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PREFACE

Legged robotics has been an exiting area during the past decades. The debut of

robots such as Big Dog makes one wonder if the prime time for robots is eventually

coming. However, just as with the intricacies of human locomotion, the fundamental

dynamics behind walking and running are not entirely known and explored. This has

prevented us from better understanding how we move and from developing principles

of legged robot design. It is challenging to address this gap in locomotion dynamics

through experiments alone as large variations exist among different human subjects

and different species. In addition, many experiments are unethical to carry out.

Modeling and simulation on the other hand offers us a wonderful approach to quickly

advance our understanding and make testable predictions before certain experimental

studies are pursued. Among all the questions to be answered, two important ones

addressed in this thesis are how stability is formed and how energy efficiency is opti-

mized in legged locomotion. Here we utilize dynamics modeling and control to offer

key pieces towards a complete explanation to these questions.
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ABSTRACT

Shen Zhuohua. PhD, Purdue University, December 2014. Understanding Preferred
Leg Stiffness and Layered Control Strategies for Locomotion. Major Professor:
Justin E. Seipel, School of Mechanical Engineering.

Despite advancement in the field of robotics, current legged robots still cannot

achieve the kind of locomotion stability animals and humans have. In order to develop

legged robots with greater stability, we need to better understand general locomotion

dynamics and control principles. Here we demonstrate that a mathematical modeling

approach could greatly enable the discovery and understanding of general locomotion

principles.

It is found that animal leg stiffness when scaled by its weight and leg length

falls in a narrow region between 7 and 27. Rarely in biology does such a universal

preference exist. It is not known completely why this preference exists. Here, through

simulation of the simple actuated-SLIP model, we show that the biological relative leg

stiffness corresponds to the theoretical minimum of mechanical cost of transport. This

strongly implies that animals choose leg stiffness in this region to reduce energetic

cost. In addition, it is found that the stability of center-of-mass motion is also optimal

when biological relative leg stiffness values are selected for actuated-SLIP. Therefore,

motion stability could be another reason why animals choose this particular relative

leg stiffness range.

We then extended actuated-SLIP by including realistic trunk pitching dynamics.

At first, to form the Trunk Spring-Loaded Inverted Pendulum (Trunk-SLIP) model,

the point mass of actuated-SLIP is replaced by a rigid body trunk while the leg re-

mains massless and springy. It is found that exproprioceptive feedback during the

flight phase is essential to the overall motion stability including trunk pitching. Ei-

ther proprioceptive or exproprioceptive feedback during stance could generate stable
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running motion provided that exproprioceptive feedback is used during flight. When

both kinds of feedback are used during stance, the overall stability is improved. How-

ever, stability with respect to speed perturbations remains limited.

Built upon Trunk-SLIP, we develop a model called extended Trunk-SLIP with

trunk and leg masses. We then develop a hierarchical control strategy where different

layers of control are added and tuned. When each layer is added, the overall motion

stability is improved. This layer by layer strategy is simple in nature and allows quick

controller design and tuning as only a limited number of control parameters needs to

be added and tuned at each step. In the end, we propose a future control layer where

the commanded speed is controlled to achieve a higher level target such as might be

needed during smooth walking to running transitions.

In summary, we show here that the simple actuated-SLIP model is able to predict

animal center-of-mass translation stability and overall mechanical cost of transport.

More advanced models are then developed based upon actuated-SLIP. With a simple

layer by layer control strategy, robust running motion can be discovered. Overall,

this knowledge could help better understand locomotion dynamics in general. In

addition, the developed control strategy could, in principle be applied to future hip

based legged robot design.
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1. INTRODUCTION

During the past few decades, there has been significant advancement in the area of

legged robots. Unlike wheeled robots, legged robots have the natural advantage of

negotiating with rough terrain. In addition, there has been a dramatically growing

need of robotic assitive devices such as exoskeletons and smart prostheses. The de-

velopment of both legged robots and human assistive devices relies heavily on the

understanding of how animals and humans walk and run.

However, the principles of locomotion dynamics are currently not well under-

stood [1]. One approach to gain better understanding of locomotion dynamics has

been physical experiments. Despite great insight and knowledge gained through ex-

periments, this approach sometimes become limited due to large object variance and

due to limitation arising from ethical considerations, especially for human experi-

ments. In contrast, a modeling and analysis approach allows accurate manipulation

and control during the study beyond what is possible for experiments. In addition,

general behaviors across many animal species can be better explored using a modeling

approach.

There still exists many general animal behaviors that remain to be understood

and explained. Modeling and analysis could be a great approach to this kind of

problem. For example, it is known that animals have an almost universal preference

for particular values of relative leg stiffness, leg stiffness normalized by body weight

and leg length. Legged animals from cockroaches to humans all prefer relative leg

stiffness around ten. This kind of universal behavior is challenging to explore and un-

derstand through experimental studies. However, the core center-of-mass translation

of legged animals can be described by simple models [1,2]. Later in this dissertation,

we show that this general preference of relative leg stiffness can be explained through

the simulation of simple locomotion models.
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In addition, legged locomotion control for stability remains an area in need of

continued development. Recently, there has been development of several control

strategies aiming at balancing the pitching rotation of the body while moving the

body forward. However, most of the current strategies are not easy to employ. Here

, as the second technical part of this dissertation, we show how simple yet effective

control strategies can be derived and tested upon locomotion models. This in turn

could allow a faster development of first principles from which legged robots can be

designed upon.

1.1 Spring-Loaded Inverted Pendulum

At first, research on the dynamics of legged locomotion models has shed some light

on how animals stabilize overall center-of-mass (CoM) locomotion [1,3]. Early passive

walking and running models [4–6] first demonstrated that animal legged locomotion

can be described by simple models and templates despite different morphologies [7].

Inspired by spring mass like running behaviors [8,9] found in the legged locomotion of

various animals, a simple model called Spring-Loaded Inverted Pendulum (SLIP) [1,

2, 10, 11] is developed. As shown in Figure 1.1, it has a massless springy leg and a

point mass as the body on top. Despite its simplicity, it mimics animal or robot CoM

legged locomotion trajectories well [8, 12, 13].

As a general locomotion model, SLIP-like models of locomotion have been used to

study human and other animal walking and running mechanics, such as leg stiffness,

stride frequency, speed and etc [8,13–21]. Also, the stability of the point-mass motions

of the SLIP model have been extensively studied to better understand how stable

animal center-of-mass translation can be achieved [10,22–24].

Initially it was suggested that legged locomotion could be controlled by embed-

ding template models like SLIP [7]. Inspired by this concept, a number of locomotion

controllers such as leg placement control and hip torque control [25–35] have been
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TD
LO

TD

m

k

Figure 1.1. The Spring-Loaded Inverted Pendulum (SLIP) model.
The parameters m, k and β stand for body mass, leg stiffness and
landing angle respectively. The CoM position during stance is char-
acterized by leg length l and leg angle θ. Here TD and LO stand for
touchdown and liftoff, respectively.

developed. In addition, SLIP like running behaviors have been found in robot loco-

motion [12,36–39].

In addition, SLIP has also been used in locomotion animation [40–44] as a govern-

ing physical model. Further, based upon the simple point-mass SLIP model, many

advanced locomotion models have been developed [45–51] and many more new models

are currently in development by the authors and others in the field. What is more, to

enable easier use of SLIP for legged locomotion research, there has been development

of SLIP analytical approximated solutions during the past decade [11, 52–57].

1.2 Actuated SLIP Models

The simple SLIP model is widely used for various applications. However, it lacks

of realistic actuation and is energy conserving. Therefore, only partially asymptotic

stability can be achieved [58]. Recently, there has been development of SLIP based

locomotion models with actuation to improve overall model stability. The first cat-

egory of locomotion model has been focusing on including actuation force along the

leg [24,34,59]. One method is to improve locomotion stability by having a nonlinear

leg stiffness [24, 59]. While another method produces extra leg thrust by adjusting
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spring rest length during locomotion [34]. Both methods help improve overall center-

of-mass motion stability.

Another category of actuation is hip joint torque and leg damping. Inspired by

Hexapedal robot RHex [36, 60], a model called Clock-Torqued Spring-Loaded In-

verted Pendulum (CT-SLIP) is developed with hip torque and leg damping. By

using a clock based hip torque, center-of-mass motion with full asymptotic stability

can be achieved [45,46]. Similar to CT-SLIP, a model called Torque-Actuated Dissi-

pative Spring Loaded Inverted Pendulum (TD-SLIP) with ramped hip torque and leg

damping was presented [51] also with full asymptotic stability. It was demonstrated

that TD-SLIP is capable to predict human ground reaction force directions. Then

a general model called actuated Spring-Loaded Inverted Pendulum (actuated-SLIP),

directly related to above knee amputees, was developed with a constant hip torque

and leg damping during stance. It is found that hip torque and leg damping plays a

fundamental role in stabilizing animal legged locomotion [48]. In a recent study, it is

found that hip torque actuation in general produces more stable center-of-mass mo-

tion while solutions powered by radial forcing tend to be more energy efficient [61]. In

addition, it showed that actuated-SLIP is capable of producing stable solutions with

human related hip torque and mechanical cost of transport values. This implies that

the simple actuated-SLIP could help explain the basic center-of-mass motion stability

and energy efficiency.

1.3 Model Based Pitching Control and Robots

More recently, there has been development of trunk pitching control strategies on

locomotion models with trunk pitching [35, 47, 62, 63]. These models are typically

developed based upon SLIP and consist of a rigid body trunk and massless springy

legs. A traditional method, known as the Raibert’s approach [63] was to effectively

utilizing three separate controllers to regulate robot hopping motion with a trunk

body: (1) a proportional and derivative hip torque controller to maintain the trunk
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upright; (2) a leg thrust controller to maintain a desired peak center-of-mass height

during flight; (3) a leg angle controller during flight to modulate overall locomotion

speed. Another strategy called virtual pivot point (VPP) [47,64] is developed based

on a bipedal Spring-Loaded Inverted Pendulum (SLIP) model by replacing the point

mass with a realistic trunk as the body. It uses a controlled hip torque to redirect

ground reaction forces so that overall pendulum like pitching behaviors can be realized

and stabilized. Another approach uses the concept of hybrid zero dynamics and SLIP

embedding [35, 49] to systematically design a feedback type controller for overall

locomotion stabilization including trunk pitching.

Recently, it is demonstrated that above knee amputee like stable locomotion with

only hip torque actuation and passive legs is possible for bipedal robots [62]. Based

on the quadrupedal robot RHex [36, 60] which has damped springy legs, a bipedal

version of RHex [62] is developed. It is capable of stable bipedal running, including

body pitching. Its overall control strategy consists of a body pitching Proportional-

Derivative (PD) controller, a forward speed proportional controller and a leg trajec-

tory PD controller. For bipedal RHex, the hip motor actively tracks the time based

desired leg trajectory without knowing the actual torque applied. In addition, the

robot is unaware if it is in stance or flight as the leg touchdown and liftoff are not

detected.

1.4 Dissertation Structure

This dissertation consists of 6 chapters. In chapter 2, we show how to explain

the almost universal preference of relative stiffness through the simulation of a simple

model called actuated-SLIP. It is found that locomotion mechanical cost of transport

is minimized when biological relative stiffness values are selected. In chapter 3, we

show that this preference of relative stiffness also relates to the optimization of center-

of-mass motion stability. In chapter 4, we develop a simple model with trunk pitching

dynamics and use it to study the effect of different sensory feedback. In chapter 5, we
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demonstrate a complex locomotion model and a layered control strategy developed

based on this model. For chapter 6, we provide a short summary of the most important

points in this thesis.

Overall, this dissertation demonstrates a mathematical modeling and analysis

approach to study general locomotion dynamics. We focus on three major aspects

(shown as the three outer circles in Figure 1.2): (1) how to use a simple locomotion

model to explain the general principle of relative stiffness; (2) how to develop models

within trunk pitching to study the effects of different sensory feedback; (3) how to

develop advanced locomotion models and control strategies of bipedal locomotion

based upon simple models. Different models are used for these three aspects with

growing complexity. The detail of these models will be explained in later chapters.

Actuated-SLIP

Trunk-SLIP

Extended Trunk-SLIP

     Principle of 

 Knowledge of 

Feedback Paths

 A Hierarchical

Control Strategy

Legged

Robot

Design
  selection

 control strategy

    se
n

so
r

 se
le

ctio
n

Figure 1.2. The fusion of different knowledge gained through mathe-
matical models.
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As shown in Figure 1.2, different pieces of knowledge gained through mathemati-

cal modeling of animal locomotion can be eventually applied to design better legged

robots. The principles discovered about relative leg stiffness could help select ap-

propriate leg stiffness for legged robots of different sizes. General knowledge about

different feedback pathways helps to better select sensors for legged robots. In the

end, the developed hierarchical control strategy could be employed to control bipedal

robot locomotion.
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2. UNIVERSAL ANIMAL RELATIVE STIFFNESS AND ENERGY EFFICIENCY

2.1 Background

Running is a fundamental behavior of legged animals arising from complex in-

teractions of neurons, muscles, and the skeletal system [1, 65]. Despite the inher-

ent neuromechanical complexity of running, some surprising and nearly universal

patterns of behavior have been observed. Legged animals, across many species, ex-

hibit whole-body center-of-mass motion during running that is similar to a pogo-stick

(spring-mass) model where the leg is represented as an effective spring [7, 8]. In Fig-

ure 2.1(a)-(b), we show the animal spring mass running pattern and the classical

SLIP model which describes animal like spring mass running pattern. In this model,

the foot lifts off when the normal ground reaction force reaches zero and during flight

resets to a landing angle β until the next touchdown, when the foot reaches ground.

The effective leg spring stiffness k is empirically determined as the ratio of peak

ground reaction force F to peak leg compression Δl [8], and expressed as k := F/Δl.

To compare leg stiffness across species, the effective stiffness is nondimensionalized

relative to body weight mg and resting leg length l0, yielding the relative leg stiffness :

krel :=
F/mg

Δl/l0
=

kl0
mg

. (2.1)

The relative stiffness values of different animals are shown in Figure 2.1(c). Specif-

ically, the shaded region stands for the biologically preferred region of relative leg

stiffness. For multi-legged runners, the relative leg stiffness represents the collective

effect of all legs sharing the same stance phase. Despite significant differences in size,

morphology, and physiology, most animals prefer a relative leg stiffness between 7

and 27 [1, 8]. Why does this nearly universal pattern exist?
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Figure 2.1. Spring mass running and animal relative stiffness. (a)
Many animals produce similar whole body motion and ground reac-
tion forces similar to a pogo-stick. (b) A pogo-stick or Spring-Loaded
Inverted Pendulum (SLIP) model [2]. (c) The experimentally found
relative leg stiffness of different animals.

In related studies, it was discovered that humans actively change the overall prop-

erties of the leg to accommodate for varying terrain stiffness [17,66], thus maintaining

an effective leg stiffness (a combination of leg and terrain stiffness in these cases) near

a constant level, with an effective dimensionless relative stiffness in the same range

preferred by other legged animals. However, it is not known why maintaining an

effective relative leg stiffness between 7 and 27 is beneficial.

Energetic cost of transport may be one reason for animals to exhibit preferred

relative leg stiffness. It has been demonstrated that animals generally utilize energy

efficiently when undergoing steady sustained locomotion [67]. For flying and swim-

ming, animals prefer Strouhal numbers that have been associated with higher energy

efficiency [68]. Humans and other animals also tend to choose a walking speed that

can minimize energy expenditure [69–72]. Further, the adjustment of kinematic gait

determinants such as step length, frequency and step width in humans and other

animals is associated with reduced energetic cost [73–78].

Could the preferred relative leg stiffness exhibited and regulated by animals ex-

ist in order to reduce the energetic cost of legged locomotion? If so, this would
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directly connect a high level goal such as energy efficiency with the regulation of a

whole limb physiological property, leg stiffness. Given that the preferred leg stiffness

is known to be actively regulated, we could then understand better how high level

targets such as energy efficiency directly relate to the physiology and control of the

neuro-musculo-skeletal system of animals. Knowledge of why and how leg stiffness is

regulated during locomotion could also enable advancements for a range of applica-

tions including medical treatment of locomotion, orthoses, prostheses, legged robots,

and wearable technology.

2.2 Methods

Our objective is to determine the relationship between relative leg stiffness and

the energetic cost of motion. Our overall approach is to use a physics-based model of

legged locomotion to calculate the minimum attainable mechanical cost of transport

over a range of relative stiffness values from 1 to 100.

It is known that animals actively maintain overall effective leg stiffness [17, 66]

during locomotion. Therefore, it is not trivial to independently vary effective leg

stiffness in living animals, and this currently prohibits a study of this scope from

being conducted experimentally. A physics-based mathematical model and simulation

approach allows for direct and accurate control of the relative leg stiffness value during

simulation.

We therefore construct a physics-based mathematical model of locomotion that

depends on the relative leg stiffness and is capable of predicting a mechanical cost

of transport, which can be directly compared with experimentally calculated values

of the mechanical cost of transport. We developed a locomotion model based upon

the canonical Spring-Loaded Inverted Pendulum (SLIP) model [2, 10, 11]. Previous

research about SLIP has shown that there exists a certain relationship between rel-

ative stiffness and leg landing angle for periodic solutions [10]. However, SLIP is

energy conserving and cannot predict net energetic cost of locomotion. We therefore
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extended it to include a mathematically simple actuation and damping so that ener-

getic cost predictions can be made. The governing equations of the model are derived

and nondimensionalized to simplify analysis and comparison across many species of

legged animals.

2.2.1 The Actuated Spring-Mass Model

c

m
hip torque

l0

k
l

a b

Figure 2.2. The illustration of actuated SLIP. a, the actuated SLIP
model. Here m, k, c, l0 β are body mass, leg stiffness, linear leg
damping, leg original length and landing angle respectively. b, human
running motion. The dashed line stands for the virtual spring leg.

As shown in Figure 2.2, an established physics-based model of locomotion is

used for this study, based upon the canonical Spring-Loaded-Inverted-Pendulum

model [48]. It includes actuation which is capable of representing the combined effects

of both hip and ankle torque during locomotion, and the effective action of the knee is

represented as a spring along the leg in order to agree with the established spring-mass

modeling framework that has been used to analyze and compare experimental data

collected from species across the animal kingdom. Note that, for actuated-SLIP, we

focus on the center-of-mass translation and assume an infinite body rotating inertia.

Thus, despite the existence of hip torque, the overall body is not allowed to rotate.

For actuated-SLIP, during stance, the leg swings forward under the actuation of

hip torque and lifts off when the reaction force between the foot and the ground
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becomes zero. Similar to SLIP, during flight, the leg is quickly reset to a constant

landing angle β with an un-stretched leg.

The governing equations of the actuated SLIP model in terms of center-of-mass

position x and y are described as:

mẍ = −Fl cosφ+ Fτ sinφ , (2.2)

mÿ = Fl sinφ+ Fτ cosφ−mg . (2.3)

Where Fl and Fτ denote the force acting on the center-of-mass along and perpen-

dicular to the leg, while φ is the leg angle measured from the ground to the leg in a

clockwise direction. The magnitude of Fl is given by Fl = k(l0−l)−cl−1[(x−xf )ẋ+yẏ].

k, c, xf , l and l0 denote leg stiffness, leg damping, foot position, leg length and resting

leg length respectively. Also, The magnitude of Fτ is calculated as Fτ = τ/l with tau

denoting the hip torque. The model was simulated using Matlab.

This extension of the SLIP model with active torque and damping is the sim-

plest established model of legged locomotion known to the authors that is capable of

predicting the mechanical cost of transport. This model is closely related to similar

modeling frameworks that have been used to establish broad theories and testable hy-

potheses regarding animal physiology and mechanics [1, 45, 51]. Further, this model

is directly related to at least one existing case of human locomotion, above-knee am-

putee running, in which actuation occurs at the hip and compliance and visco-elastic

damping act along the leg [48]. This model is also representative of a class of legged

robots with actuation only at the hip.

2.2.2 Nondimensionalization

To make the simulation more general across the animal kingdom, and to simplify

analysis, we nondimensionalize the actuated SLIP model with respect to three base

parameters: body mass m, the gravitational constant g, and the uncompressed leg

length l0. This allows for more general investigation of locomotion dynamics regard-
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less of runner size and weight. To put this in other words, length in the model is

rescaled by l0, time is rescaled by
√
l0/g, and mass is rescaled by m. The resulting

dimensionless model parameters are then the leg landing angle β, the damping ra-

tio ζ = c/(2
√
km), the dimensionless hip torque τ̃ = τ/(mgl0), and the relative leg

stiffness krel = kl0/(mg).

2.2.3 Stable Solutions

The procedure for checking the stability of locomotion solutions of the actuated

SLIP model is essentially to calculate whether small errors or perturbations of the

system’s state grow or decay in time. This is done by calculating the eigenvalues of

a two-dimensional poincaré return map of the system states (speed ṽ and velocity

direction angle δ) from the nth touchdown (ṽn and δn) to the (n + 1)th touchdown

(ṽn+1 and δn+1). When the model produces a periodic motion, we will have ṽn+1 =

ṽn = ṽ∗ and δn+1 = δn = δ∗. To calculate the eigenvalues associated with a periodic

locomotion solution, an iterative procedure is followed where successive small errors or

perturbations are introduced and their effect after one step is measured. Each time,

one variable in the mapping is perturbed from the periodic fixed value by a small

amount: Δv or Δδ. The resulting states at the next step due to both perturbations

is recorded, (ṽnextΔv and δnextΔv ) and (ṽnextΔδ and δnextΔδ ). After the effects of all possible

state errors or perturbations are accounted for, the corresponding Jacobian matrix is

assembled: ⎡
⎣ (ṽnextΔv − ṽ∗)/Δv (ṽnextΔδ − ṽ∗)/Δδ

(δnextΔv − δ∗)/Δv (δnextΔδ − δ∗)/Δδ

⎤
⎦ (2.4)

Then two eigenvalues λ1 and λ2 of this numerical Jacobian matrix are calculated.

The periodic motion is stable if both eigenvalues have a magnitude less than one,

unstable if either eigenvalue has a magnitude larger than one.

For the canonical SLIP model with zero actuation and leg damping, partially

asymptotically stable solutions can be found and all solutions have zero energetic
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cost of locomotion as the model is energy conserving and not intended for making

predictions about the energetic cost of locomotion of animals. It has been shown

that for the solutions to obtain full asymptotic stability, actuation in the actuated-

SLIP model used here must exceed a non-zero threshold [48]. Therefore, a non-zero

energetic cost is required to ensure locomotion stability.

2.2.4 Measuring the Mechanical Cost of Transport

An established method for quantifying the energetic efficiency of locomotion is by

calculating the cost of transport . The cost of transport is the average energy required

for an animal to travel a unit distance [3, 79]. Here we focus on the specific energy

cost associated with animal mechanical movements, excluding the base metabolic cost,

and define it as the mechanical cost of transport. This is the energy that was put

into the mechanical motion divided by the distance traveled. The animal mechanical

cost of transport data is obtained from Alexander [80], given in the units J/(m×kg).

These values were then scaled by the gravitational constant g to yield a dimensionless

mechanical cost of transport.

To obtain a dimensionless mechanical cost of transport prediction from the theo-

retical locomotion simulation, dimensionless mechanical energy expenditure of a single

stride Ẽ is first calculated as the product of the constant dimensionless hip torque

τ̃ and leg angle swept Δθ during stance. Also, the dimensionless stride length l̃str is

recorded, and the dimensionless mechanical cost of transport is calculated as follows:

Mechanical Cost of Transport =
Ẽ

l̃str
. (2.5)
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2.3 Results

2.3.1 Theoretical Minimum Mechanical CoT Versus Relative Leg Stiff-

ness

First, we calculated the theoretical lowest attainable mechanical cost of transport

as a function of relative leg stiffness, as shown in Figure 2.3. This calculation is for

a fixed leg landing angle of 69◦ and a nondimensional speed of 1.1 (both typical for

human locomotion [8,19]). For each value of relative leg stiffness, all stable locomotion

solutions are found over a wide range of forcing and damping values. Among these

solutions, the lowest attainable mechanical cost of transport is reported for each

relative leg stiffness. This yields a curve of the lowest possible mechanical cost of

transport versus the relative leg stiffness.
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Figure 2.3. Simulated results using human related parameter values.
(solid line) The lowest attainable mechanical cost of transport versus
relative leg stiffness. The single dot represents the empirically deter-
mined preferred stiffness and associated mechanical cost of transport
of human running [8, 80, 81].

We found that there is a particular relative stiffness for which an overall minimum

mechanical cost of transport occurs, and we call this the optimal relative stiffness.

Running is most efficient for this optimal relative stiffness value because a type of
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nonlinear resonance occurs between the forward angular motion about the foot and

the compressive motion along the leg, which leads to lower mechanical cost of trans-

port. This type of nonlinear behavior is not easily explained in terms of linear system

or continuous system dynamics due in part to the hybrid nature of leg liftoff and

touchdown events, and so requires analysis of fully integrated locomotion solutions.

When analyzing solutions that maintain a given running speed, we found that any

deviation up or down from the optimal stiffness value moves the system away from

the nonlinear resonance condition and requires additional actuation which increases

the work done during the stride and thus increases the cost of transport.

The minimum cost of transport observed for the physics-based running model

provides an explanation for why humans prefer to run with a particular relative leg

stiffness. To compare the theoretical prediction directly with empirically collected

data on human running, we superimpose the experimentally observed relative stiff-

ness and mechanical cost of transport observed for humans [8, 80, 81] onto the plot

of the theoretical cost of transport curve. Please see the relationship between the

experimental data point representing preferred human running and the theoretical

prediction from the running model in Figure 2.3.

Surprisingly, the experimentally observed relative stiffness that is preferred by

humans, and the mechanical cost of transport observed for humans, coincide directly

with the predicted theoretical minimum region. According to the predicted CoT-vs-

stiffness curve shown in Figure 2.3, the cost of transport would sharply rise if humans

ran with a different relative leg stiffness. This implies that the cost of transport is a

significant factor in human selection and regulation of relative leg stiffness.

2.3.2 Effect of Changing Speed and Leg Landing Angle

We are interested in determining how these results might generalize across the an-

imal kingdom. Since different animals have different preferred running speeds and leg
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landing angles, we theoretically determine how the optimal relative stiffness depends

on these parameters.
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Figure 2.4. The lowest attainable mechanical cost of transport versus
relative leg stiffness. The gray region stands for biologically preferred
region with a relative leg stiffness from 7 to 27 and a mechanical cost
of transport from 0.09 and 0.2.

The lowest attainable mechanical cost of transport is calculated as a function of

relative stiffness for several different running speeds, as shown in Figure 2.4. Here,

three panels are plotted for the nondimensional speeds 0.9, 1.2, and 1.5 (within the

typical speed range of animals (0.9, 1.7) [8]) while the leg landing angle is kept at 65◦.

The optimal relative stiffness value increases as the running speed is increased. The

minimum mechanical cost of transport found first increases a small amount as the

speed is increased from the first to second panel, but then decreases a small amount

as the speed is increased further in the third panel.

If the leg landing angle is changed, the minimum mechanical cost of transport and

corresponding optimal relative stiffness also change, as shown in Figure 2.5. Here,

three panels are plotted for different leg landing angles 62◦, 65◦, and 68◦, while the

average forward speed is kept at 1.2. As the leg landing angle is increased, the

minimum mechanical cost of transport decreases, and the associated optimal relative

stiffness value increases.
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Figure 2.5. The lowest attainable mechanical cost of transport versus
relative leg stiffness.

Overall the optimal relative leg stiffness generally falls within the biologically

preferred region between 7 and 27. Additionally, the predicted minimum mechanical

cost of transport is also within the biologically observed region between 0.09 and 0.2.

2.3.3 The Theoretical Minimum CoT for Multiple Animal Species

To represent multiple animals, we superimposed multiple theoretical mechanical

cost of transport curves for multiple nondimensional speeds (from 0.9 to 1.7) and leg

landing angles (from 60◦ to 70◦) used by animals [8]. This yields a single, composite,

theoretical minimum cost of transport curve as shown in Figure 2.6. On top of this

plot, we superimposed the region of relative stiffness and cost of transport that are

experimentally observed for both mammals and birds [8, 80].

A clear energy well of low mechanical cost of transport values centers over the bio-

logically preferred stiffness values and correctly predicts the range of mechanical cost

of transport observed experimentally, 0.09 to 0.20. The overall minimum mechani-

cal cost of transport predicted lies below 0.09 and on either side of the biologically

preferred stiffness range the theoretical cost of transport curve rises above 0.20. This

result, along with the human prediction shown previously, implies that animals gen-
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Figure 2.6. General results. (solid line) The lowest attainable me-
chanical cost of transport of stable periodic solutions found over a
range of animal relevant parameter values.

erally prefer a particular range of relative leg stiffnesses because they can minimize

the mechanical cost of transport.

2.4 Conclusion

Overall, the results presented here provide an explanation for why maintaining

a preferred leg stiffness is valuable to a running animal. In short, we expect that

selecting a relative leg stiffness in the range of 7 to 27 leads to a lower energetic cost

of transport. We found that running is most efficient in this range because a type of

nonlinear resonance occurs which leads to a lower mechanical cost of transport.

The results of this study may also help in determining an organizing principle for

how animals control their underlying physiology to produce high level whole-body

motion. Since the regulation of relative leg stiffness can be directly related to the

properties of muscle, tendon, and other tissues of the leg, as well as the neural acti-

vation of the leg, the relationship between whole-body cost of transport and relative

leg stiffness presented here provides a critical link across multiple scales of biological

motion. Despite large variations in evolutionary history, morphology, and size, such
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an organizing principle is expected to be general across animals and may be true of

biologically-inspired systems as well. Therefore, the results of this work are expected

to have general value across many fields such as biology, robotics, and human motion

sciences and engineering.
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3. UNIVERSAL ANIMAL RELATIVE STIFFNESS AND STABILITY

3.1 Background

As previously mentioned in Section 2.1, the “effective stiffness” of human and

animal legs has been defined and empirically measured in many studies as the ratio

of peak ground reaction force to peak leg compression [8, 82–85]. Despite significant

differences in size, morphology, and physiology, most animals prefer a normalized leg

stiffness (normalized by body weight and leg length) between 7 and 27 [8].

In the previous chapter, it is found that a simulation of locomotion predicted

that preferred leg stiffness coincides with optimal energetic cost of locomotion. This

finding agrees with related studies which show that animals, including humans, tend

to minimize energy expenditure during locomotion by adjusting locomotion gait and

speed [70, 71, 73–78]. Apart from the energetic cost, the authors are not aware of

other explanations for the nearly universally observed preference for leg stiffness.

Here, we investigate whether the stability of motion could also be a primary factor

influencing the preferred leg stiffness of animals. The dynamic stability of locomotion

is of great importance to the success of animals since high speed locomotion would

not exist without it. For example, it was previously found that Blaberus discoidalis is

statically unstable when running at high speeds, thus it requires dynamic stability to

maintain locomotion [86]. Subsequent simulation models predicted that insects move

in a manner that ensures dynamic stability [1, 87–89]. Based upon these previous

studies, we expect that stability may play an equally important role as energetic cost

of locomotion in the universally observed preferred leg stiffness of animals.
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3.2 Methods

The objective of our numerical simulation is to determine the relationship between

the stability of locomotion and leg stiffness. Our overall approach is to simulate an

established physics-based model of animal running and calculate the stability of lo-

comotion over a range of relative leg stiffness values, ranging from from 1 to 100.

It is currently prohibitively challenging to experimentally vary the leg stiffness of

animals since animals actively regulate to maintain their leg stiffness regardless of

treatments [17, 66]. A physics-based mathematical model and simulation approach

allows for direct and accurate control of the relative leg stiffness value during simula-

tion. Similar to the previous chapter, actuated-SLIP is used and nondimensionalized

for simulation. The detailed model description, nondimensionalization and calcula-

tion of mechanical cost of transport can be found in previous section 2.2, thus omitted

here for simplicity. In short, mechanical cost of transport is measured as the nondi-

mensional mechanical energetic cost per stride divided by the nondimensional stride

length.

3.2.1 Measuring Local Stability

The procedure for checking the stability of locomotion solutions of the actuated

SLIP model is essentially to calculate whether small errors (perturbations of the

system’s state) grow or decay in time. Given that we have multiple directions in the

system’s state space, we use two methods to estimate the stability of locomotion which

can account for both the direction of slowest recovery and the overall rate of recovery.

One provides us with the perturbation decay constant associated with the slowest rate

of perturbation recovery (the maximum magnitude eigenvalue of a Poincaré return

map), and the other provides us with an overall contraction constant (based on the

singular value decomposition of the Poincaré return map) associated with the average

rate of perturbation recovery of all system states. In short, the perturbation decay

constant and the contraction constant are meant to represent the worst case time
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scale associated with perturbation recovery and the average perturbation rejection

performance respectively.

Perturbation Decay Constant: Here we define the perturbation decay constant

mathematically as the maximum eigenvalue of a Poincaré return map which describes

how the dynamics of locomotion evolve from one stride to the next. We calculate the

eigenvalues of the Poincaré return map of the system states (speed ṽ and velocity di-

rection angle δ) from the nth touchdown (ṽn and δn) to the (n+1)th touchdown (ṽn+1

and δn+1). When the model produces a periodic motion, we have ṽn+1 = ṽn = ṽ∗ and

δn+1 = δn = δ∗. To calculate the eigenvalues associated with a periodic locomotion

solution, an procedure is followed where successive small errors or perturbations are

introduced and their effect after one step is measured. Each time, one variable in

the mapping is perturbed from the periodic fixed value by a small amount: Δv or

Δδ. The resulting states at the next step due to both perturbations is recorded,

(ṽnextΔv and δnextΔv ) and (ṽnextΔδ and δnextΔδ ). After the effects of all possible state errors or

perturbations are accounted for, the corresponding Jacobian matrix is assembled:

A =

⎡
⎣ (ṽnextΔv − ṽ∗)/Δv (ṽnextΔδ − ṽ∗)/Δδ

(δnextΔv − δ∗)/Δv (δnextΔδ − δ∗)/Δδ

⎤
⎦ (3.1)

The Poincaré return map can be approximated with respect to small perturbations,

and the dynamics of perturbation can be described as:

⎡
⎣ Δvn+1

Δδn+1

⎤
⎦ = A

⎡
⎣ Δvn

Δδn

⎤
⎦ (3.2)

Where Δvn and Δδn are the remaining system state error from the fixed point value v∗

and δ∗ after n mapping, starting from an initial perturbation Δv and Δδ. Similarly,

Δvn+1 and Δδn+1 are the remaining system state error after n+ 1 mapping.

Then the two eigenvalues λ1 and λ2 of this numerical Jacobian matrix are calcu-

lated. The periodic motion is unstable if either eigenvalue has a magnitude larger
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than one, stable if both eigenvalues have a magnitude less than one. When both

eigenvalues are less than one, the maximum eigenvalue magnitude determines the

slowest asymptotic decay of a small perturbation. This maximum eigenvalue magni-

tude, the perturbation decay constant, therefore provides us with a worst case decay

rate. Please note that the decay constant here is inversely related to the rate of decay:

For a discrete stride-to-stride map, a smaller perturbation decay constant will yield

a faster rate of decay or recovery time form a small perturbation.

Perturbation Contraction Constant: We also use a second method to measure

the stability of locomotion, as a complementary method to the use of eigenvalues.

Besides the maximum eigenvalue magnitude which represents the recovering speed

in the most vulnerable perturbation direction, we also seek to measure the overall

contraction of perturbation. To quantify the perturbation contraction, we rely on the

singular value decomposition of the Jacobian matrix A.

Figure 3.1 shows a graphical representation of the singular value decomposition.

In the following, we show that any perturbation on the orange unit circle can be

mapped to a point on the purple ellipse after a single mapping. Assuming there exists

an initial perturbation on the unit circle expressed as cos θν1+sin θν2, where θ can be

any value from zero to 2π. After one liner mapping, it becomes σ1 cos θu1+σ2 sin θu2.

This corresponds to a certain point on the purple ellipse which can be described in

local coordinate system as:
x2

σ1
2
+

y2

σ2
2
= 1 (3.3)

Where the direction of u1 and u2 are defined as positive x and y directions. Also,

it is easy to prove that any perturbation within the orange circle can be mapped to

a certain point within the purple ellipse. We therefore define the ratio of the purple

ellipse area to the orange circle area as the perturbation contraction constant r as:

r = (σ1
2 + σ2

2)/2 (3.4)
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Figure 3.1. (a) A graphical illustration for singular value decomposi-
tion of the Jacobian matrix A. Here ν1, ν2, u1 and u2 are input and
output unit vector pairs. σ1 and σ2 are two singular values. (b) Typ-
ical small perturbation response of the center-of-mass velocity vector
at touchdown. The model parameters used are krel = 11.224, β = 65◦,
τ̃ = 0.2236, ζ = 0.5923. When the nondimensional touchdown veloc-
ity magnitude and angle are 0.9706 and 0.1607, the model reaches
stable periodic motion.

A smaller perturbation contraction constant yields a larger rate of perturbation con-

traction (a faster averaged recovery time of all system states).

To better explain the concept of perturbation contraction constant, a simulated

small perturbation response of a typical periodic running solution is presented in panel

(b) of Figure 3.1. When the touchdown velocity magnitude and angle is at the red dot,

the center-of-mass motion becomes periodic from one touchdown to next touchdown.

To cover all the possible perturbations, initial perturbations are equally added around

the fixed point values. Different initially perturbed center-of-mass velocity vectors

are shown as circles in panel (b). To test running solution stability, the subsequent
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center-of-mass velocity vectors are recorded. It can be seen in Figure 3.1 panel (b),

the perturbation shrinks as the center-of-mass velocity magnitude and angle gradually

move towards fixed point values.

Together, the perturbation contraction constant r and the perturbation decay

constant λ∗ characterize two important properties of the local stability (response to

small perturbations) of running solutions: the worst case recovery rate is described

by the perturbation decay constant while the averaged recovery rate is described by

the perturbation contraction constant.

3.3 Results

3.3.1 Local Stability Versus Relative Leg Stiffness

First, we calculated the perturbation decay rate of different running solutions

versus relative leg stiffness. At first, to represent human locomotion, we fixed the leg

landing angle, nondimensional average speed and mechanical cost of transport to be

69◦, 1 and 0.13 respectively based on existing literature [8, 19, 80].
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Figure 3.2. (a) The perturbation decay constant of periodic solutions
versus relative leg stiffness. (b) The perturbation contraction constant
r of periodic solutions versus relative leg stiffness. The light gray line
in each panel stands for the human preferred leg stiffness value of
20 [8].
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As shown in Figure 3.2 (a), the minimal perturbation decay constant occurs at

values close to empirical human relative leg stiffness value 20, indicated as a gray line

in panel (a). We define this value as the optimal relative stiffness for perturbation de-

cay rate. Also, it is noticed that stable solutions with the perturbation decay constant

less than one can only be found when the relative leg stiffness is near human empir-

ical value. In addition, the perturbation contraction constant r, as a representative

of the local stability, is calculated and plotted against relative stiffness in panel (b).

Similarly, there exists a distinct relative stiffness where r is the smallest. We define

this value as the optimal relative stiffness for perturbation contraction. The existence

of both optimal relative stiffness values near the actual human value indicates that

one possible reason humans adapt to this particular relative leg stiffness is to increase

locomotion stability.

3.3.2 Effect of Changing Leg Landing Angle, Mechanical CoT and Speed

It is known that there exists certain variations among different people in terms

of the preferred gait (leg landing angle), speed and the resulting mechanical cost

of transport. As a next step, we simulate Hip-SLIP and calculate their perturbation

decay constant and perturbation contraction constant while categorically varying each

parameter and fixing the other two.

The perturbation decay constant (upper row) and perturbation contraction con-

stant (lower row) are plotted against relative leg stiffness in Figure 3.3. The leg

landing angle are varied around human preferred values: 68.5◦, 69◦ and 69.5◦ from

left to right columns. The average speed and mechanical cost of transport are fixed at

1 and 0.13. The optimal relative stiffness values for perturbation decay constant and

perturbation contraction constant increase as leg landing angle increases. However,

they still remain within the biologically observed relative leg stiffness range (from 7

and 27) and closely resides nearby the human empirical value 20.
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Figure 3.3. The perturbation decay constant and perturbation con-
traction constant versus relative leg stiffness. The gray line in each
panel stands for the human perferred leg stiffness value of 20.
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Figure 3.4. The perturbation decay constant and perturbation con-
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panel stands for the human perferred leg stiffness value of 20.
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We then consider the variation of mechanical cost of transport. In Figure 3.4, we

show the perturbation decay constant and perturbation contraction constant when the

mechanical cost of transport is varied from 0.12 to 0.14 centered around experimental

value of 0.13. The leg landing angle and speed are fixed at 69◦ and 1. Similarly, the

optimal relative leg stiffness values mildly increases when humans run faster. But the

optimal values are close to actual human value, and stable solutions are only found

when relative leg stiffness is around 20.
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Figure 3.5. The perturbation decay constant and perturbation con-
traction constant versus relative leg stiffness. The gray line in each
panel stands for the human preferred leg stiffness value of 20.

The last parameter varied is the average speed from 0.95 to 1.05 as shown in

Figure 3.5. The leg landing angle and mechanical cost of transport are fixed at 69◦

and 0.13. Similar results can be observed with the optimal relative stiffness values

near 20.

Combining the observations of Figures 3.3, 3.5 and 3.4, the optimal relative leg

stiffness for perturbation decay constant is slightly less than the actual human value.

In contrary, the optimal relative leg stiffness for perturbation contraction constant is
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slightly larger than the human value. This could indicate that trade-off is made by

choosing the relative stiffness between two optimal relative leg stiffness values.

3.3.3 Optimal Relative Leg Stiffness for Multiple Animal Species

We then seek to investigate the local stability of Hip-SLIP over a wider range

of parameter space with a direct relevance to different legged animals. We vary

the average speed over three levels: 0.9, 1.2 and 1.5 in order to represent animals

preferred running speeds, typically within the range of 0.8 and 1.7 [8]. In addition,

three representative running leg landing angles are selected to be 60◦, 65◦ and 70◦.

This results in nine combinations of biologically representative average speeds and

leg landing angles. With each combination, periodic solutions are calculated for

three different mechanical cost of transport levels, 0.1, 0.15 and 0.2, to represent the

biologically observed range of CoT between 0.09 and 0.2 [80]. In total, we then have

27 combinations of parameters to represent the biologically relevant range of this

parameter space. For each combination of these parameters we compute a branch of

locomotion solutions versus the relative leg stiffness. The perturbation decay constant

and perturbation contraction constant is then calculated for each branch of locomotion

solutions and plotted against the relative leg stiffness. Please see Figures 3.6 & 3.7.

In Figure 3.6, we show the perturbation decay constant versus relative leg stiffness

for different combinations of leg landing angle and average speed. Each panel consists

of three perturbation decay constant curves with a mechanical cost of transport of 0.1

(blue), 0.15 (green) and 0.2 (red). In general, within each panel, the majority of the

stable solutions with the perturbation decay constant less than one are found within

the biologically relevant relative stiffness region. In addition, there always exists an

optimal relative leg stiffness. For most of the curves, perturbation decay constant

increases when the relative stiffness is increased or decreased from the optimal value.

For the bottom left panel, the perturbation decay constant is smallest at the left

most end. No solutions can be found when the relative stiffness is increased above
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Figure 3.6. The perturbation decay constant versus relative leg stiff-
ness. The blue, green and red lines stand for fixed points with a
mechanical cost of 0.1, 0.15 and 0.2. Here the gray region stands for
biologically relevant relative leg stiffness region from 7 to 27.

a critical value. Despite variations of leg landing angle, speed, and mechanical cost

of transport, the optimal relative leg stiffness remains entirely within or nearby the

biologically relevant relative stiffness region.

We next plot the perturbation contraction constant r versus the relative leg stiff-

ness, as shown in Figure 3.7. Similarly, there always exists an optimal relative stiffness

where the perturbation contraction constant r is the smallest. Any deviation from

the optimal value will increase the resulting r value. The optimal relative leg stiffness
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Figure 3.7. The minimum perturbation contraction constant r versus
relative leg stiffness. The blue, green and red lines stand for fixed
points with a mechanical cost of 0.1, 0.15 and 0.2. Here the gray
region stands for biologically relevant relative leg stiffness region from
7 to 27.

generally increases with leg landing angle and average speed. However, the optimal

value remains within the biologically relevant relative stiffness region.

We also found that locomotion solutions mostly exist within and near the bio-

logical relevant relative stiffness region, as shown in Figure 3.8 (a). This is also a

significant and surprising result which indicates that animals may have to choose to

run with these biologically relevant leg stiffnesses just to achieve locomotion. Within

this range of biologically relevant leg stiffness, further refined selection of the relative
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Figure 3.8. (a) The region of all periodic locomotion solutions (purple)
and stable solutions (green), as well as the animal preferred stiffness
range (gray). (b) The minimum perturbation contraction constant of
stable solutions over a range of parameters. (c) The minimum pertur-
bation decay constant of stable solutions over a range of parameters.

leg stiffness can result in optimization of the stability of locomotion, which was shown

above to correctly predict the values selected by humans: please see again Figure 3.2.

Lastly, throughout the entire range of speeds (from 0.8 to 1.7 [8]), leg landing

angles (from 60◦ to 70◦), and Cost of Transport values (from 0.09 to 0.2 [80]) we con-

sidered above we now find and plot the minimal attainable perturbation decay con-

stant and perturbation contraction constant versus relative stiffness: See Figure 3.8
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(b) & (c). The leg landing angle, average speed and mechanical cost of transport are

allowed to vary within the biologically relevant region for each value of relative leg

stiffness tested. This approach ensures that we can determine how stability varies

with respect to relative leg stiffness, even if there is variability in the other system

parameters. This also provides a single aggregate curve that represents the optimal

relative leg stiffness in a gross averaged sense, taking into account variations in the

other parameters. Here we find that there exists a distinct optimal relative stiffness

for both the perturbation decay constant and the perturbation contraction constant.

Overall, both optimal relative stiffness values reside close to the middle of biological

relevant relative stiffness region. This implies that animals prefer to choose a range

of relative leg stiffness centered on the optimal relative leg stiffness value.

3.4 Conclusion

Legged animals, across many species, select relative leg stiffness in a nearly uni-

versal range between 7 and 27. It has been shown recently that one plausible reason

for animals to prefer this range is in order to reduce the mechanical cost of transport.

However, the stability of behavior, locomotion in this case, is increasingly thought

to be another important factor influencing animal preference and animal evolution.

In this paper, we used a physics-based simulation of legged locomotion to determine

whether the selection of relative leg stiffness correlates with the minimization of lo-

comotion stability.

Overall, we showed that selecting a relative stiffness between 7 and 27 leads to

optimal locomotion stability. This provides a novel explanation for why maintaining

a preferred leg stiffness is valuable to a running animal. This work also provides

support for the idea that motion stability could be a major factor influencing animals

behavior and evolution in general, perhaps with similar significance as energetic effi-

ciency.
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4. FEEDBACK PATHWAYS IN RUNNING WITH TRUNK PITCHING

4.1 Background

Human and animal locomotion is easy to take for granted, and yet has proven dif-

ficult to understand and reproduce. Though it has long been known that the nervous

system plays an essential role in providing feedforward activation and feedback con-

trol of animal locomotion [90–94], it is generally not known how this neural activation

and control integrates with the underlying passive dynamics of locomotion, and there

is currently no complete picture of the neural system architecture or function. The

complexity and the high dimensionality of the neuromechanics of animal locomotion

make it difficult to understand how neural (electrical) and mechanical contributions

to stability integrate, and so a complete solution is difficult [95].

It is known that proprioceptive and exproprioceptive neural feedback, as two

fundamental neural feedback pathways, are used in various human motion such as

walking and dancing [96, 97]. Studies have showed that proprioceptive feedback is

extensively used by human beings to detect and control postures [98–101]. In addition,

the idea of proprioceptive feedback has been used to control robot locomotion [102].

On the other hand, exproprioceptive neural feedback is known to be employed in the

control gait and postures [103,104].

Here we focus on the effect of both feedback pathways on hip based locomotion,

a special case of locomotion exhibited by above knee amputees and several robots

with actuation only at the hip and passive compliant legs [36]. This represents a

dramatic reduction of neuromechanical complexity of the leg when compared to a

fully articulated and actuated human or robotic runner: See Figure 4.1. Specifically,

we seek to understand what each feedback alone is capable of in human locomotion

control. Is either alone could form basic locomotion stability? If so, in which phase of
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motion are these critical or otherwise effective? What are the performance advantages

of exproprioceptive feedback over proprioceptive feedback, if any?

The objective of this study is to determine how the the stability of pitching loco-

motion in the sagittal plane is affected by proprioceptive or exproprioceptive feedback

control applied at the hip in the stance and flight phases of motion. In particular, we

will determine and compare how stability depends on four different cases of feedback

at the hip: a) proprioception of the leg angle with respect to the body during flight,

and proprioception of the trunk angle w.r.t. the leg during stance; b) proprioception

of the leg angle w.r.t. the body during flight, and exproprioception of the trunk

angle (in the inertal frame) during stance; c) exproprioception of the leg angle (in

the inertial frame) during flight, and proprioception of the trunk angle w.r.t. the leg

during stance; and d) exproprioception of the leg angle during flight and exproprio-

ception of the trunk angle during stance. These four cases are depicted in Figure 4.2.

The knowledge gained from this work can provide principles regarding the underlying

dynamics and control of hip-based locomotion, and is expected to provide founda-

tional knowledge for the advancement of hip-based robots and amputee therapies and

prostheses.

Initially, we hypothesize that exproprioceptive feedback throughout the entire

stride will be needed in order to achieve stable locomotion. Without exproprioceptive

feedback the controller would rely on information relative to a moving reference frame

and this is expected to be unreliable and insufficient to yield stability, and so we ex-

pect that cases where proprioception is used instead of exproprioception will result

in unstable locomotion. Further, we initially hypothesize that there will be a similar

degree of instability for the two cases where a portion of the stride use proprioceptive

feedback (either in flight or in stance), since we initially have no reason to expect that

exproprioceptive feedback is more critical to one phase of motion than the other. We

expect the case of proprioception in both stance and flight to be the least stable of

the four cases considered.
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The overall approach taken here is to utilize a theoretical study of hip-based lo-

comotion dynamics in the sagittal plane. Currently, it is not feasible to analyze the

feedback-based dynamics of human amputee subjects directly as it would require

blocking of neural feedback pathways that is currently too difficult to achieve and un-

ethical until more specific hypotheses are developed. Further, mathematical models

provide analytical and theoretical insight not otherwise gained. Here, a simple model

of sagittal plane legged locomotion with actuation only at the hip will be analyzed

with multiple feedback rules applied at the hip. The stability of the model with dif-

ferent cases of feedback will be assessed using small perturbation studies (eigenvalues

of a locomotion stride map) as well as large perturbation studies (basin of attraction).

(a) Above Knee Athlete  (b) Bipedal Robot 

 

Figure 4.1. Examples of hip-based locomotion dynamics. (a) Dynamic
running of an above-knee amputee on a passive compliant prosthe-
sis (Richard Whitehead, Paralympic Gold Medalist) [105]. (b) An
amputee-inspired bipedal robot currently in progress in the authors’
lab [106].
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Proprioception
during flight

Figure 4.2. Four distinct cases of feedback are tested: a) proprio-
ception of the leg angle with respect to the body during flight, and
proprioception of the trunk angle w.r.t. the leg during stance; b) pro-
prioception of the leg angle w.r.t. the body during flight, and expro-
prioception of the trunk angle (in the inertal frame) during stance; c)
exproprioception of the leg angle (in the inertial frame) during flight,
and proprioception of the trunk angle w.r.t. the leg during stance;
and d) exproprioception of the leg angle during flight and exproprio-
ception of the trunk angle during stance.

Note that in Figure 4.2, both φ and θ in essence represent the angle between

trunk and leg. Here two angle notations instead of one are used here to denote

feedbacks during stance and flight respectively. In addition, for case (b) in the figure,

the exproprioceptive feedback α is only used during stance phase. Therefore, the

absolute leg angle β cannot be obtained despite the fact that the relative angle θ is

sensed during flight. Similarly, for case (c) the absolute leg angle feedback is only

used during flight phase and the absolute trunk angle cannot be obtained during
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stance. This is in order to allow only one type of sensory feedback during each phase

of motion.

4.2 Approach

Here, we seek to model locomotion in the sagittal plane as a low dimensional

system with a dynamic process similar to a pogo-stick or spring-loaded inverted pen-

dulum (SLIP) [2]. In these models, the mass is assumed to be lumped in one body,

a point-mass in many cases, and the leg is a massless spring.

In more recent models of hip-based locomotion, a torque was added at the hip

and a damping element to the leg, such as in the Hip-actuated SLIP model [48],

and this was found to yield significantly improved center-of-mass stability, especially

with respect to large perturbations. Given the improvements in stability that the

Hip-actuated SLIP model provided for center-of-mass dynamics, here we will extend

this model to include a full pitching rigid-body trunk.

4.2.1 Trunk-SLIP Model

Inspired by previous knowledge of the Hip-actuated SLIP [48], which achieves a

significant degree of robust stability with a damped springy leg and hip torque, we

develop a new model called the Trunk-SLIP (as shown in Figure 4.3). To form the

Trunk-SLIP model, we extend the point mass body of Hip-actuated SLIP into a trunk

body with a specified mass and inertia.

Similar to Hip-actuated SLIP, the motion and dynamics of Trunk-SLIP consist of

two stages: stance and flight. During stance, the body and leg starts with an initial

position (αn, βn) and velocity (vn, δn, α̇n), as shown in Figure 4.3. Then the leg will

swing forward about the ground contact point until the vertical component of the

ground reaction force becomes zero. Upon liftoff, the model enters the flight mode,

the hip torque is set to zero and the trunk keeps rotating at a constant angular speed.
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The massless leg is set to the leg resting length and a fixed angle β with respect to

the ground. It lands again when the foot reaches the ground.

vn
n

vn+1
n+1

n

n

n+1

n+1

lightStance
TD LO TD

θ
θ

θ

Figure 4.3. Configuration and motion of Trunk-SLIP. The blue and
red lines are the body CoM and hip joint trajectories respectively. α
and β are absolute pitching angle and leg landing angle respectively.
φ stands for the angle between upper body and the leg. Here, LO
stands for liftoff, TD stands for touchdown.

There exists multiple limitations to the this modeling framework. One limita-

tion of Trunk-SLIP is that the effects of limb inertia and nonconservative ground

impact/contact are not included in this model. However, this model is still adopted

for its simplicity and less number of model parameters. Therefore, it allows a quicker

and more complete analysis to provide insight for future analysis. Another limitation

is that there exist higher levels of feedback, additional feedback pathways, and alter-

native feedback architectures that could potentially be used by above-knee amputees

and possibly robots, but are outside the scope of this current analysis (this study is

focused on producing knowledge of the effects of four basic feedback cases). There-

fore, the predictions made from this model represent the basic influence of feedback

control on the stability of pitching and center-of-mass motion.
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4.3 Governing Equations

In this section, we first derive the equations of motion of Trunk-SLIP. Then we

present the methods for calculating and comparing the stability of Trunk-SLIP loco-

motion solutions.

The parameters of the Trunk-SLIP model are: body mass m, body rotational

inertia I, uncompressed leg length l0, the distance between hip joint and mass center

(CoM) r0, leg stiffness k, leg damping c, and the leg landing angle β. As shown in

Figure 4.4, the CoM and foot positions during stance are described by the vectors

[x, y] and [xf , 0] respectively. The leg length, leg angle, and body pitching angle

during stance are l, θ and α respectively. Overall, Trunk-SLIP has three degrees of

freedom x, y and α. Thus its dynamics can be described by three differential equations

derived from Newton’s Laws of motion.

Fr

Fr

F

F F
Fr

Tn

Tn
(a) (b)

mg

k
c

[xf , 0]

[x , y, ]

l

β 

Figure 4.4. (a) Free body diagram of the springy leg during stance;
(b) Free body diagram of the upper trunk during stance.
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4.3.1 Stance and Flight Equations

When on the ground, the leg length and speed can be calculated as follows:

l =
√

(x− r0 sinα− xf )2 + (y − r0 cosα)2 ,

l̇ = [(x− r0 sinα− xf )(ẋ− r0α̇ cosα) + (y − r0 cosα)(ẏ + r0α̇ sinα)]/l .

The forces along and perpendicular to the leg, denoted as Fr and Fτ , are then:

Fr = k(l0 − l)− cl̇ , (4.1)

Fτ = τn/l . (4.2)

Where Tn is the hip torque applied between the leg segment and the body trunk. The

forces both along and perpendicular to the leg (Fr and Fτ ) can be transformed into

the forces in the horizontal Fx and vertical Fy direction:

⎡
⎣ Fx

Fy

⎤
⎦ =

⎡
⎣ − cos θ sin θ

sin θ cos θ

⎤
⎦
⎡
⎣ Fr

Fτ

⎤
⎦ , (4.3)

θ = cos−1

(
xf − x+ r0 sinα

l

)
. (4.4)

Applying Newton’s second law, the equations governing the stance portion of

motion are:

mẍ = Fx , (4.5)

mÿ = Fy −mg , (4.6)

Iα̈ = −τn + Fyr0 sinα− Fxr0 cosα . (4.7)

During flight, as a consequence of having a leg with negligible mass, a negligible

(approximately zero) torque is required to move the leg during flight. Thus, the trunk

has negligible moments acting on it and is approximated to rotate with a constant
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angular speed during the flight portion of motion, determined by the angular speed

at liftoff. Note, however, that the model center-of-mass is affected by gravity during

this phase of the motion:

ÿ = −g . (4.8)

4.3.2 Feedback During Flight

During the flight phase of motion, the main target of control is resetting the leg

angle to a desired orientation. Therefore, actuation applied at the hip during the

flight phase would be a function of either proprioceptive feedback of the leg angle

measured with respect to the trunk θ (which can be directly related to the angle φ),

or exproprioceptive feedback of the leg angle with respect to the inertial frame β.

Note that for the canonical SLIP models that the Trunk-SLIP model is based

upon, the leg is reset to a specified angle during the flight phase of motion. This rule

governing leg reset during flight implicitly requires that exproprioceptive feedback of

leg angle be utilized during the flight phase of motion, along with at least a simple

proportional-derivative control torque applied at the hip to stably bring the leg to the

desired position. For the case of point-mass motion, where the trunk can be assumed

to be constrained and not rotating, proprioceptive feedback could be used and yield

the same result during swing. However, when the trunk is allowed to pitch, as is the

case in the Trunk-SLIP model, there can be very different outcomes whether we use

exteropceptive or proprioceptive feedback of leg position during the flight phase of

running.

Proprioceptive Feedback of the Leg Angle With Respect to the Trunk:

When the proprioceptive feedback is used, the leg is reset to a constant angle φ0

with respect to the trunk body. It touches down when:

TD: y = r0 cosα + l0 cos(π − α + θr) . (4.9)
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Upon touchdown, the foot position is updated as:

xf = x− r0 sinα + l0 sin(π − α + θr) . (4.10)

exproprioceptive Feedback of the Leg Angle in the Inertial Frame:

If exproprioceptive feedback is used during the flight, the leg resets to a constant

angle β with respect to the inertia frame. Therefore touchdown happens when:

TD: y = r0 cosα + l0 sin βr . (4.11)

The foot position can then be updated as:

xf = x− r0 sinα + l0 cos βr . (4.12)

4.3.3 Feedback During Stance

During the stance phase of motion, the main target of control is the trunk (body)

pitch. Therefore, actuation applied at the hip is a function of either proprioceptive

feedback of the trunk angle measured with respect to the leg φ, or exproprioceptive

feedback of the trunk angle α measured with respect to the inertial frame.

Regardless the kind of the sensory feedback used, the model lifts off when the

vertical force between the foot and ground becomes zero. Therefore the model enters

the flight phase of motion when:

LO: Fy = 0 . (4.13)

Proprioception of the Trunk Angle With Respect to the Leg:

Instead of directly measuring the trunk angle in order to control pitch, we assume

in this case that the only measurement available is one with respect to the body, or in
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this case with respect to a frame attached to the leg. Therefore, we measure the angle

between the trunk and the leg. The hip torque of Trunk-SLIP is then governed by a

proportional and derivative controller which uses the angle φ (as shown in Figure 4.3)

between the body and the leg, with controller gainsKp,Kd and a trunk angle reference

φr:

τn = Kp(φ− φr) +Kdφ̇ . (4.14)

exproprioception of the Trunk Angle With Respect to the Inertial Frame:

We then consider a control strategy utilizing exproprioceptive feedback during

stance. The hip torque is governed by a proportional and derivative control law using

the absolute trunk pitching angle α as feedback (as shown in Figure 4.3). Different

from the first approach, it requires ground truth to apply a corrective hip torque dur-

ing stance. Its hip torque is thus governed by a proportional and derivative controller

with controller gains Kp, Kd and the position reference αr:

τn = Kp(α− αr) +Kdα̇ . (4.15)

4.3.4 Model Parameters

The resulting Trunk-SLIP model depends on several parameters, including those

associated with SLIP, plus those for a trunk and leg damping, as well as controller

gains for the various feedback controllers to be tested. In order to keep analysis as

simple as possible, and relevant for human-scaled locomotion, we hold most of the

system parameters constant, at values representative of human running [47]. This

enables the study of parameter variations to be focused mostly on the control gains

used in the various feedback approaches studied in this chapter. Overall, the model

physical parameter values used in this simulation can be found in Figure 4.1

The remaining system parameters can be categorized into two groups: i) hip

torque control parameters and ii) changeable physical system parameters such as leg
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Table 4.1 Physical system parameter values.

Constant Description Value Units (SI)
g gravitational constant 9.81 ms−2

m body mass 80 kg
I body moment of inertia 4.58 kgm2

l0 leg length and resting spring length 1 m
r0 distance from hip to mass center 0.1 m
k leg spring stiffness 20 kN/m
c leg damping 50 Ns/m

damping and leg stiffness. The hip torque control parameters include proportional

Kp and derivative Kd feedback gains for any feedback control present, and control

references such as φr for stance proprioceptive feedback, αr for stance exproprioceptive

feedback, θr for flight proprioceptive feedback, and βr for flight exproprioceptive

feedback. ii) The changeable physical system parameters include the leg stiffness k

and leg damping coefficient c. For an above-knee amputee, the control parameters

could be adjusted by the nervous system, and the leg damping and stiffness could be

designed as part of the prosthesis.

4.3.5 Stability Quantification

To quantify the model stability, we establish a four-dimensional return map: from

the nth touchdown (vn, δn, αn and α̇n) to (n + 1)th touchdown (vn+1, δn+1, αn+1 and

α̇n+1). When the model reaches a fixed point (a periodic motion), we will have

vn+1 = vn = v∗, δn+1 = δn = δ∗, αn+1 = αn = α∗ and α̇n+1 = α̇n = α̇∗. The stability

of a fixed point is thus quantified with the corresponding four eigenvalues associated

with this four dimensional mapping. To evaluate the eigenvalues of the mapping,

the Jacobian matrix of the return map needs to be numerically approximated. Each

time, one variable in the mapping vector is perturbed from the fixed point value by

a small amount: Δv Δδ, Δα or Δα̇. The next vector in the mapping is recorded in
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the simulation, and so on until the effects of perturbations in all state directions are

compiled. The corresponding Jacobian matrix is therefore approximated using the

following equations:

⎡
⎢⎢⎢⎢⎢⎢⎣

(vnextΔv − v∗)/Δv (vnextΔδ − v∗)/Δδ (vnextΔα − v∗)/Δα (vnextΔα̇ − v∗)/Δα̇

(δnextΔv − δ∗)/Δv (δnextΔδ − δ∗)/Δδ (δnextΔα − δ∗)/Δα (δnextΔα̇ − δ∗)/Δα̇

(αnext
Δv − α∗)/Δv (αnext

Δδ − α∗)/Δδ (αnext
Δα − α∗)/Δα (αnext

Δα̇ − α∗)/Δα̇

(α̇next
Δv − α̇∗)/Δv (α̇next

Δδ − α̇∗)/Δδ (α̇next
Δα − α̇∗)/Δα (α̇next

Δα̇ − α̇∗)/Δα̇

⎤
⎥⎥⎥⎥⎥⎥⎦
(4.16)

Here, vnextΔv , δnextΔv , αnext
Δv and α̇next

Δv are the components of the new mapping vector

when the velocity magnitude is perturbed,vnextΔδ , δnextΔδ , αnext
Δδ and α̇next

Δδ are the new

mapping vector components when the velocity angle is perturbed, vnextΔα , δnextΔα , αnext
Δα

and α̇next
Δα are the new mapping vector components when the body pitching angle

is perturbed, and finally, vnextΔα̇ , δnextΔα̇ , αnext
Δα̇ and α̇next

Δα̇ are the new mapping vector

components when the body pitching angular velocity is perturbed.

Based on the approximated Jacobian matrix, four eigenvalues of a fixed point can

be calculated. The maximum eigenvalue magnitude can thus be used to measure the

stability of a fixed point. When all the eigenvalues have a magnitude less than one,

the fixed point is stable.

4.4 Results

Before presenting a systematic analysis of locomotion stability as a function of the

four proposed feedback cases, and their respective parameters, we first briefly present

one stable locomotion solution for case (d), where exproprioception is used through-

out the entire stride. We hypothesized that stable locomotion would be possible if

exproprioceptive feedback is used throughout the entire stride, as in case(d). In Fig-

ure 4.5(a) the center-of-mass trajectory and trunk angle is shown at several instances
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of time. In Figure 4.5(b) we show a plot of the center-of-mass and trunk angle as they

respond to a perturbation, demonstrating the stability of this locomotion solution.

We also hypothesized that stable locomotion might only be possible if exproprio-

ceptive feedback is used throughout the entire stride, and that the stability of the cases

where there is partial exproprioceptive feedback would be similar in quality. Next,

we investigate whether the other cases of feedback (a)-(c) can also achieve stable

locomotion like case (d) exproprioception throughout stance, and we systematically

vary multiple parameters for each case to determine how each parameter influences

stability of locomotion.
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Figure 4.5. (a) The Motion of the Trunk-SLIP model with exproprio-
ceptive feedback used throughout the entire stride (case (d)). (b) The
trunk angle α versus the horizontal position x. Human-representative
parameters as shown in Table 4.1 are used. The feedback control pa-
rameters are listed in Table 4.2. The periodic states at touchdown
(fixed point values) are (v∗, δ∗, α∗, α̇∗) = (4.78 m/s, 15.30◦, 12.83◦,
−7.72◦/s).
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4.4.1 Stability with Respect to Small Perturbations

Cases (a) and (b): Proprioception during Flight: We seek to determine if

stable periodic solutions are possible when proprioceptive rather than expropriocep-

tive feedback of the leg angle is used during the flight phase of motion. In most

SLIP-based models of locomotion, like the Virtual Pivot Point model [47], it is as-

sumed that the leg is reset to an angle fixed in the inertial frame. This implies that

exproprioceptive feedback is used. What if this is not the case?

In Figure 4.6 columns (a) and (b), we show the eigenvalue of Trunk-SLIP with

proprioceptive feedback during flight. To test all combinations of feedback, we var-

ied the feedback during stance such that the hip torque is controlled either by (a)

proprioceptive or (b) exproprioceptive feedback. As observed in Figure 4.6(a)-(b),

the eigenvalue magnitude remains above one despite varying system parameters. No

stable solutions were found with proprioceptive feedback during flight regardless the

type of feedback used during stance.

Case (c) exproprioception during Flight, Proprioception in Stance: The

trunk-SLIP with exproprioceptive feedback used during the flight phase and propri-

oceptive feedback during the stance phase was then studied. Stable solutions were

found. In Figure 4.6 column (c), the lowest attainable max eigenvalue is shown to

approach a magnitude of 0.9, a value below 1. The locomotion model can be best

stabilized when the leg landing angle βr is around 67◦, which is a representative value

for human running [19].

It is surprising that stable motion is possible in this case given the results for

the unstable case (b), with exproprioception in stance and proprioception in flight.

Given that stable locomotion can be achieved with proprioception in stance, but not

when proprioception is used in flight, suggests that the feedback that occurs during

the flight phase of motion is either more sensitive or more critical (or both).
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Case (d) exproprioception during Flight, exproprioception in Stance: The

trunk-SLIP with exproprioceptive feedback throughout the whole stride (feedback

used during the flight phase and stance phase of motion) was then studied. Stable

solutions were found. In Figure 4.6 column (d), the best attainable eigenvalue is shown

to approach a magnitude of 0.9, a value below 1. The locomotion model can be best

stabilized when the leg landing angle βr is around 67◦, which is a representative value

for human running [19].

Interestingly, the small perturbation stability, measured by the eigenvalue, is sim-

ilar for both case (d) and (c). Since case (c) has no exproprioceptive feedback, we

hypothesized that its stability would not be as good as case (c), and that it may not

achieve stable locomotion at all. The optimal eigenvalues for both control strategies

are similar in magnitude, mostly around 0.9 when different parameters are varied.

The Trunk-SLIP model with exproprioceptive feedback controlled hip torque can be

stabilized over a wider parameter range but otherwise does not appear to confer

other substantial benefits or value over proprioceptive feedback during stance. This

is a surprising result.

This result for case (d), along with the result for case (c) implies that feedback

during the flight phase of motion is more critical to the overall stability of locomotion.

This could potentially be because there are fewer means for passive dynamic correction

that can occur during the flight phase of motion relative to the stance phase of motion,

and so exproprioception is more critical during that phase.

Stability Versus Feedback Control Type and Physical Leg Parameters:

Other parameters that are likely to be varied during locomotion are the effective

leg damping and stiffness. In Figure 4.7 we show the maximum eigenvalue for all

four cases of feedback considered, versus these two physical leg parameters: damping

c and stiffness k. We find that for the cases of exproprioceptive feedback in flight

(c)-(d), the system can achieve stable locomotion if the damping and stiffness are
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Figure 4.6. The maximum eigenvalue of the fixed points of Trunk-
SLIP versus feedback control gains and reference values, where each
column shows results for four different cases of feedback. The shaded
region stands for the stable region. Human-representative parameters
as shown in Table 4.1 are used. For each parameter variation, we
began with a nominal fixed point and system parameters, and then
varied the control parameters one-by-one (keeping the other param-
eters the same as the nominal case). The nominal periodic solutions
and the control parameters used are listed in Table 4.2.

selected from an intermediate range of values. These values are physically reasonable

when compared to estimated effective leg stiffness values for humans [47]. It is also

apparent that in the case (d) of exproprioception throughout the entire stride, the
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Table 4.2 Nominal feedback control parameters and periodic solutions.

Nominal Values for Cases:
Parameter Description (a) (b) (c) (d) Units
Kp proportional gain 320 300 320 300 Nm/rad
Kd derivative gain 2.5 5 2.5 5 Nms/rad
φr proprioceptive trunk reference 2.92 – 2.92 – deg
αr exproprioceptive trunk reference – 5 – 5 deg
θr proprioceptive leg reference 143 143 – – deg
βr exproprioceptive leg reference – – 67 67 deg
v∗ solution speed 4.74 4.78 4.74 4.78 m/s
δ∗ solution velocity angle 16.1 15.3 16.1 15.3 deg
α∗ solution trunk angle 13.8 12.8 13.8 12.8 deg
α̇∗ solution trunk angular speed 14.0 −7.7 14.0 14.0 deg/s

range of stiffness and damping values for which stable solutions exist is wider than

the case of (c) proprioception used for stance.

4.4.2 Stability with Respect to Large Perturbations: Basins of Attraction

In this section we investigate further the stable cases of feedback, (c) and (d), by

determining how these to cases respond to large perturbations. To measure the large

perturbation response and stability of locomotion, basins of attraction are calculated.

For the cases (a) and (b), with proprioception during flight, we found no stable

locomotion solutions, and so these cases have no basin of attraction.

In Figure 4.8, we show the basin of attraction in terms of the pitching variables α

and α̇. Note: as the full stride map representing the dynamics of locomotion solutions

has four variables (v,δ,α,α̇), we plot slices of two variables at a time in order to provide

some insight into the four-dimensional basin of attraction. Therefore, in this figure

we test the response to large perturbations in the pitching variables α and α̇, but the

CoM velocity magnitude and angle (v0,δ) are not perturbed from their fixed point

values.
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Figure 4.7. The maximum eigenvalue of the fixed points of Trunk-
SLIP versus leg stiffness and leg damping, where each column shows
results for four different cases of feedback. In each row, one model
parameter is varied while the rest of model parameters are kept the
same as those listed in Table 4.2.

The blue region in each panel stands for the basin of attraction for the fixed point

solutions of each feedback case that were found to have the most stable eigenvalues

in the previous section. Here the basin of attraction is defined as the region of initial

conditions from which Trunk-SLIP returns to within a small neighborhood of the

fixed point within 300 steps. The small neighborhood was defined to be when the

difference between the current speed v0 and fixed point speed v∗ is less than 0.05 m/s,

the difference between current touchdown velocity angle δ and fixed point velocity

angle δ∗ is less than 0.035 rad, the difference between the current trunk angle α and

fixed point trunk angle α∗ is less than 0.018 rad, and the difference between the

current trunk angular speed α̇ and fixed point trunk angular speed α̇∗ is less than

0.018 rad/s. When the model initial condition is set to any point within the region, it

will eventually return back to the original periodic motion (or fixed point in this view).
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The possible absolute trunk position that is allowed is constrained between −90◦ and
90◦ to be realistic. Similarly, the trunk angular speed is constrained between −90◦/s
and 90◦/s.

In a rows of Figure 4.8, we show the basins of attraction of Trunk-SLIP in terms

of pitching variables (α,α̇), and in another row the CoM translation variables (v,δ).

Given that the mapping from touchdown to next touchdown involves four states defin-

ing pitching and center-of-mass motion, we cannot display the full four-dimensional

basin of attraction on one plot. Therefore, we show two-dimensional slices in this

larger four-dimensional space.

In Figure 4.8, it is shown that the case with exproprioception during stance has a

larger basin of attraction than the case with proprioception during stance. Further,

the stability for the proprioceptive feedback case is not robust in terms of CoM

translation. As shown in Figure 4.8(a), the fixed point labeled as the red dot is

close to the boundary of the basin of attraction. A moderate decrease in touchdown

velocity magnitude v0 could lead to the system crashing. Despite some of these

differences, overall, the basins of attraction of the (c) stance proprioception and (d)

stance exproprioception cases are similar.

4.4.3 Combined Feedback During Stance

Here, we add an extra final case to determine the effects of combining both proprio-

ceptive and exproprioceptive feedback during stance. The combination or integration

of these two feedback pathways could take on complex forms. Here, to gain an initial

understanding and keep the overall analysis simple, we use a straightforward linear

superposition of the proprioceptive and exproprioceptive feedback pathways previ-

ously studied in order to create a combined feedback scenario. Could this lead to a

significant improvement in stability or make it worse?
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Figure 4.8. Columns (a) and (b) show the basin of attraction of Trunk-
SLIP with proprioceptive feedback and exproprioceptive feedback re-
spectively. The red dot in each panel stands for the corresponding
fixed point. The model parameters and fixed point values for (a) and
(b) are the same as those in Figure 4.6.

For this case of the Trunk-SLIP model with both sensory feedback pathways during

stance, its hip torque can be determined as:

τn = Kext
p (α− αr) +Kext

d α̇ +Kpro
p φ+Kpro

d φ̇ . (4.17)
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Where Kext
p , Kext

d are exproprioceptive feedback gains, Kpro
p , Kpro

d are proprioceptive

feedback gains, and αr is the reference position. During flight, the leg is reset using

exproprioceptive feedback.

The stable periodic solutions of Trunk-SLIP with combined feedback were found

using the same parameters as used for case (c) and (d) (excluding the hip torque

control parameters). The hip torque control parameters (Kext
p , Kext

d , Kpro
p , Kpro

d and

αr) were varied systematically nearby the previously used values, in order to find a

local best case of locomotion stability.

First, a local best fixed point is found. Its corresponding hip torque control

parameters are: Kpro
p = 60, Kpro

d = −3.007, Kext
p = 180.7, Kext

d = 18.7 and αr = 9.29◦.

The corresponding fixed point values are: 4.83m/s, 13.64◦, 12.32◦, −3.51◦/s.
Pitching stability was found to be improved by this simple combination of feedback

pathways. As shown in Figure 4.9, the entire basin of attraction is much larger when

compared with cases (c) and (d) in Figure 4.8. Thus, Trunk-SLIP with combined

sensory feedback can resist a significantly larger perturbation in the trunk pitching

states when compared to Trunk-SLIP with a single feedback pathway used. The

translational dynamical stability of the center of mass does not change nearly as

much. The overall size of the basin of attraction is mostly unchanged for those

directions of the system state space.

Combining feedback pathways during the flight phase yields a simple result, due to

the negligible mass of the leg. Effectively, the leg will quickly swing to an equilibrium

position somewhere between the proprioceptive and exproprioceptive reference angles.

This equilibrium position depends on the relative strengths of the feedback gains. We

showed that for cases (a) and (b), no stability was found. Therefore, we used only

exproprioceptive feedback in flight when studying the effects of combined feedback,

and instead allowed combination during the stance phase.
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4.5 Discussion and Conclusion

Hip-based locomotion, like above-knee amputee running and recent attempts at

bipedal legged robot running, is an extreme under-actuated case of locomotion for

which it is difficult to simultaneously stabilize translation and pitching dynamics in

the sagittal plane. Currently, there is no complete explanation for how above-knee

amputees accomplish such amazing athletic running despite lost limb function, and

current attempts at bipedal hip-actuated robots are not based upon basic knowledge

of how hip-based locomotion works, as such a body of knowledge does not yet exist,

and so such robot development depends on the creative intuition and hypotheses of

roboticists. Here, we aimed to provide some basic knowledge of hip-based locomotion,

and expect it may yield insights for legged locomotion in general.

To provide foundational knowledge for how the dynamics and control of hip-

based legged locomotion work, we compared four basic neural feedback architectures

involving different combinations of proprioceptive and exproprioceptive during flight

and stance phases of motion. Given that there is only one leg actuator at the hip,
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the feedback is used to apply a hip torque during stance and to reset the leg to a

desired position during the flight phase. In all of these cases, during each phase

of the stride, a proportional and derivative control was applied with respect to the

measured state (a leg or trunk angle) in order to produce a torque at the hip. We

used a mathematical modeling and analysis approach to study alternative feedback

architectures as it allows manipulation of sensory feedback and accurate analysis that

is currently not feasible in animal experiments.

Quantification of locomotion stability: In this study we report the small

perturbation stability (eigenvalues) and large perturbation stability (basins of attrac-

tion) for each case of feedback considered, and also determine how stability depends

on the control and physical parameters of the system for each case. This goes much

further than reporting the quality of stability. We have systematically quantified the

eigenvalues and basins of attraction as well as determined where in the system param-

eter space the most stable solutions are found. Such quantitative results are useful for

the generation of specific testable hypotheses and for applications of this knowledge

to motion-related training/therapies/treatments, prostheses, and legged robots.

Well-tuned parameter ranges for achieving stability: We discovered that

while stability is possible for some of the feedback cases tested, it is necessary to have

well-tuned system parameters. The results reported here provide a good guide and

starting point for testable hypotheses and designs regarding the system control and

physical parameters. We found, for example, that intermediate ranges of many of the

system parameters were needed to achieve stable locomotion solutions. If the system

parameters were too low or too high, then stability was not achieved.

Large perturbation measures like basins of attraction are particularly

useful: For the cases of stable locomotion reported in this chapter, the most stable

small perturbation response found was when the maximum eigenvalue has a value

close to 0.9. While this is not a good eigenvalue for quick reduction of errors or

perturbations, it is also not a useful measure for the overall stability of the system

which undergoes much larger perturbations and responds in a nonlinear manner (such
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that eigenvalues are not good predictors of large perturbation response). Whether

the eigenvalues are stable (max eigenvalue magnitude less than one) or not, does

tell us whether there will be a stable periodic solution at all. However, given the

nonlinear behavior of locomotion systems, it is not a good predictor of behavior for

large perturbations, and does not provide a measure of how large perturbations can

get before the system fails. To quantify large perturbation stability, we calculated

the basin of attraction (the region of perturbed states that will return to a given

periodic locomotion solution). Understanding first how large the systems basin of

attraction is likely of higher priority to a moving animal than how fast it responds

to a small perturbation, in part because a small basin of attraction almost certainly

means falling down, whereas a fast response to a small perturbation may not matter

much in practice when small perturbations are regularly occurring. Therefore, our

primary focus is on the basin of attraction as a tool for quantifying stability, and we

use eigenvalues as a quick numerical tool to inform when stability exists or does not

exist in the parameter space of the system. As was reported in previous sections, the

cases of stable locomotion reported were found to be relatively robust with significant-

sized basins of attraction.

Unexpected results: As expected, the two extremes of the feedback cases

(a) proprioception throughout the whole stride, and (d) exproprioception throughout

the whole stride, were found to be, respectively, unstable and stable. However, the

investigation of the intermediate cases of feedback (b)-(c) yielded multiple surprising

results.

exproprioception is critical during the flight phase of motion: Cases

(b) and (c) were expected to yield similar overall unstable locomotion since both

have a portion of the stride where only proprioceptive feedback is present. The

rationale for our original hypothesis was that since only a portion of the stride utilized

inertial frame feedback to achieve stability when (b) exproprioception was used in

stance and proprioception in flight, than this portion of exproprioception could just

as well occur during flight rather than stance and lead to similar overall locomotion
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dynamics. However, these two cases actually differed significantly. Surprisingly, case

(b) is unstable while case (c) can achieve a stable basin of attraction. What is the

difference between these two cases and does it make sense why case (c) turned out

stable, rather than case (b)? The differences found between these cases implies that

exproprioception is critical during flight to achieve stability, whereas it is not critical

during the stance phase. Why might this be the case? One possibility is that since

legs are not in contact with the ground during the flight phase, there are no passive

dynamic means of “mechanical feedback” that can help stabilize the system, and so

exproprioception is more critical during flight than it is during stance. The differences

discovered for case (b) and (c) has further implications in terms of where we expect

to see more exproprioceptive feedback in above-knee amputee runners, and perhaps

the general human population as well.

Proprioception in stance is a close second to exproprioception: Our

original expectation was that stable locomotion might not be achieved unless expro-

prioception was used throughout the entire stride. If stable locomotion was achieved

at all when proprioception was used instead of exproprioception, we expected it to be

of a significantly lower quality. Surprisingly, this did not turn out to be the case in

our study. We discovered that the case (c) with proprioception during stance, could

achieve a nearly identical range of eigenvalues with a basin of attraction only frac-

tionally smaller when compared to case (d) with exproprioception used during stance.

This result implies that exproprioceptive feedback is not critical in stance and does

not yield a strong quantitative benefit over proprioceptive feedback. We expect that

proprioception can perform the same critical functions as exproprioception during

te stance phase of animal or robot locomotion. We hypothesize that proprioception

will be used during the stance phase of above-knee amputee runners as well as other

legged animals, especially since it can be less sensitive to time delays and errors in

the neural feedback loop as exproprioception (in part because proprioceptive feedback

could potentially be achieved using neural (electrical) feedforward mechanisms due

to passive mechanical feedback of muscles or elastic actuators).
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Combining proprioceptive and exproprioceptive feedback improves sta-

bility: In reality, it is likely that both exproprioceptive and proprioceptive feedback

pathways are simultaneously available for above-knee amputees or even hip-based

robots to utilize at the same time. We therefore also tested the case where both

exproprioception and proprioception are combined for the feedback control of hip

torque during the stance phase of motion, using a simple linear superimposition. We

found that, overall, the pitching stability is significantly improved from this combined

approach, as the size of the basin of attraction increased substantially. We therefore

expect that humans and other bipedal animals use a similar combined feedback ap-

proach to control pitching dynamics.

Direct Applicability to Hip-Based Locomotion: The knowledge generated

by this work has direct and immediate application for the design and analysis of

hip-based legged robots, and for the development of new hypotheses of how above-

knee amputees run and walk, as well as new insights for the development of training

methods to help above-knee amputees learn to walk and run again. Despite limi-

tations of the model, it is able to capture the basic dynamics underlying hip-based

locomotion such as hip-driven springy-leg robots and above-knee amputees running

on prostheses.

The objective of this study was to provide basic knowledge regarding how different

feedback pathways in stance and flight can affect the stability of hip-based locomotion

in the sagittal plane. Overall, the results reported here have provided some new

insights into legged locomotion, as well as categorical knowledge about the types of

stability achieved by different combinations of feedback in stance and flight, along with

quantitative predictions for the desired ranges of parameters that would yield basic

stability. The work presented here is expected to enable future studies of hip-based

locomotion, new hypotheses for amputee locomotion, as well as design guidelines for

hip-based robots.
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5. A MODEL BASED HIERARCHICAL CONTROL STRATEGY

5.1 Background

Above knee amputee athletes in Paralympic Games demonstrated that stable

running motion with regulated trunk is possible with largely hip torque actuation.

However, there exists a gap between the stability of current bipedal robots and the

kind of stability observed in above knee amputee running. One reason could be that

the controller design and tuning process remains to be complicated due to a large

number of system degrees of freedom.

Here, we seek to develop a hierarchical controller design and tuning strategy for hip

torque actuated robots to achieve above knee amputee like stable running motion. It

is known that mammal neocortex are physically constructed layer by layer [107,108].

In addition, the patterns recognized by neocortex are arranged in hierarchy [109].

Inspired by these findings, we propose a hierarchical control approach to stabilize hip

torque based bipedal running. To allow quick testing of the controller, we rely on

numerical simulation of a locomotion model where different layers of control elements

can be applied.

In Figure 5.1, we propose a new control architecture with four layers: (1) real time

layer (marked as dark gray) where real time hip torque controllers are placed at, (2)

discrete event to event layer (marked as medium gray) where a transition regulator

updates real time control parameters every time a leg touchdown or liftoff happens.

It is in place to ensure smooth transition back to the steady state once perturbed.

(3) The hierarchical control also includes a discrete stride to stride layer (marked as

light gray) where speed regulator updates transition regulator parameters to ensure

accurate speed control, and (4) adaptation layer (marked as the dashed line) where

the commanded speed is adapted to achieve a higher level target such as a smooth
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Figure 5.1. The overall control structure. The white boxes and arrows
stands for control element and the direction of information flow. vcmd

stands for the commanded speed set point. Three types of sensory
information sampled are: leg angle, trunk angle and forward speed.
Torques from left and right leg are effective control actions.

walk/run transition. Here we focus on the first three layers to produce robust periodic

running motion. The design of the fourth layer is future work and not covered in this

thesis.

This layer by layer approach has the advantage of faster controller prototyping and

tuning, as shown in Figure 5.2. It first starts with simple control where parameters

can be easily tuned to obtain stable motion. An additional layer is then added upon

the previously well tuned layers. Therefore, despite growing control complexity as

layers are added, the number of parameters to be tuned remains small at each step.

In contrast, when all the control parameters are tuned at the same time, the process

is more complicated. In principle, for simultaneous tuning, a global optimal solution

could be obtained. However, even if such a global optimal exists, it is in reality
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challenging to find due to the control complexity. For the layer by layer controller

tunning, despite the fact that a local optimal solution is usually obtained, the overall

motion stability could still be substantially improved as different layers are gradually

added.

5.2 Approach

One common strategy of exploring legged locomotion is modeling and analysis

with simplified dynamical models [1]. This modeling approach allows accurate control

of various studies which are challenging for animal or human experiments. Here we

intend to develop a locomotion model representative of above knee amputees.

5.2.1 Modeling Background

During the past few years, there has been development of trunk pitching control

strategies on locomotion models with trunk pitching [35, 47, 62, 63]. These mod-

els typically consist of a rigid body trunk and massless springy legs. A traditional
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method, known as the Raibert’s approach [63] was to effectively utilizing three sepa-

rate controllers to regulate robot hopping motion with a trunk body. To regulate peak

center-of-mass height, active thrust along the leg is required as a control action which

is challenging to produce for above knee amputees without active knee and ankle

joints. Another strategy called virtual pivot point (VPP) [47,64] is developed based

on a bipedal Spring-Loaded Inverted Pendulum (SLIP) model by replacing the point

mass with a realistic trunk as the body. It uses a controlled hip torque to redirect

ground reaction forces so that overall pendulum like pitching behaviors can be real-

ized and stabilized. Another approach uses the concept of hybrid zero dynamics and

SLIP embedding [35,49] to systematically design a feedback type controller for overall

locomotion stabilization including trunk pitching. However, both the VPP and SLIP

embedding approaches require real time sensory feedback of leg length which is not

feasible for above knee amputees.
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Recently, it is demonstrated that above knee amputee like stable locomotion with

only hip actuation and passive legs is possible for bipedal robots [62]. Based on the

quadrupedal robot RHex [36,60] which has damped springy legs, a bipedal version of

RHex [62] is developed. It is capable of stable bipedal running, including body pitch-

ing. Its overall control strategy consists of a body pitching Proportional-Derivative

(PD) controller, a forward speed proportional controller and a leg trajectory PD con-

troller. For bipedal RHex, the hip motor actively tracks the time based desired leg

trajectory without knowing the actual torque applied. In addition, the robot is un-

aware if it is in stance or flight as the leg touchdown and liftoff are not detected.

Unlike bipedal RHex whose hip torque is implicitly controlled and locomotion phase

unperceived, we propose a control approach where hip torque is explicitly controlled

and locomotion phase actively detected. What is more, the proposed approach differs

from the bipedal RHex by having a hierarchical structure to promote a fast controller

prototyping.

5.2.2 Extended Trunk-SLIP

In order to systematically understand how different control elements could affect

the overall locomotion stability, a base model where different control elements can be

gradually applied upon is developed. Unlike the existing models with massless legs

where flight dynamics are usually omitted, a model with realistic trunk and thigh

mass is developed as shown in Figure 5.4.

Due to thigh masses, hip torque needs to be applied to swing the leg forward

during flight phase. However, the shank is assumed to be massless and springy. For

above knee amputee runners, the artificial shank is usually made of light materials

such as carbon fiber. Therefore, we assume the shank mass is negligible compared to

thigh and trunk masses. Here a human related parameter set is used for this model

as shown in Table 5.1.
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Figure 5.4. The extended Trunk-SLIP model with rigid body thigh
and massless shank. The hip position can be described by coordinates
x and y, while the position of the contacting foot can be described by
xf . The angular orientation of three rigid bodies are defined as α, φl

and φr. r0 and rl are distances from hip to trunk center-of-mass and
thigh center-of-mass respectively. The massless shank is assumed to
be springy and damped with stiffness k and linear damping coefficient
c.

Table 5.1 Physical parameters for extended Trunk-SLIP.

Constant Description Value Units (SI)
g gravitational constant 9.81 ms−2

mb body mass 55 kg
ml leg mass 10 kg
Ib body moment of inertia 5 kgm2

Il leg moment of inertia 1 kgm2

l0 leg resting length 0.9 m
r0 distance from hip to body mass center 0.2 m
rl distance from hip to thigh mass center 0.25 m
k shank spring stiffness 10 kN/m
c shank damping 100 Ns/m

Similar to Hip-actuated SLIP, the motion and dynamics of extended Trunk-SLIP

consists of two stages: stance and flight. The stance phase starts with one leg touch-
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ing the ground. Then the stance leg swings forward about the ground contacting

point until the vertical component of the ground reaction force becomes zero. In the

meantime, another leg swings forward and prepares for the next landing. Upon liftoff,

the model enters the flight mode. Both torques from left and right hip are then used

to redirect the leg towards a desired leg landing angle. When one of the feet hits the

ground, the model enters the stance phase. A complete stride consists of four phases:

left leg stance, flight, right leg stance, flight.

5.2.3 Flight Dynamics

Here we derive the equations of motion for extended Trunk-SLIP using the canon-

ical TMT method. The TMT method generates factorized equations of motion in

matrix form and is friendly to numerical simulation.

During the flight phase, the posture of extended Trunk-SLIP can be described by

a set of general coordinates q = [x, y, α, φl, φr]
T as shown in Figure 5.4. The equations

of motion for the general coordinates are then generated using TMT method.

TTMTq̈+TTMD = TTF (5.1)

The matrices in the above equation can be formulated as:

T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 −r0 cos(α)
0 1 0 0 r0 sin(α)

0 0 0 0 1

1 0 rl sinφl 0 0

0 1 −rl cosφl 0 0

0 0 1 0 0

0 0 0 rl sinφr 0

0 0 0 −rl cosφr 0

0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.2)
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M = diag([ mb mb Ib ml ml Il ml ml Il ]) (5.3)

D = [ −r0α̇2 sinα −r0α̇2 cosα 0 rlφ̇
2
l cosφl rlφ̇

2
l sinφl 0 rlφ̇

2
r cosφr rlφ̇

2
r sinφr 0 ]T

(5.4)

During the flight phase, only gravity and hip torques affect the overall motion.

Therefore the force vector F is described as follows:

F = [ 0 −mbg τl + τr 0 −mlg − τl 0 −mlg − τr ]
T (5.5)

5.2.4 Stance Dynamics

Stance dynamics differ from flight dynamics mostly in two aspects. First, the

stance leg spring force is non zero and affects the overall motion. In addition, a

kinematic constraint is imposed during stance. For instance, when the left leg is on

ground:

y cosφl + (xf − x) sinφl = 0 (5.6)

To accommodate this kinematic constraint, we employ the concept of Lagrangian

Multiplier, in this case fl where the subscript means left leg. Also, an additional

force vector is included to represent the effect of spring force. Then new equations of

motion during stance are:

TTMTq̈+TTMD = TT (F+ Fal) + Jl
Tfl Jlq̈+ Cl = 0 (5.7)
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Where Fal stands for the additional spring force vector when the left leg is on ground.

Fal = [ 0 0 0 fs cosφl fs sinφl 0 0 0 0 ]T (5.8)

Jl = [ sinφl − cosφl y sinφl + (x− xf ) cosφl 0 0] (5.9)

Cl = 2φ̇lẋ cosφl + 2φ̇lẏ sinφl + φ̇2
l y cosφl + φ̇2

l xf sinφl − φ̇2
l x sinφl (5.10)

Where fs stands for leg force along the leg due to spring.

fs = k(l0 − l)− cl̇ (5.11)

Where leg length l and speed l̇ can be calculated using the following equations

using general coordinates and foot positions.

l =
√

(x− xf )2 + y2 l̇ = [(x− xf )ẋ+ yẏ]/l (5.12)

Similarly, when the right leg is on ground. The equations of motion are

TTMTq̈+TTMD = TT (F+ Far) + Jr
Tfr Jrq̈+ Cr = 0 (5.13)

Far = [ 0 0 0 0 0 0 fs cosφr fs sinφr 0 ]T (5.14)

Jr = [ sinφr − cosφr 0 y sinφr + (x− xf ) cosφr 0] (5.15)

Cr = 2φ̇rẋ cosφr + 2φ̇rẏ sinφr + φ̇2
ry cosφr + φ̇2

rxf sinφr − φ̇2
rx sinφr (5.16)

While spring force along the leg fs can be calculated using Equation 5.11.
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5.2.5 Switching Conditions

Each stride consists of alternating stance and flight phases. Here we define the

switching conditions between stance and flight phases. We define touchdown as the

event when the foot hits the ground:

y = l0 sinφl for left leg y = l0 sinφr for right leg (5.17)

At touchdown, we assume an impulse is applied to leg to bring the foot speed to

zero instantaneously. Any impulse along the leg is ineffective to thigh and trunk rigid

bodies due to the buffering of shank spring. For above knee amputees, the springy leg

absorbs most of impact along the leg. However, the impulse perpendicular to the leg

changes system states instantaneously. The system states after foot collision can be

solved using theorems of angular, linear momentum conservation and the imposing

kinematic constraint equation.

First, the angular momentums of trunk and flight leg are conserved about hip

joint. Without loss of generality, we derive the equations while assuming left leg

touches the ground:

mlr0ẋ sinφr −mlrlẏ cosφr + (mlrl
2 + Il)φ̇r = constant1 (5.18)

−mbr0ẋ cosα +mbr0ẏ sinα− (mbr0
2 + Ib)α̇ = constant2 (5.19)
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Similarly, whole body angular momentum is conserved about the ground contact-

ing point. In addition, whole body linear momentum along the stance leg is conserved.

Therefore, two addition equations can be obtained as follows:

[ml(rl
2 − xrl cosφl − yrl sinφl) + Il]φ̇l +mbxẏ −mbyẋ+

+mlẋ(rl sinφl − 2y)−mbα̇(xr0 sinα + yr0 cosα)+

+mlẏ(2x− rl cosφl) +mlφ̇r(−xrl cosφr − yrl sinφr) = constant3 (5.20)

(mlrl sinφr cosφl −mlrl cosφr sinφl)φ̇r+

+(mbr0 cosα cosφl −mbr0 sinα sinφl)α̇+

+(2ml cosφl +mb sinα)ẋ+ (2ml sinφl +mb cosα)ẏ = constant4 (5.21)

In addition, due to the imposing kinematic constraint for the stance leg:

ẋ sinφl − ẏ cosφl + l0φ̇l = 0 (5.22)

Equations 5.18 5.19 5.20 5.21 & 5.22 together can be used to calculate ẋ, ẏ, α̇, φ̇l

and φ̇r at each touchdown.

During stance, the leg lifts off when the vertical ground reaction force between

the foot and ground becomes zero. In this case, the Lagrangian Multiplier fl and

fr are effectively ground reaction force components acting perpendicular to the leg.

Therefore, the leg lifts off when:

fs sinφl − fl cosφl = 0 for left leg fs sinφr − fl cosφr = 0 for right leg (5.23)

5.2.6 Fixed Points and Local Stability

The model dynamics can be simulated using the derived equations of motion and

switching conditions in the above subsections with necessary initial conditions. As-

suming the simulation starts when the left leg touches the ground, then the necessary

initial system states required are v, δ, φl, φr, φ̇r, φb and φ̇b respectively. Where
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v = (ẋ2 + ẏ2)1/2 and δ = arccos(ẋ/v) are hip point velocity magnitude and direction

respectively. Then a multi-dimensional poincaré return map can be constructed: from

the start of nth stride P(n) = [v(n), δ(n), φl(n), φr(n), φ̇r(n), α(n), α̇(n)] to the

start of (n+ 1)th stride P(n+ 1) = [v(n+ 1), δ(n+ 1), φl(n+ 1), φr(n+ 1), φ̇r(n+

1), α(n + 1), α̇(n + 1)]. When the model reaches a fixed point (a certain periodic

motion), we will have P(n+ 1) = P(n) = P∗ = [v∗, δ∗, φ∗
l , φ

∗
r, φ̇

∗
r, α

∗, α̇∗].

The local stability of a fixed point can be quantified with the corresponding eigen-

values associated with this multi dimensional mapping. To evaluate the eigenvalues

of this mapping, the Jacobian matrix J of the return map needs to be numerically

approximated. A similar numerical approximation process as those in [48] is used.

Here it is omitted to make the paper concise and focused. For small perturbation,

the error dynamics can be described by:

ΔP(n+ 1) = JΔP(n) (5.24)

Where ΔP(n+1) and ΔP(n) are the mapping error P(n+1)−P∗ and P(n)−P∗

respectively. Based on the approximated Jacobian matrix, eigenvalues of a fixed point

can be calculated. When all the eigenvalues have a magnitude less than one, the fixed

point is stable as ΔP(n) eventually approaches zero. Among all the eigenvalues, the

maximum eigenvalue magnitude can be used to measure the local stability of a fixed

point as it in general represents the worst case performance.

5.3 Real Time Layer

In this section, we show that stable periodic motions can be found with just the

real time control layer as shown in Figure 5.1.

It has been previously studied that locomotion with trunk pitching can be stabi-

lized by a simple PD controlled hip torque based on trunk angle sensory feedback [?].

However, its ability to regulate center-of-mass translation speed is limited. This could

be due to the fact that only trunk angle α sensory feedback is used. We hypothesize
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that including forward speed feedback as shown in Figure 5.1 could improve its overall

locomotion stability, especially its capability to resist center-of-mass speed perturba-

tions. Here we compare locomotion models with and without forward speed feedback

in terms of their perturbation response and basins of attraction.

5.3.1 Control Strategy and Periodic Motion

For the traditional trunk angle based hip torque control strategy, the stance leg

(left or right) hip torque can be expressed as:

Stance : τl or τr = kα
p (α− αr) + kα

d α̇ (5.25)

Where kα
p , k

α
d and αr are proportional, derivative control gains and trunk reference

angle respectively. When a leg is off the ground, its hip torque swings the leg towards

a desired leg landing angle φdes. When the left leg is off the ground:

Flight : τl = kφ
p (φl − φdes) + kφ

d φ̇l (5.26)

Where kφ
p and kφ

d are leg placement proportional and derivative control gains. Simi-

larly, when the right leg is off the ground:

Flight : τr = kφ
p (φr − φdes) + kφ

d φ̇r (5.27)

A simple extension of this traditional control strategy (Equations 5.25, 5.26 & 5.27)

with additional speed feedback could be:

Stance : τl or τr = kα
p (α− αr) + kα

d α̇ + kvs
p (ẋ− vdes) (5.28)

Where kvs
p and vdes are speed control gain and the desired speed. Thus, stance hip

torque is directly influenced by locomotion speed. When the model runs at a lower

speed than the desired speed, the additional speed feedback term in Equation 5.28
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generates an additional amount of hip torque to accelerate the body forward. For the

hip torque during the flight phase, they can be extended as:

Flight : τl = kφ
p (φl − φdes) + kdφ̇l + kvf

p (ẋ− vdes) (5.29)

τr = kφ
p (φr − φdes) + kdφ̇r + kvf

p (ẋ− vdes) (5.30)

When actual forward speed is higher than the desired speed, a faster leg swing is

required to match the center-of-mass translation speed so that it does not crash.

This can be achieved with the additional velocity feedback terms in Equations 5.29

& 5.30. When perturbed, these terms adjust hip torque such that leg swing speed

and forward speed are matched.

Table 5.2 Controller parameters and fixed points for cases without
and with speed feedback.

Parameter Description Without (a) With (b) Units
kα
p trunk proportional gain −400 −400 Nm/rad

kα
d trunk derivative gain −100 −100 Nms/rad

αr trunk reference angle −17.1 −15 deg
kφ
p leg proportional gain 280 280 Nm/rad

kφ
d leg derivative gain 30 30 Nms/rad

φdes desired leg landing angle 110.8 111 deg
kvf
p speed proportional gain – 100 Nm/rad

vdes desired speed – 3.45 m/s
v∗ solution speed 3.74 3.72 m/s
δ∗ solution velocity angle 18.34 21.57 deg
φ∗
l solution left leg angle 112.69 112.49 deg

φ∗
r solution right leg angle 107.65 110.82 deg

φ̇∗
r solution right leg speed 100.21 59.35 deg/s

α∗ solution trunk angle 13.52 14.46 deg
α̇∗ solution trunk speed −15.73 −1.59 deg/s

As shown in Figure 5.5, stable solutions are found for both models with the same

physical parameters and controller gains. Both solutions are tuned to run around of

3.4m/s with a trunk angle regulated around 10◦, a representative value seen in human
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Figure 5.5. (a) & (b) Periodic motion of extended Trunk-SLIP with-
out and with forward speed feedback. The model physical parameters
are listed in Table 5.1. The controller parameter and fixed point val-
ues can be found in Table 5.2.

trunk movement during running [110]. Thus the only major difference between these

two periodic running solutions is the absence (case (a)) and presence (case (b)) of

forward speed feedback.

5.3.2 Perturbation Response and Basin of Attraction

We then compare these two stable solutions in terms of their perturbation response

and basins of attractions.

As shown in Figure 5.6 column (a), without the additional speed feedback, it

crashes a few strides after the perturbation is applied. This indicates its relatively

poor stability with respect to forward speed perturbations. In contrary, the model

returned back to steady state motion when the forward speed feedback is present.

To highlight their difference, we compare their basins of attraction. To make a

better visual presentation, we focus on two groups of fixed point variables: (1) v and
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Figure 5.6. (a) & (b) Perturbation response of extended Trunk-SLIP
without and with speed feedback. The model parameters and fixed
point values are the same as those in Figure 5.5. The forward speed is
reduced from the fixed point value by 0.2m/s at the end of the second
stride, marked as shaded slots in the figure.

δ for whole body translation; (2) α and α̇ for trunk pitching. For each group, a two

dimensional basin of attraction can be constructed, as shown in Figure 5.7.

To obtain the center-of-mass translation basin of attraction, the hip touchdown

velocity magnitude v and angle δ are perturbed from fixed point values (labeled as

black dots Figure 5.7) while the rest fixed point values are kept unchanged. All the

velocity magnitude and angle pairs from which the model can eventually recover are

recorded and formed the gray region in Figure 5.7 first row. Similarly, to obtain the

pitching basin of attraction, the trunk angle α and angular velocity α̇ are perturbed

while the rest fixed point values are unchanged. All the recoverable trunk angle and

angular velocity pairs are recorded and presented as the gray region in Figure 5.7

bottom row.

Both basins of attractions expands significantly as additional speed feedback is

used, indicating an overall improved stability. As shown in the first column of Fig-

ure 5.7, without speed feedback, The fixed point (black dot) is close to the border of
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Figure 5.7. (a) Basins of attraction of extended Trunk-SLIP without
speed feedback. (b) Basins of attraction of extended Trunk-SLIP with
speed feedback. The model parameters and fixed point values are the
same as those in Figure 5.5. The black dot in each panel stands for
the fixed point.

stability basins. Therefore, despite a stable fixed point, its overall stability is poor.

In comparison, the second column of Figure 5.7, speed feedback greatly expands both

translation and pitching basins of attraction. More importantly, the fixed point is

now well “centered” within each basin. This is a dramatic improvement in global

stability.

In summary, the additional speed feedback greatly strengthens the overall loco-

motion stability, especially its capability to resist speed perturbations.

5.4 Event to Event Layer

Speed feedback improves model stability especially its global stability. However, as

observed in Figures 5.6, the transient response to perturbations tends to be oscillatory.

In addition, it takes a long time to fully recover from a specific perturbation. Here
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we show that by adding the event to event discrete control layer, these problems can

be effectively remedied.

5.4.1 Control Strategy and Periodic Motion

One reason that perturbation response tends to be oscillatory and slow could be

the lack of hip torque controller adjustment. It is commonly observed in human run-

ning that trunk leans forward when accelerating and backward when decelerating.

Inspired by this phenomena, we hypothesize that by introducing a speed based trunk

reference angle regulator could improve the model response to perturbations. There-

fore we propose the trunk reference angle to be updated at each touchdown based on

the following equation:

αr = αb − kα(ẋ− vdes) (5.31)

Where αb and kα are trunk reference angle base value and regulator gain respec-

tively. When forward speed ẋ is increased from the steady state value, the resulting

trunk angle reference αr will decrease. Therefore, the trunk motion will be regulated

around a backward position to help decelerate center-of-mass translation. Otherwise

when forward decreases, the trunk reference angle will increase and in turn helps to

accelerate.

In addition, it is known that leg landing angle could have a significant impact on

locomotion stability [26, 31, 32]. A canonical control approach developed by Raibert

was to use leg landing angle to control locomotion speed [63]. Also, it is known that

human leg landing angle and running speed exhibits a certain linear relationship [19].

We therefore hypothesize that additional mechanism that adapts leg landing angle

could also help reduce oscillation in perturbation response. We then introduce leg

landing angle φdes regulation at each liftoff as:

φdes = φb − kφẋ (5.32)
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Where φb and kφ are base leg landing angle and leg landing angle adjustment gain.

Note that, unlike hip torque controllers which runs in real time, both reference

angles are updated only once at each touchdown or liftoff. Therefore, transition

regulator (governed by Equations 5.31 & 5.32) runs at a lower frequency with a

small control cost. To test the effect of the proposed transition regulator. We seek to

compare fixed point solutions with and without transition regulator .
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Figure 5.8. (a) & (b) Periodic motion of extended Trunk-SLIP with-
out and with the transition regulator. The model physical param-
eters for both models are listed in Table 5.1. For the case with-
out transition regulator, its control parameter and fixed point val-
ues are the same as those of Table 5.2. While for the case with the
transition regulator, stance and hip torque control gains remains the
same as those without transition regulator. The additional transi-
tion regulator parameter kα, αb, kφ, φb values are 1.1459◦s/m, −15◦,
2.5◦s/m and 101.5◦ respectively. The corresponding fixed point val-
ues [v∗, δ∗, φ∗

l , φ
∗
r, φ̇

∗
r, α

∗, α̇∗] are: [3.73m/s, 21.62◦, 112.53◦, 110.96◦,
58.11◦/s, 14.50◦, −1.20◦/s]. In addition, the initial φdes are 111.03

◦.

We then extend the previously found fixed point solution as shown in Figure 5.5

(the case with speed feedback) by incorporating the transition regulator. The new

transition regulator parameters are tuned to find fixed points while the other parame-
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ters are fixed. As shown in Figure 5.8, a fixed point similar to that of the case without

transition regulator was found. The center-of-mass motion and trunk pitching angle

are nearly identical. The only major difference between these two models are the

absence and presence of transition regulator.

5.4.2 Perturbation Response and Basin of Attraction

In this subsection, we demonstrate the effect of transition regulator by comparing

two periodic solutions in Figure 5.5. Here we focus on the model’s ability to resist

perturbations in locomotion speed and trunk pitching.
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Figure 5.9. (a) & (b) Perturbation response of extended Trunk-SLIP
without and with transition regulator . The model parameters and
fixed point values are shown in Figure 5.8. The forward speed is
decreased from the fixed point value by 0.5m/s at the end of second
stride,marked as shaded slots in the figure.

In Figure 5.9, we show their response to a sudden forward speed decrease. As

observed in the first column of Figure 5.9, without transition regulator , the trunk

leans forward quickly after the perturbation is applied. However, the speed quickly

gets over compensated and becomes higher than the steady state value. This in turn

causes the trunk body to lean backward to decelerate. As a result of this behavior,
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the overall perturbation response becomes oscillatory. In addition, a slow recovery is

observed as it dose not fully recover until about 16s after perturbation. In comparison,

when the transition regulator is present, the response is significantly smoother. As

shown in the right column of Figure 5.9, the body leans forward to accelerate. Thanks

to the trunk reference and leg landing angle adjustment, a well damped smooth

response is found. Besides, the recovery time gets reduced. With transition regulator,

a full recovery happens at about 4s after perturbation.
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Figure 5.10. (a) & (b) Perturbation response of extended Trunk-SLIP
without and with transition regulator . The model parameters and
fixed point values are the same as those in Figure 5.8. The trunk
pitching angle is decreased from the fixed point value by 10◦ at the
end of second stride,marked as shaded slots in the figure.

Similarly, as shown in Figure 5.10, when a large perturbation in the trunk angle

is applied, smoother recovery motion and shorter recovery time is observed when

transition regulator is present.

The stabilizing effect of the transition regulator is further highlighted by com-

paring their basins of attraction, as shown in Figure 5.11. Both translation and

pitching basins of attraction expand dramatically when transition regulator is in-
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Figure 5.11. (a) & (b) Basins of attraction of extended Trunk-SLIP
without and with transition regulator . The model parameters and
fixed point values are the same as those in Figure 5.8. The black dot
in each panel stands for the fixed point.

cluded. Specifically, for the translational basin of attraction, the model can recover

from a significantly greater speed reduction with transition regulator .

In summary, the transition regulator improves the perturbation rejection response

by making it smoother and faster. Also, it dramatically improves model global sta-

bility in terms of the size of maximum allowable perturbation.

5.5 Stride to Stride Layer

Despite the additional speed feedback and transition regulator , there still exist

difference between the speed reference vdes and the actual average speed vavg within a

stride. Where the actual average speed vavg can be measured as the distance traveled

within a single stride divided by stride time. To realize accurate speed control, we

propose an additional speed regulator which adjusts the speed reference vdes such that

the actual average speed equals to the commanded speed vcmd. We therefore propose
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an integrator which accumulates the error between the commanded speed and actual

speed after every stride:

vdes(n) = vcmd + ki

n−1∑
i=1

(vcmd − vavg(i)) if | vcmd − vavg(i) |< 0.5m/s (5.33)

vdes(n) = vcmd if | vcmd − vavg(i) |> 0.5m/s (5.34)

Where ki is the integrator gain for speed reference. To reduce oscillation when

perturbed, the integrator action is reset to zero when the error between command

speed and current speed is larger than 0.5m/s. This speed regulator comes with

minimal control cost as it operates at the stride frequency which is even lower than

the transition regulator control frequency. We then seek to determine if this additional

layer could achieve tight speed control. If so, is the overall robust stability maintained?

5.5.1 Perturbation Response and Basin of Attraction

The speed regulator is added upon the previously tuned fixed point solution (as

shown in Figure 5.8 (b) ). Only the integrator gain ki is tuned to find similar solution

while the rest parameters are unchanged. As expected, a similar fixed point is found.

It is found that zero steady state error of locomotion speed is obtained with

the speed regulator . As shown in Figure 5.12, we compare the model response

when forward speed is perturbed. Without speed regulator, the locomotion speed

eventually settles to a value lower than the desired speed vdes. In comparison, the

offset disappeared when speed regulator is present. The steady state speed settles

exactly to the command speed vcmd of 3.45m/s.

Also, the robust global stability is not affected by the inclusion of this speed

regulator. In Figure 5.13, we shown the basins of attraction for the solutions with

and without speed regulator. In general, the size and shape of both basins are almost
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Figure 5.12. (a) & (b) Perturbation response of extended Trunk-
SLIP without and with speed regulator. The model parameter and
fixed point values for the case without speed regulator are the same
as those in Figure 5.8 (b). For the model with speed regulator ,
additional parameters vcmd and ki are 3.45m/s and 0.15 respectively.
The corresponding fixed point values [v∗, δ∗, φ∗

l , φ
∗
r, φ̇

∗
r, α

∗, α̇∗] are:
[3.80m/s, 21.04◦, 112.81◦, 111.07◦, 60.87◦/s, 75.55◦, −1.72◦/s]. In
addition, the initial φdes are 111.26◦.
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Figure 5.13. (a) & (b) Basins of attraction of extended Trunk-SLIP
without and with speed regulator. The model parameters and fixed
point values are the same as those in Figure 5.12. The black dot in
each panel stands for the fixed point.
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identical for these two cases. Therefore, the overall robust global stability is still

maintained.

5.5.2 Local Stability Dependence on Physical Parameter Variation

To further validate the effect of the overall control scheme. We investigate the

change of model local stability (represented as the maximum eigenvalue) with re-

spect to model physical parameters. Model physical parameters such as trunk inertia

sometimes cannot be accurately measured. Therefore, this is also in order to deter-

mine if this strategy could be applied to legged robots whose physical parameters are

uncertain.
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the stable region where the maximum eigenvalue magnitude is less
than one.
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In Figure 5.14, we show the maximum eigenvalue versus physical parameters.

For each panel, only one parameter is varied while the rest is fixed as those of the

complete controlled case in Figure 5.12. Note that in Figure 5.14, in order to make the

analysis simple, control parameters are fixed and not tuned when each model physical

parameters is changed. Therefore the obtained fixed points and local stability are not

local optimal. For an actual robot, the control parameter can be tuned to obtain

more stable solutions. However, as can be seen in Figure 5.14, stable solutions with

maximum eigenvalue magnitude less than one can still be found over a wide range of

parameter values. What is more, with proper tuning, even very stable solutions with

maximum eigenvalue magnitude less than 0.8 can be found.

In summary, the speed regulator minimizes the error between actual and com-

manded speed. The overall stability is maintained with the inclusion of speed regula-

tor. Besides, this strategy remains effective with respect to model parameter changes.

5.6 Conclusion

It is amazing that above knee athletes in Paralympic Games can demonstrate

robust running motion with regulated trunk motion. Inspired by the hierarchical

structure of mammal neocortex, we develop a simple layer by layer control and tuning

strategy for bipedal robots with hip torque actuation. To validate the developed con-

trol strategy, a locomotion model called “extended Trunk-SLIP” is developed based

on existing SLIP based models. Unlike traditional models with massless legs, its trunk

and thigh are modeled as rigid bodies while each shank is assumed to be massless

and springy.

In total, four layers are proposed while we focus on the first three layers to demon-

strate this strategy. At first, the base layer control is applied on to extended Trunk-

SLIP to form basic motion stability. Afterwards, each layer is added and tuned upon

the previously tuned periodic solutions to demonstrate the particular effect of each
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layer. This approach could enable a fast controller parameter tuning as only a small

number of control parameters need to be tuned at each step.

At first, the stance and flight hip torque controllers are applied in the real time

layer. By comparing perturbation response and basins of attraction, it is found that

forward speed feedback greatly helps improve locomotion stability with respect to

speed perturbations. Further, we introduce a simple transition regulator to adjust

leg landing and trunk angle reference at each touchdown or liftoff. Unlike the hip

torque controllers which run in real time, the transition regulator operates at a lower

frequency. It greatly smooths the system response and shortens settling time with

respect to large perturbations. In addition, it improves global stability for both

translation and pitching basins. Then the speed regulator is introduced and runs

only once a stride. With the speed regulator, locomotion speed is accurately tracked

with its overall robust stability unchanged. Also, stable solutions can still be found

despite large physical parameter uncertainty.

The proposed control strategy is simple in nature and could be applied in bipedal

legged robot design with springy legs. It could also help towards better understand-

ing of how stable running motion is formed in above knee amputee running. This

knowledge in turn could be applied to the field of legged locomotion in general. Fur-

ther, the proposed layer by layer controller design approach could be applied to other

complex systems with under actuated dynamics.
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6. SUMMARY

Despite the development of robotics in the past few decades, the performance of ex-

isting legged robots is still behind what is observed in biology. Especially, currently,

there does not exist a bipedal robot capable of high speed running. On the contrary,

above knee amputee athletes in Paralympics, with largely only hip torque actuation

and compliant legs, are capable of sprinting. Overall, there still exists a gap between

the state-of-art and what is possible for animals and humans. One reason is that lo-

comotion dynamics are not completely understood as they are nonlinear and hybrid.

Current theories about linear systems cannot be easily applied. To further improve

legged robot and assistive device design, more principles and knowledge about loco-

motion dynamics and control need to be gained.

Here we investigate general locomotion dynamics and control using the mathe-

matical modeling and analysis approach. More specifically, we show how locomotion

models can be gradually developed as shown in Figure 6.1.

At first, we utilize the simulation of actuated-SLIP to explain a general behavior

among legged animals: a universal preference of relative leg stiffness. We then incor-

porate trunk pitching dynamics into actuated-SLIP to form Trunk-SLIP. By doing so,

we are able to investigate how different combinations of sensory feedback could affect

overall locomotion stability. The knowledge obtained are then used to create the more

complicated extended Trunk-SLIP model. We show that by applying a simple layer

by layer control strategy, extended Trunk-SLIP can exhibit robust center-of-mass

motion with tightly regulated trunk pitching.
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SLIP Actuated-SLIP

Trunk-SLIP Extended Trunk-SLIP

Figure 6.1. The development of locomotion models from simple SLIP
to more complex extended Trunk-SLIP. The arrows stands for the
direction of evolvement.

6.1 Simple Models and General Principles

It has been shown that legged animals, across species, exhibits the same kind of

spring mass running pattern. Also, animal leg stiffness when normalized by leg length

and body weight tightly distribute within a narrow range between 7 and 27. This is

surprising as there exists a wide variation of animal size, weight, specie and morphol-

ogy. Very few universal behaviors like this exists in biology. We show that the animal

preference of this particular relative stiffness range tightly relates to the optimization

of locomotion energetic cost as well as center-of-mass translation stability.

Through simulation of the simple actuated-SLIP model using a human related pa-

rameter set. It is discovered that the mechanical cost of transport for actuated-SLIP

is at its minimum when the relative leg stiffness is at the human value. In addition,

the predicted minimal mechanical cost of transport agrees with human experimen-

tal value. Then actuated-SLIP is explored within the biological relevant parameter

space. It is found that the relative stiffness region where mechanical cost of trans-

port is minimal for the model coincides with the biological preferred values between
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7 and 27. This strongly implies that animals and human might adapt leg stiffness

to reduce energetic cost. Similarly, it was found that this relative stiffness region

also corresponds to the region where the stability of actuated-SLIP is optimal. This

implies that animals could select leg stiffness to optimize locomotion energy efficiency

and stability at the same time. Overall, this is the first time such an explanation is

offered. In addition, these results also help explain how high level control targets

such as energy efficiency might influence overall physiological parameters and the

underlying neuromechanics that produce it.

6.2 Complex Models and Locomotion Control

We then developed a general control strategy for legged robots by gradually in-

creasing model and control complexity. As the first step, we extended actuated-SLIP

with a rigid body trunk to form Trunk-SLIP. Four different combinations of sen-

sory feedback were applied onto Trunk-SLIP. Their respective stability is studied and

compared. exproprioceptive feedback during flight were found to be critical to overall

motion stability with trunk pitching. Exproprioceptive and proprioceptive feedback

during stance generate similar stable solutions. When both feedback pathways are

combined using a simple linear superimposition, the overall stability is improved.

Inspired the physical structure of the human neocortex and the layer by layer

approach adopted by the human brain for complex pattern recognition, we developed

a hierarchical control strategy with multiple layers. Different layers of control were

applied on a more complex Trunk-SLIP model with trunk and leg masses. Three layers

of control achieves basic stable motion, smooth perturbation response and accurate

speed tracking respectively. Overall stability is gradually improved when different

layers are added in sequence. This layer by layer approach reduces controller design

and tuning complexity. Each time only a few number of controller parameters need

to be added and tuned. Further, we propose a fourth layer where a higher level of

performance targets can be realized by controlling the commanded speed.
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The knowledge gained through mathematical modeling and analysis can be applied

to the design of future legged robots. In addition, it could serve as the base where

more sophisticated locomotion models and control strategies could be developed upon.
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