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ABSTRACT

Tabb, Amy Ph.D., Purdue University, December 2014. Shape from Inconsistent Sil-
houette: Reconstruction of Objects in the Presence of Segmentation and Camera
Calibration Error. Major Professor: Johnny Park.

Silhouettes are useful features to reconstruct the object shape when the object is

textureless or the shape classes of objects are unknown. In this dissertation, we ex-

plore the problem of reconstructing the shape of challenging objects from silhouettes

under real-world conditions such as the presence of silhouette and camera calibration

error. This problem is called the Shape from Inconsistent Silhouettes problem. A

psuedo-Boolean cost function is formalized for this problem, which penalizes differ-

ences between the reconstruction images and the silhouette images, and the Shape

from Inconsistent Silhouette problem is cast as a psuedo-Boolean minimization prob-

lem. We propose a memory and time efficient method to find a local minimum solution

to the optimization problem, including heuristics that take into account the geometric

nature of the problem. Our methods are demonstrated on a variety of challenging

objects including humans and large, thin objects. We also compare our methods to

the state-of-the-art by generating reconstructions of synthetic objects with induced

error.

We also propose a method for correcting camera calibration error given silhouettes

with segmentation error. Unlike other existing methods, our method allows camera

calibration error to be corrected without camera placement constraints and allows

for silhouette segmentation error. This is accomplished by a modified Iterative Clos-

est Point algorithm which minimizes the difference between an initial reconstruction

and the input silhouettes. We characterize the degree of error that can be corrected

with synthetic datasets with increasing error, and demonstrate the ability of the cam-
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era calibration correction method in improving the reconstruction quality in several

challenging real-world datasets.



1

1. INTRODUCTION

The reconstruction of the shape of objects without a reliable prior information is a

problem encountered in diverse applications. Particularly when objects of interest

are textureless, silhouette features may be used to reconstruct objects’ shape when

there are many cameras, accurate silhouettes, and no concavities in the object.

The work contained in this dissertation aims to use silhouette features to re-

construct various challenging classes of objects, including leafless trees. The recon-

struction of leafless trees is necessary for some agricultural applications, such as

robotic pruning and phenotype classification. These trees do not have concavities

and since they lack distinctive texture, photo consistency approaches such as those

in [1], [2], [3], [4], [5], return little useful information. See Figure 1.1 for an example

of a challenging object, with a corresponding silhouette.

(a) Original image (b) Silhouette image

Fig. 1.1.: An example of a color image of a thin, textureless object, with a corre-
sponding silhouette with segmentation error.
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There has been a great amount of work on the general shape from silhouette

problem, stemming from the theoretical background of the visual hull (VH) [6]. The

visual hull is a type of SfS reconstruction generated by intersecting the backprojected

silhouette viewing cones of N cameras [6]. The VH method can be implemented in

fast algorithms for either voxel-based or polyhedral-based representations [7], [8], [9],

[10], [11], [12], and allows the use of silhouettes when other features are not available

or reliable.

In real-world applications, silhouette or camera calibration error is often present,

and SfS approaches based on the visual hull theory are ill-equipped to deal with this

error, particularly false negatives (false negatives are pixels that are marked back-

ground but represent the target object). Reconstructions of thin objects are partic-

ularly sensitive to the effects of silhouette errors, whether from silhouette extraction

errors, noise, or camera calibration error, because the two-dimensional projections of

thin objects may be only a few pixels wide. As a result, small errors in silhouette ex-

traction can have large effects on the accuracy of an intersection-based reconstruction.

In addition, voxel and pixel resolution settings, even when silhouettes are accurate,

can produce intersection-based reconstructions that fail to reconstruct many portions

of thin objects.

When a reconstruction resembles the original object, we call it a representative

reconstruction. Given these preliminaries, a statement of our goals are: develop

methods to reconstruct the shape of a variety of objects from silhouette images, when

silhouette segmentation and camera calibration error are present, without camera

placement restrictions. Furthermore, develop a method to correct camera calibration

error in this context and improve reconstruction accuracy. We consider a solution to

these goals to be the final step of a three-dimensional reconstruction system.

The set of input silhouettes may take one of two different forms. In the first,

silhouette images are binary-valued. We call this problem the Shape from Inconsistent

Silhouette (SfIS) problem.1 The second is Shape from Silhouette Probability Maps

1What we call SfIS is the same as SfS-IS (Shape from Silhouette with Inconsistent Silhouettes) from
Landabaso et al. in [13].
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(SfSPM); instead of binary silhouettes, silhouette probability maps (SPMs) are given

as input, where the probabilities that the pixels represent the object are continuously-

valued. SPMs are used to avoid making early committments to one label or the other.

In this dissertation, SfIS is considered a special case of the SfSPM problem, where

the probabilites are restricted to binary values. We refer to a particular dataset with

binary probability maps as an instance of the SfIS problem; conversely datasets with

continuous probability maps are referred to as instances of the SfSPM problem.

Our approach to SfSPM is to penalize false positive and false negative SPM error

equally. To that end, we give a pseudo-Boolean error function (f : Bn �→ R, where

B = {0, 1} and R denotes the set of real numbers) that characterizes the match

between the SPMs and the reconstruction as the pixel-by-pixel differences between

the SPMs and the image of the reconstruction. This error function penalizes false

positive and false negative error equally, unlike the SfS approach.

The error function is non-submodular, and to minimize a non-submodular pseudo-

Boolean function is NP-Hard (unless P=NP).2 Consequently, we focus on local mini-

mum search methods to find representative reconstructions from SPMs, and describe

a local minimum search algorithm that uses heuristics developed for SfSPM.

For camera calibration correction in SfIS, previous works either assume that the

cameras are placed in a circular configuration, or that silhouettes are accurate and

complete. These assumptions are not valid for the scenarios we consider with seg-

mentation error, unrestricted camera placement, and large objects where one camera

may view only a portion of the object.

We propose a camera calibration correction procedure that is not dependent on

epipolar constraints. As mentioned previously, the use of epipolar constraints as-

sumes that silhouettes are relatively accurate and reflect the complete object. Our

approach is to minimize the projection error of the reconstruction and the silhou-

ettes, using a three-step procedure. In the first stage, an initial reconstruction is

estimated using a reconstruction method for SfIS, such as the local minimum search

2We discuss this in more depth in Section 2.2.
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methods we propose. Then, the SfIS reconstruction is aligned to the input silhouettes

using an Iterative Closest Point (ICP) approach. The resulting 3D-2D ICP optimiza-

tion problem is non-linear, so we use the Levenberg-Marquadt method for finding an

approximate solution. Then a new SfIS reconstruction is found using the updated

camera calibration parameters.

Our contributions to the state-of-the-art on SfIS, SfSPM, and the reconstruction

of challenging objects are as follows:

1. The formulation of the SfSPM (and by extension, SfIS) problem as a pseudo-

Boolean optimization problem where false negative and false positive error is

equally weighted.

2. Introduce local minimum search algorithms of pseudo-Boolean optimization to

the SfSPM problem and show how heuristics developed for SfSPM allow for

lower values of the error function to be found.

3. A method for correcting camera calibration error in a SfIS context with partial

silhouettes and general camera placement. The method allows two different

scenarios: correcting only external parameters or both internal and external

parameters.

4. A description of a 2D-3D Iterative Closest Point algorithm.

5. Reconstruction methods that produce representative reconstructions of a vari-

ety of challenging objects in the presence of silhouette extraction and camera

calibration error.

This dissertation is organized as follows. In Chapter 2, we discuss related work

for the SfIS problem and pseudo-Boolean optimization and in Chapter 3, we discuss

related work for correcting camera calibration in the SfIS context. We describe our

formulation of the silhouette inconsistency function, SIE, in Section 4.1, and then

describe how a local minima can be found in Section 4.2. The camera calibration

correction method is explained in Chapter 5. We show and discuss results from the
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reconstruction methods in Chapter 6. Results from the camera calibration correction

method are shown in Chapter 7. We offer conclusions in Chapter 8.

The local minimum search method in this dissertation has been previously pub-

lished in [14].
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2. RELATED WORK IN SFIS, SFSPM, AND

PSEUDO-BOOLEAN OPTIMIZATION

This chapter summarizes the recent work on reconstruction from silhouette. We

discuss visual hull computation, when segmentation and calibration error is assumed

to be zero in Section 2.1.1, as well as reconstruction methods when segmentation and

calibration error is assumed to be present in Section 2.1.2. We also discuss the topic

of pseudo-Boolean optimization in Section 2.2 as we use its principles in our method

for SfSPM and SfIS reconstruction.

2.1 Reconstruction from Silhouetttes

2.1.1 Shape from Silhouette

As mentioned previously, the traditional SfS approach intersected backprojected

silhouette cones in order to produce the visual hull. We will briefly summarize the

two main approaches.

The first attempts to solve the SfS problem were volumetric methods. Volumetric

methods divide up the region of the object into discrete units, or voxels. A voxel is

marked as occupied if the voxel projects inside all silhouttes, and outside otherwise.

Various methods were devised for dividing the space into voxels and testing a voxel

for inclusion in the visual hull [10], [10], [7], [11], and [12].

The surface method approach estimated surface characteristics such as curvature

using parameterizations of the epipolar geometry, as in [15], [16], [17], [18], [19], [20],

and [21]. Lazebnik et al. [22], [23], [24] and [25], computed the visual hull in terms

of its intrinsic characteristics: frontier points, intersection curves, and viewing edges,

with incidence information between these entities. Exact Polyhedral Visual Hulls,
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or EPVH [8], [9], computed a polyhedral representation of the exact visual hull.

Numerical instability problems with frontier points were avoided by assuming that

with finite resolution cameras, intersection curves will not cross at one point.

2.1.2 Shape from Inconsistent Silhouette and Shape from Silhouette Prob-

ability Maps

Recent works on SfIS and SfSPM have sought to compensate for the problems

of VH approaches by delaying decisions about a voxel’s label until more information

about the voxel can be gained. All of these works use a voxel-based representation

for the reconstruction. They can be divided into three main categories: sensor fusion,

probabilistic, and minimization of silhouette inconsistency approaches.

In the sensor fusion approach, observations are represented using sensor models,

and then the model information is fused to determine voxel occupancy probabilities.

Franco and Boyer [26] use a forward sensor model for each pixel, which incopo-

rated various elements of real camera systems, such as visibility, camera calibration

noise, and sensor reliability. All observations are used to jointly infer the voxel oc-

cupancy probabilites. Dı́az-Más et al. [27] considered camera pairs as sensors, and

by incoporating geometric relationships between the camera pairs and voxels, pro-

duced a confidence model for each sensor. Sensor uncertainity models are fused using

Dempster-Shafer theory to give voxel occupancy probabilities. Guan et al. in [28]

dealt with the problem of detecting static occluding objects by using a Bayesian sen-

sor formulation for voxels, and later, fusing the information to determine the location

of occluders.

The next category considers probabilistic methods. Chueng et al. [29] proposed

a projection test called SPOT, or Sparse Pixel Occupancy Test, which attempts to

increase speed and reduce the effects of segmentation noise for SfS in the human

detection application context. In SPOT, the entire voxel is projected to the image

plane, and a pre-determined number n of pixels are selected from the projected voxel
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region to be used for classifying the voxel. The minimum number n∗ of foreground

pixels that must project to a voxel in each view is determined by exhaustingly evaluat-

ing the error function representing the probability of false labeling, for each possible

n∗ ∈ [1, n]. Landabaso et al. [13] extended the ideas of [29] concerning projection

tests with the Sampled Pixel Projection Test, which like Cheung’s method uses an

exhaustive search for the optimal n∗, though a different error function is used. As-

suming that the voxel labels are independent, and that the probabilities of silhouette

error are known, Landabaso et al. also construct and minimize an error function that

represents the probability of voxel misclassification; they refer to this approach as the

Unbiased Hull.

The following methods do not fit into the existing categories but should be men-

tioned in the context of SfIS. In Snow et al. [30], a background model and test images

are used to generate the linear terms of an energy function composed of Boolean

variables. A pair-wise smoothness prior is also incorporated into the pseudo-Boolean

function. Since the function is submodular, a minimum can be found with max

flow/min cut methods. The approach of Haro and Pardás [31] is to minimize an

approximation of the silhouette inconsistency error, where the function used depends

on whether the SfIS or SfSPM problem is being considered. They consider voxels

as continuously-valued variables in the range of 0 and 1, and seek a minimum by

gradient descent.

Our approach is different from the recent works in that we use a closed-form,

exact silhouette inconsistency error function which is identical for SfIS and SfSPM

and considers voxel labels as Boolean during the minimization process, and is not

dependent on the setting of parameters or thresholds.
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2.2 Pseudo-Boolean Optimization

As mentioned previously, we formalize the SfIS and SfSPM problems as a pseudo-

Boolean optimization (PBO) problem. In this section we review the main theoretical

results of PBO and other related works.

We mention now some potentially confusing aspects of discussing PBO. Given a

function f : Bn �→ R, where B = {0, 1} and R denotes the set of real numbers, the

subject of finding f(x)’s minimum,

min
x∈Bn

f(x) (2.1)

is called pseudo-Boolean optimization in the optimization and operations research

community. If f(x) is in closed form, it can be represented by additions and/or

subtractions of terms containing Boolean variables; this is called the multilinear form.

For instance, the function

f(x) = x0 − 2x1 + x2 − x0x1 + x0x2 (2.2)

is a pseudo-Boolean function in multilinear form. A particular assignment of

Boolean values to each variable in x is called a configuration.

In the computer vision community, the pseudo-Boolean function is generally given

within the context of the minimization of energy functions, where the energy is usu-

ally (but not always) associated with Markov Random Field theory. Suppose that

every variable in the function is assigned a label from a discrete set L. A particular

assignment of labels is called a labeling l (whereas in pseudo-Boolean optimization

we would say configuration). The problem then is:

min
l∈Ln

(
Edata(l) + Esmooth(l)

)
(2.3)

The smoothness terms, Esmooth(l), also called interaction terms, typically represent

relationships between two or three variables. The data terms, Edata(l), represents the
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cost of assigning a particular label to a variable, independent of the labels of the other

variables.1

When the number of labels in the set, |L| = 2, the computer vision community’s

energy minimization problem is equivalent to the PBO interpretation, with equivalent

theoretical guarantees. Depending on the characteristics of the function, one or the

other representation is more convenient. While our problem is a computer vision one,

the form of our function most naturally matches that of PBO. For this reason, we

will discuss computer vision community related works using the terminology of PBO.

Hammer et al. in [33] provided an algorithm for solving the minimization problem

minx∈Bn f(x). If the function f is quadratic, meaning that the greatest number of

variables multiplied together in a term is 2 such as in Equation 2.2, the authors

present an algorithm that is commonly referred to as QPBO, or quadratic pseudo-

Boolean optimization. In general, the degree of a function is the number of variables

in a function’s largest term. For instance, if f(x) = x0x1x2x3, the degree of f is 4.

In QPBO, a capacitated network flow graph is constructed using the coefficients

of the terms in f . A maximum flow algorithm is performed on the graph to produce

a minimum cut of the graph; labels are given by what side of the cut variable nodes

are from the source and sink nodes.

We will now discuss the property of submodularity, because this property relates

to the solvability of PBO problems. The property of submodularity is similar to

convexity in optimization problems dealing with real-valued variables. For a function

g(x0, x1) of two variables, g is submodular if and only if:

g(0, 0) + g(1, 1) ≤ g(0, 1) + g(1, 0) (2.4)

When a pseudo-Boolean function is in multilinear form, it is easy to tell if the

function is submodular. Examine all of the terms whose degree is quadratic or greater.

If all of the coefficients of these terms are negative, the function is submodular. If

1The notation presented here is very similar to that in [32].
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the coefficients are all positive, the function is supermodular, and if the coefficients

are a mix of negative and positive, the function is non-submodular.

If f is submodular, then the QPBO algorithm is guaranteed to label all variables,

and if the value c is the value of the minimum cut of the network flow graph, then

c is also the solution to the minimization problem, c = minx∈Bn f(x). If f is non-

submodular, the guarantees are fewer; the minimum cut in that case is a lower bound

on minx∈Bn f(x). In addition, some variables may be labeled as a result of performing

QPBO on non-submodular functions; these labels found by QPBO are the same labels

for those variables in the global minimum. Consequently, the submodular pseudo-

Boolean minimization problem is in complexity class P, since graph cut algorithms

are polynomial-time algorithms. Otherwise, pseudo-Boolean minimization problems

with non-submodular functions are classified as NP-Hard problems.

Excellent surveys are contained in Boros et al. ( [34] and [35]). A review of QPBO

for the computer vision community is given in [36]. Kolmogorov and Zabih presented a

graph construction method for quadratic and cubic submodular functions [37]. Their

method is equivalent to QPBO in the submodular quadratic case, though the number

of graph nodes and edges is smaller than the graph used in QPBO.

The maximum flow/minimum cut, or graph cut, technique for solving PBO prob-

lems has been popular for various computer vision problems. When the problems

are not quadratic, it is necessary to convert them to quadratic problems in order

to use a graph cut approach. Rosenberg provides a technique for transforming a

pseudo-Boolean function to a quadratic one in [38], but it produces non-submodular

terms with high coefficients, even when the original function is submodular.2 Free-

man and Drineas [40] offer a method to transform a cubic submodular function to a

quadratic submodular function. Ishikawa in [39] developed a transformation method

for submodular and non-submodular pseudo-Boolean functions. Using Ishikawa’s

transformation, submodular functions of any degree are transformed to submodular

quadratic functions. To transform higher degree positive terms in non-submodular

2We discovered that high positive coefficient terms result in no labels being assigned to variables
when using QPBO, an obsevation also noted by Ishikawa in [39].
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functions, the number of terms introduced in Ishikawa’s transformation is exponen-

tial in the degree of the term; as a result, Ishikawa’s approach is feasible for cubic or

perhaps quartic functions, but not for very high degree functions such those that are

considered in our work. For instance, the degree of one of our datasets is 975.
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3. RELATED WORK IN CORRECTING CAMERA

CALIBRATION IN SFS

The recent work on correcting camera calibration parameters from silhouettes can

be divided into three rough groups. The first concerns the calibration of cameras

from silhouettes assuming circular motion, such as that of an object on a turntable

( [41], [42], [43], [44], and [45]). The second group considers general camera motion

( [46], [47], [48], [49]), while the third calibrates camera networks using sequences of

silhouettes, usually of humans moving in the environment ( [50] and [51]).

Within these groups are differing techniques for refining camera calibration given

initial calibration parameters. Most utilize epipolar constraints, and differ in the

manner that frontier points are used. We will give a brief technical overview of frontier

points. A more in-depth description and analysis can be found in [9] and [52], among

others.

This discussion concerning frontier points assumes perfect silhouettes and camera

calibration, unlike the the situation we consider in this dissertation. A frontier point

is a point on the object which projects to the silhouette boundary in two cameras.

For instance, consider a sphere, in Figure 3.1. The frontier point projects to a point

on the silhouette boundary in each camera, where the silhouette boundary is tan-

gent to the epipolar line from the other camera. Given that the structure of the

object(s) is unknown in the SfS problem, determining the location of frontier point

projections in images is difficult and depends highly on accurate silhouettes. Åström

et al. in [46] describes generalized epipolar constraints, and uses the curvature of sil-

houettes to create frontier point estimates. Boyer [47] uses a pairwise cone tangency

constraint; consequently the object’s complete silhouette must be present in every

image. Sinha et al. in [51] get around the problem of few epipolar tangents by us-

ing video sequences of humans moving in the environment, and is somewhat tolerant
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of segmentation error. Since many different video frames are avaliable for the same

camera placement, Sinha et al. use the points on the silhouette which are also on the

convex hull of the silhouette as frontier point estimates. In Huang and Lai [42], cir-

cular motion is estimated by exploiting the homography that relates silhouettes and

epipoles. Mendonça et al. [43] estimates circular motion using a sequential approach

where epipoles are estimated last. In Furukawa et al. [48], a RANSAC strategy is

used to estimate camera calibration parameters and frontier points for orthographic

cameras. Using a different approach, Zhang et al. [50] use the centroids of humans

moving in the environment to create correspondences, and calibration is done using

a structure from motion approach. Using a calibration generated by circular motion

as an initializer, Wong and Cipolla [45] use a manually-aligned initialization for more

general motion. Yamazoe et al. [49] minimize the distance between frontier points

projected onto images and the silhouettes using bundle adjustment. Finally, Zhang

and Wong [44] estimate the internal and external parameters using epipolar tangents

in a circular turntable sequence.

The use of epipolar constraints requiring epipolar tangencies or frontier points

makes several assumptions about the characteristics of the datasets, 1) that the sil-

houettes are generally accurate and 2) that the silhouettes capture the whole object,

meaning that the image silhouettes are not truncated or partial silhouettes of the

full object. Henández et al. [41] developed a circular motion calibration system for

silhouettes under the assumption that silhouettes may be truncated or partial, using

a silhouette consistency measure. Furukawa and Ponce [53] create a more accurate

and efficient reconstruction pipeline by using a hierarchical process to generate cam-

era and reconstruction parameters; scaled-down images are used first, and as the

algorithm progresses larger and larger images are used to refine parameters using a

structure from motion approach.

Our work is most similar to Henández et al. in [41] as they use a silhouette

consistency measure and allow partial silhouettes. However, in [41] the silhouettes

are assumed to be relatively accurate and the motion is assumed to be circular, while
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Fig. 3.1.: An illustration of the relationship between silhouettes, epipoles, and frontier
points. The projection of epipolar tangencies results in a frontier point on the object.
However, with an incorrect estimate of camera centers in the camera calibration
problem and complicated, large objects that result in non-complete silhouettes and
segmentation error, it is difficult to exploit the epipolar relationships to correct camera
calibration error.
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in our work we deal with general camera motion and silhouettes with segmentation

error. Our method also has some similarities to Wong and Cipolla [45] in that the

reconstruction image and silhouette image are aligned; however, they use a manual

method to generate an initial calibration and their cost function is dependent on

the presence of epipolar tangencies. Finally, the work of Furukawa and Ponce [53]

is similar to ours in that the estimated reconstruction is projected to each image

and matches are found, though their work estimates a new reconstruction after every

round of matches, which we avoided because of the computational expense involved

in the SfIS problem.
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4. SHAPE FROM INCONSISTENT SILHOUETTE

RECONSTRUCTIONS

In this chapter, we present our approach for generating reconstructions in the SfIS

and SfSPM context. First, we explain our formulation of the SfSPM problem as a

pseudo-Boolean minimization problem in Section 4.1. Next we describe our local

minimum search approach in Section 4.2. We propose a time and memory efficient

variation of our local minimum search method in Section 4.3.

4.1 Formulation of the Pseudo-Boolean Error Function

We represent the difference between silhouette probability maps (SPMs) and im-

ages of a reconstruction as a closed-form pseudo-Boolean function.

The pseudo-Boolean error function is formulated over a set of voxels

x = {x0, x1, ...., xn−1}. A voxel is empty if its label is 1, and occupied if its label is

0. Note that this labeling is the reverse of most other literature on this subject, and

is only done to make the function simpler. For instance, if we had labeled empty

voxels 0 and occupied voxels 1, all of the variables (xi) would have been negated

(x̄i). By simply switching the labels, the formulation of the error function is more

straightforward as it consists exclusively of non-negated variables.

Let an individual pixel in a SPM be pi. ri is the value of the reconstruction image

pixel at the same location as pi. Since the labels of occupied and empty are reversed

for voxels, we also reverse the usual labeling for pixels. Consequently, the value of pi

represents the probability that pi is viewing background. For example, if pi = 0, then

pi is viewing the object with one hundrend percent probability P (pi = object) = 1,

and if ri = 0, then ri back-projects to the reconstruction where voxels are labeled
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occupied. Pixel probabilities are binary for the SfIS problem, and continuously-valued

for the SfSPM problem.

Given voxel labeling x, the value of reconstruction pixels can be found. Let Spi be

the set of voxels that are intersected by a viewing ray from pixel pi. Then the label

of reconstruction image pixel ri is

ri =
∏

xa∈Spi

xa (4.1)

In other words, ri = 1, representing background, only if all voxels viewed by pi

are empty.

The Silhouette Inconsistency Error (SIE) function represents the differences be-

tween reconstruction images and silhouette probability maps. For SPMs and recon-

struction image pair of pixels pi and ri,

SIE(pi, ri) = |pi − ri| (4.2)

Before presenting the general formula for the SfSPM problem, we will first repre-

sent |pi − ri| as a pseudo-Boolean function by considering the two cases of the SfIS

problem: when pi is 0 (a silhouette pixel) or when pi is 1 (a non-silhouette pixel), and

substituting for ri as in Equation 4.1:

SIE(pi,x) =

⎧⎪⎨
⎪⎩
∏

xa∈Spi
xa pi = 0,

1−
∏

xa∈Spi
xa pi = 1

(4.3)

We now represent |pi − ri| as a pseudo-Boolean function for the general case that

pi is continuously-valued (pi ∈ [0, 1]):
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SIE(pi,x) =(1− pi)
∏

xa∈Spi

xa + pi(1−
∏

xa∈Spi

xa) (4.4)

SIE(pi,x) =pi − (1− 2pi)
∏

xa∈Spi

xa (4.5)

For the special case that pi ∈ {0, 1}, Equation 4.5 is equivalent to Equation 4.3.

SIE for a set of input images I is the sum of the SIE error of the individual

pixels as in Equation 4.6.

SIE(I,x) =
∑
pi∈I

SIE(pi,x) (4.6)

As mentioned in Chapter 1, the SIE portion of the cost function treats false

positive and false negative errors equally.

4.1.1 Silhouette Inconsistency Error Treatment in Intersection-based Ap-

proaches

We will now show how traditional intersection-based approaches treat the two

different types of error, with reference to our error function SIE, and applied to the

SfIS problem.

First we split SIE(I,x) into two parts: the false positive error (FP ) and the false

negative error (FN). If a pixel pi is part of the silhouette (0) and the reconstruction

image pixel ri is 1, then pi is a false positive. The opposite case is a false negative.

Then the false positive and false negative error is
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FP (I,x) =
∑

pi∈I,pi=0

SIE(pi,x) (4.7)

FN(I,x) =
∑

pi∈I,pi=1

SIE(pi,x) (4.8)

SIE(I,x) =FP (I,x) + FN(I,x) (4.9)

In the VH approach, the false negative error is zero: all non-silhouette pixels project

to empty voxels. We can conclude that the VH approach minimizes false negative

error, setting it to zero, while ignoring false positive error. We can represent the VH

approach in terms of a pseudo-Boolean function as follows, where M is a very large

constant, such as the number of pixels in all images.

SIEvh(I,x) = FP (I,x) +M · FN(I,x) (4.10)

The global minimum of SIEvh is the VH reconstruction, where false positive and

false negative errors are unequally weighted. As a result, false negative pixels have a

disproportionally large impact on the VH reconstruction as compared to false positive

pixels.

4.1.2 Complexity of Minimizing SIE

Provided that there is at least one pixel in the SPMs where P (pi = object) >

P (pi = background), SIE is non-submodular. Finding the global minimum of non-

submodular pseudo-Boolean functions is a NP-Hard problem ( [34]), as discussed in

Section 2.2. Even after reduction to a quadratic pseudo-Boolean function, graph cut

methods such as QPBO [33] are unable to label any voxel for SIE in Equation 4.6,

even when there is a small number of voxels, such as 50, according to some of our

preliminary work into this topic. For these reasons, in the next section we describe
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an approximation solution to minx∈Bn SIE(x) that finds a local minimum given an

initial voxel labeling.

4.2 Local Minimum Search for SfIS and SfSPM

The search for a local minimum is a method borrowed from the optimization

community. A more in-depth discussion can be found in [34], which is the source of

our discussion on the topic.

First we begin with a definition of a local minimum for a pseudo-Boolean function

f . For a labeling of voxels x, there is a neighborhood N of other labelings y, where

y is equal to x except that the label of one voxel differs between the two labelings.

A particular labeling x is called a local minimum if there are no other labelings y in

the neighborhood of x that have a lower value of f than x does. In other words, x is

a local minimum if and only if f(x) ≤ f(y) ∀y ∈ N (x).

This property of local minima can be stated in terms of partial first derivatives

as follows. Let ∂f

∂xi
be the partial first derivative of f with respect to xi. Then, x is a

local minimum if and only if for each voxel xi of x the following is satisfied:

xi =

⎧⎪⎨
⎪⎩
1 if ∂f

∂xi
(x) ≤ 0

0 if ∂f

∂xi
(x) ≥ 0

(4.11)

In order to find a local minimum given an initial labeling x(0), the labels of indi-

vidual voxels are changed until Eq 4.11 is satisfied for all voxels. This process to find

a local minimum xmin for f , when f = SIE, is presented in pseudocode by algorithm

Local-Min-Search, Algorithm 1.

Local minimum search is similar to Iterated Conditioning Modes, or ICM, which

has been used to minimize energy functions in computer vision ( [54], [55], and is

compared to other techniques for energy minimization in [56]). This approach of

changing one label at a time is identical to what Boykov et al. [32] refer to as standard

moves.
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Algorithm 1 Local-Min-Search(f(·)), x(0), c)

Require: c = f(x(0))
1: n = number of voxels
2: j = 0
3: while x(j) is not a local minimum do

4: for all i = 0 to n do

5: condition0 =
∂f

∂xi
(x(j)) < 0 and x

(j)
i = 0

6: condition1 =
∂f

∂xi
(x(j)) > 0 and x

(j)
i = 1

7: if condition0 or condition1 then

8: x(j+1) = x(j)

9: x
(j+1)
i = ¬x(j)

i

10: c = c− | ∂f
∂xi

(x(j))|
11: j = j + 1
12: end if

13: end for

14: end while

15: return local minimum x(j), c (the value of f at x(j))

4.2.1 Local Minimum Searches for SfSPM

For any value c, where SIE(x) = c, there are many different labelings y such

that SIE(y) = c. This observation is similar to that of the traditional VH theory

as presented by Laurentini [6]. In the VH theory, there are many labelings of voxels

that are silhouette consistent. However, the VH is chosen to be the labeling with the

greatest volume. In our alteration of the local minimum search, we also specify that

any local minimum xmin where SIE(xmin) = c have the greatest volume labeling out

of all labelings y where SIE(y) = c. We refer to this as the greatest volume property.

We require that the local minimum labeling xmin has the greatest volume property

because of the following situation, as shown in Fig 4.1a. In that figure, Camera 0 has

no silhouette error, as silhouette pixels from Camera 0 project to at least one of the

three occupied voxels. Camera 1 has some false negative error from voxel v. If voxel v

is removed as in Fig 4.1b, the false negative error for Camera 1 will decrease by e1, but

the false positive error for Camera 0 will increase by e0, e0 > e1. Because of this type

of deadlock, voxel v will never be removed during algorithm Local-Min-Search.
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Since the local minimum search is done iteratively, thin protrusions and isolated

voxels in the local minimum, like those in Figure 4.1a are common, and the local

minimum search would frequently stall on these types of labelings. However, by

altering the local minimum search to require that local minima have the greatest

volume property, it is possible to avoid getting trapped in minima with high values

of SIE.

We will illustrate this process in Figure 4.1c. Here, the voxel labeling has the

same value of SIE, c, as in Figure 4.1a, though Figure 4.1c represents the maximal

labeling for SIE(x) = c. Then when we test whether or not to change voxel v’s label

to empty, we can see in Figure 4.1d that the value of SIE decreases by e1, since the

false negative error is removed for Camera 1 and Camera 0 has neither false positive

or false negative error.

(a) (b)

(c) (d)

Fig. 4.1.: Example in 2D illustrating the need for an altered local minimum search
for SfSPM. There are two 1D cameras, Camera 0 and Camera 1. The regions of both
cameras that represent silhouette regions are denoted with an S, and the viewing rays
on the boundary of S are black lines. Camera 0’s entire image consists of silhouette
pixels, while Camera 1 has two non-silhouette regions, one either side of a central
silhouette region. Gray lines represent the boundary of Camera 1.
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Algorithm 2 Local-Min-Search-SfSPM(f(·)), x(0), c)

Require: c = f(x(0))
1: n = number of voxels
2: j = 0
3: while x(j) is not a local minimum do

4: for all i = 0 to n do

5: condition0 =
∂f

∂xi
(x(j)) < 0 and x

(j)
i = 0

6: condition1 =
∂f

∂xi
(x(j)) ≥ 0 and x

(j)
i = 1

7: if condition0 or condition1 then

8: x(j+1) = x(j)

9: x
(j+1)
i = ¬x(j)

i

10: c = c− | ∂f
∂xi

(x(j))|
11: j = j + 1
12: end if

13: end for

14: end while

15: return local minimum x(j), value of f at x(j), c

To alter Local-Min-Search for SfSPM, we simply change the conditions on

line 6 so that voxels with ∂f

∂xi
(x(k)) ≥ 0 and x

(k)
i = 1 will have their labels changed.

We call this altered algorithm Local-Min-Search-SfSPM and the pseudo-code is

shown in Algorithm 2.

4.2.2 Implementation Details

In this section we discuss details of our implementation of Local-Min-Search-

SfSPM that result in reduced computational time than a näıve approach.

We introduce a way of storing the SIE function for a particular dataset that

makes accessing partial first derivatives ∂f

∂xi
(x) and computing values of SIE for

configurations efficient. Let the number of terms of SIE(x) be nt. Then the set

of terms in SIE(x) is representated as T , and an individual term is tj, where j ∈

{0, 1, 2, ..., nt − 1}. Recall that terms refer to pixels in the SfSPM problem. Terms

with positive coefficients reference pixels where the probability of being occupied is
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greater than the probability of being empty, and vice versa for negative coefficient

terms.

The näıve approach as we see it is to store the function as a set of terms, and for

each term store the set of variables participating in that term. Using our example

function,

f(x) = x0 − 2x1 + x2 − x0x1 + x0x2 (4.12)

this representation would be:

t0 : {x0} (4.13)

t1 : {x1} (4.14)

t2 : {x2} (4.15)

t3 : {x0, x1} (4.16)

t4 : {x0, x2} (4.17)

We call this the term-variable representation. Then, to compute the value of SIE

for any configuration x, we walk through the terms. Let SIE = 0. For each term,

we inspect the set of variables for the term. If all of the variables of a term’s set are

1 in x, we add that term’s coefficient to SIE.

The degree of our functions is large. As a result, the term-variable representation

takes more memory and is less effecient than the variable-terms representation, which

we introduce next.

In the variable-terms representation, a set of terms Txi
is associated with each

variable/voxel xi. Every term in Txi
contains the variable xi. Again, using the

function in Equation 4.12, and variable-terms representation is as follows:



26

x0 : Tx0
= {t0, t3, t4} (4.18)

x1 : Tx1
= {t1, t3} (4.19)

x2 : Tx2
= {t2, t4} (4.20)

For every term tj, we store a variable representing number of zeros, and denoted

by zerosj. zerosj records the number of variables contained in term tj that are 0 in

the configuration x. To update the number of zeros for a new configuration, we start

with all zerosj = 0, j ∈ {0, 1, 2, ..., nt − 1}. For every variable xi marked zero in x,

we update the zeros quantity for every term in Txi
by adding one to the previous

quantity. Then, evaluation of SIE has complexity O(tn), as in Algorithm 3.

Algorithm 3 Evaluate(f(·), zeros,x)

Require: zerosj is up-to-date for f(x) and all terms tj.
1: nt = number of terms
2: c = 0
3: for all j = 0 to nt do

4: if zerosj == 0 then

5: c = c+ coefficient(tj)
6: end if

7: end for

8: return c = f(x)

Using the variable-terms representation of SIE(x), we can also easily compute

partial first derivatives and evaluate these derivatives for a configuration. Again, we

use the zeros variables. Pseudocode is shown in Algorithm 4. In this algorithm,

the partial first derivative of SIE(x) with respect to xi are computed and evaluated

for configuration x. The complexity of Evaluate-Partial-First-Derivative is

O(|Txi
|).

The Evaluate-Partial-First-Derivative algorithm then serves as an effi-

cient way to calculate partial first derivatives, which is required for fast execution of

the Local-Min-Search-SfSPM algorithm. The zeros variables can be updated
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Algorithm 4 Evaluate-Partial-First-Derivative(f(·), zeros,x, xi)

Require: zerosj is up-to-date for SIE(x) and all terms tj.
1: c = 0
2: for all tj ∈ Txi

do

3: if zerosj == 0 or (xi = 0 and zerosj == 1) then

4: c = c+ coefficient(tj)
5: end if

6: end for

7: return c = ∂f

∂xi
(x)

every time a variable’s label is changed by adding 1 (when a variable’s label changes

from 1 to 0) or subtracting 1 (when a variable’s label changes from 0 to 1).

4.3 Hierarchical Version of Local Minimum Search

We found that with datasets with small resolution voxels, that the demand for

memory to store the first derivative information and time became high. To deal with

this problem, we introduce a hierarchical version of the local search algorithm.

The hierarchical version is essentially a divide-and-conquer approach for generat-

ing reconstructions, resulting in a reduced demand on computational resources. Use

of the hierarchical version allows memory and processor time to be focused on re-

gions where the occupied voxels border empty voxels. Pseudocode of the hierarchical

version is shown in Algorithm 5.

Given an initial reconstruction generated with voxels of size s0 by the Local-

Min-Search-SfSPM algorithm, voxels are broken into 8 new voxels under like an

octtree, such that the length of one of the new voxel’s sides is s0
2
. The labeling of the

initial reconstruction is propogated to the labeling of the smaller voxels, where the

child voxels have the same label as the parent voxels.

At the s0
2
voxel size, we then compute projection information for a limited set of

voxels. This limited set of voxels are within 8 voxels’ distance from the border between

occupied and empty voxels. Then the Local-Min-Search-SfSPM algorithm is
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Algorithm 5 Hierarchical-Local-Min-Search-SfSPM(f(·)), s0, ns)

1: Compute visual hull for voxel side size s0; this labeling is x(0)

2: Local-Min-Search-SfSPM(f(·)), x(0), c)
3: for all i = 1 to ns do

4: si = si−1/2
5: Propogate voxel labeling from size si−1 to si; this is x

(i)

6: Compute projection information for size si voxels marked occupied and
empty voxels within 8 voxels’ distance of an occupied voxel.

7: Local-Min-Search(f(·)), x(i), c) where voxels with no projection informa-
tion remain empty

8: end for

9: return local minimum x(ns), value of f at x(ns), c

performed on those voxels with projection information, creating a new reconstruction

for voxels of size s0
2
.

This dividing process continues until ns divisions are performed. We will show re-

sults of Hierarchical-Local-Min-Search-SfSPM versus Local-Min-Search-

SfSPM and discuss other issues related to performance in Chapter 6.
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5. CORRECTING CAMERA CALIBRATION ERROR IN

SFIS

As discussed in Chapter 4, our reconstruction method searches an approximate solu-

tion to a minimization problem. While we discuss the results using local minimum

searches in Chapter 6, we will say briefly here that when there is camera calibration

error, the reconstruction image is usually offset from the silhouette image. This be-

havior is illustrated in Figure 5.1, which shows a color image of a pole and coil object,

and then the reconstruction image overlaid on the silhouette image.1

The reconstruction image is similar to the silhouette image and the displacement

between is small. Consequently, we pursued an alignment algorithm to correct the

camera calibration error. In Section 5.1, we go over some preliminaries of notation.

Section 5.3 gives an overview of the method using an Iterative Closest Point method

for alignment, while Section 5.4 provides details about the Iterative Closest Point

method for camera calibration correction.

5.1 Preliminaries

Our notation for camera calibration parameters closely follows that of Hartley and

Zisserman in [57].

We assume that the camera calibration parameters for nc cameras are represented

by the matrices K ∈ R
3×3,R ∈ R

3×3, t ∈ R
3×1, and where the projection equations

for the relationship between a three-dimensional point in homogenous coordinates

X ∈ R
4×1 and an two-dimensional image point in homogenous coordinates x ∈ R

3×1

is:

1The original image is not corrected for radial distortion, which accounts for the differences in the
shape of the object between the two images.
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(a) Color image of a pole and coil

�
Reconstruction only

	

Silhouette only

�
�
��

Overlap

(b) Overlay of silhouette and reconstruction images

Fig. 5.1.: Illustration of an image of a pole and coil and an overlay of the silhouette
and reconstruction images. Pixels marked magenta are from the silhouette only,
pixels marked blue are from the reconstruction image only. White pixels indicate
pixels where the silhouette and reconstruction image pixels overlap.
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x = K[Rt]X (5.1)

and x =
[
x0 x1 x2

]T
, an image point in the x and y direction is the pair (x0/x2, x1/x2).

R can be decomposed into three Euler angles, θx, θy, and θz, so we represent R

as a function of three angles:

R = R(θx, θy, θz) (5.2)

A parameterization of R is necessary to preserve the orthonormality of R during

the Levenberg-Marquadt minimization in Section 5.4.4.

Furthermore, we assume that K is an upper triangular matrix of the form

K =

⎡
⎢⎢⎢⎣
k0 0 k2

0 k3 k4

0 0 1

⎤
⎥⎥⎥⎦ (5.3)

However, other forms of K such as those described in [57] can be used as well.

Finally, we assume that the initial reconstruction can be represented by closed

polyhedral meshes. Our implementation is a voxel-based technique where the vox-

els are cubes, so the polyhedral mesh is made up of square faces that represent the

boundary between the reconstructed shape and empty space. However, other recon-

struction methods whose output is or could be converted to a polyhedral mesh such

as in EPVH [58] can be used with the camera calibration correction procedure we

describe here.

5.2 Camera Configuration Scenarios

We present camera calibration correction procedures in two scenarios:

1. Adjust the R and t matrices for each camera, while keeping K constant for

each camera.
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2. Adjust the R, t, and K matrices for each camera.

Which scenario to use depends on the application and one’s assumptions about

the fidelity of K. For instance, we have multi-camera datasets with poor camera

calibration; in such a case the second scenario would be chosen to find an appropriate

alignment of the reconstruction and the silhouettes. We also have a dataset where one

camera is mounted on the end-effector of a robot and K is assumed to be accurate, in

this case, we choose the first scenario. Various other scenarios are possible depending

on the application, and can be derived from the these two basic scenarios and the

framework we present in Sections 5.4.3.

When we describe the general method for camera calibration correction, we let the

parameters be represented by a vector p. The sizes of p for the first configuration is

6 (three angles for R and three elements of t) and for the second is 10 (the 6 from the

first scenario and 4 internal camera calibration parameters). Whatever the scenario

used, we denote the matrix represention of p be P(p).

5.3 Method Overview

Here, we summarize the method for correcting camera calibration and relate it to

the stopping criterion we use for our ICP algorithm. First, we denote a reconstruc-

tion’s shape as S. S consists of a set of faces of a closed polyhedral mesh as mentioned

in Section 5.1.

As in Chapter 4, we use the SIE function. In this context, let the set of in-

put silhouettes be I, where an individual image is denoted by I. For one image

in the sequence of input silhouette images, the image of S is computed using the

camera calibration parameters of that input image; this image is IS. Then the

silhouette inconsistency error (SIE) of the reconstruction and the input image is

SIE =
∑

∀q |I(q)− IS(q)|, where q is a pixel index.

The general camera calibration correction algorithm is outlined in Algorithm 6.

The SIE error is computed using the current camera calibration parameters; if some
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better parameters can be found using the 2D-3D ICP algorithm then these parameters

are accepted as the current parameters. We define “better” as parameters that result

in a lower SIE value. This process is repeated for each image in the input silhouette

sequence.

An illustration of the algorithm’s progress on alignment is shown in Figure 5.2.
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(a) The first six iterations of the ICP algorithm where R and t are allowed to change, K is kept fixed.

(b) The first six iterations of the ICP algorithm where R, t, and K are all allowed to change. This run of ICP is
done after the completion of a round when only R and t are allowed to change.

Fig. 5.2.: Illustration of the progression of the camera calibration correction algorithm. Original silhouette image pixels I

are medium gray; this silhouette boundary of the reconstruction image IS is in green. The top row represents the alignment
as a result of the first six iterations of the 2D-3D algorithm where R and t are adjusted. Once that process terminates as a
result of the stopping criterion related to SIE, the 2D-3D algorithm is run again, the difference being that R, t, and K are
adjusted. The second row represents the first six iterations of the second process, once the R, t only adjustment has been
completed. More details of particular experimental choices can be found in Chapter 7.
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Algorithm 6 Calibration-Correction(I, S,p(0))

1: n is the maximum number of iterations
2: I

(0)
S is the image of S using P(p(0))

3: SIE(0) =
∑

∀q |I(q)− I
(0)
S (q)|

4: p∗ = p(0)

5: for all i = 0 to n do

6: Align I
(i)
S to I using the 2D-3D ICP; result is p(i+1)

7: Compute I
(i+1)
S using p(i+1)

8: SIE(i+1) =
∑

∀q |I(q)− I
(i+1)
S (q)|

9: if SIE(i+1) ≤ SIE(i) then

10: p∗ = p(i+1)

11: else

12: break;
13: end if

14: end for

15: return p∗

5.4 3D-2D ICP

This section details how we adapt the ICP algorithm, which is usually used for

2D-2D alignments or 3D-3D alignments, to the case of a 2D-3D alignment. While

one option was to perform a standard 2D-2D alignment assuming a planar projective

transform, and then to interpret those results as a camera calibration correction,

this approach ignores the dimensionality of the original problem. There are various

efficient variants of ICP available for aligning 3D meshes as discussed in [59]. We

adapt the basic ICP form given in [59], which consists of a sequence of select, match,

and minimize steps.

5.4.1 Selection of 3D Points

We now give more details about the projection of S to IS, and how IS is used in

the 2D-3D ICP algorithm.
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Fig. 5.3.: This figure is an illustration of how IS is generated from S. The points
composing each face in S are projected using a current estimate of camera calibration
parameters; the projected face is filled to generate a black and white image. The sil-
houette boundary is shown in this figure as medium gray lines, while projected points
inside the boundary are shown as green circles. Points on the silhouette boundary
are represented as white circles; the 3D points generating the white circles form the
set XSc

for a camera c.
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Every face in S is made up of a sequence of three-dimensional points X. We

project each point to the camera specified by P(p), and repeat this process for all

faces in S; by filling in the convex polygon created with the sequence of projected

points for each face, we can generate IS. From there, we determine which points

X, when projected, fall inside the silhouette of IS and which fall outside. In Figure

5.3, we show the silhouette boundary of IS for some large voxels as a medium gray

lines, while those projected points that are on the silhouette boundary are represented

by white circles, and those inside the silhouette boundary are represented as green

circles.

The 3D points that we use for ICP are those points that are on the silhouette

boundary of IS – in other words, the points which projected produced white circles

in Figure 5.3 – and we denote this set of points for camera c as XSc
. We use all of

the points in XSc
to generate matches.

5.4.2 Matching 3D points with 2D Image Coordinates

From the original image silhouettes (I) and the silhouette of the reconstruction (IS)

for camera c, we compute the surface normals for each pixel of the silhouette. Since we

use square faces for S, depending on the voxel size the projection of the reconstruction

can have right angles and other severe changes in normal vector direction, particularly

for large voxels as shown in Figure 5.3. To reduce this effect, we smooth the normals of

the projected reconstruction silhouettes. Given the kth silhouette pixel in a contour,

the smoothed normal is given by simple averaging, where n′
k is the smoothed normal

at position k: n′
k = (nk+nk−1+nk+1)/3. This smoothing process is performed twice.

Given that the projection of a 3D point X ∈ XSc
is x = PiX, we search for the

closest original image silhouette point to x where the angle between normals is less

that 2π/3. We represent this image silhouette point as φ(X).

Many ICP algorithms reject a percentage of the worst matches. Our approach

to SfIS has been to assume that error exists, but not to specify the quantity of
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source of that error. As a result, we are reluctant to use a pre-set threshold for

rejecting matches. For instance, sometimes the matches are quite accurate, and

discarding some of them according to a set percentage would result in discarding

good information. On the other hand, some reconstructions S are quite noisy, so the

reject percentage should be large. To avoid committing to a threshold for rejection

ahead of time, we implemented the following scheme.

First, we perform the Levenberg-Marquadt minimization for the initial matches

without rejecting any matches. If the resulting camera parameters p give a lower

value of SIE, we accept those parameters as p∗ = p. If not, we reject the worst

1% of matches and run the minimization again. This process continues until either

parameters resulting in a smaller value of SIE are found, or the number of iterations

is exceeded (typically set at 10 in our experiments).

5.4.3 Cost Function Formulation

Once the matches φ(X) are found, we seek camera calibration parameters that

minimize the distance between the projections of X and the silhouette matched pixel

φ(X).

min
p

∑
i

||P(p)Xi − φi(Xi)||
2 (5.4)

We can represent Equation 5.4 as follows, where P(p)T1 represents the first row

of P(p), P(p)T2 the second row and so on, as in Hartley and Zisserman [57], and

where φi(Xi)1 is the x component of the matching pixel to Xi and φi(Xi)2 is the y

component of the matching pixel to Xi:
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p̂ = argmin
p

∑
i

((P(p)T1Xi

P(p)T3Xi

− φi(Xi)1

)2

+
(P(p)T2Xi

P(p)T3Xi

− φi(Xi)2

)2
)

(5.5)

This is a nonlinear least squares problem; we can rearrange into the standard form

with a residual vector as follows:

p̂ = argmin
p

2|XS |−1∑
j=0

rj(P(p))2 (5.6)

where

r2i(P(p)) =
P(p)T1Xi

P(p)T3Xi

− φi(Xi)1 (5.7)

r2i+1(P(p)) =
P(p)T2Xi

P(p)T3Xi

− φi(Xi)2 (5.8)

for all Xi ∈ XS.

While many other ICP algorithms use a weighting for each match, we instead use

a constant weighting for each match.

5.4.4 Levenberg-Marquadt Modification for Newton’s Method of Nonlin-

ear Least Squares

To find an approximate solution to Equation 5.6, we use the Levenberg-Marquadt

modification for nonlinear least squares. We quickly summarize the method here;

more in-depth treatments can be found in optimization texts such as [60].

We compute the Jacobian J(P(p)), which is a matrix of size 2|XS| × |p|. Each

element of the matrix is Jij =
∂ri
∂pj

.
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Given the Jacobian and the residual functions, the update formula for a new p(k+1)

is:

p(k+1) = p(k)− (
J
(
P(p)

)T
J
(
P(p)

)
+ μkI

)−1

J
(
P(p)

)T
r(P(p)) (5.9)

where I is an identity matrix of size |p|×|p| and μk ≥ 0 is the damping parameter

and chosen according to the standard practice by starting with a small μk and then

increasing it until the direction is a descent direction. We let p(0) be the initial camera

calibration parameters.
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6. EXPEIRMENTAL RESULTS AND DISCUSSION FOR

LOCAL MINIMUM SEARCH RECONSTRUCTIONS

We demonstrate the performance of our local minimum search algorithms on several

datasets, synthetic and real. We compare the performance of three different local

minimum search methods presented in Chapter 4: (1) Local-Min-Search, the local

search algorithm without our greatest volume property heuristic; (2) Local-Min-

Search-SfSPM, the local search algorithm with the heuristic, and Hierarchical-

Local-Min-Search-SfSPM; and (3) a divide and conquer version of Local-Min-

Search-SfSPM. We abbreviate these methods as LMS, LMS-SfSPM, and HLMS-

SfSPM, respectively. Reconstruction results on synthetic and real datasets using the

local minimum search methods are contained in Section 6.1 and 6.2, respectively.

In Section 6.3, we compare our local search methods with some state-of-the-art

methods in SfIS. Throughout the remainder of this document, the results were gen-

erated on a workstation with one 8-core processor and 76 GB of RAM. All 3D results

are visualized with Meshlab [61]. In addition, the silhouette probability maps for all

of the datasets in this chapter are binary, meaning that the reconstructions in this

chapter are SfIS reconstructions.

6.1 Synthetic Datasets with Known Ground Truth

We used the well-known Stanford bunny model from [62] and a model of a tree

using the XFrog software1 to generate synthetic datasets with a known ground truth.

The ground truth models are converted to a voxel format so the reconstruction and

the ground truth can be compared. The conversion process consists of piercing the

1Xfrog 3.5
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Fig. 6.1.: The camera locations for the synthetic Bunny dataset. There are ten
cameras, eight cameras circling the bunny and two overhead.

ground truth model with rays and determining voxel labels based on the ray-model

intersections.

6.1.1 Bunny Datasets

The camera locations relative to the bunny figurine are shown in Figure 6.1.

The voxel size was a 5 mm cube, with a search region of 1 million voxels. From

the bunny model, we generated two datasets. The first dataset contains silhouettes

with significant segmentation error. Most of the introduced error consisted of false

negatives, though some false positives were introduced. We refer to this set as Bunny

Segmentation Error and silhouette images are shown in Figure 6.2. The second

dataset, Bunny Image Noise, consists of silhouettes without segmentation error but

corrupted with 20 % salt and pepper noise. Silhouette images are shown in Figure

6.3.
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(a) Silhouette image 0 (b) Silhouette image 1 (c) Silhouette image 2 (d) Silhouette image 3 (e) Silhouette image 4

(f) Silhouette image 5 (g) Silhouette image 6 (h) Silhouette image 7 (i) Silhouette image 8 (j) Silhouette image 9

Fig. 6.2.: Simulated segmentation error in the Bunny Segmentation Error dataset.
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(a) Silhouette image 0 (b) Silhouette image 1 (c) Silhouette image 2 (d) Silhouette image 3 (e) Silhouette image 4

(f) Silhouette image 5 (g) Silhouette image 6 (h) Silhouette image 7 (i) Silhouette image 8 (j) Silhouette image 9

Fig. 6.3.: Simulated image noise (20 %) in the Bunny Image Noise dataset.
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The reconstructions using our algorithm are shown in Figures 6.4 and 6.5. From

the top rows down, the figures show the LMS (the local minimum search without our

heuristic), LMS-SfSPM, and HLMS-SfSPM reconstructions. For the HLMS-SfSPM

versions, the initial voxel size is 20 mm and the voxels are divided twice (ns = 2).

Qualitatively, we can see that the reconstruction without the heuristic, LMS, con-

tains more empty regions in the interior of the object than those reconstructions

of LMS-SfSPM. Comparing HLMS-SfSPM to LMS-SfSPM, the HLMS-SfSPM recon-

structions are less noisy and have fewer error as compared to the ground truth. Notice

that in Figure 6.4b, the region near the rabbit’s tail and rear leg is sparsely filled with

voxels. In Figure 6.4c, the tail and rear leg region is recovered except for a hole. For

the Bunny Image Noise dataset in Figure 6.5, the HLMS reconstruction is smaller

and more similar to the original bunny’s size than the LMS reconstruction.

The behavior of the LMS versus LMS-SfSPM reconstructions is explained by Fig-

ure 4.1; during the search for the local minimum, if empty voxels are not marked

occupied when their first derivatives are zero, some voxels will never be maked empty

on the outer edges of the object. In HLMS-SfSPM, the larger voxels result in an aver-

aging effect over all pixels that view the voxel. Because the SfSPM heuristic is used,

false positive regions are later removed or reduced in size. We show the progression

of the HLMS-SfSPM method in Figure 6.6.

Table 6.1: SIE values for the local minimum search methods, Bunny Segmenta-

tion Error and Bunny Image Noise datasets.

Dataset
SIE
LMS

SIE
LMS-SfSPM

SIE
HLMS-SfSPM

Bunny Segmentation Error 11,412 12,580 15,144
Bunny Image Noise 644,032 655,442 647,219
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(a) LMS reconstruction (b) LMS-SfSPM reconstruction

(c) HLMS-SfSPM reconstruction

Fig. 6.4.: Demonstration of the local minimum search methods on the Bunny Seg-

mentation Error datasets.
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(a) LMS reconstruction (b) LMS-SfSPM reconstruction

(c) HLMS-SfSPM reconstruction

Fig. 6.5.: Demonstration of the local minimum search methods on the Bunny Image

Noise datasets.
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(a) 20 mm voxel size (b) 20 mm voxel size

(c) 10 mm voxel size (d) 10 mm voxel size

(e) 5 mm voxel size (f) 5 mm voxel size

Fig. 6.6.: Progression of the HLMS-SfSPM method on the Bunny Segmentation

Error and Bunny Image Noise datasets. The Bunny Segmentation Error

progression is on the left while the Bunny Image Noise progression is on the right.
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Table 6.2: Comparison of Local minimum search methods to the ground truth for the
Bunny Segmentation Error dataset.

Method
Number
Misclassifications

False
Positive rate

False
Negative rate

Run time

LMS 31,313 0.008972 0.2331 5.457 s
LMS-SfSPM 25,816 0.0113 0.1566 6.8 s
HLMS-SfSPM 19,415 0.0156 0.0538 7.63 s

Table 6.3: Comparison of Local minimum search methods to the ground truth for the
Bunny Image Noise dataset.

Method
Number
Misclassifications

False
Positive rate

False
Negative rate

Run time

LMS 90,177 0.005903 0.8515 9.97 s
LMS-SfSPM 42,626 0.0363 0.0994 5.25 s
HLMS-SfSPM 20,094 0.0219 0.0035 5.73 s

The values of the SIE function are shown for both of the bunny datasets in Table

6.1, and then comparisons to the ground truth and listing of running times are shown

in Tables 6.2 and 6.3. From these tables, we can see that the SIE values are similar

for the three local minimum search variants. However, Tables 6.2 and 6.3 show that

the number of misclassified voxels of the LMS method is greater than that of the LMS-

SfSPM method, sometimes significantly. For instance, for the Bunny Image Noise

dataset, the LMS method’s number of misclassified voxels is more than twice that

of the LMS-SfSPM method. For both datasets, the HLMS-SfSPM method produces

reconstructions with the lowest error as compared to the ground truth. Also, we can

also see by examining the tables that the false negative rate is highest with the LMS

method.

The running times for the methods do not follow a pattern; for datasets of this

size and for this type of object, the random nature of the local search can influence

the number of iterations of the algorithm, and consequently affect the running time.
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6.1.2 Model Tree Datasets

We generated a simulated dataset composed of 32 cameras and using a tree model

shown in Figure 6.7a. Camera calibration error was added to the dataset by altering

one element of the translation component of each camera by e ∈ {−20,−19, ..., 19, 20}.

The element altered (x, y, or z) and the value of e was determined randomly, with all

possible values of e having a uniform probability of being selected, as were the three

axes of t. An example of a silhouette image from this dataset is shown in Figure

6.7, as well as the placement of cameras with respect to the model. An illustration

of the differences between the ground truth calibration and camera calibration with

error added is in Figure 6.8. All of the silhouette images for this set consist of

partial silhouettes. The reconstruction voxel size is 5 mm. For the HLMS-SfSPM

reconstruction, the intial voxel size was 20 mm and ns = 2. The number of voxels is

3.168 million.

The reconstructions with the three local minimum search methods are shown with

a voxel-based ground truth in Figure 6.10. The progression of the HLMS-SfSPM

method is shown in Figure 6.11. Overlay of the silhouette with reconstruction images

are shown in Figure 6.9.

In the Model Tree dataset, the structural differences between the methods are

that the HLMS-SfSPM reconstruction has two fragmented branches, otherwise the

appearance is similar. In Table 6.4, we can see that the number of misclassifications

and SIE value differences between the methods is small, though the HLMS method

has the lowest number of misclassiciations. From this table, we can also see that for

this dataset the HLMS-SfSPM method’s running time is less than the other methods,

where the next fastest method takes 50 % longer to run. The reason for this is that

computing and storing the voxel projection information consumes time and memory

resources. While the LMS and LMS-SfSPM methods computed and stored projection

information for all 3.168 million voxels in the search space, the HLMS-SfSPM variant
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(a) (b)

(c)

Fig. 6.7.: Illustration of the Model Tree synthetic dataset. In 6.7a, the synthetic
tree used to generate images. In 6.7b, one of the 32 silhouette images of the synthetic
tree. In 6.7c, the synthetic tree is shown with the 32 cameras, which are placed on
two planes.
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(a) Ground truth camera positions

(b) Camera positions in the Model Tree dataset

(c) Juxtaposition of ground truth camera positions with
Model Tree dataset camera positions

Fig. 6.8.: Illustration of the ground truth camera positions versus the camera positions
from the Model Tree dataset.
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(a) 0 (b) 2 (c) 4 (d) 6

(e) 8 (f) 10 (g) 12 (h) 14

(i) 16 (j) 18 (k) 20 (l) 22

(m) 24 (n) 26 (o) 28 (p) 30

Fig. 6.9.: Silhouette and reconstruction images are overlaid for the Model Tree

dataset reconstruction. Pixels marked magenta are from the silhouette only, pixels
marked blue are from the reconstruction image only. White pixels indicate pixels
where the silhouette and reconstruction image pixels overlap.

only required the computation and storage of projection information for 365,270 voxels

at the 5 mm resolution (11.5 % of 3.168 million).
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(a) Ground truth (b) LMS reconstruction (c) LMS-SfSPM reconstruction (d) HLMS-SfSPM reconstruc-
tion

Fig. 6.10.: Demonstration of the local minimum search methods on the Model Tree dataset.
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(a) 20 mm resolution (b) 10 mm resolution (c) 5 mm resolution

Fig. 6.11.: Illustration of the progression of the HLMS-SfSPM method on the Model Tree dataset.
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Table 6.4: Comparison of Local minimum search methods to the ground truth for the
Model Tree dataset

Method
Number
Misclassifications

False
Positive
rate

False
Negative
rate

SIE Run time

LMS 5,853 0.00060636 0.482475 2,152,744 134.38 s
LMS-SfSPM 5,784 0.0006159 0.4703 2,150,544 159.289 s
HLMS-SfSPM 5,493 0.00060383 0.4393 2,152,423 90.5718 s

6.2 Real Datasets

In this section, we show reconstructions generated by the local minimum search

methods on real objects. Because many works on SfIS are for the purposes of recon-

structing people, our first dataset is of a human. The second and third datasets are

of leafless trees.

6.2.1 Dancer Dataset

The source for the third dataset is the Dancer sequence from INRIA’s 4D repos-

itory.2 Frames corresponding to two moments in time were chosen to create the

Dancer A and Dancer B datasets. Silhouette images were generated by using the

provided background images and a threshold-based differencing method. Example

foreground and silhouette images are shown in Figures 6.12 and 6.13. The scene con-

sists of 8 cameras viewing the dancer. Dancer A and Dancer B have 917,700 and

1,357,800 voxels, respectively, when the voxel size is 15 mm. For the HLMS-SfSPM

reconstruction, the initial voxel size is 60 mm and ns = 2.

The reconstruction using the three local minimum search methods are shown in

Figure 6.14, the progression of HLMS-SfSPM in Figure 6.15, and quantitive informa-

tion in Table 6.5. The SIE values in Table 6.5 and visual inspection of Figure 6.14

shows that there are very few differences in between the reconstructions for these

2dancer dataset, 2007-07-01, http://4drepository.inrialpes.fr/public/datasets
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datasets, aside from some empty voxels in the interior of the object for the LMS

method. As seen from the previous dataset reconstructions displayed thus far, this is

typical behavior for the LMS method. As before, the HLMS method is the fastest of

the local minimum search methods.

Table 6.5: Characterisitcs of the Dancer A and Dancer B datasets for the three
methods

Dataset Method SIE Run time

Dancer A LMS 10,440 7.99 s
Dancer A LMS-SfSPM 10,776 5.88 s
Dancer A HLMS-SfSPM 11,600 5.44s
Dancer B LMS 10,651 7.72 s
Dancer B LMS-SfSPM 10,979 8.28 s
Dancer B HLMS-SfSPM 11,627 5.9 s

6.2.2 Young Peach Trees

Datasets of young peach trees were acquired in the laboratory. Using a IEEE

1394 camera (640 x 480 images) mounted on the end of a robot arm, we acquired 88

images of the trees. The cameras were calibrated using a planar checkerboard pattern;

the camera could view the pattern at all positions of the robot sequence so camera

calibration parameters for the dataset were computed using the camera calibration

method of Zhang [63].

Background images were obtained using the sequence of 88 robot positions. Sil-

houettes were generated using a threshold-based background differencing method.

Original and silhouette images are shown for the three datasets in Figures 6.17, 6.18,

and 6.19.

Three different cultivars of peach trees were used, each with a different growth

habit. The cultivars are Crimson Rocket (Pillar growth habit), Bounty (Stan-

dard growth habit), and SweetNUp (Upright growth habit). The number of voxels

in the peach tree datasets is large, so the HLMS-SfSPM method was the only local
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(a)

(b)

(c)

Fig. 6.12.: Input images and resulting silhouette images, with segmentation error, for
Dancer A.
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(a)

(b)

(c)

Fig. 6.13.: Input images and resulting silhouette images, with segmentation error, for
Dancer B.
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(a) LMS (b) LMS-SfSPM (c) HLMS-SfSPM

(d) LMS (e) LMS-SfSPM (f) HLMS-SfSPM

Fig. 6.14.: Demonstration of the local minimum search methods on the Dancer A

and Dancer B datasets. The Dancer A dataset is shown on the top row, the
Dancer B dataset on the bottom row.
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(a) 60 mm resolution (b) 30 mm resolution (c) 15 mm resolution

(d) 60 mm resolution (e) 30 mm resolution (f) 15 mm resolution

Fig. 6.15.: Illustration of the progression of the HLMS-SfSPMmethod on theDancer

A and Dancer B datasets.
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minimum search method that allowed us to run the reconstruction algorithms on our

current hardware. For all datasets in this group, we chose the initial voxel size as 20

mm and ns = 3, so the final voxel size is 2.5 mm. We list the number of voxels and

running time for each tree’s reconstruction using HLMS-SfSPM in Table 6.6.

Since the camera was attached to a robot arm, images were acquired from one

side of the tree, as illustrated in Figure 6.16. Camera positions were created to get

many different views of the objects, within the the constraints of the range of the

robot arm and also to avoid colliding with the robot base.

Table 6.6: HLMS-SfSPM reconstruction characteristics

Dataset Number voxels Run time

Bounty 66,816,000 231.95 s
Crimson Rocket 59,392,000 179.36 s

SweetNUp 59,392,000 211.394 s

We show four views of the Bounty dataset’s HLMS-SfSPM reconstruction in

Figure 6.20. Some false positive regions are present near the base of the tree, which

is an artefact of the camera positions used for the dataset. When viewed from the

same side as the cameras such as in Figure 6.20d, the reconstruction is representative

of the original tree. Other views (Figures 6.20b and 6.20c) are characterized by flat

sections, which can be seen more clearly in a detail of the reconstruction, Figure 6.21.

This characteristic is also a result of the positioning of the cameras all on one side

and the use of silhouettes as features.

Figure 6.22 shows the progression of the HLMS-SfSPM method on the Bounty

dataset. At the 20 mm resolution, large features are labeled; these are then extended

and reduced in diameter in the 10 mm and 5 mm reconstructions. Differences be-

tween the 5 mm and 2.5 mm reconstructions consist of refining the branch diameter

refinement and filling breaks in branches.
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Fig. 6.16.: Placement of the peach tree relative to camera positions. The tree shown
is a reconstruction the Bounty dataset.
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The reconstruction of the Crimson Rocket dataset shown in Figure 6.23 and

SweetNUp dataset shown in Figure 6.24 has many of the same characteristics of

the the Bounty dataset: false positives near the base and the flat nature of the

branches. The Crimson Rocket reconstruction also a false positive near the top,

which is an artefact of camera placement as well.

This dataset was challenging for reconstruction because of the complicated nature

of the trees, the camera placement constraints, and small voxel size, besides segmen-

tation error. In spite of these complications, the HLMS-SfSPM method was able to

generate acceptable reconstruction in reasonable time (under four minutes).
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Fig. 6.17.: Input images and resulting silhouette images, with segmentation error, for Bounty.
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Fig. 6.18.: Input images and resulting silhouette images, with segmentation error, for Crimson Rocket.
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Fig. 6.19.: Input images and resulting silhouette images, with segmentation error, for SweetNUp.
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(a) (b)

(c) (d)

Fig. 6.20.: HLMS-SfSPM reconstruction for the Bounty dataset; four views.



69

Fig. 6.21.: Detail of the Bounty recostruction, showing the flat branch shapes re-
sulting from camera placement on only one side of the tree.
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(a) 20 mm (b) 10 mm

(c) 5 mm (d) 2.5 mm

Fig. 6.22.: HLMS-SfSPM progression for the Bounty dataset
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(a) (b) (c) (d)

Fig. 6.23.: HLMS-SfSPM reconstruction for the Crimson Rocket dataset; four views
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(a) (b) (c) (d)

Fig. 6.24.: HLMS-SfSPM reconstruction for the SweetNUp dataset; four views
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6.2.3 Large Objects Including Apple Trees

The large object datasets were acquired similarly as the young peach dataset: by

a robot in a laboratory setting. A GigE camera (image size 2456 x 2058) pixels was

mounted on the end effector and the robot is then moved to 38 different positions;

the camera configuration is shown in Figure 6.25. The number of cameras is reduced

in this set as compared to the young peach datasets because of the change of the

camera. The GigE camera used in this set has a 1
2
inch CCD as compared to the 1

4

inch CCD camera for the peach set, and then same 8 mm lens was used. Because of

this increased field of view, fewer camera positions were necessary to reconstruct the

shape of the large objects. The external camera calibration parameters are estimated

using a hand-eye, robot-world calibration technique.

As with the other datasets, segmentation was accomplished using a threshold-

based background subtraction method. Examples of the color and silhouette images

at the same position of the robot for each set are shown in Figure 6.26.

For this dataset, we only show the results for the HLMS-SfSPM version of the

algorithm, for the same reasons as in the young peach dataset that the search region

is too large for our machine capacity (over 124 million voxels). The parameters we

use for the HLMS-SfSPM are that the initial voxel size is 12 mm, ns = 2, so the final

voxel size is 3 mm.

The first two large objects are apple trees without leaves. The first one we re-

fer to as the Standard Apple. Horticulturists classify trees according to their

growth habit; this tree most closely matches Lespinasse’s type I classification found

in [64]. The second tree we refer to as the Weeping Apple, which corresponds to a

Lespinasse type IV. These trees are quite different in their growth habit, the first with

long, upward-facing branches, while the second is characterized by short inter-node

spacing and some downward facing tips. One may also notice that both of these trees

are not conical, tending more to reside on a plane. Modern orchards are planted with

a trellis and the trees are trained on a particular way such as to encourage a planar
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shape. The last object is a metal pole with a copper coil attached, refered to as the

Pole and Coil dataset.

We show the reconstruction generated by HLMS-SfSPM on the three datasets

in Figures 6.27, 6.28, and 6.29. For the Standard Apple dataset, the 12 mm

reconstruction in Figure 6.27a shows the overall shape of the tree but with many

breaks in the branches. As the voxel size is decreased, the reconstruction more closely

resembles the original tree. As with the young peach set, the branches are flat instead

of cylindrical, as shown in Figure 6.27d. Also like the young peach set, the Standard

Apple reconstruction has some false positives near the periphery of the search space

resulting from the camera placement.

The Weeping Apple dataset represents a very different style of tree than

Standard Apple, though the reconstruction in Figure 6.28 has similar features as

the Standard Apple dataset in that progression of the LMS-SfSPM algorithm leads

to more representatrive reconstructionss and branches are flat from a side view.

Since the Pole and Coil object is narrower than the trees, the HLMS-SfSPM

reconstruction in Figure 6.29 is free of the large false positive regions that are in the

tree reconstrudctions. We can also objserve that small details that were missed at

the larger voxel resolution of 12 mm appear in the 6 mm and 3 mm resolutions, such

as the end of the plastic tie that affixed the coil to the metal pole.

The running times of HLMS-SfSPM on the three datasets is shown in Table 6.7.

The denser objects such as Weeping Apple take nearly four time longer to run

(801 s) than the more sparse object, Pole and Coil (255 s). After the 12 mm

voxel resolution, the HLMS-SfSPM expands the search region in the vicinity of the

occupied/empty voxel border. Since the Weeping Apple dataset has more occupied

voxels bordered by empty voxels, the search space is larger for the 6 mm and 3 mm

resolutions in the Weeping Apple set versus the Pole and Coil and searching

this space takes more computational time.
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Fig. 6.25.: Placement of the large object relative to camera positions. The tree shown
is a reconstruction the Standard Apple dataset.
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(a) (b)

(c) (d)

(e) (f)

Fig. 6.26.: Example color images and resulting silhouette images for the Standard

Apple, Weeping Apple, and Pole and Coil datasets, respectively.
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(a) 12 mm resolution (b) 6 mm resolution

(c) 3 mm resolution, view 1 (d) 3 mm resolution, view 2

Fig. 6.27.: HLMS-SfSPM reconstruction for the Standard Apple dataset
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(a) 12 mm resolution (b) 6 mm resolution

(c) 3 mm resolution, view 1 (d) 3 mm resolution, view 2

Fig. 6.28.: HLMS-SfSPM reconstruction for the Weeping Apple dataset
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(a) 12 mm resolution (b) 6 mm resolution (c) 3 mm resolution, view 1 (d) 3 mm resolution, view 2

Fig. 6.29.: HLMS-SfSPM reconstruction for the Pole and Coil dataset
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Table 6.7: HLMS-SfSPM reconstruction characteristics for the large objects datasets

Dataset Number voxels Run time

Standard Apple 124,293,600 492.015 s
Weeping Apple 124,293,600 801.048 s
Pole and Coil 124,293,600 255.776 s

6.3 Comparison with Other SfIS Methods

We compared our local minimum search methods to other methods for SfIS re-

construction. Appendix A describes the implementation of the various methods in

detail. Here, we give brief descriptions of the comparison methods.

First is the Robust Visual Hull, the simplest comparison method (discussion of

RRVH’s origin is found in Appendix A). Whereas the VH reconstruction is the

intersection of all N cameras’ silhouettes, the Robust Visual Hull is the intersection

of N − k cameras’ silhouettes, where k < N . Since in some situations the number of

cameras that can view a voxel is not constant, we use a variation on the Robust Visual

Hull that we call the Real Robust Visual Hull, or RRVH. In RRVH, we determine

the ratio r of the number of cameras where a voxel is within the silhouettes versus

the number of cameras that view a voxel. If r is greater than or equal to a threshold

m ∈ [0, 1], we mark the voxel as occupied and empty otherwise.

The second method is SPOT, or Sparse Pixels Occupancy Test developed by

Cheung et al. in [29] and [65]. When whole voxels are projected to an image plane,

the projected voxel covers multiple pixels. The SPOT method determines whether a

voxel should be classified as inside or outside of a silhouette when the projected voxel

covers both silhouette and non-silhouette pixels. SPOT chooses a threshold on the

number of silhouette pixels necessary to classify a voxel as being inside a silhouette.

It does this by minimizing a cost function including parameters η and ξ, representing

the false negative and false positive pixel probability, respectively. If the number of
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silhouette pixels in each camera for a particular voxel exceeds the threshold, then the

voxel is labeled occupied and empty otherwise.

The Unbiased Hull, abbreviated as UH, of Landabaso et al. [13] is the third com-

parison method. In the UH method, the search space is partitioned into the visual

hull (the set of voxels that project inside silhouettes for N cameras) and the incon-

sistent hull. Voxels in the inconsistent hull project inside the silhouettes in some

cameras and outside in others. Some of the voxels in the inconsistnt hull are occluded

by visual hull voxels. The UH algorithm then, for each possible number of occlusions

by the visual hull, selects the parameter k for the robust visual hull, by minimizing a

cost function that incorporates η and ξ from SPOT, as well as a probability of voxels

being background, Pb. The resulting reconstruction then is a robust visual hull-type

reconstruction, with k varying with the number of occlusions by visual hull voxels.

The Graph Cuts method is from Snow et al. [30]. They cast the SfIS problem

as a energy minimization problem for Boolean variables. The energy minimization

problem contains data term costs, which incorporate parameters A and B, and a

smoothness cost penalty for neighbors with different labels, parameter λ. Since the

cost function is submodular, the problem can be solved with graph cuts, meaning a

network max flow/min cut problem.

We altered the SPOT and UH methods to create the SPOT-SIE and UH-SIE

methods. SPOT-SIE and UH-SIE operate similarly as their namesakes, except that

we substitute our SIE function for the cost functions requiring η, ξ, and Pb pa-

rameters. Consequently, no parameters need to be specified for the altered methods

SPOT-SIE and UH-SIE other than voxel size.

Because the SPOT, UH, and Graph Cuts methods required parameters, it was

difficult to appropriately choose parameters in a way that would ensure that these

methods were being represented correctly. To get around this problem, we iterated

over a range of possible parameters and chose the parameters that resulted in the

lowest number of misclassifications as compared to the ground truth. Since some

of the comparison methods were intended for human reconstruction applications, we
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also included the Dancer A dataset although a ground truth was not available. For

the Dancer A dataset we show reconstructions with a range of parameters.

6.3.1 Bunny Segmentation Error Dataset Comparisons

The comparison methods using the Bunny Segmentation Error dataset are

shown for two views, in Figures 6.30 and 6.31, and quantitative comparisons with the

ground truth are shown in Table 6.8. The table also lists the parameters chosen for

the SPOT, UH, and Graph Cuts methods. The voxels were 5 mm cubes.

Figures 6.30 and 6.31 show that the pixel occupany approach of SPOT and SPOT-

SIE result in large regions of false negatives. The Graph Cuts approach reconstructs

the shape of the bunny, though the reconstruction is larger than the original model.

The remaining methods’ performance on this dataset is similar, with the number of

misclassified voxels ranging from 19, 415 to 26, 185. Differences between the remaining

methods include the UH and UH-SIE reconstructions’ absence of part of the front feet

and part of the back, the missing lower jaw in the RRVH, and holes in the tail and back

region in the local minimum search methods’ reconstruction. In this dataset, there

was little difference in between the original SPOT and UH reconstructions versus the

SPOT-SIE, UH-SIE reconstructions.
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(a) RRVH (b) SPOT (c) UH (d) Graph cuts

(e) SPOT-SIE (f) UH-SIE (g) LMS-SfSPM (h) HLMS-SfSPM

Fig. 6.30.: Illustration of the comparison reconstructions and the LMS-SfSPM and
HLMS-SfSPM reconstructions for the Bunny Segmentation Error dataset, view
1.

Table 6.8: Results for comparison reconstructions as compared to the ground truth
model for the Bunny Segmentation Error dataset

Method
Number
Misclassifications

False
Positive rate

False
Negative rate

RRVH
m = 0.9

20,661 0.03499 0.01908

SPOT
η = 0.05, ξ = 0.2

32,510 0.007795 0.2558

UH
η = 0.1, ξ = 0.05, Pb = 0.2

26,181 0.01246 0.1502

Graph cuts
A = 500, B = 400, λ = 0

21,621 0.02032 0.03336

SPOT-SIE 32,786 0.007478 0.2614

UH-SIE 26,185 0.01246 0.1502
LMS-SfSPM 25,816 0.0113 0.1566
HLMS-SfSPM 19,415 0.0156 0.0538
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(a) RRVH (b) SPOT (c) UH (d) Graph cuts

(e) SPOT-SIE (f) UH-SIE (g) LMS-SfSPM (h) HLMS-SfSPM

Fig. 6.31.: Illustration of the comparison reconstructions and the LMS-SfSPM and
HLMS-SfSPM reconstructions for the Bunny Segmentation Error dataset, view
2
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6.3.2 Bunny Image Noise Dataset Comparisons

The Bunny Image Noise dataset reconstruction had more variation in the meth-

ods’ performance than the Bunny Segmentation Error dataset; reconstructions

are shown in Figure 6.32 and quantitative results are in Table 6.9. Those methods

with the highest number of misclassifcation were the SPOT and UH approahces,

where the misclassifications consisted of almost exclusively false negatives. For this

dataset, the SPOT-SIE and UH-SIE methods performed considerably better than

the original SPOT and UH methods, but these reconstruction also had many false

negatives in the interior regions of the bunny model.

The RRVH reconstruction had the next highest number of misclassifications, and

a high percentage of false negatives as well. The LMS-SfSPM reconstruction also had

false negatives in the interior regions of the bunny; the HLMS-SfSPM reconstruction

was similar to LMS-SfSPM but had less than half the number of misclassifications

as LMS-SfSPM did. Finally, the graph cuts approach performed very well for this

dataset, reconstructing the shape of the bunny model very accurately in spite of 20%

image noise.

Table 6.9: Error of the reconstruction methods as compared to the ground truth
model for the Bunny Image Noise dataset

Method
Number
Misclassifications

False
Positive rate

False
Negative rate

RRVH
m = 0.4

85,463 0.02079 0.6697

SPOT
η = 0.05, ξ = 0.2

99,654 1.11069e-06 0.99991

UH
η = 0.05, ξ = 0.05, Pb = 0.2

99,662 0 1

Graph cuts
A = 300, B = 200, λ = 30

14,685 0.01187 0.0401

SPOT-SIE 70,273 0.006704 0.6445

UH-SIE 70,288 0.006729 0.6445
LMS-SfSPM 42,626 0.0363 0.0994
HLMS-SfSPM 20,094 0.0219 0.0035
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(a) RRVH (b) SPOT (c) UH (d) Graph cuts

(e) SPOT-SIE (f) UH-SIE (g) LMS-SfSPM (h) HLMS-SfSPM

Fig. 6.32.: Illustration of the comparison reconstructions and the LMS-SfSPM and HLMS-SfSPM reconstructions for the
Bunny Image Noise dataset
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6.3.3 Model Tree Dataset Comparisons

The reconstructions of the Model Tree dataset are shown in Figure 6.33 and

quantitative results are shown in Table 6.10. In this dataset, there is a great deal of

variation in how each method reconstructs the tree. The poorest reconstruction in

terms of resembling the tree are the SPOT and SPOT-SIE methods, which consisted

of many false negatives. The worst reconstruction in terms of misclassification error

is the UH-SIE method, which was characterized by many false positives. Recall that

the silhouettes in this set are truncated, not all voxels are seen by all cameras, and the

visual hull consists of very few occupied pixels. With the visual hull empty (or close

to empty), the UH-SIE degrades to a sort of robust visual hull method, using absolute

camera numbers instead of percentages as we do in our RRVH implementation.

The RRVH and Graph Cuts methods produced very similar reconstructions, in

that the trunk was reconstructed but the branches were not, leading to the lowest

numbers of misclassification error of the methods compared and a very low false pos-

itive rate. Finally, the LMS-SfSPM and HLMS-SfSPM methods performed similarly,

reconstructing the trunk and branches, though the branches contained false positives

as compared to the ground truth.

From examining Table 6.10 and Figure 6.33, it may be difficult to see why some

reconstructions score as they do. The ground truth model we use for comparison is

stationary, so if the branches are at a different location than they are in the model,

these count as false positives. Also, we illustrate in Figure 6.34 the methods with

the lowest false negative rates. The Graph Cuts approach smooths the reconstruc-

tion, leading to cylindrically shaped regions that are slightly bigger than the central

trunk, leading to a low false negative rate as the trunk contains more voxels than the

branches. We can see that the RRVH method’s trunk reconstruction is smaller than

the ground truth trunk. Finally, the HLMS-SfSPM method reconstructs a central

trunk with a smaller diameter than either the Graph cuts approach or RRVH. It

also reconstructs some parts of branches, but they are offset from the ground truth
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locations, leading to a higher false negative rate than the Graph cuts or RRVH re-

constructions.

Table 6.10: Error of the reconstruction methods as compared to the ground truth
model for the Model Tree dataset

Method
Number
Misclassifications

False
Positive rate

False
Negative rate

RRVH
m = 0.65

4,548 0.000327865 0.430392

SPOT
η = 0.05, ξ = 0.15

7,546 8.22826e-06 0.921569

UH
η = 0.1, ξ = 0.05, Pb = 0.2

7,275 0.00010222 0.851961

Graph cuts
A = 400, B = 300, λ = 10

4,129 0.000235771 0.414706

SPOT-SIE 7,483 1.42412e-05 0.91152

UH-SIE 10,028 0.00204029 0.438848
LMS-SfSPM 5,784 0.000615854 0.470343
HLMS-SfSPM 5,493 0.000603828 0.439338

6.3.4 Dancer A Dataset

Since the Dancer datasets lacked a ground truth, for the methods that require

parameters, we chose the parameters that showed the most representative recon-

structions. In some cases choosing one set of parameters was difficult, so for some

methods we show two or more parameter choices in Figure 6.35.

The RRVH parameters arem = 0.65 andm = 0.80 in Figures 6.35a and 6.35b. We

can see that the when m = 0.65 that the body is larger than the original person, while

when m = 0.80, the left leg is not reconstructed. The SPOT method’s reconstruction

has false negatives in the arms and legs; however, the altered method SPOT-SIE was

able to reconstruct the figure more accurately than SIE, except for a break in one leg.

The UH method in Figure 6.35d has some noisy occupied voxels, but generally

reconstructs the dancer. The success of the UH method on this dataset is highly

dependent on the parameter choices, as shown by Figure 6.35e, where parts of the
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(a) RRVH (b) SPOT (c) UH (d) Graph cuts

(e) SPOT-SIE (f) UH-SIE (g) LMS-SfSPM (h) HLMS-SfSPM

Fig. 6.33.: Illustration of the comparison reconstructions and the LMS-SfSPM and
HLMS-SfSPM reconstructions for the Model Tree dataset.
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(a) Graph cuts (b) RRVH (c) HLMS-SfSPM

Fig. 6.34.: Model Tree ground truth (in red) with the reconstructions of three of
the comparion methods (in blue). These three methods have the lowest false negative
rates, at 0.41 (Graph cuts), 0.43 (RRVH), and 0.44 (HLMS-SfSPM). Roughly, we can
see that the more blue that can be seen means a higher false positive rate (i.e. the
reconstruction is bigger than the model in the blue regions), whereas if the percentage
of red is greater there is a higher false negative rate (the reconstruction is smaller
than the model in the red regions).
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legs are missing. In the Graph Cuts method, when the smoothing parameter λ = 0,

only data costs remain. Figures 6.35f and 6.35g show the effect of using the same A

and B parameters but varying λ. With λ > 0, thin regions such as the legs and arms

are removed. The effect of the same A and B with different values of λ is also shown

in Figures 6.35h and 6.35i, where the greater difference in between A and B results

in less of a smoothing effect on the reconstruction.

The four parameter-free methods SPOT-SIE, UH-SIE, LMS-SfSPM, and HLMS-

SfSPM perform similarly, reconstructing the dancer’s arms and legs (with the excep-

tion of false negatives in the legs of SPOT-SIE). We judge the HLMS-SfSPM method

to be the most accurate, as it reconstructs the outer shape of the figure and has few

interior false negatives.

6.4 Analysis of Comparison Methods

The parameter methods (SPOT, UH, graph cuts) were sometimes very success-

ful as compared to the ground truth, though in practice the selection of parameters

must be determined empirically and for applications with little a priori information,

cannot be gauranteed to perform as consistently as the local minimum search meth-

ods. We showed the comparisons with the altered methods SPOT-SIE and UH-SIE

to demonstrate how the mechanisms of those methods can be effective when our

SIE function is substituted for the original method’s cost function, such as in the

Bunny Image Noise results, Figure 6.32e.

However, except for the case of image noise, SPOT’s pixel occupancy approach is

not able to handle either determinstic segmentation error or calibration error, in the

Bunny Segmentation Error and Model Tree datasets, respectively. While

the UH-SIE approach worked well for the Bunny Segmentation Error dataset,

in the case of partial silhouettes, UH-SIE’s approach of searching for the best number

of inconsistencies creates a resoncstruction with false positive around the voxels with

the highest number of cameras viewing them such as in the Model Tree dataset.
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(a) RRVH
m = 0.65

(b) RRVH
m = 0.80

(c) SPOT
η = 0.05, ξ = 0.15

(d) UH η = 0.05,
ξ = 0.10, Pb = 0.2

(e) UH η = 0.15,
ξ = 0.05, Pb = 0.5

(f) Graph cuts
A = 450
B = 400, λ = 0

(g) Graph cuts
A = 450
B = 400, λ = 10

(h) Graph cuts
A = 500
B = 400, λ = 0

(i) Graph cuts
A = 500
B = 400, λ = 10

(j) SPOT-SIE (k) UH-SIE (l) LMS-SfSPM (m) HLMS-SfSPM

Fig. 6.35.: Illustration of the comparison reconstructions and the LMS-SfSPM and
HLMS-SfSPM reconstructions Dancer A dataset.
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The Graph Cuts method was able to generate very representative and low mis-

classification error reconstructions in some situations (the Bunny Image Noise and

Model Tree datasets, respectively). Deciding the parameter settings and also their

relationship to voxel size requires a lot of care, as in the Dancer reconstructions,

Figures 6.35f to 6.35i.

Our LMS-SfSPM and HLMS-SfSPM methods performed reliably in a range of

situations, though the number of misclassifications was not always the lowest among

the competing methods. The HLMS-SfSPM method seems to produce the most

reliable reconstructions, particularly with respect to false negatives.
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7. EXPERIMENTAL RESULTS FOR CAMERA

CALIBRATION CORRECTION

To validate our camera calibration correction method, we show results from simulated

datasets and real datasets from the laboratory. Before describing the datasets, we

first mention some key details in our implementation of the method.

The camera calibration method we describe in Chapter 5 can be used with any

SfIS method. Note that our camera calibration correction method is only for SfIS,

not for SfSPM. In the following experiments, we use our HLMS-SfSPM method for

the SfIS reconstruction method. With ns as the number of divisions performed in

the HLMS-SfSPM method, our implementation of the camera calibration correction

method is a follows. First, the HLMS-SfSPM algorithm progresses through ns − 1

divisions. Given a reconstruction at the ns−1 level, isolated occupied voxels (with no

26-connected neighbors) are removed and the camera calibration correction procedure

of Chapter 5 is performed. Then the HLMS-SfSPM division is performed for the nsth

division, using the updated camera calibration parameters.

Note that while this is one approach for applying the camera calibration proce-

dure, there are many other variations possible; how and when to apply the camera

calibration correction method in a reconstruction pipeline depends on the character-

istics of the datasets and constraints of the application. We chose to use the camera

calibration correction method as described above because it offered an increase in

reconstruction accuracy for little computational time.

In order to compare the corrected versus uncorrected reconstructions, we also

create a HLMS-SfSPM reconstruction at level ns without the correction, using the

same ns−1 level reconstruction the corrected reconstruction uses as an initial solution.

We deal with the two correction scenarios, when only external camera parameters

are corrected, and when both internal and external camera parameters are corrected.
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In our experiments, we correct the external camera parameters first. Then, if inter-

nal parameters are to be corrected as well, we correct external and internal camera

parameters, using the solution generated by correcting only the external parameters

as an initial solution.

Finally, for the implementation of the Levenberg-Marquadt method, we used the

software package levmar [66]. On average, the camera calibration correction step

takes 60 seconds or less.

7.1 Simulated Datasets

We use the simulated Model Tree dataset of Chapter 6. Recall that camera

calibration error was added to the dataset by altering the translation component of

each camera on one axis by e ∈ {−20,−19, ..., 19, 20}. The element altered (on the

x, y, or z axis) and the value of e was determined randomly, with all possible values

of e having a uniform probability of being selected, as did the three axes of t.

In order to determine what levels of error can be corrected by our method, we

generated simulated datasets of the model tree with increasing error to assess the

method’s performance. First, a translation element (x, y, or z) is randomly chosen

for each camera, as is a direction (−1 or +1). We let e ∈ {0, 2, 4, 6, ..., 48, 50}. For

each possible e, we alter the ground truth camera calibration by adding the randomly

selected direction times e to the randomly selected translation component for each

camera.

We refer to the sets as follows: Model Tree 2 means the dataset where e = 2,

Model Tree 4 refers to the dataset where e = 4, etc. When referring to the group

of datasets for all values of e, we call this group the Model Tree e datasets.

Figure 7.1 shows the cameras for datasets where e = 0, e = 20, and e = 40. For

each camera, the directions and axis to be altered are constant over all the sets in

Model Tree e. For instance, consider the third camera on the top row in Figure
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7.1a. When e = 20 in Figure 7.1b, that camera is moved up. When e = 20 in Figure

7.1c, the top row, third camera is moved up even more.

The silhouette images are acquired from the ground truth cameras, which are

arranged on two planes, on regularly-spaced grids (Figure 7.1a). Consequently, the

silhouette images used for all of the datasets in Model Tree e are the same. Note

that this choice of ground truth versus the cameras in Model Tree e is the reverse

of what one may experience in a real application; usually the cameras are assumed to

have a regular pattern and errors occur; the silhouette images are then captured from

the cameras with unknown error. Because we do not assume any prior knowledge

about relationships in between cameras, this switch between a standard real scenario

and our simulated scenario should result in to no difference between the two choices

of experimental desgin.
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(a) Ground truth: cameras for Model Tree 0 (b) Cameras for Model Tree 20

(c) Cameras for Model Tree 40 (d) Overlay of the Model Tree 0, Model Tree 20, and
Model Tree 40 camera configurations

Fig. 7.1.: Illustration of the ground truth camera configuration and the datasets generated with e = 20 and e = 40.
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As in Chapter 6, the ground truth model is converted to a voxel-based represen-

tation to facilitate comparison between reconstructions and the ground truth. For

the Model Tree and Model Tree e datasets the settings for the HLMS-SfSPM

method are: initial voxel size is 20 mm, ns = 3, and final voxel size is a 2.5 mm cube.

We also show results using an alternate implementation on the Model Tree e

datasets. Recall that the implementation in this chapter is that the camera calibra-

tion procedure is performed once and the ns − 1 level, and then the HLMS-SfSPM

method continues to the nsth division with updated camera calibration parameters.

The alternate implementation is to continue correcting calibration parameters and re-

constructing at the ns−1 level, as long as the SIE value continues to decrease. Once

the SIE value increases, the calibration correction process is halted and reconstruc-

tion is performed at the nsth division with the best camera calibration parameters

found so far, meaning those parameters that produce the lowest value of SIE so far.

7.2 Real Datasets

We generated real datasets in our laboratory using two different camera configu-

rations. In the first configuration, there are 13 inexpensive webcameras (image size

1280 × 960 pixels) mounted such that they are to the side and above an object. The

external camera calibration was estimated using the camera calibration procedure of

Zhang [63], using a custom 2-plane calibration object. The datasets using this con-

figuration are called Branch, Coil, and Coil and Cables. The HLMS-SfSPM

method is used with ns = 2 and final voxel size 1.5 mm.

The second configuration is like the Standard Apple, Weeping Apple, and

Pole and Coil E from Chapter 6: one camera (image size 2456 × 2058 pixels) is

mounted on the end effector of a robot; the robot moves to 38 different positions and

acquires images of a large object. In fact, the datasets used in this chapter use the

same images from Standard Apple, Weeping Apple, and Pole and Coil E

but a different calibration. We refer to the datasets for this chapter as Standard
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Apple E, Weeping Apple E, and Pole and Coil E. They were generated using

a different position of the planar calibration pattern in the space and we use the

hand-eye, robot-world calibration of Hirsh et al. [67]. Generating hand-eye, robot-

world calibrations of higher accuracy in various conditions is one of our active areas of

research, but will not be discussed in this thesis other than to mention that the large

object datasets in this chapter (Standard Apple E,Weeping Apple E, and Pole

and Coil E) have poorer calibration accuracy than those of the previous chapter

(Standard Apple, Weeping Apple, and Pole and Coil E). The HLMS-SfSPM

method is used with initial voxel size 12 mm, ns = 2, so final voxel size is 3 mm.

For both of these dataset groups, silhouette images were generated using a threshold-

based background subtraction method.

7.3 Results of the Camera Calibration Correction for the Model Tree e

Datasets

The camera calibration correction method for external parameters was applied

to the Model Tree e datasets, using the standard implementation (one camera

calibration correction pass) versus the alternate implementation (multiple camera

calibration correction passes). The silhouette inconsistency error (SIE) and number

of misclassifications as compared to the ground truth for the uncorrected, single cor-

rected, and multiple corrected reconstructions are in Table 7.1; graphs of the SIE and

number of misclassifications of uncorrected, single corrected, and multiple corrected

reconstructions is shown in Figures 7.2 and 7.3. A selection of reconstructions from

the Model Tree e group of datasets are shown in Figures 7.4-7.6.

From examining Table 7.1 and Figures 7.2 and 7.3, the single pass camera cali-

bration correction implementation always produces reconstructions with lower values

of SIE and fewer misclassifications as compared to the ground truth model, when

compared to the uncorrected reconstructions, for e ≤ 50. Figure 7.2 show that as

e increases, the SIE for the uncorrected and single pass corrected reconstructions
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stabilizes near e = 34, and to a lesser extent so does the number of misclassifica-

tions in Figure 7.3. The tree model in this dataset has a large central branch. Even

when error is severe at e = 50, that central branch is still reconstructed, while the

secondary branches that emanate from that branch are not. The thickness of the

branch as well as the characteristics of the datasets (all cameras point toward the

center in the ground truth camera calibration configuration) also contribute towards

this behavior.

The multiple pass camera calibration reconstructions display different trends than

the single pass version. Use of the multiple pass version results in lower SIE values

as compared to the uncorrected and single pass camera calibration implementation.

In fact, the SIE values remain stable around 500, 000 from e = 0 to e = 30, at which

point the SIE values do increase as e increases, though SIE values for the multiple

pass correction remain lower than that of the single pass correction. The number

of voxel misclassifications for the multiple pass version are lower than those of the

uncorrected and single pass corrected versions from e = 0 to e = 16. For datasets

where e ≥ 18, the number of voxel misclassifications using the multiple pass method

rises as e rises.

When e = 0, the single and multiple pass camera calibration implementations

do change the camera calibration parameters because of discretization artefacts be-

tween projected voxel reconstructions and silhouettes. As a result, the corrected

reconstructions for Model Tree 0 have a higher SIE and number of ground truth

misclassifications. However, the visual difference between reconstructions in Figure

7.4a is small.

In Model Tree 10 reconstructions shown in Figure 7.4b, the uncorrected recon-

struction contains some ambuiguity in the secondary branches. The single pass and

multiple pass corrected reconstructions are visually similar to the Model Tree 0

reconstruction although the number of misclassifications is twice as high (23, 470 and

21, 369 versus 10, 826). As explanation for this is that the HLMS-SfSPM method and

the camera calibration correction procedure compensates for the calibration error in
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Table 7.1: SIE values and number of misclassifications for Model Tree e.

e
SIE

un-
corrected

SIE

corrected
single

SIE

corrected
multiple

Number
misclass.
uncorrected

Number
misclass.
single

Number
misclass.
multiple

0 474,233 479,142 477,383 10,826 11,362 11,106
2 761,704 499,141 490,781 14,225 11,353 11,140
4 1,134,187 544,716 501,790 20,162 13,119 12,319
6 1,404,738 622,719 502,463 25,331 16,938 15,171
8 1,601,602 723,171 502,707 29,138 21,296 17,839
10 1,752,906 849,857 508,423 31,407 23,470 21,369
12 1,877,307 947,716 515,608 32,987 26,520 24,819
14 1,982,945 1,110,284 507,563 34,616 30,280 26,725
16 2,070,690 1,282,005 507,859 35,663 32,854 30,686
18 2,144,524 1,448,956 509,630 36,610 34,210 35,458
20 2,209,796 1,689,964 501,345 36,884 33,082 36,369
22 2,267,161 1,774,048 509,589 38,958 32,275 37,333
24 2,315,839 1,916,228 509,530 40,425 34,895 38,877
26 2,359,188 1,996,990 508,108 42,171 35,679 41,024
28 2,396,981 2,088,781 516,425 42,346 37,389 45,942
30 2,426,328 2,203,223 625,453 42,212 37,458 45,462
32 2,453,696 2,230,773 574,667 42,217 36,037 43,101
34 2,476,576 2,312,358 654,834 41,850 37,207 47,336
36 2,498,844 2,342,429 703,585 41,836 37,171 49,355
38 2,520,363 2,356,482 726,378 40,314 37,447 46,803
40 2,532,851 2,370,370 807,577 40,883 36,886 57,514
42 2,544,773 2,409,602 1,249,962 40,953 37,424 51,766
44 2,557,311 2,416,400 1,142,661 40,980 37,539 51,750
46 2,565,881 2,424,331 1,357,189 40,778 37,660 55,260
48 2,573,959 2,474,882 2,294,390 39,786 38,613 45,095
50 2,581,056 2,477,458 1,490,177 40,194 37,865 58,320
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Fig. 7.2.: Graph of the SIE error for the Model Tree e datasets, for uncorrected,
single pass corrected and multiple pass corrected reconstructions.

Fig. 7.3.: Graph of the number of misclassifications as compared to the ground truth
for the Model Tree e datasets, for uncorrected, single pass corrected and multiple
pass corrected reconstructions.
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the dataset and is able to reconstruct the branching structure such that it resem-

bles the ground truth images. However, the localization of the branches may not be

exact; as for our camera calibration correction there is no global bundle adjustment

procedure.

For the Model Tree 20, Model Tree 30, Model Tree 40, and Model

Tree 50 uncorrected and corrected reconstructions in Figures 7.5 and 7.6, we observe

more ambuiguity in the branches in the uncorrected version than in theModel Tree

0 and Model Tree 10 datasets, and this ambuiguity is reduced in the single pass

corrected reconstruction. With increasing values of e, the reconstruction quality of

the single pass corrected reconstructions degrades. When e = 50, we observe that

the single pass corrected reconstruction does not resemble the original tree any more

than the uncorrected reconstruction does, despite a difference in SIE and number of

misclassifications between the two reconstructions.

However, using the multiple pass version, the reconstruction quality appears high

for larger e, from visual inspection of reconstructions in Figures 7.5 and 7.6. Recall

though that the number of misclassifications of multiple pass reconstructions versus

the ground truth increase as e increases. In Figure 7.9, we show the ground truth

reconstruction in red and the multiple pass corrected reconstructions in blue. From

closely inspecting of the recconstructions versus the ground truth figure, the distance

between branches increase in reconstructions. So, although these reconstructions

appear complete, branch localization error exists.

We show the differences between uncorrected and single pass corrected reconstruc-

tion images in Figures 7.10-7.11, on a sampling of the Model Tree e datasets. We

can see that the algorithm is able to align the images for the Model Tree 10 and

Model Tree 20 datasets, but the numbers of mismatches between the silhouette

and corrected reconstructions increases for the Model Tree 30 dataset and the

Model Tree 50 datasets. A comparison of uncorrected and multiple pass corrected

reconstruction images is shown Figures 7.12-7.13. For the first example image, shown

in Figure 7.12, the difference between the uncorrected and multiple pass corrected re-
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construction images is very small. On the other hand, we can see that for the second

example image in Figure 7.13, the multiple pass reconstruction images are aligned at

e = 30 but not for e = 40 and e = 50. Despite this, the reconstruction quality is

visually good for the e = 40 and e = 50 multiple pass reconstructions. This is because

our HLMS-SfSPM method is tolerant to some error, so a small number of erroneous

camera calibration parameters does not greatly affect the reconstruction.

The camera calibration correction method operates under the assumption that

corresponding pixels between the projected reconstruction and silhouettes are rela-

tively small, so the maximum distance between corresponding points is set at the

image width divided by 10 in our implementation, and this setting was constant over

all datasets shown in this chapter. For some datasets inModel Tree e, this distance

is too small to generate appropriate correspondences.

We have seen that use of the multiple-pass correction implementation results in

reconstructions that resemble the original object more than the single-pass correction

implementation. This increase in reconstruction quality does have a cost. In Figure

7.7, we show the number of times the calibration correction is performed for the

datasets in Model Tree e, and in Figure 7.8, we show the difference in running

time between the single-pass and multiple-pass correction implementations. Use of

the single pass implementation results in run times of 3-5 minutes, while the running

time for the multiple-pass correction implementation generally rises as e rises; the

running time for the Model Tree 50 dataset is over 50 minutes.

When using the multiple-pass correction, one possible way to reduce the migration

of cameras and branch locations would be to use only the largest connected component

of the reconstruction to align with the silhouettes. In this way, the influence of small

noisy regions would be decreased, and alignment would then be based on the features

of the object that are the most reliably reconstructed.
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(a) e = 0

(b) e = 10

Fig. 7.4.: Each subfigure shows from left to right uncorrected, single pass corrected,
and multiple pass corrected reconstructions for two of the Model Tree e datasets.
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(a) e = 20

(b) e = 30

Fig. 7.5.: Each subfigure shows from left to right uncorrected, single pass corrected,
and multiple pass corrected reconstructions for two of the Model Tree e datasets.
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(a) e = 40

(b) e = 50

Fig. 7.6.: Each subfigure shows from left to right uncorrected, single pass corrected,
and multiple pass corrected reconstructions for two of the Model Tree e datasets.
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Fig. 7.7.: Number of iterations of the camera calibration correction for the multiple
pass implementation on the Model Tree e datasets.

Fig. 7.8.: Running time comparison for the single pass versus multiple pass correction
implementations for the Model Tree e datasets.
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(a) e = 20 (b) e = 30 (c) e = 40 (d) e = 50

Fig. 7.9.: Illustration of the differences between multiple pass corrected reconstructions (in blue) versus the ground truth
(in red).
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(a) e = 10 (b) e = 20 (c) e = 30 (d) e = 50

(e) e = 10 (f) e = 20 (g) e = 30 (h) e = 50

Fig. 7.10.: Silhouette and reconstruction images are overlaid for reconstructions using the uncorrected camera calibration
parameters (top row) versus reconstructions generated with single corrected external camera calibration parameters (bottom
row). Pixels marked magenta are from the silhouette only, pixels marked blue are from the reconstruction image only. White
pixels indicate pixels where the silhouette and reconstruction image pixels overlap.
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(a) e = 10 (b) e = 20 (c) e = 30 (d) e = 50

(e) e = 10 (f) e = 20 (g) e = 30 (h) e = 50

Fig. 7.11.: Silhouette and reconstruction images are overlaid for reconstructions using the uncorrected camera calibration
parameters (top row) versus reconstructions generated with single pass corrected external camera calibration parameters
(bottom row). Color coding as in Figure 7.10.
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(a) e = 10 (b) e = 20 (c) e = 30 (d) e = 50

(e) e = 10 (f) e = 20 (g) e = 30 (h) e = 50

Fig. 7.12.: Silhouette and reconstruction images are overlaid for reconstructions using the uncorrected camera calibration
parameters (top row) versus reconstructions generated with multiple pass corrected external camera calibration parameters
(bottom row). Color coding as in Figure 7.10.
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(a) e = 10 (b) e = 30 (c) e = 40 (d) e = 50

(e) e = 10 (f) e = 30 (g) e = 40 (h) e = 50

Fig. 7.13.: Silhouette and reconstruction images are overlaid for reconstructions using the uncorrected camera calibration
parameters (top row) versus reconstructions generated with multiple pass corrected external camera calibration parameters
(bottom row). Color coding as in Figure 7.10.
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7.4 Results of the Camera Calibration Correction for the Model Tree and

Real Datasets

Table 7.2: The Silhouette Inconsistency error (SIE) of the seven datasets

Dataset
SIE, no
correction

SIE with R,
t correction

SIE with R,
t, K correction

Model Tree 2,044,618 946,104 937,490
Branch 171,346 124,351 109,984
Coil 182,176 104,806 99,195

Coil and Cables 331,743 187,255 161,649
Weeping Apple E 3,001,539 2,036,888 1,739,336
Standard Apple E 1,969,238 1,149,083 1,029,106
Pole and Coil E 711,988 363,249 302,940

In this section, we show the differences in using the two camera calibration cor-

rection scenarios on synthetic and real datasets.

We first show the effect of camera calibration correction on SIE values, as shown

in Table 7.2. Recall that the value of SIE roughly indicates the number of pixels that

do not match between the input silhouette and the image of the reconstructed shape.

Also, note that since we use a voxel-based method, the SIE is never zero except

for the case of perfect camera calibration, perfect segmentation, and infinitely-small

voxels.

Given all of these preliminaries, we can see from the Table 7.2 that correcting

only the external parameters results in a great decrease in the value of SIE, when

compared to the uncorrected results. For these datasets a reduction of 33% or more

in SIE values can be gained by the camera calibration correction scenarios. We also

notice that the SIE with internal and external parameters corrected is always lower

than that only correcting external parameters.

The reconstructions of the seven datasets are displayed using no correction, exter-

nal parameter correction, and external and internal parameter correction in Figures

7.14-7.28.
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We discuss the synthetic dataset Model Tree first, in Figures 7.14 and an

example reconstruction image in Figure 7.15. We can see in this figure that the

uncorrected SfIS reconstruction in Figure 7.14b is quite noisy, and the detail of small

branches is largely lost. However, in the reconstructions using corrected parameters

(Figures 7.14c and 7.14d), the reconstruction more faithfully represents the ground

truth model, though there are some noisy regions remaining for small branches. For

the example image shown in Figure 7.15, use of the external and internal camera

calibration correction produces closer alignment with the original image than use of

the external parameter correction alone.

Table 7.3: Reconstruction accuracy as compared to a voxelated ground truth of the
Model Tree dataset

Reconstruction FP FN
No correction 0.000504248 0.400538
R, t correction 0.000412875 0.178787

R, t, K
correction

0.000524409 0.175531

In Table 7.3, we show classification rates of the reconstructions as compared to

a voxel-version of the ground truth model. In this table, ‘FP’ is false positive (in

our context, a positive is an occupied voxel) and ‘FN’ is false negative. This table

shows that the false negative rate decreases by 22 % when using either one of the

corrections, while the false positive rate remains largely the same.

There is very little difference in appearance, number of misclassifications, and SIE

between the reconstructions using the two types of corrections. For theModel Tree

dataset, error is only induced to the translation component. There are slight differ-

ences between the reconstructions resulting from only the external camera calibration

correction versus external and internal camera calibration correction. Matching pro-

jected voxels to image silhouettes introduces discretization artefacts, which results in

some alteration of the internal parameters even when internal parameters have no
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error; we can see for correcting both internal and external parameters results in a

smaller SIE as compared to only correcting external parameters (Table 7.2: 937,490

to 946,104, respectively).
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(a) Ground truth (b) Without any camera calibra-
tion correction

(c) With correction of external pa-
rameters

(d) With correction of internal
and external parameters

Fig. 7.14.: The reconstruction and camera calibration correction of the Model Tree dataset, under the two different
scenarios.
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(a) Silhouette and reconstruction images over-
laid; uncorrected.

(b) External parameters corrected. (c) External and internal parameters corrected.

Fig. 7.15.: Overlay of silhouette and reconstructions for the Model Tree dataset.
Color coding as in Figure 7.10.

Considering the Branch, Coil, and Coil and Cables datasets, we can ob-

serve in reconstructions shown in Figures 7.16, 7.18, and 7.20 similar behavior as the

Model Tree dataset: there are more erroneously-labeled voxels in the uncorrected

reconstruction than in the corrected reconstruction. Since the objects in the dataset

are very thin, in the uncorrected reconstructions there are breaks in the surface where

it is continuous in the original object. The corrected reconstructions tend to repair

these breaks and reduce noisy regions as well. This is especially true for the Coil and

Cables dataset, where the small diameter wire, in the uncorrected reconstruction,
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is broken into many pieces, but is connected in the corrected reconstruction (Figure

7.20). Figure 7.22 shows the looped thin cable (on the left side of the coil in Figure

7.20).

The use of external parameter correction produces reconstructions that are more

representative than reconstructions generated without the correction. For this dataset,

the best reconstructions were generated by using the correction of both internal and

external parameters.

Original and reconstruction images are shown in Figures 7.17, 7.19, and 7.21. As

with the Model Tree e datasets, even when the alignment quality is not accurate

for some images as illustrated in Figure 7.17, left hand side, if enough other images

are accurate the reconstruction method can compensate for those problems. In the

other images, Figures 7.19, and 7.21, we can see the extent of the calibration error

for the overhead images on the left hand sides of the figures.

The reconstructions of the second group of real datasets, Weeping Apple E,

Standard Apple E, and Pole and Coil E are shown in Figures 7.23, 7.26, and

7.28. The first tree, in the Weeping Apple E dataset, is considered to have a

‘weeping’ form, and it has many small branches, whereas Standard Apple E has a

more upright form. Figures 7.24 and 7.27 show overlays of the original silhouette and

reconstruction images; we can see that the uncorrected reconstructions are sligtly off-

set from the silhouette images. The object in the Pole and Coil E dataset consists

of a metal pole with a coil attached using a zip tie; there are four thumb screws along

the pole’s length. For all three of these datasets, there is a great deal of improvement

in the reconstructions representing the original object when the camera calibration

parameters are corrected. There is little difference between the two types of correc-

tion, but using a correction of the external and internal parameters seem to produce

the best results, with more small details reconstructed. For instance, in Figure 7.28,

the narrow plastic tie which holds the coil to the pole is reconstructed when all pa-

rameters are corrected and is not when only the external parameters are corrected.
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This behavior can also be seen by examining the silhouette and reconstruction image

overlays in Figure 7.29.
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(a) Without any camera calibration correc-
tion

(b) With correction of external parameters (c) With correction of internal and external
parameters

Fig. 7.16.: The reconstruction of the Branch dataset
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(a) Silhouette and reconstruction images overlaid; uncorrected.

(b) External parameters corrected.

(c) External and internal parameters corrected.

Fig. 7.17.: Overlay of silhouette and reconstructions for the Branch dataset, two
images. Color coding as in Figure 7.10.
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(a) Without any camera cali-
bration correction

(b) With correction of external
parameters

(c) With correction of external
and internal parameters

Fig. 7.18.: The reconstruction of the Coil dataset
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(a) Silhouette and reconstruction images overlaid; uncorrected.

(b) External parameters corrected.

(c) External and internal parameters corrected.

Fig. 7.19.: Overlay of silhouette and reconstructions for the Coil dataset, two images.
Color coding as in Figure 7.10.
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(a) Without any camera calibration correc-
tion

(b) With correction of external parameters (c) With correction of external and internal
parameters

Fig. 7.20.: The reconstruction of the Coil and Cables dataset
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(a) Silhouette and reconstruction images overlaid; uncorrected.

(b) External parameters corrected.

(c) External and internal parameters corrected.

Fig. 7.21.: Overlay of silhouette and reconstructions for the Coil and Cables

dataset, two images. Color coding as in Figure 7.10.
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(a) Without any camera calibration correction

(b) With correction of external parameters (c) With correction of external and internal pa-
rameters

Fig. 7.22.: Detail of the Coil and Cables dataset’s reconstruction
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(a) Without any camera calibration correc-
tion

(b) With correction of external parameters (c) With correction of external and internal
parameters

Fig. 7.23.: The reconstruction of the Weeping Apple E dataset
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(a) Silhouette and reconstruction images over-
laid; uncorrected.

(b) External parameters corrected. (c) External and internal parameters corrected.

Fig. 7.24.: Overlay of silhouette and reconstructions for the Weeping Apple E

dataset, two images. Color coding as in Figure 7.10.
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(a) Without any camera calibration correc-
tion

(b) With correction of external parameters (c) With correction of external and internal
parameters

Fig. 7.25.: The reconstruction of the Standard Apple E dataset
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(a) Without any camera calibra-
tion correction

(b) With correction of external pa-
rameters

(c) With correction of external and
internal parameters

Fig. 7.26.: Detail of the Standard Apple E dataset’s reconstruction

7.5 Conclusions about Camera Calibration Correction

After examining the behavior of the camera calibration correction method, we

concluded that there is little to lose by performing the correction with both external

and internal camera parameters. When internal camera calibration parameters are

somewhat poor, performing the full correction results in more representative recon-

structions (datasets Branch, Coil, and Coil and Cables). On the other hand,

the similarity of the two types of corrections for the synthetic datasets show that

performing the full correction will not degrade the reconstruction, even when it is

known that the internal parameters were not perturbed by error. The reason for this

is that our acceptance of updated camera calibration parameters is dependent on a

lower SIE score than the score gained with the current parameters. This requirement

prevents the calibration from deviating significantly from the true calibration.
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(a) Silhouette and reconstruction images over-
laid; uncorrected.

(b) External parameters corrected. (c) External and internal parameters corrected.

Fig. 7.27.: Overlay of silhouette and reconstructions for the Standard Apple E

dataset. Color coding as in Figure 7.10.
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(a) Without any camera calibra-
tion correction

(b) With correction of external pa-
rameters

(c) With correction of external and
internal parameters

Fig. 7.28.: The reconstruction of the Pole and Coil E dataset
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(a) Silhouette and reconstruction images over-
laid; uncorrected.

(b) External parameters corrected. (c) External and internal parameters corrected.

Fig. 7.29.: Overlay of silhouette and reconstructions for the Pole and Coil E

dataset. Color coding as in Figure 7.10.
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8. CONCLUSIONS AND FUTURE WORK

In this dissertation, we explored the problem of reconstructing objects from silhou-

ettes in the presence of silhouette segmentation and camera calibration error. We

formulated the reconstruction problem as a pseudo-Boolean optimization problem

and gave some local minimum search methods for finding approximate solutions to

the optimization problem. The local minimum search methods were demonstrated on

a variety of challenging objects and compared to the state-of-the-art. We concluded

that our method was able to generate representative reconstruction of challending

objects and performed well in comparisons to other methods.

In this document, we did not perform any post-processing on the reconstructions.

A post-processing step tuned to the application may result in better reconstructions.

We also developed a method for correcting camera calibration error in the context

of SfIS. We presented an ICP-based approach that alters camera parameters such

that the image of the reconstruction and the silhouette images are aligned. To our

knowledge, ours is the only method available that is able to correct camera calibration

error with partial silhouettes, general camera motion, and segmentation error without

human assistance. We showed that our camera calibration method improves the

reconstruction accuracy of SfIS reconstructions, in particular the reconstruction of

small features.

Our future work consists of extending the methods in this document to operate on

larger agricultural objects in an outdoor environment. As alluded to in our document,

the management of computational resources becomes more critical as the number of

voxels grow. In addition, some applications may require a different approach to bal-

ance accuracy with computational time. For instance, for a fruit pruning application,

accuracy is most important near the central leader of the trunk and computational

time must be low for real-time operation. For the phenotyping application, the re-
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construction of tips of the branches may be more important. Consequently, different

versions of the reconstruction methods may be required depending on the application.
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A. IMPLEMENTATION OF COMPARISON METHODS

In this appendix, we give more detail as to how the comparison methods are imple-

mented. Throughout, we have sought that our implementation be as close to the

original paper’s implementation, so far as can be determined by reading the papers

which describe the other methods. However, since all of the comparison methods de-

pend on the setting of one or more parameters, using either trial and error or previous

knowledge, it was challenging to implement the comparison methods exactly as their

authors intended and in some of the methods implementation details were sparse. We

note differences in between our and the original method in the text.

Throughout all of these methods, we have tried to standardize the notation with

our own work. In the Graph Cuts method, our notation reflects more standard

notation in the energy minimization community within computer vision in the 2000s.

A.1 Real Robust Visual Hull

To describe the Real Robust Visual Hull, of RRVH, we first start with the Robust

Visual Hull. While the Robust Visual Hull is not based on a particular paper, it is a

commonly-used method of comparison such as in [13], [30] using the heuristic that if

the intersection of N silhouettes cones result in missing regions, then the intersection

of N − 1, N − 2, N − k etc. silhouettte cones may give acceptable results for a very

low computational cost.

We considered that a voxel was inside the silhouette region of a camera if all

pixels projected to the image plane were silhouette pixels. In the robust visual hull,

a voxel is marked as occupied if the number of cameras where the voxel is classified

as silhouette, s is greater than or equal to some number N − k.
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In some of our datasets, not all cameras view all voxels. To deal with this dataset

characteristic, we computed the percentage of cameras that classified a voxel as sil-

houette out of all cameras that could view the voxel. If nc is the number of cameras

that view a voxel, this percentage is s/nc. A threshold m ∈ [0, 1] is chosen and if

s/nc ≥ m then the voxel is marked occupied.

We determined the ideal threshold m for the comparisons with a ground truth

by exhaustively searching the interval [0, 1] in 0.05 increments. The threshold that

resulted in the smallest number of misclassifications as compared to the ground truth

was chosen as m.

A.2 SPOT

The SPOT (Sparse pixels occupancy test) method by Cheung et al in [29] and

[65] was demonstrated on human subjects in a survelliance or tracking environment.

The algorithm’s goals are to speed up the standard visual hull algorithm as well as

reduce the effects of segmentation noise on the reconstruction. It is assumed the

two parameters η and ξ are known, where η represents the the pixel false negative

probability, while ξ is the pixel false postive probability. In the original publications,

η and ξ are determined experimentally from video sequences of images.

When a voxel is projected to the image plane it covers a particular number of

pixels N . The SPOT algorithm consists of selecting only Q out of S pixels to test

and storing the projection information for a specific choice of pixels in a lookup table

for speed-related purposes. To deal with noise, once Q is set, a number Qε ≤ Q is

chosen. In SPOT, a voxel is considered within the silhouette of a particular camera

if the number of silhouette pixels s is s ≥ Qε. Then, a voxel is considered occupied if

all cameras have s ≥ Qε and empty otherwise.

Qε is chosen such that the value of a cost function is minimized, by exhaustively

iterating through all Q possibilities. The cost function is composed of two parts: the
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probability of false positives (FP ) and false negatives (FN) for voxels, shown in Eq.s

A.1 and A.3.

P (FP )SPOT =
[ Q∑
i=Qε

(
Q

i

)
ξi(1− ξ)Q−i

]N
(A.1)

ρ =

Q∑
i=Q−Qε+1

(
Q

i

)
ηi(1− η)Q−i (A.2)

P (FN)SPOT = ρ
N−1∑
j=0

(1− ρ)j (A.3)

Consequently, Qε is chosen:

Qε = min[0,...,Q]P (FP ) + P (FN) (A.4)

In our work, we use complete projection, meaning that the entire voxel is projected

to the image plane and all pixels are used, not just a subset like in SPOT. Furthermore,

we did not want to skew the results negatively with a randomly bad selection of Q.

Finally, the number of pixels for each projected voxel varies according to where the

voxel is with respect to the cameras viewing it.

To deal with all of these issues, we implemented SPOT in the following way. We

project the whole voxel to the cameras that are able to view the voxel. We consider

a voxel to be in the silhouette for a camera if at least Qε pixels are silhouette pixels;

if all pixels are silhouette pixels, even if ns ≤ Qε we consider that the voxel is in the

silhouette for that camera.

Since η and ξ are unknown for all except one dataset, we iterate over a set of

η, ξ combinations, where η ∈ [0.05, 0.2] and ξ ∈ [0.05, 0.2]. For datasets where the

ground truth is known, we then choose the parameter combination that resulted in

the smallest number of misclassifications as compared to the ground truth.
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A.3 Unbiased Hull

This work by Landabaso et al in [13] consists of two parts. The first is called

the ‘Sampled pixels projection test’, or SPPT as we abbreviate it here. The SPPT

uses the same mechanism as SPOT to select Qε, except with a different cost function.

Like SPOT, it is assumed that the pixel false negative probability η and pixel false

positive probability ξ are known.

However, the form of P (FP ) and P (FN) are different than that of SPOT:

P (FP )SPPT =

Q∑
i=Qε

(
Q

i

)
ξi(1− ξ)Q−i (A.5)

P (FN)SPPT =

Q∑
i=Q−Qε+1

(
Q

i

)
ηi(1− η)Q−i (A.6)

It is assumed that the probability that a voxel is background (PB) and the prob-

ability that a voxel is foreground (PF ) are also known. Given that, their formulation

of the probability of misclassification in 3D therefore is

P (Err3D) = PB(P (FP )SPPT )
N + PS

(
1− (1− P (FN)SPPT )

N
)

(A.7)

Under the assumption that the probability of false positives and false negatives is

equal in all of the views.

Then for the SPPT, Qε is chosen such that P (Err3D) is minimized:

Q∗
ε = argmin

Qε∈[0,...,Q]

P (Err3D) (A.8)

The second portion of the work of [13] concerns the unbiased hull. Given an initial

reconstruction, the unbiased hull seeks to reconcile those regions that are inconsistent.

The mechanism for doing so is similar to the robost visual hull in that an optimal

number of intersections is chosen (in the text it is denoted as T ∗). If a voxel projects to

T ∗ or more cameras where the voxel is classified as in the silhouette but not occupied
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by the visual hull (using SPOT, SPPT, or any other method), that voxel is marked

as occupied.

The unbiased hull is different from the robust visual hull in that T ∗ is chosen

such that it minimizes an error function for each possible number of occlusions by

the visual hull, whereas in the Robust Visual Hull occlusions are not considered.

In the UH method, there are four variables: S, the number of cameras that

classify the image region v projects to as silhouette, O, the number of cameras where

the visual hull reconstruction (using one’s choice of projection test) projects to the

same portion of the image plane as v, and C, the number of cameras that view v. I

is what the authors term ‘inconsistencies’. I = S −O.

The unbiased hull then introduces the probability of misclassification in 3D as a

function of the variables introduced above:

P (Err3D) = PB

C−O−1∑
i=max(T ∗,1)

(
C

i

)
P (FP )iSPPT (1− P (FP )SPPT )

C−i

PS

C−O−1∑
i=max(C−O−T ∗+1,1)

(
C

i

)
P (FN)iSPPT (1− P (FN)SPPT )

C−i (A.9)

The Unbiased Hull algorithm computes the optimal value of T ∗ for each count of

occlusion instances o. Consequently, we search for T ∗(o) for each o ∈ [0, C − 1] such

that Eq. A.9 is minimized. The relationship between T ∗(o) and the labeling of voxels

is as follows. For a voxel vi, given that Oi = o then the voxel is marked as occupied is

T ∗[o] ≤ Ii. The authors specify the following Alg. 7 for determining values of T ∗(o).

Algorithm 7 Unbiased Hull

1: for all occlusion counts o = [0, C − 1] do
2: T ∗(o) = argminT ∗ P (Err3D(O = o))
3: end for

As in our implementation of the SPOT method, we also iterate over a set of η, ξ

combinations, where η ∈ [0.05, 0.2] and ξ ∈ [0.05, 0.2], at increments of 0.05. We also
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iterate over a set of possible PB ∈ [0.2, 0.8] at increments of 0.1. For datasets where

the ground truth is known, as with the other methods we then choose the parameter

combination that had the smallest number of misclassifications as compared to the

ground truth.

A.4 Graph Cuts

In the Graph Cuts approach of Snow et al [30] the labeling of voxels as occupied

or empty is formulated an an energy minimization function:

E(x) =
∑
∀xi∈x

Di(xi) +
∑

xi,xj∈N

Vi,j(xi, xj) (A.10)

where x is a vector representing Boolean voxel labelings (xi = 1 means that a

voxel is occupied, empty otherwise), and N representing neighborhood relations. In

this paper, N is defined as 6-connected neighborhoods.

The neighborhood cost function is

Vi,j(xi, xj) = λδ(xi �= xj) λ ≥ 0 (A.11)

In the original publication, images were assumed to be unsegmented from their

backgrounds. Δi represents the difference in between the background images and the

image with the object of interest for voxel vi. The particular projection method is

not given, so whether Δi results from the absolute difference between the projection

of the center of the voxel, or some sort of averaging over the entire region that a voxel

projects, in not known.

With these preliminaries the data cost term is defined by the authors, when there

are 16 cameras as
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Di(xi = 0) =

∑
c min(Δ2

c,i, 400)

16
(A.12)

Di(xi = 1) =300 (A.13)

We use silhouettes as opposed to background/foreground object pairs and in our

datasets the number of cameras viewing each voxel is not constant. We construct the

data cost functions as follows in our implemention:

Di(xi = 0) =
α
∑

Δc,i

Ci

(A.14)

Di(xi = 1) =β (A.15)

Δc,i ∈ [0, 1] is the percentage, for a camera c and a voxel i, or silhouette pixels

versus total pixels using complete projection. Ci is the number of cameras that can

view a voxel vi. α, β ≥ 0 are constants, α ≥ β. We use the neighborhood cost

function from the original publication with no change.

The choice of α, β, λ naturally varies across datasets. For the comparisons using

the ground truth, we iterate over many different options for the three variables. α ∈

[300 − 600], β ∈ [200 − 500], with β’s range constrained by α ≥ β, and for both

variables incremented by 100. λ ∈ [0, 50] and in increments of 10. To calculate the

reconstruction accuracy, we select the α, β, λ combination that yields the smallest

misclassification error.

If we were to use the choice of α, β, λ used by the authors in their experiments,

α = 400, β = 300 and λ = 30.
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A.5 SPOT-SIE

We observed that the SPOT approach could be improved with a cost function

that does not depend on assumptions about the probability of false positives and

false negatives. We tested this idea with our own SIE function. In this context, we

search for the optimal Qε that results in the lowest value of the SIE function.

A.6 Unbiased Hull-SIE

For the Unbiased Hull-SIE algorithm, we start with the SPOT-SIE reconstruction

and then compute the optimal number of inconsistencies T ∗(o) by choosing the T ∗

that results in the smallest value of the SIE function, for each possible occlusion

case.
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