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ABSTRACT

Shen, Bin Ph.D., Purdue University, December 2014. Relation among Images: Modelling,

Optimization and Applications. Major Professors: Jan P. Allebach and Mikhail J. Atallah.

In the last two decades, the increasing popularity of information technology has led

to a dramatic increase in the amount of visual data. Many applications are developed by

processing, analyzing and understanding such increasing data; and modelling the relation

among images is fundamental to success of many of them. Examples include image clas-

sification, content-based image retrieval and face recognition. Given signatures of images,

there are many ways to depict the relation among them, such as pairwise distance, kernel

function and factor analysis. However, existing methods are still insufficient as they suffer

from many real factors such as misalignment of images and inefficiency from nonlinearity.

This dissertation focuses on improving the relation modelling, its applications and related

optimization. In particular, three aspects of relation modelling are addressed: 1. Integrate

image alignment into the relation modelling methods, including image classification and

factor analysis, to achieve stability in real applications. 2. Model relation when images

are on multiple manifolds. 3. Develop nonlinear relation modelling methods, including ta-

pering kernels for sparsification of kernel-based relation models and developing piecewise

linear factor analysis to enjoy both the efficiency of linear models and the flexibility of

nonlinear ones. We also discuss future directions of relation modelling in the last chapter

from both application and methodology aspects.
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1 INTRODUCTION

In the last two decades, the increasing popularity of smart phones and consumer cameras

has led to a dramatic increase in the amount of visual data. Furthermore, the image and

video sharing web sites, such as Facebook, Flickr and YouTube, make these data easily

available online and penetrate our everyday lives. Processing and further analyzing such

increasing data becomes a more and more important and critical research area. Researchers

are attracted to this area hoping that computer programs would be able to interpret the data

and mine knowledge from them automatically or with little human interaction.

There are many topics drawing researchers’ attention, such as boundary detection, im-

age segmentation, structure from motion, image clustering/classification, image retrieval,

face recognition and intelligent video surveillance, which process, analyze, or understand

the content of images/videos. For many, if not most, of these application, modelling the

relation among images is a key and fundamental component.

1.1 Role of Image Relation

Here several example applications, where image relations play critical roles, are briefly

reviewed.

Content-based image retrieval aims to return a set of visually similar images for a

given query image, which requires the relation between the query image and images in

database. An engineered metric which reflects visual similarity is desired to rank the im-

ages in database according to visual similarity between them and the query image. Also,

in many real image retrieval systems (not limited to content-based ones), the returned im-

ages should not only have the visual similarity but also have some diversity. Thus, nearly

duplicate images should be removed from the final list shown to end users. A similar task

is image clustering, which clusters images according to some certain metric, ideally visual
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similarity or semantic meaning. The images that look or are semantically similar to each

other should belong to a same cluster.

In face recognition, a computer program automatically identifies or verifies a query face

image given a database of labeled human faces. How to model the relation between a query

face and the images in the database is the core component of face recognition algorithms.

Object tracking aims to locate a given object in each of the frames in a video sequence.

Many algorithms, varying from the simple feature point matching method to nonrigid ob-

ject tracking, have been proposed to deal with this task by making a decision in each frame

considering mainly the relation between consecutive frames or the current frame and the

frame where the object model is constructed. For example, the mean-shift tracking algo-

rithm treats tracking as a mode seeking problem, and the model of the target is constructed

usually from the first frame, and then mean-shift method searches the optimal mode in each

of following frames.

1.2 Image Relation Modelling

Assume we have signatures/features of images, there are many components to help

depict the relation among them, such as various distances, kernel functions and factor anal-

ysis. Ideally, these techniques should be consistent with the intent of related applications,

computationally efficient and robust to real-world noise. There are many other methods

that can be used to measure the relation among images, such as feature point matching

and region of interest comparison. Only a few fundamental and representative ones are

explored in this chapter.

Pairwise distance is one of the most popular and intuitive approaches, including lp

distance, Hausdorff distance, K-L divergence and earth mover’s distance. In this case,

images are usually represented as vectors in the feature space, and the distances between

pairs of them are calculated.

Different from traditional distance measure, which is usually computed in the origi-

nal feature space, kernels [1–3], which measure the relation between images in implicit
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Hilbert space, have been later applied to image processing tasks, such as image cluster-

ing/classification, face recognition and object tracking. They are incorporated into a num-

ber of machine learning algorithms [2–7], such as matrix factorization, k-means clustering,

and support vector machine, to form new powerful methods, i.e., the so-called kernel meth-

ods. In kernel methods, original input features are implicitly projected to a high, possibly

infinite, dimensional space via a kernel-induced potentially nonlinear mapping, such that

more useful features hidden in the original data can be utilized.

Besides kernel trick, factorization techniques such as Principal Component Analysis

(PCA), Linear Discriminant Analysis (LDA), Independent Component Analysis (ICA) and

Nonnegative Matrix Factorization (NMF) are also able to convert images to another space,

which is believed to be more suitable for further analysis than the original feature space,

and thus have been widely used in many image processing and computer vision tasks.

After factorization, images have a compact new representation, which saves storage space

and computational cost for further processing, and the relation among images can be more

easily or accurately discovered or evaluated. For example, the user will easily determine

whether two images belong to the same cluster by checking whether they share a same

factor. Another example is that the similarity/distance can be calculated in the new low-

dimensional space. Among these techniques, NMF [8] is popularly adopted since image

data are usually nonnegative in nature.

1.3 Challenges and Opportunities

Challenges and opportunities coexist in the area of image relation modelling. This

dissertation focuses on the following three aspects.

1.3.1 Misalignment in images

Many relation modelling techniques such as pairwise distance approach and factor anal-

ysis are widely used in many image processing applications such as face recognition and

image clustering. However, the performance of most, if not all, of these modelling meth-
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Figure 1.1.: Examples of misaligned celebrity face images.

ods depend heavily on the good alignment of the input samples, and they assume that the

images are well aligned. Unfortunately, this assumption hardly holds in many real image

processing applications [9], especially when the raw pixels are treated as features. Real

image samples, such as face images, are usually with various poses and scales, and have

misalignment due to many uncontrollable factors in the collecting process. Figure 1.1

shows some example face images of celebrities collected via Google image search, from

which we can easily see that the face images are hardly aligned. Most largely available

images on the Internet are misaligned as shown in the figure. Thus, alignment becomes a

critical problem to be solved for the following processing such as factorization. Lack of

reliable and efficient alignment algorithms for a large number of images makes it difficult

for many image analysis tasks such as face recognition, image classification.

A lot of work has been done toward the image alignment problem, where all the images

of an object or objects of interest are aligned to a fixed canonical template. The authors

of [10] proposed a congealing algorithm to align images by minimizing the sum of en-

tropies of pixel values at different pixel locations. A least squares congealing algorithm

was proposed in [11] by minimizing the sum of the squared difference between all pairs.

In [12], the proposed algorithm aligns the images via approximated rank minimization.

In [9], the sparse representation is learned while implicitly aligning the images by inferring

the coefficient of the first derivatives. [13] assumes input vectors that are translationally

shifted versions of each other, and includes a shift-invariant representations into the N-
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MF formulation. In [14] the authors make the algorithm scale and rotation invariant by

transforming the images into log-polar coordinate system. In [15] a subspace is learned

specifically for aligning images.

We consider the factorization and classification techniques specifically since they are

widely used in the modelling of image relation and propose approaches that are insensitive

to misalignment.

1.3.2 Images on manifolds

Most of existing relation modelling techniques assume that images lie in Euclidean

space. And a few of them consider the underlying manifold structure of image samples,

and assume that images are drawn from a manifold. However, many real world data reside

on multiple manifolds [16]. For example, for handwritten digits, each digit forms its own

manifold in the feature space. Furthermore, for human faces, the faces of the same person

lie on the same manifold and different persons are associated with different manifolds.

Many previous relation modelling techniques, such as NMF algorithms, do not consider the

structure of multiple manifolds and cannot model data on a mixture of manifolds, which

may overlap or intersect. For example, the algorithms in [17,18] only consider the situation

that all the data samples are drawn from a single manifold. These algorithms create a

graph by searching nearest neighbors to preserve the local geometry information: locality

or neighborhood. However, the created graph may connect points on different manifolds,

which can diffuse information across manifolds and be misleading.

We here consider two cases where the relation resulting from the underlying multiple

manifold structure helps improve the performance.

First, we consider doing clustering with NMF that explicitly models the intrinsic geo-

metrical structure of the data on multiple manifolds. The assumption is that data samples

are drawn from multiple manifolds, and if one data point can be reconstructed by several

neighboring points on the same manifold in the original high dimensional space, it should

also be reconstructed in a similar way within the low dimensional subspace by the basis ma-
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trix and coefficient matrix. This approach is different from local linear embedding which

studies only one manifold in the original space.

Secondly, we extend the same idea to pattern classification, and hope that the underly-

ing multiple manifold structure would help improve the classification performance. Pattern

classification is one of the most important problems in machine learning, and support vec-

tor machine(SVM) [19, 20] is one of the most successful approaches. It is widely used in

many real applications, such as face recognition [21], object detection [22] and text cate-

gorization [23]. In many of these applications, SVM is able to achieve very competitive

performance compared with other existing approaches. We aim to combine the discrimi-

native power of support vector machine with the merits of sparse representation resulting

from the multiple manifold structure.

1.3.3 Nonlinear relation modelling

Because of the large-scale complex data, linear models are sometimes insufficient due

to their simplicity. Kernel trick is one of the most popular choices to model nonlinear

relation. Despite kernels’ success in many real applications, however, traditional kernel

methods usually employ all features and instances to produce a kernel matrix with a high

chance of incorporating noise and irrelevant features. For example, in object categorization,

the background of an image may greatly impair the clustering accuracy. How to reduce or

remove the effects of the background or irrelevant features in kernel construction remains

an open problem. The choice of the kernel function is critical to the success of the applica-

tions. Thus how to find a good kernel becomes a fundamental topic. The kernel functions

basically describe the definition of the similarity between data samples. For many applica-

tions we conjecture a sparse kernel would benefit the applications if we have some reason

to believe that two distant samples should have zero similarity. Take image categorization

for examples, an ideal situation would be that the images from different classes result a zero

output, at least a small value, of the kernel function; and images from the same class get a

reasonably large positive output. However, current standard kernel functions are designed
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for general types of data, and thus have a lack of this property. A sparse kernel should

also help reduce the computation burden can is more robust to noise. This dissertation

introduces an effective and simple approach to attack this problem.

However, the powerful nonlinear approaches, including kernel trick, LLE [24] and I-

SOMAP [25], are usually computationally more expensive than linear approaches such as

PCA and NMF. To enjoy both the efficiency of the linear models and power of nonlinearity,

this dissertation introduces a piecewise linear dimension reduction technique with global

consistency and smoothness constraint to overcome the restriction of linearity at relatively

low cost in the problem of factorization.

1.4 Dissertation Overview

The rest of this dissertation is organized as follows. Chapters 2 and 3 describe al-

gorithms on relation modelling for images with misalignment. In Chapters 4 and 5, al-

gorithms of factorization and classification considering multi-manifold structure are pre-

sented. Chapters 6 and 7 describe two algorithms of nonlinear relation modelling: one is

based on sparse kernel trick and the other is piecewise linear approach. In Chapter 8, this

dissertation is concluded and future directions are discussed.
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2 FACTORIZATION FOR MISALIGNED IMAGES

Factorization techniques, including subspace learning and nonnegative matrix factoriza-

tion, have been powerful tools for many applications in image analysis, such as face recog-

nition and image clustering. The underlying assumption for factorization is that all the

images are well aligned. However, this assumption does not usually hold for real world

applications due to image noise and other factors. Thus image alignment is of critical im-

portance to the success of factorization algorithms. On the other hand, factorization has

been successfully applied to numerous tasks by learning more informative and less noisy

representations, which in turn facilitates the alignment process. This chapter proposes a

Transformation Invariant Nonnegative Matrix Factorization algorithm, which aligns and

factorizes data simultaneously. Extensive experiments, including image reconstruction,

alignment and recognition, on benchmark datasets demonstrate the efficacy of the proposed

algorithm.

2.1 Introduction

Factorization techniques have been widely used in many image processing and com-

puter vision tasks. Among these techniques, Nonnegative Matrix Factorization (NMF) [8]

has attracted much attention since the values of image data are usually nonnegative in na-

ture. NMF learns a basis matrix and a coefficient matrix, both of which are nonnegative

and of low rank, to approximate the data matrix. Numerous variants of NMF methods have

been developed for different tasks. Hoyer et al. [26] and Kim et al. [27] propose variants

of NMF that explicitly control the sparsity of the resulting basis and coefficient matrices.

NMF is later extended to data on a single or multiple manifolds [17, 28]. SemiNMF and

convexNMF are proposed in [29] to further extend the applicability of NMF, where only

the coefficient matrix is nonnegative and the basis matrix is allowed to contain negative
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Figure 2.1.: Factorization and alignment of face images. (a) Examples of misaligned

celebrity face images from LFW [36]. (b) Detected faces as input. (c)-(d) Images aligned

and reconstructed by TINMF. (e) Images reconstructed by NMF. (f)-(g) Cropped recon-

struction results by TINMF and NMF.

values. Much effort has been made in recent years for various aspects of NMF including

modelling, application and optimization [30–35].

However, performance of most, if not all, existing variants of NMF depends heavily on

good alignment of the input samples. Unfortunately, this assumption does not usually hold

in many real world applications [9], especially when the raw pixels are treated as features.

Real image samples, such as face images, are usually with various poses and/or scales and

misaligned due to many uncontrollable factors and noise. Figure 2.1(a) shows some face

images in the LFW dataset [36]. The face images here are not well aligned, and so are most

images on the Internet. Thus, alignment is a critical problem for the following factorization

and other processing processes.

Learned-Miller [10] proposes a congealing algorithm to align images by minimizing

the sum of entropy of pixel values at different pixel locations. Alignment of images can

also be achieved by other approaches, such as minimizing the sum of squared difference of

all pairs [11] or the approximated rank [12]. Huang et al. [9] propose to learn the sparse
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representation while implicitly aligning the images by inferring the coefficients of the first

derivatives. Eggert et al. [13] assume input vectors that are translationally shifted versions

of each other, and include a shift-invariant representations into the NMF formulation. Bar

et al. [14] develop a scale and rotation invariant NMF algorithm by transforming the images

into log-polar coordinate system. He et al. [15] propose to learn a subspace specifically for

aligning images to improve accuracy.

However all the existing NMF algorithms either do not address the misalignment prob-

lem or only handle the simple cases (e.g., translation), and thus do not perform well when

image data contains large misalignment. To address this important issue, we propose to

align and factorize images simultaneously. Thus, not only the resulting factorization is

insensitive to sample misalignment, but also better alignment is generated by the new rep-

resentation induced by factorization. We would like to answer the following questions: 1)

Does aligning images help learn more informative basis in NMF? 2) Can more accurate

alignment be generated when it is coupled with factorization? 3) Is it better to simultane-

ously align and factorize image data or separately?

2.2 Review of Nonnegative Matrix Factorization

In this section, we first briefly review the conventional NMF algorithm with squared

loss objective function.

A set of n samples of m-dimension forms a nonnegative matrix X ∈ R
m×n
+ . An NMF

algorithm factorizes it into two nonnegative low rank matrices W and H by minimizing the

following objective function:

O = ||X −WH||2F , (2.1)

where W ∈ R
m×p
+ , H ∈ R

p×n
+ . p is usually much smaller than both m and n, and it controls

the ranks of matrices W and H .
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Although the above objective function is nonconvex with respect to W and H jointly,

it is convex with respect to either W or H . An alternative minimization algorithm for

optimizing this objective function is to repeat the following two update rules [8]:

Wij = Wij
(XH�)ij

(WHH�)ij
, (2.2)

Hij = Hij
(W�X)ij

(W�WH)ij
. (2.3)

2.3 Transformation Invariant Nonnegative Matrix Factorization

We describe our proposed Transformation Invariant Nonnegative Matrix Factorization

(TINMF), which simultaneously factorizes and aligns images for real-world applications.

Given a set of images, In = {Ii ∈ R
w×h
+ : 1 ≤ i ≤ n}, each image is stacked as a

vector by the function vec : Rw×h
+ → R

m
+ , where m = w × h. Let X.i denote the vector

obtained by vectorizing Ii, i.e. X.i = vec(Ii). We define X
.
= [X.1, X.2, . . . , X.n] ∈ R

m×n
+ .

To align image Ii, an optimal transformation τi is sought in a Lie group G. For imple-

mentation, a g-dimensional vector is used to represent τi, and τ = [τ1, τ2, . . . , τn] is a matrix

of size g× n. With slight abuse of notation, we use τ to denote the set of {τi : 1 ≤ i ≤ n},
and X ◦ τ to denote [vec(I1 ◦ τ1), vec(I2 ◦ τ2), . . . , vec(In ◦ τn)].

Given the matrix X formed from image samples, which are potentially misaligned,

we are interested in not only the factorization but also the optimal transformation τ . The

underlying assumption is that an optimal transformation τ ∗ can be applied to image set

such that the resulting images X ◦ τ ∗ are well aligned, and the well aligned images have

low fitting error while being factorized, i.e., min
W,H

‖X ◦ τ ∗ −WH‖F is small. Thus, the

optimal τ can be sought as the transformation that will result in minimal fitting error when

the matrix is factorized, i.e. τ ∗ = argmin
τ

min
W,H

‖X ◦τ−WH‖F . However, the factorization

(W,H) also depends on the alignment τ . Thus, to jointly consider both the factorization

and alignment, the objective function can be formulated as
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(W ∗, H∗, τ ∗) = arg min
W,H,τ

‖X ◦ τ −WH‖2F ,

s.t. W ∈ R
m×p
+ , H ∈ R

p×n
+ , τ ∈ G.

(2.4)

Unfortunately, minimizing the above objective function will result in trivial solution of τ .

For example, the τ that transforms all images into single pixels will always result in perfect

fitting with zero loss, since X ◦ τ ∈ R
1×n
+ can be easily fit with zero loss. To avoid this

case, the transformation τ should be regularized, so the objective function is reformulated

as

(W ∗, H∗, τ ∗) = arg min
W,H,τ

‖X ◦ τ −WH‖2F + γ r(τ),

s.t. W ∈ R
m×p
+ , H ∈ R

p×n
+ , τ ∈ G,

(2.5)

where r(τ) is a regularizer on the transformation τ . Assuming the initial transformation is

referred to as τ o, the regularizer can be defined as r(τ) =
∑

i ‖τi − τ oi ‖22. The regularizer

helps prevent significant trivial transformations.

Optimization

In the objective function, the learning of transformation τ is coupled with the learning

of W and H . To optimize this nonconvex objective function, we carry out alternative

optimization by repeating these three steps: 1) fix τ and H , update W ; 2) fix τ and W ,

update H; 3) fix W and H , update τ . Obviously, under this interleaving optimization

scheme, the reconstruction WH will guide the learning of τ , and in return the current τ

will also help learn more informative basis W and representation H .

The optimization process with respect to W or H is straightforward since it is the same

as the procedure in standard NMF except that the data X should be substituted by X ◦ τ .

Thus we here focus on the optimization with respect to τ .
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The objective function is not linear or quadratic with with respect to τ , and it is not easy

to solve it directly. Instead, we approximate the function and solve it iteratively. When

there is a small update Δτ on τ , the updated matrix X ◦ (τ +Δτ) can be approximated by

linearization:

X ◦ (τ +Δτ) ≈ X ◦ τ +
n∑

i=1

JiΔτiε
�
i , (2.6)

where Ji is the Jacobian of the i-th image with respect to the transformation τi, and εi is the

standard basis for Rn. The loss induced by a single sample is

||X.i ◦ τi −WH.i||2F + γ ‖τi − τ oi ‖22, (2.7)

where H.i denotes the i-th column of coefficient matrix H .

To optimize with respect to τi , i.e., argminτi ||X.i ◦ τi −WH.i||2F + γ ‖τi − τ oi ‖22, we

solve the following optimization problem with respect to Δτi:

min
Δτi

||X.i ◦ (τi +Δτi)−WH.i||2F + γ ‖(τi +Δτi − τ oi )‖22. (2.8)

Computing the derivative, we have

∂||X.i ◦ (τi +Δτi)−WH.i||2F + γ ‖(τi +Δτi − τ oi )‖22
∂Δτi

=2J�
i (X.i ◦ τi −WH.i) + 2J�

i JiΔτi

+ γ(2Δτi + 2τi − 2τ oi ).

(2.9)

Setting the derivative equal to zero, we have the following solution:

Δτi = [J�
i Ji + γI]−1[J�

i (WH.i −X.i ◦ τi)− γ(τi − τ oi )]. (2.10)
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Algorithm 1 Naive optimization scheme for TINMF

Require: Images In = {Ii ∈ R
w×h
+ : 1 ≤ i ≤ n}, initial transformation τ = τ o

1: Randomly initialize W and H to positive matrices.

2: Form data matrix X = [vec(I1 ◦ τ1), vec(I2 ◦ τ2), . . . , vec(In ◦ τn)] and normalize X
column-wisely.

3: while not converge do
4: Update W : Wij = Wij

(XH�)ij
(WHH�)ij

5: Update H: Hij = Hij
(W�X)ij

(W�WH)ij

6: Compute Δτ according to (2.11)

7: Update τ : τ = τ +Δτ
8: Update data matrix according to τ : X = [vec(I1 ◦τ1), vec(I2 ◦τ2), . . . , vec(In ◦τn)],

and normalize X column-wisely.

9: end while
10: return τ , W , H .

Accordingly, we have

Δτ =
∑
i

[J�
i Ji + γI]−1[J�

i (WH −X ◦ τ)

− γ(τ − τ o)]εiε
�
i .

(2.11)

When γ = 0, the rules can be simplified as follows:

Δτi = J+
i (WH.i −X.i ◦ τi),

Δτ =
∑
i

J+
i (WH −X ◦ τ)εiε�i ,

(2.12)

where J+
i is the pseudo inverse of the Jacobian Ji.

Then τi can be updated as τi = τi +Δτi, and this can be repeated to achieve an optimal

τ . However, it is not necessary to find an optimal τ in the middle of optimization since it

suffices that each step of the alternative optimization decreases the objective value.



15

Algorithm 2 Efficient optimization scheme for TINMF

Require: Images In = {Ii ∈ R
w×h
+ : 1 ≤ i ≤ n}, initial transformation τ = τ o, maxIter

1: Randomly initialize W and H to positive matrices.

2: Form data matrix X = [vec(I1 ◦ τ1), vec(I2 ◦ τ2), . . . , vec(In ◦ τn)] and normalize X
column-wisely.

3: while not converge do
4: for i = 1;i ≤ maxIter;i++ do
5: Update W : Wij = Wij

(XH�)ij
(WHH�)ij

6: Update H: Hij = Hij
(W�X)ij

(W�WH)ij

7: end for
8: Compute Δτ according to (2.11)

9: Update τ : τ = τ +Δτ
10: Update data matrix according to τ : X = [vec(I1 ◦τ1), vec(I2 ◦τ2), . . . , vec(In ◦τn)],

and normalize X column-wisely.

11: end while
12: return τ , W , H .

Algorithm

Following the discussion above, we update W , H and τ alternatively until convergence.

The overall procedure is summarized in Algorithm 1.

Since each update step decreases the objective function and obviously this objective

function has lower bound, e.g., 0, the algorithm is guaranteed to converge. Though, theo-

retically the update of τ may not cause a decrease in objective function due to the lineariza-

tion, in practice this does not happen according to our experiments. Moreover, a simple

line search can help prevent the increase in objective function value by scaling down the

Δτ once it happens.

However, Algorithm 1 is not efficient because updating τ is computationally more ex-

pensive than updating W and H . In addition, the decrease of objective function by updating

τ is not as significant as the time complexity. Ideally, during each of these three steps, the

individual objective function decrease per unit time can be recorded to tune the frequency

of different steps adaptively. For simplicity, we propose to update W and H more fre-

quently by a constant factor, and as a result the decrease of objective function per unit time
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becomes greater. Thus, it speeds up the overall algorithm. This efficient algorithm is listed

in Algorithm 2.

2.4 Experiments

We evaluate variants of NMF on several different tasks including image reconstruction,

image alignment and face/digit recognition on different benchmark datasets. To show the

advantages of the proposed TINMF algorithm, we compare it with two baseline algorithms.

One is the standard NMF algorithm, and the other is a two-stage algorithm. First, given one

reference image Iref , we align images by learning the optimal transformation τ ∗ according

to:

τ ∗ =argmin
τ∈C

∑
i

‖ vec(Ii ◦ τi)
‖vec(Ii ◦ τi)‖2 −

vec(Iref )

‖vec(Iref )‖2‖
2
2

+ γ r(τ),

(2.13)

which is solved by iteratively linearizing the objective function and updating τ . Then,

we form data matrix X = [vec(I1 ◦ τ ∗1 ), vec(I2 ◦ τ ∗2 ), . . . , vec(In ◦ τ ∗n)], normalize X

column-wisely, and factorize it by the standard NMF. For notation convenience, we name

this baseline approach aligned NMF.

2.4.1 Datasets

The proposed TINMF algorithm is evaluated on face datasets and handwritten digit

datasets. Specifically, for face images, we use the CMU Multi-PIE [37], ORL and the

Labeled Faces in the Wild (LFW) [36] datasets. For handwritten digits, we use the M-

NIST [38] and USPS [39] datasets.

In the CMU Multi-PIE dataset, 20 images with different illumination are captured by

a single camera from a fixed view point within only 0.7 seconds. Thus, it is reasonable

to assume that these 20 images of the same view of the same subject are well aligned

to some extent. Thus, we use these well aligned images to evaluate the performance of
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TINMF with simulated controllable misalignment. The ORL database has 40 subjects with

10 images for each of them. The images are taken under different lighting conditions at

different time, and are with different facial expression, with or without glasses. It is widely

evaluated and the images are often assumed to be aligned. However, as the experimental

results will show, aside from the proposed TINMF algorithm, existing NMF methods do not

perform well even on this dataset with limited alignment errors. The LFW dataset is a set

of face photographs collected from the Internet in real-world uncontrolled environments.

It has more natural variation than the ORL dataset. The subset of the LFW dataset we use

contains photos of 20 celebrities [12], 19 out of them have 35 photos. The results on this

dataset show how well our algorithm handles misalignment in real world data.

The MNIST dataset has 70,000 samples of handwritten digits, which have been nor-

malized to the size of 28 × 28 and centered. The USPS dataset has 11,000 handwritten

digits, which are normalized to the size of 16× 16.

2.4.2 Settings

The initial transformations τ o in TINMF for the Multi-PIE and ORL database are gained

by using at only the first image of the first subject, and we set τ o1 = τ o2 = · · · = τ on. The

initial τ o for the LFW dataset is set by examing each individual image, since the face

positions and poses of photos of LFW are more diverse. When we apply the TINMF and

aligned NMF to the images of digits, margins of zeros are padded around the 28 × 28 or

16 × 16 images. The initial transformation τ o for these two datasets are able to crop the

original images with sizes of 28×28 and 16×16, respectively. For convenience, we restrict

transformation τ to the group of affine transformation, thus the transformation τi for any

image can be represented by a 6 dimensional vector. Accordingly, τ is represented by a

matrix of size 6× n, where n is the number of images.

The parameter p in NMF and TINMF, which controls the rank of the resulting matrices,

is simply set to 10 unless explicitly stated in the experiments of recognition. Parameter γ

in TINMF is set to 0.01, and we do not tune it across different sets of experiments.
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2.4.3 Reconstruction of images

In the reconstruction experiments, TINMF and baseline algorithms are used to learn the

basis matrix W and the coefficient matrix H , and then original images are reconstructed

as WH . W ∈ R
m×p
+ and H ∈ R

p×n
+ are of the same dimension for all the algorithms

involved. As more informative basis is likely to result in better reconstruction, we visualize

the reconstructed images for qualitative comparisons, and evaluate them quantitatively.

Reconstruction of images with controlled misalignment

To test the ability of our proposed TINMF to handle misalignment, we use the well

aligned images from the CMU Multi-PIE dataset. We randomly translate the original im-

ages to construct the misaligned input images for TINMF. The amount of translation is

controlled by the standard deviation, σ, of the Gaussian noise.

The reconstructed images of a subject with varying noise levels (σ = 0, 5, 9 ) by TINMF

as well as the baseline algorithm, NMF, are shown in Figure 2.2. When there is no noise

(σ = 0), both NMF and TINMF perform well. However, when there is misalignment,

NMF gives low quality reconstruction while TINMF still works well. For example, when

σ = 5, NMF begins to be affected by the misalignment to generate blurred images, while

TINMF still has very clear and sharp reconstruction results. When misalignment becomes

heavier (σ = 9), the reconstruction results of TINMF are significantly better than NMF.

The experimental results confirm that TINMF is less sensitive to the misalignment than the

baseline.

Reconstruction of images with uncontrolled misalignment

Some reconstructed images in the ORL dataset by TINMF as well as baseline algo-

rithms, NMF and aligned NMF, are shown in Figure 2.3. TINMF gives much clearer recon-

struction than both NMF and aligned NMF. To evaluate the results quantitatively, for each

subject, the average reconstruction error is defined as err = 1
|Sub|

∑
Ii∈Sub ‖Ii ◦ τi −WH.i‖22
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(a) σ = 0. (b) σ = 5. (c) σ = 9.

(d) σ = 0. (e) σ = 5. (f) σ = 9.

Figure 2.2.: Reconstructed images of a subject in the Multi-PIE dataset. The reconstructed

images by NMF are shown in the top row, (a)-(c); the reconstructed images by TINMF

are shown in the bottom row, (d)-(f). Different columns account for different levels of

misalignment controlled by the value σ. From left to right, the σ values are 0, 5, and 9,

respectively.

(a) (b) (c)

Figure 2.3.: ORL reconstruction results. (a) Images reconstructed by NMF. (b) Images

reconstructed by aligned NMF. (c) Images reconstructed by TINMF.

for TINMF and aligned NMF; and err = 1
|Sub|

∑
Ii∈Sub ‖Ii −WH.i‖22 for NMF, where Sub
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Figure 2.4.: Average reconstruction error of each subject in ORL by NMF, aligned NMF

and TINMF.

(a) (b) (c)

Figure 2.5.: LFW reconstruction results. (a) Images reconstructed by NMF. (b) Images

reconstructed by aligned NMF. (c) Images reconstructed by TINMF.

Figure 2.6.: Average reconstruction error of each subject in the LFW dataset by NMF,

aligned NMF and TINMF.

is the set of images of this subject and |Sub| is the size. The average reconstruction error

for different subjects of the ORL database are shown in Figure 2.4. The average recon-

struction errors by TINMF is much smaller than both NMF and aligned NMF, and aligned

NMF is better than NMF without alignment. Sample images and quantitative results for

the LFW dataset are shown Figure 2.5 and Figure 2.6 respectively. The results also show
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that TINMF gives much better reconstruction, which has clearer images and smaller re-

construction errors. However, on this dataset with large misalignment, aligned NMF only

performs comparably with NMF, which confirms that alignment in the original space is not

ideal.

2.4.4 Recognition

Image factorization learns the coefficient matrix, which is referred to as new repre-

sentation of samples in various applications. In our experiments, we conduct face/digit

recognition based on nearest neighbor classifier. The images of each subject are partitioned

into two sets, one for training and the other for tests.

In the training phase, all the training images of different subjects are put together, and

the factorization algorithms (NMF, aligned NMF, TINMF) learn basis matrix W , and co-

efficient matrix H . Note the H here is treated as the features of training samples, which

will be used later. In the test phase, the basis matrix W is kept fixed as the output W of

the training phase, and the test samples are folded in to learn the test coefficient matrix H ,

which is used as features of test samples. Finally, the nearest neighbor classifier is adopted

to classify the test samples based on the Euclidean distance between the features of test and

training samples.

Recognition on the ORL dataset

First, we carry out experiments on the ORL dataset. Two sets of experiments are con-

ducted on this dataset. In the first set of experiments, we use all the forty subjects; in the

second set of experiments, we use only the first ten subjects. The underlying reason for this

design is that alignment will be more critical once there is more diversity and misalignment

in pose when we consider more subjects, and theoretically TINMF will outperform NMF

more significantly when the aligning process is more demanded.

In both sets of experiments, the first five face images per subject are used as training

samples, the other five images per subject are used as test samples. Two different values of
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p, which is the dimension of new representation of images after factorization, are consid-

ered: 10 and 50. These experiments are repeated ten times because of the randomness and

the local optimum resulting from the nonconvexity of the optimization, and the precision

reported here is the averaged one over ten runs. The precision is defined as the percentage

of correctly predicted testing samples.

Classification results (averaged precision and standard deviation) of ORL database are

presented in Table 2.1. For experiments on forty subjects, we see that the precision gained

by TINMF is significantly better than both NMF and aligned NMF. When p = 10, TINMF

has a precision of 66.70%, which is 8.00% higher than NMF; and when p = 50, TINMF

has 66.79%, which is 6.76% higher than NMF. We note that, when p increases from 10 to

50, the precision of TINMF stays the same, but is still much better than the others. This

means, with small amount of basis vectors, TINMF is able to describe the ORL data well

enough, while the other algorithms need more. It is intuitive since TINMF learns the new

representation and aligns images simultaneously, thus the variation of pose, scale, shift

is already considered by τ and the learned representation can be more compact. When

it comes with the experiments on ten subjects of the ORL database, there should be less

variation of pose and intuitively TINMF will achieve better results than baselines, but the

gain may not be as large, as shown in the experimental results.

TINMF performs much better than NMF, which is due to the explicit consideration of

transformation when learning the new representation. However, note that the ORL dataset

is widely evaluated and the images are usually assumed to be aligned. And, unfortunately,

the experimental results have shown that, existing NMF method does not perform well even

on this dataset with limited alignment errors, which necessitates the TINMF.

Recognition on the LFW dataset

Then algorithms are also tested on the task of face recognition on a subset of the LFW

dataset [12, 37], which is more diverse in pose than ORL. Similarly, we use two sets of
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experiments with first one using all the twenty subjects while the latter using only the first

ten subjects.

In both sets of experiments, the first ten images of all the subjects involved are used

as training samples, and the rest are used as test samples. Here three different values of

p are considered: 10, 50, and 100, since the face images here are more diverse than the

ones in the ORL database. Also, the experiments are repeated by 10 times, and the average

precision and standard deviation are reported.

Table 2.2 shows, under any value of p, TINMF significantly outperforms the baseline

algorithms consistently for both sets of experiments on ten and twenty subjects. For the

experiments with twenty subjects, when p = 10, the precision of TINMF is about 3%

higher than baselines; when p = 50 or p = 100, TINMF has up to 6% higher precision.

For the experiments on ten subjects of the LFW dataset, TINMF outperforms the baselines

consistently again. For example, when p = 50, TINMF achieves a precision of 40.04%,

while both baselines are less than 35%. These results show that our algorithm handles

misalignment in real world well.

Interestingly, for the ORL database, TINMF shows better performance in the set of

experiments with forty subjects than the one with ten subjects. That is because forty sub-

jects bring more variation in pose, and transformation estimation is thus more desired there.

However, for the experiments on the LFW dataset, TINMF shows nearly equal performance

for both sets of experiments with ten subjects and twenty subjects. A reasonable explana-

tion is that the diversity in poses with ten subjects of the LFW dataset is already saturated,

and more subjects added will not increase much of the diversity in the dataset.

Table 2.1: Recognition precision on the ORL dataset (%).

10 subjects 40 subjects

Methods p = 10 p = 50 p = 10 p = 50

NMF 84.20 ±3.46 86.10±3.40 58.70 ±2.82 61.03±3.46

aligned NMF 78.80 ±3.29 78.40±2.72 54.35 ±2.58 58.57±4.84

TINMF 85.80 ±2.39 86.70±2.77 66.70 ±1.25 66.79±1.64
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Table 2.2: Recognition precision on the LFW dataset (%).

10 subjects 20 subjects

Methods p = 10 p = 50 p = 100 p = 10 p = 50 p = 100

NMF 29.96 ± 3.01 32.53± 3.65 32.55± 3.18 15.82 ± 1.24 18.91± 3.54 19.97± 3.32

aligned NMF 33.07 ± 2.43 34.65± 3.18 33.92± 2.99 15.51 ± 1.66 18.27± 3.26 18.75± 3.14

TINMF 36.15 ± 4.50 40.04± 5.28 40.17± 4.42 18.65 ± 1.24 24.96± 6.60 25.95± 5.61

Recognition on handwritten digit datasets

In this section, we show more recognition results on handwritten digit datasets: MNIST

and USPS. In each experiment, 2,000 samples are randomly selected without replacement,

from which 1,000 of them are treated as training set, and the other samples are for tests. All

the experiments are repeated 10 times, and the average precision and standard deviation are

reported.

The results on the MNIST and USPS datasets are shown in Table 2.3. With different

values of p, TINMF outperforms the baseline algorithms significantly and consistently. For

MNIST, when p = 10, TINMF is about up to 8% higher than NMF; when p = 50 or

p = 100, TINMF is still significantly better than the baselines. This means when compact

low-dimensional representation is preferred, TINMF is a much better choice than NMF or

aligned NMF. The lower the dimension is, the more advantage the TINMF has. In other

words, with representation of the same dimension, TINMF is able to handle more diverse

data. The experimental results on USPS dataset also show significant improvement in

classification precision of TINMF over both NMF and aligned NMF. For example, when

p = 10, the precision of TINMF is 6% higher than NMF.

2.4.5 Aligning images

For the baseline aligned NMF and the proposed TINMF, the optimal τ is inferred be-

fore and during the factorization process, respectively. To show whether the inferred τ

handles the misalignment successfully, the average aligned images are visualized. Specif-
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Table 2.3: Recognition precision on handwritten digit datasets (%).

MNIST USPS

Methods p = 10 p = 50 p = 100 p = 10 p = 50 p = 100

NMF 76.66 ± 1.33 81.72± 5.32 83.11± 4.79 80.45 ± 1.29 83.91± 3.79 84.38± 3.18

aligned NMF 78.62 ± 3.37 82.50± 5.02 83.09± 4.49 78.36 ± 10.92 82.26± 8.66 83.57± 7.34

TINMF 84.59 ± 1.69 85.04± 1.52 84.85± 1.57 86.92 ± 1.13 86.73± 1.06 86.56± 1.19

(a) (b) (c)

Figure 2.7.: Average (transformed) faces of subjects of ORL database. (a) Average faces

before alignment. (b) Averaged aligned faces by aligned NMF (alignment is done using the

original feature). (c) Average aligned faces by TINMF.

ically, given the estimated transformation τ , the average image of a certain subject Iavg =∑
Ii∈Sub Ii ◦ τi/|Sub| is visualized, where Sub is the set of images of this subject, and |Sub|

is the size. Note if the images are well aligned, then the average image will be clear, oth-

erwise it will be blurry. The average faces of sample subjects of the ORL database are

shown in Figure 2.7. Due to the explicit consideration of transformation τ in the learning

processing of TINMF, the resulting average faces by TINMF are much less blurry than the

ones from NMF and aligned NMF.



26

3 CLASSIFICATION FOR MISALIGNED IMAGES

3.1 Introduction

As a fundamental problem in computer vision, image classification has attracted a lot

of attention in recent years [40, 41]. The performance of classifier strongly depends on

the training samples in both the amount and the quality. Though, in the past decades, the

increasing popularity of smart phones and consumer camera has led to a dramatic increase

in the amount of visual data online, the accurately labeled data are still expensive to collect

in many applications. Further, many image data are of low quality. Specifically, a lot of

images are not well aligned even though they are labeled. For example, view images of the

same 3D object are usually not perfectly aligned. The misalignment makes classification

task difficult in real applications.

For pattern classification, support vector machine(SVM) [19, 20] is one of the most

successful and popular approaches. It is widely used in many real applications, such as

face recognition [21], object detection [22] and text categorization [23]. In many of these

applications, SVM is able to achieve very competitive performance compared with other

existing approaches. SVM learns a data classifier in a fully supervised manner. Given a set

of labeled data samples, it aims to find the hyperplane which separates samples with dif-

ferent labels with the largest margin. Later, it is extended to semi-supervised fashion [42].

This semi-supervised version of SVM tries to preserve the neighborhood relation among

the unlabeled samples while searching for the separating hyperplane for those labeled sam-

ples. In this manner, both the labeled and unlabeled samples contribute to the final solution.

Furthermore, maximum margin clustering [43], which can be viewed as an unsupervised

counterpart of SVM, tries to find hyperplane which separates the unlabeled samples with

largest margin. However, all of these existing variants of SVM strongly rely on the training

data, for example, they assume the images are well aligned, which is usually not true in real
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world. Here we only discuss SVM, though this is not limited to SVM and many computer

vision algorithms assume that samples are well aligned [28, 44, 45].

Given limited amount of training samples, how to make better use of that? Is it pos-

sible to compensate for the misalignment between training and testing samples without

having to look at the testing ones? This dissertation explicitly considers the misalignment

between training and testing images in classification task and proposes to compensate for

the worst case of possible misalignment without looking at the testing samples by inferring

and applying some certain transformations to the training data samples while learning the

classifier. The resulted classifiers are shown to have better generalization performance in

testing phase.

3.2 Review of Support Vector Machine

In this section, we briefly review the formulation of large margin classifier, i.e. Support

Vector Machine(SVM).

Given a set of labeled samples {(xi, yi)}ni=1, where xi ∈ R
m is the feature vector of ith

sample and yi is the corresponding label(for binary classification, yi ∈ {−1,+1}), SVM

learns a hyperplane w ∈ R
m that maximizes the margin between samples.

min
w

C
∑
i

max(0, 1− yiw
Txi) +

1

2
‖w‖2. (3.1)

The first term in (3.1) is the hinge loss, the second term is a regularizer for w, and C is a

parameter controlling the tradeoff between the hinge loss and the regularization on w. The

explicit bias term is omitted here to simplify the problem while keeping it entirely general

since the bias could be easily introduced as an additional coordinate in the data.
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3.3 Transformation Invariant Support Vector Machine

In real applications of image classification, the data are usually not perfectly aligned,

and the misalignment between training and testing images may greatly impair the perfor-

mance of classifier. Transformations that exactly compensate the misalignment are able

to solve this problem by applying them to samples. Unfortunately, this is impossible be-

cause the real misalignment cannot be estimated since testing samples are unknown in the

training phase. A realistic way to alleviate this problem is to randomly sample as many

transformations as possible to cover all the possible misalignment in the training phase,

and each sampled transformation for each training image will generate a transformed sam-

ple. However, this blind random sampling scheme is too inefficient and cannot scale up. To

alleviate this problem efficiently, the proposed algorithm considers worst cases in training

phase. Concretely, the transformations that will make the training samples most difficult

to classify are inferred and then applied to the training samples while learning the large

margin classifier.

Here we propose the idea of Transformation Invariant Support Vector Machine(TISVM),

which is able to infer critical transformations to apply to the existing samples to generate

new training samples while learning the large margin classifier simultaneously. Transfor-

mations are called to be critical if they are able compensate for the worst misalignment

between training and testing images.

3.3.1 Simultaneously transform and train

Given a set of images In = {Ii ∈ Rw×h : 1 ≤ i ≤ n}, each image is stacked as

vector by a function vec : Rw×h → Rm, where m = wh. Let xi denote vector obtained by

vectorizing Ii, i.e. xi = vec(Ii). Then we define X
.
= [x1, x2, . . . , xn] ∈ Rm×n. And yi is

the label of sample xi.

For image Ii, a critical transformation τi is sought in a certain Lie group G in the training

phase. In implementation, we use a g dimensional vector to represent τi. With a little abuse

of notation, we use τ to denote the set of {τi : 1 ≤ i ≤ n}, xi ◦ τi to denote vec(Ii ◦ τi)
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and X ◦ τ to denote {vec(I1 ◦ τ1), vec(I2 ◦ τ2), . . . , vec(In ◦ τn)}, where Ii ◦ τi denotes the

transformed image generated by applying transformation τi to image Ii.

The objective function can be:

min
w

C
∑
i

max(0, 1− yiw
Txi ◦ τi) + 1

2
‖w‖2. (3.2)

Note, xi ◦ τi tries to apply a transformation τi for each of the training samples so as to

generate new samples. Ideally, for negative samples, applying transformation will always

lead to new negative samples. We seek transformations that will make the new negative

samples as positive/confusing as possible, since these transformations are capable of com-

pensating the worst cases of misalignment. For negative samples, a critical transformation

is sought by solving this problem maxτi∈Ci w
Txi ◦ τi, where the constraint in Ci ensures the

transformation is slight enough so that the label is still valid after transformation and the

max ensures the resulting samples are confusing and difficult. For the positive samples,

small transformations are also applied so that the transformed samples are as confusing

as possible. Similarly, each critical transformation is inferred by solving an optimization

problem minτi∈Ci w
Txi ◦ τi.

Accordingly, after balancing the size of positive and negative samples, the formulation

is revised to:

min
w

C(
1

|{i′|yi′ = −1}|
∑

i∈{i′|yi′=−1}
max(0, 1 + max

τi∈Ci
wTxi ◦ τi)

+
1

|{i′|yi′ = 1}|
∑

i∈{i′|yi′=1}
max(0, 1− min

τi∈Ci
wTxi ◦ τi)) + 1

2
‖w‖2.

(3.3)

Note, with little abuse of notation mentioned above, here xi = xi◦τ oi . In the formulation

above, the confusing samples are generated by inferring critical transformations and the

large margin classifier is trained simultaneously.
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3.3.2 Optimization

In the objective function, the learning of transformation τ is coupled with the learning

of w. The problem involves not only solving the w, but also inferring the transformation τ .

To optimize this objective function, we do alternative optimization by repeating these two

steps: 1, fix τ , update w; 2, fix w, update τ . Obviously, under this interleaving optimization

scheme, the separating plane w will guide the learning of τ , and in return the current τ will

also help learn more discriminative separating plane w.

Optimize w.r.t. w The optimization problem with respect to w in Equation 3.3 is convex.

Note both max and −min ensures the final convexity. Because wTxi ◦ τi is convex with

respect to w, then maxτi∈Ci w
Txi ◦ τi and −minτi∈Ci w

Txi ◦ τi are also convex.

If {τi : 1 ≤ i ≤ n} are given, to solve the optimization problem defined above with

respect to w, we can easily rely on standard convex optimization techniques. Specifically,

here we adopt Quasi-Newton method to solve it.

Optimize w.r.t. τ However, the optimal transformation τi depends on the w. Thus, we

solve the following maximization and minimization problems for negative and positive

samples, respectively:

max
τi

wTxi ◦ τi and min
τi

wTxi ◦ τi

s.t. τi ∈ Ci s.t. τi ∈ Ci
(3.4)

For τi, there is an initial transformation τ oi . So, we define Ci as the neighborhood of τ oi ,

i.e. Ci = N (τ oi , εi). Specifically, Ci = {τi|‖τi − τ oi ‖ ≤ εi}.
Thus, the maximization problem for negative samples becomes(the minimization prob-

lem is similar)
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max
τi

wTxi ◦ τi

s.t. ‖τi − τ oi ‖ ≤ εi

(3.5)

which is equivalent to the following problem

min
τi
−wTxi ◦ τi + 1

2
λi‖τi − τ oi ‖2 (3.6)

Instead of setting parameter εi, we set λi. For simplicity, we set λ = λ1 = λ2 = · · · =
λn.

Unfortunately, the operation by τ is nonlinear, and makes the direct optimization diffi-

cult. To avoid the difficulty by nonlinearity, we linearize xi◦τi by first order approximation.

When there is small update Δτi on τi, the updated sample xi ◦ (τi + Δτi) can be approxi-

mated by linearization:

xi ◦ (τi +Δτi) ≈ xi ◦ τi + JiΔτi (3.7)

where Ji is the Jacobian of the i-th image with respect to the transformation τi.

To optimize with respect to τi , we solve the following problem, where we optimize

with respect to Δτi iteratively:

min
Δτi

−wT (xi ◦ τi + JiΔτi) +
1

2
λ‖τi − τ oi ‖2 (3.8)
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Compute the derivative, we have

∂ − wT (xi ◦ τi + JiΔτi) +
1
2
λ‖τi +Δτi − τ oi ‖2

∂Δτi

=− J�
i w +

1

2
λ
∂‖τi +Δτi − τ oi ‖2

∂Δτi

=− J�
i w + λ(Δτi + τi − τ oi )

(3.9)

To set the derivative with respect to Δτi to zero, we get the optimal Δτi as

Δτi =
1

λ
J�
i w − τi + τ oi (3.10)

Similarly, for the minimization problem for each of the positive samples, the optimal

Δτi is

Δτi = −1

λ
J�
i w − τi + τ oi (3.11)

Once we have the Δτ = {Δτ1,Δτ2, . . . ,Δτn}, the transformation τ is updated by

τi ← τi +Δτi (3.12)

3.3.3 Overall algorithm of TISVM

With the initial input, a SVM classifier is trained on these samples, and then the training

samples are made more confusing by tuning the transformation τ for generating new sam-

ples, which can be then fed to the learning algorithm to train a new SVM. Each iteration

we get new samples which are difficult for the classifier learned from previous iteration.

The newly generated samples are difficult for only the classifier learned from the previ-

ous iteration. It may be risky to only use the newly generated samples. Thus, we relax it to

a conservative version, which keeps all the difficult samples of different iterations.
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Basically, for each iteration, a classifier is trained, and new training samples, which are

difficult for the current classifier, are generated and then added to the training data to train

new classifier. The overall procedure of TISVM is summarized in Algorithm 3.

Algorithm 3 Transformation invariant support vector machine

Require: Images In = {Ii ∈ Rw×h : 1 ≤ i ≤ n}, initial transformation τ = τ o, and

labels {yi : 1 ≤ i ≤ n}.
1: Form data samples Sp = {xi ◦ τ oi : yi = 1, 1 ≤ i ≤ n} and Sn = {xi ◦ τ oi : yi =
−1, 1 ≤ i ≤ n}, where xi ◦ τ oi = normalize(vec(Ii ◦ τ oi )), i = 1, 2, . . . , n. With little

abuse of notation, xi = xi ◦ τ oi . Initialize k = 0.

2: while k ≤ K do
3: Train SVM: wk = argminw C( 1

|Sn|
∑

i∈{i′|xi′◦τki′∈Sn} max(0, 1 + wTxi ◦ τ ki ) +
1

|Sp|
∑

i∈{i′|xi′◦τki′∈Sp} max(0, 1− wTxi ◦ τ ki )) + 1
2
‖w‖2

4: for i ∈ {1, 2, . . . , n} do
5: Δτ ki = −yi 1λJ�

i w − τ ki + τ oi
6: τ k+1

i ← τ ki +Δτ ki
7: end for
8: Update data samples: Sn ← Sn

⋃{xi ◦ τ k+1
i : yi = −1, 1 ≤ i ≤ n} and Sp ←

Sp

⋃{xi ◦ τ k+1
i : yi = 1, 1 ≤ i ≤ n}, where xi ◦ τ k+1

i = normalize(vec(Ii ◦ τ k+1
i )).

9: k++

10: end while
11: return wK .

3.4 Experiments

In this section, we describe the experimental settings, and show and briefly analyze the

results.

3.4.1 Experimental settings

The experiments are conducted on two real data sets. One is USPS handwritten digi

data set, and the other is a subset of the Labeled Faces in the Wild(LFW) [12, 36]. Both of

them are popularly adopted as benchmark data sets for computer vision, image processing

algorithms.
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The USPS data set has gray scale images of hand written digits from 0 through 9, each

image is of size 16× 16, and each digit has 1100 images. The data set is simple, however,

samples are still not perfectly aligned, as will be confirmed by our experiments. Sample

images are shown in Figure 3.1. In experiments, 200 images are randomly selected as

training samples, and 1000 other images are randomly selected as testing samples. For

each class i, the samples of the training samples belonging to class i are treated as positive

samples; the samples belonging to other classes are treated as negative samples.

The LFW data set is a set of face photographs collected from the Internet and designed

for the research problems with face image unconstrained environment. Thus, there is much

misalignment in this data set. The subset of LFW contains photos of twenty celebrities,

nineteen out of them have thirty-five photos, and the last one, Barack Obama has sixteen

images. Specifically, these celebrities are Gloria Macapagal Arroyo, Jennifer Capriati,

Laura Bush, Serena Williams, Barack Obama, Ariel Sharon, Arnold Schwarzenegger, Col-

in Powell, Donald Rumsfeld, George W Bush, Gerhard Schroeder, Hugo Chavez, Jacques

Chirac, Jean Chretien, John Ashcroft, Junichiro Koizumi, Lleyton Hewitt, Luiz Inacio Lula

da Silva, Tony Blair, Vladimir Putin. Sample images are listed in Figure 3.2. For each

class(say there are k images), 10 images are randomly selected as positive training sam-

ples, and the rest k − 10 serve as positive testing samples. 10 images from other classes

are selected as negative training samples, and other k − 10 images from other classes are

randomly selected as negative testing samples.

The proposed TISVM is compared with the traditional SVM on these two data sets.

For the parameter λ, this can be set by cross validation. We do not tune it with different

categories of different data sets, and set λ to 100 for all categories for both data sets.

3.4.2 Experimental results

The results on the data set USPS are shown in Table 3.1. Note that the results reported

here are the average precision over ten independent runs. We do this to avoid the random-

ness induced in the different steps in the experiments, such as the samples selection, and to
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Table 3.1: Recognition precision on 10 subjects of USPS dataset.

Methods SVM TISVM Methods SVM TISVM

Digit 0 0.883 0.873 Digit 5 0.921 0.933
Digit 1 0.812 0.864 Digit 6 0.925 0.959
Digit 2 0.870 0.855 Digit 7 0.751 0.770
Digit 3 0.873 0.891 Digit 8 0.851 0.874
Digit 4 0.868 0.807 Digit 9 0.884 0.899

get statistically meaningful results. The number in bold emphasizes the winner algorithm.

From the results we can see for 7 out of the 10 categories of USPS data set, the proposed

TISVM beats traditional SVM.

The results on the data set LFW are shown in Table 3.2. From the results on the bench-

mark data set LFW, we see that in 14 out of 20 categories, TISVM beats SVM. The LFW

data set contains face photos taken in uncontrolled environment, thus there are a lot of

misalignment in face images of the same subject. The proposed TISVM will infer critical

transformation τ to generate informative samples, which alleviates the difficulty result-

s from the misalignment between the training samples and the testing samples, and thus

Figure 3.1.: Examples of USPS images.
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Figure 3.2.: Examples of LFW images.

Table 3.2: Recognition precision on 20 subjects of LFW dataset.

Methods SVM TISVM Methods SVM TISVM

Class 1 0.927 0.947 Class 11 0.667 0.707
Class 2 0.800 0.820 Class 12 0.573 0.593
Class 3 0.927 0.920 Class 13 0.727 0.747
Class 4 0.853 0.847 Class 14 0.787 0.833
Class 5 0.944 0.889 Class 15 0.753 0.780
Class 6 0.753 0.720 Class 16 0.800 0.840
Class 7 0.547 0.600 Class 17 0.813 0.820
Class 8 0.540 0.580 Class 18 0.747 0.740

Class 9 0.600 0.613 Class 19 0.687 0.720
Class 10 0.593 0.640 Class 20 0.700 0.693

boosts the classification performance, which is shown in the table. Averaged over all the

twenty classes, SVM has a precision of 73.69%, while TISVM achieves 75.24%.
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4 NONNEGATIVE MATRIX FACTORIZATION CLUSTERING FOR DATA ON

MULTIPLE MANIFOLDS

Nonnegative Matrix Factorization (NMF) is a widely used technique in many applications

such as clustering. It approximates the nonnegative data in an original high dimensional

space with a linear representation in a low dimensional space by using the product of two

nonnegative matrices. In many applications with data such as human faces or digits, data

often reside on multiple manifolds, which may overlap or intersect. But the traditional N-

MF method and other existing variants of NMF do not consider this. This chapter proposes

a novel clustering algorithm that explicitly models the intrinsic geometrical structure of the

data on multiple manifolds with NMF. The idea of the proposed algorithm is that a data

point generated by several neighboring points on a specific manifold in the original space

should be constructed in a similar way in the low dimensional subspace. In this way, the

structure information on manifolds are used to help NMF. A set of experimental results on

two real world datasets demonstrate the advantage of the proposed algorithm.

4.1 Introduction

Nonnegative Matrix Factorization (NMF) has been applied in many applications such

as clustering and classification. It provides a linear representation of nonnegative data in

high dimensional space with the product of two nonnegative matrices as a basis matrix and

a coefficient matrix. NMF has received substantial attention due to its theoretical interpre-

tation and desired performance.

Several variants of NMF has been proposed recently. Sparseness constraints have been

incorporated into NMF to obtain sparse solutions [27,46]. Discriminative NMF algorithms

have been proposed in [47, 48] to maximize the between-class distance and minimize the

within-class distance when learning the basis and coefficient matrices. Some recent re-
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search work suggest data of many applications in a high dimensional Euclidean space are

usually embedded in a low dimensional manifold [24,49]. To explore the local structure on

the low dimensional manifold, research work in [17,18] have proposed Locality Preserving

NMF and Neighbourhood Preserving NMF, which add constraints between a point and its

neighboring one(s).

However, many real world data reside on multiple manifolds [16]. For example, for

handwritten digits, each digit forms its own manifold in the feature space. Furthermore, for

human faces, the faces of the same person lie on the same manifold and different persons

are associated with different manifolds. All existing NMF algorithms do not consider the

geometry structure of multiple manifold and cannot model data on a mixture of manifolds,

which may overlap or intersect. In particular, the algorithms in [17, 18] only consider the

situation that all the data samples are drawn from a single manifold. These algorithms

create a graph by searching nearest neighbor(s) to preserve the local geometry information:

locality or neighborhood. However, the created graph may connect points on different

manifolds, which can diffuse information across manifolds and be misleading.

This chapter proposes a novel clustering algorithm with NMF that explicitly models the

intrinsic geometrical structure of the data on multiple manifolds. The assumption is that

data samples are drawn from multiple manifolds, and if one data point can be reconstructed

by several neighboring points on the same manifold in the original high dimensional space,

it should also be reconstructed in a similar way within the low dimensional subspace by the

basis matrix and coefficient matrix. This approach is different from local linear embedding

which only studies one manifold in the original space. Multiplicative updating rules are

derived for the proposed algorithm with guaranteed convergence.

The proposed NMF clustering algorithm on multiple manifolds has been evaluated on

two real world datasets. It has been shown to generate more accurate and robust results

than the K-means and two variants of existing NMF algorithms. Furthermore, it has been

shown that the new algorithm can learn better representation for data in different classes

than the traditional NMF method.
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4.2 Review of Nonnegative Matrix Factorization

Given a nonnegative matrix X ∈ R+
m×n, each column of X is a data sample. The NMF

algorithm aims to approximate this matrix by the product of two nonnegative matrices W ∈
R+

m×k and H ∈ R+
k×n. To achieve this, the following objective function is minimized:

O = ||X −WH||2F
s.t. W ≥ 0, H ≥ 0

(4.1)

where ||.||F denotes the Frobenius norm.

The following iterative multiplicative updating algorithm is proposed in [8] to minimize

the objective function:

Wij = Wij
(XHT )ij

(WHHT )ij
(4.2)

Hij = Hij
(W TX)ij

(W TWH)ij
(4.3)

4.3 Nonnegative Matrix Factorization Clustering on Multiple Manifolds

This section presents the formulation of the proposed Nonnegative Matrix Factorization

on Multiple Manifolds(MM-NMF for short). It then describes the optimization algorithm.

4.3.1 Formulation

Given a nonnegative matrix X , each column of which is a data sample. In our target

applications with data such as human faces and digits, our assumption is that data samples

are drawn from a mixture of manifolds. We use a product of two nonnegative matrices

W and H to approximate X while taking the multiple manifold structure information into
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consideration. The matrix W can be viewed as the basis, while the matrix H can be treated

as the coefficients.

Considering that data samples are drawn from different manifolds, the matrix W repre-

sent bases for different manifolds, and a data sample X.i only belongs to a manifold (as long

as it is not drawn at the intersection). We denote the manifold from which X.i is drawn as

Mi. Ideally, there should be a subset of columns of W associated with the manifold Mi. So

the corresponding coefficient vector of this sample H.i should have nonzero values only for

the entries which correspond to the subset of columns of W associated with the manifold

Mi. Thus, the coefficient matrix H should be naturally sparse.

Another important goal is to encode the geometrical information of multiple manifolds.

When there are more than one manifolds, we cannot create a graph which directly connects

the neighboring samples according to Euclidean distance, since samples close to each other

may belong to different manifolds, especially near the intersection of different manifolds.

Based on the above discussion, our MM-NMF algorithm on multiple manifolds should

be equipped with two properties: 1) the coefficient matrix H is sparse. In other words,

the representation of the samples in the new space is sparse; 2) the local geometrical in-

formation on each manifold is preserved. In the following part, we will describe how we

formulate MM-NMF with these two desired properties.

4.3.2 Sparse representation in output space

The traditional NMF will learn part-based representation due to its nonnegativity con-

straint. This means that the data representation in the output space spanned by W is s-

parse.Our algorithm also inherits the nonnegativity constraint, which will introduce some

sparseness.

However, the sparseness introduced by nonnegativity may not be enough and is difficult

to control [46]. Some prior research made the matrix sparse by adding an extra sparseness

constraint which is usually related with the L1 norm minimization technique [50]. We
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utilize the method in [27] , which is denoted as SNMF, to make the coefficient matrix H

sparse.

The objective function of SNMF is defined as follows:

OSNMF = ||X −WH||2F + ζ‖W‖2F + λ
∑
j

‖H.j‖21 (4.4)

where H.j is the jth column of H . The term λ
∑

j ‖H.j‖21 encourages the sparsity, and

ζ‖W‖2F is used to control the scale of matrix W . Parameter λ controls the desired sparsity,

and ζ is simply set as the maximum value of X .

Since the nonnegativity constraint automatically introduces some degree of sparseness,

we will study two cases with and without the extra sparseness regularizer λ
∑

j ‖H.j‖21 in

this chapter.

4.3.3 Mining intrinsic geometry on individual manifolds

This section targets on the second property, which is to preserve the local geometrical

information on each manifold in the matrix factorization. We try to preserve the neigh-

borhood relation on each manifold. Note that the neighborhood relation is defined on the

manifold rather than in the Euclidean space. This local geometry information on each

manifold will guide the formulation of sparseness, which is similar with joint sparsity con-

straint [51].

To achieve the goal, we assume there are enough data samples so that any data sample

can be well approximated by a linear combination of neighboring data samples on the same

manifold, since the manifold is usually smooth [52].

Now we describe how to explore the intrinsic geometry in the data matrix X with

size of M × N . Let X.i be the ith sample, which is under consideration now. We want to

identify its neighbors on the same manifold rather than the entire Euclidean space. As there

are enough samples and the manifold is smooth, the data point can be well approximated

by a linear combination of a few nearby samples on the same manifold. Thus, it has a
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sparse representation over the entire data matrix X . To identify the set of samples that

can approximate X.i, we use the sparsest linear combination which can approximate X.i

by the L1 norm minimization technique [50]. We obtain a sparse structure matrix S from

the equation of X = XS, where the diagonal elements of S are 0. This means any sample

can be expressed by several other samples on the same manifold. We construct the S as

follows.

For any i = 1, ..., N

min
S.i

||S.i||1

s.t. X.i = XS.i

Sii = 0

(4.5)

There may be some noise in real applications and the equality constraint above may not

hold, we relax it to the following equation:

min
S.i

||S.i||1

s.t. ‖X.i −XS.i‖2 < ε

Sii = 0

(4.6)

Ideally, the nonzero entries in the vector S.i correspond to the samples which lie on the

same low dimensional manifold as X.i. On the other hand, the nearest samples in Euclidean

space from another manifold may not appear in the nonzero entries. ε controls the noise

energy, and is set to 0.01 here.
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4.3.4 MM-NMF objective function

We preserve the geometry relation represented by S in the matrix factorization. When

the matrix is factorized, we try to preserve geometry constraint from S for H . This can be

gained by minimizing

∑
i

||H.i −HS.i||2

= ||H −HS||F
= ||H(I − S)||F
= tr(H(I − S)(I − S)THT )

= tr(HGHT )

(4.7)

where I ∈ R+
n×n, and G = (I − S)(I − S)T .

Considering both of the two properties we want to engage: 1, sparseness; 2, local

structure preservation on each manifold, the objective function of MM-NMF is defined as:

OMM−NMF = ||X −WH||2F + ζ‖W‖2F + λ
∑
j

‖H.j‖21

+ ηtr(HGHT )

(4.8)

When minimizing the objective function above, we should add constraints that the W

and H be nonnegative. The first term is the square fitting error, the second term controls

the energy of W , the third term encourages the sparseness, and the last term is to preserve

the local geometry structure on each manifold.

Now consider a special case of MM-NMF, where there is no sparseness regularizer(λ =

0). This means we only rely on the nonnegativity constraint to engage the H with first

property: sparseness. We name this special case as MM-NMF2. The objective function is:
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OMM−NMF2 = ||X −WH||2F + ζ‖W‖2F + ηtr(HGHT ) (4.9)

4.3.5 Optimization

Here we only consider how to optimize the objective function of MM-NMF, since MM-

NMF2 is a special of case of MM-NMF.

Since OMM−NMF is not convex with W and H jointly, it is difficult to find the global

minimum for OMM−NMF . Instead, we aim to find a local minimum for OMM−NMF by

iteratively updating W and H in a similar way with the work [8] for NMF.

Update W

Given H , we update W to decrease the value of objective function.In the following

equation we follow [27] to reformulate the objective function for computational conve-

nience.

W =argmin
W≥0

||X −WH||2F + ζ‖W‖2F + λ
∑
j

‖H.j‖21

+ ηtr(HGHT )

=argmin
W≥0

||X −WH||2F + ζ‖W‖2F

=argmin
W≥0

||(X, 0m×k)−W (H,
√
ζIk)||2F

=argmin
W≥0

||X̃ −WH̃||2F

(4.10)

where X̃ = (X, 0m×k) and H̃ = (H,
√
ζIk).

The updating rule for W to [8]reduce the objective function can be either of the follow-

ing ones, which can be proven in a similar way in [8, 18],
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Wij = Wij
(X̃H̃T )ij

(WH̃H̃T )ij
(4.11)

Wij = Wij

√
(X̃H̃T )ij

(WH̃H̃T )ij
(4.12)

Update H

Now we minimize the objective function with respect to H given W .

H = argmin
H

OMM−NMF

= argmin
H
||X −WH||2F + λ

∑
j

‖H.j‖21 + ηtr(HGHT )

= argmin
H
||
(

X

01×n

)
−

(
W√
λe1×k

)
H||2F + ηtr(HGHT )

= argmin
H
||X̃ − W̃H||2F + ηtr(HGHT )

(4.13)

where X̃ =
(

X
01×n

)
and W̃ =

(
W√
λe1×k

)
.

This optimization step can be done efficiently using the following updating rule, which

can be proven in a similar way in [18],

Hij = Hij

√√√√ (W̃ T X̃ + ηHG−)ij
(W̃ T W̃H + ηHG+)ij

(4.14)

where

G = G+ −G−

G+
ij =

|Gij|+Gij

2

G−
ij =

|Gij| −Gij

2

(4.15)



46

4.3.6 Convergence analysis

Since both updating methods for W and H are non-increasing, and the objective func-

tion clearly has a lower bound, for example, 0, thus the algorithm will converge.

4.4 Experiments

4.4.1 Experimental settings

We conduct clustering experiments on real data sets: the ORL face database, and the

USPS handwritten digits.

The ORL face database contains ten images for each of the forty human subjects, which

are taken at different times, under different lighting condition, with different facial expres-

sion and with/without glasses. All faces are resized to 32 × 32 for efficiency. Figure 4.1

shows some sample images from ORL data set.

Figure 4.1.: Examples of ORL face dataset.

The USPS digit dataset contains 8-bit gray scale images of ”0” through ”9”. Each image

is of size 16× 16, and there are 1100 images for each class. Figure 4.2 shows some images

from this dataset.

To evaluate the performance of clustering, we use two metrics [53, 54]: 1, accuracy; 2,

normalized mutual information(NMI).



47

Figure 4.2.: Examples of USPS handwritten digits.

The clustering algorithm is tested on N samples. For a sample xi, the cluster label is

denoted as ri, and ground true label is ti. The accuracy is defined as follows:

accuracy =

∑N
i=1 δ(ti,map(ri))

N
(4.16)

where δ(x, y) is equal to 1 if x is equal to y, and 0 otherwise. Function map(x) is the

best permutation mapping function gained by Kuhn-Munkres algorithm [55], which maps

cluster to the corresponding predicted label. So, we can easily see that the more labels of

samples are predicted correctly, the greater the accuracy is.

For the second metric, let C denote the cluster centers of the ground truth, and C ′ denote

the cluster centers by clustering algorithm. The mutual information is defined as follows:

MI(C,C ′) =
∑

c∈C;c′∈C′
p(c, c′)log

p(c, c′)
p(c)p(c′) (4.17)

where p(c) and p(c′) are the probabilities that a document belongs to cluster c and c′

respectively, and p(c, c′) is the probability that a document jointly belongs to cluster c and

cluster c′. The normalized mutual information(NMI) is defined as follows:

NMI(C,C ′) =
MI(C,C ′)

max((H(C)), (H(C ′)))
(4.18)
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where H(C) and H(C ′) are the entropies of C and C ′. We can easily see that NMI

measures the dependency of two distributions, and higher value of NMI means greater

similarity between two distributions.

4.4.2 Clustering on human faces

We conduct ten independent experiments on the ORL face dataset. In each experiment,

we randomly select ten subjects, and get 100 images since there are ten images for each

subject. Then the clustering algorithms are run on the 100 images. Thus X is a matrix with

the size of 1024 × 100. W is a matrix with size of 1024 × 10 and H is of size 10 × 100.

We don’t list the performance SNMF, because according to our experimental results SNMF

cannot outperform NMF, which means the best choice of the parameter λ is 0. When λ is

set to 0, SNMF is equivalent to NMF.

As mentioned above, ζ is simply fixed as the maximum value of the input matrix. The

parameter λ is searched within [0, 0.5]. However, this parameter is not critical as we will

see MM-NMF2, which simply sets λ to 0, still has competitive performance. The parameter

η reflects how reliable the structure information encoded by S is. Generally speaking, if

there are more samples, the S will be more reliable since the samples on each manifold

will be denser, and the η should have larger value. In experiments, η is set by searching

only on the grid of {0.1, 1, 10, 100, 1000}. In the experiments on face clustering, our λ for

MM-NMF is 0.01, and η for MM-NMF and MM-NMF2 is 1.

The accuracy and NMI of different algorithms are shown in Table 4.1 and Table 4.2,

respectively. The average performance of the algorithms is listed in the bottom lines of the

tables.

From the results, we can see that our algorithms MM-NMF2 and MM-NMF outperfor-

m traditional NMF by about ten percent, and MM-NMF is slightly better than MM-NMF2,

which means the sparseness regularizer is helpful. In other words, the sparseness intro-

duced by nonnegativity constraint is not enough for this task, and we need extra sparseness

regularization.
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Table 4.1: Clustering accuracy on ORL face dataset (%).

Method K-means NMF MM-NMF2 MM-NMF

1 71.0 67.0 66.0 82.0
2 60.0 54.0 80.0 79.0

3 58.0 59.0 81.0 84.0
4 58.0 61.0 79.0 78.0

5 70.0 52.0 68.0 64.0

6 63.0 62.0 73.0 75.0
7 66.0 65.0 72.0 80.0
8 48.0 61.0 67.0 64.0

9 59.0 65.0 54.0 72.0
10 55.0 59.0 59.0 56.0

Average 60.8 60.5 69.9 73.4

Table 4.2: Clustering NMI on ORL face dataset (%).

Method K-means NMF MM-NMF2 MM-NMF

1 80.4 69.3 77.8 88.8
2 73.4 62.1 82.1 83.6
3 72.4 68.8 82.2 82.6
4 69.1 66.2 81.3 83.5
5 80.5 58.6 75.2 70.3

6 68.8 63.2 75.5 80.6
7 76.2 77.8 79.7 85.2
8 59.5 63.1 67.8 70.1
9 67.4 64.3 63.6 72.8

10 65.4 62.9 64.1 64.9

Average 71.3 65.6 74.9 78.2
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According to our experiments, the performance is not sensitive to the value of η. For

example, when η is set on 0.1, the average accuracy of MM-NMF is 68.6%, which is still

much better than NMF.

After the matrix factorization, we gain a nonnegative basis matrix W with size of

1024 × 10. Ideally, each column should represent a human subject. We visualize these

basis learned by NMF and MM-NMF in Figure 4.3 and Figure 4.4, respectively. From

these basis, we can easily see that MM-NMF learns better representation for each class.

Figure 4.3.: Face basis learned by NMF.

Figure 4.4.: Face basis learned by MM-NMF.

4.4.3 Clustering on handwritten digits

For experiment on USPS digits, we randomly select 1000 samples from the dataset.

Thus X is a matrix with the size of 256 × 1000, W is of size 256 × 10 and H is of size

10× 1000. The scheme to set parameters here is the same as face clustering. The λ here is

0.4, and η is set to 100.
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Table 4.3: Clustering accuracy on USPS digit dataset (%).

Method K-means NMF MM-NMF2 MM-NMF

1 64.5 54.4 69.0 64.3

2 56.8 48.1 65.9 63.6

3 56.9 55.4 62.0 61.2

4 50.9 52.3 55.9 64.5
5 58.4 53.2 61.0 61.5
6 65.8 52.2 68.4 65.9

7 63.8 59.1 53.8 65.5
8 65.8 50.5 54.6 65.8
9 65.0 47.5 56.8 60.1

10 62.6 55.7 66.3 68.1
Average 61.1 52.8 61.3 64.1

Table 4.4: Clustering NMI on USPS digits dataset (%).

Method K-means NMF MM-NMF2 MM-NMF

1 59.7 51.3 60.9 58.8

2 61.3 46.4 65.0 59.6

3 58.5 49.9 58.9 60.3
4 54.0 46.7 53.5 60.8
5 59.0 45.8 56.0 57.4

6 63.2 50.0 66.2 61.6

7 59.4 55.6 53.1 61.2
8 63.2 50.9 59.2 64.4
9 63.9 47.3 58.5 58.5

10 59.6 53.4 62.6 64.0
Average 60.2 49.7 59.4 60.9

The accuracy and NMI of different algorithms are shown in Table 4.3 and Table 4.4,

respectively. The average performance of the algorithms is listed in the bottom lines of the

tables.

From the results, we can also see that our algorithms MM-NMF2 and MM-NMF out-

perform traditional NMF by about ten percent in both accuracy and NMI, and MM-NMF
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is slightly better than MM-NMF2, which again shows the sparseness regularizer is helpful.

Here K-means also has comparable good performance. It outperforms traditional NMF, but

it still cannot outperform our MM-NMF.

In the experiments on digits, we have more examples than experiments on faces, thus

the η has larger value as mentioned above. Experiments are also conducted when η is set as

10 and 1, and MM-NMF still generates robust results with the average accuracy as 61.2%

and 60.7%, which are still much better than NMF.

In experiments, each column of W should represent a digit. We visualize these basis W

learned by NMF and MM-NMF in Figure 4.5 and Figure 4.6, respectively. From these two

figure, we can easily see that basis learned by MM-NMF have much clearer interpretation

than basis learned by NMF.

Figure 4.5.: Digit basis learned by NMF.

Figure 4.6.: Digit basis learned by MM-NMF.
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5 CLASSIFICATION FOR DATA ON MULTIPLE MANIFOLDS

Support vector machine is one of the most popular state-of-the-art classification techniques.

It is widely adopted in many real applications, such as object detection, face recognition,

text categorization, etc., mainly because of its competitive practical performance and ele-

gant theocratical interpretation. On the other hand, in many real situations, samples typical-

ly lie on low dimensional manifolds in the feature space, and thus have sparse representa-

tion over some either explicit or implicit dictionary. Specifically, it is usually believed that a

sample can be represented as sparse linear combination of other samples on the same man-

ifold. The sparsity of representation, which reflects the structure of underlying manifolds,

has been deeply explored and proven to be critical for the performance of classification,and

the sparse representation based technique has been a state of art approach for the task of

face recognition. To benefit from the underlying low dimensional manifold structure, this

chapter proposes a method named Sparsity Preserving Support Vector Machine(SP-SVM).

It explicitly considers the sparse representation of samples while maximizing the margin

between these from different classes, and thus inherits both the discriminative power of

support vector machine and the merits of sparsity. A set of experiments on real benchmark

data sets show that SP-SVM achieves significantly higher precision on face recognition

than traditional SVM, sparse representation based method and classical nearest neighbor

classifier.

5.1 Introduction

Pattern classification is one of the most important problems in machine learning, and

support vector machine(SVM) [19, 20] is one of the most successful approaches. It is

widely used in many real applications, such as face recognition [21], object detection [22],

text categorization [23], and etc. In many of these applications, SVM is able to achieve
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very competitive performance compared with other existing approaches. SVM learns a

data classifier in a fully supervised manner. Given a set of labeled data samples, it aims

to find the hyperplane which separates samples with different labels with the largest mar-

gin. Later, it is extended to semi-supervised fashion [42]. This semi-supervised version

of SVM tries to preserve the neighborhood relation among the unlabeled samples while

searching for the separating hyperplane for those labeled samples. In this manner, both

the labeled and unlabeled samples contributes the final solution. Furthermore, maximum

margin clustering [43], which can be viewed as a unsupervised counterpart of SVM, tries

to find hyperplane which separates the unlabeled samples with largest margin. Recently,

with the rapidly increasing size of data the speed of training becomes a concern for users.

To speed up the training process of SVM and thus to enable it to deal with large scale data,

different optimization approaches are proposed, such as Pegasos [56], LIBLINEAR [57],

and StreamSVM [58]. With the help of these techniques, SVM is able to deal with large

scale data in relatively short time.

SVM is trained and tested on samples, which typically lie on lower dimensional man-

ifolds of the feature space. A popular assumption is that a sample can be represented as

a sparse linear combination of other samples on the same manifold. For classification, the

samples are drawn from different classes, which are typically on different manifolds. For

example, in face recognition, the face images of the same person are on the same manifold

while faces of different people lie on different manifolds. A more subtle assumption is that

samples within the same class may still be on a mixture of manifolds. For example, the

face images of the same person with different facial expressions but same lighting condi-

tion are on a manifold, while the images with same facial expression but different lighting

conditions are on another manifold. Because of these underlying low dimensional manifold

structure of the data distribution, the samples that classifiers deal with usually have sparse

representations with respect to some certain dictionary of base elements.

Sparse representation has been a surge of interest in many communities, such as com-

puter vision, signal processing [52, 59, 60]. And sparsity is believed to be critical for clas-

sification of high dimensional data samples [44], such as face images.
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This chapter aims to combine the discriminative power of support vector machine and

the merits of sparse representation. The proposed method explicitly explores the local

sparse structure in the training samples, which results from the underlying manifold struc-

ture. While seeking the separating hyperplane with large margin, the proposed algorithm

tries to preserve the local sparse structure, thus we call this method Sparsity Preserving

Support Vector Machine(SP-SVM).

The algorithm is then evaluated on multiple real world data sets. And, it has been

shown that the proposed algorithm achieves significantly better performance in terms of

precision than traditional SVM, which we believe benefits from exploring the sparsity in

the representation of samples.

The rest of this chapter is organized as follows. First it reviews the concepts of sparse

representation and SVM. Then the proposed algorithm SP-SVM is presented. Furthermore,

it describes and analyzes the experimental results on real world data sets.

5.2 Review of Related Techniques

In this section, we briefly review the large margin classification algorithm SVM and the

concept of sparse presentation.

5.2.1 Support vector machine

Given a set of labeled samples {(xi, yi)}ni=1, where xi ∈ R
m is the feature vector of ith

sample and yi is the corresponding label(for binary classification, yi ∈ {−1,+1}), SVM

learns a hyperplane that maximizes the margin between samples with different labels.

In order to learn the hyperplane w ∈ R
m, SVM solves the following optimization

problem:

min
w

C
∑
i

max(0, 1− yiw
Txi) +

1

2
‖w‖2. (5.1)
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The first term in ( 5.1) is the hinge loss, the second term is a regularizer for w, and

C is a parameter controlling the tradeoff between the hinge loss and the regularization on

w. The explicit bias term is omitted here to simplify the problem while keeping it entirely

general since the bias could be easily introduced as an additional coordinate in the data.

5.2.2 Sparse representation

An observed sample x ∈ Rm has a sparse representation with respect to a dictionary

D ∈ R
m×p. This means:

x = Dβ, (5.2)

where the coefficient vector β ∈ R
p is sparse.

In real situations, usually the observation x is polluted by noise, thus we have the fol-

lowing equation:

x = Dβ + ε, (5.3)

where ε ∈ R
m denotes the noise term.

It is more interesting that given the dictionary D and the sample x, how to estimate

the sparse representation β? Lasso [61] is a popular approach for this task since L1 nor-

m penalty encourages the sparsity of the representation [59] and its minimization can be

efficiently solved:

β̂ = argmin
β

1

2
‖x−Dβ‖22 + λ‖β‖1. (5.4)

Lasso is simple and effective, and it is known to be able to select the few important base

elements from the dictionary D for the given sample x.
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5.3 Our Approach

Here we describe the formulation of the proposed approach, which explicitly consid-

ers the sparse representation of samples on a mixture of manifolds while learning a large

margin classifier.

5.3.1 Formulation

Given a set of training samples, SVM learns a separating hyperplane by maximizing

the margin between samples with different labels. Even if a sample is dense in the original

feature space, it may still have sparse representation with respect to some dictionary of base

elements. One possible explanation is that the samples reside on different manifolds, and

a sample has a sparse representation on its manifold [16, 28], such as face images. Face

images of the same subject reside on the same manifold while images of different subjects

reside on different manifolds. However, SVM ignores the implicit sparse representation of

the samples, and thus ignores the structure of the underlying manifold as a result.

SVM are trained on samples from different classes, thus it is safe to assume these

training samples are from different manifolds. To encode the multiple manifold structure,

the implicit sparse representation of each sample with respect to the other samples in the

same class is calculated. In this way, a sparse graph connecting n nodes is created to encode

the manifold structure(n is the number of samples, and each node corresponds to a sample).

Note, we do not simply connect neighbors according to the Euclidean distance, because

even the samples in the same class may still be from different manifolds(e.g. the face

images of a person with different facial expressions but same lighting condition are on a

manifold, while the images with same facial expression but different lighting conditions are

on another manifold), and samples close to each other may still be on different manifolds,

especially near the intersection of manifolds. Sparse representation not only weighs more

on the selected samples that are close to it, but also tends to select the samples on the same

manifold.
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The graph created in the way described above results from the sparse representation of

each sample with respect to other samples, and thus conveys information of the underlying

manifold structure. Our proposed classification algorithm incorporates an preservation ter-

m of this sparse graph into the conventional SVM objective function, and thus the proposed

algorithm is able to preserve the graph structure in the output space while learning a large

margin classifier.

5.3.2 Sparse representation for structure encoding

Let xi be an arbitrary training sample and yi be the corresponding label. xi can be

represented as a sparse linear combination of the other training samples in the same class.

Let X be the matrix composed of all the training samples, i.e. X = [x1, x2, ..., xn], each

column of this matrix is the feature vector of a training sample.

To estimate the sparse structure of xi, we solve the following optimization problem:

S.i =argmin
β

1

2
‖xi −Xβ‖22 + λ‖β‖1

s.t. βi = 0

βj = 0, if yj �= yi.

(5.5)

Sometimes, we are more interested in the local sparse structure. In this case, xi is

represented as a sparse linear combination of its neighbors. Let N (xi) denote the set of

neighboring samples of xi, either k nearest neighbors or ε neighbors. The related optimiza-

tion problem then is modified into:

S.i =argmin
β

1

2
‖xi −Xβ‖22 + λ‖β‖1

s.t. βi = 0

βj = 0, if yj �= yi or xj /∈ N (xi).

(5.6)
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The neighboring constraint introduces locality of the sparse representation, and it also

highly reduces computational cost especially when the number of training samples is large.

Let S ∈ R
n×n be the matrix composed of the sparse representation of all the training

samples, i.e. S = [S.1, S.2, ..., S.n]. It describes the geometrical information conveyed by

the training data.

5.3.3 Sparsity preserving support vector machine

For a sample xi with sparse representation S.i, its identity is closely related to the sam-

ples corresponding to nonzero coefficients of S.i.

Since the geometrical structure information encoded by the sparse representation S

is critical for classification [44], we would like to preserve this while training the dis-

criminative large margin classifier. For convenience, we introduce two new notations.

Let Y ∈ R
1×n be a row vector composed of the labels of all the training samples, i.e.

Y = [y1, y2, ..., yn]. Let f(X) ∈ R
1×n be the output of the classifier when applied to all

the training samples, i.e. f(X) = [f(x1), f(x2), ..., f(xn)]. Specifically, for linear SVM,

f(X) = wTX . Again, the bias term is omitted here for convenience without sacrificing the

generality of the problem.

In the input space, we have X ≈ XS because of the first terms in the optimization

problems (5.5) and (5.6); to preserve the structure information, it is preferable to ensure

f(X) ≈ f(X)S, which can be gained by minimizing:

N∑
i=1

‖f(xi)− f(X)S.i‖22

=‖f(X)− f(X)S‖22
=‖f(X)(I − S)‖22
=f(X)(I − S)(I − S)Tf(X)T

=wTX(I − S)(I − S)TXTw,

(5.7)



60

where S.i is the ith column of the matrix S.

Incorporating the term above to SVM, we get the following optimization problem:

min
w

C
∑
i

max(0, 1− yiw
Txi) +

1

2
‖w‖2

+
ν

2
wTX(I − S)(I − S)TXTw

(5.8)

The first two terms are inherited from the conventional SVM: the first term is the hinge

loss of training samples, and the second term is standard L2 norm regularizer. The third

term tries to preserve the sparse structure information, and the parameter ν controls how

much weight we put on the structure preservation. We call this technique Sparsity Preserv-

ing Support Vector Machine(SP-SVM) since it tries to preserve the structure reflected by

sparse representation while learning a large margin classifier.

When ν is equal to 0, SP-SVM reduces to the conventional SVM; when C is equal to

0, it reduces to learning a mapping direction which preserves the sparse structure rather

than a classifier since it does not incur any loss if a sample is wrongly classified. More

interestingly, when the parameter λ in Equation 5.6 is equal to 0, then minimizing the

objective function above turns out to be learning a large margin classifier that preserves the

neighborhood information.

The objective function of SP-SVM is in the form of quadratic programming, which is

the same as conventional SVM. This can be efficiently solved by standard optimization

toolboxes. Also, many of the techniques [56, 62] that help to speed up the conventional

SVM could be easily introduced to SP-SVM without much modification.

Overall, the training process of SP-SVM involves the computation of the sparse graph

S, and a quadratic programming problem. The flow is listed in the Algorithm 4. The testing

process of SP-SVM is exactly the same as conventional SVM. The label of a testing sample

x is predicted as sign(w�x), where sign(.) is the simple sign function.
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Table 5.1: Performance comparison on three benchmark datasets.

Methods NN SR SVM SP-SVM

Extended Yale B 51.45± 0.75 95.44± 0.57 94.83± 0.65 98.13± 0.46
CMU PIE 43.66± 0.88 84.55± 1.06 85.10± 0.81 90.02± 0.54
AR 49.72± 1.67 92.73± 0.33 93.67± 0.76 97.60± 0.36

5.4 Experiments

In this section, we describe the experimental settings, and show and briefly analyze the

results.

5.4.1 Experimental settings

In the experiments, three benchmark data sets including Extended Yale B database [63],

AR database [64], and CMU PIE database [65] are utilized to evaluate the performance of

our proposed algorithm. The images are cropped to 32 × 32 and power normalized [66].

For each data set, the data are randomly split into training set and testing set. We randomly

select images per category for training and the rest for testing. Since for the face recognition

task we usually have very limited training samples for each person in real situation, our

experiments use 10 training samples per category. It is shown that for the Extended Yale

B database and AR database, experiments with 10 training samples per category already

achieve very high precision(98.13% and 97.60%); for CMU PIE database, the precision is

Algorithm 4 SP-SVM Training

Require: Data samples X = [x1, x2, ..., xn], sample labels Y = [y1, y2, ..., yn], λ, ν and k
1: for i = 1;k ≤ n;i++ do
2: Compute Si according to Equation 5.6

3: end for
4: Formulate S = [S1, S2, ..., Sn]
5: Compute the w by solving the quadratic programming problem in Equation 5.8

6: return w
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around 90%, which allows space to improve. Then, specifically, for CMU PIE database,

we conduct more experiments with more training samples per category, and the details are

reported later.

To make the results more convincing, the experimental process is repeated 10 times,

and the mean and standard deviation of the classification accuracy are recorded.

Sparse representation (SR) [44] explores the sparsity of the given sample, achieves

high precision in recognition, and is considered as one of the state of art approaches for

face recognition. SVM is a popular and competent technique for many classification prob-

lems including face recognition. In our experiments, the proposed SP-SVM algorithm is

compared with these two algorithms, as well as the classical and popular approach: nearest

neighbor classification(NN).

Given a testing sample, SR calculates its sparse linear representation with respect to

all the training sample by Equation 5.4, where x is the testing sample and D is composed

of all the training samples. Feature-sign search algorithm [67] is used for solving sparse

representation. Then the identity of the testing samples is determined by the fitting error.

For SVM, the implementation of LIBSVM [68] is adopted for its robustness and popularity.

For SP-SVM, S is calculated according to the Equation 5.6, where N (xi) denotes the set

of k nearest neighbors of xi. One against all multi-classification strategy is adopted by both

SVM and SP-SVM.

In our experiments, there are four parameters to set: C, ν, k and λ. C is varying

on the grid of {20, 21, · · · , 25} for both SVM and SP-SVM. ν is varying on the grid of

{2−1, 20, · · · , 24}. λ is studied on the grid of {10−4, 10−3, · · · , 101} for sparse represen-

tation algorithm. For k, we consider the set {1, 3, 5, 7, 9}. For the main experiments, k is

simply equal to 5, since the performance is not sensitive to k when k ≥ 3 as we will show

below.
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Figure 5.1.: Examples of the Extended Yale B dataset.
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Figure 5.2.: Precision(%) of SP-SVM, SVM, and SR with varying parameter C on Extend-

ed Yale B database (λ = 0.01, ν = 22, k = 5 for SP-SVM, λ = 0.01 for SR)

5.4.2 Experimental results on extended Yale B database

The Extended Yale B database contains 2414 frontal face images of 38 individuals,

which were captured under varying illumination conditions. Figure 5.1 shows some sample

images from this database.

Figure 5.2 shows the precision of SP-SVM, SVM, and SR with varying parameter C.

As C increase, the performance of SVM and SP-SVM ν = 22 firstly increases, till to the
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optimal value around C = 23, and then it decreases. From the figure, we can see that

SR outperforms SVM, which does not consider the sparse representation. However, when

the large margin classifier is coupled with sparsity preserving, the resulting algorithm, SP-

SVM, achieves a precision of 98.13%, which is far beyond SR(95.44%). This demonstrates

the criticality of the sparsity preserving. SR method considers the compact representation

of the data samples and explores the underlying structure, while SVM focuses on the mar-

gin between different classes. Both of these two facets are important for the classification,

and thus when combining these two, the precision is significantly boosted.

2−1 20 21 22 23 24

95

96

97

98

SP-SVM
SVM
SR

Figure 5.3.: Precision(%) of SP-SVM with varying parameter ν on Extended Yale B

database (λ = 0.01, C = 23, and k = 5 for SP-SVM, C = 23 for SVM, λ = 0.01 for

SR)

The effect of parameter ν is also studied. We fix C = 23, and vary the value of ν.

The precision(%) of SP-SVM is reported in Figure 5.3. As ν increase, the performance of

SP-SVM increases, till to the optimal ν = 22. We can also see that regardless of what value

the ν is(as long as ν is in that range), the precision of SP-SVM always outperforms both SR

and SVM. This further demonstrates the importance of the combining of these two facets.

Actually, it is not difficult to see that when ν = 0, SP-SVM degenerates into conventional
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SVM; when ν = +∞, the learning process of SP-SVM becomes the same as SR, though

the prediction is different.
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Figure 5.4.: Precision(%) of SP-SVM and SR with varying parameter λ on Extended Yale

B database (C = 23, ν = 22, and k = 5 for SP-SVM, C = 23 for SVM)

The effect of λ is shown in Figure 5.4, which shows the precision(%) of SP-SVM and

SR with varying parameter λ. The precision achieved by SR algorithm is very sensitive

to the value of λ, especially when λ > 0.1. When λ = 10, the precision is only 67.80%.

However, the precision achieved by SP-SVM changes slowly with varying λ. Again, this

insensitivity to λ should be due to the combination of the large margin and sparse repre-

sentation. The effect of parameter λ for the other two data sets is nearly the same as for

Extended Yale B database, i.e., the performance is not sensitive to λ, and thus we omit

these figures.

Figure 5.5 shows the precision(%) of SP-SVM with varying parameter k. The experi-

ments are conducted for k ∈ {1, 3, 5, 7, 9}. When k = 1, the precision is very low. When

k ≥ 3, the precision is relatively consistent. This probably is because it is difficult to fit the

target sample with only one neighbor. When there are more samples, sparse representation

will always be able to select the homogenous neighbors to fit the data point.
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Figure 5.5.: Precision(%) of SP-SVM with varying parameter k on Extended Yale B

database (C = 23, ν = 22, and λ = 0.01 for SP-SVM, C = 23 for SVM, λ = 0.01
for SR)

After all, the experimental results (when λ = 0.01, C = 23, ν = 22 and k = 5) are

listed in Table 5.1, which shows the precision of SP-SVM algorithm is 3.30% higher than

SVM and 2.69% higher than SR, while the standard deviation of all the three algorithms is

smaller than 0.7%.

5.4.3 Experimental results on CMU PIE database

In the CMU PIE database, there are totally 41, 368 images of 68 people, each person

under 13 different poses, 43 different illumination conditions, and with 4 different expres-

sions. Thus, the images in the same category may still lie on multiple manifolds. We select

the images with five near frontal poses (C05, C07, C09, C27, C29) and all different illumi-

nations and expressions. There are about 170 images for each individual and totally 11, 554

images. Figure 5.6 shows some sample images from this database.

The results of SR, SVM, NN, and SP-SVM on PIE database are listed in Table 5.1 when

λ = 0.01, C = 23, ν = 21 and k = 5. The precision of SP-SVM is 4.92% higher than SVM
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Figure 5.6.: Examples of CMU PIE dataset.
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Figure 5.7.: Precision(%) of SP-SVM, SVM, and SR with varying parameter C on CMU

PIE database (λ = 0.01, ν = 21, k = 5 for SP-SVM, λ = 0.01 for SR)

and 5.47% higher than SR. Both of these gains are significant since the standard deviation

is quite small. Moreover, Figure 5.7 shows the precision of SP-SVM, SVM and SR with

varying parameter C, and Figure 5.8 studies the effect of varying ν. Figure 5.9 again shows

the insensitivity of the performance with respect to a varying when k ≥ 3.

We find that for this dataset, the precision produced by 10 training images per category

is only about 90%. Then, a further experiment is conducted with 20 training images per
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Figure 5.8.: Precision(%) of SP-SVM with varying parameter ν on CMU PIE database

(λ = 0.01, C = 23, and k = 5 for SP-SVM, C = 25 for SVM, λ = 0.01 for SR)
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Figure 5.9.: Precision(%) of SP-SVM with varying parameter k on CMU PIE database

(C = 22, ν = 21, and λ = 0.05 for SP-SVM, C = 24 for SVM, λ = 0.01 for SR)

category. And with this new setting, SR achieves an average precision of 92.65% with a

standard deviation of 0.53%, conventional SVM achieves 93.10% with a standard deviation

of 0.42%, and the proposed SP-SVM still gets the highest performance, which is 94.88%
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with a standard deviation of 0.22%. Although the precision of all algorithms increase as

the number of training samples increase, the proposed SP-SVM still outperforms the other

two baseline algorithms significantly.

5.4.4 Experimental results on AR database

Figure 5.10.: Examples of AR Database
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Figure 5.11.: Precision(%) of SP-SVM, SVM, and SR with varying parameter C on AR

database (λ = 0.01, ν = 22, k = 5 for SP-SVM, λ = 0.01 for SR)
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Figure 5.12.: Precision(%) of SP-SVM with varying parameter ν on AR database (λ =
0.01, C = 23, and k = 5 for SP-SVM, C = 24 for SVM, λ = 0.01 for SR)

There are over 4, 000 frontal images for 126 individuals in AR database. We choose

a subset consisting of 50 male and 50 female categories. There are 26 images for each

category. Compared with two other data sets, the AR database includes more facial varia-

tions, such as illumination change, various expressions, and facial disguises. Please refer

to Figure 5.10 for examples.

Again, the face recognition experiments are conducted with the standard setting. The

results with λ = 0.01, C = 23, ν = 22 and k = 5 are reported in Table 5.1. SP-SVM

algorithm has much higher precision than SVM(by 3.93%) and SR (by 4.87%). Also,

the standard deviation is quite small so that we can conclude the SP-SVM outperforms

the others significantly. Figure 5.11 shows the precision of SP-SVM, SVM and SR with

varying parameter C, and Figure 5.12 shows the precision(%) of SP-SVM with varying

parameter ν with C = 23. In this wide range of C, SP-SVM consistently outperforms

conventional SVM and SR.
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6 TAPERING KERNEL MATRICES TO SPARSIFY DATA RELATION

Kernel methods have been regarded as an effective approach in image processing since k-

ernel is able to model nonlinear relation among images. However, when calculating the

similarity induced by kernels, existing kernel methods usually incorporate irrelevant fea-

tures (e.g., the background features of an object in a image), which are then inherited to

kernel learning methods and thus lead to suboptimal performance. To attack this problem,

we introduce a framework of kernel tapering, which is a simple and effective approach to

reduce the effects of irrelevant features while keeping the positive semi-definiteness of k-

ernel matrices. In theory, it can be demonstrated that the tapered kernels asymptotically

approximate the original kernel functions. In practical image applications where noises or

irrelevant features are widely observed, we have further shown that the introduced kernel

tapering framework can greatly enhance the performance of their original kernel partners

for kernel k-means and kernel nonnegative matrix factorization.

6.1 Introduction

Kernels [1–3] have been widely applied in image processing tasks, such as image clus-

tering/classification, face recognition, object tracking, etc. They are incorporated into a

number of machine learning algorithms [2–7], such as matrix factorization, k-means clus-

tering, and support vector machine, to form new powerful methods, i.e., the so called kernel

methods. In kernel methods, low dimensional input features are projected to a high dimen-

sional space via a kernel-induced nonlinear mapping, such that more useful features hidden

in the original data can be utilized. Despite their success, however, traditional kernel meth-

ods usually employ all features and instances to produce a kernel matrix with a high chance

of incorporating noises and irrelevant features. For example, in object categorization, the

background of an image may greatly impair the clustering accuracy. How to reduce or re-
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Figure 6.1.: A toy example showing the effects of kernel tapering. Left: linear kernel

matrix for noisy samples; right: tapered linear kernel matrix for noisy samples.

move the effects of the background or irrelevant features in kernel construction remains an

open problem.

An effective approach to attack this problem is to introducing sparsity into kernels. S-

parsity is believed to be beneficial to many task [28, 41, 44, 45, 69]. Therefore, we present

the idea of kernel tapering into the kernel design. Kernel tapering, also known as covariance

tapering, originates from the study of Geostatistics [70, 71]. The idea is to push the dis-

tances between pairs of distant instances to infinity, thus leading to a sparse kernel matrix

while keeping the positive semidefiniteness. In this way, the effects of noises when calcu-

lating the distances can be reduced to a certain level. In addition, a sparse kernel matrix

is also of the demand of data analysis. For example, in the categorization of car and goat,

the similarity between an image of car and an image of goat should be zero ideally. What’s

more, operations on sparse matrices take less computer memories and run faster. Kernel

tapering removes or reduces the effects of noises while assuring that most information are

kept. A toy example illustrating the effect of tapering is shown in Figure 6.1 for simulated

data of ten categories with a Gaussian noise (see more details in the experimental part). It

clearly shows that kernel tapering can significantly remove the noises in the kernel matrix.

To take advantage of the useful properties of kernel tapering, we apply this idea to

improve kernel k-means and kernel nonnegative matrix factorization. Experimental results
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on benchmark data sets show that the proposed tapered kernel methods greatly improved

the clustering performance.

6.2 Kernel Tapering

In this section, we begin with the review of kernel functions, then introduce the concept

of tapering, and finally incorporate tapering into two machine learning algorithms: kernel

k-means and kernel nonnegative matrix factorization.

6.2.1 Brief review of kernels

Before introducing the idea of kernel tapering, we give the notations as follows. Let

φ be a mapping from the original input space F to the high or even infinite dimensional

Hilbert space H, i.e., φ : x ∈ F → φ(x) ∈ H. Let κ(x, y) denote the inner product

defined inH for a certain pairs of data x, y ∈ F . We also refer κ(·, ·)) as a kernel function.

A matrix K ∈ Rn×n is called a kernel matrix (also known as Gram matrix) for kernel

function κ if Kij = κ(xi, xj) for x1, . . . , xn ∈ F . Theoretically, a kernel matrix K must

be positive semi-definite (PSD) [72]. Typical valid kernel functions include linear kernel,

RBF kernel, exponential kernel, etc.

6.2.2 Tapering

However, during the calculation of kernel matrices, the noise in features can be in-

corporated. To alleviate this effect, a central idea is to sparsify the kernel matrices—-to

deliberately push the similarity measures between pair of distant samples to zeros. How

the zeros are introduced is crucial, since the positive semi-definiteness of the kernel ma-

trix must be kept. To this end, we introduce the concept of kernel tapering. The idea is

to sparsify the kernel matrix by pushing the small values to zeros while maintaining the

validity of kernel matrix(positive semi-definiteness). In Geostatistics, it has been used to

reduce the computation in parameter estimation for kernel(a.k.a. covariance function) in
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Gaussian process [70]. In our situation, we introduce the tapering technique not for the

purely computational reasons, but with the expectation that it will result in better kernels

and help boost the performance of kernel based algorithms.

A tapered kernel is to define a new kernel function such that

κ̃(xi, xj) = κ(xi, xj)κtaper(g(xi, xj); θ), (6.1)

where g(·, ·) is a distance function and θ is a parameter. Note, the tapering is not restricted

to specific types of kernel, instead it can be applied to any existing valid kernel. Thus, it

not only keeps the validity of kernel while sparsifying it, but also preserves the richness

and generality of the current family of various kernels. Then the final tapered covariance

function is

K̂(θ) = K ◦K(θ)

where Kij(θ) = κtaper(g(xi, xj); θ) and ◦ denotes the element wise matrix product,

also known as Hadamard product or Schur product. Note that the Hadamard product of

two kernel matrices is also a valid kernel matrix.

To see the asymptotic properties of tapered kernels, we use a regression task as an

example. In order to show the asymptotic equivalence of the mean squared prediction error

for two kernel functions, we first describe the tail behaviors of the corresponding spectral

densities and introducing the tail condition.

Tail Condition. Two spectral densities f0 and f1 satisfy the tail condition if and only if

lim
η→inf

f1(η)

f0(η)
= γ, 0 < γ <∞.

Let us consider the exponential kernel as an example. Let fκ and ftaper denote the

spectral densities for the exponential kernel and taper functions. Then the spectral density

fκ̂ of the tapered covariance function κ̂ is given by:

fκ̂(‖u‖) =
∫
Rd

fκ(‖u− v‖)ftaper(‖v‖)dv, (6.2)
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recalling that the convolution or multiplication of two functions is equivalent to, multipli-

cation or convolution of their Fourier transforms, respectively.

Proposition 1 Let ftaper be the spectral density of the taper kernel function, and for some

ε ≥ 0 and M < inf, satisfying

0 < ftaper(η) <
M

(
√
1 + γ2)1+d+ε

,

then fκ̂ and fκ satisfy the tail condition.

Proposition 1 is a special case of Proposition 2.2 in [71]. Then we have the following

theorem

Theorem 1 For an exponential kernel function κ satisfying the conditions in Proposition 1,

then

lim
n→inf

MSE(x,K ◦K(θ))

MSE(x,K)
= 1, (6.3)

where the MSE(x,K) denotes the mean square error of the predictor with the kernel

function K on a test example x.

Theorem 1 follows from Theorem 1 in [71]. It shows that the same convergence rate as the

optimal predictor using the original kernel function K.

Some examples of tapering functions [71] include:

• Spherical: κtaper(g; θ) = (1− 1
θ
g)2+(1 +

1
2θ
g)

• Wendland1: κtaper(g; θ) = (1− 1
θ
g)4+(1 +

4
θ
g)

• Wendland2: κtaper(g; θ) = (1− 1
θ
g)6+(1 +

6
θ
g + 35

3θ2
g2)

Here x+ = max(0, x).

In Figure 6.2, we visualize the shapes of different kernel functions that are purely based

on distances between samples, and corresponding tapered kernels. For simplicity, we only

choose kernel functions that are purely based on distances.
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Figure 6.2.: An example showing the change of values with respect to distances for kernel

functions and their tapered versions. Top: RBF kernel function and tapered RBF kernel

functions; bottom: exponential kernel function and tapered exponential kernel functions.

From the figures, we can see that the new tapered kernel functions are more sparse than

usual kernel functions. When the distance is large, tapered kernel function will have small

or even zero value.

6.2.3 Tapered kernel methods

The kernel based machine learning methods can be easily extended once the kernel is

tapered. The induced algorithms use the tapered kernels rather than the regular kernels.

During the learning process, the objective function should be modified accordingly.

Here we incorporate the tapering into two kernel based machine learning techniques:

kernel k-means clustering and kernel Nonnegative Matrix Factorization (kernel NMF).
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Tapered kernel k-means clustering

k-means is a popular clustering method for data analysis. It aims to partition the data

samples S = {xi ∈ F|i = 1, 2, . . . , n} into k sets, {S1, S2, . . . , Sk}, in which each sample

is assigned to the set with the nearest mean by minimizing the following objective function:

argmin
{S1,S2,...,Sk}

k∑
i=1

∑
xj∈Si

‖xj − μi‖2, (6.4)

where μi is the mean of points in Si.

Let X be a matrix composed of all the samples, i.e. X = [x1, x2, . . . , xn], and A be a

clustering membership matrix, i.e. A ∈ {0, 1}n×k,
∑k

j=1 Aij = 1 and nj =
∑n

i=1 Aij . Let

Ã = A[diag(
√
n1,
√
n2, . . . ,

√
nk)]

−1. The optimization above is equivalent to following

problem [73, 74]:

argmin
A

trace(X�X)− trace(Ã�X�XÃ). (6.5)

With the kernel trick, kernel k-means minimizes the following objective function:

argmin
{S1,S2,...,Sk}

k∑
i=1

∑
xj∈Si

‖φ(xj)− μi‖2H, (6.6)

where μi is the mean of φ(xj) in Si and ‖.‖H denotes the functional norm in the Hilbert

space endowed by the kernel function. And the equivalent formulation for kernel k-means

is:

argmin
A

trace(K)− trace(Ã�KÃ). (6.7)

Once we have the kernel matrix K ∈ Rn×n, the membership matrix A can be inferred by

the optimizing the objective function above.

Tapered kernel k-means infers the membership matrix A by minimizing the following

objective function

trace(K ◦Ktaper)− trace(Ã�(K ◦Ktaper)Ã). (6.8)
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Tapered kernel nonnegative matrix factorization

Nonnegative Matrix factorization (NMF) [8] is a popular technique in image process-

ing, computer vision, data mining, etc. Given a nonnegative input data matrix X , NMF

seeks two nonnegative matrices to approximate X by minimizing the following objective

function:

(W,H) = arg min
W,H≥0

‖X −WH‖2F . (6.9)

Zhang et al. [4] proposed to do nonnegative matrix factorization on kernels (kernel

NMF). Let X = [x1, x2, ..., xn] be the input nonnegative data matrix. Then, the mapped

data matrix is φ(X) = [φ(x1), φ(x2), ..., φ(xn)]. By matrix factorization technique, kernel

NMF searches Wφ and H , such that φ(X) ≈ WφH , where Wφ is the base matrix in the

spaceH and H is the coefficient matrix.

The kernel matrix K = φ(X)�φ(X) ∈ Rn×n, so

K = φ(X)�φ(X) ≈ φ(X)�WφH. (6.10)

Let Y
.
= φ(X)�Wφ, then we have K ≈ Y H . Given the input data matrix X , kernel matrix

K can be computed by Kij = 〈φ(xi), φ(xj)〉 = k(xi, xj). Then Y and H can be learned

by factorizing the kernel matrix K.

Kernel NMF aims to approximate K = φ(X)�φ(X) ∈ Rn×n, while Tapered kernel

NMF focuses on K ◦Ktaper = φ(X)�φ(X) ∈ Rn×n. Y and H are learned by factorizing

the tapered kernel matrix K ◦Ktaper, where Y
.
= φ(X)�Wφ.

6.3 Experiments

Before evaluating the performance of tapered learning algorithms, we first design a

synthetic data set to illustrate the effects of tapered kernels. We design the training data,

a 100 × 100 matrix, to be 10 groups with each having 10 columns; each sample from the

kth(k = 1, 2, ..., 10) group has 10 elements ((10(k − 1) + 1)th, ..., 10kth) sampled from
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Gaussian distribution N (1, δI), and the rest being zeros. Then each column of X is per-

turbed by a random Gaussian noise (N (0, εI)). Our goal is to build a kernel matrix which

is not affected by noises, i.e., a block diagonal symmetric matrix. Therefore, we compare

the linear kernel and its tapered kernel. The constructed kernel matrices are plotted in Fig-

ure 6.1. It is clearly seen that the tapered kernel can significantly remove the noises from

data, indicating good potentials for improved performance of kernel learning algorithms.

Here we evaluate the tapered kernels in the setting of two kernel based algorithms:

kernel k-means and kernel NMF. Specifically, the kernel based algorithms equipped with

tapered kernels are compared to those with corresponding traditional kernels.

6.3.1 Experimental settings

To evaluate our scheme, tapered kernel k-means and tapered kernel NMF are tested on

the task of image clustering. The traditional kernel k-means and kernel NMF are treated

as baselines, respectively. Note, k-means and NMF usually have different application and

different merits, and here we are not interested in comparing k-means with NMF. Instead,

we restrict our comparison to the kernel algorithms with traditional and tapered kernels.

For traditional kernels, three kernels are adopted: 1, linear kernel; 2, RBF kernel; 3,

exponential kernel. As a result, the resulting tapered kernels are: 1, tapered linear kernel;

2, tapered RBF kernel; 3, tapered exponential kernel. So, both of the two algorithms (kernel

k-means and kernel NMF) are tested with each of the six kernels. Spherical taper is used

in our experiments for tapering.

The experiments are conducted on two data sets: Columbia Object Image Library

(COIL-20) [75] and USPS data set. COIL-20 contains a set of gray-scale images of 72

different poses of 20 objects with black background. The USPS digit dataset contains gray

scale images of hand written digits from 0 through 9, each image is of size 16 × 16, and

there are 1100 images for each class.

When the clustering experiments are conducted, for COIL-20 database, all the 1440

samples are used for all experiments, and 20 class clustering is conducted, for USPS data
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set, each time 1000 samples are randomly selected, and then 10 class clustering is conduct-

ed. The parameter θ in taper is set to 1 for COIL-20, and 2 for USPS.

For evaluation, accuracy and Normalized Mutual Information (NMI) are adopted as the

criteria to measure the clustering performance of the algorithms involved [53]. For both

of criteria, a larger value means better performance of clustering. To reduce the effect of

randomness induced by the non-convexity in optimization and the sampling of images in

experiments of USPS data set, all the experiments are repeated 10 times, and the average

results (accuracy/NMI) are reported.

Accuracy: Assume the clustering algorithm is tested on a set of N samples {xi|i =

1, . . . , N}. Let ri denote the cluster label of sample xi and ti the ground truth label. The

definition of accuracy is:

accuracy =

∑N
i=1 δ(ti,map(ri))

N
, (6.11)

where map(x) performs the best permutation mapping from clusters to predicted labels

by Kuhn-Munkres algorithm [55], and δ(x, y) is 1 if x is equal to y, and 0 otherwise.

Accuracy is higher when more labels are predicted correctly.

NMI: NMI compares the cluster centers of the ground truth, which are denoted by C,

and the ones predicted by algorithm, which are denoted by C ′, and is defined as follows:

MI(C,C ′) =
∑

c∈C;c′∈C′
p(c, c′)log

p(c, c′)
p(c)p(c′)

, (6.12)

where p(c, c′) denotes the joint probability that a sample belongs to cluster c and cluster

c′ while p(c) and p(c′) are the probabilities that a sample belongs to cluster c and c′ re-

spectively. Let H(C) and H(C ′) be the entropies of C and C ′, then the normalized mutual

information (NMI) is:

NMI(C,C ′) =
MI(C,C ′)

max((H(C)), (H(C ′)))
. (6.13)

Basically, NMF measures the similarity of two distributions.
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6.3.2 Experimental results

Tapered kernel algorithms are compared with corresponding traditional kernel algo-

rithms. Clustering results are listed in tables, the winner is in bold.

Kernel k-means with three different kernels are compared with corresponding tapered

kernel k-means on the data set COIL-20 in Table 6.1. We can easily see that tapered kernel

k-means have better performance than traditional kernel ones, especially for linear kernel

and RBF kernel. The performance of tapered kernel k-means on data set USPS is shown in

Table 6.2. Tapered one again has either better or nearly equivalent (with difference≤ 0.01)

performance in the three cases.

Table 6.1: Results of (tapered) kernel k-means on COIL-20.

Methods accuracy NMI

linear kernel 0.546 0.689

tapered linear kernel 0.601 0.736
RBF kernel 0.578 0.713

tapered RBF kernel 0.595 0.738
exponential kernel 0.573 0.721

tapered exponential kernel 0.603 0.732

Table 6.2: Results of (tapered) kernel k-means on USPS.

Methods accuracy NMI

linear kernel 0.648 0.647

tapered linear kernel 0.682 0.683
RBF kernel 0.707 0.679

tapered RBF kernel 0.697 0.692
exponential kernel 0.679 0.677

tapered exponential kernel 0.672 0.679
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The results of kernel NMF and tapered kernel NMF on COIL-20 and USPS are shown

in Table 6.3 and Table 6.4, respectively. Again, we can easily see that the tapered kernel

algorithms outperform the traditional kernel NMF in 11 out of 12 competitions.

Table 6.3: Results of (tapered) kernel NMF on COIL-20.

Methods accuracy NMI

linear kernel 0.355 0.464

tapered linear kernel 0.591 0.714
RBF kernel 0.453 0.575

tapered RBF kernel 0.594 0.718
exponential kernel 0.491 0.596

tapered exponential kernel 0.552 0.697

Table 6.4: Results of (tapered) kernel NMF on USPS.

Methods accuracy NMI

linear kernel 0.563 0.515

tapered linear kernel 0.612 0.596
RBF kernel 0.604 0.572

tapered RBF kernel 0.632 0.620
exponential kernel 0.569 0.535

tapered exponential kernel 0.568 0.585

From the results, we can safely conclude that the tapered kernels result in better perfor-

mance in terms of both accuracy and NMI. We believe that this boosting in performance

benefits from the tapering technique, which introduces sparseness to the kernel matrix

while preserving most of the useful information.

Though the main reason to introduce taper into kernel is that the real relation among

images should be sparse, there is a side effect that the tapered kernels make the related

algorithms more effective in terms of both time and space. Specifically, it saves space

due to the sparsity of the tapered kernels. Also, for the same reason, the computational

cost will be lower than traditional dense kernel. For example, kernel k-means with tapered
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linear kernel on COIL-20 takes about 0.73 seconds, while the one with untapered linear

kernel costs 1.07 seconds. Here about 30% of time is saved. The algorithm can be even

more efficient if we carefully design it and specifically take advantage of the sparsity to

speed up.
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7 PIECEWISE LINEAR NONNEGATIVE MATRIX FACTORIZATION

The rapidly increasing large scale data pose challenges to the storage and computation-

al resources, and make many computer vision and pattern recognition tasks prohibitively

expensive. Dimension reduction techniques explore hidden structures of the original high

dimensional data and learn new low dimensional representation to alleviate the challenges,

and thus they are important for modelling relation among images. Popular dimension re-

duction techniques, such as PCA and NMF, do an efficient linear mapping to low dimen-

sional space, while nonlinear techniques overcomes the limitation of linearity at the cost

of expensive computational cost (e.g. computing the pairwise distance to find the geodesic

distance). In this chapter, a piecewise linear dimension reduction technique with global

consistency and smoothness constraint is proposed to overcome the restriction of linearity

at relatively low cost. Extensive experimental results show that the proposed methods out-

perform the linear method in the scenario of clustering both consistently and significantly.

7.1 Introduction

Dimension reduction is playing an increasingly important role in many computer vision

and pattern recognition tasks due to the rapidly growing large scale data with high dimen-

sionality. It reduces the number of random variables under consideration, which not only

saves computational and storage resources but also helps overcome the curse of dimension-

ality.

To explore the hidden structures of the original high dimensional data samples, {xi =

(xi
1, . . . , x

i
m)

�|i = 1, . . . , n}, dimension reduction techniques find low dimensional rep-

resentation, {yi = (yi1, . . . , y
i
l)

�|i = 1, . . . , n}, where l < m, according to some certain

criterion to capture the content in original data. The algorithms may be either linear or

nonlinear. Typical linear methods, including principal component analysis (PCA), inde-
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pendent component analysis (ICA), nonnegative matrix factorization (NMF) and etc., are

usually simple and efficient, while nonlinear dimensionality reduction techniques, such as

locally linear embedding (LLE), Isomap, kernel tricks and Laplacian eigenmaps, allow

nonlinearity during the dimension reduction to capture more property of data, for instance,

underlying manifold structure, and thus to overcome the limitation of linear models. How-

ever, nonlinear ones are usually more computationally expensive, sometimes prohibitively.

NMF has been widely used in applications such as classification and clustering due to

its easy theoretical interpretation and desired practical performance. It aims to approxi-

mate nonnegative high dimensional data by product of a low-rank basis matrix and another

low-rank coefficient matrix, both of which are nonnegative. Variants of NMF algorithm-

s are proposed to adapt to different situations. Sparse solutions of NMF are gained by

adding extra sparseness regularization [27, 46]. Discriminative NMF algorithm maximizes

the between-class distance and minimizes the within-class distance while learning the low

dimensional representation [47, 48]. Research works in [17, 28] have proposed NMF vari-

ants on manifolds by adding constraints on local structures, since high dimensional data of

many applications are on low dimensional manifold [24, 49].

However, all these methods are restricted to linear dimension reduction, and thus un-

able to capture complex nonlinear properties. Moreover, many real world data require

nonlinearity in dimension reduction due to their distribution [16], for example, handwritten

digits form own manifolds in the feature space. Unfortunately, typical nonlinear dimen-

sion reduction techniques are prohibitively expensive when facing large data. For example,

Isomap has to compute the pairwise distances between sample to find geodesic distance,

kernel trick has to apply the kernel function to all pairs of samples, etc.

To allow nonlinearity in the dimension reduction and to keep the computational efficien-

cy, a piecewise linear dimension reduction technique is proposed in this chapter. Specif-

ically, piecewise linear nonnegative matrix factorization (PLNMF) is proposed. The as-

sumption is that though dimension reduction is nonlinear globally, it is linear locally, i.e.

linear dimension reduction method is applicable when data are restricted to a region. As

illustrated in Figure 7.1, the entire space is divided into 3 regions, within each of which a
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local model is learned. A global nonlinear dimension reduction is composed of a collec-

tion of linear local dimension reduction models. The proposed piecewise linear algorithm

has been evaluated on eight real world datasets, and it has been shown to generate more

accurate results than the linear model, NMF, in the scenario of clustering.

Figure 7.1.: Illustration of piecewise linearity: different colors correspond to different re-

gions according to the data partition. Different shapes are for data samples in different

classes. A local model fWk(.) is learned from samples within each region.

7.2 Piecewise Linear Nonnegative Matrix Factorization

Given a nonnegative data matrix X ∈ R
m×n
+ , each column of which is a data sample of

dimension m, NMF seeks two nonnegative matrices W ∈ R
m×p
+ and H ∈ R

p×n
+ , where p

is usually much smaller than both m and n and controls the ranks of matrices W and H ,

by minimizing a loss function L(X,WH). A typical choice is the following
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L(X,WH) =
n∑

i=1

�(xi,Whi)

=||X −WH||2F ,
(7.1)

where �(x, y) = ‖x− y‖22 and ||.||F denotes the Frobenius norm. Here W is treated as

basis, and each column of H is new low dimensional representation of each column of X

in new space.

Although the above objective function is nonconvex with respect to W and H jointly,

it is convex with respect to either W or H . An alternative minimization algorithm for

optimizing this objective function is to repeat the following two update rules [8]:

Wij = Wij
(XH�)ij

(WHH�)ij
, (7.2)

Hij = Hij
(W�X)ij

(W�WH)ij
. (7.3)

This section describes the proposed piecewise linear nonnegative matrix factorization

(PLNMF), which provides locality sensitive dimension reduction. Figure 7.1 illustrates the

idea of piecewise linearity, which is composed of two steps: 1, the data are partitioned into

groups in a locality sensitive way; 2, local model is trained for samples within each of the

groups with necessary regularization, which will be detailed later.

7.2.1 Locality sensitive data partition

The key idea is to partition samples into different groups such that samples in the same

group are much closer to each other than samples in different groups. There are various

approaches to achieve this, for example, 1, locality-sensitive hashing, which assigns local-

ity sensitive numbers to samples by a hashing function such that samples with the same

number are put in the same group; 2, k-means clustering, which groups samples into k

clusters with each sample belonging to the cluster with the closest mean. By either of
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these two methods, a group ID, g(xi), is gained for each sample xi. Say samples are par-

titioned into K groups, then g(xi) ∈ {1, 2, . . . , K}, ∀i. Then the matrix X formed by

samples {xi ∈ R
m
+ |i = 1, . . . , n} can be represented as a concatenation of blocks, i.e.

X = [X1, X2, . . . , XK ], with Xk ∈ R
m×nk
+ corresponds the samples with ID equalling to

k, where nk is the number of columns in block Xk.

7.2.2 Local linear dimension reduction

Let f be a linear dimension reduction function, i.e.

f : Rm �→ R
p, (7.4)

where p < m. When p = 1, it can be viewed as a typical linear regressor or classifier

depends on the type of output value.

The function f is defined globally in the feature space, and it linearly projects a sample

from m dimensional feature space to a low p dimensional space. The linearity of the projec-

tion usually ensures the simplicity and efficiency at the cost of flexibility, while a nonlinear

model is usually capable of depicting more complex data distribution at the cost of high

computational resources. For example, locality preserving projection (LPP) [76], is able to

reduce dimension of samples drawn from a manifold, however, it requires to compute the

pairwise distances of all samples, which may be prohibitively expensive especially when

facing large data. Considering all the facts above, a model that allows flexibility while

maintaining the efficiency is desired. Thus, we consider a piecewise linear model.

Assume the entire feature space is divided into regions {Rk|k = 1, . . . , K}. For each

region, there is a linear model trained locally and specifically. Denote the model for region

Rk by fk, then for an arbitrary sample, the model is

f(x) =
K∑
k=1

fk(x)I(x ∈ Rk), (7.5)
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where fk is a linear dimension reduction model, i.e., fk : Rm �→ R
p, and is trained

within each region Rk, and I is indicator function.

7.2.3 Assembling local linear models

Unlike the the conventional NMF, which considers a global loss function, PLNMF

aims to minimize the loss function defined on local regions {Rk|k = 1, . . . , K} that are

determined by either LSH or k-means clustering. In PLNMF, sample x belongs to region

Rk only if g(x) = k, i.e. I(xi ∈ Rk) = I(g(xi) = k). Also, local model, which is

determined by W k, is

fWk(s) = argmin
h
‖s−W kh‖22 (7.6)

Accordingly, the piecewise linear model is gained by gluing all the local models togeth-

er:

f(x) =
K∑
k=1

I(g(x) = k) argmin
h

�(xi,W khi)

=
K∑
k=1

I(g(x) = k) argmin
h
‖s−W kh‖22,

(7.7)

To learn all the local models {Wk|k = 1, . . . , K}, the loss function is defined as

L =
K∑
k=1

n∑
i=1

I(g(xi) = k)�(xi,W khi)

=
K∑
k=1

‖Xk −W kHk‖,
(7.8)
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where W k ∈ R
m×p
+ , Hk ∈ R

p×nk
+ . According to the formulation above, the partition of

the data divided the feature space S into a collection of disjoint K regions, and the samples

within the same region are handled by the same model W k.

7.2.4 Local models with global regularizer

In NMF, model W determines the dimension reduction. Let fW denote the model, i.e.

fW : Rm
+ �→ Rp

+. For an arbitrary sample x in region k, i.e. g(x) = k, its p dimensional

representation h is determined by fWk .

Unlike a classifier or regressor, which outputs a single value, we are usually interested

in predicting more than one values. For instance, we want to predict the temperature

and humidity next day, thus p = 2. Let h = [h1, h2]
T be the output. It is undesirable

that h1 output by model fW i means temperature and the h2 out by a different model

fW j represents temperature. Unfortunately, this inconsistency happens easily if the local

models are trained on individual regions independently. Note that W k itself will be be

learned from the samples in region k, Xk, by minimizing the objective function ‖Xk −
W kHk‖ with respect to both W k and Hk. It is not difficult to verify that a simple column-

wise permutation of W k and a corresponding row-wise permutation of Hk will introduce

a trivial different solution, and this permutation easily makes the interpretation of the same

dimension of h inconsistent.

Thus it is necessary to ensure the consistency from different local models before col-

lecting the set of models {fWk |k = 1, . . . , K} to form the model for the global feature

space.

To achieve this goal, a global reference model W , which is defined in the entire space,

is introduced to regularize all local models. The regularizer is defined as

R1(W, {W k}) =
K∑
k=1

||W k −W ||2F (7.9)
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To ensure the validity of the global reference model, we also introduce a regularizer so

that the model W is able to capture property of all original samples in different regions.

This regularizer is defined as

R2(W ) = ||X −WH||2F (7.10)

Combining the regularizers with the loss function, the overall objective function can be

written as:

O =L+ αR1(W, {W k}) + βR2(W )

=
K∑
i=1

||X i −W iH i||2F + α
K∑
i=1

||W i −W ||2F

+ β||X −WH||2F

(7.11)

α and β are parameters that control the strength of regularization. Specifically, α control

the consistency and smoothness as will be discussed below. When α is 0, the formulation

is factorized into a set of independent NMF problems on different regions according to the

partition. When α is infinitely large, it reduces to a global NMF, since all the local models

are forced to be exactly the same as the global one. By doing this, the proposed model

is equipped with both locality characteristic and generalization ability on global feature

space.

7.2.5 Discussion

Though the global reference model W is introduced mainly to disambiguate the incon-

sistency of different local models, it also helps smooth the final piecewise linear model and

avoid potential overfitting.
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The regularity and smoothness is not guaranteed while gluing a collection of inde-

pendently trained local models {W k|k = 1, . . . , K} into a global one, since individ-

ual model W k is limited on a local region. Specifically, for example, two neighbor-

ing samples xi and xj from two different regions have low dimensional representation

hi = argminh ‖s − W g(xi)h‖22 and hj = argminh ‖s − W g(xj)h‖22, the difference be-

tween them may be very large. With global regularizer the difference will be reduced.

Without a global regularizer, the piecewise linear model factorizes into independent

models defined on different local regions. The learned local models have overfitting risk

due to relatively small amount of samples in each individual region. By introducing the

global reference model, the information of samples in one local region will propagate to

other regions to help relieve the overfitting effect and improve the robustness of the piece-

wise linear model.

7.3 Optimization

In this section, we discuss the optimization of the objective function in Equation 7.11.

Obviously, it is not convex with respect to {W k|k = 1, . . . , K}, {Hk|k = 1, . . . , K},
W and H , jointly. Thus, an alternative optimization technique is adopted. A subset of

variables, say W , is being optimized while the others are fixed. Different variables are

optimized in turn until convergence. Specifically, we need to optimize the objective func-

tion with respect to W,H, {W k|k = 1, . . . , K} and {Hk|k = 1, . . . , K} alternatively. The

procedures are detailed in the following subsections.

7.3.1 Optimize local models and their coefficients

First, we describe how to optimize the local models and corresponding coefficients

while keeping global model W and new low dimensional representation H fixed. Fortu-

nately, when W and H are fixed, the optimization problem factorizes into a set of indepen-

dent subproblems, each of which involves a single local model W k and its corresponding
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coefficient matrix Hk. Thus, it is sufficient to solve these subproblems independently.

Specifically, for an arbitrary W k, the subproblem is

argmin
Wk

O =argmin
Wk

K∑
i=1

||Xk −W kHk||2F

+ α

K∑
k=1

||W k −W ||2F + β||X −WH||2F

=argmin
Wk

||Xk −W kHk||2F + α||W k −W ||2F
=argmin

Wk
||[Xk,

√
αW ]−W k[Hk,

√
αI]||2F

(7.12)

Let X̃
.
= [Xk,

√
αW ] and H̃

.
= [Hk,

√
αI]. The problem reduces to the conventional

NMF problem. Following the conventional NMF, and the objective function will decrease

when W k is updated as

W k
ij = W k

ij

(X̃H̃�)ij
(W kH̃H̃�)ij

. (7.13)

Similarly, the optimization with respect to Hk can be achieved as

argmin
Hk
O =argmin

Hk

K∑
i=1

||Xk −W kHk||2F

+ α

K∑
k=1

||W k −W ||2F + β||X −WH||2F

=argmin
Hk
||Xk −W kHk||2F

(7.14)

From the objective function, it is not difficult to see that Hk only depends on W k when

W k is given. Updating of Hk is the same as standard NMF:

Hk
ij = Hk

ij

(W k�Xk)ij

(W k�W kHk)ij
. (7.15)
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7.3.2 Optimize global model and its coefficients

The global reference model W serves as regularizer to ensure the consistency and s-

moothness of local models, and it is also learned from data. The optimization of W involves

the two regularizers in the objective function.

argmin
W
O =argmin

W

K∑
i=1

||Xk −W kHk||2F

+ α
K∑
k=1

||W k −W ||2F + β||X −WH||2F

=argmin
W

α
K∑
k=1

||W k −W ||2F + β||X −WH||2F

=argmin
W
||[√αW 1, . . . ,

√
αWK ,

√
βX]

−W [
√
αI, . . . ,

√
αI,

√
βH]||2F

(7.16)

Let X̃
.
= [
√
αW 1, . . . ,

√
αWK ,

√
βX] and H̃

.
= [
√
αI, . . . ,

√
αI,

√
βH]||2F . To de-

crease the objective function, we update W by

Wij = Wij
(X̃H̃�)ij

(WH̃H̃�)ij
. (7.17)

The optimization of H only involves the second regularizer. Thus, other terms can be

discarded during the optimization, and the problem reduces to argminH O = argminH ||X−
WH||2F . The updating rule of H is the same as rule in Equation 7.3.

7.3.3 Overall algorithm

The overall algorithm for piecewise linear nonnegative matrix factorization, which in-

cludes initialization and iterative optimization, is summarized in Algorithm 5. The stop-

ping criteria is determined by setting both a maximum number of iterations and a tolerance

threshold ε. The convergence of the iterative optimization is guaranteed since all of the
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Table 7.1: Dataset statistics.

Datasets �Classes �Samples �Attributes Other description

ORL 40 400 1024 Each class has 10 images.

USPS 10 11000 256 Each class has 1100 images.

COIL20 20 1440 1024 Each class has 72 samples.

Yale 15 165 1024 Each subject has 11 images.

Yale B 38 2414 1024 Each subject has around 64 images.

Wine 3 178 13

Leaf 40 340 14

Glass 7 214 9
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Algorithm 5 Piecewise linear nonnegative matrix factorization

Require: Samples {xi|i = 1, . . . , n}, K, p, α and β
1: Partition the data samples into K groups and form matrix X = [X1, . . . , XK ] ∈ R

m×n
+ .

2: Randomly initialize W ∈ R
m×p
+ , H ∈ R

p×n
+ , W k ∈ R

m×p
+ and Hk ∈ R

p×nk
+ , ∀k.

3: while not converge do
4: for k = 1 : 1 : K do
5: Update W k according to Equation 7.13

6: end for
7: for k = 1 : 1 : K do
8: Update Hk according to Equation 7.15

9: end for
10: Update W according to Equation 7.17

11: Update H according to Equation 7.3

12: end while
13: return W , H , {W k|k = 1, . . . , K} and {Hk|k = 1, . . . , K}

Table 7.2: Performance comparison on various datasets.

Datasets NMF PLNMF

ORL 40.18± 2.37 41.83± 2.05
USPS 51.46± 5.12 65.28± 4.65

COIL20 46.14± 2.78 53.06± 2.89
Yale 34.55± 2.23 38.24± 2.17

Yale B 19.46± 0.70 20.53± 1.58
Wine 47.02± 7.16 55.96± 6.13
Leaf 26.18± 2.03 31.06± 3.00
Glass 27.20± 2.72 41.17± 3.14

updating rules involved decrease the objective function [8] and the objective function is

lower bounded obviously, such as 0.

7.4 Experiments

To evaluate the performance of the proposed piecewise linear nonnegative matrix fac-

torization, we conduct experiments on benchmark datasets. By designing the experiments,
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we aim to answer the question whether or not the flexility induced by using a set of lo-

cal linear models instead of one will help in real tasks, such as clustering. The detailed

experimental settings and results are shown in the remaining of this section.

7.4.1 Experimental settings

In our experiments, the locality sensitive data partition is conducted by k-means clus-

tering. The number of partitions, K, is set to 2 for all datasets, and we do not tune K

across different datasets. Parameter α and β are searched on grid {10−4, 10−3, . . . , 104}.
The performance with different values of α and β are also reported.

To quantitatively compare the performance of dimension reduction methods, we con-

duct clustering experiments on a collection of benchmark datasets. Each dataset is com-

posed of samples from two or more classes. For a dataset having c classes of samples, the

parameter p is set the same as c, and the clustering is conducted by assigning each sample to

the cluster corresponding to the maximum component of its p dimensional representation.

Accuracy metric [53, 54] is used for evaluation of the clustering. For a sample xi, i ∈
{1, . . . , n}, let ri denote the cluster label and ti denote the ground true label. The accuracy

is defined as follows:

accuracy =

∑n
i=1 δ(ti,map(ri))

n
, (7.18)

where δ(x, y) is 1 if x is equal to y, and 0 otherwise. Function map(.) denotes the

best permutation mapping function by Kuhn-Munkres algorithm [55], which maps each

cluster to the corresponding predicted label. Thus, the more labels of samples are predicted

correctly, the higher the accuracy is.

Considering that the overall optimization problem is nonconvex, it is difficult to achieve

global optimum and different initializations may result in different solutions. To make the

experiments statistical meaningful, all the experiments are repeated by 10 times, and the

mean values and standard deviations are reported.
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Experiments are conducted on various datasets, including ORL, USPS, COIL20, Yale,

Yale B, Wine, Leaf, and Glass. ORL, Yale and Yale B are face datasets, where the image are

cropped and resized to 32× 32. USPS is handwritten digit database. COIL20 is composed

of multiple view images of 20 objects. The last three datasets are from UCI machine

learning data repository.

Each dataset has samples from different categories. Detailed data statistics are shown

in Table 7.1. When we use dataset USPS, 100 samples per class are randomly selected due

to the relatively large size. For other datasets, all samples are used for clustering.

7.4.2 Experimental results

The accuracy of clustering results on benchmark datasets are reported in Table 7.2.

For all the eight datasets, the proposed PLNMF achieves significantly higher clustering

accuracy than conventional NMF. For USPS and glass datasets, PLNMF is about 14% better

than NMF. For datasets COIL20, Wine and Leaf, the advantage is about 5% or higher. For

the other three face datasets, the proposed PLNMF perform also slightly better. We believe

the superiority comes from the adaptiveness to local regions of PLNMF.

Interestingly, the advantage of proposed PLNMF on datasets USPS, COIL20, Wine,

Leaf, and Glass is more significant than on the three face datasets: ORL Yale and Yale B.

Checking the detailed distribution of those datasets, it is not difficult to find that the first five

datasets are more diverse than the face datasets. Intuitively, the more diverse the dataset is,

the more complex model it requires to fit. Thus, PLNMF has more space to improve the

clustering performance for these five datasets.

We also study the sensistivity of the performance on the parameters α and β. The clus-

tering accuracy with varying values of α and β is shown in Figure 7.2. Note that the x-axis

in Figure 7.2 is logarithmic. When α lies in the range [10−4, 103], the clustering accuracy

of PLNMF is relatively stable for all datasets. For β, the accuracy for most datasets are

stable and good for β ≤ 1. Three datasets (USPS, Wine and COIL20) achieve optimal

performance when β ≥ 10. However, for each individual pdataset, the sensitivity to β is
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Figure 7.2.: Parameter sensitivity of LPNMF.
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still low. Thus, we can safely reach the conclusion that the proposed PLNMF outperforms

conventional NMF, and the performance of PLNMF is reasonably insensitive to parameters.
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8 CONCLUSIONS AND FUTURE DIRECTIONS

8.1 Conclusions

In summary, this dissertation conducts preliminary research on the following important

issues in image relation modelling as well as its applications and related optimization.

Misalignment: Images are often loosely or not controlled in real-world applications, and

as a result misalignment is pervasive and impairs relation modelling, including factorization

and classification. This dissertation extends the existing NMF and SVM algorithms by

integrating aligning process seamlessly to achieve insensitivity to misalignment.

Multi-manifold structure: In many real situations especially when data are in high di-

mensional space, samples typically lie on low dimensional manifolds of the feature space.

The structure of underlying manifolds has been proven to be critical for the performance

of many image processing tasks. This dissertation develops factorization and classification

algorithms which explore the sparse structures on multiple manifolds.

Challenges in nonlinearity: Modelling relation among large-scale complex data requires

the flexibility of nonlinearity, which may be introduced by kernel trick or piecewise linear-

ity. This dissertation introduces an effective simple approach to sparse kernels for image

processing. Also, a piecewise linear factorization algorithm with global consistency and

smoothness constraint is proposed to enjoy both the efficiency of the linear model and the

power of nonlinearity in dimension reduction.

The aforementioned issues are critical to many applications, including, but not limited

to, image clustering and classification. This dissertation makes attempt to address these

issues in real applications and opens up opportunities for future work.
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8.2 Future Directions

Most of existing modelling techniques rely on batch rather than online processing.

However, online algorithms will not only satisfy the requirements of real online input such

as video stream, but also bring potential efficiency and scalability to applications of image

relation for large-scale data.

Nowadays, combining with the popularity with visual data, there come other infor-

mation resources, which have the potential to help the modelling of image relation. For

example, the context of a social image will provide side information such as tags, ratings

and location information. Prior knowledge on side information could be easily adopted,

such as images with the same tags tend to have similar contents. Hence modelling images

relation should go beyond content and incorporate more information in real applications.
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