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ABSTRACT 

Verma, Anuj A. Ph.D., Purdue University, December 2014. Fundamental Studies on 
Copper Zeolites for Catalytic NOx Abatement. Major Professors: Fabio H. Ribeiro and 
W. Nicholas Delgass. 
 
 
Stringent regulations in mobile NOx emissions have resulted in the development of 

Standard Selective Catalytic Reduction (SCR) as the dominant NOx abatement 

technology in lean burn diesel engines. Standard SCR is a reaction of nitric oxide (NO) 

with ammonia (NH3), in the presence of oxygen (O2) to form nitrogen (N2) and water 

(H2O). Copper containing zeolites show commercially viable SCR performance. Cu-SSZ-

13 (CHA framework), a member of this family, is a preferred catalyst for SCR 

applications because it shows exceptional hydrothermal stability in addition to 

commercially viable SCR performance [1]. Our work focuses on 1) determination of the 

active sites, and 2) elucidation of the dominant reaction steps on active sites, for standard 

SCR (at 473 K) and catalytic oxidation of NO (at 550 K), over Cu-SSZ-13.  

 

A series of Cu-SSZ-13 catalysts (Si:Al = 4.5) tested for standard SCR kinetics exhibited a 

linear increase in the rate of nitrogen production (per gram catalyst) with Cu:Al ratio till 

Cu:Al = 0.2. Separate catalyst characterization tools like Ultra-Violet-Visible-Near Infra-

red (UV-Vis-NIR) spectroscopy under ambient conditions, X-ray Absorption Near Edge 

structure (XANES) of Cu ions during standard SCR, Density Functional Theory (DFT) 

calculations, and titration of residual acid sites with amine titrants on this series of 

catalysts established isolated Cu ions ion exchanged at the framework Al sites in six 

member rings of SSZ-13 as the dominant Cu ion configuration below Cu:Al = 0.2, which 

we assign as the dominant active sites for low temperature standard SCR (T = 473 K). 

Above Cu:Al = 0.2, Cu ion clusters (CuxOy) were formed, which stabilized on framework 
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Al sites at favorable distances, in the eight member cage of SSZ-13.  CuxOy was active in 

catalyzing dry NO oxidation to NO2 via oxygen activation mediated by local Cu-Oy-Cu 

bonds.  The density of local Cu-Oy-Cu bonds was quantified from in-situ XANES under 

NO oxidation and correlated linearly with the rate of NO oxidation, thereby establishing 

CuxOy as the active sites for NO oxidation.  NO oxidation was also explored on catalysts 

prepared to contain exclusively isolated Cu(II) ions and the Gibbs free energy of reaction 

intermediates was shown to be higher than the free energy of similar intermediates 

formed from local Cu-Oy-Cu bonds, consistent with the experimental observation of 

experimentally undetectable rate of NO oxidation on isolated Cu(II) ions in the six 

member rings of SSZ-13. As a result, dry NO oxidation is proposed as a probe reaction to 

detect Cu ion clustering in Cu-SSZ-13 formulations. 

 

Operando XANES during standard SCR also implicated isolated Cu ions (in the six 

member SSZ-13 ring) as the active site; however, the +2 oxidation state of Cu is not 

preserved.  Experimental XANES analysis during appropriate reactant cutoff from steady 

state standard SCR and DFT calculated Gibbs free energy analysis of adsorbates under 

reaction conditions point toward a Cu ion redox between Cu(I) and Cu(II) to mediate 

standard SCR. The isolated Cu(II) ion reduction is achieved by both NO and NH3 to 

make nitrogen, isolated Cu(I) ions, and experimentally detectable proximal Brønsted 

acidic sites. These proximal acid sites can stabilize ammonium ions during standard SCR 

catalysis, while NO and O2 oxidize the Cu(I) back to Cu(II) via nitrite (NO2
-) 

intermediate formation, as predicted by DFT. The close proximity between nitrites (on 

Cu) and ammonium ions (on proximal Brønsted acid sites) enable the formation of 

nitrogen and water via an intermediate which resembles ammonium nitrite, thereby 

completing the catalytic cycle. These findings highlight the bi-functional nature of Cu-

SSZ-13 displayed by a close proximity of Bronsted acidic sites and redox metal ion 

centers which work in concert to catalyze the selective reduction of NO with NH3 in the 

presence of oxygen, to form nitrogen and water.  
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CHAPTER 1. INTRODUCTION 

1.1 Introduction 

Combustion of fossil fuels, primarily in automobile applications, results in the formation 

of nitrogen oxides (NO + NO2, NOx). This is an example of a gas mixture which is 

responsible for an adverse effect on the environment. As a result, there are stringent 

regulations on the emissions of these gases from automobile exhaust. For diesel engines, 

the combustion of fuel usually requires excess oxygen (O2) concentration (in volume % 

level). Hence, the primary need of a successful NOx abatement technology (deNOx) 

applied to diesel exhaust is the ability to reduce NOx in volume % levels of O2, carbon 

dioxide (CO2) and water (H2O) or a lean burn mixture. For this reason, deNOx 

technologies such as three way catalysts (TWC), which are commercially viable for 

gasoline engine exhaust which work best in stoichiometric amounts of O2, (in ppm 

concentration, rich phase), fail when applied to a diesel exhaust. As a result, extensive 

research efforts have been devoted to the development of deNOx technologies applied to 

diesel exhaust. Currently, two technologies are available commercially.  The first one is 

NOx Storage and Reduction (NSR) technology which involves a cyclic operation 

between the lean and rich phases over a catalyst.  The catalyst is usually composed of two 

components, a noble metal redox component (for example, platinum) and an alkaline 

earth storage component (for example barium oxide) dispersed over a high surface area 

support (for example alumina). The NOx in the exhaust is usually stored in the form of 

nitrates during a lean operation and eventually, the nitrates are reduced by hydrogen gas 

(H2) or ammonia (NH3) to produce nitrogen (N2) thereby leading to NOx mitigation. The 

second technology is the Selective Catalytic Reduction (SCR) of NOx in the presence of 

a reducing agent such as NH3, hydrocarbons (HC), or hydrogen.  There are many catalyst 
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formulations suited for  this purpose. In particular, copper (Cu) and iron (Fe) containing 

zeolites are practically relevant Selective Catalytic Reduction of NOx 

 

A typical diesel exhaust contains ppm levels of NOx (mainly in the form of nitric oxide). 

Upon the introduction of a suitable reducing agent such as NH3 or HC, it is possible to 

reduce NOx to N2 and H2O, which are environmentally benign products. The word 

‘selective’ refers to the fact that the reduction of NOx occurs even in the presence of % 

levels of O2. This is achieved in the presence of a catalyst which catalyzes reaction 1.1. 

 

4NH3 + 4NO + O2  → 4N2 + 6H2O                                                Reaction 1.1 
 

Reaction 1.1 is known as the standard SCR. It is to be noted that NH3 has been used as 

the reductant in reaction 1.1, even though other reducing agents can be used. The rate of 

standard SCR can be increased further by introducing a 1:1 molar ratio of NO: NO2 in the 

feed stream and the main chemical reaction in the presence of NO2 is given by reaction 

1.2 (known as fast SCR). 

 

4NH3 +  2NO + 2NO2 → 4N2 +  6H2O                                       Reaction 1.2 
 

This is commercially exploited by installing a diesel oxidation catalyst (DOC) upstream 

of the SCR catalyst. In addition to other oxidation reactions, the DOC uses feed NO and 

O2 and performs NO oxidation in order to increase the relative amount of NO2 in the feed 

to the SCR catalyst. This in turn increases the rate of NOx removal and a smaller reactor 

volume is realized.  Other reactions also occur over these catalysts, but SCR is the most 

important [2].  

 

It should be noted that the SCR technology, applied to automobiles is relatively new. This 

reaction however is well established commercially for emissions control from stationary 

power generation sources. The typical catalysts used for this process are V2O5-WO3/TiO2 

and V2O5-MoO3/TiO2. These catalysts show commercially viable NOx conversion in the 

range of 573 K- 673 K [3]. The basic chemistry of SCR on these catalysts has been 
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studied extensively by Topsøe, Dumesic, and coworkers [4] and a series of commercial 

catalysts are available from Haldor Topsøe Inc. These catalysts, however, are unsuitable 

for an automobile diesel exhaust deNOx technology (at low temperatures, 473 K) 

because of additional constraints imposed by the system.  Diesel exhaust NOx mitigation 

from an automobile occurs in a dynamic environment with respect to the temperature of 

the exhaust. This parameter can vary based on a cold start of an engine or to a very high 

temperature, usually encountered during acceleration.  As a result, a commercially viable 

catalyst formulation for mobile applications must show acceptable NO conversion in 

dynamic conditions as well as hydrothermal stability. Cu and Fe loaded zeolites are 

shown to be hydrothermally stable, and particularly suited for vehicular exhaust NOx 

abatement. 

 

1.2 Cu-Zeolite As a Catalyst for standard SCR 

 

DeNOx in the form of SCR, has its origins in the form of catalytic decomposition of NO    

(reaction 3) over Cu-zeolites. The catalyst discovery and process development was 

pioneered by Iwamoto and coworkers [5]. This process does not need a reductant and the 

Cu-zeolite which provides the best rate of NO removal is Cu-ZSM-5.   

 

2NO → 2N2 +  O2                                                                   Reaction 1.3 
 

This reaction, however, requires at least 673 K (for acceptable NO conversion) and is 

inhibited severely in the presence of O2 and H2O. Differential kinetic measurements 

reveal that the O2 order is ~ -0.5 [6], which makes it commercially unattractive because 

of presence of excess oxygen in a diesel exhaust. This motivated the use of reducing 

agents, initially in the form of HC, but later, NH3 was favored (in the form of urea) and is 

in use currently. Many Cu-zeolite formulations such as Cu-ZSM5 [7, 8], Cu-beta [9, 10], 

Cu-Y [11, 12]  etc. have been investigated for NH3-SCR. These catalysts, however, do 

not show acceptable hydrothermal stability and as a result Cu-chabazite (Cu-CHA), a 

small pore micro-porous solid with ion exchanged Cu has recently received attention [13]. 

This is an example of a catalyst formulation which has been already been commercialized 
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(Cu-SSZ13 by BASF and Cu-SAPO34 by Johnson Matthey, both have CHA topology) 

but the fundamental chemistry of NH3-SCR is being actively researched by various 

research groups.  

 

Standard SCR over Cu-zeolites is generally believed to be mediated over ion exchanged 

Cu ions within the zeolite.  In Cu-SSZ-13, the energetically stable isolated Cu ions 

present near the six member ring of SSZ-13 are shown to be the dominant active sites for 

low temperature standard SCR (T ~ 473 K) by using a variety of techniques by many 

research groups. Initial work done by Korhonen et al. [14] showed that their Cu-SSZ-13 

catalyst (active for low temperature standard SCR) was composed entirely of isolated 

Cu(II) ions. This was shown via ex-situ X-ray absorption spectroscopy and in-situ 

ultraviolet-near infrared (UV-Vis) spectroscopy during standard SCR, and was active for 

standard SCR in separate kinetic tests.  This conclusion was confirmed by Deka et al. [15] 

who further reported NH3 inhibition at low temperatures (< 413K) due to NH3 

coordination on isolated Cu ions, while the apparent lack of this coordination at higher 

temperatures (> 473K) led to higher catalyst activity. These studies however lacked a 

‘structure-activity’ relation between isolated Cu ions and standard SCR rates, as the 

conclusions were primarily based over studies done on a single catalyst, i.e. a single data 

point.  

 

The simple picture of an isolated Cu ion in a six member ring was recently challenged by 

Kwak et al. [16] who used hydrogen temperature programmed desorption (H2-TPR) on 

dehydrated Cu-SSZ-13 catalysts with varying Cu:Al  ratios (Si:Al = 6) to show two Cu(II) 

to Cu(I) reduction events. The high temperature reduction event (653 K) was attributed to 

a Cu(II) to Cu(I) reduction of an isolated Cu ion present near the six member ring, while 

the low temperature reduction event was due to isolated Cu ions in the eight member 

cages of SSZ-13.  In addition, recently, Guo et al. [17] used resonance Raman 

spectroscopy on candidate Cu-SSZ-13 catalysts (Si:Al = 4.3 and Cu:Al = 0.04, 0.09, 0.26, 

and 0.36) and observed peaks at 350 cm-1 and 610 cm-1, which was assigned to single 

oxygen bridged Cu dimers (Cu-O-Cu) and di-oxo bridged Cu dimers (Cu-O2-Cu). This 
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was the first time, multinuclear Cu species were spectroscopically observed on Cu-SSZ-

13, thus painting an even more complicated picture of Cu ion speciation within Cu-SSZ-

13.  In a subsequent contribution, Gao et al. [18] showed that under sub-ambient 

conditions of electron paramagnetic resonance (EPR, T = 155K), all Cu ions (till Cu:Al = 

0.5) were isolated. These authors [18], however, were unable to establish a structure 

activity relationship of isolated Cu ions with standard SCR because of mass transfer 

artefacts in their kinetic data. Further, there was a possibility of isolated Cu ions in the 

eight member cages of SSZ-13, to be active for standard SCR. Convincing structure-

activity relations in standard SCR have recently been shown on other small pore micro-

porous solids like Cu-SAPO-34. Xue et al. [19]  measured the standard SCR rate as a 

function of Cu loading and used H2-TPR to quantify the amount of isolated Cu ions on 

the same catalysts. They showed that the turnover rate (TOR) for standard SCR at 473 K 

on these catalysts was identical thereby implicating isolated Cu ions within Cu-SAPO-34 

to be the dominant active sites for standard SCR. A similar study, however, is missing 

from the literature of standard SCR over Cu-SSZ-13. 

 

Various plausible reaction steps have been proposed for low temperature standard SCR 

(473 K) on Cu-zeolites. A typical Cu-zeolite catalyst is believed to be bi-functional in 

nature. It is believed that Cu ions have the capability of mediating redox reactions of 

NOx, while residual Brønsted acid sites act as reservoirs of gas phase NH3 by stabilizing 

NH4
+ ions. In particular Cu ions are believed to be the active centers for the reaction 

between NO and O2 (NO oxidation) to form NO2. The NO2 molecule desorbs and gas 

phase NO2 subsequently reacts with NH4
+ ions to form an unstable ammonium nitrite like 

complex which decomposes to for N2 and H2O [20]. In fact, NO oxidation was viewed as 

a rate determining step (R.D.S.) for standard SCR on both Cu- and Fe-zeolites [20].  The 

simple picture of standard SCR, however, is being challenged by recent experiments 

performed on Cu-zeolites .In particular, the role of NO oxidation during standard SCR 

turnover. Peden et al. [21] showed that Cu-SSZ-13 catalysts with Cu:Al ratios less than 

0.3 showed SCR activity (NO conversion as a function of temperature) which did not 

correlate with the NO oxidation activity (NO conversion as a function of temperature) on 
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the same catalysts, thereby showing that NO oxidation need not be required for standard 

SCR on isolated Cu ions in Cu-SSZ-13. Gao et al. [13] however did not probe into the 

molecular origins of this difference, and instead proposed possible sequences of 

catalytically relevant steps of standard SCR which did not require NO oxidation. Two 

possible sets of catalytically relevant steps are shown below in Figure 1.1 & Figure 1.2. 

 

Figure 1.1 Reaction steps of low temperature standard SCR on isolated Cu ions in SSZ-
13, proposed by Gao et al [13].  
 

In Figure 1.1, Gao et al. [13] proposed that the first step of standard SCR was NH3 

adsorption on an isolated Cu(II) ion to give Cu(II)-NH3 complex. This complex was then 

reduced by NO and H2O to generate Cu(I) and HNO2, and subsequently, NH4NO2 which 

decomposed to N2 and H2O. In the second set (Figure 1.2), however, NO was treated as a 

sole reductant of Cu(II) to Cu(I) under standard SCR, independent of NH3 [22].  
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Figure 1.2 An alternate low temperature standard SCR mechanism proposed by Kwak et 
al. [22] on isolated Cu ions in SSZ-13. 
 
 
This mechanism was based on ex-situ N15-nuclear magnetic resonance (NMR) results, 

under ambient conditions which showed stabilization of NO+ molecules within the cages 

of SSZ-13 [22]. Additionally, Ruggeri et al. [23] showed that the SCR activity (measured 

as NO conversion as a function of temperature) was uninhibited by the presence of water, 

while the NO oxidation activity (measured as NO conversion as a function of temperature) 

declined in the presence of water in the feed stream. Based on this observation, Ruggeri 

et al. [23] concluded that the standard SCR rate determining step did not involve NO 

oxidation.  

 

 Recent operando XAS studies by Mcewen et al.[24] and Kispersky et al. [25] on the 

kinetics of standard SCR over Cu-SSZ-13 revealed a mix of isolated Cu(I) and isolated 

Cu(II) species during standard SCR. These being true operando experiments, they further 

observed that the rate of standard SCR on Cu-SSZ-13 catalysts did not correlate with 

either Cu(I) or Cu(II) concentration. This implied that all acceptable catalytic steps on 

Cu-SSZ-13 (during standard SCR) should involve isolated Cu ions and Cu(I)-Cu(II) 
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redox pairs. In summary, despite many insights about the nature of the elementary steps 

of standard SCR on Cu ions in SSZ-13, consensus is lacking and there is a need for 

further elucidation of kinetically relevant steps which mediate standard SCR over Cu-

SSZ-13 which has experimental and theoretical support under reaction conditions.  

 

1.3 Thesis Overview 

Through this thesis, a detailed molecular understanding of the standard SCR and NO 

oxidation will be developed on Cu-SSZ-13. A molecular understanding of these reactions 

involves an identification of the dominant active site and probable reaction steps on those 

candidate active sites. With this aim, Chapter 2 is devoted to the identification of isolated 

Cu ions ion exchanged in place of two protons on Brønsted acidic sites in the six member 

rings of SSZ-13, as the dominant active sites for standard SCR at 473K.  This was 

accomplished by a combination of reaction kinetics, UV-Vis-NIR spectroscopy, 

operando X-ray absorption near edge structure of Cu ions during standard SCR, DFT 

calculations of candidate active sites, and statistical analysis of the placement of 

framework Al atoms as anchors for these isolated Cu ions. 

 

In addition to isolated Cu(II) ions, Cu oxide clusters (CuxOy) can also be stabilized over 

framework Al pairs at favorable distances in the eight member cages of SSZ-13. These 

CuxOy species are the active sites for catalytic NO oxidation due to their ability to oxidize 

NO via oxygen activation on local Cu-Oy-Cu bonds. This conclusion is shown in Chapter 

3 via a combination of reaction kinetics, UV-Vis-NIR spectroscopy, in-situ XANES 

analysis during NO oxidation, and DFT calculations on the most probable reaction 

pathways on different Cu ion configurations. As a result a combination of chapters 2 and 

3 teaches us that independent NO oxidation performance cannot act as a surrogate for 

SCR ability as the site requirements of both reactions are different. 

 

Identification of the active sites for low temperature standard SCR leads us to examine 

the response of these active sites when individual reactant gas molecules are cut-off from 

the standard SCR mixture. The response is quantified via operando XAS in the form of 
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Cu ion oxidation states on catalysts which were prepared to contain isolated Cu ions 

exclusively. Using these results and DFT calculations, we propose a series of reaction 

steps of standard SCR on isolated Cu ions in SSZ-13. Furthermore, extending the 

Brønsted acid site counting techniques developed by Bates et al. enables us to count 

excess Brønsted acidic sites proximal to Cu ions, during the Cu(II) to Cu(I) reduction 

event (relevant to standard SCR). We propose that these proximal Brønsted acidic sites, 

which stabilize ammonium ions, are catalytically relevant while residual acid sites, which 

can also stabilize ammonium ions, are spectators during standard SCR. In this way, 

through Chapter 4, we describe the molecular origins of standard SCR on isolated Cu 

ions. 

 

Finally, in order to advance the science of catalysis, the importance of efficient kinetic 

data collection is emphasized in Chapter 5. Using protocols developed in chemical 

reaction engineering, a differential reactor is rigorously defined to enable kinetic analysis 

of chemical reactions wherein product inhibition is evident. We will show the 

applicability of this kinetic analysis via a case study of catalytic NO oxidation over 

CuxOy in Cu-SSZ-13 (where NO2 product order is ~ -0.9).   
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CHAPTER 2. A KINETIC AND SPECTROSCOPIC STUDY OF STANDARD SCR 
ON COPPER EXCHANGED SSZ-13 

2.1 Abstract 

"Copper exchanged SSZ-13 catalysts were used for the standard selective catalytic 

reduction (SCR) reaction at 473 K with 320 ppm NO, 320 ppm NH3, 10% O2, 8% CO2, 

and 6% H2O.  The copper to aluminum atomic ratio (Cu:Al) was varied from 0 to 0.35 

over seven H- and Cu-SSZ-13 samples with silicon to aluminum atomic ratio (Si:Al) of 

4.5, or an effective Si:Al = 6.9 based on the number of Brønsted acid sites per total Al 

(H+:Al) of 0.65 in the H-SSZ-13 determined in a previous study [26].  The standard SCR 

rate per gram was observed to increase linearly up to Cu:Al = 0.2 with a maximum rate of 

3.8 x 10-6 mol NO g cat-1 s-1.  The rate per gram was observed to track with a hydrated 

isolated Cu(II) species in ultraviolet-visible spectroscopy, which was shown to become 

the active Cu configuration under operando x-ray absorption spectroscopy (XAS).  

Density functional theory calculations showed an exchanged isolated Cu(II) in the six-

member ring of SSZ-13 as the most stable position for isolated Cu(II).  Statistical 

analysis of Al distribution in SSZ-13 show a maximum number of isolated Cu in six-

membered rings exchanged with 2 Al reach a maximum at Cu:Al = 0.23 for Si:Al = 5, 

which matched with the maximum observed rate per gram, indicating Cu(II) was the 

active Cu species.  Above Cu:Al = 0.2, a new CuxOy species was observed from ambient 

XAS measurements which was not active for standard SCR because the Cu:Al = 0.35 rate 

tracked with the amount of hydrated Cu(II). The number of available Brønsted acid sites 

in the samples was shown to not be involved in the kinetically relevant steps for standard 

SCR due to the inverse relationship of the rate per gram and number of Brønsted acid 

sites. 
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2.2 Introduction 

Metal-exchanged small pore zeolites have recently been adopted for use in the selective 

catalytic reduction (SCR) of NO with NH3 reaction for mobile deNOx applications.  The 

metal exchanged chabazite (CHA) structure has been of particular interest, which has two 

analogues, SSZ-13 and SAPO-34.  When exchanged with Cu or Fe, they have been 

shown to be able to withstand the harsh hydrothermal conditions present in a diesel 

exhaust system yet still efficiently remove NOx[27-29].  

 

One current area of interest is the role of the exchanged metal in the standard SCR 

reaction.  Fickel et al.[30] using Rietveld refinement of variable temperature XRD 

identified the location of isolated Cu species in the SSZ-13 structure  centered slightly 

above the six-member ring.  A follow-up study by Korhonen et al. [14] ruled out the 

possibility of Cu dimers in a Cu-SSZ-13 sample with copper to aluminum atomic ratio 

(Cu:Al) equal to 0.18 and silicon to aluminum atomic ratio (Si:Al) equal to 9, and 

concluded that isolated Cu(II) near the six-member ring was the active site for standard 

SCR in Cu-SSZ-13.  Kwak et al.[16] suggested multiple positions for isolated Cu(II) 

rather than only one near the six-member ring based on two different Cu(II) signatures in 

low Cu loading samples during H2-TPR and FTIR.  Gao et al.[18] used low temperature 

(155 K) EPR to probe isolated Cu(II) up to near 100% ion exchange and identified two 

possible positions for hydrated isolated Cu.  Wang et al.[31] observed the standard SCR 

rate per total Cu to be significantly improved in SAPO-34 which contained isolated Cu(II) 

over a sample which contained extra-framework CuO clusters, even though both catalyst 

samples had similar total copper content.  While most studies have regarded isolated Cu 

to be in the 2+ oxidation state under reaction conditions, work in our group using 

operando X-ray absorption spectroscopy experiments [24, 25] has demonstrated the 

appearance of a Cu(I) signature at 8983 eV under standard SCR conditions, indicative of 

a redox cycle between the two during SCR.  In this study, we demonstrate through 

reaction kinetics, UV-Vis NIR, and operando XAS that this isolated Cu is the active site 

for standard SCR. The Cu species that is the precursor to the active isolated Cu was also 

identified under ambient conditions using UV-Vis-NIR. 
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Because exchanged, isolated Cu(II) must be charge-compensated by two framework Al 

tetrahedral (T-) sites, the density of these species is a function both of the Si:Al ratio and 

the Cu loading.  The distribution of Al T-sites and thus of candidate Cu(II) sites is 

difficult to assess experimentally.  Here we estimate the density of candidate sites by 

statistical analysis [32] of the SSZ-13 framework under the assumption that the Al obey 

the Loewenstein’s rule [33] prohibition against first-nearest-neighbor Al T-sites.  We 

show that this model gives an estimate of Cu(II) site density consistent with the 

experimentally observed saturation of these sites. 

 

Kinetic measurements on Cu-SSZ-13 under standard SCR conditions have been reported 

in the literature[18, 21] and there is a large body of work on other zeolites, including 

significant contributions on ZSM-5[11, 34-38].  The work by Gao et al.[18] described the 

possibility of internal mass transfer effects in the SSZ-13 crystal structure, which they 

believed to occur based on a loss in rate per mole Cu with increasing Cu loading up to 

100% ion exchange and calculation of effectiveness factors much less than unity.  In the 

current study, we were able to report differential kinetic information on Cu-SSZ-13 

samples for standard SCR in the low temperature region (< 473 K) in the absence of mass 

transfer effects.  Metkar et al.[20, 38] also explored diffusion limitations while varying 

washcoat thicknesses in Cu and Fe zeolite monoliths in which they concluded were 

negligible in the lower temperature region.   

 

The role of Brønsted acidity is another important aspect of standard SCR.  One reaction 

mechanism suggests NH3 is activated on a Brønsted acid site, forming NH4
+, which then 

reacts with NOx species [8, 34, 38-41]; however, a study by Brandenberger et al. [42] has 

suggested that it is only important for binding and dispersing metal ions as they saw 

similar conversions of NO and NH3 between 473-573 K in Fe-ZSM-5 with 96% of its 

Brønsted acid sites poisoned.  In this study, ammonia stored under standard SCR 

conditions will be quantified via transient NH3 cutoff experiments, which probe the role 

of Brønsted acidity on the reaction mechanism.  The total amount of Brønsted acid sites 
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will also be determined for each sample and compared with the NH3 titration experiments 

and standard SCR rates. 

 

2.3 Experimental Methods 

2.3.1 Cu-SSZ-13 Synthesis and Characterization 

The H-SSZ-13 was synthesized following a recipe published by Fickel et al. [28, 30], 

which was derived from the original synthesis by Zones et al. [43-45].  The resulting H-

SSZ-13 structure was confirmed via X-ray diffraction (XRD) with a Bruker D8 Focus X-

ray Diffractometer with a Cu K (alpha) source.  The diffraction pattern was observed to 

have all the appropriate crystal planes for the CHA structure present [46-49].  BET 

surface areas for many different batches of H-SSZ-13 ranged in from 580 – 601 m2 g-1 

and t-plot pore volumes ranged from 0.24-0.26 cm3 g-1[49, 50].  Copper was deposited 

into the H-SSZ-13 by liquid phase ion exchange with a Cu(NO3)2 solution at a pH of 5 

±0.2.  Atomic absorption spectroscopy experiments gave Si:Al ratios ranging from 4.3-

4.5 and Cu:Al ratios ranging from 0.02 to 0.35, depending on the concentration of Cu in 

the solution.  The number of Brønsted acid sites was measured by dosing each sample 

with 500 ppm NH3 (from 3.0% NH3/ Ar, Praxair) in UHP He (99.995%, Indiana Oxygen) 

at 433 K for two hours until complete saturation.  The sample was flushed for eight hours 

at 433 K [26, 51].  The sample was then placed in U-shaped quartz tube surrounded by 

quartz wool and inserted into a Micromeritics Autochem II 2920 Chemisorption Analyzer 

equipped with a thermal conductivity detector (TCD) and Agilent 5975C mass selective 

detector (MSD).  A temperature programmed desorption (TPD) was performed with a 10 

K min-1 temperature ramp from 298 K to 873 K in 50 sccm UHP He.  Contributions from 

fragments of H2O in m/z = 17 were removed to give a signal only resulting from NH3.  

The NH3 feature in m/z = 17 was quantified to determine the number of available 

Brønsted acid sites.      

 

2.3.2 Kinetic Data Collection 

SCR kinetic experiments were performed via a bench top tubular glass reactor with a 

quartz frit located in the middle of the tube to hold a catalyst bed.  The diameter of the 
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center section of the reactor was narrowed to 3/8” and catalysts were diluted with silica 

gel (Fisher Chemical, Catalog No. S817-1) so that the catalyst bed height could be 

increased to help prevent bypass of any reaction mixture.  The standard SCR reaction 

(conditions are described below) was performed on the silica gel and no conversion of 

NO or NH3 was observed; therefore, it was considered inert.  Particle sizes used were 125 

– 250 µm.  A plug of small quartz beads of ca. 3 mm diameter were placed on a wire 

mesh approximately 6 inches above the catalyst bed in order to ensure proper gas mixing 

before reaching the bed.  Thermocouples were placed just above and just below the bed 

to ensure that no significant temperature gradients existed through the bed.  Before 

entering the reactor, all gases except NH3 passed through a pre-heater assembly 

consisting of a helical coil of 3 in. diameter made out of 0.25 in. diameter stainless steel 

tubing inside a temperature controlled hollow cylindrical Watlow® ceramic fiber heater.  

Water was introduced into the system by a heated shell-type humidifier (Perma Pure MH-

Series) where the diffusion of water across a Nafion membrane into the gas mixture was 

controlled by the temperature setting.   Ammonia was added just above the plug of quartz 

beads in the reactor in order to remove the possibility of thermal gas phase reactions 

occurring before reaching the reactor.  All kinetic measurements were taken at < 20% 

conversion, so that all portions of the catalyst bed were exposed to nearly the same gas 

concentrations and the kinetics remained consistent through the entire bed.  Typical gas 

conditions used were ~320 ppm NO (from 3.6% NO/Ar, Praxair), ~320 ppm NH3 (from 

3.0% NH3/ Ar, Praxair), 8% CO2 (liquid, Indiana Oxygen), 10% O2,(from 99.5%, Indiana 

Oxygen), 6% H2O (de-ionized water), and balance He (99.995%, Indiana Oxygen).  Total 

flow rates used were approximately 1.5 L min-1.  The effluent gases from the reactor were 

analyzed online by an MKS Multigas™ 2030 gas phase FT-IR spectrometer.  With on-

board calibrations provided by MKS, the spectrometer was used to monitor NO, NO2, 

N2O, NH3, CO2, and H2O concentrations with a 0.95 second resolution.  Dinitrogen in the 

effluent gas was measured in initial samples using an Agilent 6890 gas chromatography 

unit with a series of packed columns including Porapak Q, Carboxen 1000, and Molsieve 

5Å.  The N2 value obtained during steady state reaction in initial samples was compared 
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to the reactants consumed through the reactor to ensure no side reactions were occurring 

on this set of catalysts, which matched within the 90% confidence interval. 

 

Transient NH3 cutoff experiments were performed starting under steady state standard 

SCR conditions at 433 K in the same PFR unit in the absence of CO2 with a total flowrate 

of 1.5 L min-1.  Ammonia was removed from the standard SCR gas mixture and replaced 

with an equal flowrate of CO2 with a 2 position, 6 port, actuated valve (Valco Instrument 

Company, Inc.; Model E26UWE) to keep the same total feed flowrate.  The reverse 

switch was also performed on a clean catalyst surface by adding NH3 and removing CO2.  

The temperature programmed desorption (TPD) following the cutoff of NH3 was 

performed after ~60 minutes of flushing the catalyst in UHP He at 1.5 L min-1.  A 5 K 

min-1 ramp was used up to 823 K.  The temperature ramp was non-linear due to the 

system not being built for TPD experiments. 

 

2.3.3 X-Ray Absorption Measurements 

The Cu K (8.979 keV) edge XAS data were collected on the insertion-device beam line 

of the Materials Research Collaborative Access Team (MRCAT, Sector 10 ID) at the 

Advanced Photon Source, Argonne National Laboratory. A cryogenically cooled double-

crystal Si (111) monochromator was used in conjunction with an uncoated glass mirror to 

minimize the presence of harmonics.  Measurements were made in transmission mode 

with the ionization chambers optimized for the maximum current with linear response 

(~1010 photons detected s-1) using gas mixtures to give 10% absorption in the incident X-

ray detector and 70% absorption in the transmission X-ray detector. A Cu foil spectrum 

was acquired simultaneously with each measurement for energy calibration.  The 

operando reactor gave a total absorption (µx) between 1 and 3 and an edge step (Δµx) 

between 0.5 and 1.5.  X-ray absorption near edge structure (XANES) and extended X-ray 

absorption fine structure (EXAFS) measurements were collected in quick scan mode 

while the catalyst was exposed to different conditions, which allowed for a spectrum to 

be collected every 135 seconds.  In each case, the data were averaged over three spectra.  

The Cu K edge has a number of features which were utilized to determine the extent of 
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Cu reduction under various gas conditions.  The peak at 8977 eV is representative of a 

symmetry forbidden transition from 1s to 3d for Cu(II), which is able to be seen because 

of mixing of the 3d and 4p orbitals [52].  The peak at 8983 eV represents the 1s to 4p 

transition for Cu(I) in a two coordinate state [53-60].  The peak at 8987 corresponds to 

the 1s to 4p transition for Cu(II) [54], and the white line intensity seen at 8995 eV 

corresponds to Cu(II) [59].   

 

2.3.4 Operando XAS Experimental Setup 

A low X-ray absorbing carbon tube reactor was utilized to perform operando XAS 

experiments [25, 61].  A 4 mm ID carbon reactor was secured inside an aluminum 

heating block which had a 25.4 x 2 mm wide slit in the center to allow x-rays to pass 

through the reactor.  Four 100 W heating cartridges (Omega Engineering) were inserted 

into the aluminum block to provide heating. Wire mesh was used to hold the catalyst bed 

in the correct position to be analyzed by XAS, and was supported by a 1/16” tube 

stretching from the wire mesh to the bottom of the reactor.  Starting at the bottom of the 

catalyst bed, a plug of quartz wool was pushed into place for support.  Following this, a 

layer of glassy carbon beads consisting of the same material of the reactor was added to 

the quartz wool to create a flat surface for the catalyst bed to sit.  Next, 8-20 mg of 

catalyst powder sieved to 125-250 µm was added.  Another layer of quartz wool was 

inserted and finally, a layer of crushed quartz (> 250 µm) was added to help mix the 

gases entering the bed.  A thermocouple was inserted into the top of the catalyst bed to 

monitor temperature.  Gases were introduced sequentially into the lines going to the 

reactor.  Helium carrier gas flowed through a heated shell-type humidifier (Perma Pure 

MH-Series) to bring DI H2O into the system.  Following this, NO (3000 ppm in N2, 

Matheson Tri-Gas) was introduced.  Next, O2 (20% in He, Airgas, Inc.) was added once 

the NOx gas was diluted in the mixture to avoid any gas phase reactions.  The reaction 

mixture was preheated to 473 K via heat tracing and a preheater coil designed in-house 

before entering the reactor.  Inside the reactor, just above the bed, NH3 (3000 ppm in He, 

Matheson Tri-gas) was allowed to enter to minimize the chance of gas phase reactions, 

which could produce NH4NO3.  To measure the gas concentrations without reaction, the 
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gas flow was switched to a bypass which went directly into the MKS Multi-Gas 2030 gas 

analyzer FTIR.  The cell temperature of the FTIR was kept at 464 K based on company 

provided calibration files.  A total flow rate of 500 ml min-1 and a reactor temperature of 

463K were kept during the experiments.  Under operando standard SCR conditions, 300 

ppm NO, 300 ppm NH3, 5% H2O, 10% O2, 8% CO2, and balance He gas was used.   

 

2.3.5 UV-Visible Near IR Measurements 

UV-Vis-NIR spectra were taken under ambient conditions with a Varian UV-Vis-NIR 

spectrophotometer (Cary 5000) and a Harrick-Scientific Praying-Mantis diffuse 

reflectance cell.  Barium sulphate (BaSO4, Sigma-Aldrich, 99%) was used in background 

scans.  Each sample and BaSO4 background reference was sieved to 125-250 µm before 

use.  Spectra were collected from 7000 to 50000 cm-1 with a scan speed of 2000 cm-1 

min-1.  Each H- and Cu-SSZ-13 sample were pre-treated in dry air (Comm. grade, Indiana 

Oxygen) up to 823 K elsewhere and then exposed to ambient conditions.  Time of 

exposure to ambient conditions was not controlled as these samples were used in our lab 

for months beforehand.  Close to 0.1 g of each sample was put in a sample cup where 

UV-Vis-NIR measurements were then performed.  

 

2.3.6 Density Functional Theory Calculations 

Periodic density function theory (DFT) calculations were performed using the Vienna ab-

initio simulation package (VASP) [62-64].  Core states were treated using the projector 

augmented wave (PAW) [65] method and exchange and correlation treated within the 

PW91 generalized gradient approximation (GGA) [66].  Plane waves were included to a 

cutoff of 400 eV and the Brillouin zone sampled at the Γ-point.  Electronic energies were 

converged to 10-8 eV and optimized geometries relaxed using the conjugant gradient 

method until forces on atoms were less than 0.01 eV/Å.  
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2.4 Results 

2.4.1 Kinetics of standard SCR on Cu-SSZ-13 

Kinetic measurements were taken on seven samples with Cu:Al ratios ranging from 0 to 

0.35.  This range of Cu loading was chosen based on existing studies which suggested 

isolated Cu was the active site for standard SCR and present initially as Cu loading was 

increased [14, 16, 28, 30].  The H-SSZ-13 sample exhibited no rate per gram catalyst 

(within experimental error) at the low temperature SCR range of 433-473 K, indicating 

that Cu was required for the reaction.  Apparent activation energies and associated rates 

were calculated from the conversion of NO and NH3, as shown below (Equation 2.1 & 

Equation 2.2).   

 

𝑁𝑁𝑁𝑁𝑥𝑥  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =  𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖 −𝑁𝑁𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜
𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖

 𝑥𝑥 100        Equation 2.1 

𝑁𝑁𝑁𝑁3 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =  𝑁𝑁𝑁𝑁3,𝑖𝑖𝑖𝑖 −𝑁𝑁𝑁𝑁3,𝑜𝑜𝑜𝑜𝑜𝑜
𝑁𝑁𝑁𝑁3,𝑖𝑖𝑖𝑖

 𝑥𝑥 100        Equation 2.2 

 

The N2O and NO2 quantities, which are usually present in reported conversion 

expressions, have been ruled out as the amounts observed were within the error of the 

FTIR instrument.  Dinitrogen was quantified using the GC and compared to the amount 

of NO and NH3 converted in initial samples within a 90% confidence interval (See Figure 

A.1).  Figure 2.1a shows the Arrhenius plots for all of the standard SCR active catalysts.   

The activation energies extracted from Figure 2.1a are located in Table A.1.  They range 

from 42 – 71 kJ mol-1 with all but the Cu:Al = 0.02 sample (lowest loading of Cu) falling 

in between 64-71 kJ mol-1.  This higher range (64-71 kJ mol-1) was near what has been 

reported by Gao et al.[18] for Cu-SSZ-13 and others on metal-ZSM-5 [34]. The Cu:Al = 

0.02 sample had an activation energy which fell in line with previously reported metal-

exchanged zeolites for standard SCR [35, 37, 38].  The reaction orders obtained for each 

of these samples are depicted in Figure 2.1b.   
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Figure 2.1a-b  Arrhenius Plots and reaction orders of the 6 Cu-SSZ-13 catalysts active for 
standard SCR.  The temperature range used for the Arrhenius plots was 433-473K.  The 
standard SCR conditions used are 320 ppm NO, 320 ppm NH3, 10% O2, 6% H2O, and 8% 
2.  Reaction orders for NO, NH3, and O2 shown as a function of Cu:Al ratio.  Individual 
gas concentrations were changed while all other gases were held constant.  NO orders 
were taken with NO concentrations ranging from 75 – 600 ppm, NH3 orders were taken 
from 250 ppm – 600 ppm, and O2 orders were taken from 2.5 – 20% of the feed.  90% 
confidence interval activation energies and reaction orders were ±5 kJ mol-1 and ±0.1, 
respectively.    
 
 

The NO reaction order was observed to remain constant across all samples between 0.7-

0.9, which is consistent with reports in literature for SCR on zeolites [11, 34, 35, 38].  

The NH3 order above 250 ppm was observed to be between -0.2 – 0.1, which was also 

consistent with reports in literature that NH3 order is zero or slightly negative [11, 34, 35, 

38].  The O2 order ranged from 0.2 to 0.5.  With the kinetic data presented, the standard 

SCR reaction can be represented with the following power law model (Equation 2.3).   

 

−𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆 = 𝐴𝐴𝑜𝑜𝑒𝑒𝑒𝑒𝑒𝑒 �
−𝐸𝐸𝑎𝑎 ,𝑎𝑎𝑎𝑎𝑎𝑎

𝑅𝑅𝑅𝑅
� (𝑁𝑁𝑁𝑁)𝛼𝛼(𝑁𝑁𝑁𝑁3)𝛽𝛽(𝑂𝑂2)𝛾𝛾  Equation 2.3 

 

Figure 2.2 shows the standard SCR rate per gram of catalyst which has a linear increase 

from Cu:Al = 0 to Cu:Al = 0.2 and a maximum rate per gram of 3.8 x 10-6 mole           

NO g cat-1 s-1.   
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Figure 2.2  Standard SCR rates per gram of catalyst ranging from samples with Cu:Al = 0 
to 0.35.  Rates are reported at 473 K. Standard SCR conditions used were 320 ppm NO, 
320 ppm NH3, 10% O2, 8% CO2, 6% H2O, and balance Helium at 473 K.  90% 
confidence interval for rate per gram was ±0.2 mol NO g-1 s-1.      
 
 

The linear trend up to Cu:Al = 0.2 (< 40% theoretical ion exchanged) observed in these 

samples allowed the Koros-Nowak criterion for mass transfer to be applied.  If a linear 

trend is observed in a series of samples with variable amounts of the same active site on 

the same support, it indicates that all the active sites can be accessed, thus ruling out any 

mass transfer limitations and ensuring the catalyst is running in the kinetic regime.  These 

samples met the criterion up to Cu:Al = 0.2.  After Cu:Al = 0.2, a drop in rate per gram 

was observed from 3.8 to 3.0 x 10-6 mole NO g cat-1 s-1 for the sample with Cu:Al = 0.35, 

which will be explained later as a change in the type of sites available. 
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2.4.2 Brønsted Acid Site Counting 

The number of Brønsted acid sites in each sample was determined using an NH3 

saturation at an intermediate temperature of 433 K, an eight hour flushing step, and a 

TPD, which was based on our own study [26] of Brønsted acid sites in SSZ-13 and a 

study by Woolery et al. [51].  By keeping the catalyst at 433 K, all the weakly bound NH3 

which could be in the sample, including on the Cu, was not allowed to adsorb on the 

surface.  Table A.1 shows the H+:Al determined on each sample and Figure A.2 shows 

the TPD profiles.  The H-form contained 0.65 H+:Al.  Increasing the Cu loading 

decreased the amount of available Brønsted acid sites until Cu:Al = 0.35 which had 

H+:Al=0.24.  More explanation on the Brønsted acid site counting technique will be 

given in the discussion section. 

 

To further investigate the role of Brønsted acid sites in standard SCR, transient NH3 

cutoff experiments were performed on Cu-SSZ-13 samples to probe the different NH3 

species under standard SCR reaction conditions.  A “reactive NH3” species was identified 

and quantified by tracking the NO concentration in the gas phase IR after removing NH3 

from the standard SCR gas mixture at 433 K.  A CO2 tracer was added into the mixture 

via a 6-port switching valve to keep the same total flowrate.  It was determined that CO2 

did not play a role in the kinetics of the reaction (Figure A.3 and Table A.2); therefore, it 

could act as an inert tracer to probe the hydrodynamic delay in the system and enable 

NH3 quantification associated with the reaction.  Figure A.6 shows a representative 

experiment for the Cu:Al = 0.09 sample.  The NO did not stabilize for close to 60 

minutes after NH3 was out of the gas mixture, suggesting an NH3 species on the surface 

was still reacting with NO.  In the quantification of reactive NH3 species, one NO 

molecule reacting was attributed to one reactive NH3 still present on the catalyst surface 

based on the stoichiometry of standard SCR.  Figure 2.3 shows the quantity of reactive 

NH3 determined on several samples.  A trend was observed, which showed an increase in 

reactive NH3 species up to Cu:Al = 0.2, and had a maximum of 0.16 NH3:Al.  This was 

also where the maximum standard SCR rate per gram was observed.  After Cu:Al = 0.2, 

 

 



22 

the amount of reactive NH3 levels off with a value of 0.15 NH3:Al for the Cu:Al = 0.35 

sample. 

 

 

Figure 2.3  Quantities of reactive NH3 (blue square) and strongly bound NH3 (red 
diamond). The amount of reactive NH3 determined in NH3 cutoff experiments from 
standard SCR over different Cu:Al samples.  Before NH3 was removed, standard SCR 
conditions were present with 320 ppm NO, 320 ppm NH3, 10% O2, 6% H2O, 8% CO2, 
and balance Helium at 433 K.  Strongly bound NH3 determined from an NH3 TPD after 
NH3 cutoff experiments and system flush.  The TPD had 1500 ml min-1 with 5 K min-1 
temperature ramp to 823 K.  90% confidence interval reported. 
 
 

After the NH3 cutoff experiment, the system was flushed for ~60 minutes until the 

reactants were removed from the gas and only UHP He was present, followed by a 

temperature programmed desorption.  Figure A.7 shows an example of a TPD for the 

Cu:Al = 0.09 sample  This procedure was performed on several samples and the result 

after NH3 quantification can be seen in Figure 2.3.  The H-form showed 0.28 NH3:Al.  

From there, a decrease in the strongly bound species was observed up to Cu:Al = 0.2, at 
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which point, less than 0.03 NH3:Al was observed.  This species was observed to not vary 

after several standard SCR conditions on the same sample with different NH3 gas 

concentrations.  Figure A.8 shows that different SCR gas mixtures played no role in the 

amount of NH3 stored in these sites in the Cu:Al = 0.09 sample.  

 

2.4.3 Active Cu Characterization 

Figure 2.4 shows UV-Vis-NIR spectra collected in air at ambient conditions for all of the 

Cu-SSZ-13 samples.  Two prominent features were observed.  At 12,500 cm-1, a feature 

corresponding to a d-d transition for isolated, hydrated Cu(II), or [Cu(H2O)6]2+, was 

identified [67].  This feature reached a maximum at Cu:Al = 0.2.  After Cu:Al = 0.2, the 

intensity of the feature at 12,500 cm-1 saturated (Figure A.11).  The second feature 

observed was close to 42,000 cm-1 and first became visible over the transitions associated 

with the zeolite in the Cu:Al = 0.16 and 0.20.  The presence of the second feature was at a 

maximum for the Cu:Al = 0.35.  

 

Figure 2.4  UV-Vis-NIR Spectra for each Cu-SSZ-13 sample in this study in air at room 
temperature. 
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Hydrated Cu(II) was also observed in XANES spectra in Figure 2.5 for each sample 

under ambient conditions. A bulk Cu(II)O and hydrated Cu(II) ([Cu(H2O)6]2+) reference 

are shown alongside the six Cu-SSZ-13 samples.  From the shapes of the XANES spectra, 

it appears each sample is predominantly in the hydrated Cu(II) form at room temperature, 

and does not have any bulk Cu(II)O, which has a pre-edge for Cu(II) at 8987 eV and a 

drop in white line intensity when compared to the hydrated Cu(II) reference.  The Cu:Al 

= 0.35 sample is the only one which has a drop in white line intensity below the hydrated 

Cu(II) reference.  Additionally, the formation of a small pre-edge feature at 8987 eV  

similar to the bulk Cu(II)O is beginning to form.  Linear combination XANES fits were 

performed using the hydrated Cu(II) and bulk Cu(II)O references as well as isolated 

Cu(II) and isolated Cu(I) determined from our lowest Cu loading on SSZ-13.  Every 

sample was about 100% hydrated Cu(II) except the Cu:Al = 0.35 sample, which had a 25% 

contribution from the bulk Cu(II)O reference (Table A.4).  No contribution was seen 

from the isolated Cu(I) or isolated Cu(II) references.  The isolated Cu references will be 

identified in the next paragraph.  The corresponding EXAFS spectra and data fits are 

shown in the Figure A.13 and Table A.5, which exhibit only a first shell Cu-O feature at 

1.94Å and a coordination number of 4 for all samples.  No second shell was observed, as 

no features were distinguishable from the noise of the spectra.  
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Figure 2.5  XANES spectra for all Cu-SSZ-13 samples in this study in air at room 
temperature.  A [Cu(H2O)6]2+ was used as the hydrated Cu(II) reference.  Bulk Cu(II)O 
was also shown along side the spectra. 
 
Operando XAS was used to study the state of the catalyst under reaction conditions and 

observe changes to the Cu while maintaining the concentration of reactants and products 

approxiamtely constant.  Figure 2.6 shows the XANES spectra for two Cu-SSZ-13 

samples with Cu:Al = 0.09 and 0.16 under standard SCR reaction conditions.   
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Figure 2.6  XANES spectra for Cu-SSZ-13 samples with Cu:Al = 0.09 and 0.16 under 
standard SCR reaction conditions compared with the isolated Cu(I) and isolated Cu(II) 
references.  Standard SCR conditions used were 320 ppm NO, 320 ppm NH3, 10% O2, 8% 
CO2, 6% H2O, and balance He at 453 K. 
 
The feature observed at 8983 eV for a 2-coordinate Cu(I) is present in both samples.  The 

small pre-edge features corresponding to transitions for Cu(II) are also present at 8977 

and 8987 eV.  To quantify the extent of isolated Cu, the SSZ-13 sample with Cu:Al = 

0.02, which was the lowest loading of Cu obtained, was assumed to contain only isolated 

Cu based on previous studies in the very low Cu loading regime on Cu-SSZ-13 [16].    

This sample was used to create isolated Cu(I) and isolated Cu(II) references with 

different gas conditions.  The isolated Cu(II) reference was made with 10% O2 in UHP 

Helium at 473 K while the isolated Cu(I) reference was created with 1000 ppm NO and 

1000 ppm NH3 at 473 K.  Each reference exhibited the expected pre-edge features 

corresponding for Cu(II) and Cu(I) and can be seen in Figure 2.6 along with the samples 

under standard SCR reaction conditions.  When compared side by side with the two 

isolated Cu references, the samples under reaction conditions were a combination of the 

two references.  The pre-edge at 8983 eV corresponding to the 2-coordinate isolated Cu(I) 
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was present in both samples.  Table A.6 reports linear combination XANES fits for the 

two Cu-SSZ-13 samples under operando standard SCR conditions.  The contributions 

from isolated Cu(I) in the samples were 37% and 26% for the Cu:Al = 0.09 and 0.16, 

respectively.  Both contained negligible amounts of hydrated Cu(II) (<5%) and no bulk 

Cu(II)O character.  The remainder of the fit was the isolated Cu(II) contribution.   

 

The steady state reaction parameters are reported in Table A.6 with a comparison to the 

rates collected on our laboratory scale plug-flow reactor.  An agreement was seen 

between the rates collected in-house and those collected during the operando XAS 

experiments.  The Cu:Al = 0.09 sample exhibited a rate of 4.3 x 10-3 mole NO mole Cu-1 

s-1 at 453 K for both the operando experiments and in-house experiments.  The Cu:Al = 

0.16 sample had a rate of 4.7 x 10-3 and 3.7 x 10-3 mole NO mole Cu-1 s-1 for operando 

experiments and in house experiments, respectively.   

 

To count the number and type of potential Cu(II) sites, we used a combination of DFT 

and statistical analysis.  The SSZ-13 lattice presents 4-, 6-, and 8-membered rings.  In a 

first set of DFT calculations, we constructed an SSZ-13 supercell containing four Al T-

sites (equivalent to an Si:Al ratio of 5) distributed such that two Al are in each of a 4-, 6-, 

and 8-membered rings.  We computed the energy to exchange Cu(II) into each ring 

according to: 

Z4H4 +  Cu2+(aq) →  Z4H2Cu + 2H+ (aq)  (4) 

 

We find that the optimized Cu(II) ions uniformally prefer to maintain 4-fold coordination 

to lattice O in each ring; further, Cu(II) is 1.13 eV more stable in the 6- than the 4- 

membered ring and 1.5 eV more stable in the 6- than the 8- membered ring.  These 

results support the hypothesis that the 6-ring is the preferred site of Cu(II) exchange, 

consistent with previous suggestions for this site as the center of standard SCR activity 

[14, 15, 30].   
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We next constructed a 768 T site periodic supercell of SSZ-13 using the crystal structure 

from the International Zeolite Association database [46].  We randomly seeded the lattice 

with Al up to target Si:Al ratios from approximately 3 to 47, avoiding nearest neighbor 

Al-O-Al structures in accordance with Loewenstein’s rule [32, 68].  Next, random Si to 

Al swaps were performed that satisfied Loewenstein’s rule, and at each iteration the 

number of six-member rings containing exactly two Al counted.  A total of 107 iterations 

were performed, and multiple replicates performed to ensure convergence.  Figure 2.7 

shows the computed number of six-member rings with two Al per total Al as a function 

of Si:Al ratio.  The density rises rapidly with increasing Si:Al ratio until it maximizes 

near a ratio of 3, at which point six-member rings with 3 Al T-sites dominate the lattice.  

At a Si:Al ratio of 5, the density of two-Al six-membered rings is 0.23.  Assuming Cu(II) 

exchange to obey the stoichiometry of Eq. 4, the theoretical maximum six-membered ring 

Cu:Al ratio is also 0.23 for for a sample in which every Al is a Brønsted acid site. 

 

Figure 2.7  The maximum Cu(II) associated with 2 Al in the six-membered ring in SSZ-
13 which can theoretically be present for a given Si:Al. 
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2.5 Discussion 

2.5.1 Identification and Location of the Active Cu species 

The combination of standard SCR kinetics and spectroscopic techniques used under 

ambient and reaction conditions allows the active Cu for standard SCR in SSZ-13 to be 

identified as an isolated Cu species.  The linear increase in standard SCR rate per gram 

up to Cu:Al=0.2 in Figure 2.2 indicates that the active Cu species is populated in the low 

loading region.  Other studies [16, 18] have identified isolated Cu to be present in this 

regime, suggesting it is the active Cu based on the standard SCR rate that is observed.   

The linearity of the trend of increasing standard SCR rate per gram also allows the series 

of Cu-SSZ-13 samples to pass the Koros-Nowak test for mass transfer [69, 70], a debated 

effect within SSZ-13.  Gao et al.[18] have concluded that internal mass transfer can 

inhibit the reaction by calculating the effectiveness factors from the Thiele modulus and 

making comparisons of rate per mole Cu in samples with different Cu loadings.  

However, it is not present in the samples in this study because of the linearity of the rate 

per gram with the addition of active Cu species up to Cu:Al = 0.2.  The Cu:Al = 0.35 

sample was also determined to not have any mass transfer issues either, which will be 

discussed later on.   

 

Figure 2.4 shows an increasing intensity of hydrated (isolated) Cu(II) species based on d-

d transitions at 12,500 cm-1.  Further confirmation of a hydrated Cu(II) species was seen 

in Figure 2.5, in which all samples below Cu:Al = 0.2 showed nearly 100% hydrated 

Cu(II) character when a linear combination fit was used (Table A.4).  The intensity in the 

UV-Vis-NIR measurements was observed to reach a maximum intensity of 0.18 Kubelka 

Munk units at Cu:Al = 0.2, which suggests there may be a connection between the 

hydrated Cu(II) species and the active Cu(II).  When shown together in Figure 2.8, the 

rate per gram is seen to track linearly with the intensity of d-d transitions for hydrated 

Cu(II).  The Cu:Al=0.35 sample, which was observed to have a decrease in rate per gram 

after the Cu:Al=0.2 sample, falls on the line as well.  This correlation suggests that 

hydrated Cu(II) within SSZ-13 is a precursor to the active Cu under standard SCR 

conditions. 
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Figure 2.8  Correlation of standard SCR rate per gram with the UV-Vis-NIR intensity of 
hydrated Cu(II) d-d transition at 12500 cm-1 in Kubelka-Munk units in air at room 
temperature in the Cu-SSZ-13 samples.  Standard SCR conditions used were 320 ppm 
NO, 320 ppm NH3, 10% O2, 8% CO2, 6% H2O, and balance Helium at 473 K.  90% 
confidence intervals used. 
 
When two of the samples (Cu:Al=0.09 and 0.16) were observed under reaction conditions 

with operando x-ray absorption spectroscopy, several changes took place in the shape of 

the XANES spectra as shown in Figure 2.6.  A feature at 8983 eV for a two-coordinate 

Cu(I) is present because of the expected Cu redox cycle between Cu(I) and Cu(II) under 

standard SCR [24, 71].  Other features at 8977 and 8987 eV are indiciative of Cu(II) 

coordinated to the zeolite.  None of these transitions were present under ambient 

conditions when Cu was surrounded by water, indicating that Cu became coordinated to 

the zeolite and shed its sphere of hydrated under reaction conditions.  Linear combination 

XANES fits in Table A.6 show that there is now 5% or less contribution from hydrated 

Cu(II) with only isolated Cu(I) and Cu(II) contributions.  This change from 100% 

hydrated Cu(II) to greater than 95% isolated Cu(I)-Cu(II) under reaction conditions 

signals two things.  The first is that the active Cu is an isolated species since we observe 
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the active Cu to build in this region based on our kinetic results and this is the only Cu 

species we see from operando XAS.  The second is that the hydrated Cu(II) under 

ambient conditions is the precursor to the active Cu.  Using UV-Vis-NIR to look at the 

precursor under ambient conditions is a very simple experiment and it can give an 

estimate of the quantity of active Cu present.  Based on these new conclusions, the 

Cu:Al=0.35 sample does not suffer from mass transfer effects because its rate depends on 

the amount of hydrated Cu, which falls in line with all the other samples.   

 

The location of the active isolated Cu species was determined to be at the six-member 

ring and exchanged into two Brønsted acid sites.  The DFT calculations support a strong 

Cu(II) preference for six-member rings, and statistical analysis provides a density of 

these Cu(II) sites consistent with the maximum rate per gram vs. Cu loading observed in 

the experiments (Figure 2.7).  Thus, the active Cu species for standard SCR in Cu-SSZ-

13 is isolated and located within the six-member ring of the CHA structure.  

 

2.5.2 Transition to Other Cu species after Cu:Al = 0.2 

After Cu:Al = 0.2, several pieces of evidence are present in the data which suggest a new 

Cu species formed which has multiple Cu in its structure.  The linear combinatation 

XANES fits of Cu-SSZ-13 under ambient conditions (Table A.4) show that the 

Cu:Al=0.35 sample exhibits a 25% contribution from a bulk Cu(II)O reference.  

Therefore, it is likely a new Cu species has emerged above the threshold of Cu:Al=0.2 

which has multiple Cu, which will be denoted CuxOy.  The UV-Vis-NIR spectra (Figure 

2.4) reach a maximum amount of d-d transitions for hydrated Cu(II) at Cu:Al = 0.2.  

Following this, a small drop in intensity from 0.18 to 0.14 Kubelka Munk units was seen, 

suggesting a new Cu species other than hydrated Cu(II) was forming and likely 

scavenging isolated Cu.  It is not clear what has changed in the UV-Vis-NIR in the broad 

range of wavenumbers from ~27,000 – 50,000 cm-1, but the entire region has reached a 

maximum in the Cu:Al=0.35 sample.  This region was not analyzed for further 

information. 
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Another study in our group [72] (CHAPTER 3) used dry NO oxidation reaction 

conditions over the same set of samples here and found samples with Cu:Al greater than 

0.2 to be catalytically active with 300 ppm NO, 150 ppm NO2, and 10% O2 at 573 K.  

Several samples in that study, all with Cu:Al > 0.2, showed increase in rate from zero 

mol NO mol Cu-1 s-1 at Cu:Al =0.2 up to 1.7 x 10-4 mol NO mol Cu-1 s-1 in a Cu:Al = 1.6 

sample. This indicated a new CuxOy species began to populate after the isolated Cu sites 

in the six-membered rings were full.  Thus, dry NO oxidation was used as a probe 

reaction to determine the threshold of the formation of new CuxOy species.  The new 

species was inactive for standard SCR because the standard SCR rate per gram in the 

Cu:Al = 0.35 sample tracked with the amount of hydrated Cu(II) in Figure 2.8.      

 

2.5.3 Choice of Brønsted Acid site Measurement Technique 

In a previous study [26], three different NH3 treatments followed by TPDs were shown to 

be able to selectively titrate Brønsted acid sites.  The NH3 treatments were compared with 

an n-propylamine decomposition reaction previously described [73-75] and produced an 

equivalent result in both H- and Cu-ZSM-5 samples.  When the third NH3 treatment (data 

used in this study) and n-propylamine decomposition were used in H- and Cu-SSZ-13, 

we found the n-propylamine unable to access close to 75% of the Brønsted acid sites as 

calculated from the NH3 titration.  From this, we suggested n-propylamine was unable to 

accurately count sites in the treatment conditions used because of the combination of the 

small pore-openings in SSZ-13 and the high aluminum content in ths samples (Si:Al=4.5).  

Thus, for SSZ-13 in this study, we used NH3 to titrate the Brønsted acid sites. 

 

The parent H-SSZ-13 sample exhibited ~0.65 H+:Al from the NH3 titration, which 

indicated that one-third of the Al were not contributing to the Brønsted acid sites.  This 

effect has also been observed in other zeolites [76] and the quantity of Al not counted as 

Brønsted acid sites has typically been identified as extraframework, which is likely the 

case in our samples. 
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2.5.4 The Role of Residual Brønsted Acid Sites 

The standard SCR rate per gram catalyst did not appear to be affected by the number of 

Brønsted acid sites measured by intermediate temperature gas phase NH3 treatment and 

TPD which are detailed in the previous paragraph.  Figure A.16 shows the normalized 

rate per gram catalyst and normalized H+:Al together with an inverse correlation to each 

other.  The drop in rate per gram after Cu:Al = 0.2 was not indicative of a shift in 

kinetically relevant step(s) to the Brønsted acid site.  It was only a drop in the number of 

active Cu species, as indicated by the amount of hydrated Cu(II) tracking with the rate 

per gram in Figure 2.8.  The activation energies and reaction orders in Figure 2.1a-b and 

Table A.1 also show that the kinetics were not changing over the course of Cu addition 

into the samples aside from the Cu:Al =0.02 sample.   

 

The amount of strongly bound NH3 also had an inverse correlation with the standard SCR 

rate per gram, suggesting it was also part of the total Brønsted acid site quantity.  Figure 

A.17 shows the calculated total number of Brønsted acid sites based on the sum of 

strongly bound NH3 and the two Brønsted acid sites for every Cu(II) exchanged.  This 

sum did not include the reactive NH3 species, which will be discussed next.  Each total 

Brønsted acid site quantity based on the strongly bound species was observed to have a 

similar offset between 0.23-0.36 H+:Al lower than the total Brønsted acid sites from the 

NH3 titration study [26].  Previous studies [77] have shown that the NH3 storage capacity 

can be significantly reduced under reaction conditions due to reaction of the NH3 species.  

Since the steady state reactions performed before the NH3 cutoff and TPD were at 433 K, 

the rates collected were less than 0.8 x 10-6 mol NO g cat-1 s-1 (Cu:Al = 0.2 sample), 

which corresponded to less than 4% conversion.  The reaction of NH3 off the Brønsted 

sites may contribute to the offset, but it is not likely to have much of an effect, or no 

effect in the case of the H-SSZ-13 sample, which exhibits no rate.  A likely scenario is 

that the partial pressures of the different gases in the mixture shift the equilibrium 

coverage of NH3 on Brønsted acid sites.  A recent study [78] used NH3 and H2O 

adsorption and desorption experiments and microkinetic modeling to determine 

coverages over NH3 on Brønsted acid sites with and without H2O present on Fe-ZSM-5 at 
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423 K.  The study found the coverage of NH3 on Brønsted acid sites dropped from ~0.9 

to 0.3 when water was present.  Based on that study, the combination of 6% H2O in the 

reaction mixture along with the other gases could have a profound effect on the NH3 

coverage on Brønsted acid sites under reaction conditions.  To prove this was the effect 

we observed, three different gas conditions were used before an NH3 cutoff and TPD on 

the H-SSZ-13 sample.  The first was standard SCR as described previously, the second 

was dry standard SCR (no H2O), and the third was NH3 only.  Total flowrates during 

each experiment were kept at 1500 ml min-1 just as in the original NH3 cutoff and TPD 

experiments.  Following the NH3 cutoff, the TPDs were performed to observe any 

changes in strongly bound NH3.  Figure A.18 shows water had a large impact on the 

strongly bound NH3 coverage.  When quantified, the dry standard SCR showed 0.54 

NH3:Al, while the regular standard SCR showed 0.26 NH3:Al.  The final experiment used 

NH3 only before the NH3 cutoff, which gave 0.62 NH3:Al in the TPD, which was in 

agreement with our previous study with ~0.65 H+:Al for the H-SSZ-13 sample [26].  

From these results, it appears that the reaction mixture does not allow for all Brønsted 

acid sites to be occupied under standard SCR conditions, with the presence of 6% H2O 

contributing the most to the difference in values obtained.  Since the amount of Brønsted 

acid sites as determined from the strongly bound NH3 after standard SCR reaction are 

even smaller in quantity than the NH3 titration procedures, this is an even stronger 

indication that the number of sites are not kinetically relevant for the standard SCR rate 

in these samples.         
 

The reactive NH3 species may be associated with the active Cu species, a Brønsted acid 

site, or a combination of both.  Recall, the standard SCR rate on each sample correlated 

with the amount of hydrated Cu(II), a precursor to the active Cu site.  The reactive NH3 

also track well with the standard SCR rate seen in Figure A.19, suggesting it is related to 

the active Cu.  A recent mechanism [79] proposed for standard SCR in SSZ-13 suggests 

the reaction occurs through an intermediate with NH3 on the active Cu.  This also falls in 

line with our previous study [71] where we suggested NH3 may react or desorb from Cu, 

but also keeps water from adsorbing on the active Cu under reaction conditions using 
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transient cutoff experiments with operando XAS.  The long time for the NO signal to 

stabilize in the NH3 cutoff experiment (~60 min) may suggest there is migration of NH3 

species to an active site, in which case, the Brønsted acid site storage may become 

important in this transient process.  Thus, we cannot rule out the possibility that some or 

all of the reactive NH3 comes from Brønsted acid sites surrounding the Cu.  Further 

studies need to be performed to determine the correct position(s) for the reactive NH3. 

 

2.5.5 The Importance of Cu:Al = 0.2 

The agreement of multiple techniques giving a maximum (standard SCR rate per gram,  

hydrated Cu(II) in UV-Vis-NIR, isolated Cu in six membered ring from statistical 

calculation) at Cu:Al = 0.2 suggests this is an important transitional region in Cu-SSZ-13 

for a Si:Al = 4.5.  From the results discussed, the transition is caused by isolated Cu sites 

in the six-membered rings filling to a maximum value.  At this point, the standard SCR 

rate per gram catalyst is at a maximum, which confirms kinetically that this is the active 

site for standard SCR.  At this transition, another Cu species begins to form which is not 

located in the six-membered ring, and our results show that multiple Cu are involved.  

The UV-Vis NIR data show this species may begin to remove isolated Cu after 

Cu:Al=0.2, which causes a loss in standard SCR rate per gram.  The statistical approach 

used here to confirm experimental results should be used as a road map to make high-

performance Cu-SSZ-13 with varying Si:Al for standard SCR.    

 

2.6 Conclusions 

Seven H- and Cu-SSZ-13 samples with Si:Al = 4.5 and Cu:Al ranging from 0 to 0.35 

were used to determine standard SCR reaction kinetics and probe the active Cu site under 

standard SCR reaction conditions.  The standard SCR rate per gram increased linearly 

with Cu:Al ratio up to Cu:Al = 0.2, indicating the active site was formed in this regime.  

This matched with statistical calculations of the maximum amount of isolated Cu 

occupying 2 Al on the six-membered ring of the SSZ-13 at Cu:Al = 0.23.  This linear 

trend also rules out any mass transfer limitations.   
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The state of the Cu in SSZ-13 under ambient conditions was tested with UV-Vis-NIR and 

XAS.  The UV-Vis-NIR showed the build up of a hydrated Cu(II) species until Cu:Al = 

0.2, which agreed with the trend in standard SCR rate per gram with increasing Cu 

loading up to Cu:Al = 0.2.  Ambient XAS confirmed the state of Cu in all samples with 

Cu:Al = 0.2 or below to have only this hydrated species.  Operando XAS showed that all 

the hydrated Cu became an isolated Cu(I)-Cu(II) mix under standard SCR conditions, 

confirming the active species of Cu for standard SCR.  Hydrated isolated Cu(II) was also 

determined to be the precursor to the active Cu species because it tracked with the 

standard SCR rate in all samples and transformed completely to isolated Cu under 

reaction conditions. 

 

The number of Brønsted acid sites found in each sample were determined to not be 

involved in the kinetically relevant steps because of an inverse correlation between rate 

per gram and number of sites.  Individual NH3 species were also quantified under 

reaction conditions.  A strongly bound NH3 found by TPD after reaction conditions and 

corresponding to a fraction of the total Brønsted acid sites also showed an inverse 

correlation with the rate.  A reactive NH3 species found by quantifying the NO reacted 

after NH3 was removed from standard SCR mixture tracked with the standard SCR rate 

suggesting it was on the active Cu or on a nearby Brønsted acid site .      

 

This study suggests a transition region in Cu-SSZ-13 near Cu:Al = 0.2 for our samples 

which have Si:Al = 4.5, where a CuxOy species not associated with the six-membered 

ring begins to form.  Ambient XAS show the appearance of transitions similar to what 

have been observed in Cu(II)O in the Cu:Al = 0.35 sample.  Thus, the transition region 

for a given Si:Al in Cu-SSZ-13 must be considered when trying to maximize the isolated 

Cu for standard SCR and not create other unwanted Cu species."  
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CHAPTER 3. KINETICS OF OXIDATION OF NITRIC OXIDE OVER COPPER 
EXCHANGED SSZ-13 

3.1 Abstract 

The site requirements and mechanism of dry NO oxidation were examined on a series of 

Cu-SSZ-13 catalysts (Silicon: total Aluminum ratio = 4.5) with Cu:Al (copper : total 

Aluminum) ratios ranging from 0.02 to 1.6.  Catalysts with Cu:Al ratio < 0.2 exhibit 

immeasurable NO oxidation rates (per mole Cu), while NO oxidation rates increase 

monotonically with Cu:Al  ratio from 0.2 up to 0.5.  Hydrated Cu-SSZ-13 catalysts with 

Cu:Al < 0.2 exhibit a near infrared feature at 12500 cm–1 under ambient conditions that 

we assign to a d-d transition of an isolated, hydrated Cu(II) ion.  X-ray absorption near 

edge structure (XANES) of Cu ions on the same catalysts under ambient conditions 

quantitatively match a [Cu(H2O)6]II reference.  The 12500 cm–1 feature intensity is 

constant above Cu:Al  ratio = 0.2, implying that the additional Cu ions adopt other 

configurations. Catalysts with Cu:Al ratio > 0.2 also showed an increasing percentage of 

CuxOy species (clustered Cu(II) ions x ≥ 2, y ≥ 1) as quantified by XANES under ambient 

conditions.  Saturation of these isolated Cu(II) sites at Cu:Al ratio = 0.2 is consistent with 

the expected number of 6-ring Alf (framework Al) pair sites available to accommodate 

them.  The hydrated isolated Cu(II) ions in catalysts with Cu:Al ratio < 0.2 are 

quantitatively converted to dehydrated isolated Cu(II) ions under NO oxidation and do 

not contribute measurably to the rate of NO oxidation. In contrast, in-situ XANES 

experiments show that the CuxOy species remain present in the NO/NO2/O2 environment 

and contribute linearly to the rate of NO oxidation per mole Cu (at 573K).  We used 

density functional theory (DFT) calculations to compare the ability of isolated Cu ions 

and Cu dimers (Cu2Oy) species to support NO oxidation. Only the Cu dimers can 

accommodate adsorption and dissociation of O2 necessary to catalyze NO oxidation. We
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 hypothesize that activated oxygen enables NO to form NO2 in a catalytically relevant 

step. These findings reveal that dry NO oxidation (300 ppm NO, 150 ppm NO2 and 10% 

O2) can be used as a probe reaction to identify clustering of Cu ions on Cu-SSZ-13. 

 

3.2 Introduction 

Copper-exchanged zeolites form an important class of catalysts that convert NOx (NO 

and NO2) pollutants to dinitrogen (N2) in the presence of ammonia (NH3) and oxygen (O2) 

via selective catalytic reduction (SCR) [2, 80].  In particular, Cu-SSZ-13 shows 

commercially viable rates  for standard SCR (NO + NH3 + O2) even after hydrothermal 

aging [1]. However, the location and configuration of the active sites on Cu-SSZ-13 have 

not been fully characterized. Many research groups have proposed atomically dispersed 

Cu(II) ions present near the six-member ring of SSZ-13 as the dominant active site for 

the standard SCR [14, 15, 24].  Fickel et al. [30] used Rietveld refinement of X-ray 

diffraction patterns at varying temperatures on Cu-SSZ-13 (Cu:Al ratio = 0.35, Si:Al= 6) 

and proposed that all Cu(II) ions were isolated and present near the six member rings of 

the zeolite.  In addition, Kwak et al. [16] observed another Cu ion configuration in SSZ-

13 (Si:Al = 6) at Cu:Al ratio > 0.2, which they assigned to an isolated Cu(II) ion in the 8 

member ring.  Gao et al. [18] concluded that the active sites for ammonia oxidation were 

isolated Cu ions in the 8 member cage of SSZ-13 for 0.2 ≤ Cu:Al  ratio ≤ 0.4 and 

possibly Cu dimers (Cu2Oy) at Cu:Al ratio > 0.3.  Based on increasing ammonia 

oxidation rates with increasing Cu:Al ratios, Gao et al. speculated that Cu ions in the 8 

member ring of Cu-SSZ-13 would be the active sites for generic, non-selective oxidation 

reactions, while isolated Cu(II) ions near the double 6 member ring in Cu-SSZ-13 would 

be more suited for selective reactions like standard SCR.   

 

Catalytic NO oxidation is a useful probe reaction to obtain mechanistic information about 

standard SCR [20, 81].  Available evidence on Cu-SSZ-13 indicates that NO oxidation 

(NO + O2) rate of reaction is independent of standard SCR (NO + O2 + NH3) rate.  

Ruggeri et al. [23] observed that water decreased NO conversion considerably during NO 

oxidation while not affecting NO conversion during standard SCR.  Similarly, Kwak et al. 
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[21] observed negligible NO conversion during wet NO oxidation (350 ppm NO, 14% O2, 

and 10% H2O) on Cu-SSZ-13 catalysts with Cu:Al  ratios varying from 0.1 to 0.3 and 

increasing wet NO oxidation conversion on Cu:Al  ratios > 0.3 at 573 K, even though all 

catalysts displayed similar NO conversion during Standard SCR. This observation also 

hints toward the presence of multiple Cu ion configurations as a function of the Cu:Al 

ratio. Thus, there is a need to understand the distinctions between Cu sites active for NO 

oxidation and for standard SCR on Cu-SSZ-13. 

  

Density functional theory (DFT) molecular models have been used extensively to study 

the Cu siting and NOx catalysis on Cu-exchanged zeolites.  Most work to-date has 

employed cluster models containing one or two Al-containing tetrahedral (T-) sites to 

represent ion exchanged Cu(I) (‘ZCu’) or Cu(II) (‘Z2Cu’).  Schneider et al. [82-84] used 

single T-site ZCu models on Cu-ZSM-5 to consider an NO oxidation pathway involving 

successive reactions of two NO molecules with an adsorbed O2 (Scheme 3.1): 

 

ZCu 
O2�� ZCuO2

+NO
�⎯�

−NO2
�⎯⎯� ZCuO

+NO
�⎯�

−NO2
�⎯⎯� ZCu                          Scheme 3.1  

 

Similar intermediates have been considered in DFT studies of NO decomposition [85-87] 

and N2O decomposition [88] .  Analogous oxygen chemistry can be envisioned involving 

Cu dimers (Scheme 3.2): 

 

ZCu … CuZ 
O2↔  ZCuO2CuZ 

[O]
��  ZCuOCuZ 

[O]
��  ZCu … ZCu         Scheme 3.2   

 

These intermediates have been examined computationally in the context of NO 

decomposition [32, 89, 90] and methane oxidation [91-93] in Cu-ZSM-5.  The stability of 

these intermediates has been shown to depend on the locations of the charge-

compensating T-sites [89, 90, 94].  The large majority of these calculations are based on 

cluster models, but recently more faithful, fully periodic models have been used to study 

ZCu(I) and Z2Cu(II) siting and adsorption in SSZ-13 [24, 95-99].  None have considered 
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NOx chemistry or the potential relevance of Cu dimers or larger clusters inside Cu-SSZ-

13. 

 

In this chapter we report a kinetic and computational study of dry NO oxidation on Cu-

SSZ-13 catalysts (Si:Al= 4.5) with varying Cu:Al ratios. Using a combination of steady 

state reaction kinetics, ultraviolet visible near infrared (UV-Vis-NIR) spectroscopy under 

ambient conditions and X-ray absorption near edge structure (XANES) under ambient 

conditions in air, and in-situ dry NO oxidation, we show that there is a difference in the 

dry NO oxidation rate for different Cu ion configurations.  We use statistical models to 

count the number of available sites in SSZ-13 for isolated Cu(II) ions, and use DFT 

models to contrast O2 adsorption and reaction on a variety of candidate isolated Cu and 

Cu dimer sites.  We further use DFT to examine the growth of CuxOx (2 ≤ x ≤ 8) particles 

within SSZ-13.  Consistent with experiments, we find that Cu dimers are able to support 

oxidation catalysis while isolated Cu ions cannot.  The result is the aggregate indicator 

that NO oxidation rate is associated with Cu dimers or larger aggregates and not isolated 

Cu(II) ions.  Dry NO oxidation (300 ppm NO, 150 ppm NO2, and 10% O2) is thus a 

useful probe for Cu ion clustering in Cu-SSZ-13. 

 

3.2 Experimental Methods 

3.2.1 Synthesis and Characterization of Cu-SSZ-13 

The parent zeolite, H-SSZ-13 was prepared following a recipe detailed by Fickel et al. 

[30]. The as-synthesized zeolite was in the sodium form with the template within the 

zeolite.  The template was removed by treating the zeolite in 20% O2/N2 (Indiana Oxygen, 

commercial grade) at a flow rate of 100 ml min-1.  The temperature was ramped at 0.5 K 

min-1 to 823 K followed by a 480 minute dwell time and subsequent cooling to 298 K.  

This procedure enabled the formation of Na-SSZ-13.  This material was converted into 

H-SSZ-13 by ion exchanging with 0.2M NH4OH (Fisher Chemicals, catalog number 

A669 – 212) at 353 K for 12 hours and treating the decanted and air dried material in 20% 

O2/N2 at a flow rate of 100 ml min-1.  The temperature was again ramped 0.5 K min-1 to 

823 K followed by a 480 minute dwell time and subsequent cooling to 298 K.  The 
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resulting material was confirmed to be H-SSZ-13 via x-ray diffraction using a Bruker D8 

Focus X-ray diffractometer with a Cu K α source. The diffraction pattern was in 

agreement with the literature pattern [26, 100].  A Cu(NO3)2∙xH2O (Sigma Aldrich) 

precursor salt was used for Cu ion exchange.  Approximately 250 ml solution per gram of 

H-SSZ-13 was used for all the samples. The temperature of copper ion exchange was 338 

K.  Nine catalysts were ion exchanged at a pH of 5 ± 0.2. The slurry pH was controlled 

by periodic drop wise addition of a 0.1M NH4OH solution obtained by mixing an 

appropriate amount of 28% w/w NH4OH (Fisher Chemicals, catalog number A669 – 212) 

with deionized (D.I.) water. 

 

After Cu ion exchange, the solid was separated from the solution by centrifugation for 20 

minutes followed by a D.I. water wash for 10 minutes under stirring, and subsequent 

centrifugation.  This procedure was repeated three times.  The catalyst was then dried 

overnight in a vacuum oven (29 psi vacuum) at 293 K.  Subsequently, the catalyst was 

treated in 20% O2/N2 and a flow rate of 100 ml min-1, with a temperature ramp of 0.5 K 

min-1 until 823 K and a dwell time of 360 minutes.  After the treatment, the catalyst was 

cooled to 298 K and subsequently used for catalytic testing.  The Cu:Al ratio and Si:Al 

ratio for each sample was measured using a Perkin Elmer AAnalyst 300 atomic 

absorption spectrometer.  Approximately 20 mg of each sample was dissolved in 5 ml 

aqua regia (HNO3, 68 – 70 % w/w and HCl, 36.5 – 38 % w/w, both obtained from 

Mallinckrodt chemicals) and 2 ml HF (48 % w/w, obtained from Macron chemicals) 

overnight followed by addition of 50 ml D.I. water to dilute the concentrated acid 

solution.  Three standards at approximately 1 ppm, 3 ppm, and 5 ppm were prepared by 

diluting a 1001 ppm copper in nitric acid solution (Fluka Analytical) for calibrating the 

instrument.  An average of five replicate measurements was reported for each catalyst. 

Samples for which the Cu:Al ratio measurement was outside the calibration range were 

diluted further and the measurement repeated on the diluted solution. The details of all 

Cu-SSZ-13 catalysts used in this study are provided in Table B.1. 
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The Cu-SSZ-13 catalysts were further characterized by N2 adsorption and desorption 

isotherms, aluminum magic angle spinning nuclear magnetic resonance (27Al MAS NMR) 

spectroscopy and Brønsted acid site counting using ammonia and n-propyl amine.  The 

methodology and results of these characterizations are provided by Bates et al. [26]. The 
27Al MAS NMR results showed that the parent SSZ-13 material had 15% Al as extra-

framework cations, while, on an average, the ratio of the number of Brønsted acidic 

protons accessible to ammonia, to the number of framework Al atoms (Alf) was ~ 0.76 

[26]. 

 

3.2.2 Kinetic Measurements 

The reactor setup used for the steady state NO oxidation experiments was similar to the 

one used by Pazmiño et al. [101].  The assembly consisted of gas delivery and manifold, 

reactor, and gas analysis systems.  The gas delivery and manifold system was comprised 

of a series of mass flow controllers (Porter Instruments division), which controlled 

individual gas flows (NO, NO2, O2, CO2, and N2).  A gas manifold was used to mix all 

the gases in order to produce the desired gas concentrations and feed them into the 

reactor system.  The reactor system was made up of a down flow vertical Pyrex reactor 

with an inner diameter of 13 mm and an overall length of 400 mm.  A porous glass frit 

was installed at the midpoint of the reactor, over which a layer of quartz wool was placed 

in a flattened position.  In order to minimize the pressure drop of the flow of gas across 

the powder catalyst bed, the catalyst particles were sieved to a nominal size of 125 µm - 

250 µm and were placed over the top of the quartz wool layer with dilution.  All catalysts 

used in this study were diluted with silica gel (Fisher Scientific) to form a bed of 

adequate height.  Another layer of quartz wool was pressed slightly over the top of the 

catalyst bed to ensure uniformity of the bed.  A metallic mesh was placed 10 mm above 

the catalyst bed in order to support glass beads (~ 20 mm in height).  The temperature 

across the catalyst bed was measured by placing two K-type thermocouples, one at ~ 

2mm above the catalyst bed and the other ~ 2mm below the glass frit.  To ensure 

isothermal conditions across the catalyst bed, (verified by reading the temperatures from 

the 2 K-type thermocouples), the glass reactor around the catalyst bed was wrapped with 
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aluminum foil (20 mm by 70 mm) and covered with a 190 mm long aluminum sheath (4 

mm thickness).  Moreover, the feed gases from the gas manifold were first fed to a gas 

preheater (maintained at 573 K) and then into the main reactor.  The reactor system was 

built in such a way that the preheated gases could either flow through the catalyst bed or 

bypass directly into the gas analysis section.  Appropriate valves were placed in the 

reactor setup so that the gas analysis section could receive only one type of gas flow. 

 

The gas-phase concentrations of NO, NO2, CO2, H2O, and N2O were measured by a 

Fourier transform infrared (FTIR) analyzer (MKS Multigas™ 2030 gas phase FTIR 

spectrometer).  The FTIR analyzer had a spectral resolution of 0.5 cm-1 and factory 

supplied calibrations were used to quantify the various gas concentrations. 

 

After each experiment, the Pyrex reactor and glass beads were cleaned with a phosphate 

free cleaning solution and subsequently by freshly prepared aqua regia followed by 

rinsing in DI water.  

 

3.2.3 X-ray Absorption Measurements 

The X-ray absorption spectroscopic (XAS) measurements under in-situ and ex-situ 

conditions were made on the insertion-device beam line of the Materials Research 

Collaborative Access Team (MRCAT, Sector 10 ID) at the Advanced Photon Source, 

Argonne National Laboratory.  The XAS data were collected at the Cu K edge (8,987 eV) 

in transmission mode.  In order to minimize the presence of harmonics, a cryogenically 

cooled double-crystal Si (111) monochromator was used in conjunction with an uncoated 

glass mirror.  The ionization chambers were optimized for the maximum current with a 

linear response (1010 photons detected s-1). This was accomplished by using gas mixtures 

to provide for 10% absorption in the incident X-ray detector and 70% absorption in the 

transmission X-ray detector.  The energy calibration for each spectrum was performed by 

a simultaneous measurement of the XAS spectrum for a Cu foil.  The XAS measurements 

were made in a metallic cylindrical holder which had a capability of containing up to six 

catalyst pellets.  The thickness of catalyst pellets (equivalent to 0.015 – 0.03 g) was 
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chosen to have an edge step ( xµ∆ ) of 1.  The cylindrical holder was placed in a quartz 

tube and the tube was placed in a furnace to enable in-situ spectroscopy [101]. For in-situ 

measurements, the catalysts were pelletized and heated to 573 K in 300 ppm NO, 150 

ppm NO2, 10% O2, and balance He (Ultrahigh Purity, Airgas)  

 

3.2.4 Ex-situ Ultraviolet Visible Near Infra-red (UV-Vis-NIR) Spectroscopy 

Ex-situ UV-Vis-NIR spectra under diffuse reflectance conditions were collected on a 

Varian UV-Vis-NIR spectrophotometer (Cary 5000) equipped with a Harrick-Scientific 

Praying-Mantis diffuse reflectance accessory (DRA).  Barium sulphate (BaSO4, Sigma 

Aldrich, product number 243353) was used as a reference material for background scans.  

This material was sieved to a nominal size of 125 µm - 250 µm before taking the 

background scan.  Spectra were collected from 7,000 cm-1 to 50,000 cm-1 at a scan speed 

of 2,000 cm-1 min-1.  Cu-SSZ-13 samples were initially pretreated in 10% O2/N2 at 800 K 

elsewhere and subsequently exposed to ambient conditions.  This was done to ensure that 

these samples were hydrated.  Approximately 0.1 g of each sample was placed in the 

sample cup and spectral measurements were subsequently made. 

 

3.3 Computational Methods 

Periodic DFT calculations were performed using the Vienna ab-initio simulation package 

(VASP) [62, 63].  Core states were treated using the projector augmented wave (PAW) 

[65] method and exchange and correlation treated within the PW91 generalized gradient 

approximation (GGA) [66].  Valence state plane waves were included to a cutoff of 400 

eV and the Brillouin zone sampled at the Γ-point.  Electronic energies were converged to 

10-8 eV and geometries relaxed until atomic forces were less than 0.01 eV/Å. Harmonic 

vibrational frequencies were calculated by numerical differentiation of atomic forces with 

differential displacements of 0.01 Å.  Tight convergence was necessary to avoid 

unphysical imaginary frequencies [102]. Most calculations were performed in a 12 SiO2 

formula unit, approximately rhombohedral supercell (Figure 3.1a and Figure 3.1b) [24]. 

Two Si are replaced by Al to achieve the desired 5:1 Si:Al  ratio. 
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Figure 3.1  SSZ-13 periodic super cell models.  (a) The 1 × 1 × 1 supercell model and 
associated cell parameters.  (b) Periodic image illustrating larger 4-, 6-, and 8- ring 
structures. Yellow and red spheres are Si and O, respectively 
 

The NO oxidation (NO + ½ O2 → NO2 , -0.6 eV) energy is exaggerated by the GGA by a 

factor of two [103], while the hybrid B3LYP [104-106] exchange-correlation functional 

improves the computed result to -0.68 eV.  To take advantage of this improved accuracy, 

we used a cluster calculation correction scheme similar to that employed by others [107-

112] to estimate super cell B3LYP energies as (Equation 3.1):  

 

                3 3
sup sup ( )B LYP GGA B LYP GGA

ercell ercell cluster clusterE E E E≈ + −                               Equation 3.1 
 

Cluster fragments were extracted from the converged super cell models and included 4- 

and 6-rings (Figure B.1a) or an 8-membered ring (Figure B.1b).  Clusters were 

terminated with hydroxyl groups with O–H distance fixed at 0.964 Å and oriented as in 

the optimized periodic structure.  Single-point GGA and B3LYP calculations were 

performed in the Amsterdam Density Functional (ADF) code [113, 114] using an all-

electron triple-zeta polarized basis and an integration precision of 10–8 [115]. 

  

To relate computed energies to experimental conditions, we calculated the Gibbs free 

energy at 550 K, 10% O2, 300 ppm NO, and 150 ppm NO2 as: 
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                             3
3 sup( , ) ( , )B LYP

B LYP ercell ZPEG T P E E G T P= + + ∆                      Equation 3.2 
 

Here EZPE is the zero point energy of a molecule or adsorbate and ΔG(T,P) is the free 

energy difference between 0 K ideal gas and the target temperature and pressure for 

gaseous as well as adsorbed species.  For gas species, we calculated ΔGgas(T,P) according 

to: 

 

                                       ( ) ( )gas
(g)Δ ,  Δ    lno

B o

PG T P G T k T
P

 = +  
 

              Equation 3.3  

 

In Equation 3.3 , Δ𝐺𝐺(g)
o  was taken from the NIST-JANAF thermochemical table [116]  

and Po is 1 bar.  The corresponding free energy difference for adsorbed species, 

ΔGads(T,P), was computed from the harmonic partition function to incorporate vibrational 

contributions (Equation 3.4). 

 

                                              ( , )ads vib
BG T P k TlnQ∆ ≈ −                         Equation 3.4  

 

3.4 Results 

3.4.1 Dry NO Oxidation Kinetics on Varying Cu:Al  Ratios over Cu-SSZ-13 

The rate of dry NO oxidation per total mole of copper was measured on nine Cu-SSZ-13 

catalysts as a function of temperature and various concentrations of NO, NO2, and O2.  

Results are presented in Table 3.1. The H-SSZ-13 catalyst did not display a measurable 

NO oxidation rate at 573 K. The conversion of NO was measured according toEquation 

3.5. 

  

                                   100in out

in

NO NONOconversion
NO
−

= ×                                      Equation 3.5 

 

The NO conversion was converted to an overall NO oxidation rate by assuming a 

differential reactor in which the NO conversion was less than 10% and NO2 was co-fed 
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with the reactants [101].  Based on the overall rates of NO oxidation (roverall), the 

normalized forward rates (rfwd) were reported in the form of a power law model (Equation 

3.6 & Equation 3.7).  The approach to equilibrium (β) was included because the NO 

oxidation rates were possibly limited by equilibrium under the relevant reaction 

temperature [117]. 

 

                                     (1 )overall fwdr r β= −                                              Equation 3.6 
 

                                      2 2[ ] [ ] [ ]
aE

a b cRT
fwdr Ae NO NO O

−

=                                    Equation 3.7 
 

Where                                         
2

2
2

2

[ ]
[ ] [ ]

NO
K NO O

β =                                            Equation 3.8 

 

For all the kinetic measurements, the value of β was between 0.02 and 0.18, which 

indicated that equilibrium was not attained under the pertinent temperature range.  The 

apparent pre exponential factor (A / s-1) and activation energy (Ea / kJ mol-1) were also 

calculated from the forward rate; a, b, and c are forward reaction orders; K is the 

equilibrium constant for the NO oxidation reaction. 

 

The mass balance, defined as the concentration difference (NO + NO2)inlet – (NO + 

NO2)outlet, was less than 3 ppm for all kinetic measurements.  This indicated that no side 

reactions were occurring.  Also, N2O formation was ruled out as its concentration was 

measured in negligible quantities (< 1 ppm). 

 

For all catalysts active for NO oxidation (Cu:Al  ratio > 0.2), the apparent activation 

energy was 52 ± 5 kJ mol-1.  This value is in agreement with Metkar et al. [20] and Kwak 

et al. [21] who measured an apparent activation energy of 56 kJ mol-1 and 58 kJ mol-1 

respectively, although in their work NO2 was not co-fed in the feed stream.  In the 

absence of NO2 co-feeding, Joshi et al. [118], however, obtained an apparent activation 
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energy of 31 kJ mol-1, which is in line with the expectations from Mulla et al [119]. As a 

result, the agreement of the value of apparent activation energy by Metkar et al.[20], 

Kwak et al.[21], and this work may be fortuitous. The NO, NO2, and O2 orders (measured 

at 573 K), for all the catalysts active for NO oxidation, were 1.6 ± 0.2, -0.8 ± 0.1, and 0.9 

± 0.1 respectively. A representative Arrhenius plot and apparent reaction orders (with 

respect to NO, NO2 and O2) for a Cu-SSZ-13 catalyst with Cu:Al ratio of 0.35 is 

displayed in Figure B.2. 

 

The dry NO oxidation rate (per mole Cu, at 550 K) could not be measured for catalysts 

with Cu:Al  ratio < 0.2, while the NO oxidation rate per mole Cu increased 

monotonically above Cu:Al  ratio = 0.2 and saturated up to Cu:Al  ratio = 1.6 (Figure 3.2 

and Table 3.1). 

 

These results are in qualitative agreement with Kwak et al. [21] who observed negligible 

wet NO oxidation conversion for  Cu:Al < 0.3, on Cu-SSZ-13 , while higher Cu:Al ratios 

showed increasing NO conversion during wet NO oxidation (10% H2O, at 573 K).  The 

similar apparent activation energy and apparent reaction orders observed here for 

catalysts active for NO oxidation, suggest a similar NO oxidation mechanism.  Our 

observed increase in NO oxidation rates with Cu:Al  ratio can thus be attributed to an 

increase in the number of active sites per gram Cu-SSZ-13 
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Table 3.1 Summary of dry NO oxidation kinetics, ex-situ XANES fitting under ambient condition and in-situ XANES fitting under 
NO oxidation, over Cu-SSZ13 catalysts with varying Cu:Al ratios. 

 
Cu:Al ratio Ea 

/ 
kJ mol-1 

NOa Order NO2
a 

Order 
O2

a Order Rfwd
b 

(10-4 mol NO 
.mol Cu-1 s-1) 

Linear combination ex-situ XANES fitting 
under ambient conditions 

Linear combination in-situ 
XANES fittingf,g 

% [Cu(H2O)6](II) ionsd % CuxOy
e % dehydrated 

isolated Cu(II) ionse 
% 

CuxOy
f 

0 N.M. N.M. N.M. N.M. 0 N.M. N.M. N.M. N.M. 
0.02 N.M.c N.M. N.M. N.M. 0 Reference 0 Reference 0 
0.04 N.M. N.M. N.M. N.M. 0 100 ± 5 0 ± 5 100 ± 5 0 ± 5 
0.09 N.M. N.M. N.M. N.M. 0 100 ± 5 0 ± 5 100 ± 5 0 ± 5 
0.16 N.M. N.M. N.M. N.M. 0 100 ± 5 0 ± 5 100 ± 5 0 ± 5 
0.2 N.M. N.M. N.M. N.M. 0 100 ± 5 0 ± 5 100 ± 5 0 ± 5 
0.31 45 1.5 -0.8 0.9 0.6 79 ± 5 21 ± 5 65 ± 5 24 ± 5 
0.35 51 1.4 -0.7 0.8 1.4 N.M. N.M. 72 ± 5 28 ± 5 
0.39 53 1.5 -0.8 0.8 1.5 N.M. N.M. 70 ± 5 30 ± 5 
1.6 55 1.6 -0.9 0.9 1.7 48 ± 5 52 ± 5 61 ± 5 39 ± 5 

a: Measured at 573 K 
b: Rate per mole Cu is defined as mol NO . mol Cu-1 .s-1 and evaluated at 300 ppm NO, 150 ppm NO2, 10% O2 and 550 K 
c:Cu-SSZ13 catalysts with Cu:Al atomic ratio < 0.2 did not display measurable NO oxidation rate so data are not reported 
d: Hydrated Cu(NO3)2  was used to generate a [Cu(H2O)6](II) reference. 
e: Bulk Cu(II)O was used as a reference for CuxOy species in Cu-SSZ13. 

               f:Feed Conditions: 300 ppm NO, 150 ppm NO2, 10% O2 and 573 K. 
               g:Contribution from dehydrated isolated Cu(I) and [Cu(H2O)6]II ions was negligible
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Figure 3.2 Variation of the rate of NO oxidation (10-4 mol NO mol Cu-1.s-1) with Cu:Al 
ratio, on Cu-SSZ13. Feed Conditions: 320 ppm NO, 148 ppm NO2, 10% O2 and 550 K. 
 

3.4.2 Ex-Situ XANES and UV-Vis-NIR Spectroscopy on Hydrated Cu-SSZ-13 

Catalysts under Ambient Conditions 

Due to the possibility of multiple Cu ion configurations as probed by NO oxidation 

kinetics, the state of Cu ions in hydrated Cu-SSZ-13 was investigated using ex-situ Cu- K 

edge XANES and UV-Vis-NIR spectroscopy to obtain complementary information. 

Traditionally, XANES provides information about the oxidation state of the element of 

interest.  XANES, however, can also probe the local Cu environment.  In addition, 

XANES was measured in the transmission mode which enabled quantification of 

different Cu ion configurations via linear combination XANES fitting by using references 

for the candidate states.  Based on previous results obtained by McEwen et al. [24], hexa-

aquo-Cu ions ([Cu(H2O)6]II) and bulk Cu(II)O were chosen as appropriate references for 

hydrated isolated Cu ions in Cu-SSZ-13 and clustered Cu ions (CuxOy species), another 
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possible configuration of Cu ions in Cu-SSZ-13, respectively.  Figure B.3 compares the 

ex-situ XANES spectra (under ambient conditions) of hexa-aquo-Cu ions ([Cu(H2O)6]II) 

and bulk Cu(II)O.  The XANES spectrum of bulk Cu(II)O has a pre-edge feature at 8,987 

eV and is accompanied by a drop in the white line intensity compared to the XANES 

spectrum of hexa-aquo-Cu ions.  The pre-edge feature for bulk Cu(II)O was assigned to 

the 1s to 4p transition for Cu(II).  The edge position for both these Cu ion configurations 

was 8,995 eV, which indicated a formal oxidation state of +2 for both configurations.  

Thus, based on different pre-edge features, the XANES signatures for these Cu ions were 

concluded to be different even though the formal oxidation state was +2 in both 

configurations. 

 

The ex-situ XANES spectra of some of the hydrated Cu-SSZ-13 catalysts under ambient 

conditions are shown in Figure 3.3.  Before the XANES experiments were conducted, the 

catalysts were hydrated by exposing them to ambient conditions.  The spectra of hexa-

aquo Cu(II) ions in solution ([Cu(H2O)6]II) and bulk Cu(II)O are also added as the 

references used for the linear combination fitting of the XANES spectra for different Cu-

SSZ-13 catalysts.  The linear combination fitting results revealed a major fraction of 

hydrated isolated Cu(II) ions within SSZ-13 for Cu:Al  ratio below 0.2 (Table 3.1). The 

XANES region of catalysts with Cu:Al  ratio greater than 0.2 exhibited a decrease in the 

white line intensity and a corresponding appearance of the pre-edge feature at 8,987 eV, 

consistent with the emergence of CuxOy species in Cu-SSZ-13.  This observation 

quantitatively manifested itself in an increasing percentage of CuxOy species per total 

mole Cu for increasing Cu:Al  ratio above 0.2 (Table 3.1).  The corresponding magnitude 

of the Fourier Transform Extended X-Ray Absorption Fine Structure (FT-EXAFS) is 

shown in Figure B.4.  For each catalyst under ambient conditions (except Cu:Al  ratio = 

1.6), the first shell Cu – O coordination was evaluated as ~ 4 at a radial distance of 1.94 

Å.  The measurement of the first shell Cu – O coordination number as 4 instead of 6 (for 

a hexa –aquo Cu (II) type of ion) was a consequence of the Jahn-Teller distortion around 

the d9 Cu(II) ion [24]. Contribution from higher shells was undetectable.  This indicated 
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that under ambient conditions, all Cu ions, irrespective of the configuration, were in +2 

formal oxidation states, consistent with the XANES edge position of 8,995 eV.  

 

Figure 3.3 Ex-situ XANES spectra of various hydrated Cu-SSZ13 catalysts with Cu:Al 
ranging from 0.04 to 1.6, measured under ambient conditions. XANES of Bulk Cu(II)O 
and [Cu(H2O)6]II measured under ambient conditions, have been added as references to 
do the linear combination XANES fitting. 
 

From the previous set of experiments, the percentage of hydrated isolated Cu(II) ions per 

total mole of Cu was quantified for different Cu:Al ratios.  To obtain equivalent 

information about the variation of hydrated isolated Cu(II) ions per gram of catalyst with 

Cu:Al ratio, UV-Vis-NIR spectroscopy was used on the same set of hydrated Cu-SSZ-13 

samples. A Cu(II) d-d transition peak centered at ~12500 cm-1 was used as a 

spectroscopic signature of hydrated isolated Cu(II) ions within Cu-SSZ-13 [120].  

Additionally, there is a possibility of charge transfer (C.T.) from O (from water) to Cu(II), 

which is observed at ~ 45000 cm-1 for [Cu(H2O)6]II ions [15, 120].  The ex-situ UV-Vis-

NIR spectra of hydrated Cu-SSZ-13 catalysts are shown in Figure 3.4.  
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Figure 3.4 Ex-situ UV-Vis-NIR spectra of series of hydrated Cu-SSZ13 catalysts with 
Cu:Al ratio ranging from 0 to 0.35. The peak centered at 12500 cm-1 is the contribution 
from the d-d transition of hydrated isolated Cu(II) ions. The peaks between 30000 cm-1 
and 50000 cm-1 have been assigned to a combination of oxygen to Cu(II) charge transfer 
and a bare zeolite absorption edge. 
 

A reference spectrum of H-SSZ-13 sample was also measured and included.  The UV-Vis 

NIR spectrum of H-SSZ-13 was characterized by an absence of d-d transition intensity at 

~ 12500 cm-1, although it was characterized by a zeolite absorption edge above 30000 

cm-1 [121].  

 

Addition of Cu ions as low as 0.3 wt. % (Cu:Al ratio = 0.02) resulted in a finite, non-zero 

d-d transition intensity centered at 12500 cm-1. Quantification of the d-d transition peak 

intensity (Kubelka Munk, K.M. units) for Cu-SSZ-13 catalysts with different Cu:Al ratios 

revealed a linear increase in the d-d intensity with an increase in the Cu:Al ratio up to 0.2 

and subsequently, the d-d transition intensity saturated, as shown in Figure 3.5. 
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Figure 3.5 Quantification of the d-d transition peak intensity centered at 12500 cm-1 and 
obtained from the ex-situ UV-Vis-NIR spectra of hydrated Cu-SSZ-13 catalysts under 
ambient conditions. 
 

This implied that the relative population of hydrated isolated Cu(II) ions per gram 

catalyst had saturated near Cu:Al ratio = 0.2 and excess Cu ions were deposited in a 

different configuration.  In agreement with the XANES analysis, these excess Cu(II) ions 

manifested in CuxOy species (x ≥ 2, y ≥ 1) under ambient conditions. 

 

3.4.3 XANES analysis of Cu-SSZ-13 Catalysts under In-Situ NO Oxidation Condition 

To understand the site requirements of dry NO oxidation on Cu-SSZ-13 catalysts, 

XANES spectra for a series of Cu-SSZ-13 catalysts were measured during in-situ dry NO 

oxidation (300 ppm NO, 150 ppm NO2,  10% O2 and 573 K).  Once again, the ability of 

XANES to identify and quantify the local environment of Cu ions was used.  The spectra 

were fitted by a linear combination XANES fit using four different references which 

signified possible Cu ion configurations under NO oxidation.  The reference compounds 

were hexa-aquo-Cu(II) ions ([Cu(H2O)6]II), bulk copper oxide (Cu(II)O), dehydrated 
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isolated Cu(II) ions within SSZ-13 and dehydrated isolated Cu(I) ions within SSZ-13.  

The corresponding XANES spectra for the references are shown in Figure B.5.  The 

references for the dehydrated isolated Cu(I)/isolated Cu(II) ion within SSZ-13 were 

generated by treating a Cu-SSZ-13 catalyst (Cu:Al ratio = 0.02) to 1000 ppm NO + 1000 

ppm NH3 at 473 K, and 10 % O2 at 473 K respectively.  The oxidation state of Cu ions 

was assigned on the basis of fitting the corresponding FT-EXAFS respectively (Figure 

B.6). The catalyst treated in 1000 ppm NO + 1000 ppm NH3 at 473 K had a first shell Cu 

– O coordination number of ~2 at 1.85 Å, consistent with the previous assignment of 

such species to have a formal oxidation state of +1 [25]. For a similar analysis, moreover, 

under 10% O2 at 473 K, the Cu – O coordination number was ~ 4 at 1.96 Å, consistent 

with a Cu ion formal oxidation state of +2 [25]. Also, for these references, there was no 

evidence of clustering of Cu ions since the second shell contribution was due to Cu – O – 

Si type of coordination (Table B.2), consistent with the EXAFS peak assignment by 

McEwen et al. [24].  This was expected from a Cu-SSZ-13 catalyst with a Cu:Al ratio of 

0.02 (Cu weight % = 0.31%) [16, 18]. 
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Figure 3.6 In-situ XANES spectra, under NO oxidation conditions, of a series of Cu-
SSZ13 catalysts with Cu:Al  ratio varying from 0.02 to 1.6. Feed Conditions: 300 ppm 
NO, 150 ppm NO2, 10% O2 and 573 K. Bulk Cu(II)O and dehydrated isolated Cu(II) 
references are included for comparison. 
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The XANES spectra during in situ NO oxidation (300 ppm NO, 150 ppm NO2, 10% O2, 

and 573 K) for the series of Cu-SSZ-13 catalysts are displayed in Figure 3.6. The linear 

combination fitting results are shown in Table 3.1. For all catalysts, under in-situ NO 

oxidation the contribution due to hydrated isolated Cu2+ ions and dehydrated Cu1+ ions 

was negligible. Also, none of the Cu-SSZ-13 XANES spectra could be fitted with a Cu 

foil XANES spectrum, which showed that metallic Cu did not participate in the catalysis. 

It was also observed that all Cu-SSZ-13 catalysts with Cu:Al ratio < 0.2 contained a 

majority of dehydrated isolated Cu2+ ions per total mole of Cu under dry NO oxidation, 

which were shown to be inactive for NO oxidation from separate PFR experiments 

(Figure 3.2). 

 

Above Cu:Al  ratio = 0.2, an increasing contribution of CuxOy species was observed 

which saturated to a value of ~ 40 % mol CuxOy (mol Cu)-1 for the Cu-SSZ-13 catalyst 

with Cu:Al ratio = 1.6. A linear correlation was obtained between the rate of NO 

oxidation per mole Cu and the percentage mol CuxOy (mol Cu)-1 (Figure 3.7) which 

indicated that CuxOy species were the active Cu ion configuration for NO oxidation. We 

note that the slope of the line in Figure 3.7 has units of 10-4 mol NO (mole CuxOy)-1s-1 

indicating that the rate is driven by the amount of CuxOy as expected.  The absence of 

measurable NO oxidation rate at 0% CuxOy shown in Figure 3.7 leads us to conclude that 

dehydrated isolated Cu(II) ions do not participate in dry NO oxidation (300 ppm NO, 150 

ppm NO2 and 10% O2). 
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Figure 3.7 Correlation in the rate of NO oxidation (per mole Cu), evaluated at 573 K and 
the % CuxOy to the total moles of Cu as quantified from in-situ XANES under NO 
oxidation conditions. Feed conditions: 300 ppm NO, 150 ppm NO2, 10% O2 and 573 K. 
All Cu-SSZ13 catalysts with dehydrated isolated Cu(II) ions are included in the origin. 
 

3.4.4 Computational Cu Site Models 

The experimental results show that the dry NO oxidation rates do not linearly correlate 

with total Cu content; thus, multiple Cu species are present in the zeolite. From XANES 

analysis under in-situ NO oxidation conditions (Figure 3.6), dehydrated isolated Cu(II) 

ions and CuxOy species were identified as two possible Cu ion configurations. Based on 

the XANES, UV-visible spectroscopy, and wide observation in other zeolites, the 

CuOyCuII (y =1, 2) dimers are plausible candidates for the CuxOy species responsible for 

NO oxidation.  We explore that possibility using DFT here. 

 

Both isolated Cu(II) and Cu2Oy
II configurations require two anionic Al-substituted 

tetrahedral (T-) sites to compensate their charge. To illustrate the types and density of Al 

pairs available to accommodate isolated Cu(II) or Cu2Oy
II species, we computed the 
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expected distribution of these pairs within SSZ-13 using an approach similar to that 

reported previously [32]. This and all zeolites are composed of –O–T–O–T–O– linkages, 

in which each T-site (Si or Al) is four-fold coordinated to oxygen, and each oxygen then 

bridges to a different neighbor T-site. Here, we assume that the H+:Al ratio for the zeolite 

is equal to 1, which meant that all the Al atoms appear in the zeolite framework and 

contribute to Bronsted acidity. In real zeolite materials, there might be a possibility of the 

number of framework Al atoms (Alf) being less than the total number of Al atoms (Al) 

and H+:Alf < 1 [122].  We term Alf–O–Alf first-nearest neighbor (1NN), Alf–O–Si–O–Alf 

second-nearest neighbor (2NN), and so on. For a particular Si:Al  ratio, we constructed a 

4 × 4 × 4 super cell, seeded with Al up to that Si:Al  ratio obeying the Löwenstein’s rule 

prohibition against 1NN Al, and then conducted random Si-Al swaps that retained this 

rule. We counted the number of Al-Al pairs as a function of Al-Al spatial separation and 

normalized by the total number of T-site pairs at a given distance.  The resultant radial 

probability distribution identifies the probability of a given Al T-site to have a neighbor 

Al T-site at a given distance.  The result for Si:Al  ratio = 5:1 is shown in Figure 3.8.   

 

A first peak at 4.4 Å corresponded to 2NN Al in 4-rings; the next grouping near 5.5 Å 

corresponded to 2NN Al in 6- and 8-rings.  Third-nearest-neighbor (3NN) 6- and 8-ring 

Al pairs occurred near 6.5 and 7.5 Å, respectively, and fourth-nearest-neighbor (4NN) at 

8 Å.  The available pairs thus spanned a range of distances and occurred with nearly the 

same density at this Si:Al  ratio as shown in Figure 3.8.  At 8.06 Å, the longest Al pair 

possible was in the 8-member cage. An Al atom was expected to have 4.87 potential 

partners, and the probability that it had at least one partner was 99.8%.  
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Figure 3.8 Radial distribution of Al-Al pair sites versus. Al-Al separation in SSZ-13 at 
Si:Al = 5:1. Al are distributed randomly obeying Löwenstein’s rule and densities 
accumulated in 0.05 Å bins.  
 

These calculations were repeated for various Si:Al  ratios on SSZ-13. In particular, for 

each Si:Al  ratio, an Alf pair in the 6 ring was counted as a surrogate for one dehydrated 

isolated Cu(II) ion. Figure 3.9 shows the maximum amount of dehydrated isolated Cu(II) 

ion in the six member ring, per Al, calculated for various silicon to framework aluminum 

(Si:Al)  ratios. 

 

We previously showed that Cu(I) charge-compensated by a single Al T-site (ZCu) 

preferred 6-member ring sites in SSZ-13 [24].  The first column of Table 3.2 reports the 

relative periodic GGA energies of dehydrated, isolated Cu2+ (Z2Cu) ions in the various 

ring locations illustrated in Figure 3.8.  Energies are referenced to a dehydrated isolated 

Cu(II) in an 8 member cage with 4NN Al and were determined either in three 1 × 1 × 1 

supercell models (Figure 3.1a) that contained 2NN, 3NN, or 4NN Al sites in an 8-ring or 

in a doubled 2 × 1 × 1 super cell model that simultaneously presents 4-, 6-, and 8-ring 

sites (Figure B.1 c, d). 
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Table 3.2 GGA-computed relative energies (eV) of Cu ions and dimers vs. Al-Al pair 
placement. 

 Isolated Cu(II)  
energy /eV 

CuOCuII  
energy/eV 

CuO2CuII 
energy/ eV 

4-ring – 2NN –0.38 0.68 0.65 
6-ring – 3NN –1.51 0.44 0.51 
8-ring – 4NN 0 0 0 
8-ring – 3NN 0.23 0.46 0.42 
8-ring – 2NN –0.25 0.76 0.88 

 

 

 

Figure 3.9 The maximum isolated Cu(II) ion to Al  ratio that can be accommodated in the 
6 member ring of SSZ-13, as a function of Si:Al  ratio. 
 

Results from these two structural models differed by less than 0.1 eV, as shown in Table 

B.4.  Geometry optimizations (Figure B.7) showed that a dehydrated isolated Cu(II) ion 

maintained 4-fold oxygen coordination in the smaller 4- and 6-ring sites but attain only 3-

fold coordination in the larger 2NN and 4NN 8-ring sites and 2-fold coordinated in 3NN 

8-ring sites.  Based on the relative energies in Table 3.2, a dehydrated isolated Cu(II) ion 

has a strong energetic preference for the 6-ring sites over 4 and 8-ring sites in SSZ-13.  
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Motivated by the evidence for Cu-Oy-Cu (y = 1, 2) clusters in ZSM-5[91, 123-125], 

MOR[91], BEA[126], and Y [127] zeolites, we next calculated the structures and relative 

stabilities of these ZCuOyCuZ aggregates within our SSZ-13 supercell models.  Both y = 

1 and y = 2 clusters exhibited singlet and triplet spin states whose relative stability 

depended on coordination environment [20, 21].  In all cases we optimized both states 

and report the lower energy results.  Figure 3.10a shows triplet ZCuOCuZ optimized in 

the 4NN 8-ring site. Cu ions adopted a 2-fold coordination to the zeolite lattice and were 

nearly symmetrically bridged by the central O at Cu–O distance of about 1.75 Å.  Figure 

B.8 and Figure B.9 compare optimized Cu-O-Cu structures computed at the other Al pair 

sites.  The Cu ions in the larger 6- and 8-rings retained two-fold coordination to the 

zeolite lattice by adjusting the Cu–O–Cu angle from 107-132°. The ZCuOCuZ 

configuration was too large to be accommodated entirely within a 4-ring; the optimized 

cluster relaxed to retain two-fold coordination involving O of connected rings. Table 3.2 

compares relative energies of ZCuOCuZ referenced to the triplet 4NN 8-ring site.  The 

Cu-O-Cu dimer preferred coordination in an 8-ring over a 4- or 6-ring by 0.44 and 0.68 

eV, respectively (Table 3.2).  Further, the Cu dimer was more easily accommodated in 

4NN Alf sites than 3NN or 2NN in the 8-ring by 0.46 and 0.76 eV, respectively. 

  

CuO2CuII is known to exhibit a coordination chemistry in which the O2 can end-on bridge 

the two Cu (μ-1,2-O2), side-on chelate the two (μ-η2:η2-O2), or dissociate into two oxo 

bridges (μ-O,μ-O)[89, 90, 92-94] . We found examples of all of these structures during 

optimizations of the various Al pair models (Figure B.10 & Figure B.11).  Nearer Al sites 

preferred the μ-1,2-O2 structures while farther sites, like the 8-ring 4NN site shown in 

Figure 3.10b, preferred singlet μ-η2:η2-O2.  Cu again in general preferred to associate 

with two lattice O near the Al sites in addition to the bridging O2. 
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Figure 3.10 The optimized periodic structure of atomic and diatomic oxygen adsorbed in 
the 8-ring of SSZ-13 of (a) ZCuOCuZ with fourth-nearest-neighbor (4NN) Al pairs and 
(b) μ-η2-η2-Cu2O2 with 4NN Al pairs. Cu–O distances indicated in Å. Yellow red, grey, 
and green spheres are Si, O, Cu, and Al, respectively. 
 

Table 3.2 compares the relative energies of these Cu-O2-CuII dimers vs. Al siting; as with 

the Cu-O-CuII dimers, the Cu-O2-CuII dimers preferred 8-ring sites over 4- and 6-rings by 

0.51 and 0.65 eV, respectively, and preferred the 4NN Al sites in 8-rings by 0.42-0.88 eV, 

respectively.   

 

We can use these results in combination with the redox reaction steps of Scheme 3.1 and 

Scheme 3.2 to compare the energies of O2 adsorption and successive NO oxidation on 

ZCu, Z2Cu in a 6-ring [24], and Cu dimers in an 8-ring.  For the latter we considered 

2NN, 3NN, and 4NN Al T-sites, to examine sensitivity to the proximity of these 

coordination sites, under NO oxidation.  We applied a B3LYP cluster correction to the 

GGA energies to improve agreement with the known overall NO oxidation energy.  In 

some cases, B3LYP reverses the order of singlet and triplet states; we report free energies 

using the lowest-energy B3LYP results in Figure 3.11. 
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Figure 3.11 B3LYP-calculated relative free energies of O2 adsorption and sequential 
reduction on candidate isolated and Cu pair sites. Gibbs free energies are calculated at 
500 K, 300 ppm NO, 150 ppm NO2 and 10% O2. 
 

We found that O2 is essentially unbound on Z2Cu (structures in Figure B.12).  Oxygen 

abstraction from Z2CuO2 created a highly oxidized and high energy Z2CuO intermediate 

of 2.06 eV in free energy, unlikely to have any role in catalysis.  Our calculation [24] and 

others [84, 85] concluded that an isolated ZCu binds O2 preferentially as a side-on 

peroxide (η2-O2). The abstraction of O by NO formed a ZCuO intermediate with free 

energy cost of 0.29 eV. In contrast, O2 adsorption was increasingly more favorable on 8-

ring Cu pairs in 2NN to 3NN to 4NN Al sites (Figure 3.11 and Table B.5). The 

abstraction of O by NO to form ZCuOCuZ is uniformly downhill in Gibbs free energy by 

0.6-1.1 eV.  A second O abstraction to complete the catalytic cycle was either flat or 

uphill in free energy depending on the Al sites.  

 

This free energy analysis of O2 dissociation intermediates in NO oxidation is consistent 

with the observed apparent reaction orders and showed that dehydrated isolated Cu(II) 
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ions are unlikely to participate in this catalysis; dehydrated isolated Cu(I) ions could have 

a role, but Cu dimers similar to those studied in the context of Cu-ZSM-5 catalysis are 

likely active sites for NO oxidation.  Mathematical analysis of the reaction mechanism on 

the Cu pair sites (Appendix B, Pg. 147)  showed the mechanism to be consistent with the 

measured reaction orders with respect to NO, NO2, and O2.  Further, the relationship 

between the orders and the surface coverage of the kinetically relevant intermediates was 

obtained by taking the derivative of ln( )NOr−  with respect to ln( )iC (where iC  is the 

concentration of either NO, NO2, or O2). Based on this analysis, the surface coverage of 
*O was found to be 0.6, consistent with the stability of this intermediate (in Figure 3.11). 

In comparison, the surface coverages of *
2O , * , and *

2NO  were 0.1, 0.1 and 0.2 

respectively. 

 

From Figure 3.2, Cu at Cu:Al  ratio > 0.5 contributes to the NO oxidation rate per mole 

Cu and may reflect the formation of larger Cu aggregates (CuxOy species, x > 2, y > 2).  

It is difficult to confirm or refute the presence of larger clusters based on a DFT analysis 

alone; metal oxide clusters can exhibit considerable structural variability and their 

stability is a strong function of the reaction environment [128-130]. As a simple test of 

the plausibility of larger CuxOy clusters within SSZ-13, we selected structures for clusters 

with x = y = 3 – 9 from previous DFT optimizations of gas-phase clusters [130] and 

computed the GGA energy to “grow” such clusters within the 1 × 1 × 1 supercell 

according to: 

 

                              Z2H2 + x CuO (s) ➝ Z2CuxOx + H2                       Scheme 3.3 
 

These formation energies were referenced to bulk Cu(II)O, which contains chains of 

Cu(II) square-planar coordinated by O ions (Figure B.13).  Model CuxOx clusters in SSZ-

13 were created by inserting the gas-phase structures into the large cage and relaxing; 

results are shown in Figure B.14, Figure B.15, and Figure B.16.   
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Figure 3.12 GGA-computed CuxOx formation energies in an SSZ-13 cage (left axis) and 
formation energy per formula unit (right axis). 
 

Clusters up to x = 8 fit within a single 8 member ring cage; by x = 9 the cluster percolates 

through a 6-ring window to an adjacent cage.  Figure 3.12 shows that formation energies 

as defined here are uniformly positive relative to bulk Cu(II)O and increase nearly 

monotonically with cluster size.  Formation energies per Cu(II)O formula unit are thus 

nearly constant.  This analysis showed that CuxOx (x ≤ 8) clusters fit into the 8 member 

ring cage and were able to grow once nucleated as a Cu dimer. 

 

3.5 Discussion 

3.5.1 The Active Cu Ion Configuration for Dry NO Oxidation on Cu-SSZ-13 

The change in NO oxidation rate (per mole Cu) from zero to increasing values at Cu:Al 

ratio of 0.2 on Cu-SSZ-13 catalysts (Si:Al = 4.5) indicated the presence of at least two 

different Cu(II) ion configurations within the Cu-SSZ-13 catalyst. The difference in Cu 

ion configuration can be a consequence of either a different location of isolated Cu(II) 

ions (8 ring versus the 6 ring of SSZ-13) or the presence of clustered Cu ions (CuxOy) or 

both.  Kwak et al. [16] attributed a Cu(II) to Cu(I) H2-TPR reduction peak (maximum at 
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513 K) for Cu:Al ratio > 0.2 in Cu-SSZ-13 (Si:Al ratio = 6) to isolated Cu(II) ions in the 

8 member cage.  In a subsequent contribution, Gao et al.[18] utilized ex-situ Electron 

Paramagnetic Resonance (EPR) to show that hydrated Cu-SSZ-13 catalysts with a Cu:Al 

ratio less than 0.5 were composed of hydrated isolated Cu(II) ions quantitatively. Thus, 

they claimed that the dominant Cu ion configuration was isolated Cu(II) ions near the 6 

member ring for Cu:Al ratio up to 0.2, and in the 8 ring for Cu:Al ratio above 0.2. The 

presence of CuxOy species was also excluded by Giordanino et al. [120] by using in-situ 

UV-Vis-NIR spectroscopy under NO oxidation. In the catalysts used in our study, 

however, ex-situ XANES under ambient conditions showed a dominant fraction of 

hydrated isolated Cu(II) ions below Cu:Al = 0.2, while an increasing fraction of CuxOy (x 

≥ 2, y ≥ 1) species was observed above Cu:Al ratio = 0.2.  The Cu edge position was 

8,995 eV and the first shell Cu – O coordination number was ~ 4 which meant that all the 

Cu species had a formal oxidation state of +2. Even though the second shell coordination 

(Cu – O – Cu) from FT – EXAFS was undetected within experimental error (Figure B.4), 

our DFT calculations showed that Cu pairs are stable, therefore CuxOy species were 

concluded to be highly dispersed under ambient conditions. Similar EXAFS results under 

NO oxidation were obtained (Figure B.4 for EXAFS under ambient conditions and 

Figure B.17 for EXAFS during dry NO oxidation). Further evidence of the presence of 

dispersed CuxOy species above Cu:Al =0.2, was provided by in-situ XANES under NO 

oxidation. We find a linear correlation between dry NO oxidation rates per mole Cu and 

the percentage of Cu present as CuxOy (x ≥ 2, y ≥ 1) species. This observation shows that 

the active sites for dry NO oxidation were formed in proportion to the percentage of 

CuxOy species (per mole Cu), thus satisfying the Koros – Nowak test [70] and certifying 

the rate measurement to be free from internal and external mass transport limitations. 

With this level of experiment, however, we were unable to state the exact size of the 

active copper oxide cluster required for NO oxidation, because of unavailability of 

appropriate XANES references of CuxOy clusters with 2 ≤ x, y ≤ 8, which would be used 

for linear combination fitting of spectra obtained under in-situ conditions. 
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The linear correlation between NO oxidation rate (per mole Cu) and the % of 

CuxOy species (Figure 3.7), without specifying a particular size or type of CuxOy cluster, 

implies that either the NO oxidation rate is independent of the CuxOy cluster or the 

current catalyst synthesis strategy produces the same distribution of CuxOy cluster types 

in all catalysts active for NO oxidation.  Figure 3.11 argues that the rate depends even on 

the orientation of a cluster within a pore.  Thus, Figure 3.7 cannot be used as a calibration 

curve for backing out the absolute number of CuxOy species in Cu-SSZ-13 based on a 

measured NO oxidation rate.  The data presented in Figure 3.7 confirm the local nature of 

the active site for NO oxidation, i.e. the requirement of a local Cu-Oy-Cu bond during NO 

oxidation catalysis over Cu-SSZ-13. The DFT results, moreover, demonstrated that the 

formation of CuxOx (x ≤ 8) clusters is plausible inside the SSZ-13 cage structure. 

 

The integrated experimental and computational results indicate that dry NO oxidation 

would be favored over a local Cu – Oy – Cu bond and would be unfavorable on a 

dehydrated isolated Cu(II) ion, within Cu-SSZ-13. Hence, bulk Cu(II)O, which was also 

characterized by local Cu – Oy – Cu bonds, was used as an appropriate XANES reference 

for quantifying the concentration of clustered Cu(II) ions in Cu-SSZ-13. From DFT 

calculations, moreover, the free energy analysis showed that the Cu2Oy species were the 

active sites for NO oxidation and the most energetically favorable location of these 

Cu2Oy species was in the 8 member ring of SSZ-13. 

 

3.5.2 On the Dominant Cu Ion Configuration Below Cu:Al  Ratio of 0.2 

Hydrated Cu-SSZ-13 catalysts with Cu:Al ratio < 0.2, under ambient conditions 

displayed a XANES spectrum which showed quantitative resemblance to hexa-aquo-

Cu(II) ions (Table 3.1). This analysis showed that in addition to the majority of hydrated 

Cu ions being isolated from each other, they were also screened from zeolite interactions 

due to a sphere of hydration. We speculate that the hydration sphere of isolated Cu(II) 

ions was responsible for providing Cu-specific spectroscopic information in terms of d-d 

transition intensity. For Cu-SSZ-13, Giordanino et al. [120] reported that dehydrated 
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isolated Cu(II) ions interact with the zeolite framework and exhibit d-d transition at 

~14000 cm-1. Under ambient conditions, however, the maximum intensity of the d-d 

transition of hydrated isolated Cu(II) ions in SSZ-13 was obtained at 12500 cm-1 [131].  

Under NO oxidation, these isolated Cu(II) ions were dehydrated and displayed a XANES 

spectrum which showed quantitative resemblance to dehydrated isolated Cu2+ ions within 

SSZ-13 (Table 3.1), which were inactive for NO oxidation. 

 

From DFT calculations, the most stable location of the isolated Cu2+ ion was near the 6 

member ring of Cu-SSZ-13 (Table 3.2). By counting the number of framework Al pairs 

in the 6 member ring, in particular, assuming random framework Al distribution, 

Löwenstein’s rule, and  H+:Al = 1, the calculated maximum isolated Cu2+ ions per Alf 

was  0.23 (for SSZ-13 with Si:Alf  ratio = 5  Figure 3.9). This number obtained from 

calculations, cannot be directly compared with the experimental results because the set of 

Cu-SSZ-13 catalysts had an average H+:Alf ratio of ~0.76. A fair comparison will involve 

reporting the experimentally obtained silicon to framework aluminum ratio (Si:Alf) and a 

copper to framework Al ratio (Cu:Alf). For Cu-SSZ-13 catalysts reported in this study, 

the total silicon to Aluminum  ratio was 4.5, while the Si:Alf was 5.3. From Figure 3.9, 

the maximum number of isolated Cu(II) in the 6 member ring for SSZ-13 having a Si:Alf 

of 5.3, occurs at Cu:Alf = 0.22.  However, by calculating the Cu2+:H+ ratio (by taking into 

account, the H+:Alf for the parent SSZ-13 = 0.76), the maximum number of isolated Cu2+ 

ions associated with a six member ring, occurs at Cu:Alf = 0.31. Thus, based on the 

experimental constraints on the quality of SSZ-13, the range in which Cu-SSZ-13 forms a 

maximum number of isolated Cu2+ ions in the six member ring occurs at Cu:Alf varying 

from 0.22 to 0.31. For our catalysts, the onset of NO oxidation rate occurs at Cu:Al  ratio 

= 0.2  when normalized to the number of framework Al atoms, calculated from 27Al MAS 

NMR,  leads to Cu:Alf  ratio = 0.23, which is within the range specified from statistical 

counting of isolated Cu2+ ions in the 6 member rings of Cu-SSZ-13. The lack of a 

measurable NO oxidation rate up to Cu:Al  ratio = 0.2 was thus a catalytic consequence 

of the saturation of paired framework Al sites in the 6 member ring with dehydrated 

isolated Cu2+ ions under NO oxidation. For catalysts with Cu:Al ratio > 0.2, formation of 
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CuxOy clusters in the 8 member cage of SSZ-13 occurred because all the Al pairs in the 6 

member rings were occupied by isolated Cu(II) ions. These CuxOy clusters were 

responsible for the monotonic increase and saturation in the NO oxidation rate (per mole 

Cu) for catalysts with Cu:Al ratios ranging from 0.2 - 1.6. 

 

3.5.3 On the Difference In The Rates of NO Oxidation Between Isolated Cu(II) Ions 

and CuxOy Species 

The Gibbs free energy NO oxidation pathway on isolated Cu(II) ions near the 6 member 

ring (Z2Cu) and Cu – Oy – Cu species in the 8 member cage showed that there was a 

considerable difference with respect to the probable reaction intermediates. In particular, 

a notable difference was observed in the molecular adsorption and subsequent activation 

of oxygen on each Cu ion configuration respectively (+0.78 eV for Z2Cu and -0.87 eV for 

Z2Cu2 – 4NN, as shown in Figure 3.11). Furthermore, the activated oxygen then enabled 

a catalytically relevant step for NO to form NO2, which can form nitrates on Cu – Oy – 

Cu based on the NO2 disproportionation reaction observed on Cu-SSZ-13 [132]. The 

overall rate of NO oxidation being measurable on Cu – Oy – Cu species in the 8 member 

ring than on isolated Cu(II) ions near the 6 member ring was thus a consequence of the 

higher stability of the most probable intermediates under NO oxidation, consistent with 

the experimental results. With these results, it is plausible that larger CuxOy clusters (x > 

2, y > 2) can also take part in the NO oxidation catalysis. The role of larger CuxOy 

clusters for NO oxidation kinetics, however, needs to be studied further.  

 

Previous work by our group (Chapter 2) on the standard SCR ability of different Cu ion 

configurations within Cu-SSZ-13 showed that isolated Cu(II) ions near the six member 

rings were the dominant active sites for standard SCR (at 473 K) while it was shown that 

the standard SCR rate on Cu ion configurations with a local Cu-Oy-Cu bond were 

insignificant in comparison to isolated Cu ions on Cu-SSZ-13 (at 473 K). This was due to 

the standard SCR rate tracking with the d-d transition intensity of hydrated isolated Cu(II) 

ions in Cu-SSZ-13 even for catalysts that had CuxOy clusters in addition to isolated Cu(II) 
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ions.  This CuxOy configuration is active for dry NO oxidation based on the results 

provided in this contribution.  We propose that dry NO oxidation when analyzed 

independently of standard SCR shows that NO oxidation rates cannot be correlated to 

standard SCR rates due to different active site requirements. The kinetic relevance of NO 

oxidation under standard SCR for Cu-SSZ-13, however, still needs to be investigated. 

 

Commercial catalyst formulations still suffer from deactivation during standard SCR due 

to breakdown of the zeolite structure, dealumination, and clustering of Cu ions within the 

zeolite [1, 133]. In the event of Cu ion cluster formation, we propose the use of dry NO 

oxidation as a probe reaction to qualitatively identify these species. This is due to the 

ability of dry NO oxidation to be selective to non-isolated Cu(II) species  [118, 134]. 

  

3.6 Conclusions 

A combined experimental and computational kinetic study of dry NO oxidation on Cu–

SSZ-13 catalysts revealed at least two Cu ion configurations within SSZ-13. Below the 

Cu:Al ratio = 0.2 (Si:Al = 4.5), the dominant Cu ion configuration in hydrated catalysts 

was a hydrated isolated Cu(II) ion. Under dry NO oxidation, these species were 

quantitatively converted to dehydrated isolated Cu(II) ions in the vicinity of 2 framework 

Al sites, in the 6 member ring of SSZ-13. In the vicinity of Cu:Al ratio = 0.2, all 

framework Al pairs in the 6 member rings of SSZ-13 were ion exchanged by dehydrated 

isolated Cu(II) ions and this configuration did not display a measurable NO oxidation rate 

(300 ppm NO, 150 ppm NO2, 10% O2 and 573 K). Subsequently, catalysts with Cu:Al  

ratio > 0.2 displayed a linear increase in the NO oxidation rate (per mole Cu) with an 

increase in the percentage of CuxOy species (per mole Cu, x ≥ 2, y ≥ 1) as quantified from 

in-situ XANES, indicating that CuxOy species with local Cu – Oy – Cu bonds were the 

active sites for dry NO oxidation.  The presence of CuxOy species above Cu:Al ratio of 

0.2 was rationalized by the availability of Al pairs at larger distances required for 

stabilization within the 8 member cage, indicating the formation of this second Cu ion 

configuration in the 8 member cage of SSZ-13. The CuxOy species in the 8 member ring 
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of SSZ-13 displayed a more facile redox pathway for the oxidation of NO than 

dehydrated isolated Cu(II) ions near the 6 member ring, consistent with the experimental 

difference in the rates of NO oxidation between these configurations. The proposed 

pathway was consistent with the observed reaction orders and identified the molecular 

adsorption and subsequent activation of oxygen as a kinetically relevant step during NO 

oxidation catalysis. 

  

These results imply that there is a theoretical limit to the density of dehydrated isolated 

Cu2+ ions near the 6 member rings of SSZ-13, claimed to be the active sites for Standard 

SCR reaction [14, 24, 30]. This limit depends on the Si:Al ratio of SSZ-13. Excess Cu ion 

exchange above this limit would manifest in CuxOy species in the 8 member cages of 

SSZ-13 which would be the likely locus for NO oxidation. Moreover, NO oxidation, 

being selective to only CuxOy species in Cu-SSZ-13, can also be used as a probe reaction 

to identify clustering of Cu ions. 
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CHAPTER 4. ISOLATION OF THE COPPER REDOX STEPS IN STANDARD SCR 
ON COPPER EXCHANGED SSZ-13 

4.1 Abstract 

"We report operando X-ray absorption experiments and density functional theory (DFT) 

calculations that elucidate the role of Cu redox in the selective catalytic reduction (SCR) 

of NO over Cu-exchanged SSZ-13. Catalysts prepared to contain only isolated, 

exchanged Cu(II) evidence both Cu(II) and Cu(I) under standard SCR conditions at 473 

K. Reactant cutoff experiments show that NO and NH3 together are necessary for Cu(II) 

reduction to Cu(I). DFT calculations show that NO-assisted NH3 dissociation is both 

energetically favorable and accounts for the observed Cu(II) reduction. The calculations 

predict in situ generation of Brønsted sites proximal to Cu(I) upon reduction, which we 

quantify in separate titration experiments. Both NO and O2 are necessary for oxidation of 

Cu(I) to Cu(II), which DFT suggests to occur via an NO2 intermediate. Reaction of Cu-

bound NO2 with proximal NH4
+ completes the catalytic cycle. N2 is produced in both 

reduction and oxidation half-cycles. 

 

4.2 Introduction 

NOx selective catalytic reduction (SCR) to N2 with NH3 is commonly used to control 

emissions from stationary combustion sources.  Standard SCR is a redox reaction 

between NO and NH3: 

 

                                        4NO + 4NH3 + O2 → 4N2 + 6H2O                          Scheme 4.1 
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and under useful conditions is selective for NH3 oxidation by NO over the O2 that is 

typically present in great excess [2]. Vanadia catalysts used in stationary applications do 

not have sufficient hydrothermal stability for mobile applications. Only with the 

discovery of hydrothermally stable, Cu-exchanged chabazite (CHA) catalysts, including 

Cu-SSZ-13 (aluminosilicate) and Cu-SAPO-34 (silicoaluminophosphate), has NOx SCR 

become commercially viable for mobile source emissions control [1]. 

 

The CHA framework contains interconnected 4-, 6-, and 8-member rings (4-MR, 6-MR, 

8-MR). Substitution of Al for Si in the SSZ-13 and of Si for P in SAPO-34 introduces 

anionic coordination sites for exchanged Cu(I) and/or Cu(II) ions, H+, NH4
+, and other 

cations. The identities and numbers of exchanged cationic species depend on the 

framework Si:Al (silicon: total aluminum)  ratio, the distribution of Al atoms in the 

framework, the total Cu content and Cu exchange method, and the treatment history of 

the material. Furthermore, the Cu coordination environment [15] and oxidation state can 

change under reaction conditions[24]. 

 

The preferred Cu exchange sites at low Cu loading in SSZ-13 are well established. DFT 

calculations identify a 6-MR containing two framework Al atoms as the most stable 

exchange site for a Cu(II) ion in SSZ-13 [15, 98, 135].  Temperature programmed 

reduction experiments [16] and electron paramagnetic resonance spectroscopy [18] both 

show that these exchange sites are populated first at low Cu:Al (copper : total aluminum) 

ratios. The number of such exchange sites depends only on the Si:Al ratio if Al atoms are 

distributed randomly within the SSZ-13 framework. Numerical simulations of such 

placement show a Cu:Al ratio of 0.2 to correspond to complete population of 6-MR Cu(II) 

sites at a Si:Al ratio of 4.5 [135].  UV-Visible-NIR spectroscopy [135], X-ray absorption 

spectroscopy (XAS) [72], and NH3 titration of residual Brønsted acid sites [26] together 

show that SSZ-13 samples prepared with Si:Al ratio of 4.5 and loaded with Cu:Al ≤ 0.2 

contain exclusively Cu(II) ions isolated in the 6-MR.  Furthermore, Cu-SSZ-13 samples 

containing only isolated Cu(II) are active for standard SCR at 473 K,[14, 15, 21, 80, 135] 
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with SCR rates that are directly proportional to the density of 6-MR Cu(II) ions.[14, 15, 

21, 80, 135] 

 

Although standard SCR rates correlate with initial 6-MR Cu(II) content, this oxidation 

state is not maintained during catalysis.  Operando XAS show the presence of both Cu(II) 

and Cu(I) under standard SCR conditions [24, 136] and their proportions have been 

quantified under differential plug flow conditions in the absence of transport limitations 

on Cu-SSZ-13 samples that initially contained only 6-MR Cu(II) ions [25].  DFT 

calculations show that the oxidation state of 6-MR Cu can be changed by adsorbates and 

that both Cu(I) and Cu(II)  forms have comparable thermodynamic stability under SCR 

conditions [24].  Kwak et al. proposed that Cu-nitrosyls formed by NO chemisorption are 

responsible for the reduction of Cu(II) to Cu(I), based on ex-situ vibrational and 15N 

nuclear magnetic resonance spectroscopies at ambient temperature [22].  More recently, 

Gao et al.[13] proposed that Cu(II) is reduced to Cu(I) by co-adsorption of NO and NH3, 

based on ex-situ diffuse reflectance infrared fourier transform spectroscopy.  Taken 

together, this evidence indicates that Cu redox chemistry occurs during standard SCR. 

 

In this contribution, we report operando experiments and DFT computations and analysis 

that isolate and explain the response of a Cu-SSZ-13 catalyst, initially prepared to contain 

only 6-MR Cu(II) ions, to standard SCR reaction conditions at 473 K and upon cutoff of 

each reactant under plug flow conditions. We show that standard SCR is associated with 

Cu redox between the Cu(II) and Cu(I) states, that the reduction half-cycle requires both 

NH3 and NO, that each reduction event generates a Brønsted acid site proximal to Cu(I) 

that binds a catalytically relevant NH4
+ species, and that the oxidation half-cycle requires 

NO and O2 and consumes this NH4
+. We use these results to propose a series of plausible 

redox steps for standard SCR of NO with NH3, in which N2 is formed as a product in 

both the reduction and oxidation half-cycles. 
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4.3 Results and Discussion 

Two Cu-SSZ-13 catalysts (Cu:Al = 0.11 and 0.16, Si:Al = 4.5) were prepared to contain 

exclusively isolated Cu(II) ions.[26, 135] Preparation details are in Appendix for Chapter 

4, (Pg.171) and characterization data presented elsewhere.[26, 135] These catalysts were 

placed in glassy carbon tubes in a custom-built reactor setup specially developed for 

collecting operando SCR kinetics under plug flow conditions[24, 25] and exposed to 

standard SCR mixtures at 473 K. The experimental setup is discussed in Appendix for 

Chapter 4 (Pg. 171 - 174).  Under differential conditions (< 20% NO conversion) the 

observed steady-state SCR rates per mol Cu were 4.8×10–3 and 5.1×10–3mol NO (mol Cu 

s)-1 for the Cu:Al 0.11and 0.16 samples, respectively, each within a factor of 1.3 to rates 

on the same catalysts measured elsewhere (comparison of standard SCR rates detailed in 

Appendix for Chapter 4, Pg. 175-176) [135].  The reproducibility of the reaction rates 

confirms the operando XAS reactor operates under plug flow, while the constant SCR 

turnover rate certifies that the kinetic data are not corrupted by heat and mass transfer 

artifacts by the Koros-Nowak test [69, 70].  The operando X-ray absorption near edge 

structure (XANES) spectra of Cu were fitted with linear combinations of three XANES 

references, including an isolated Cu(II) ion in SSZ-13, an isolated Cu(I) ion in SSZ-13, 

and a hydrated isolated Cu(II) ion ([Cu(H2O)6]II) (details of operando XANES 

measurements and Cu XANES references are in Appendix for Chapter 4, Pg. 177 & 178).  

The first column of Figure 4.1 shows that nearly 30% of Cu is present as Cu(I) and 70% 

as Cu(II) under standard SCR conditions in both samples (corresponding XANES spectra 

and quantification results are in Appendix for Chapter 4, Pg. 181 and Table C.4). 
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Figure 4.1 Percentage isolated Cu(I) relative to total Cu ions under various steady state 
flow conditions. 5% H2O was present in all the cutoff mixtures. Standard SCR conditions 
are 320 ppm NO, 320 ppm NH3, 10% O2, and 5% H2O, at 473 K. 
 

Reactant cut-off experiments were performed to probe the effect of gas composition on 

the Cu oxidation states. Starting from steady-state standard SCR conditions, the flow of 

one reactant was switched to an inert CO2 tracer to maintain a constant total gas flow rate 

(experimental details in Appendix for Chapter 4 Pg. 171). NH3 cut-off experiments left 

behind a feed mixture of NO and O2, while NO cut-off left behind a feed of NH3 and O2.  

In both experiments, feed streams contained 5% H2O and an appropriate amount of 

balance He gas.  After NH3 or NO cut-off, NO consumption rates decreased with time to 

undetectable levels. The steady state Cu(I) percentage (Figure 4.1) decreased to ~ 5% 

after NH3 cutoff and ~ 12% after NO cutoff (XANES before and after NH3 and NO 

cutoffs detailed in  Figure C.5 and Figure C.7, respectively), indicating that the feed 

streams lost their reduction ability when either NH3 or NO was absent at 473 K.  Thus, 

we conclude that NO or NH3 separately, at concentrations typical of standard SCR, 

cannot reduce isolated Cu(II) ions to Cu(I). 
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To probe why NH3 and NO are needed together to reduce Cu(II) to Cu(I), we used DFT 

calculations to compute adsorption free energies and oxidation states on a 6-MR Cu(II) 

ion. We constructed an SSZ-13 supercell model (nominal Si:Al ratio of 5:1) containing 

two Al in a 6-MR,and placed a Cu ion in this preferred exchange site [135]. 

 

We probed molecular adsorption of NH3, H2O, O2, N2, and NO at this Cu site using the 

hybrid screened exchange (HSE06) exchange-correlation functional, which provides 

superior estimates of reaction energies involving NO [97, 137].  Initial adsorbate 

geometries were chosen from low-energy structures visited during preliminary ab-initio 

molecular dynamics (AIMD) simulations and were subsequently optimized; relaxed 

structures and binding energies of all adsorbates are in Appendix for Chapter 4 Pgs. 190 -

198.  NH3 and H2O bind most exothermically to the Cu site and diatomic binding is only 

modestly exothermic.   

 

To relate the HSE06 adsorption energies to adsorption free energies at the experimental 

reaction conditions, ∆G(473 K),we used isothermal AIMD and the PBE functional to 

construct the potential of mean force (PMF) associated with drawing adsorbed NH3 from 

the SSZ-13 central cage to the Cu(II) site (details in Appendix for Chapter 4 Pg. 199).  

The PBE functional is more cost-effective than HSE06 and provides an NH3 binding 

energy within 8 kJ mol–1of the HSE06 value.  The free energy difference at 473 K is – 62 

kJ mol–1 from the integrated PMF.  The free energy associated with confining an ideal 

gas within a zeolite cage has been estimated from adsorption experiments [138] and 

Grand-Canonical Monte Carlo simulations [139]to be +20-30 kJ mol–1.  The upper value 

of 30 kJ mol–1is appropriate to the small-pore SSZ-13.  Combining these, we estimate the 

net NH3 adsorption free energy relative to an NH3 ideal gas is –32 kJ mol–1.  This free 

energy difference is comparable to that computed for an ideal NH3 gas that retains the 

equivalent of 2/3 of its free translational entropy upon adsorption, also in agreement with 

experimental results for oxygen adsorption in chabazite [140].  Consistent with this 

picture, the MD simulations reveal an adsorbate that is quite dynamic even at the 

equilibrium Cu-NH3 distance. 
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Figure 4.2 DFT-computed adsorption free energy (horizontal scale) and Cu oxidation 
state (color scale) on A) 6-MR Cu(II)I and B) 6-MR Cu(I) plus Brønsted site. NO2 and 
(OH)2 energies referenced to ½O2 and NO/H2O. 

 

Figure 4.2A reports 473 K adsorption free energies computed from the HSE06 energies 

and the assumption that all adsorbates lose 1/3 of their gas-phase translational entropy.  

Only NH3 and H2O adsorb exergonically and thus competitively onto 6-MR Cu sites 

under standard SCR conditions.  The diatomics (NO, N2, & O2) are unlikely to populate 

these sites.  The binding preference computed for NH3 over H2O is consistent with 

XANES spectra collected after NH3 cut-off experiments, which show the proportions of 

hydrated Cu(II) to increase from 7 ± 3% to 41 ± 5% on the 0.11 Cu:Al sample and from 3 

± 3% to 48 ± 5% on the 0.16 Cu:Al sample (details in Appendix for Chapter 4, Pg. 185, 

& Table C.4). 

 

We determined Cu oxidation state from both integrated Cu density of states (DOS) and 

Bader charges, using the isolated Cu ion in the 6-MR as a Cu(II) standard.  Results from 

both analyses were consistent across all calculations (details in Appendix for Chapter 4, 

Pgs. 201 - 202).  Figure 4.2A summarizes the Bader results in the color-coding of each 

adsorbate.  NH3 adsorption leaves Cu in the Cu(II) state, consistent with formal charge 

considerations.  Separate calculations show that the Cu Bader charge decreases from 2+ 

to 1.9+ upon adsorption of four NH3.  This reduction may in part account for the 10% 

Cu(I) detected in XANES spectra following NO cutoff (Figure 4.1).  This reduction, 

however, is insufficient to account for the 30% Cu(I) detected during standard SCR. 
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Further, the HSE06 results in Figure 4.2A show that a 6-MR Cu(II) does not bind NO 

under standard SCR conditions and is not reduced by association with NO. 

 

These DFT results are consistent with the experimental observation that no single 

reactant reduces Cu(II) to Cu(I).  Optimization of NH3 and NO or NH3 and O2 at the 6-

MR Cu(II) site produces results unchanged from NH3 adsorption alone.  As we explored 

NH3 adsorption, however, we discovered a dissociation that produces Cu-bound NH2 and 

a new Brønsted acidic proton, as illustrated in the bottom reaction path in Figure 4.3.  

This HSE06-computed reaction is endothermic by +119 kJmol–1 and thus is unlikely to 

occur at temperatures as low as 473 K.  However, the computed Cu oxidation state is 

+1.55, intermediate between Cu(I) and Cu(II) and suggesting that NH3 dissociation is a 

possible route to Cu reduction.  We next explored NO co-adsorbed with this dissociated 

NH3 and found that NO binds at the NH2 nitrogen to form an H2NNO intermediate  

 

 

Figure 4.3 HSE06-computed structures and energies of NH3 dissociation (center), NO-
assisted dissociation (left), and O2-assisted dissociation (right) products 
 

(left path, Figure 4.3) reminiscent of that created from the gas-phase reaction of H2N and 

NO radicals.  The computed N-N bond energy is 128 kJ mol–1, less than the 

corresponding gas-phase H2N–NO bond energy of –226 kJ mol–1 [141] and reflecting the 

geometric distortions associated with adsorbing the intermediate on Cu.  Figure 4.4 
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shows that NH3 adsorption followed by NO-assisted dissociation has a computed free 

energy change close to zero and decreases the normalized Cu charge 2+ to 1+.  The 

H2NNO intermediate has the proper stoichiometry to decompose to N2 and H2O; in the 

gas-phase it does so via successive proton transfers [141].  As shown in Figure 4.4, the 

decomposition free energy of this intermediate to N2, H2O, Cu(I) and a new Brønsted 

acid site is–288 kJ mol–1. 

 

We compared this NO/NH3 co-reaction with O2-assisted NH3 activation.  Starting from 

dissociated NH3 and O2, the Brønsted proton relaxes away from the framework to form 

an H2NOOH adduct (Figure 4.3).  The net reaction energy is +87 kJ mol–1, the Bader-

determined Cu oxidation state remains 2+, and no new Brønsted site is created. The 

inability of O2 to activate NH3 adsorbed on isolated 6-MR Cu(II) ions is likely the 

underlying reason for the selective nature of NO reduction on this site. 

 

 

Figure 4.4 HSE06-computed reaction free energies and Cu oxidation states along the 
standard SCR pathway. Free energies at 473K, 1 atm, 300 ppm NH3 and NO, 10% O2, 5% 
H2O, and 60 ppm N2 (20% conversion). Circled species indicates NH3 co-adsorption on 
Cu(I) and Brønsted sites. 
 

We used this observation of Cu(II) reduction by NO and NH3 to test the DFT prediction 

that one Brønsted acid site is created in situ upon each reduction of an isolated Cu(II) to a 

Cu(I) ion.  Experimental details on Cu(I) generation and the titration of excess Brønsted 
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sites is provided in Appendix for Chapter 4 Pgs. 185 - 188.  As shown in Figure 4.5, the 

number of excess H+ sites titrated on reduced Cu(I)-SSZ-13 samples were equal, within 

experimental error, to the total number of Cu(I) sites generated (Figure 4.5), consistent 

with the stoichimetric reduction of isolated Cu(II) ions to Cu(I)/H+ site pairs.  The direct 

experimental observation of an additional H+ site formed during Cu(II) reduction to Cu(I) 

during standard SCR suggests that NH4
+ intermediates bound at H+ sites proximal to Cu(I) 

ions, but not at distant H+ sites that remain after Cu exchange, [26] are involved in the 

standard SCR catalytic cycle.  

 

 

Figure 4.5 NH3 titration of excess H+ sites formed upon reduction of Cu-SSZ-13 samples 
after treatment in flowing NO + NH3 (473 K). 
 

O2 cutoff experiments provide complementary information about the re-oxidation of 

Cu(I).  Steady state NO conversion over the Cu-SSZ-13 under SCR conditions decreased 

to zero after O2 cut-off from the feed.  As shown in Figure 4.1, a gas mixture containing 

only the NH3 and NO reactants caused the percentage of Cu(I) species to increase to 75-
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95% (corresponding XANES spectra are in Figure C.9, Appendix for Chapter 4).  O2 is 

thus necessary for catalytic SCR turnovers, and specifically required for the re-oxidation 

of Cu(I) to Cu(II). 

 

To model the oxidation half-cycle, we began with the same Cu 6-MR model, now starting 

from the reduced Cu(I) / H+site.  We computed 473 K adsorption free energies of the 

same reactants following the approach above; results are shown in Figure 4.2B.  In 

general, adsorption is stronger on the Cu(I) than on the Cu(II) site.  NH3 binds most 

strongly to the Cu(I) site while H2O, O2, and NO bind weakly and N2 does not adsorb 

(Figure 4.2B).  Of these only O2 oxidizes the Cu to any extent, but its binding is too weak 

to account for the observed Cu oxidation [24].  NH3 binds even more strongly to the 

proximal Brønsted acid site to form the NH4
+ intermediate shown in Figure 4.4.  

Computed adsorption free energies on the Brønsted and Cu(I) sites are –78 and –45 kJ 

mol–1, respectively. 

 

As with Cu(II) reduction to Cu(I), adsorption of individual reactants cannot account for 

the observed Cu(I) re-oxidation.  Thus, we looked for oxidizing species generated from 

O2 and another reactant.  DFT calculations show that a di-hydroxyl adduct formed from 

H2O and ½ O2 oxidizes Cu(I) to Cu(II) (Figure 4.2, (OH)2,).  Similarly, NO2 formed from 

NO and ½ O2 both binds strongly and oxidizes Cu(I) to Cu(II) (Figure 4.2) to form an 

adsorbed nitrite [84].  The exact mechanism of this NO oxidation remains to be 

determined but could occur via a route similar to the gas-phase, in which two NO and O2 

combine at the site to produce adsorbed nitrite and a second NO2 that is consumed in a 

subsequent step through the catalytic cycle.  Ruggeri et al.[142] demonstrated through 

chemical trapping on Fe-ZSM-5 that NO2 forms on isolated Fe sites, and it seems 

plausible that NO2 forms on Cu sites in a similar fashion. 

 

Co-adsorption of NO2 on the Cu site and NH3 on the proximal Brønsted site is both 

energetically favorable (Figure 4.4) and produces an ammonium nitrite-like complex of 
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the correct stoichiometry to decompose into two H2O and one N2, consuming the 

Brønsted site and leaving behind the original 6-MR Cu(II) site (Figure 4.4).  Similar two 

site mechanisms with one proximal site generated insitu have been proposed on 

supported rhodium-rhenium bimetallic catalysts and supported vanadia domains for 

selective catalytic reactions [4, 143].  Other NH4
+ species exist in Cu-SSZ-13, bound at 

residual H+ sites that remain after Cu ion-exchange,[26] but only NH4
+ sites proximal to 

the Cu site where nitrite species are formed participate directly in the catalytic cycle at 

the SCR conditions considered here. 

 

Scheme 4.2 summarizes the SCR redox mechanism inferred from the experimental and 

DFT findings.  A 6-MR Cu(II) site is in quasi-equilibrium with bound H2O and with 

bound NH3. NO-assisted dissociation of NH3 occurs selectively in the presence of excess 

O2 and reduces Cu(II) to Cu(I) while producing an H2NNO intermediate and proximal 

Brønsted acid site.  The H2NNO intermediate decomposes to H2O and N2.  The Brønsted 

acid site, generated in-situ and proximal to the Cu site, adsorbs NH3 to form an NH4
+ ion.  

At this point in the catalytic cycle, the active site consists of a Cu(I) site and a NH4
+ion 

balancing the two framework Al anionic charges.  NH3 binds strongly to the Cu(I) site, 

consistent with the NH3 inhibition observed at over-stoichiometric NH3 concentrations 

[135].  NO2 formed directly on this Cu site or indirectly on other sites competes with 

adsorbed NH3and oxidizes the Cu site.  The adjacent NO2
– and NH4

+decompose to 

generate two H2O molecules and N2.  In the overall SCR catalytic cycle, the desired 

product (N2) is thus formed in both the reduction and oxidation half-cycles, which is an 

unexpected and unusual finding among known redox catalytic cycles. 

 

Several of the steps in Scheme 4.2 are non-elementary and require further experimental 

and computational work to fully characterize.  Combining the DFT computed equilibrium 

constants with rate determining step (RDS) assumptions for either the oxidation or 

reduction half-cycles predicts either 100% Cu(I) or Cu(II) at steady state.  We surmise 

that both half-reactions are kinetically relevant and that a single RDS assumption is not 

valid for standard SCR at these conditions on the isolated Cu ions of SSZ-13.  Consistent 
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with the kinetic relevance of both half reactions, standard SCR rates do not correlate with 

either the number of Cu(I) or Cu(II) observed in operando XANES [25]. 

 

 

Scheme 4.2 Proposed SCR cycle over Cu-SSZ-13 at 473 K. The reduction and oxidation 
half-cycles are in red and blue, respectively. 
 

4.4 Conclusions 

These experimental and computational findings highlight the redox and bi-functional 

nature of the Cu-SSZ-13 active site during standard NH3-SCR.  Cu ion reduction requires 

the NO-assisted dissociation of NH3 and, as a direct consequence, the reduction becomes 

selective for NO in the presence of excess O2.  These reduction events generate 

experimentally detectable Brønsted acid sites that are required for stabilizing reactive 

NH4
+ intermediates proximal to Cu ions.  It is this dual nature of the active site, 

composed of the isolated Cu ion and the 6-MR containing two framework Al atoms, that 
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allows for redox chemistry and is required to close the catalytic cycle.  The mixture of 

Cu(I) and Cu(II) present under differential steady state conditions suggests that the 

reduction and re-oxidation of Cu play significant roles in SCR kinetics.  Similar 

mechanisms are envisioned for Cu(II) on SAPO-34 and other zeolite supports". 
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CHAPTER 5. PREVENTION OF FALSIFICATION OF REACTION KINETICS BY 
PRODUCT INHIBITION 

5.1 Abstract 

While the potential for product inhibition in catalytic reactions is well known, the impact 

on measured kinetic parameters of unaccounted inhibition seems less appreciated.  

Product inhibition is common, and when it occurs and is not accounted for, measured 

rates, apparent activation energies and reaction orders will all be in error by as much as 

50% or more. This is illustrated with a case study involving kinetics of NO oxidation 

over Cu ion clusters (CuxOy) in Cu-SSZ-13, wherein product NO2 inhibits the forward 

reaction. Furthermore, in the presence of inhibition, when only reactants are fed to a plug 

flow reactor or placed in a batch reactor, virtually no practical conversion is low enough 

to guarantee differential behavior. Inclusion of products along with reactants in the feed 

solves this problem completely.  

 

5.2 Introduction 

The inhibition of the forward reaction by the products of reaction is prevalent in 

heterogeneous catalysis. Examples include the combustion of methane on Pd [144, 145], 

hydro-dechlorination of chlorocarbons on Pd [146, 147], the water-gas shift on Pd [148], 

Pt [149, 150], and CuO/ZnO/Al2O3 [151], SO2 oxidation on Pt [152], NO oxidation on 

Cu, Fe-zeolites [20, 72]  and Pt [101, 119], and NO decomposition on Cu-zeolites [6]. 

Failure to account for product inhibition in the planning and analysis of kinetic 

experiments can produce significant errors. The source of those errors is easy to 

understand from the following qualitative argument. Consider an A to B reaction taking 

place in a well-mixed flow reactor (CSTR) fed by pure A.  A typical set of experiments 

would vary temperature at constant concentration and flow rate of A and vary the
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 concentration of A ( [ ]A ) at constant T.  The slope of a plot of ln( )rate  versus 1T −  

would be used to evaluate the apparent rate constant (with the apparent activation energy) 

and the slope of a plot of ln( )rate   versus ln[ ]A  would give the apparent reaction order 

with respect to A. We will assume that even though the total conversion is below 10% for 

all data gathered, the rate is inverse order in B for all measurements and that this fact not 

known to the investigator. In the activation energy experiments, as the temperature is 

increased the conversion will increase, increasing the concentration of B ( [ ]B ).  At 

higher [ ]B  the rate will be decreased, thus diminishing the increase in rate caused by 

higher temperature and leading to lower apparent activation energy. This was 

experimentally verified by Mulla et al. [119] and Hamzehlouyan et al. [152] who studied 

the effect of product inhibition on the kinetics of NO oxidation and SO3 oxidation 

respectively over supported Pt clusters and recorded a lower value of the apparent 

activation energy in the absence of product co-feeding. Similarly, increases in the 

concentration of A at constant temperature will yield more B, which will diminish the 

rate increase caused by A and lead to a lower than expected order in A.  

 

Most commonly, the errors above are generated by the assumption that the reactor is run 

in the differential regime and that the inhibition effects of products can be ignored.  

While it is true that there will always be a conversion below which product inhibition can 

be ignored, we will show in the discussion below that the value of the conversion often is 

too low for practical experiments and that no reactor type is immune from the problem. 

We will also show the quantitative effects of overlooking product inhibition for a simple 

Langmuir-Hinshelwood-Hougen-Watson (LHHW) rate expression and a real kinetic 

system involving NO oxidation over Cu-SSZ-13.  Finally, we will show how the errors 

can be avoided by adding the products to the reaction mixture. 
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5.3 Experimental Methods 

5.3.1 Catalyst Preparation 

We have previously shown that catalytic dry NO oxidation (300 ppm NO, 150 ppm NO2, 

and 10% O2) is significant on Cu ion clusters (CuxOy species, x ≥ 2, y ≥1) and isolated Cu 

ions in Cu-SSZ-13, show rates which are within experimental error [72]. As a result, a 

candidate Cu-SSZ-13 catalyst was selected from a series of Cu-SSZ-13 catalysts prepared 

by a liquid phase ion exchange method using copper nitrate as the Cu ion precursor. The 

methods for catalyst synthesis and characterization have been provided in detail 

elsewhere [72, 135]. In short, the catalyst was prepared by liquid phase ion exchange of 

H-SSZ-13 (Si:Al = 4.5) and Cu(NO3).xH2O. The ion exchange was performed at 338 K 

and at a pH of 5 ± 0.2.  This catalyst had 28 ± 5 % of CuxOy species as quantified under 

in-situ NO oxidation (from separate X-ray absorption results) and the Cu:Al (Cu: total Al 

ratio) was 0.36 [72]. 

 

5.3.2 Catalytic Testing 

The rector setup used for testing the kinetic effect of product co-feeding on NO oxidation 

is described in detail by Verma et al [72]. Overall, two sets of experiments were 

performed. The first set involved testing the kinetics of NO oxidation in the presence of 

product (NO2) co-feeding with the feed stream. The standard gas concentrations in this 

set was 320 ppm NO, 148 ppm NO2, 10% O2, and balance N2 gas, at 200°C. In this set, 

the NO conversion was kept less than 10%. The NO2 inhibition was quantified by 

measuring the apparent reaction order with respect to NO2, and the rate of reaction was 

calculated at the respective inlet concentrations on the assumption that a differential plug 

flow reactor could be treated as a CSTR. The second set of experiments involved no NO2 

co-feeding. The standard gas flow conditions for this set was 320 ppm NO, 10% O2 and 

balance N2, at 200°C. Once again, the NO conversion was less than 10%, the inhibition 

effect of NO2 was ignored, and a CSTR model was used to calculate the NO oxidation 

rates. Furthermore, as a proof of concept, all apparent reaction orders (with respect to 

NO, O2, and NO2, obtained from the first set) were then used to develop an integral plug-
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flow reactor (PFR) formalism to test the quantitative effect of product inhibition on 

kinetic data points in the second set of experiments. In both kinetic data-sets, the NOx 

mass balance, defined as (NO + NO2)inlet - (NO + NO2)outlet was less than 3 ppm. The 

concentration of N2O was within experimental error (less than 1 ppm) in all the kinetic 

data points. Lastly, all experiments were performed far away from equilibrium as 

quantified by 0.01β < , where
2

2
2

2

[ ] [ ]
[ ]

NO O
K NO

β =  is the approach to equilibrium and K  is the 

equilibrium constant. 

 

5.4 Results 

5.4.1 Kinetic Experiments in Presence of NO2 in the Feed Stream 

In order to show that NO oxidation on Cu-SSZ-13 was indeed inhibited by NO2, the rate 

of NO oxidation was first evaluated on the catalyst with NO2 co-feeding (set 1). The NO 

conversion was less than 10% and the overall rate of reaction was calculated using the 

inlet gas concentrations, the residence time (τ) and, assuming a CSTR model, which 

because of the small variation of concentrations at differential conditions, assumes that 

the rate is the same at all points in the reactor. For the CSTR model, the following 

equations were used to calculate the rate of reaction. 

 

[ ]o oNO NO NO o
fwd

F F F X NO Xr
N N τ
−

= = = , where   N
Q

τ =                                     Equation 5.1 

oNOF  = Inlet molar flow rate of NO 

NOF  = outlet molar flow rate of NO 

[ ]oNO  = inlet concentration of NO 

N = number of moles of Cu per gram catalyst  

Q  = volumetric flow rate of total gas in the reactor outlet. 

rfwd = moles of NO reacted per mole Cu per second. 
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The rate was calculated for the standard feed concentrations at each test temperature and 

the corresponding Arrhenius plot (CSTR model, black squares) is displayed in Figure 5.1. 

The apparent activation energy was 45 ± 3 kJ mol-1. This value is in agreement with 

results obtained by Verma et al. [72] In a similar way, the rate of NO oxidation was also 

investigated with different feed gas concentrations (in presence of NO2 co-feeding) and 

the apparent reaction orders with respect to NO, NO2, and O2 were measured at 473 K.  
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Figure 5.1 Variation of the rate of NO oxidation (per mole Cu) with temperature, with 
NO2 in the feed. Feed conditions: 320 ppm NO, 148 ppm NO2, and 10% O2. Red circles 
are data points evaluated from the PFR model, while black squares are evaluated from the 
CSTR model. 

 

These were 1.5 ± 0.1, -1 ± 0.1, and 0.9 ± 0.1 for NO, NO2, and O2 respectively (Figure 

5.2). This analysis showed that NO2 indeed inhibited the forward rate of NO oxidation 

over Cu-SSZ-13. Now taking the NO2 inhibition into account, the assumption of the 

reaction rate not varying along the length of the reactor was relaxed and the reaction rates 

were re-evaluated using a PFR formalism in which the forward rate ( fwdr ) of NO 
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consumption was described by a power law model (Equation 5.2). The lumped kinetic 

constant is effk . 

 

1.5 0.9 0.9
2 2[ ] [ ] [ ]fwd effr k NO NO O−=                                                                      Equation 5.2 

 

The governing differential equation for the PFR formalism is detailed in Equation 5.3 

1.5 0.9 0.9
2 2[ ] [ ] [ ] [ ]o fwd eff

dXNO r k NO NO O
dτ

−= =            Where N
Q

τ =             Equation 5.3 

And 1.5 0.9 0.9
2 20

[ ]
[ ] [ ] [ ]

X
o

eff
NO dXk

NO NO Oτ −= ∫                                                 Equation 5.4 

 

The concentration terms were written in terms of the inlet concentrations of each gas 

respectively and the NO conversion ( X ) and the resulting expression was integrated 

numerically to give keff. The Arrhenius plot for rate data points obtained from the PFR 

formalism (red circles) is also shown in Figure 5.1 for comparison and is shown to be 

similar to the rates evaluated from the CSTR formalism. 
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Figure 5.2 Variation of the rate of NO oxidation per mole Cu, with individual gas 
concentrations, at 473 K. All kinetic data points included in this plot have NO2 co-
feeding. 
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It should be noted that the rate of NO oxidation in the CSTR formalism, was evaluated 

without knowledge of the apparent reaction orders beforehand, i.e. the quantitative 

information regarding NO2 inhibition was not intrinsically included in the CSTR 

equation, the result, however, was virtually identical to that from the PFR analysis 

because of the co-feeding of NO2 in the feed stream, which renders true differential 

conditions as the NO2 concentration ([NO2]o + [NO]oX) equals [NO2]o at small values of X. 

 

5.4.2 Kinetic Experiments in Absence of NO2 in the Feed Stream 

In the second set of experiments, in order to compare the effect of NO2 co-feeding on the 

kinetics, the product was not co-fed with the reactants. Once again, the NO conversion 

was less than 10% and the rate of NO oxidation was evaluated at the respective reactor 

outlet concentrations with a CSTR formalism described in Equation 5.1. This analysis 

ignored the effect of NO2 inhibition. Using these rates, the Arrhenius plot is shown in 

Figure 5.3. The value for the apparent activation energy obtained for no NO2 co-feeding 

is 22 ± 1 kJ mol-1. This value agrees with similar values of apparent activation energy 

measured from NO oxidation experiments in the absence of NO2 co-feeding by Joshi et 

al. [118] The measured value, however, is lower by a factor of ~ 2 from results obtained 

by Metkar et al. [20] and Peden et al. [21] who report an apparent activation energy of 54 

kJ mol-1 and 43 kJ mol-1 respectively in the absence of NO2 co-feeding with the reactants.   
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Figure 5.3 Variation of the rate of NO oxidation per mole Cu with temperature, in the 
absence of NO2 co-feeding. Feed conditions: 320 ppm NO and 10% O2. Black squares 
represent rates which are evaluated from a CSTR model and ignoring product inhibition. 
Red circles represent rates evaluated from a PFR model which included NO2 inhibition. 
 

In this set, where NO2 inhibition was ignored, the apparent reaction orders with respect to 

NO and O2 at 473 K shown in Figure 5.4, was 0.8 ± 0.1 and 0.5 ± 0.1 respectively, which 

matched well with similar kinetic estimations in the absence of NO2 co-feeding in the 

literature [20, 21].  These numbers, however, differ markedly from similar kinetic 

estimations performed with NO2 co-feeding in the feed stream (set 1). In particular, the 

ratio of kinetic parameters obtained from NO2 co-feeding versus no co-feeding (

:co feed nocofeedn n ), like apparent activation energy, NO order, and O2 order are 2 ± 0.2, 1.9 ± 

0.2, and 2.2 ± 0.2 respectively. This is a systematic trend and further explanation will be 

provided in the discussion section.  

 

The analysis of the CSTR model application to set two was based on the premise that the 

investigator ignored the inhibitory effect of NO2 on the kinetics of NO oxidation. This 

can be corrected by using a PFR model which uses the actual dependence on all the 

reaction orders (including NO2 inhibition) as shown in the power law model of Equation 
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5.4. Once again, the same PFR model will be used. Due to possible product inhibition, 

the reactor outlet concentration at each data point used to evaluate the rate in the black 

squares of Figure 5.3 was input in Equation 5.4 and the actual keff which accounted for 

inhibition, was calculated and re-cast in the Arrhenius plot.  These corrected rate data 

points (red circles) are now shown in Figure 5.3 and compared with the Arrhenius plot 

prepared by the rate data points which discounted the NO2 inhibition. As expected, the 

apparent activation energy of 43 ± 1 kJ mol-1 was obtained, which was similar to the 

apparent activation energy when NO2 was co-fed with the reactants.  
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Figure 5.4 Variation of the rate of NO oxidation per mole Cu, with NO and O2 
concentrations, at 473 K. Co-feeding of NO2 in the feed stream was not done. 
 

5.5 Discussion 

In order to evaluate when the inhibition term can and cannot be ignored in the rate 

expression, we must first examine its origin.  We begin with the simplest case.  A 

Langmuir-Hinshelwood-Hougen-Watson analysis of A B→  on a catalytic surface yields 

1
A A

b
A A B B

kK Pr
K P K P

=
+ +

, where k  is the rate constant for the rate-determining step of A to B 

on the surface and AK  and BK  are adsorption equilibrium constants for A and B. For 
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simplicity, assume that A AK P  is very much less than 1. If B BK P  is large with respect to 1, 

the rate will be first inverse order in B and will be decreased by the presence of B unless 

BP  is small enough to make 1B BK P << .  Since
oB A AP P X= , where AX  is the conversion of 

A, there is a value of AX  below which the rate is independent of B, and that value 

depends on the value of BK .  To estimate a typical value of BK in units of atm-1, we take 

the correlation suggested by Vannice et al. [153] for the upper bound of o
adsS−∆ as 

12.2 0.0014 o
adsH− ∆ , where the entropy units are cal (mol K)-1 and the enthalpy units are 

cal mol-1. For o
adsH−∆  of 20 kcal.mol-1, the upper bound for o

adsS−∆ would be 40.2 cal 

(mol K)-1.  If we then take a mid range value of 25 cal (mol K)-1 for o
adsS−∆  and assume, 

arbitrarily, that the onset of inhibition will occur when KBPB = 0.1, the following 

equation shows the relation between PB, o
adsH∆ , and T at that point: 

 

                                     

10.1exp 25
o
B

B
HP R
T

−  ∆
= +  

  
                                    Equation 5.5 

 

At 600 K, the rate or reaction of 1 atmosphere of A would be product inhibited at a 

conversion of 0.16%.  This example serves to illustrate that the range of differential 

conversion, where the influence of the products on the rate can be ignored, can be 

substantially narrower than is usually invoked in the literature (which is usually set at 

10% conversion of reactant). 

 

5.5.1 The Problem: Ignoring Inhibition Leads to Substantial Errors 

To examine the consequences of unaccounted for inhibition, we choose a CSTR because 

the rate can be calculated as a simple algebraic function of measured parameters, i.e.

 

 



97  

[ ]oA Xr
τ

= .  As a specific example, we will use the NO oxidation reaction              

2NO + O2 → 2NO2 as representative of a power law rate expression. Suppose that only 

NO and O2 are fed to the CSTR.  The true rate of consumption of NO ( NOr ) is taken to be 

 

2

2

[ ] [ ]exp (1 )
[ ]

a b
A

NO c

E NO Or A
RT NO

β− = − 
 

                                                Equation 5.6 

 

Where exp AEA
RT
− 

 
 

 is the forward rate constant ( effk ), A  is the pre-exponential factor, 

aE  the apparent activation energy, a, b, c are the magnitudes of reaction orders, and

2
2
2

2

[ ] [ ]
[ ]

NO O
K NO

β =  is the dimensionless approach to equilibrium. Since a, b, and c are all 

positive and we will assume that the reaction is proceeding far from equilibrium so that 

β  is close to zero, the true rate at any point in the reactor will be  

2
2

2

[ ] (1 ) ([ ] [ ] )[ ] [ ] 2exp exp
[ ] ( )

a c a b
a b o o o

A A
NO c c

XNO X O NOE NO O Er A A
RT NO RT X

− − −− −   = =   
   

Equation 5.7 

 [𝑁𝑁𝑁𝑁] = [𝑁𝑁𝑁𝑁]𝑜𝑜(1 − 𝑋𝑋),           [𝑂𝑂]2 = [𝑂𝑂2]𝑜𝑜 − [𝑁𝑁𝑁𝑁]𝑜𝑜
𝑋𝑋
2

,                [𝑁𝑁𝑁𝑁]𝑜𝑜𝑋𝑋 

Here, X  is the conversion of NO and [ ]oNO  and 2[ ]oO  represent the initial 

concentrations of species NO and O2 in the feed.  At low conversions such that X  is 

small with respect to 1 and the numerator of Equation 5.7 becomes essentially 

independent of X , and Equation 5.7 simplifies to: 

exp A

NO c

E
RTr

X

γ − 
 
 =                                                                                   Equation 5.8 
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where γ  is 2[ ] [ ]a c b
o oNO O− .  It is usually assumed that low conversions will make the 

reactor differential and the rate independent of X . Examination of Equation 5.8 clearly 

shows that this is not the case, however.  Thus, as long as the product inhibits the 

reaction, the reactor cannot be differential at any conversion.   

Combining Equation 5.8 with [ ]o
NO

NO Xr
τ

=  yields  

1
1

1
1

1
2

exp
[ ] [ ] exp

[ ]

c
a

c
a c b a
o o

o

EB
ERTX NO O

NO RT

τ
τ

+

+
− −

 −  
    −    = =       

 
 

       Equation 5.9 

And the corresponding change in the molar flow rates of NO from the reactor inlet to 

outlet is given as follows 

1
1 1

2
[ ] [ ] [ ] exp

o

a
c c

bo o a
NO NO o

NO X NO EF F O
Q Q RT

τ
+ + −  − = =   

                 Equation 5.10 

A series of experiments run with constant inlet concentrations of NO and O2 and a 

constant molar flow rate of NO, but different temperatures would produce 
oNO NOF F−  as a 

function of T.  Since NOr  depends only on
oNO NOF F− , in a linear fashion, a plot of 

ln( )NOr  versus 1T −  gives a straight line with slope
(1 )

aE
R c
−
+

.  Thus, the measured apparent 

activation energy ( measE ) would be 
1

aE
c+

.  If one mistakenly assumed that the rate was not 

product inhibited, then NOr  at low X would appear to be given by 

2exp [ ] [ ]a bA
NO

Er A NO O
RT
− =  

 
 and measE  would appear, mistakenly, to equal Ea.  Thus, 
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ignoring product inhibition would lead to an error of a factor of 1
1 c+

 in the activation 

energy.  For experiments run at constant temperature and τ, but varying either [ ]oNO  or 

2[ ]oO , with the other held constant, would produce 
oNO NOF F−  as a function of [Ci]o, 

where C is either NO or O2.  Then, plotting ln( )NOr  versus ln([𝐶𝐶𝑖𝑖]) would give a slope of 

1
a

c+
 or

1
b

c+
.  Again, the measured orders of reaction would be a factor of 1

1 c+
 too low.  

For a plug flow reactor, the rate changes as X  changes down the length of the reactor.  If 

we assume constant density for simplicity, at any point in the reactor, [ ]NO o
dXr NO
dτ

= .  

Using Equation 5.3 for the rate at low X  and integrating down the reaction length, again 

produces equation Equation 5.4.  The mistaken assumption that the reactor is differential 

and that the rate is independent of X  leads to the incorrect conclusion that NOr is equal to 

[ ]oNO X
τ

 .  Thus, one can easily see that the mistaken assumption that a PFR is 

differential and that product inhibition can be ignored leads to the same error of a factor 

of 1
1 c+

 in the orders and activation energy as for the CSTR.  The analysis of a constant 

density batch reactor is identical to that for the PFR with τ  replaced by time. 

 

5.5.2 The Solution: Add Product to the Feed 

If one is not sure about the existence of product inhibition, adding a measurable 

concentration of the products to the feed will guarantee that the rate will be independent 

of X  and that the reactor can be considered to be differential at low X .  We illustrate the 

procedure with the power law kinetics for the NO oxidation reaction.  With NO2 added to 

the feed ( 2[ ]oNO ) the rate equation far from equilibrium becomes:  

2
2

2 2

[ ] (1 ) ([ ] [ ] )[ ] [ ] 2exp exp
[ ] ([ ] [ ] )

a a b
a b o o o

A A
NO c c

o o

XNO X O NOE NO O Er A A
RT NO RT NO NO X

− −− −   = =    +   
 Equation 5.11 
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      ˆ exp AEA
RT
− =  

   
                                                                                        Equation 5.12 

Where Equation 5.12 represents the rate for small X and 2

2

[ ] [ ]ˆ
[ ]

a b
o o

c
o

A NO OA
NO

= . Combining 

this rate equation into the design equation of a CSTR, [ ]o
NO

NO Xr
τ

=  yields

ˆ[ ] exp a
o

ENO X A
RT

τ − =  
 

 

 

And 
2

2

ˆ exp [ ] [ ] exp
[ ]

[ ]o

a ba a
o o

o
NO NO c

o

E EA A NO O
NO X RT RTF F

Q Q Q NO

τ τ− −   
   
   − = = =

 

Equation 5.13 

Thus, an investigator who measures 
oNO NOF F−  with changes in temperature and inlet 

concentrations separately will be able to recover the true kinetic parameters by assuming 

a differential reactor. The rate of reaction evaluated at low NO conversion (< 10%), will 

be the same value everywhere in the reactor for a given set of gas concentrations andτ . 

This ensures that the rate is independent of conversion (at low conversions) and a 

separate PFR analysis will yield Equation 5.13. This renders true differential conditions 

even in a PFR which behaves as a CSTR.  

 

In summary, the analysis presented predicts that 1cofeeding

nocofeeding

n
c

n
= + , where cofeedingn  is the 

value of the true kinetic parameter estimated in the presence of NO2 co-feeding, nocofeedingn  

is the value of the falsified kinetic parameter in the absence of product co-feeding, and c 

is the absolute value of the apparent product order. This is experimentally demonstrated 

in the current case study of NO oxidation on Cu-SSZ-13. By computing :co feed nocofeedn n  
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from the apparent activation energy, NO order, and O2 order, a value of c can be obtained 

for each which should be equal to the modulus of the NO2 apparent reaction order.  This 

is demonstrated in Table 5.1 and Figure 5.5, which shows that the value of c obtained 

from each kinetic parameter equals to the absolute value of the NO2 order. Thus, 

quantitatively, experiments match the predictions of the theory. 

 

Table 5.1 Estimation of c from :co feed nocofeedn n ratio from various kinetic parameters. 
Kinetic parametera 

co feedn  noco feedn  :co feed nocofeedn n  c 

Apparent activation energy 46 kJ mol-1 22 kJ mol-1 2.1 ± 0.2 1.1 ± 0.2 
Apparent NO order 1.5 0.8 1.9 ± 0.2 0.9 ± 0.2 
Apparent O2 order 1.1 0.5 2.2 ± 0.2 1.2 ± 0.2 

Apparent NO2 order -0.9 -- -- 0.9 ± 0.1 
aAll reaction orders measured at 473 K 

 

 

Figure 5.5 Values of c extracted from :co feed nocofeedn n for apparent activation energy, NO 
order, and O2 order. All reaction orders measured at 473 K. 
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Although we have used catalytic NO oxidation over Cu-SSZ-13 as a case study to 

describe the effect of product inhibition, the analysis presented is valid for catalytic 

reactions wherein product inhibition occurs, which only contained inhibition from one 

product. Inhibition by multiple products can also be accommodated in the calculus of co-

feeding. For example, consider the following reaction A B C D+ ↔ + wherein the 

forward rate of consumption of A (assuming 1β << ) is described by Equation 5.14. 

 

[ ] [ ]exp
[ ] [ ]

a b
A

A c d

E A Br A
RT C D
− =  

 
                                                                            Equation 5.14 

 

Once again, exp AEA
RT
− 

 
 

 is the apparent rate constant and a, b, c, and d are the apparent 

reaction orders with respect to A, B, C, and D. We shall assume that a, b, c, and d are 

positive and non-zero, indicating that C and D inhibit the forward reaction. By 

performing similar analysis one can deduce that 1cofeeding

nocofeeding

n
c d

n
= + + i.e, the ratio of the 

true kinetic parameter obtained in the presence of co-feeding of all products which inhibit 

the forward rate to the falsified kinetic parameter in the absence of co-feeding is1 c d+ + . 

Generalizing this result, for the reaction system, reactants ↔ 𝐶𝐶1 + 𝐶𝐶2 + 𝐶𝐶3+. . +𝐶𝐶𝑖𝑖  

wherein all iC inhibit the forward rate, 1cofeeding
i

productnocofeeding

n
c

n
= + ∑ where ic is the absolute 

value of the apparent reaction order with respect to iC . Application of this analysis to 

different catalytic systems in the literature is presented in Table 5.2. Although more 

potential examples are presented in the literature, the data are incomplete and not easily 

amenable to this analysis [150, 151]. 

 

Possible complications for kinetic analysis in the presence of product gas co-feeding with 

the reactants involve quantification of the partial pressures of the gases involved in the 
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reaction. The relative change in reactant and product concentrations will be small since 

X  is small.  One way to achieve the higher precision necessary for analysis is to add an 

internal standard to the feed and to measure the concentrations of reactants and products 

before and after the reactor for each process condition. Also, adding products might 

possibly lead to side reactions. For example, NO decomposition on Cu-zeolites to 

dinitrogen and oxygen is inhibited by oxygen with an apparent reaction order of -0.5 [6]. 

Co-feeding oxygen with NO in the feed stream produces other products like NO2 (via NO 

oxidation) via reactions in parallel. In this scenario, the rate measurements must be 

strictly in terms of the rate of production of the desirable product, i.e. rate of production 

of N2 in the example of NO decomposition, and not the rate of consumption of reactants.  

 

Table 5.2 Literature examples of the quantitative effects of inhibition of products. 

Global reaction 
stoichiometry 

Catalyst Kinetic 
parameter co feedn  noco feedn  :co feed nocofeedn n  

i
product

c∑  

2NO + O2
→ 2NO2 

Pt/Al2O3 
& 
Pt/SiO2 

Eapp 82 39 2.1 1.1 

NO order 1 0.5 
[154] 

2 1 

O2 order 1 0.5 
[154] 

2 1 

NO2 
order 

-1 -- -- 1 

2NO + O2
→ 2NO2 

Pt/Al2O3 Eapp [152] 100 59 1.7 0.7 
SO2 order 

[152] 
0.9 0.7 1.3 0.3 

O2 order 
[152] 

-0.2 -0.2 -- -- 

SO3 order 

[152] 

-0.4 -- -- 0.4 

References are marked in square brackets 
Gases which inhibit the forward reaction rate are in boldface letters 
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5.6 Conclusions 

In view of the importance of accurate kinetic data to the advancement of catalysis, the 

prevalence of product inhibition, and the damage to data quality caused by overlooking 

product inhibition, accounting for the effects of products on the rate for all kinetic 

measurements would seem prudent.  Adding products to the feed is a simple and reliable 

way to guarantee data integrity at a modest cost in analytical and reactor complexity. 
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CHAPTER 6. CONCLUSIONS 

This thesis is devoted to the detailed understanding of the site requirements of standard 

ammonia SCR and NO oxidation over different Cu ion configurations within Cu-SSZ-13. 

Due to a wide variety of framework Al distribution within SSZ-13, many Cu ion 

configurations can be envisioned.  Overlooking complexities, the work in this thesis leads 

to two types of Cu ion configurations within SSZ-13. The first is an isolated Cu(II) cation 

co-ordinated by four framework zeolitic oxygen atoms. This Cu ion configuration can be 

realized in six member rings or eight member cages of SSZ-13. The other configuration 

of Cu(II) is CuxOy (x ≥2, y ≥1) species. These are exclusively found in eight member 

cages of SSZ-13, due to steric effects in six member rings (Chapter 3).  

 

Exploring the site requirements of a certain reaction involves the investigation of active 

sites and elucidation of the dominant reaction steps on those active sites. For catalytic NO 

oxidation (and other generic non-selective oxidation reactions), the key requirement of an 

active site is the ability to active di-oxygen. This can be seen by apparent O2 order being 

~ 1 (Figure 6.1), independent of temperature. DFT results in this study (Chapter 3) show 

that CuxOy species can activate di-oxygen via electron transfer on local Cu-Oy-Cu bonds 

with a downhill Gibbs free energy change; while isolated Cu(II) ions do not have this 

ability.  This leads to a remarkable difference in the rate of NO oxidation Using in-situ X-

ray absorption spectroscopy, the rate of NO oxidation was linearly correlated with the 

density of local Cu-Oy-Cu bonds. As a result the NO oxidation rate was within 

experimental error on catalysts prepared to contain only isolated Cu(II) ions within SSZ-

13. The ability of NO oxidation to discriminate between different Cu ion configurations 

makes it an ideal probe reaction to detect Cu ion clustering for catalyst diagnostic 

purposes.
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Figure 6.1 Variation of the apparent oxygen order during NO oxidation on Cu-SSZ-13. 
Feed concentrations : 300 ppm NO, 150 ppm NO2. 
 

On the other hand, Standard ammonia SCR is mediated primarily by isolated Cu ions 

within SSZ-13. Results in this thesis only focus on isolated Cu ions stabilized by two 

framework Al atoms in the six member rings of SSZ-13 (Chapter 2). The active site 

assignment is based on the linear variation of the SCR rate per gram with total Cu content 

(mol Cu . g cat-1), and DFT results of energetically most favorable position of isolated 

Cu(II) ions in SSZ-13.  This is supplemented by UV-Vis-NIR spectroscopy and X-ray 

absorption near edge structure (XANES) of Cu ions during standard SCR. Operando 

XANES also reveal that the +2 oxidation state is not retained on Cu ions during SCR 

catalysis.  A redox between Cu(I) and Cu(II) is observed.  Studies in Chapter 3 explored 

possible ways to explain the molecular origins of the redox nature of isolated Cu ions 

during standard SCR.  Separate residual Brønsted acid site titrations with amine titrants 

(Chapter 2) revealed that isolated Cu(II) ions are stabilized by removal of two protons 

from the Brønsted acid sites during synthesis and subsequent pretreatment in dry air. This 

configuration, however can convert to a Cu(I) which exposes a proximal Brønsted acidic 

site which is capable of stabilizing ammonia during catalysis.  This remarkable 

arrangement of active isolated Cu ions within SSZ-13 is the primary reason for bi-

functional catalytic behavior shown by these active sites during standard SCR. NO + NH3 
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have the ability to reduce a Cu(II) to Cu(I) and a proximal Brønsted acid site (during 

standard SCR). The Cu(I) has the ability to make nitrites (NO2
-) which reacts with 

ammonium ions nearby to form water and nitrogen, thereby completing the catalytic 

cycle and regenerating an isolated Cu(II). 

 

Future studies should concentrate on the role of residual acid sites during standard SCR, 

effect of zeolite topology on catalytically relevant steps during standard SCR, as well as 

development of active site titration during SCR catalysis.   
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Appendix A  Appendix for Chapter 2 

 

 
Figure A.2  Mass balance data collected for the Cu-SSZ-13 sample with Cu:Al=0.09 

using gas chromatography to quantify N2 produced and gas phase FTIR to determine NO 
and NH3 consumed in the standard SCR reaction. ±2 ppm reported for noise in FTIR 

signals for NO and NH3, Standard deviation reported for N2 produced. 
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Table A.1 Summary of kinetic data collected on each Cu-SSZ-13 sample.   
Cu 

Wt% 
Si:Al 

Ratio* 
Cu:Al 
Ratio* 

Ea,app 
/ kJ 

mol-1 

Ao / s-1 Rate / 
10-4 
mol 
NO 
mol 

Cu-1 s-1 

Rate / 
10-6 

mol NO 
g cat-1 

s-1 

NO 
Order 

NH3 
Order 

O2 
Order Brønsted 

Acid 
Sites / 
H+ Al-1 

0 4.5 0 - - - 0 - - - 0.65 
0.31 4.3 0.02 42 1.35E2 32.4 0.2 0.7 -0.2 0.5 0.45 
0.82 4.3 0.04 68 4.29E5 132 1.7 0.7 0 0.5 0.60 
1.74 4.5 0.09 64 9.74E4 74.3 2.0 0.8 0 0.3 0.42 
3.04 4.5 0.16 70 8.5E5 61.9 3.0 0.8 -0.1 0.3 0.32 
3.75 4.5 0.2 71 4.24E5 66.0 3.8 0.9 0 0.3 0.30 
6.39 4.5 0.35 71 2.16E5 29.4 3.0 0.7 0.1 0.2 0.24 

*Atomic compositions and ratio determined by Atomic Absorption Spectroscopy. 
Rated measured at 473 K.  Associated Errors in measurements with 90% confidence 
interval: Ea,app = ±5 kJ mol-1,  Rate per gram catalysts = ± 0.2 x 10-6 mol NO g-1 s-1, Rate 
per mole Cu = ± 0.2 x 10-4 mol NO mol Cu-1 s-1,  Reaction orders = ±0.1, Brønsted Acid 
Sites = ±0.08 H+:Al. 
 
 
 
Additional Information on Brønsted Acid Site Count Quantification 

For a complete summary of the Brønsted acid site count determinations on H-and Cu-

SSZ-13, please refer to our previous study [26] (Chapter 4).  Three NH3 titration 

procedures and an n-propylamine decomposition [73-75] were compared for Brønsted 

acid site counts in H- and Cu-ZSM-5.  The results showed that the NH3 titrations were 

able to selectively titrate Brønsted acid sites as they gave equivalent results to the n-

propylamine decomposition.  Ammonia was determined to be a better titrant of Brønsted 

acid sites in H- and Cu-SSZ-13 than n-propylamine as it gave consistent total Brønsted 

acid site counts, while n-propylamine Brønsted acid site counts nearly four times lower 

because of mass transport limitations and spatial constraints of close proximity of acid 

sites.  Figure A.2 below shows the result of the third NH3 titration procedure on H- and 

Cu-SSZ-13 samples in this study.  The samples were treated with ~500 ppm NH3 in 

UHP-He at 433 K with a total flowrate of 350 ml min-1 for two hours.  At the end of the 

saturation, the NH3 signal was constant in the FTIR (MKS Multi-gas 2030 Gas Analyzer).  

Following this, the sample was flushed in UHP-He for eight hours at 433 K with a total 

flowrate of 350 ml min-1.  A TPD was performed on ~30 mg of sample in an 
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Micrimeritics Autochem II unit with 50 sccm UHP-He flowing and 10 K min-1 

temperature ramp up to 873 K.  One feature resulted in all the experiments corresponding 

to the Brønsted acid sites.     

 

 
Figure A.3  NH3 TPD experiments over Cu-SSZ-13 samples ranging from Cu:Al = 0 to 
0.35 using NH3 titration procedure #3 from our previous work [26]. 
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Effect of CO2 on kinetics for Cu-SSZ-13 

 
Figure A.4  Activation energy plot for a Cu-SSZ-13 (Cu:Al = 0.09) under standard SCR 
320 ppm NO, 320ppm NH3, 7% H2O, 10% O2, balance He with (blue diamonds) and 
without (red squares) 8% CO2 in the feed. Data were collected over 433-473 K at a total 
flow of ~1.5L min.- 
 

 
 

Table A.2 Measured activation energy, pre-factor and rate for a Cu-SSZ-13 sample 
(Cu:Al = 0.09) under standard SCR gas conditions with and without CO2 in the feed. 

Sample Ea / kJ 
mol-1 

Ao / 104 
s-1 

Rate (473 K) / 10-3 
mol NO mol Cu-1 s-1 

 Standard SCR with CO2 64 9.74 7.43 

Standard SCR without CO2 64 8.16 7.47 
90% confidence interval for Ea and rate per mole Cu are ±5 kJ mol-1 and ±0.2 x 10-4 mol 
NO mol Cu-1s-1. 
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Additional information on the NH3 Quantification Experiments 

Scheme A.1 shows the three individual NH3 species quantified.  The first is a weakly 

bound NH3 species which is found during the same NH3 cutoff experiment in which the 

reactive NH3 is quantified.  The NH3 concentration was monitored in the FTIR during the 

NH3 cutoff.   

 

 
Scheme A.1  The overall NH3 quantification flow diagram.  The sum of weakly bound 
NH3, reactive NH3, and strongly bound NH3 corresponded to the total adsorbed NH3 
present under standard SCR reaction conditions at 433 K.  The total adsorbed NH3 could 
also be determined separately as described in the scheme. 
 
 

Figure A.4 shows an example for the Cu:Al = 0.09 sample.  In the experiment shown, the 

NH3 is removed from the gas phase within 5 – 7 minutes.  Compared to the CO2 tracer, 

there is a quantity of NH3 that leaves when the NH3 is removed from the gas phase.  This 

may be a physisorbed species or NH3 sticking in the lines of the system.  At time zero, 

Figure A.4 shows the NH3 starting at a lower concentration.  At this point in time, the 
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valve had already been switched which caused a pressure spike in the IR; therefore, the 

real initial concentration was close to 300 ppm where the CO2 was scaled. 

 

Figure A.5  NH3 concentration over time as NH3 was removed from the gas mixture and 
replaced with an equal flowrate of CO2 for the Cu:Al = 0.09 Cu-SSZ-13 sample.  The 
CO2 has been scaled and inverted to show the initial NH3 concentration as a comparison 
to see the lag in NH3.  Before NH3 was removed, standard SCR conditions were present 
with 320 ppm NO, 320 ppm NH3, 10% O2, 6% H2O, 8% CO2, and balance Helium at 433 
K.  Total flowrate is 1.5 L min-1. 
 
 
 
Figure A.5 shows the weakly bound NH3 determined over several Cu-SSZ-13 samples in 

this study.  In general, a positive trend was observed as the Cu loading increased, 

indicating this weakly bound species may be related to an NH3 associated with Cu; 

however, NH3 from elsewhere cannot be ruled out.   

 

 



129 

 

Figure A.6  The amount of weakly bound NH3 determined in NH3 cutoff experiments 
from standard SCR over different Cu:Al samples.  Before NH3 was removed, standard 
SCR conditions were present with 320 ppm NO, 320 ppm NH3, 10% O2, 6% H2O, 8% 
CO2, and balance Helium at 433 K.  90% confidence interval reported. 

 
 

Figures 2.3 and A.6 show the data collected for the reactive NH3 species, which was 

discussed in the main text of the study.  Following that, Figures 2.3 and A.7-A.8 go 

through the TPD performed after the NH3 cutoff experiment and flushing of the system.   
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Figure A.7  Display of NO concentration over time as NH3 was removed from the gas 
mixture and replaced with an equal flowrate of CO2 for the Cu:Al = 0.09 Cu-SSZ-13 
sample.  The CO2 is used as a tracer.  Before NH3 was removed, standard SCR conditions 
were present with 320 ppm NO, 320 ppm NH3, 10% O2, 6% H2O, 8% CO2, and balance 
Helium at 433 K.  Total flowrate is 1.5 L min-1. 
 

NO 

Scaled CO2 tracer 
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Figure A.8  NH3 TPD following the NH3 cutoff experiment from steady state standard 
SCR and a system flush for ~ 1hr with UHP helium for the Cu-SSZ-13 sample with 
Cu:Al = 0.09.  The NH3 observed has been called “strongly bound.”  The temperature 
ramp was 5 K min-1 starting from 433 K.   

 
 

 

 



132 

 

Figure A.9  The quantity of strongly bound NH3 after different concentrations of NH3 
were used under steady state standard SCR conditions at 433 K for the Cu:Al = 0.09 Cu-
SSZ-13 sample.  NH3 was then removed in a cutoff experiment and flushed for ~ 1hr in 
UHP He before the TPD was performed.  90% confidence interval reported.    
 
 
 
The final step in the process was to quantify the total amount of NH3 present under steady 

state standard SCR conditions, which can be used to compare to the sum of the three 

individual NH3 species.  This was performed starting with an NH3-free catalyst surface 

with 320 ppm NO, 10% O2, 6% H2O, and an equal flow of CO2 corresponding to the 

same flow of NH3 which was removed in the earlier NH3 cutoff experiment at 433 K.  

Ammonia was switched into the gas mixture and CO2 removed.  The result was an NH3 

adsorption curve shown in Figure A.9 which approached steady state standard SCR after 

~ 30 minutes.  The resulting area between the NH3 and the scaled and inverted CO2 tracer 

was integrated for the total NH3 under standard SCR at 433 K.  The sum of the individual 

NH3 species was then compared to the total NH3 adsorbed under standard SCR 

conditions at 433 K.  The results can be seen in Figure A.10, where a good agreement 
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between all samples was observed except for the Cu:Al = 0.2 sample, which had 

significantly more NH3 in the NH3 adsorption experiment and was not characteristic of 

any of the other samples tested.  One explanation of this was that in this particular set of 

adsorption experiments, some water had accumulated somewhere in the lines which was 

capturing some extra NH3 and artificially inflating the value.  Every time a new sample 

was loaded a significant amount of heating tape was used in the inlet and outlet of the 

reactor.  If a cool spot was present, this was a plausible explanation.   

 

Figure A.10  Display of NH3 concentration over time as NH3 was added to the gas 
mixture and CO2 removed  for the Cu:Al = 0.09 Cu-SSZ-13 sample.  The CO2 has been 
scaled and inverted to show the initial NH3 concentration as a comparison to see the lag 
in NH3.  Before NH3 was added, an NH3 free surface was obtained via TPD and standard 
SCR conditions minus NH3 were present with 320 ppm NO, 10% O2, 6% H2O, 8% CO2, 
and balance Helium at 433 K. 
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Figure A.11  Comparison of the total NH3 present under standard SCR conditions at 433 
K using two different methods.  The sum of the individual NH3 species is shown in black  
while the NH3 from an adsorption experiment is shown in red.  90% confidence intervals 
are included. 
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UV-Vis-NIR Quantification of d-d transition for hydrated Cu(II) 
 
 
 

 
Figure A.12  UV-Vis-NIR intensity of the d-d transition for hydrated Cu(II) at 12,500 
cm-1 in Kubelka-Munk units under ambient conditions.  Cu:Al ranges from 0 to 0.35.  90% 
confidence intervals are included. 
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Additional XANES and EXAFS Spectra and analysis. 
 
 
 

 

Figure A.13  EXAFS spectra for the isolated Cu(II) (red) and isolated Cu(I) (black) 
references.  Solid lines indicate the Fourier transform magnitude.  Dotted lines indicate 
the imaginary contribution. 
 

 

 

 

 

 

 

Solid Black: FT Mag. Of 
1000 ppm NO + NH3 at 
200°C 

Dotted black: 
Imaginary part, 
1000 ppm No+ 
NH3 at 200°C 

Dotted Red: Imaginary 
part, 10% O2 at 200°C 

Solid Red: FT Mag. Of 
10% O2 at 200°C 
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Table A.1  EXAFS fit paremeters for isolated Cu(I) and isolated Cu(II). 
0.31% Cu EXAFS of Cu-SSZ-13  

Sample  Treatment  XANES  Absorber-
Scatter  

N  R / 
Å  

∆σ2  
(x 

103) 

Eo / 
eV  

Fraction 
Cu(II)  

Fraction 
Cu(I)  

Cu(II)  RT, ambient  1.0  -  Cu-O  3.9  1.96  2.0  -8.5  

Cu(II)  10% O2 , 473 K  1.0  -  Cu-O  4.0  1.96  4.0  -7.5  

Cu(I)  1000 ppm NH3 + 
1000 ppm NO, 473 

K  

-  1.0  Cu-O  2.2  1.85  4.0  -5.1  

 
 
 
Table A.2  Linear combination XANES fits for all Cu-SSZ-13 samples in air at room 
temperature  included in this study. 

Sample 
Cu:A

l Treatment 
Cu(II)

O 
Isolated Cu 

(I) 
Isolated 
Cu(II) 

Hydrated 
Cu(II) 

Cu-SSZ-
13 0.02 

in air, room 
temperature 4 0 0 96 

Cu-SSZ-
13 0.04 

in air, room 
temperature 0 0 0 100 

Cu-SSZ-
13 0.08 

in air, room 
temperature 0 0 0 100 

Cu-SSZ-
13 0.16 

in air, room 
temperature 0 0 0 100 

Cu-SSZ-
13 0.2 

in air, room 
temperature 0 0 0 100 

Cu-SSZ-
13 0.35 

in air, room 
temperature 25 0 0 75 

±5% error associated with linear combination XANES fits 
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Figure A.14  EXAFS spectra all Cu-SSZ-13 samples in this study under ambient 
conditions (in air at room temperature). 
 

 

Table A 3  EXAFS fit paremeters for all Cu-SSZ-13 samples in this study in air at room 
temperature. 

Sample Cu:Al Treatment 
Absorber - 

Scatter CN R / Å 
Δσ2 / 
10-3 Å 

Eo / 
eV 

Cu-SSZ-
13 0.02 

in air, room 
temperature Cu-O 4.0 1.94 2 -9.5 

Cu-SSZ-
13 0.04 

in air, room 
temperature Cu-O 3.9 1.94 2 -10.3 

Cu-SSZ-
13 0.08 

in air, room 
temperature Cu-O 3.9 1.94 2 -10.4 

Cu-SSZ-
13 0.16 

in air, room 
temperature Cu-O 4.1 1.94 2 -10.2 

Cu-SSZ-
13 0.2 

in air, room 
temperature Cu-O 4.1 1.94 2 -10.6 

Cu-SSZ-
13 0.35 

in air, room 
temperature Cu-O 4.3 1.94 2 -11.2 
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Table A.4  Linear combination XANES fits for Cu-SSZ-13 samples under standard SCR 
reaction conditions.  Standard SCR conditions used were 320 ppm NO, 320 ppm NH3, 10% 
O2, 8% CO2, 6% H2O, and balance Helium at 453 K. 

Cu:Al Treatment %Cu(II)O 
% Isolated 

Cu(I) 
% Isolated 

Cu(II) 
% Hydrated 

Cu(II) 

SCR Rate / 10-4 
mol NO mol Cu-1 

s-1 at 453 K 

0.09 
standard SCR, 453 
K, operando XAS 0 37 57 5 43.0 

0.09 
standard SCR, 453 
K, lab scale PFR - - - - 43.2 

0.16 
standard SCR, 453 
K, operando XAS 0 26 71 3 46.6 

0.16 
standard SCR, 453 
K, lab scale PFR - - - - 37.4 

±5% error associated with linear combination XANES fits. 

 

The pre-edge feature we have identified as isolated Cu(I) at 8983 eV in operando XAS 

has also been attributed to NH3 adsorbed on Cu(II) at low temperature by Deka et al [15].  

The Cu-tetraamine XANES spectrum (Figure A14) contains a dip in white line intensity 

with two features appearing at 8994 eV and 8998 eV, which when compared to the 

isolated Cu(I) reference and samples under standard SCR conditions in Figure 3.6 cannot 

be ruled out as a possible contributor to the shape of the XANES spectra.   It would not 

be able to give an intense pre-edge feature at 8983 eV, which was observed in this study 

for the isolated Cu(I) reference.  On this basis and because the linear combination 

XANES did not give any reasonable fits, it was not included as a reference. 
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Figure A.15  XANES spectrum of the Cu(II)-tetraamine reference compound . 
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Details of stability of isolated Cu(II) cation 

The optimized structure for relative stability of isolated Cu(II) in the SSZ-13 zeolite 

structure is shown in Figure below. 

 
Figure A.16  Optimized structure of isolated Cu(II). (a) Isolated Cu(II) located in the 4-
membered ring of SSZ-13 and two hydrogen attached to the oxygen in the 6-membered 
ring structure of the zeolite. (b) Isolated Cu(II) located in the 6-membered ring of SSZ-13 
and two hydrogen attached to the oxygen in the 8-membered ring structure of the zeolite. 
(c) Isolated Cu(II) located in the 8-membered ring of SSZ-13 and two hydrogen attached 
to the oxygen in the 6-membered ring structure of the zeolite. 
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Exchange energy calculation for isolated Cu(II) in the 4-membered ring: 

Z4H4 + Cu(s) → Z4H2Cu + H2 (g)  ΔE= 3.31 eV                     (DFT) 
Cu(II) + 2e- → Cu(s)  ΔG= -nFE = -2*1*0.34 eV [155] 
  H2 (g) → 2H+ + 2e-             ΔG= 0 eV           [155] 
 Z4H4 + Cu2+  → Z4H2Cu + 2 H+  ΔE= 2.63 eV 

 

Exchange energy calculation for isolated Cu(II)  in the 6-membered ring:  

Z4H4 + Cu(s) → Z4H2Cu + H2 (g)  ΔE= 2.18 eV                     (DFT) 
Cu(II) + 2e- → Cu(s)  ΔG= -0.68 eV  [155] 
  H2 (g) → 2H+ + 2e-             ΔG= 0 eV   [155] 
 Z4H4 + Cu2+  → Z4H2Cu + 2 H+  ΔE= 1.50 eV 

Exchange energy calculation for isolated Cu(II) in the 8-membered ring: 

Z4H4 + Cu(s) → Z4H2Cu + H2 (g)  ΔE= 3.68 eV                     (DFT) 
Cu(II) + 2e- → Cu(s)  ΔE= -0.68 eV          [155] 
  H2 (g) → 2H+ + 2e-             ΔE= 0 eV           [155] 
 Z4H4 + Cu2+  → Z4H2Cu + 2 H+  ΔE= 3.00 eV 
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Figure A.17  Normalized Brønsted acid site count and normalized standard SCR rate per 
gram shown with respect to the Cu:Al in several Cu-SSZ-13 samples.  90% confidence 
intervals reported. 
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Figure A.18  The total number of Brønsted acid sites counted in a previous study using 
numbers from the NH3 titration [26] and the strongly bound NH3 in this study.  Two 
Brønsted acid sites are added for each Cu(II) exchanged in the sample.  90% confidence 
intervals are reported. 
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Figure A.19  TPDs following an NH3 cutoff experiments at 433 K and system flush at 
433 K.  Conditions before the NH3 cutoff are given in the labels.   
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Figure A.20  Standard SCR rate per gram shown against the amount of reactive NH3 per 
total Al in several Cu-SSZ-13 samples.  90% confidence intervals are reported. 
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Appendix B Appendix for Chapter 3 

 

 

Table B.1 Summary of Cu-SSZ-13 catalysts used in this study 
Copper Weight % Si:Al  

ratio 
Cu:Al ratio 

0 4.5 0 
0.31 4.3 0.02 
0.82 4.3 0.04 
1.74 4.5 0.09 
3.04 4.5 0.16 
3.75 4.5 0.2 
5.64 4.5 0.31 
6.39 4.5 0.35 
7.4 4.5 0.39 

18.93 4.5 1.6 
Si, Cu and Al measured independently by atomic absorption spectroscopy. Error in measurement of Si:Al atomic = 

± 0.03 and Cu:Al ratio = ± 0.03 
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Figure B.1 Cluster models for SSZ-13 zeolite. (a) The Z2Cu 6-ring cluster model with 
third-nearest-neighbor (3NN) Al sites. (b) The Z2Cu2 8-ring cluster model with fourth-
nearest-neighbor (4NN) Al sites.  (c) Periodic representations of 2×1×1 supercell of SSZ-
13. (d) Zoom-in on a 2×1×1 Z4H4 supercell highlighting the 4-, 6-, and 8-rings containing 
2NN, 3NN, and 4NN Al sites, respectively. Yellow spheres are Si, red spheres are O, 
grey spheres are Cu, green spheres are Al, and white spheres are H. 
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Figure B.2 (a) Variation of the rate of NO oxidation (per mole Cu) with temperature for a 
Cu/SSZ-13 catalyst with Cu/Al atomic ratio = 0.35. Feed conditions are 300 ppm NO, 
150 ppm NO2 and 10% O2. (b) Variation of the rate of NO oxidation with gas 
concentrations for a Cu/SSZ-13 catalyst with Cu/Altot atomic ratio = 0.35. Feed for NO 
order = 150 ppm – 400 ppm NO, 150 ppm NO2 and 10% O2. Feed for O2 Order = 5 –15% 
O2, 300 ppm NO and 150 ppm NO2. Feed for NO2 order = 80 – 200 ppm NO2, 300 ppm 
NO and 10% O2.  
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Figure B.3 XANES spectra of hexa-aquo Cu2+ ions in solution [Cu(H2O)6]2+ and bulk 
copper oxide (Cu(II)O). Both copper compounds have a formal oxidation state of +2. 
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Figure B.4EXAFS spectra for all Cu/SSZ-13 samples in this study in air under ambient 
conditions. 
 
 
 
Table B.2 The EXAFS fit parameters for all Cu-SSZ-13 samples in this study under 
ambient conditions (in air at room temperature). 

Sample 
Cu/Altot atomic 

ratio 
Treatmen

t 
Absorber - 

Scatter 
C
N 

R / 
Å 

Δσ2 / 10-3 
Å 

Eo / 
eV 

Cu-SSZ-
13 0.02 

RT, 
ambient Cu-O 

4.
0 1.94 2 -9.5 

Cu-SSZ-
13 0.04 

RT, 
ambient Cu-O 

3.
9 1.94 2 -10.3 

Cu-SSZ-
13 0.08 

RT, 
ambient Cu-O 

3.
9 1.94 2 -10.4 

Cu-SSZ-
13 0.16 

RT, 
ambient Cu-O 

4.
1 1.94 2 -10.2 

Cu-SSZ-
13 0.2 

RT, 
ambient Cu-O 

4.
1 1.94 2 -10.6 

Cu-SSZ-
13 0.35 

RT, 
ambient Cu-O 

4.
3 1.94 2 -11.2 

Cu-SSZ-
13 1.6 

RT, 
ambient Cu-O 

3.
3 1.77 2 6.26 
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Figure B.5 XANES spectra for a series of references used. These include XANES on 
[Cu(H2O)6]2+ ions dehydrated isolated Cu2+ ions in SSZ-13, dehydrated Cu1+ ions in SSZ-
13, and bulk copper oxide (Cu(II)O) 
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Figure B.6 FT-EXAFS for the isolated Cu2+ reference (in red) and isolated Cu1+ reference 
(in black). The isolated Cu2+ reference was generated by treating 0.3 wt% Cu-SSZ13 
(Cu/Al atomic ratio =0.02) in 10% O2 at 200°C. The first shell was identified as Cu – O 
scattering and the second shell was identified as Cu – Si scattering (Cu – O – Si).  The 
isolated Cu1+ reference was generated by treating 0.3wt% Cu-SSZ13 (Cu/Al atomic ratio 
= 0.02) in 1000 ppm NO + 1000 ppm NH3 at 200°C. 
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Table B.3 EXAFS fit parameters for isolated Cu(I) and isolated Cu(II). 
0.31% Cu EXAFS of Cu/SSZ-13 (Cu/Altot = 0.02) 

Sample  Treatment  XANES  Scatter  N  R, 
Å  

∆σ2 
(x 

103) 

Eo, 
eV 

Fraction 
Cu+2 

Fraction 
Cu+1 

Cu(II) RT, ambient  1.0  -  Cu-O  3.9  1.96  2.0  -8.5  

Cu(II) 10% O2 , 473 K  1.0  -  Cu-O  4.0  1.96  4.0  -7.5  

Cu(I) 1000 ppm NH3 + 
1000 ppm NO, 

473 K  

-  1.0  Cu-O  2.2  1.85  4.0  -5.1  
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Figure B.7 Optimized structure of the isolated exchanged Cu2+ ion. (a) 2 × 1 × 1 supercell 
4-ring 2NN Al site. (b) 2 × 1 × 1 supercell 6-ring 3NN Al site. (c) 2 × 1 × 1 supercell 8-
ring site 4NN Al site. (d) 1 × 1 × 1 supercell 4NN 8-ring site. (e) 1 × 1 × 1 supercell 3NN 
8-ring site. (f) 1 × 1 × 1 supercell 2NN 8-ring site. The sphere color coding is as in Figure 
S1. Number indicates optimized Cu-O distances in Å. 
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Figure B.8 Optimized Z4H2CuOCu structures in 2 × 1 × 1 supercell model. (a) 
3[CuOCu]2+ in the 4-ring 2NN Al site. (b) 3[CuOCu]2+ in the 6-ring 3NN Al site. (c) 
1[CuOCu]2+ in the 8-ring 4NN Al site. Sphere color coding is as in Figure S1. Numbers 
indicate optimized Cu-O distances in Å. 
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Figure B.9 Optimized ZCuOCuZ structures in 1 × 1 × 1 supercell model. (a) 3[CuOCu]2+ 
in the 8-ring 2NN Al site. (b) 3[CuOCu]2+ in the 8-ring  3NN Al site. (c) 3[CuOCu]2+ in 
the 8-ring 4NN Al site. Sphere color coding is as in Figure S1. Numbers indicate 
optimized Cu-O distances in Å. 
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Figure B.10 Optimized Z4H2CuO2Cu structures in 2 × 1 × 1 model. (a) 3[μ-1,2-O2Cu2]2+ 
in 4-ring 2NN Al site. (b)  3[μ-1,2-O2 Cu2]2+ in the 6-ring 3NN Al site. (c) 1[μ-η2:η2-
O2Cu2]2+ in the 8-ring 4NN Al pair site.  Sphere color coding is as in Figure S1. Numbers 
indicate optimized Cu-O distances in Å. 
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Figure B.11 Optimized [CuO2Cu]2+ structures corresponding to Figure 11. (a) 3[μ-1,2-
O2Cu2]2+ in the 8-ring 2NN Al site. (b) 3[μ-1,2-O2Cu2]2+ in the 8-ring 3NN Al site. (c) 
3[ μ-η2:η2-O2Cu2]2+ in the 8-ring 4NN Al site. The sphere color coding is as in Figure S1. 
Numbers indicate optimized Cu-O distances in Å. 
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Figure B.12 Optimized Z2Cu, Z2CuO, and Z2CuO2 structures corresponding to Figure 11. 
(a) Z2Cu in the 6-ring 3NN Al site. (b) 4Z2CuO in the same site. (c) 2Z2CuO2

 in the same 
site. The sphere color coding is as in Figure S1. Numbers indicate optimized Cu-O 
distances in Å. 
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Figure B.13 GGA-computed bulk Cu(II)O lattice parameters. Atom color coding as in 
Figure B.1. 
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Figure B.14 Optimized (CuO)x
2+ clusters (x = 3-5) inside the SSZ-13 zeolite cage. (a) 

4(CuO)3 cluster. (b) 1(CuO)4 cluster. (c) 2(CuO)5 cluster. The sphere color coding is as in 
Figure S1. Numbers indicate optimized Cu-O distances in Å. 
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Figure B.15 Optimized (CuO)x
2+ clusters (x = 6-8) inside the SSZ-13 cage. (a) 1(CuO)6 

cluster. (b) 3(CuO)7 cluster. (c) 4(CuO)8 cluster. The sphere color coding is as in Figure 
B.1 
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Figure B.16 (CuO)9 cluster inside the SSZ-13 cate. (a) Percolation of (CuO)9 across the 
zeolite cages. (b) (CuO)9 inside one channel of SSZ-13. (c) Optimized 2(CuO)9 cluster 
geometry values. The color coding for the spheres is as in Figure B.1. 
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Table B.4  Raw and Relative energies of isolated Cu(II) ions at different Al-pair locations. 
All energies are in eV. 

Al-pair sites From 2 × 1 × 1 supercell From 1 × 1 × 1 supercell 

 Raw Energy Relative Energy Raw Energy Relative Energy 

4-Ring -574.622 -0.37 -284.155 -0.37 

6-Ring -575.751 -1.51 -285.203 -1.42 

8-Ring – 4NN -574.246 0 -283.783 0 

8-Ring – 3NN  N/A N/A -283.550 0.23 

8-Ring – 2NN  N/A N/A -284.030 -0.25 

 

 

Table B.5 Molecular oxygen adsorption energy on various sites within the SSZ-13 zeolite 
structures. 

Model Multiplicity Cu-O Eads – GGA 
(eV) 

Eads – B3LYP 
corrected (eV) 

ZCuO2
a 2.9 1.965, 1.966 -0.61 -0.38 

Z2CuO2  2.0 2.618 -0.05  0.25 
Z2Cu2O2-2NN  3.0 1.822;1.874 -1.28 -0.67 
Z2Cu2O2-3NN  3.0 1.798;1.825 -1.91 -1.44 
Z2Cu2O2-4NN 3.0 1.947, 1.965; 

1.940, 1.990 
-2.05 -1.84 

Z2Cu2O2-4NN 1.0 1.865, 1.893; 
1.866, 1.895 

-2.06 -1.20 

a: McEwen et al. [24] 
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Figure B.17 EXAFS spectra for all Cu/SSZ-13 samples in this study under in-situ NO 
oxidation. Feed conditions: 300 ppm NO, 150 ppm NO2 and 10% O2.  
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Table B.6  EXAFS fit parameters for Cu-SSZ13 catalysts under NO oxidation 
Sample  Scatter  N  R, Å  ∆σ2 

(x 103) 
Eo, eV 

Cu/Al = 0.02 Cu-O  4.01 1.91 3.4 -12.5 

Cu/Al = 0.04 Cu-O  3.75 1.93 3.4 -10.3 

Cu/Al = 0.16 Cu-O  3.5 1.9 3.4 -11.3 

Cu/Al = 0.31 Cu-O 3.22 1.9 3.4 -11 

Cu/Al = 0.35 Cu-O 3.21 1.9 3.4 -11.65 

Cu/Al = 0.39 Cu-O 3.6 1.9 3.4 -11.7 

Cu/Al = 1.6 Cu-O 3.96 1.9 3.4 -11.32 
Feed Conditions: 300 ppm NO, 150 ppm NO2, 10% O2 and 573 K 

 
 
 
 
Determination of the rate expression for NO oxidation on Cu-SSZ-13 from the 
mechanism presented in Figure 3.11 
 
The mechanistic steps from the visual representation in Figure 3.11, is presented in detail 

below. On the assumption of step 2 to be an irreversible forward reaction and the rate 

determining step (R.D.S.), the rate of reaction can be derived as follows: 

 

 

 

 

 

 

Here,  

 * = A Cu-Cu pair without adsorbed oxygen. 
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L = Total number of Cu-Cu pairs available for NO oxidation catalysis. 

 

The rate of NO removal (from step 3)       2 2[ ][ *]NOr k NO O− =        

Expressing 2[ *]O  in terms of [*]  (Cu pair) using step 1, we get 2 1 2[ *] [ ][*]O K O=  

Thus, the rate of NO removal                2 1 2[ ][ ][*]NOr k K NO O− =  

A mass balance on all the paired Cu sites, 2 2[*] [ *] [ *] [ *]L O O NO= + + +  

We will now evaluate [ *]O from step 3  
1 1

3 4 2[ ][*][ *]
[ ]

K K NOO
NO

− −

=    

Using 1
2 4 2[ *] [ ][*]NO K NO−=   from step 4 

1 1
13 4 2

1 2 4 2
[ ][*][*] [ ][*] [ ][*]

[ ]
K K NOL K O K NO

NO

− −
−= + + +  

And, 1 1 1
3 4 2 1 2 4 2

[ ][*]
[ ] [ ] [ ][ ] [ ][ ]

L NO
NO K K NO K O NO K NO NO− − −=

+ + +
 

 

Substituting this in the final rate expression, we obtain: 
2

2 1 2
1 1 1

3 4 2 1 2 4 2

[ ] [ ]
[ ] [ ] [ ][ ] [ ][ ]NO

k K L NO Or
NO K K NO K NO O K NO NO− − −− =

+ + +
 

 

Defining the following surface coverage terms: 

*

1 1*
3 4 2

1 1 1
3 4 2 1 2 4 2

[ ][ ]
[ ] [ ] [ ][ ] [ ][ ]O

K K NOO
L NO K K NO K O NO K NO NO

θ
− −

− − −= =
+ + +

 

*
2

*
2 1 2

1 1 1
3 4 2 1 2 4 2

[ ] [ ][ ]
[ ] [ ] [ ][ ] [ ][ ]O

O K O NO
L NO K K NO K O NO K NO NO

θ − − −= =
+ + +

 

*
2

* 1
2 4 2

1 1 1
3 4 2 1 2 4 2

[ ] [ ][ ]
[ ] [ ] [ ][ ] [ ][ ]NO

NO K NO NO
L NO K K NO K O NO K NO NO

θ
−

− − −= =
+ + +

 

* 1 1 1
3 4 2 1 2 4 2

[*] [ ]
[ ] [ ] [ ][ ] [ ][ ]

NO
L NO K K NO K O NO K NO NO

θ − − −= =
+ + +

 

* * * *
2 2

1
O O NO

θ θ θ θ+ + + =     (Mass balance on all reactive sites) 
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By taking the derivative of ln( )NOr−  with respect to ln( )iC (where iC  is the concentration 

of NO, NO2 or O2), we obtain the following relations between the apparent reaction 

orders and surface coverage terms. 

* *
2 2

*2NO O NO
n θ θ θ= − − −  

*2 2
1O O

n θ= −  

* *2 2
( )NO O NO

n θ θ= − +  

 

 

The experimental apparent reaction orders at 300°C are NO = 1.6 ± 0.2, NO2 = -0.8 ± 

0.1and O2 = 0.9 ± 0.1 . Using these apparent reaction orders, we compute that the 

corresponding average reactive surface coverage terms are as follows: 

* 0.1θ = , *
2

0.1
O
θ = , *

2
0.2

NO
θ = , and * 0.6

O
θ = . These reactive surface coverage 

terms are consistent with the energetics of the mechanism proposed in Figure 11, i.e., O* 

is predicted to be the most stable intermediate during NO oxidation catalysis on Cu-SSZ-

13 consistent with its average reactive surface coverage of 0.6 shown in the kinetic 

analysis above. 
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Appendix C  Appendix for Chapter 4 

Catalyst Preparation 

The catalyst was prepared by ion exchange of Cu(NO3)2 into H-SSZ-13 zeolite powder.  

The H-SSZ-13 zeolite was synthesized in-house following the recipe published by Fickel 

et al.[30] based on the original synthesis of this zeolite by S. I. Zones [43].  The details of 

the zeolite synthesis, as well as comparisons with XRD in literature and atomic 

absorption spectroscopy (AA) characterization were discussed in a previous publication 

[25].  A solution of 970 mg of H-SSZ-13 in 40 mL of deionized (DI) H2O was stirred and 

heated to 313 K for 30 min.  After dropwise addition of a solution of 47 mg of Cu(NO3)2 

(Alfa-Aesar) dissolved in 10 mL of DI H2O;  more DI H2O was added to bring the total 

solution volume to 200 mL.  The mixture was allowed to stir for 300 min while the pH 

was maintained between 5 and 5.2 by dropwise addition of 0.1 M NH4OH (Sigma 

Aldrich, Cat. No. 221228-2L-A).  The resulting slurry went through three centrifuge and 

rinse cycles with de-ionized (DI) water before vacuum drying for 540 min at ambient 

temperature.  After drying, the catalyst was calcined with 80 sccm dry air (Comm. Grade, 

Indiana Oxygen) at 798 K for 360 min with a 0.5 K min-1 ramp rate.  The zeolite was 

determined to have a silicon to aluminum atomic ratio (Si:Al) of 4.5 by atomic absorption 

spectroscopy, and the two samples tested in this study had 2.1 and 3.04 wt.% Cu 

corresponding to copper to aluminum atomic ratios (Cu:Al) of 0.11 and 0.16, respectively.   

 

Operando XAS reactor 

Operando XAS experiments were performed in a custom built, down-flow, fixed-bed, 

plug-flow reactor using a low X-ray absorbing vitreous carbon tube reactor.  The design 

and implementation of the reactor have been discussed in detail in previous publications 

[25, 61].  The carbon tube reactor (10 mm x 4 mm x 200 mm OD x ID x L) was held 

inside an aluminum heater block which had 25 mm long x 2 mm wide slits cut into the 

side to let the X-ray beam pass through the block and sample within the tube.  Four 5” 

long, 100W heat cartridges (Chromalux CIR-1051) were used to heat the block.  A wire 
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mesh welded to a piece of 1/16” tubing was used to hold the catalyst bed in place.  From 

bottom to top, the catalyst bed was composed of a layer of quartz wool on top of the wire 

mesh, a layer of glassy carbon beads, the same material as the reactor tube, to create a flat 

surface upon which the catalyst could sit, followed by 8 - 20 mg of catalyst powder 

sieved to 125-250 µm, then another layer of quartz wool followed by a layer of crushed 

quartz (< 60 mesh) to help break up gas flow.  The catalyst bed height was roughly 3 mm, 

and while this bed size was small compared to the bed diameter, the quality of the 

kinetics was not affected.  An extensive discussion and comparison of the operando 

reactor with a conventional, bench top laboratory reactor can be found in our previous 

publication [25].     

 

Temperature was measured with a thermocouple fed into the reactor and placed into the 

top layer of quartz wool just above the catalyst bed.  Gases were mixed and introduced 

into the reactor in precise order to prevent the formation of NH4NO3 and other side 

reactions.  The ultra high purity He (Airgas, Inc.) carrier gas flowed through a heated 

shell-type humidifier (Perma Pure MH-Series) to introduce DI H2O into the gas stream.  

All gas lines downstream of the humidifier were kept heated above 373 K to prevent H2O 

condensation.  After H2O introduction, NO (3000 ppm in N2; Matheson Tri-Gas) was 

introduced into the gas stream, followed by the introduction of O2 (20% in He; Airgas, 

Inc.).  The reaction mixture was then preheated to 473 K.  The reactor was found to be 

well below the Mears criterion for radial heat transfer gradients within the catalyst bed 

[25, 156, 157].  Ammonia (3000 ppm in He; Matheson Tri-Gas) was introduced through 

a feed tube which injected the gas a few inches above the catalyst bed to minimize the 

chances of gas phase side reactions.  When the feed gas concentrations were measured by 

bypassing the reactor, the NH3 was switched such that it was introduced into the gas 

mixture moments before passing through a 7 µm stainless steel particulate filter and 

entering the gas analysis system.  Gas concentrations were measured using an MKS 

Multi-Gas 2030 gas analyzer FTIR with a cell temperature of 464 K based on stock 

calibration files.  A total flow rate of 500 sccm and a temperature of 473 K were 

maintained throughout all of the experiments.  The Standard SCR contained 300 ppm NO, 
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300 ppm NH3, 5% H2O and 10% O2. Contrary to our previous experiments, CO2 was not 

included as a reactant, because it was used as a tracer in the cut-off experiments. The 

presence or absence of CO2 as a reactant was found to have no effect on the catalyst 

kinetics. This is evident from Figure S1 and Table S1. 

 
Figure C.1 Activation energy plot for a 1.7 wt.% Cu-SSZ-13 (Cu:Al = 0.09) under 
standard SCR 320 ppm NO, 320ppm NH3, 7% H2O, 10% O2, balance He with (blue 
diamonds) and without (red squares) 8% CO2 in the feed. Data were collected over 433-
473 K at a total flow of ~1500 ml min-1. 
 
Table C.1Measured activation energy, pre-factor and rate for a 1.7% Cu-SSZ-13 (Cu:Al 
= 0.09) catalyst under standard SCR gas conditions with and without CO2 in the feed. 

Sample Ea / kJ mol-

1 
ko / 104 s-

1 
Rate (473 K) / 10-3 
mol NO mol Cu-1 s-1 

 Standard SCR with CO2 64 9.7 7.43 

Standard SCR without 
CO2 

64 8.2 7.47 

 

The cutoff experiments were designed to dynamically isolate the reducing or oxidizing 

portion of the SCR reaction.  Each portion of the SCR redox cycle was isolated by 

systematically cutting off individual reactants, and the state of the catalyst was observed 

through XANES in the new non catalytic steady state.  For example, if redox of Cu were 
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central to the standard SCR reaction, the catalyst, which starts in a mixed CuI – CuII 

oxidation state under steady state standard SCR, should become more reduced when the 

oxidant is removed.  Correspondingly, the catalyst should become more oxidized when a 

reductant is removed.  Three different cutoff experiments were designed to test this 

hypothesis.  For each experiment, the catalyst was first allowed to come to steady state 

under the standard SCR reaction, at which point steady state XAS and kinetic data were 

collected. After steady state data were collected, one of the reactants was cut off from the 

gas flow and the transient changes in catalyst and gas compositions were monitored by 

time-dependent XAS and the FTIR gas analyzer, respectively.  Reactant addition 

experiments to enable standard SCR in the final steady state, were performed separately 

and the results were completely reversible. For these experiments, CO2 was used as a 

tracer to track the exchange of gases throughout the gas holdup of the system upon cutoff 

of one of the reactants.    

 

In the O2 cutoff experiment, O2 was cut off from the standard SCR reaction mixture, 

isolating the reducing portion of the reaction, NO + NH3.  In the NO cutoff experiment, 

NO was cut off from standard SCR, interrupting the reducing portion of the reaction and 

only allowing oxidation by O2 in the presence of NH3.  lastly, the NH3 was removed to 

disrupt the reducing portion again and complete the series of reactant cutoffs from 

standard SCR.  For all steady state standard SCR conditions, the catalyst was maintained 

under approximately differential conditions of less than 20% conversion of NO. 

 

Only minor modifications to the gas manifold feeding the operando reactor needed to be 

made to allow for consistent switching.  The most important aspect of the switch was to 

maintain the same total overall flow rate, so that gas concentrations remained unchanged.  

The gas switch was performed using an electronically actuated 2 position, 6-port 

switching valve (Valco Instrument Company, Inc.; Model E26UWE).  In one position, 

the valve would feed the cutoff gas into the reactor.  In the other position the valve would 

feed a mixture of CO2 and He with the same total flow rate as the cutoff gas into the 

reactor.   

 



174 

Reaction rate reproducibility 

In order to ensure that the Cu-SSZ-13 catalysts were performing as expected, we 

compared the rate of standard SCR, under differential conditions, between two reactors. 

The first reactor was a steady state plug flow system used to measure standard SCR 

kinetics in the laboratory. The second involved the operando XAS unit with a glassy 

carbon tube. The reaction rates for the catalyst in the glassy carbon tube were collected 

during spectroscopic measurements at the beamline. Figure S1 reports the variation of the 

rate of standard SCR per gram catalyst with Cu:Al (dark green squares) as measured by 

Bates et al.[135] A linear trend till Cu:Al = 0.2 which shows that the rate is directly 

proportional to the number of active sites, i.e. isolated Cu ions and by the Koros-Nowak 

test[70], this kinetic data-set is free of all  mass transfer effects. This results in a constant 

turnover rate (TOR) among catalysts with Cu:Al < 0.2. Catalysts with Cu:Al = 0.09 and 

0.16 were tested independently at the beam line in glassy carbon tubes and their rates are 

overlaid over the laboratory PFR data points in Figure S2. There is agreement in between 

the rates measured at the beam line and the rates measured in the laboratory, which 

indicates that the results are reproducible (Table S2). The standard feed conditions in 

both reactors were 300 ppm NO, 300 ppm NH3, 10% O2, 5% H2O, 5% CO2, at 473K. 
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Figure C.2 Comparison of the standard SCR rate per gram catalyst on catalyst samples 
measured at the APS beamline (red squares) and in the laboratory (green squares). Feed 
conditions: 300 ppm NO, 300 ppm NH3, 10% O2, 5% H2O, 5% CO2, at 473K. 
 

Table C.2 Comparison of standard SCR reaction rates for Cu-SSZ-13 catalysts tested in 
the laboratory and at the APS beam line 

Sample Rate (473 K) / 10-6 mol 
NO g cat-1 s-1(Laboratory) 

Rate (473 K) / 10-6 mol 
NO g cat-1 s-1(Beamline) 

Cu:Al = 0.11 2 1.4 

Cu:Al = 0.16 2.9 2.6 
Feed conditions: 300 ppm NO, 300 ppm NH3, 10% O2, 5% H2O, 5% CO2, at 473K. 
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X-ray Absorption Spectroscopy 

X-ray absorption spectroscopy (XAS) experiments were performed at Sector 10 of the 

Advanced Photon Source, the Materials Research Collaborative Access Team (MR-CAT), 

of Argonne National Laboratory.  The insertion device beamline at Sector 10 (10-ID) was 

necessary for the operando experiments due to the high photon flux available at the 

beamline. This capability allowed for time-dependent and positional measurements along 

the length of the catalyst bed with a 200 x 200 µm beam size without compromising data 

quality.  Incident X-rays were measured in an ion chamber filled with 20% He in N2 

while the transmitted beam was measured in an ion chamber with 20% Ar in N2 to obtain 

roughly 70% absorption of the beam after the sample.  A third detector was used to 

simultaneously measure a Cu metal foil reference with each spectrum.  The Cu metal foil, 

8979 eV edge energy, was used to calibrate the X-ray beam for the Cu absorption K edge.  

All data was normalized with a 1st-order polynomial subtraction of the pre-edge and 3rd-

order polynomial subtraction of the post edge backgrounds.  Total absorption (µx) due 

only to the sample and carbon tube reactor was around 1.2-1.3, with a step height (Δµx) 

of around 0.9.  Data was collected in quick scan mode with an energy range between 

8730 to 9890 eV, and each spectrum took 2 min and 15 s or 2 min and 22 s to complete.  

The edge energy was reached approximately 32 s after the start of the scan.  The Cu K-

edge X-ray absorption near edge spectroscopy (XANES) has four distinct features 

indicative of the various electronic transitions in our samples.  The different features 

represent Cu(I) and Cu(II) oxidation states, and since XAS is a bulk technique, the 

spectrum represents a linear combination of the spectra for each oxidation state.  The first 

peak is centered at 8977 eV and is representative of the symmetry forbidden 1s → 3d 

transition of Cu(II) atoms which becomes an allowed transition when mixing of the 3d 

and 4p orbitals occurs [52].  The peak centered around 8983 eV (has been known to be 

present from 8982-8985 eV) represents the 1s → 4p transition of two-coordinate Cu(I) 

atoms and there is literature evidence for this in an array of environments including Cu-

ZSM-5 in HC-SCR [53, 54] and NO decomposition [55, 56], Cu-Y-Zeolite [158], Cu-

SAPO-5 and Cu-SAPO-11 in HC-SCR [58], as well as Cu(I) ammine complexes [59, 60] 

and a large number of ligated organic compounds [52].  The edge feature occurring at 
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8987 eV represents the 1s → 4p electronic transition of Cu(II) atoms [54].  Finally, the 

white line intensity is also indicative of Cu(II), with lower white line intensity 

corresponding to a loss of Cu(II). 

 

References used for Linear Combination XANES Fits within this study 

Three references were utilized.  The first was a hydrated CuII species, [Cu(H2O)6]2+, 

which we have observed to be the primary state of Cu in low loadings at room 

temperature in air, thus it was reasonable to include it in the references.  The isolated CuII 

and isolated CuI were obtained with a 0.31 wt% Cu-SSZ-13 sample (Cu:Al = 0.02), 

which was the lowest we were able to achieve in the lab.  The assumption for this sample 

was that it contained only the isolated Cu species at the very lowest loadings.  The 

isolated Cu(II) reference was obtained in situ with 10% O2/UHP He at 473 K.  The 

isolated CuI reference was obtained in situ with 1000 ppm NO and 1000 ppm NH3 at 473 

K.  Figure S3 shows the resulting XANES region used for linear combination fits.  The 

EXAFS were observed to behave as expected in Figure S4 and Table S3.  Under the 

reducing conditions of NO and NH3, the Cu-O coordination was 2.2 (or 2, with error), 

which was what we expected for an isolated CuI.  Additionally, the oxidizing 

environment of O2 gave a coordination of 4, which was as expected as well. 
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Figure C.3 Reference spectra used for linear combination XANES fits.  Hydrated CuII 
corresponds to a solution of [Cu(H2O)6]II under ambient conditions.  A 0.31 wt% Cu-
SSZ-13 sample (Cu:Al = 0.02) was used for isolated CuII with 10% O2 at 473 K and for 
the isolated Cu(I) with 1000 ppm NO + 1000 ppm NH3 at 473 K. 
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Figure C.4 EXAFS spectra for the isolated CuII (red) and isolated CuI (black) references.  
Solid lines indicate the Fourier transform magnitude.  Dotted lines indicate the imaginary 
contribution. 
 

Table C.3 EXAFS fit parameters for isolated CuI and isolated CuII. 
EXAFS of 0.31% Cu-SSZ-13 (Cu:Al = 0.02) 

Sample Treatment XANES Scatter N R / 
Å 

∆σ2 
(x 103) 

Eo / 
eV 

Fraction 
CuII 

Fraction 
CuI 

CuII RT 1.0 - Cu-O 3.9 1.96 2.0 -8.5 

CuII 10% O2 , 473 K 1.0 - Cu-O 4.0 1.96 4.0 -7.5 

CuI 1000 ppm NH3 + 
1000 ppm NO, 

473 K 

- 1.0 Cu-O 2.2 1.85 4.0 -5.1 
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Operando XAS spectra for Cu-SSZ-13 catalysts under various gas conditions 

XANES spectra as a function of time for NH3 cut-off from standard SCR 

 

Figure C.5 Time resolved XAS of the Cu:Al = 0.16, Cu-SSZ-13 catalyst after NH3 was 
cut off from the standard SCR reactant stream.  To clearly present the data, spectra are 
not linear in time resolution.   

 

Figure C.6 Time resolved XAS of the Cu:Al = 0.11, Cu-SSZ-13 catalyst after NH3 was 
cut off from the standard SCR reactant stream.  Inset zooms in on the edge feature at 
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~9.9828 keV, the identifying feature of CuI species. To clearly present the data, spectra 
are not linear in time resolution. 
 

XANES spectra as a function of time for NO cut-off from standard SCR 

 

Figure C.7 Time resolved XAS of the Cu:Al = 0.16, Cu-SSZ-13 catalyst after NO was 
cut off from the standard SCR reactant stream.   

 

Figure C.8 Time resolved XAS of the Cu:Al = 0.11, Cu-SSZ-13 catalyst after NO was 
cut off from the standard SCR reactant stream.  Inset zooms in on the edge feature at 
~9.9828 keV, the identifying feature of CuI species.   
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XANES spectra as a function of time for O2cut-off from standard SCR 

 

Figure C.9 Time resolved XAS of the Cu:Al = 0.16, Cu-SSZ-13 catalyst after O2 was cut 
off from the standard SCR reactant stream.   

 

Figure C.10 Time resolved XAS of the Cu:Al = 0.11, Cu-SSZ-13 catalyst after O2 was 
cut off from the standard SCR reactant stream.  Inset zooms in on the edge feature at 
~9.9828 keV, the identifying feature of CuI species.  To clearly present the data, spectra 
are not linear in time scale. 
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Table C.4 Table of XANES linear combination fits for each reactant cutoff experiment. 
The conditions analyzed correspond to the steady state value (SS value) of standard SCR 
and the new SS value after the reactant is removed. 

Cu:A
l 

Experimen
t Condition 

Hydrated CuII 
/ % 

Isolated 
CuII 
/ % 

Isolate
d 

CuI / % 

Total 
CuII 
/ % 

0.11 
 
 
 
 
 
 
 
 
 
 
 

O2 Cutoff 

SS Value 7 64 29 71 

After O2 Cutoff 1 23 76 24 

NO Cutoff 

SS Value 8 65 27 73 

After NO Cutoff 10 78 12 88 

NH3 
Cutoff 

SS Value 3 73 24 76 

After NH3Cutoff 41 55 4 96 
 
 
 

0.16 
 
 
 
 
 
 
 
 
 
 
 

O2 Cutoff 

SS Value 4 60 36 64 

After O2 Cutoff 0 5 95 5 

NO Cutoff 

SS Value 4 62 34 66 

After NO Cutoff 6 79 15 85 

NH3 
Cutoff 

SS Value 4 59 34 63 

After NH3 
Cutoff 48 47 5 95 

* ±5% error associated with each LC XANES fit. 
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Quantification of different Cu ion configurations during NH3 cut-off from standard SCR 
for Cu:Al = 0.11 

 

Figure C.11 Variation of the % of Cu present in different configurations as a function of 
time after NH3 cut-off from steady state standard SCR over Cu-SSZ-13 with Cu:Al = 
0.11 
 

Counting available Brønsted acid sites on Cu-SSZ-13 with predominantly a CuI or CuII 
oxidation state. 

 
From Figure 1, we have shown that isolated Cu ions in Cu-SSZ-13 can be made to attain 

predominantly CuI or CuII oxidation states, depending on an appropriate choice of gas 

conditions. The CuII oxidation state in Cu-SSZ-13 is achieved by pre-treating the catalyst 

with 10% O2 at 473K for 120 minutes. Using separate XAS results (detailed in S5, 

supporting information), the Cu ions remain in the CuII oxidation state. Moreover, for 

these catalysts with Cu:Al < 0.2 (for Si:Al = 4.5), CuII ions require two Brønsted acid 

sites for stabilization[26]. There is, however, a measurable number of excess Brønsted 

acid sites which do not stabilize Cu ions and recently we devised methods to efficiently 
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count these excess Brønsted acid sites[26] on a predominantly CuII oxidation state of Cu-

SSZ-13.  

 

Results in this contribution point toward the reduction of isolated CuII ions to form 

predominantly isolated CuI ions by contacting them with an equimolar combination of 

NO and NH3(results detailed in Figures 1 and S5). In particular, the Cu-SSZ-13 catalyst 

was contacted with 500 ppm NO + 500 ppm NH3 in a balance of He gas (UHP grade, 

Indiana Oxygen, total flow rate = 350 ml min-1) at 473 K for 120 minutes. This time 

period was enough to reduce the CuII to a predominantly CuI oxidation state. Moreover, 

the Cu ions in the CuI oxidation state require only one Brønsted acid site for stabilization, 

thus exposing the second Brønsted acid site, proximal to that CuI ion. Thus, based on the 

stoichiometry of Cu ion reduction, the number of excess Brønsted acid sites should be 

equal to the total number of isolated CuI ions (according to equation S1). 

 

II ICu Cu H +→ + (S1) 

 

In order to stabilize NH4
+ ions on these Brønsted acid sites, the temperature was reduced 

to 423 K under  500 ppm NO + 500 ppm NH3 mixture. Subsequently, the NO + NH3 

mixture was replaced by 500 ppm NH3, with the same flow of total gas (350 ml min-1). 

This process was sustained for 120 minutes, after which NH3 was shut-off and the 

catalyst was flushed with 350 ml min-1 of He for the next 480 minutes. This was done to 

retain only NH4
+ ions on Brønsted acid sites. After the flush, a temperature programmed 

desorption (in He) was performed from 423 K to 820K (shown in Figure S12) and the 

total moles of NH3 desorbed was quantified (Table S5). As verified by Bates et al.[26], 

the total moles of NH3 desorbed were taken to be the total number of Brønsted acid sites 

on Cu-SSZ-13. Comparing this result with the correspondingNH3 count from a TPD on 

the CuII oxidation state of Cu-SSZ-13 resulted in an excess number of Brønsted acid sites 

which was quantified and reported. 
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Figure C.12a The NH3 desorption profile of the predominantly CuI and CuII oxidation 
states of Cu-SSZ-13, for Cu:Al = 0.2, Cu wt% = 3.75 %. 
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Figure C.13 The NH3desorption profile of the predominantly CuI and CuII oxidation 
states of Cu-SSZ-13, for Cu:Al = 0.12, Cu wt% = 2.36 %. 
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A careful observation of the NO + NH3 treatment of isolated CuII ions in SSZ-13 at 473 

leads to a predominant amount of isolated CuIions. This procedure, however, does not 

lead to a quantitative reduction of Cu ions. For example, from Figure 1 and Table S4, 

after the NO + NH3 reduction, the percentage of CuI ions in Cu-SSZ-13 with Cu:Al = 

0.11 is around 76%, while it is around 95% CuI ions for Cu:Al = 0.2. We would expect 

reduction of all CuII ions to CuI, but through operando XANES (Figure 1), a finite, non 

zero number of isolated CuII ions remain in the system. We would expect that the same 

protocol when applied to produce CuI ions in Cu-SSZ-13 catalysts with Cu:Al ratios 

similar to 0.11 and 0.16, would lead to reduction of less than 100% of CuII ions. This 

leads to excess H+ : Al counts which are lesser than the CuII:Al ratios. In fact, it would be 

equal to the CuI : Al ratios shown by the stoichiometry of Equation S1. 

 

As a result, for Cu-SSZ-13 with Cu:Al = 0.12 (tested in this experiment), we would 

expect on an average, only 76% of CuII sites have reduced to CuI, thereby making the 

CuI : Al ratio to be 0.12 x 0.76 = 0.09. Similarly, for Cu:Al = 0.2, on average, 95% of Cu 

ions get reduced in the NO + NH3 treatment, which leads to CuI : Al = 0.2 x 0.95 = 0.19. 

As a result, the CuI : Al ratios must match with the experimentally obtained excess H+ : 

Al ratios for each catalyst, which verifies the stoichiometry of Equation S1. 

 

Table C.5 Quantification of H+:Al for Cu-SSZ-13 catalysts prepared in such a way to 
stabilize either CuII ions or CuI ions predominantly. 

 

Catalyst CuII : 
Al 

% of CuII ions 
reduced to CuI 

ionsa 

CuI : Al  H+ : Al Excess H+ : Al 

CuII – 
SSZ-13  

0.2  -- -- 0.32 ± 
0.03 

0.21 ± 0.03 

CuI / H+ - 
SSZ-13  

0.2  95% 0.19 0.53 ± 
0.03 

CuII – 
SSZ-13  

0.12  -- -- 0.37 ± 
0.03  

0.09 ± 0.03 

CuI / H+ - 
SSZ-13  

0.12  76% 0.09 0.46 ± 
0.03  
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a : based on expectation from catalysts with similar Cu:Al ratios as shown in Figure 1 and 
Table S4 

Computational Details 

Structural Optimizations 

Periodic density functional theory (DFT) calculations were performed using the Vienna 

ab-initio Software Package (VASP)[15].  Core states were treated using the projector 

augmented wave (PAW) method[16].  Structural optimizations were first performed using 

the PW91 exchange-correlation functional to give an initial structure guess for a HSE06 

calculation.  The HSE06[17] exchange-correlation functional was used with a screening 

parameter of HFSCREEN=0.2. The supercell used in this work is reported elsewhere [6].  

Plane waves were included up to a cutoff of 400 eV and the Brillouin zone sampled at the 

gamma point.  Electronic energies were converged to within 10-6 eV and optimized 

geometries relaxed until the forces minimized to less than 0.03 eV/Angstrom.  

 

Frequency Calculations 

Vibrational frequencies were obtained from the PW91 optimized structures using the 

PW91 exchange-correlation functional.  These frequencies were used to calculate the 

zero-point vibrational energy of species and their vibrational contributions to the free 

energy at 473 K under the harmonic oscillator assumption (see S.12). 

 

Ab-Initio Molecular Dynamics (AIMD) 

AIMD calculations were performed using the Car-Parnello Molecular Dynamics 

software[18].  Born-Oppenheimer Molecular Dynamics at 473 K using a Nose-Hoover 

thermostat and a time-step of 0.5 femtoseconds for a duration of 20000 time steps in the 
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NVT ensemble was used to sample starting structures and for potential of mean force 

calculations.  The supercell used for AIMD was equivalent to that used in VASP.  The 

PBE exchange-correlation and ultrasoft pseudopotentials were used.  A 30 Rydberg 

cutoff was used and energies converged to within 5x10-6 eV. 

 

HSE06-optimized Structures 

Si-Yellow Al-Green O-Red Cu-Gray N-Blue H-White 

Cu 

 

 

 

CuNH3 
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NH3 Potential of Mean Force 

To calculate the free energy of adsorption for NH3 on 6-MR CuII, 36 independent AIMD 

simulations were run using the previously reported computational details in addition to 

constraining the Cu-N distance at fixed 0.1 Angstrom intervals.  The force associated 

with this constraint was sampled each time step and integrated over the distance to 

construct the potential of mean force.  Error was estimated from block averaging. 

 



199 

 

 

 

 

 

 

 

Density of States 

Density of states for select adsorbed species.  The charge reported in the lower right hand 

corner comes from the normalized Bader charge analysis. 

 



200 

 

 

 

 

 



201 

Free Energy Calculations 

Gas phase free energies were calculated using the ideal gas, rigid rotor, and harmonic 

oscillator approximations.  Adsorbed species vibrational free energy calculations were 

computed under the harmonic oscillator assumption.  In the mobile case the two lowest 

vibrational modes associated with the adsorbed species were discarded.  The mobile 

model assumes that adsorbed gas species retain 2/3 of their gas phase translational 

entropy as calculated by the Sackur-Tetrode equation.   The immobile model assumes the 

adsorbed species retains only harmonic vibrational contributions to entropy. 

 

Adsorption on Isolated CuII : 
 

Free energies (G) were calculated using both the mobile and immobile approximations 

described above and are listed in columns 2 and 3.  In column 4 E represents the HSE06 

calculated 0K binding energy. The normalized Density of States (DOS) and Bader 

Charge calculated on the Cu after adsorption are listed in columns 5 and 6. 

 

 

Adsorption on Isolated CuI: 
 

Free energies (G) were calculated using both the mobile and immobile approximations 

described above and are listed in columns 2 and 3.   In column 4 E represents the HSE06 

calculated 0K binding energy.  The normalized Density of States (DOS) and Bader 

Charge calculated on the Cu after adsorption are listed in columns 5 and 6. 
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Reaction Mechanism Energies 

Reaction Scheme Energies: 
 

Calculated reaction free energies and standard state (1 atm) reaction free energies for 

Scheme 1 are listed in columns 2 and 3.  The HSE06 calculated 0K reaction energies are 

listed in column 4.  The equilibrium constants corresponding to the appropriate standard 

state reaction free energies are listed in column 5. 
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Rate Determining Step Results 
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Appendix D  Permissions for Reprint. 

 

Chapter 2 & Appendix A has been reprinted with permission from (S.A. Bates, A.A. 

Verma, C. Paolucci, A.A. Parekh, T. Angarra, A. Yezerets, W.F. Schneider, J.T. Miller, 

W.N. Delgass, and F.H. Ribeiro, Identification of The Active Cu Site in Standard 

Selective Catalytic Reduction with Ammonia on Cu-SSZ-13, J. Catal., 312 (2014) 87 – 

97) Copyright (2014) Elsevier Inc. 

 

Chapter 3 & Appendix B has been reprinted with permission from (A.A. Verma, S.A. 

Bates, T. Angarra, C. Paolucci, A.A. Parekh, K. Kamasamudram, A. Yezerets, J.T. Miller, 

W.N. Delgass, W.F. Schneider, and F.H. Ribeiro, NO Oxidation : A Probe Reaction on 

Cu-SSZ-13, J. Catal., 312 (2014) 179 – 190). Copyright (2014) Elsevier Inc. 

 

Chapter 4 and Appendix C has been reprinted with permission from C. Paolucci, A.A. 

Verma, S.A.Bates, V.F.Kispersky, J.T.Miller, R. Gounder, W. Nicholas Delgass, F.H. 

Ribeiro, and W.F. Schneider, Isolation of the Copper Redox Steps in the Selective 

Catalytic Reduction on Cu-SSZ-13, Angew. Chem.. doi 10.1002/ange.201407030  

 

Chapter 5 is currently under preparation to be submitted as a research note in ACS 

catalysis. 
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