clear alternative way to perform a

family-based multi-SNP GWA study and more extensions could be further inves-

tigated under this framework, such as case-control GWAS and multiple traits in

structured associations.
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3. AN EFFICIENT METHOD FOR CASE-CONTROL

GENOME-WIDE ASSOCIATIONS WITH FAMILY STRUCTURE

In this chapter, we describe the details of a proposed efficient method for case-control

GWAS with family structure. Our proposed algorithm GEE-POCRE constructs pe-

nalized orthogonal components under the framework of generalized estimating equa-

tion (GEE). Moreover, it simultaneously selects variables when assuming correlated

structures among study samples. We compare GEE-POCRE with gPOCRE, an al-

gorithm that is multi-locus regression but does not consider family structure, and

a set of algorithms that take account of the family structure but are single-locus

methods, such as TDT, FBAT, ROADTRIPS. Our simulation studies demonstrate

GEE-POCRE has promising performance over its competitor algorithms in terms of

both power and false positives. A real data analysis is also included to show the

performance of GEE-POCRE.

We start this chapter with the motivation of our GEE-POCRE algorithm. Section

3.2 describes the GEE model, the penalized orthogonal components regression for the

generalized linear model (gPOCRE) and how to further extend penalized orthogonal

components regression for the GEE model. The full details on the algorithm are also

provided in this section. Section 3.3 and Section 3.4 contain the results of simulations

and a real data analysis respectively. We conclude this chapter with a final discussion.

3.1 Introduction and Motivation

Genome-wide association studies have been frequently conducted to help identify

genetic loci associated with complex traits and human diseases, such as schizophrenia,

Late Onset Alzheimer’s Disease and type II diabetes. It is well-known that spurious

associations may occur if hidden population structure and cryptic relatedness are
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not properly accounted. For different study designs and different types of traits,

many statistical approaches have been developed to correct for population structure

and cryptic relatedness to identify hidden genetic risk factors. Case-control is a

popular study design in epidemiology and pharmacology.For certain types of study

designs, commonly used are family-based testing methods including the transmission

disequilibrium test (TDT), and family-based association Test (FBAT). They test

for the differences between the observed offspring genotypes and the expected ones

under Mendelian rule. Both these methods are linkage analyses, and are virtually

immune to confounding. However, family-based tests are in general less powerful

than case-control association methods because they require more samples to obtain

good power. Moreover, such family-based data is more than likely not obtainable in

many situations.

While methods based on linear mixed models have shown advantages in analyzing

GWAS with normal traits but how to extend them to case-control GWAS is not clear

yet. Here we will establish a GEE model for case-control GWAS, and develop a

supervised dimension reduction method to identify important SNPs.

As shown in Liang and Zeger (1986) that GEE provides a framework to analyze

data sets with correlated observations in longitudinal study. Instead of specifying the

joint distribution, GEE assumes a marginal mean and covariance model that uses a

user-defined working correlation matrix (Chen et al. 2011). Moreover, GEE is known

to be robust to mis-specification of the working correlation matrix and has shown

successes in many studies. In family-based GWAS, subjects can be grouped within

each family. The sample relatedness can be modeled through the kinship matrix

which is included in the working correlation matrix.

With nowadays high-throughput technology, numerous genetic markers are geno-

typed at a relatively low price, making it challenge to statistically analyze such large p

small n data. Dimension reduction is an important method that helps reduce the di-

mensionality of the variable space before fitting any models. The partial least squares

(PLS) method proposed by Wold (1975) is considered one of the commonly used sta-
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tistical strategies to capture data information in a lower dimension space. Later, Lin

et al. (2014) propose the penalized orthogonal components regression in generalized

linear models (gPOCRE) that extends PLS to fit high dimensional generalized linear

models, it does the job of variable selection and estimation simultaneously.

In this paper we examine the use of GEE for family-based case-control GWAS, and

follow gPOCRE to develop a variable selection method, aka GEE-POCRE, to identify

genetic variants of binary traits. The proposed algorithm assumes a model with

multiple genetic markers, making it a multi-locus approach compared to TDT and

FBAT, which are essentially single-locus methods. Gained power would be expected

by using GEE-POCRE if the disease status is truly influenced by multiple genetic

factors.

3.2 Methods

3.2.1 Generalized Estimating Equations

Generalized estimating equations (GEE), first introduced by Liang and Zeger

(1986), has become very popular in epidemiology, pharmacology and other related

research areas. It extends the generalized linear model (GLM) to handle correlated

observations through a user-defined working correlation matrix and further assumes

a general mean-covariance structure (Zeger and Liang , 1986).

Suppose correlated study subjects are put into the same cluster. Let Yi =

(yi1, yi2, ..., yini
)T be a vector of outcomes from cluster i, Xi = (Xi1, ..., Xini

)T be the

ni × p design matrix for the ith cluster, i = 1, ..., K. We assume that the marginal

density of yij is

f(yij) = exp

[
yijθij − b(θij)

a(φ)
+ c(yij, φ)

]
, (3.1)

where a(φ) is a function of the dispersion parameter φ, and θij = g(ηij) with

ηij = Xijβ.
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It leads to the general mean and covariance structure of the exponential families

µij = E(yij) = b′(θij), (3.2)

aij = var(yij) = b′′(θij)a(φ). (3.3)

GEE differs from GLM in that it has a user-specified covariance structure that

takes correlations among observations into account to increase efficiency. Let R(τ)

be an n × n symmetric working correlation matrix with an unknown parameter τ ,

then the covariance matrix can be defined as

Vi = A
1/2
i R(τ)A

1/2
i , (3.4)

where Ai = diag(aij).

Then the generalized estimating equation is expressed as

K∑
i=1

D′iVi
−1(Yi − b′i(θ)) = 0, (3.5)

where Di =
∂b′i(θ)

∂β
= Ai∆iXi, ∆i = diag(∂θij/∂ηij).

There is no much difference between GEE and GLM except that the variance

covariance matrix V is no longer a diagonal matrix, with non-zero values on the

off-diagonal.

The following iterative re-weighted least square (IRWLS) algorithm can be em-

ployed to compute β,

β(t+1) = (XTWX)−1XTWZ, (3.6)

where the working response Z and the weight matrix W are defined as

Z = η +
∂η

∂µ
× (Y − µ), (3.7)

W = var(Y )−1 ×
(
∂µ

∂η

)2

. (3.8)

However, the way to estimate β is no longer applicable when dealing with large p

small n data. An alternative approach needs to be considered instead.
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3.2.2 Penalized Orthogonal Components Regression in the Generalized

Linear Model

As suggested by Lin et al. (2014) that gPOCRE intends to build up a sequence of

orthogonal components in high-dimensional GLMs and subsequently put a penaliza-

tion function on the coefficient of the predictors to identify sparse signals. The bias

correction by Firth (1993) is also applied. Now assuming the response Y is a member

of the exponential family distribution and its density function is expressed as

f(yi) = exp

[
yiθi − b(θi)

a(φ)
+ c(yi, φ)

]
, (3.9)

where θ and φ are the canonical parameter and the dispersion parameter respectively.

The mean µ = E(Y |X) is related to the predictors through a link function g(.),

g(µ) = µ0 + Xβ. (3.10)

Here µ0 is the intercept, X is a design matrix, β is a p-dimensional column vector

containing all the regression coefficients of the predictors. The orthogonal components

are sequentially constructed with a pre-specified weight W and the design matrix X

is column-wise centralized e.g. E(WX) = 0 prior to the construction. Starting with

X1 = X and assuming the first j orthogonal components have been constructed,

we now proceed to obtain the (j + 1)-st orthogonal component. Xj+1 is defined as

Xj+1 = Xj−Xjαjθj and it is orthogonal to Xjαj. With η estimated from the previous

step, say ηj, the working response Z(η) is calculated as

Z(η) = η +
∂η

∂µ
× (Y − µ), (3.11)

where µ = g−1(η), then the loadings of the (j + 1)-st component is updated with

α(η) = E(XT
j+1WZ(η))/||E(XT

j+1WZ(η))||. (3.12)

Then update η(α) as

η(α) = E(WZ)/E(W) +

j∑
k=1

Xkαkνk + Xj+1αν, (3.13)
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where ν = E(αTXT
j+1WZ)/E(αTXT

j+1WXj+1α) and νk = E(αTkXT
j WZ)/E(αTkXT

j WXjαk)

for k = 1, ..., j. We can iterate between α(η) and η(α) until α(η) converges.

Noticing that each orthogonal component Xjαj could be re-expressed as X$j =

X
∏j−1

l=1 (I −αj−lθj−l)αj. The fitted generalized orthogonal component regression can

be written as

g(µ) = µ+
∑
j

X$jϑj. (3.14)

To enforce sparsity, a penalty function is added when constructing the sequence

of orthogonal components. Cross-validation is then explored to help select the tuning

parameter of the penalty function.

3.2.3 GEE Models for Family-Based Case-Control GWAS

Here we propose a GEE model for the case-control GWAS. specifically, we assume

the following model,

g(µ) = η = µ0 + Xβ = µ0 +
∑
j

(X$j)ϑj. (3.15)

The variance-covariance matrix V is formulated as

V = A1/2RA1/2, (3.16)

where

A = diag(a1, ...an), ai = var(yi). (3.17)

Motivated by the kinship matrix that captures the sample relatedness used with

linear mixed model, we adopt this idea into the GEE model and suggest the following

working correlation matrix,

R = (1− τ)I + τK, τ ∈ [0, 1]. (3.18)

To ease the computation, we first eigen-decompose the kinship matrix K, i.e.,

K = UDUT . With pre-specified τ and A, the weight matrix W is calculated as

W = V−1 = A−1/2U {(1− τ)I + τD}−1 UTA−1/2, (3.19)
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where the inverse of (1− τ)I + τD can be easily calculated as D is diagonal.

For given τ and A, we can employ gPOCRE described in the previous section

to this GEE model to estimate all $j and ϑj so as to estimate β. Indeed, all the

orthogonal components can be sequentially constructed following equations (3.11)-

(3.13), and η is then calculated as in (3.15).

A newly estimated β would suggest an update to both τ and A. We can update

A as

A = b′′(θ)/(5g−1(η))2. (3.20)

A moment estimator of τ is sought in our proposed algorithm. Specifically, we will

utilize the Pearson’s residual, i.e.,

ei = (yi − µi)/
√
var(yi). (3.21)

Since ρij = E(eiej) = corr(yi, yj) which is the ij-th component in the true correlation

matrix, eiej is an unbias estimator of ij-th element of the working correlation matrix

R. Therefore, finding τ is equivalent to the following regression problem with respect

to the upper off-diagonal elements, e.g., i < j,

τ(Kij − Iij) = Rij − Iij, i < j. (3.22)

Iterating between construction of penalized orthogonal components and updating

τ and A leads to a fit to the GEE model with a sparse estimate of β.

3.2.4 The Algorithm

In this section, we present the complete GEE-POCRE algorithm which encom-

passes building the penalized orthogonal components as well as updating the param-

eters, including τ in the working correlation matrix and the matrix A with variance

on the diagonal.

Following the idea described in the previous section, let the outcome variable and

the design matrix denoted by Y = (y1, ..., yn)T and X = (X1, ..., Xn)T respectively.

For each fixed tuning parameter λ, we can proceed the algorithm as follows.
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0. Let initial values τ (0) = 0 and A(0) = n, so that A(−1/2) = 1/
√
n .

1. Given τ and A, we update the weight matrix W = A(−1/2)U{(1 − τI) +

τD}−1UTA(−1/2), and centralize X appropriately according to W, e.g.XTW1n = 0p.

We then obtain estimate of β via constructed penalized orthogonal components, i.e.,

β̂ =
∑
j

ζjαjγj, (3.23)

where 
ζj =

∏j−1
k=1(Ip − αkPk),

γj = αTj XT
j WZ/αTj XT

j WXjαj,

Pj = αTj XT
j WXj/α

T
j XT

j WXjαj.

Here the loadings αj are obtained through the following iterative procedure, starting

with η1 = log
(

Ȳ
1−Ȳ

)
, X1 = X, and j = 1.

1.a. Let ηj = ηj−1;

1.b. Update Z = ηj+H
−1(Y −g−1(ηj)), with H = diag(5g−1(ηj1), ...,5g−1(ηjn));

1.c. Update µ0 = 1TnWZ/(1TnW1n);

1.d. Calculate (ν, ξ) = arg minν,ξ:‖ξ‖=1

{
−2νTXT

j ZWZTXjξ + ‖ν‖2 + Pλ(ν)
}

, and

update αj = ν/‖ν‖;

1.e. Update γk = αTkXT
kWZ/(αTkXT

kWXkαk), k = 1, ..., j;

1.f. Update ηj = µ01n +
∑j

k=1 Xkαkγk.

1.g. Iterate between 1.b. and 1.f. until αj converges;

1.h. This whole procedure stops if αj = 0. Otherwise, calculate

Pj = αTj XT
j WXj/(α

T
j XT

j WXjαj) and Xj+1 = XjαjPj, then start over at 1.a. with

j = j + 1.

2. If there is at least one component constructed from the previous step, update

both τ and A as follows. The algorithm stops otherwise.

2.a. Calculate A = b′′(θ)/(5g−1(η))2, where b′′(θ) = π(1− π), and π = g−1(η);

2.b. Calculate τ =
∑

i<j(RijKij)/
∑

i<jK
2
ij, where Rij = eiej with ei = (Y −

b′(θ))/
√
A.

3. Repeat 1 with updated τ and A, and therefore obtain final estimate of β.
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Here 10-fold cross validation is applied to choose the optimal tuning parameter λ

in GEE-POCRE.

3.3 Simulation Study

For our simulation study, we will use the genotypic values of an existing Japanese

Schizophrenia study (Yamada et al. 2011). This study includes a total of 120 trio-

families, with 4616 SNPs genotyped on chromosome 4. We simulate phenotypic values

by assuming causal genetic variants only existing on chromosome 4, and maintaining

the trio-family structure.

The binary trait Y follows a logistic model

p = E(Y ) =
exp(µ+ Xβ)

1 + exp(µ+ Xβ)
. (3.24)

Let p1 and p2 denote the marginal probabilities of the parents being case (i.e., Y = 1).

The phenotypic values of the parents can be simulated through

Y1 ∼ Bernoulli(p1), (3.25)

Y2 ∼ Bernoulli(p2). (3.26)

Let p(Y1, Y2) be the probability of the offspring being case conditional on the case-

control status of both parents. Then,

Y3|Y1, Y2 ∼ Bernoulli(p(Y1, Y2)). (3.27)

Now let ρ denote the correlation coefficient between the phenotypic values of

parents and the offspring, and p3 denote the marginal probability of the offspring. We

then have the following equations derived from that corr(Y1, Y3) = corr(Y2, Y3) = ρ

and E[Y3] = E[p(Y1, Y2)] = p3.

(1− p2)p(1, 0) + p2p(1, 1)− p3 − ρ
√

((1− p1)p3(1− p3)/p1) = 0, (3.28)

(1− p1)p(0, 1) + p1p(1, 1)− p3 − ρ
√

((1− p2)p3(1− p3)/p2) = 0, (3.29)

(1− p2)p(0, 0) + p2p(0, 1)− p3 − ρ
√

(p1p3(1− p3)/(1− p1)) = 0. (3.30)
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Assuming the parents are exchangeable, that is p(0, 1) = p(1, 0), we solve the equa-

tions above and simulate the offspring phenotypic values based on the conditional

probabilities.

Here we present two simulation scenarios with signals clustered in two linkage

groups. We evaluate our GEE-POCRE along with some existing methods in terms

of power and false discoveries. The methods we compare with are TDT, FBAT, and

ROADTRIPs. All of these three are single-locus methods for family-based GWAS. We

also apply gPOCRE, a multi-locus method that does not use the pedigree information,

to the simulated data.

Case I. Eleven Causal SNPs Existing in Two Linkage Groups

Denote the eleven causal SNPs as X1, · · · , X11. The underlying logistic model is

logit(E(Y )) = µ + 0.4
∑11

j=1Xj, where var(Y ) = A1/2RA1/2, A is a diagonal matrix

with the variances of Y as the diagonal elements, and R is a correlation matrix defined

as R = (1 − τ)I + τK. We consider different values of τ , ranging from 0 to 1 with

increment 0.1. For each τ , we simulate 100 data sets. Two sets of results are reported

with ROADTRIPS, TDT and FBAT by controlling FDR at 0.05 and 0.1 respectively.

The boxplots of the true positives and false positives among all the compared

methods are shown in Figure 3.1. Across all the different τ , GEE-POCRE, gPOCRE,

and ROADTRIPS, these three methods have the highest median true positives. On

the other hand, GEE-POCRE, TDT and FBAT demonstrated their strength in con-

trolling false discoveries. Apparently, GEE-POCRE has both improved power and a

better control of false positives compared with other four methods. With increased τ ,

the variance of false discoveries of GEE-POCRE and gPOCRE increases, indicating a

decreased performance of these two methods. Figure 3.2 summarizes the median true

positives and false positives of all compared methods at different τ . We observe a

similar trend that GEE-POCRE outperforms all other methods, with a slightly lower

number of false positives when τ is small.
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(a) τ = 0: True Positives
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(b) τ = 0: False Positives
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(c) τ = 0.1: True Positives
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(d) τ = 0.1: False Positives
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(e) τ = 0.2: True Positives

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●●●●

●●

●

●

●
●
●

●
●●

0
10

20
30

40
50

NFP 2LG Beta=0.4 Tau=0.2

N
F

P

GEE−POCRE gPOCRE
ROADTRIPS 

 FDR(0.05)
ROADTRIPS 

 FDR(0.1)
TDT 

 FDR(0.05)
TDT 

 FDR(0.1)
FBAT 

 FDR(0.05)
FBAT 

 FDR(0.1)

(f) τ = 0.2: False Positives
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(a) τ = 0.3: True Positives
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(b) τ = 0.3: False Positives
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(c) τ = 0.4: True Positives
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(d) τ = 0.4: False Positives
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(e) τ = 0.5: True Positives
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(f) τ = 0.5: False Positives
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(a) τ = 0.6: True Positives
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(b) τ = 0.6: False Positives
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(c) τ = 0.7: True Positives
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(d) τ = 0.7: False Positives
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(e) τ = 0.8: True Positives
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(f) τ = 0.8: False Positives
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(a) τ = 0.9: True Positives
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(b) τ = 0.9: False Positives
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(c) τ = 1: True Positives
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(d) τ = 1: False Positives

Figure 3.1.: Boxplot comparisons among GEE-POCRE, gPOCRE, ROADTRIPS,

TDT and FBAT in the simulation study of eleven SNPs in two linkage groups
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Figure 3.2.: Median true positives and false positives plots in the simulation study of

eleven SNPs in two linkage groups.
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Case II. Fifteen Causal SNPs Existing in Two Linkage Groups

Denote the 15 causal SNPs as X1, · · · , X15. We then simulate phenotypic values

from the following logistic model, logit(E[Y ]) = µ + 0.5
∑28

j=1Xj, where var(Y ) =

A1/2RA1/2, A is diagonal matrix with the variances of Y as the diagonal elements,

and R is a correlation matrix defined as R = (1 − τ)I + τK. We consider different

values of τ , ranging from 0 to 1 with increment 0.1. For each τ , we simulate 100

data sets. Two sets of results are reported with ROADTRIPS, TDT and FBAT by

controlling FDR at 0.05 and 0.1 respectively.

The boxplots of true positives and false positives in the case II simulation study

among all the compared methods are shown in Figure 3.3. GEE-POCRE, gPOCRE,

ROADTRIPS, TDT are able to find five true SNPs compared with FBAT which

has less true detections and more variations. A greatly decreased false positives is

observed in GEE-POCRE and its performance is relatively stable. We also observe

a more obvious tendency that GEE-POCRE has less variation in terms of both true

positives and false positives across different τ when compared with gPOCRE. Figure

3.4 summarizes the median true positives and false positives of all compared methods

across different τ . It clearly shows that GEE-POCRE performs the best in all our

simulation studies.

3.4 The NIA-Late Onset Alzheimer’s Disease Application

Alzheimer disease (AD) is the most common neurodegenerative disorder in the

elder population that affects millions of Americans. In 2002, The National Institute

of Aging (NIA) started a NIA-LOAD study, which contains families with two or more

siblings with the late onset form of alzheimer’s disease and a cohort of unrelated

controls similar in age and ethnic background (Lee et al. 2008). Among all the

samples, a neuropathological criteria is used to diagnose AD and controls are defined

as individuals without noticing any loss of memory and pass the neuropsychological

test. We clean the data by removing samples with missing rate more than 10%, SNPs
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(a) τ = 0: True Positives

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●

●

●●●●

●

●●●●

●

●
●●●

●

●●

●●●
●

0
10

20
30

40

NFP 2LG Beta=0.5 Tau=0

N
F

P

GEE−POCRE gPOCRE
ROADTRIPS 

 FDR(0.05)
ROADTRIPS 

 FDR(0.1)
TDT 

 FDR(0.05)
TDT 

 FDR(0.1)
FBAT 

 FDR(0.05)
FBAT 

 FDR(0.1)

(b) τ = 0: False Positives
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(c) τ = 0.1: True Positives
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(d) τ = 0.1: False Positives
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(e) τ = 0.2: True Positives
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(f) τ = 0.2: False Positives
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(a) τ = 0.3: True Positives
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(b) τ = 0.3: False Positives
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(c) τ = 0.4: True Positives
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(d) τ = 0.4: False Positives
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(e) τ = 0.5: True Positives
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(f) τ = 0.5: False Positives
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(a) τ = 0.6: True Positives
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(b) τ = 0.6: False Positives
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(c) τ = 0.7: True Positives
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(d) τ = 0.7: False Positives
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(e) τ = 0.8: True Positives
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(f) τ = 0.8: False Positives
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(a) τ = 0.9: True Positives
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(b) τ = 0.9: False Positives
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(c) τ = 1: True Positives
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(d) τ = 1: False Positives

Figure 3.3.: Boxplot comparisons among GEE-POCRE, gPOCRE, ROADTRIPS,

TDT and FBAT in the simulation study of fifteen SNPs in two linkage groups
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with missing rate per sample more than 10% and minor allele frequency less than

0.05. Overall, a total of 2545 samples that are genotyed at 532,795 SNPs are left for

further analysis. We then apply GEE-POCRE to this data set using 10-folds cross

validation.

Table 3.1.: GEE-POCRE results on late onset Alzheimer’s disease

Chromosome SNP Physical Position Beta P Value* Gene

5 rs1477280 160,691,741 6.49E-02 6.65E-03 ATP10B

17 rs4789374 76,916,278 -2.96E-02 3.95E-04 MGAT5B

18 rs3888795 11,863,900 1.27E-01 2.84E-02 GNAL

19 rs2075650 4,539,619 1.98E-01 1.63E-31 APOE

*p-values are calculated using the 10-split method

The results are shown in Table 3.1. In hypothesis testing, p-value is a popular

indicator to quantify statistical significance. We then try to assign a p-value to the

SNPs we find. Recently, Meinshausen et al. (2009) has proposed a multi-split method

to assign statistical significance and construct p-values for high-dimensional analyses

where the number of predictors may be much larger than the sample size. In each

split, the data is divided into two parts, GEE-POCRE uses the first part and builds

a statistical model, then a classical variable selection technique is applied to the

selected variables using the data from the second part. The method has the property

of asymptotic error control and model selection consistency. Here we apply multi-split

method with a total of 10 splitting. Reported are the ones with a p-values less than

0.05.

There are four SNPs identified by GEE-POCRE. The one locates on chromosome

19 that is associated with APOE shows compelling evidence of association with LOAD

and has been confirmed in other studies (Liu et al. 2013). GNAL locus also known

as DYT25 is recorded in NCBI gene database as a functional gene that encodes a

stimulatory G protein alpha subunit and is wildly expressed in the central nervous
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system. This gene is found to be susceptible to schizophrenia, now we have good

evidence to suspect it may also influence the late onset alzheimer’s disease. The SNPs

rs1477280 and rs4789374 that resides in the gene region ATP10B and MGAT5B are

also statistically significant, their impacts on alzheimer’s disease is not clear yet, and

needs further investigation, e.g. looking into the GO of these two genes, and checking

whether they have been reported as eQTLs in any other related studies.

3.5 Conclusion

In this chapter, we propose GEE-POCRE by extending penalized orthogonal

components regression in the generalized estimating equations model. Incorporat-

ing the kinship matrix into modeling the variance covariance structure in GEE as

well as applying penalization functions when constructing orthogonal components,

GEE-POCRE effectively handles the family structure when simultaneously does the

variable selection and estimation in high-dimensional data analysis. Simulation stud-

ies and a real data analysis are carried out to evaluate and compare the performance

of our proposed novel approach and some other popular existing methods including

TDT, FBAT, ROADTRIPS and gPOCRE. Both simulations and the real data ex-

ample demonstrate a good performance of GEE-POCRE. Particularly, GEE-POCRE

has the same or more power than gPOCRE, ROADTRIPS, TDT, and FBAT, and

much lower false positives.
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4. SUMMARY AND FUTURE WORK

4.1 Summary

In this dissertation, we propose fPOCRE which extends the penalized orthogonal

components regression in the linear mixed model with continuous responses, and the

GEE-POCRE that constructs orthogonal components through a penalization function

assuming the generalized estimating equations model for binary traits. Both the algo-

rithms take the kinship matrix into the modeling process and are multi-locus methods

compared to popular existing methods that are essentially single-locus analyses.

Utilizing the linear mixed model, fPOCRE iteratively estimates the ratio between

the genetic and the residual variation τ and the fixed SNP effects β separately. First

assuming a known τ , the SNP effects are estimated with sparsity, then the τ is

updated with the estimated fixed SNP effects through the profiled log-likelihood. The

algorithm iterates between updating τ and estimating SNP effects until τ converges.

fPOCRE can work on really large data sets due to its computational efficiency. Two

simulation studies show the superior performance of fPOCRE in terms of high power

and low false positives, while EMMAX always select a large number of variables with

many that are false, and MLMM are more conservative with a low detecting rate,

leading to loss of power. Finally, the results in real data applications are concordant

with the results in our simulation studies.

Assuming the generalized estimating equations model, GEE-POCRE is developed

by incorporating the kinship matrix into the variance covariance structure, taking

turns to construct orthogonal components and estimate the unknown parameter τ in

the working correlation matrix. In our simulation studies, GEE-POCRE outperforms

the popular family-based algorithms, TDT, FBAT, ROADTRIPS that test one SNP

at a time, as well as a multi-locus method gPOCRE that assumes unrelated samples.
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A LOAD data analysis further confirms the conclusion we draw from the simulation

studies.

4.2 Future Works

4.2.1 Extension of Model Selection Criteria in GEE-POCRE

Model selection is an important issue in any type of data analysis. Currently,

GEE-POCRE uses 10-folds cross-validation to select the optimal tuning parameter

λ. However, it is computationally expensive to perform cross-validation in large data

sets, moreover, some observations may never be in the training data set and this may

bias the resultant model. Other powerful and easily implemented model selection

techniques are worth to explore, such as AIC, BIC and eBIC. However, GEE-POCRE

is not a likelihood based model. Directly applying the information criteria would

not be appropriate since there is no likelihood defined. Pan (2001) proposed the

QIC, a quasi-likelihood information criteria that modifies the the well-known Akaike

Information Criteria, where the likelihood was replaced by the quasi-likelihood and

the penalty term is also adjusted accordingly. Investigating on the usage of QIC in

our proposed GEE-POCRE would be beneficial.

4.2.2 Extension to Other GLMs

Even though the task of this dissertation is variable selection in GWAS with

family structure for both normally distributed responses and binary responses, there

are many other possible regression models to which we could consider to extend our

proposed algorithm. We list a few possible options below.

First, assuming researchers want to perform a GWA study on the number of

strokes occurring to a patient within one year period. The phenotype of interest is

count data, therefore the log-linear model which assumes the responses follow Poisson

distribution is suitable for such type of analysis given the samples are unrelated.
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However, if the genetic relatedness among study subjects is a concern, our proposed

GEE-POCRE algorithm with log-link function would be an alternative solution and

is worth to investigate. Second, clinical data over the years are commonly collected

in GWAS. Knowing that GEE was initially proposed for longitudinal data analysis,

it is natural to consider extending GEE-POCRE in the context of longitudinal study.

4.2.3 Extension to Multiple Traits

Genome-wide association studies are usually measured with multiple traits, among

them, many are highly correlated. For example, considering a study on the bone min-

eral density (BMD), many sub-traits are measured to evaluate BMD. Analyses using

these sub-traits marginally inevitably loses some essential information among these

multiple correlated traits. An integrative method that borrows strength across traits,

as well as assumes a multi-locus model that considers the joint effects of multiple

genetic variants would be promising. Even though the example we discuss above is

related to the biological study, however, the problem of high-dimensional data analysis

with structured samples are everywhere, including social behavior studies, psychology

and sociology where multiple correlated measurements are frequently observed.
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