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ABSTRACT

Sadasiva, Subramanya Gautam Ph.D., Purdue University, December 2014. Simula-
tions of Diffusion Driven Phase Evolution in Heterogenous Solids. Major Professor:
Ganesh Subbarayan, School of Mechanical Engineering.

With reduction in size, ever greater operational demands are placed on electronics

components at all levels of the device, starting from the transistor level to the level

of the package and the solder interconnects. Concurrently, there has been a move

to more complicated materials systems in order to meet health and environmental

guidelines. These trends of reducing size, increasing loads have increased the necessity

to understand the mechanisms of the failure.

As the length scales are reduced, it becomes increasingly important to consider in-

terfacial and micro-structural effects that can be safely ignored at larger length scales

owing to the randomness. It has become important to model the effect of interfacial

motion and micro-structural evolution due to diffusion on the reliability of micro-

electronics components. Examples of interfacial motion phenomena in solids include

crack propagation, grain boundary motion, diffusion driven void motion through sur-

face and bulk diffusion. The presence and evolution of these over the life-cycle of

electronics components such as metal lines and solder joints presents a significant

reliability challenge. The mathematical models that describe the evolution of these

interfaces are usually formulated as systems of non-linear equations and hence, nu-

merical methods provide an important method to study and understand them. The

primary challenge in the study of these moving boundary problems is the tracking of

the moving boundary and the application of appropriate boundary conditions on the

moving boundary.

The phase field method tracks through smooth approximations of the Heaviside

step and Dirac δ functions, which are maintained through the solution of a system of
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nonlinear differential equations. In this work, phase field approaches are developed for

the study of diffusion driven phase evolution problems. First a phase field model for

the evolution of voids in solder joints owing to electromigration and stress-migration

both at the interface due to the surface gradients of the electric potential, temperature,

curvature and strain energy, as well as self diffusion in the bulk on account of the

chemical potential gradients as well as the electromigration force. This is modeled

using a vacancy diffusion mechanism, while the growth of the voids is assumed to

be due to the absorption of voids at the interface of pre-existing voids. A formal

asymptotic analysis is performed to show the equivalence of the diffuse interface

model to its sharp interface equivalents. Several numerical examples are presented.

Finally, an n−phase system of Cahn–Hilliard equations is developed to allow for

the simulation of void evolution and growth in a multi-phase system. This is derived

through a micro-force balance in order to eliminate the use of Lagrange multipliers

that are commonly seen in such methods. A limited formal asymptotic analysis is

performed to show the equivalence of the model to the standard surface diffusion

model in regions where only two phase are present. This is numerically implemented

and various numerical examples of phase evolution under simple surface diffusion, as

well as surface diffusion with electromigration are demonstrated.
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1. INTRODUCTION

Interfacial effects and phenomena play an important role in determining the behavior

of systems in nature as well as in technology. They are probably the most important

source for scale effects in nature. This is largely due to the fact that bulk quantities

scale with the length scale l as l3 while interfacial quantities scale as l2 [1]. The study

of these interactions between the surface and the bulk become more complex, when

their evolution needs to be tracked, as this necessitates the application of boundary

conditions on moving interfaces. A few of these phenomena are described here.

• Tumor Growth: The growth of malignant tumors is driven by the availability

of nutrients and the surface area available for the absorption of nutrients [2].

Any drug absorption to reduce the growth rate or increase the death of the

tumor cells at the surface of the tumor is also governed by the available surface

area (Chapter 1 ). This surface changes as old cells on the surface of the tumor

die or new cells are born to take their place.

• Solidification: Solidification processes play a very important part in na-

ture, and display very intriguing structures such as the structure of snow-flakes

(Fig. 1.2). The growth of different spokes on a snowflake is amongst a lot of

other factors also affected by the size and length scales of perturbations at the

solidification front.

• Grain Boundary Motion: Grain boundary motion (Fig. 1.3) plays an im-

portant part in the mechanical properties of solids at small length scales. Grain

boundary motion can be driven by a variety of factors including simple free en-

ergy minimization to motion driven by the diffusion of species [4]. As engineer-

ing systems become smaller, the effect of grain boundaries become significantly

more important.
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1.1 Moving Boundary Problems in Engineering

A particular focus in this thesis is the study of the effect of moving boundaries

on the reliability of solder interconnects in electronics packages. As the scale of

Figure 1.1. The degree to which blood vessels form in tumors depends on the surface
area of the tumor, that changes as the tumor grows [3].

Figure 1.2. The formation of snowflakes is an example of dendritic solidification and
the surface energy plays an important part (by Wilson Bentley - Image in Public
Domain).
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(a) t=1 sec
! !

(b) t=55 sec

Figure 1.3. Images of a 71◦tilt grain boundary moving in a field of 12 T magnetic field
at 410 ◦C after 1, 19, 37 and 55 s annealing [5].

these joints has shrunk, (from > 100µm in previous generations to ≈ 10 − 15µm

in the coming generations) the importance of interfacial effects for the prediction

of behavior has increased. Also, the current densities have reached the order of

≈ 104A cm−2 making electrically and thermally driven effects important. The recent

move from PbSn solders to Pb-free solder has led to significantly more complicated

material systems. These solder joints consist of 3-4 grains. This means that the

averaging approximations that exist for larger solder joints are no longer valid for

these small solder joints.

Moving boundaries play an important role in every stage of the manufacture of

solder joints. The shape of the solder joints is largely determined by the minimization

of the surface energy of the molten solder while the solder is being reflowed [6]. During

this reflow process, buoyancy and thermocapillary recirculating flow is setup in the

solder joints [7]. As the solder joint solidifies, bubbles of the flux gas in the solder

joint rise to the interface and provide sites for further failure. The bubbles of the

flux gas can also grow during this process due to the diffusion of the flux gas and the

coalescence of dissolved flux gas at the surface of the void.

Once the solder joint is solidified, these voids can grow due to solid state diffusion

effects. The shape and position of the voids can change due to spontaneous (chemical

potential gradient driven as well as thermal, electrical and stress driven) surface
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Figure 1.4. Moving boundary problems in Solder interconnects. (a): Solder bubble
shape determination by surface energy minimization. (b): Formation and evolution
of reflow voids. (c): Moving boundary problems in solder joints during use.
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diffusion. While this progresses, self-diffusion (through a vacancy mechanism) and

coalescence of vacancies at the void surface can cause the growth of these voids.

Concurrent with the self-diffusion of tin, in Pb-Free solder joints, there is the added

complication of the diffusion of silver and copper. These species can form precipitates

of pure Ag, Cu or Cu−Sn and Ag−Sn intermetallics which affect the mechanical

properties of the solder joint. The growth and evolution of these precipitates is

also a phase evolution process and is governed by the surface energy and the local

concentrations of Ag and Sn [8–10].

Recent designs for the solder interconnect possess large supplies of copper next

to the solder material. Electrical and mechanical loading on the solder joints as

well as the spontaneous chemical potential gradient across the copper-solder joint

interface causes the copper to get consumed moving the interface. Some of this copper

is consumed in the formation of intermetallic materials [11]. These intermetallic

materials are brittle and provide paths for crack growth at the interface [12].

1.2 Literature Survey

In this section a short survey of the literature related to the thermodynamics of

moving boundary problems, as well as the numerical methods used for their simulation

is presented.

1.2.1 Thermodynamics of Diffusion Driven Moving Boundary Problems

To develop models for the evolution of voids and precipitates, it is important to de-

velop an understanding of the non-equilibrium thermodynamics of moving boundary

problems. The equilibrium thermodynamics for heterogenous systems was initially

developed by Gibbs in his landmark work of 1877 [13]. This work developed equilib-

rium conditions for multi-species systems in fluid and gaseous systems. However, as

solid state diffusion was an unknown phenomenon at this time, Gibbs did not consider

these effects. In Gibbs’ work, the chemical potential is defined (for the first time) as
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a Lagrange multiplier ensuring constant mass/number density while maximizing the

entropy or minimizing the energy. As this work exclusively deals with the determi-

nation of equilibrium conditions, it does not deal with evolution effects. The earliest

developments of thermodynamics for non-equilibrium thermodynamics of heteroge-

nous systems were in the work by Eckart [14, 15] and in Degroot and Mazur [16]. In

this approach, the non-equilibrium effects are defined as consequences of gradients

in the intensive quantities. In the classical non equilibrium treatment in [16], local

equilibrium is used to define the value of the chemical potentials in terms of the

other primary and secondary thermodynamic variables. The non-equilibrium fluxes

are then defined as linear functions of the driving forces as,

Ji =
∑

i

LijFj. (1.1)

In Eq. (1.1), Ji is the irreversible flux of the i − 1 components or of energy (as

heat transfer). Lij is a symmetric positive semi-definite matrix of coefficients and Fj

is a vector containing the driving forces for irreversible processes (∇µi,∇T etc.).

A problem specific to the development of thermodynamics for solids is the treat-

ment of non-hydrostatic equilibrium strains. In the classical Gibbs approach, the

deformation variable is taken to be the volume or dilation and the conjugate variable

is taken to be the pressure. At interfaces, the conditions of equilibrium at the interface

in terms of equality of the chemical potential across the interface lead to the stress

being hydrostatic on either side of the interface [17]. This is not reasonable in the case

of solids. Another issue in the formulation of moving boundary problems in solids is

that the kinematics is complicated by the existence of two ways in which the domain

changes. The first being standard deformation processes of stresses and strains, the

second the processes that correspond to the actual growth of the interfaces.

These issues were first dealt with accurately by Larché and Cahn [18, 19]. The

Larché and Cahn approach has been extended for cases involving surface excess quan-
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tities by several authors [20, 21]. The relations developed by these authors still fall

within the framework of Gibbsian and classical non-equilibrium thermodynamics.

The limitations of this approach are largely in the fact that force-flux relations

are a-priori limited to linear relations. Also equilibrium relations are used in the

derivation of relations for non-equilibrium processes. For most engineering systems -

this shortcoming is not very important. However in cases involving chemical reactions

(formation of intermetallics) or where there are aging processes the assumption of local

equilibrium is not valid, and the development of thermodynamics can feel logically

incomplete.

To avoid these problems, an alternative approach was developed by Gurtin and co-

authors starting 1989 onwards based on rational thermodynamics [22–27]. In rational

thermodynamics [28], the Gibbs relations and the Maxwell relations are not assumed

a priori, but are derived later as consequences of balance (as opposed to extremaliza-

tion) laws. In this approach - no assumption of local equilibrium is explicitly made

and hence it is better suited for the simulation of non-equilibrium processes involv-

ing chemical reactions and aging, where assuming local equilibrium is problematic.

Another important factor in favor of rational thermodynamics is the existence of

invariance principles for energetic quantities. The most important one is that the

expression for the change of stored energy of the form

d

dt

∫

Ω

EdΩ =

∫

Γ

(Energy Fluxes)dΓ. (1.2)

is invariant with respect to translational and rotational coordinate transformation.

This is an extension of Noether’s theorem used in classical mechanics, to allow for sys-

tems with dissipation. It can be shown that the balance equations (linear momentum,

angular momentum) are consequences of invariance under these transformations [29].

The idea of the configurational force balance, an extension of earlier variational equi-

librium arguments was originally introduced by Gurtin as the consequence of a similar

invariance with respect to the velocity of material phase evolution processes. This



8

was later modified into a separate fundamental balance similar to the momentum

balance. A more thorough review of the formulation of moving boundary problems

through continuum thermodynamics can be found in Chapter 2.

Gradient Flow Approaches

In the approaches listed above, the equations of motion for the evolution of phase

boundaries in solids are largely based on purely kinematical relations and corre-

sponding conditions on driving force derived from thermodynamics. An alterna-

tive approach that is popular is the use of Gradient Flows [30–32]. Gradient flow

approaches are based on the assumption that the evolution of the system near equi-

librium proceeds in a way that the rate of entropy generation/free energy change is

maximized/minimized. In this approach the first step is to determine a free energy

function Ψ, which is being minimized while the process is in motion. Differentiating

the free energy function with time leads to an expression of the form

d

dt

∫

Ω

Ψ(•)dΩ =

∫

Ω

d

d•
Ψ(•)L(•̇)dΩ. (1.3)

In Eq. (6.6), the L is a linear operator that includes mobility terms for the change.

The fastest rate of change is achieved when,

•̇ = −L−1 d

d•
Ψ(•). (1.4)

This approach is useful for deriving qualitative results, however there are a couple

of issues. The approach is problematic when there are external supplies involved,

and also when deriving the appropriate form of the linear operator L for various

problems. The process of using gradient flows for deriving phase-field equations is

shown in greater detail in Chapter 6.
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1.2.2 Numerical Techniques for Moving Boundary Problems

In this subsection, the different numerical strategies that are available for the

solution of moving boundary problems are discussed. In general, numerical methods

for the solution of moving boundary problems can be divided into two general classes

based on the representation and evolution strategy for the interface. These are,

• Explicit tracking methods,

• Implicit tracking methods.

These are described in greater detail in this section.

Explicit Tracking Methods

In explicit tracking methods, the moving boundary is explicitly discretized and

has an independent parametrization, either with finite elements or other appropriate

discretization. The surface is then evolved using this parametrized form. The motion

of these surface nodes can cause excessive deformation in the elements which are close

to the interface, leading to a loss in accuracy of solutions. To ameliorate these errors,

an Arbitrary Lagrange Eulerian (ALE) [33] formulation of the governing equations is

often used, in which a separate smoothing velocity field is specified for the motion of

nodes in the bulk (Fig. 1.5). The transport theorems for quantities are modified by

adding a convective term to time derivative quantities to account for the change in

the mesh. For example, the time derivative in Lagrangian coordinates is written as,

d(•)
dt

|X =
∂(•)
∂t

|mesh point + vmesh∇(•). (1.5)

In Eq. (1.5), d(•)
dt

is the Lagrangian time derivative, ∂(•)
∂t

is the rate of change of the

quantity at the mesh point and vmesh is the velocity of the mesh point itself. The need

to construct special meshes which can benefit from the mesh smoothing also limits the

domain of applicability of these methods. The existence of sharp boundaries allows
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the application of complicated boundary conditions with relative ease, allowing the

study of more complex physical phenomena with great accuracy. They have been used

for a wide range of problems, including void electromigration [34, 35]. On the other

hand, these methods are often impractical for simulations that involve topological

changes.

(a) (b)

Figure 1.5. Arbitrary Lagrange Eulerian Meshes. The mesh is modified near the
interface inside the circular region. As the rigid body in the fluid moves, the mesh is
modified in such a way that the element distortion is minimized [33].

Implicit Tracking Methods

Figure 1.6. Implicit tracking methods.
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Implicit methods track the interface by tracking the level set φ(x) = c of a function

that changes monotonically on either side of φ(x) = c (Fig. 1.6). In addition to the

governing equations in the bulk, an additional equation for the evolution of this

function needs to be solved. The various implicit tracking methods are classified on

the basis of this additional equation. The main Implicit Tracking Methods are listed

below.

• Level Set Method: In the level set method [36], the function φ is taken to

be the signed distance function, (usually indicated by ρ). The update to the

interface is computed as a solution to the Hamilton Jacobi equation Eq. (1.6).

∂ρ

∂t
+ v.∇ρ = 0 (1.6)

In Eq. (1.6) ρ is the exact signed distance function that is 0 at the interface and

monotonically increases and decreases on opposite sides in the vicinity of the

interface (Fig. 1.7). The normal velocity v.n is explicitly computed based on the

physics of the problem. Frequently, this is done by reconstructing the interface

to compute the interfacial quantities. This reconstruction of the interface leads

to this method frequently being called a sharp interface method. They are

possibly the most popular technique for interface evolution problems and have

been used for electromigration simulations as well [37].

• Volume of Fluids Method: In the volume of fluids method [39], the φ is

the characteristic function. This is 0 on one side and +1 on the other. The

update equation for the volume of fluid methods is very similar to the equation

for the level set equation (Eq. (1.6)). However, in contrast with the distance

function, the characteristic function is discontinuous and thus complicates the

update procedure. Therefore, the solution of the equation in volume of fluid is

by reconstructing the surface using linear polynomials and then updating the

surface based on the velocity (Fig. 1.8). The characteristic function is then used
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Figure 1.7. Level Set Function. The signed distance function is usually used to indi-
cate the inside and outside of the interface are indicated by the sign of the distance
function. The interface is evolved by evolving the distance function [36].

to localize the solution for the bulk problem, were the effect of the surface forces

is captured through adding appropriate localized source terms.

• Phase Field Methods: The idea of treating interfaces with additional excess

quantities as regions of space of finite thickness has a long history starting with

van der Waals in 1893 [40,41]. This insight is used for a more general study of

problems with moving interface by various authors beginning with [42], where

a smoothed characteristic function φ is set up over the domain, that transitions

between two equilibrium values over a narrow region of thickness ϵ. However,

in contrast to the volume of fluids and level set methods, the value of this

characteristic function is not determined using an explicit representation of the

surface but as the solution to a nonlinear diffusion equation. This nonlinear

diffusion equation is usually obtained as the extremum of a functional that

penalizes both non-constant values and forces the solution to one of two (in the

simplest binary case) or more (in the general case) variables. The solution to

the phase field equation thus involve updating the characteristic function while

satisfying the extremum condition. The form of the functional being extremized
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Volume of Fluids Method. The volume parameter in-
dicates the fraction of each cell occupied by the fluid.

This information is then used to reconstruct the inter-
face by either a method such as SLIC or linear inter-
polation.

Figure 1.8. Volume of Fluids Method [38].

determines the form of the function φ. While the computational demands of

the phase field method are more significant compared to the other two methods

described here, in requiring a denser mesh compared to the level-set or the

volume of fluid methods, it provides a few unique advantages.

Both the level set and the volume of fluids equations are purely convective equa-

tions. As such, these equations are difficult to solve accurately using the Galerkin

finite element method and some measure of stabilization is required through upwind-

ing. This adds further complexity to the implementation of these methods. Another

level of complexity is added due to the necessity of surface reconstruction and surface

reinitialization. On the other hand, the phase field function is automatically reini-

tialized at every time-step. The diffusion-like nature of the equation also makes it
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easier to solve the equation using standard Galerkin finite elements. A more detailed

description of phase field methods is provided in the next section (§ 1.3).

1.3 Phase Field Methods

There are two ways of studying interface effects. The first is the method of van

Der Waals and Korteweg [40, 41]. In this method of study, the interface is not a

real physical entity. Instead, it is just a region of space where the fields show very

sharp gradients. In thermodynamics, both variational [43, 44] and rational [45, 46],

the behavior of the system can now be derived from the evolution of a volumetric

functional with time. The equilibrium of the system under various sets of constraints

on the system can now be obtained based on the extremum of this functional. This

picture of interfacial effects is shown in Fig. 1.9. The free energy functional used in

such models is a representation of the actual physics of the system. This idea is the

inspiration behind the original Cahn-Hilliard model for spinodal decomposition [47],

the Allen-Cahn model [48] for order-disorder transformation etc. Computationally,

this approach has been widely used in the past 20 years. The approach has been used

to study dendritic solidification [49,50], diffusion driven changes in batteries [51,52],

and intermetallic growth [53, 54].

The principal challenge with numerical implementations of phase field models

of this kind is discretization at the interfaces. All the fields in these models are

physical. Hence, the problem has to be appropriately discretized at the smallest

length scale in the problem. The interfaces in most physical systems are usually

≈ 10−8,9m wide. This means that if the largest length-scales in the problem are of

the order of 10µm, the interface is 3-4 orders of magnitude smaller. This makes these

models computationally quite prohibitive, especially when larger systems are under

consideration.
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Figure 1.9. van der Waals, Korteweg idea of the interface. The interface is just a
region of space, where the variables of the system display very sharp gradients. This
picture is close to physical reality at atomic length scales.

The alternative picture of the interface is the Gibbs idea of the interface [13] which

is shown in Fig. 1.10. In the Gibbs idea of the interface, the system is assumed to

follow the evolution of an energy functional of the form,

Ψ =

∫

Ω

ψdΩ+

∫

Γ

ψΓdΓ (1.7)

When using this approach to study the evolution of systems or the equilibrium of

systems, the governing equations turn out to be a system of partial differential equa-

tions specified over the bulk of the system, with boundary conditions at the moving

interface. This is the approach that leads to interfacial relations such as the classical

Gibbs-Thomson, Thomson-Freundlich or Laplace-Young condition [13,55]. Geometric

concepts, such as the curvature of the interface are meaningless in the Korteweg/van

der Waals [41] idea of the interface, though they might be captured in alternate ways.

For example, in Korteweg fluids, the classical Cauchy stress tensor is augmented by

a term of the form, ∇ρ ⊗ ∇ρ, where ρ is the density of the fluid. If the gradient of

the densities are restricted to a very narrow region, the ∇ρ ⊗ ∇ρ is related to the

geometrical surface projection tensor of the interface. When the divergence of such a

tensor is computed Eq. (A.7), it leads to a force, normal to the interface, proportional

to the curvature of the interface.
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Sharp interface models for interface evolution usually use a Gibbs idea of the

interface. Additionally, sharp interface equivalents are frequently derived to Korteweg

type models for the interface [56].

Γ

Phase α

Phase β

Figure 1.10. Gibbs idea of the Interface. The interface between two phases is indicated
by a mathematically sharp interface, with interfacial excess quantities associated with
them.

An alternative is to combine the two approaches. In this approach, energy func-

tionals of the form Eq. (1.7) are modified into purely volumetric functionals [57].

This is done by introducing a phase field variable that does not correspond to any

particular material property but just acts as a mathematical indicator for indicating

the location of the phases. Hence, the integral Eq. (1.7) is modified by re-writing the

surface integral as,

∫

Γ

ψΓdΓ →
∫

Ω

ψΓ

(

ϵ∥∇φ∥2 +
1

ϵ
f(φ)

)

dΩ (1.8)

In the above, f(φ) is a positive function such that f ′(φ) has roots at the values

chosen to be the phase indicators. ϵ is a small number that acts as a measure of

the interface thickness. This approach is illustrated in Fig. 1.11. An example of

this approach is the regularization of the Mumford-Shah functional [58] for image

segmentation. The Mumford-Shah functional is written as,

I(u,∇u) =

∫

Ω

α∥∇u∥2 + β|u− g|2dΩ+

∫

Γ

γdΓ (1.9)
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Figure 1.11. Numerical phase field. The physics is still determined by the Gibb-
sian idea of the interface. The properties between the phases are interpolated by a
sigmoidal function (b), and properties at the interface are associated with a regular-
ization of the Dirac δ function (c).

The gradient terms in Eq. (1.9) tend to remove noise from the data g, while the

β|u− g|2 ensures that the solution u fits the image. The surface integral in Eq. (1.9)

divides the image into regions which have more or less constant values of u. Numerical

solution of such problems is made difficult by the surface integral term. This is solved

by using a modified regularized form of Eq. (1.9). This can be written as,

I(u,∇u,φ,∇φ) =
∫

Ω

(

α(φ)∥u− g∥2 + β(φ)∥∇u∥2
)

dΩ+ c

∫

Ω

ϵ∥∇φ∥2 +
φ

ϵ

2

dΩ.

(1.10)

This integral has the same information as Eq. (1.9), and can be shown to be rigorously

the same as ϵ → 0. The same approach can be extended to physical problems. The

standard energy functionals are modified to energies of the form Eq. (1.8) and a set of

evolution equations is derived based on this energy functional either variationally or

through rational thermodynamics. These evolution equations have ϵ as a parameter.

Through a variety of methods, (asymptotic analysis [59], or Γ−convergence [60]), the

equivalence of the modified partial boundary conditions can be shown to be equivalent
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to the sharp-interface model. The solution scheme also leads to a regularized version

of the Heaviside step function with different constant values in each of the phases,

as well as various approximations to the Dirac δ function at the interface between

the phases. These are determined by the choice of the phase field function and are

described in § 1.3.2.

While exact reproduction of the physics by a numerical method still requires very

dense discretization and ϵ has to be at the same length scale as the physical width of

the interface, sufficiently good results can be obtained at much larger values of ϵ if very

high accuracy is not required. This approach has been used for a variety of problems

including phase field simulations of fracture [61, 62], multi-phase flows [63, 64], void

electromigration [65,66] and other problems.

1.3.1 Types of Phase Field Systems

Phase field systems can be broadly classified into two types based on the order of

the differential equation being solved. These are:

• Allen-Cahn Systems: Allen-Cahn type systems are derived as simple gradient

descents of Eq. (1.8) and lead to second order partial differential equations.

They are not conservative (in terms of the phase field variable) and finally lead

to the entire domain converging to either one of the roots of the function f(φ).

These methods can be made conservative by adding a Lagrange multiplier to

the functional (Eq. (1.11)). While this does make the method conserve the

phase field variable, it also has the effect of making the system non-local which

makes it unsuitable for modeling continuum physics [67].

∂φ

∂t
+ v∇φ = M

(

∇2φ− f ′(φ) + λ(φ− φ0)
)

. (1.11)

In Eq. (1.11), φ0 =
∫

Ω φ(t = 0)dΩ, and λ is a Lagrange multiplier that holds

the value of φ0 constant.
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• Cahn-Hilliard Systems: The Cahn-Hilliard equation on the other hand uses

the functional to define a chemical potential, and then tracks the minimization

as a diffusive process driven by the gradient of this chemical potential. This

process also minimizes the functional with a constraint on the integral of φ over

the domain [68]. In contrast with the Allen-Cahn equation with a Lagrange

multiplier, this approach is completely local - and hence more suitable for the

simulation of continuum physics. The prototypical Cahn-Hilliard equation can

be written as,

∂φ

∂t
+ v∇φ = M∇2µ (1.12a)

µ = −γ
(

ϵ∇φ+
1

ϵ
f ′(φ)

)

(1.12b)

The Cahn-Hilliard equation conserves the total value of the phase field variable

over the entire domain.

1.3.2 Choice of the Phase Field Energy Function

An important consideration in the formulation of phase field equations is the form

of the phase field energy function, f(φ). Traditionally, this function is derived from

the phase diagram of the actual multi-phase system. This approach is frequently

combined with a phase diagram generator such as CALPHAD [69]. This approach

is useful for studying effects such as phase nucleation, where the precipitation of a

secondary phase depends on the position of the system on the phase diagram. Various

approximations to forms of the function f(φ) from the above approach have led to

the various phase field functions that are commonly used in the phase field literature.

The oldest and the most commonly used version of the phase field function is the

quartic energy function (Fig. 1.12). The motivation for the use of the biquadratic

potential function is that it is the simplest polynomial that can have two distinct

stable local extrema (quadratics and cubics only have one stable extremum). The
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Figure 1.12. A quartic energy function.

coefficients of the quartic function are then determined via a fit to the phase diagram

or another physical approach. In the mathematical phase field methods however,

a biquadratic function is usually chosen with the minima at either 0 and 1 or ±1.

The primary advantage of using the biquadratic phase field functions is that they

are smooth. This allows easy numerical solution by standard techniques for non-

linear equations. The disadvantage is that the solutions lead to a hyperbolic tangent

regularization of the Heaviside function (Fig. 1.14). These reach a constant value

only asymptotically and hence there is no strictly defined interfacial region.

The second commonly used potential function type are the obstacle potentials

(Fig. 1.13). The obstacle potentials were originally developed by Oono and Puri [70]

to study phase separation dynamics. This can be written as,

f(φ) =

⎧

⎪
⎨

⎪
⎩

−(φ− a)(φ− b) if a ≤ φ ≤ b

∞ otherwise.
(1.13)

When solved, the solutions to the equations with the obstacle potentials lead to a

localized sinusoidal regularization (Fig. 1.14) between the two extrema of the the po-

tential function. In contrast with the quartic polynomials the obstacle potentials lead
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Figure 1.13. An obstacle potential function.

to a very sharp interfacial region. This often allows more accurate solutions. However,

the solution to the phase field equations is no longer possible by the standard methods

for non-linear equations, as the evolution equations are now variational inequalities.

Most numerical methods for the solution of the phase field equations with obstacle

potentials are able to restrict the solution to a narrow region around the interface,

but this is not a significant advantage, especially if adaptive meshes are used.

1.3.3 Numerical Approaches

The primary numerical challenge with phase field models is on account of the fact

that very dense discretizations are required to accurately capture interfacial effects.

This implies fairly large memory requirements for the solution. The usual solution

for time-stepping when the memory requirements are large is to use explicit time

stepping schemes such as the forward Euler scheme. This proves problematic with

the numerical solution of the Cahn-Hilliard equation as the CFL conditions for the

Cahn-Hilliard equation for stable time-stepping, require very small time-steps (∆t ≈

O(h4)). Hence, in spite the large memory requirements, most of the numerical schemes
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Figure 1.14. Regularizations of the Heaviside step function due to different forms of
the function f(φ).

developed for the Cahn-Hilliard equations tend to focus on developing implicit or

semi-implicit schemes [71–73].

A major challenge with fully implicit solutions of the phase field function is the

fact that the phase field energies are non-convex. This is essential for the system to

be able to evolve to different phases. Following Eyre in 1998 [72], various authors

have developed techniques that depend on separating the system into a convex part

and a concave part. The convex part is treated implicitly. The concave part is also

treated implicitly and the values from the previous time-step are used to compute

the effect. This allows the solution of every time-step to be the solution of a convex

problem, which are much easier to solve. A further advantage of schemes of this kind

is that the convex part can be designed to be linear. Eliminating non-linear problem

solution saves approximately two matrix solutions, which is a significant saving when

the problem sizes are very large. The approaches described in this paragraph are

more suitable for phase field functions with smooth potential functions.

The solution to the phase field equations with the obstacle potentials tends to be

more involved. The most successful methods tend to involve ideas from constrained

optimization. The original solution schemes for this problem were dependent on a
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projected Gauss-Seidel approach [74]. Later approaches were developed based on

the Douglas Rachford operator splitting method. Recent research on the solution

of the phase field equations of the variational inequalities focus on extending meth-

ods developed for the solution of constrained optimization problems to this class of

problems [75–77].

1.3.4 Spatial Discretization

A numerical challenge that is specific to the numerical solution of the Cahn-

Hilliard equations is the spatial discretization. As the Cahn-Hilliard equations are ac-

tually 4th order differential equations, their direct solution by finite elements requires

a discretization that is C1 continuous. Various authors have developed schemes for

the direct solution of the Cahn-Hilliard equations based on Hermite polynomials [78],

NURBS [79], etc. The alternative approach is the use of a splitting scheme, where

the equations are treated as a pair of coupled partial differential equations [80]. This

is by far the most common method of discretization for the Cahn-Hilliard equation

and the one adopted here. Numerical experiments have found that the C1 elements

have an advantage when it comes to solution accuracy, however, the additional cost of

function evaluation for integration in these schemes keeps the standard C0 approaches

competitive [81].

1.4 Research Objectives

The primary objective of this research is to develop phase field methods and

associated simulation tools for the simulation of diffusion driven moving boundary

problems in heterogenous solids. A particular focus of the thesis is the study of

problems of interest to the electronics packaging community, most importantly, void

evolution growth in solder interconnect structures. In order to do this, it is essential

to develop an understanding of the physics and thermodynamics of moving boundary

problems in solids. This understanding is to be used to construct a continuum model
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for the evolution of electromigration voids in solder interconnects (assuming a single

material undergoing self-diffusion) owing to bulk and surface diffusion driven by the

competing effects of surface energy, strain energy, stress, thermal and electrical po-

tential gradients. Additionally, the effect of adhesion at interfaces and anisotropies in

diffusivity need to be evaluated. Finally, approaches to study the evolution of phases

under the action of electric fields in the presence of diffusive effects in more than two

phases are studied.

1.5 Contributions

The main contributions of this thesis is the development of numerical methods

and tools for the solution of moving boundary problems in electronics packages using

a numerical phase field method. DiffCode, the numerical code developed in this

research, takes arbitrary ABAQUS meshes with arbitrary material assignments and

defines various initial void configurations. The evolution of these voids are tracked

under the influence of surface energies, surface strain energies, electrical potential

gradients and temperature gradients in the bulk and at the void interface. In addition,

the void growth is modeled using a condition dependent on the local supersaturation

of vacancies at every point at the interface. This code is used to demonstrate several

cases of void evolution in line-type and solder type geometries. The numerical tool is

also extended to study the effect of wetting at the interface between the solder joint

and the die. The effect of anisotropy in the diffusivity on void growth rates is also

studied. Finally, in order to simulate the growth and evolution of the voids at grain

boundaries, an n−phase system of Cahn-Hilliard equations is developed. A numerical

implementation of this n−phase system of Cahn-Hilliard equations is used to study

the evolution of voids at grain boundaries.
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1.6 Outline

This document is structured as follows. In Chapter 2, a comprehensive review of

the thermodynamics required for the study of moving boundary problems is presented.

Both variational and rational approaches are presented and contrasted. Methods

to derive non-equilibrium relations from variational thermodynamics are discussed.

Next, in Chapter 3, a phase field method for the evolution of voids is developed. Sharp

interface equations are presented, followed by their diffuse interface equivalents. A

formal asymptotic analysis is performed to show the equivalence of the diffuse in-

terface equations to their sharp interface versions. The phase field model developed

in Chapter 3 is solved using the finite element method. The numerical approach is

described in Chapter 4 and several validation cases and a few applications are demon-

strated. In Chapter 5, the model developed in Chapters 3 and 4 is extended to include

the effects of diffusivity anisotropy as well as the effect of the adhesive energy due to

wetting between the material of the interconnect and its surroundings. Several nu-

merical examples are presented. In Chapter 6, an n−phase Cahn-Hilliard equation is

developed for the solution of multi-phase problems based on the micro-force balance.

This is modified in order to account for the effect of surface electromigration. An ini-

tial, formal asymptotic analysis is performed in order to determine the constants that

relate the phase field model to it’s sharp interface equations. A numerical method

and several numerical examples for the n−phase Cahn-Hilliard equations is presented

in Chapter 7. The research is summarized, and several avenues for future develop-

ment are discussed in Chapter 8. The document has several appendices that provide

additional information to aid with reading the dissertation. First, in Appendix A, the

transport theorems and balance laws for systems with evolving interfaces are derived.

Appendices B to D provide a short introduction to the mathematics of formal asymp-

totic analysis. Finally, the numerical tools developed in this thesis are described in

Appendix E.



26

2. THERMODYNAMICS FORMULATION FOR MOVING BOUNDARY

PROBLEMS

The thermodynamics of evolving phases in solids is made more involved by the fact

that simple continuum thermodynamics is not sufficient to capture all the phenom-

ena. Most importantly, the standard definition of phase equilibrium in terms of the

equality of the chemical potential on either side of the interface is insufficient [17,18]

as this implies a spherical state of stress. This picture is insufficient for solids as the

state of stress is not necessarily spherical. In this chapter, a review is presented of

both the variational [18, 20] and rational thermodynamics [82, 83] approaches to the

thermodynamics of moving boundary problems in solids. As phase evolution pro-

cesses are non-equilibrium phenomena, the rational thermodynamics approach is the

more rigorous one and involves fewer assumptions.

2.1 Extremum Principles for Equilibrium

The basic principles of variational thermodynamics arise from Gibb’s landmark

work [13]. Equilibrium of systems is defined through the stationarity of the internal

energy or the entropy of the system. In case of the energy, it is postulated that all

variations of the energy at constant entropy are non-negative,

δ(E(S))|S=S0
≥ 0. (2.1)
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This is essentially a statement of the minimization of total energy. Similarly for the

entropy, it is postulated that all feasible variations of the entropy at constant energy

are non-negative,

δ(S(E))|E=E0
≤ 0. (2.2)

With the introduction of Lagrange multipliers T and β, Eqs. (2.1) and (2.2) can be

stated as,

δ (E − T (S − S0)) ≥ 0 (2.3)

δ (S − β(E − E0)) ≤ 0. (2.4)

At strict equality, for a point system, the equilibrium conditions can be written as,

T =
dE

dS
(2.5)

β =
dS

dE
. (2.6)

β is therefore the inverse temperature. The above also points out a way to the defini-

tion of other intensive quantities as Lagrange multipliers to enforce the constancy of

extensive quantities. Hence, the temperature of a system is defined as the Lagrange

multiplier that ensures constant entropy at equilibrium when it is defined through

the minimization of energy. Similarly the inverse temperature β is defined as the La-

grange multiplier that ensures constant energy when equilibrium is defined through

the maximization of entropy. It can be shown that the two are equivalent [13]. The

approach can be extended to systems where the primary variables are other extensive

quantities. For example if the energy of the system is defined as E(N), where N is a

species that is held constant at equilibrium, the chemical potential µ is defined as the
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Lagrange multiplier that holds the number constant, and the pressure p is defined as

the Lagrange multiplier that holds the volume constant,

µ =
dE

dN
(2.7)

p = −
dE

dV
. (2.8)

The above relations can be generalized to a system where the energy or the entropy

has multiple arguments. For example, if the energy of a system is described by

an energy function E(S,N, V ), the conditions for equilibrium at constant entropy,

number and volume are as follows,

µ =
∂E

∂N
|S,V (2.9a)

T =
∂E

∂S
|V,N (2.9b)

p = −
∂E

∂V
|S,N . (2.9c)

The above can also be used to write the so-called Gibbs relations which give incre-

mental relation for the energy in terms of the changes in the arguments,

dE = −pdV + TdS + µdN. (2.10)

2.1.1 Legendre Transforms for Changing Variables

It is often not convenient to determine the behavior of the system in terms of

the variables of the energy. Depending on the type of the system and the conditions

under which the experiments are performed, it might be more convenient to use other

variables to define the system. For example, chemical reactions are often studied at

constant atmospheric pressure, instead of at constant volume. This is accomplished

through the Legendre transform [84,85]. The Legendre transform of a function allows
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the transformation of the information contained in a function y = f(x) into another

function g(f ′(x)).

The entropy of a system is hard to control in experiments, and hence determining

E(S) is difficult. On the other hand, systems can be kept at constant temperature

easily by immersing the system in a large reservoir at a constant temperature. This

is accomplished by taking the Legendre transform of E(S, V,N) with respect to S to

get a function Ψ(∂E
∂S

, V,N) or Ψ(T, V,N). The function Ψ is determined as

Ψ = E −
∂E

∂S
S = E − TS. (2.11)

The above function is also called the Helmholtz free energy. Minimizing the Helmholtz

free energy at constant temperature, volume and species number determines the equi-

librium of the system. The Helmholtz free energy can be used in the same way as E

in the previous equation, and at equilibrium, the following relations are obtained,

∂Ψ

∂T
= −S (2.12a)

∂Ψ

∂V
= −p (2.12b)

∂Ψ

∂N
= µ. (2.12c)

And a Gibbs relation can be written for Ψ as,

dΨ = −SdT − pdV + µdN. (2.13)

Another important condition that is frequently studied is when the system is main-

tained at constant pressure. This is achieved by a further Legendre transform of the

Helmholtz free energy Ψ(T, V,N) in terms of V . This function Φ is defined as follows

by the same mechanism,

Φ = Ψ−
∂Ψ

∂V
V = Ψ+ pV. (2.14)
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Relations of the type Eq. (2.12) can now be written in terms of the enthalpy.

Minimizing the enthalpy Φ(T, p,N) at constant temperature, pressure and species

number also determines the equilibrium of the system. Functions of the type E,Φ

and Ψ which can be minimized to determine the equilibrium are often referred to

as thermodynamic potentials for the specific constraints that are active during the

process of minimization. Another related interpretation of the idea of the thermody-

namic potential is that they are a measure of the maximum reversible work that can

be extracted from the system under different conditions [85].

It has to be noted that the term free energy is used in the literature for any

function of the form E − TS, and the the term enthalpy is used for any function

of the form Ψ + pV . The term enthalpy is also used for related functions in solids

where p and V are replaced by appropriate variables of the same type. A very notable

example which is very useful while determining the form of constitutive relations for

systems with stress and diffusion is the enthalpy written as Ψ− σ : ε.

2.1.2 Maxwell Relations between Derivatives

An important tool while determining the constitutive laws of systems are the

Maxwell relations, that relate different thermal quantities at equilibrium. The basic

idea is that the potential functions are smooth multi-variable functions. This implies

that the order of differentiation doesn’t matter. For example, consider the free energy

function Ψ(T, V,N). The equality of the mixed derivatives implies

∂2Ψ

∂V ∂N
=

∂2Ψ

∂N∂V
(2.15)

=⇒
∂µ

∂V
= −

∂p

∂N
. (2.16)

This equation can be integrated to derive a relation between the chemical potential

and the volume. The above section and derivations are only valid for point systems

and are not valid for systems with extent. For systems with extent, the extensive
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variables are replaced with densities. The relations above are assumed to hold for

every control volume that is of a sufficient size for thermodynamics to be meaningful.

2.2 Extension to Systems not at Equilibrium

The description of thermodynamics in the section above is strictly only valid for

systems at equilibrium, and is not valid in systems where the system changes in any

of the variables that describe it. Some authors [85] refer to the contents of the section

above as thermostatics. The theory can be extended to study systems not in equilib-

rium by considering multiple systems that are individually at equilibrium and hence

have a well defined T, µ and p. These systems can now be bought into contact with

each other, and the equilibrium of the combined system can be considered. Consider

two systems 1 and 2, described by entropy functions S1(E1, N1) and S2(E2, N2). Each

of the systems is assumed to be at equilibrium at temperatures T1 and T2. While

considering the equilibrium of the combined system, the following statements can be

made about the system.

• Energy is conserved.

E1+2 = E1 + E2. (2.17)

This implies

dE1+2 = 0 or dE1 = −dE2. (2.18)

• Entropy of the total system increases.

S1+2 = S1 + S2 (2.19)

dS1+2 = dS1 + dS2. (2.20)
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For the differentials,

dS1+2 ≥ 0, dS1,2 ≥ 0. (2.21)

Considering the entropy of the total system,

dS1+2 =
dE1

T1
+

dE2

T2
. (2.22)

The energy differential can be split into two parts dEo
1,2, which is the energy supply

from outside the system, and dEI
12. Here, energy supply into the system is considered

positive and dE12 is the energy flux from system 2 into system 1

dS1+2 =
dEo

1

T1
+

dEo
2

T2
+

dEI
12

T1
+

dEI
21

T2
. (2.23)

As the system only changes by transferring energy from system 1 to system 2, dE12 =

−dE21. Substituting into Eq. (2.23),

dS1+2 =
dEo

1

T1
+

dEo
2

T2
+ dE12

(
1

T1
−

1

T2

)

. (2.24)

At this point, a form for the second law of thermodynamics for systems that are not

in equilibrium is introduced as

dSI
1+2 ≥ 0. (2.25)

The above states that any internal change in the entropy during a non-equilibrium

process is positive. The internal entropy change in Eq. (2.24) can be written as,

dSI
1+2 = dE12

(
1

T1
−

1

T2

)

≥ 0. (2.26)
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Or,

dSI
1+2 = dE12

(
T2 − T1

T1T2

)

≥ 0. (2.27)

In Eq. (2.27), if T2 = T1, the system is at equilibrium and there is no change in either

of the systems 1 or 2. If T2 ≥ T1, dE12 ≥ 0 and system 2 loses energy to system

1. On the other hand if T2 ≤ T1, the energy change is in the opposite direction. In

systems that are able to exchange mass as well as energy, Eq. (2.26) is replaced by a

more general relation of the form,

dSI
1+2 = dE12

(
1

T1
−

1

T2

)

+ dN12

(
µ1

T1
−

µ2

T2

)

≥ 0. (2.28)

Eq. (2.28) allows an easy extension to develop a variational thermodynamics for

continuous systems.

1. Define the energy as a functional over the domain.

2. Assume that the smallest length scale relevant in the problem is large enough

to be able to define a thermodynamically meaningful temperature, pressure and

chemical potential

3. Minimize the energy functional with constraints of constant energy, volume and

number over all possible variations, to determine the conditions of equilibrium

and the values of the Lagrange multipliers.

4. If the Lagrange multiplier fields are constant over the domain of the problem,

then the system is at equilibrium and there are no non-equilibrium effects,

otherwise these effects are present (however slow) and the system will evolve

towards equilibrium.
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2.3 Larché Cahn Theory for Solids with Diffusion

In this section, the Larché Cahn [18,19] approach to the thermodynamics of solids

with diffusion is reviewed. This is an isothermal variational approach where a con-

stitutive energy functional is minimized over an arbitrary control volume under con-

straints of constant entropy and constant number density. The study of chemical

equilibrium in solids is complicated by the presence of non-hydrostatic stresses and

strains at equilibrium. Also, the standard definition of strain does not consider the

presence of diffusing species, and only considers the transformations of line segments

between arbitrarily defined material points. If needed, the points can be associated

with atoms that form a part of the lattice. When considering a solid that allows

evolution through diffusion, this picture is confused as shown in Fig. 2.1. There are

two ways in which this issue has been addressed in the literature. The first is through

the continuum theory of mixtures [86,87]. The continuum theory of mixtures defines

a separate kinematics for each of the species that are present. The evolution of a

mean quantity such as as the weighted mass density or the weighted volume occu-

pied is then tracked as the primary deformation quantity. The difference between

the kinematics for each of the species and this weighted mean is then treated as the

diffusional evolution. This approach is very attractive in cases where there are de-

formation kinetics (acceleration - mixing reacting flows) to be considered. However,

it leads to certain complications. While the definition of strain becomes easier, the

definition of stress becomes more complicated as a separate partial stress is defined

for each component. The definition of chemical potential also becomes more complex,

with some authors arguing for the existence of tensor chemical potential [86, 88].

The Larché-Cahn approach to equilibrium in solids avoids these by assuming that

the strain corresponds to the strain of a hypothetical network, that is roughly the

same as the lattice of the solid under consideration. The stress is now defined as a

thermodynamic conjugate to this strain. The density of the diffusing species is also

defined in terms of this back-ground lattice. The species are free to either move diffu-
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F

(a) Definition of strains in the absence of diffusion.

F ?

(b) Definition of strains in the presence of diffusive effects is not clear.

Figure 2.1. Definition of strains in crystals in the presence/absence of strain.

sively between the different sites on the network or they can also move interstitially

in an unconstrained fashion.

The total energy of the system in the bulk is described using an energy density

function as,

Etot =

∫

Ω0

E(S,F , ρi,...N )dΩ0. (2.29)

In the above, F is the deformation gradient between a reference domain and the

current domain. This can be replaced by another appropriate variable such as the

Euler or Green strain tensor. If the deformation is known to lead to small-strain, the

symmetric small strain tensor ε can also be used. ρi is the number density of the ith

species. Introducing Lagrange multipliers T for the constancy of the total entropy, µi
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for the constancy of the number density of each of the species, the following statement

can be written for the stationarity of the energy,

δ

(∫

Ω0

E(S,F , ρi,...N )dΩ0 − T

(∫

Ω0

SdΩ0 − S0

)

− µi

(∫

Ω0

ρidΩ0 − ρi0

))

= 0.

(2.30)

The above integral is assumed to be defined over the reference domain, and hence the

variation of the domain itself is zero. Expanding Eq. (2.30),

∫

Ω0

((
∂E

∂S
− T

)

δS +

(
∂E

∂F

)

: δF +

(
∂E

∂ρi
− µi

)

δµi

)

dΩ0 = 0. (2.31)

As the variations in the arguments are arbitrary,

T =
∂E

∂S
, (2.32)

µi =
∂E

∂ρi
. (2.33)

Equilibrium is reached when T and µi are constant throughout the domain. For the

middle term in Eq. (2.31), ∂E
∂F

is identified with the first Piola-Kirchhoff stress σI
PK.

Using δF = ∇Xδx and the identity,

∇(A.v) = (∇.A).v +A : ∇v, (2.34)

the middle term can be written as,

∫

Ω0

(

∇X(σI
PK.δx)−∇X .σI

PK.δx
)

dΩ0 = 0. (2.35)

Applying the divergence theorem,

∫

Γ

N .σI
PK.δxdΓ−

∫

Ω0

∇X .σI
PK.δxdΩ0 = 0. (2.36)
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δx = 0 on Γ, and the arbitrariness of δx in the domain leads to the condition for

mechanical equilibrium

∇X .σI
PK = 0. (2.37)

In a manner similar to Eq. (2.15), Maxwell relations can be written for the variables,

∂σI
PK

∂ρi
=
∂µi

∂F
, (2.38)

∂µi

∂ρj
=
∂µj

∂ρi
. (2.39)

An additional special case that is frequently encountered is the case of substitutional

diffusion, where the species density can’t be varied independently. Instead, there is a

constraint on the sum of the species,

N
∑

i=1

ρi = constant. (2.40)

For this case it can be shown that the individual chemical potentials can’t be uniquely

determined at equilibrium. Instead equilibrium for the species is determined by the

constancy of the difference between chemical potentials. This can be done by adding

a field of Lagrange multipliers to enforce Eq. (2.40) and then eliminating the Lagrange

multiplier field. This is demonstrated for the purposes of developing a multi-phase

system of Cahn-Hilliard equations in Chapter 6.

2.4 Variational Treatment of Interface Evolution Problems

The variational method in § 2.3 can be extended for the purposes of developing

the equations of motion for systems with evolving interfaces. This has been done

in [89] for systems without surface energetic excesses and in [20,21] for systems which

possess a surface excess energy that depends on the concentration of species near

the interface, the deformation of the energy and the entropy near the interface. In
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this review, the interfacial strain energy is neglected as it is not expected to play

an important role in the physics of interest and also in the interests of keeping the

mathematics simple. Also, the effect of incoherence are neglected. (At incoherent

interfaces, the tangential displacements at the phase interface are discontinuous -

implying sliding. While developing the continuum mechanics of such systems, it is

often necessary to define a separate reference domain for each of the phases [89]. )

2.4.1 Geometric Definition of the Required Variation

The definition of the variations needed to develop the equilibrium relations is

clearer in the large deformation context with mappings. Consider a control volume

Ω0 that is deformed to the current configuration Ω, with an intersecting interface Γ0 in

the reference configuration deformed in the current configuration to Γ. The interface

Γ divides the domain into two phases α and β. The mapping from the reference to the

current domain is described by a mapping x = φ(X) and its deformation gradient

F = ∇Xφ(X). A geometric variation of this domain can be achieved in two ways.

1. The standard variation of the deformation. In the general large deformation

case, this can be written as δx. In small deformation cases, this is captured by

the variation of the deformation (δu).

2. In solids the interface can change by processes other than deformation. These

include processes such as grain growth, boundary evolution by diffusion etc. To

study the equilibrium of these processe an additional variation, δy is defined.

This variation considers the variation of points on the interface. Only the normal

component of δy can actually change the shape of the interface. Hence, this

variation is written as,

δy = δyN , (2.41)

where N is the normal to the interface in the reference configuration.
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The total variation for points on the interface is the sum of the above two variations.

As Eq. (2.41) is defined in the reference domain, it needs to be transformed into the

current domain before they are added. Hence the total variation of points on the

interface is given as,

δxtotal = δx+ (F .N )δy. (2.42)

Before considering the equilibrium relations for a energy functional with an interfacial

component, the effect of a boundary variation of the type in Eq. (2.41) on a bulk

functional of the type
∫

Ω g(X)dΩ needs to be specified as,

δ

∫

Ω

g(X)dΩ =

∫

Ω

δg(X)dΩ+

∫

Γ

g(X)δydΓ. (2.43)

The last term in Eq. (2.43) is the change in the functional as additional material points

are added to the control volume over which the functional is specified (Fig. 2.2).

∫

Ω δg(X)dΩ

∫

Γ g(X)δydΓ

Figure 2.2. Variation associated with change in the domain.

2.4.2 Total Augmented Functional

The equilibrium conditions for a energy functional with a surface energy contri-

bution are derived in this section restricted to coherent interfaces, where there is no

slip along the interface. This derivation follows the derivation in [20, 21]. However,
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Ωα

ΩβΓint

Γβ

Γα

Reference Domain

N n

Ωα

Ωβ

Γβ

Γα

Current Domain

F = ∇Xφ(X)

Varied Domain

δyN

δx

E(F , ρi, S)
EΓ(ρΓi , S

Γ)

Figure 2.3. Variations involved in the Leo-Sekerka approach.

the effect of surface stresses is neglected. The energy functional that is considered is

as follows,

Etot =
∑

α,β

∫

Ωα,β

Eα,β(F , ρi, S)dΩα,β

︸ ︷︷ ︸

IΩ

+

∫

Γint

EΓ(ρ
Γ
i , S

Γ)dΓint

︸ ︷︷ ︸

IΓ

. (2.44)

At equilibrium, Eq. (2.44) is minimized under the constraints of constant total ρi, S,

which are enforced with Lagrange multipliers µi and T as in Eq. (2.30). These con-

straints are written as,

∑

k=α,β

∫

Ωk

ρidΩk +

∫

Γint

ρΓi dΓint

︸ ︷︷ ︸

Cρ

= constant (2.45a)

∑

k=α,β

∫

Ωk

SdΩk +

∫

Γint

SΓdΓint

︸ ︷︷ ︸

CS

= constant. (2.45b)
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In the above, the domains Ωα,β are the reference domains of the individual phases.

The variations of the individual parts of Eqs. (2.44) and (2.45) are next written using

Eqs. (A.38) and (2.43) as,

δIΩ =
∑

k=α,β

∫

Ωk

(

∂E

∂F
: δF +

∂E

∂S
δS +

N
∑

i=1

∂E

∂ρi
δρi

)

dΩk +

∫

Γint

!E" δydΓint, (2.46a)

δIΓ =

∫

Γint

(
N
∑

i=1

∂EΓ

∂ρΓi
δρΓi +

∂EΓ

∂SΓ
δSΓ − EΓκδy

)

dΓint, (2.46b)

δCρ =
∑

k=α,β

∫

Ωk

δρidΩk +

∫

Γint

!ρi" δydΓint +

∫

Γint

(

δρΓi − κρΓi δy
)

dΓint, (2.46c)

δCS =
∑

k=α,β

∫

Ωk

δSdΩk +

∫

Γint

!S" δydΓint +

∫

Γint

(

δSΓ − κSΓδy
)

dΓint. (2.46d)

In Eq. (2.46), the fact that

δy.nα = −δy.nβ (2.47)

is used. This leads to,

gαδy.nα + gβδy.nβ = gαδy.nα − gβδy.nα (2.48)

= !g" δy. (2.49)

Introducing the Lagrange multipliers µi for the constraints Eq. (2.45a), and the

Lagrange multiplier T for the constraint Eq. (2.45b), the condition for equilibrium

can be written as,

δIΩ + δIΓ −
N
∑

i=1

µiδC
ρ
i − T δCS = 0. (2.50)
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Substituting Eq. (2.46) into Eq. (2.50) and grouping terms,

∑

k=α,β

∫

Ωk

(

∂E

∂F
: δF +

(
∂E

∂S
− T

)

δS +
N
∑

i=1

(
∂E

∂ρi
− µi

)

δρi

)

dΩk

+

∫

Γint

(

!E" −
N
∑

i=1

µi !ρi" − T !S"

)

δydΓint

+

∫

Γint

(
N
∑

i=1

(
∂EΓ

∂ρΓi
− µi

)

δρΓi +

(
∂EΓ

∂SΓ
− T

)

δS

)

dΓint

−
∫

Γint

(

EΓ −
N
∑

i=1

µiρ
Γ
i − TSΓ

)

κδydΓint = 0.

(2.51)

Using the arbitrariness of the variations δρi, δρΓi , δS and δSΓ the following conditions

for equilibrium can be written,

µi =
∂E

∂ρi
=
∂EΓ

∂ρΓi
(2.52a)

T =
∂E

∂S
=
∂EΓ

∂SΓ
. (2.52b)

Introducing additional variables Ψ = E − TS and ΨΓ = EΓ − TSΓ, identifying ∂E
∂F

with the first Piola-Kirchhoff stress, and using Eq. (2.52), Eq. (2.51) can be re-written

as,

∑

k=α,β

∫

Ωk

(

σI
PK : δF

)

dΩk+

∫

Γint

(

!Ψ" −
N
∑

i=1

µi !ρi" − κ

(

ΨΓ −
N
∑

i=1

µiρ
Γ
i

))

δydΓint = 0.

(2.53)

Using Eq. (2.36), the above leads to

∑

k=α,β

(∫

Ωk

−∇X .σI
PK.δxdΩk +

∫

Γk

nk.σ
I
PK.δxdΓk

)

+

∫

Γint

(

!Ψ" −
N
∑

i=1

µi !ρi" − κ

(

ΨΓ −
N
∑

i=1

µiρ
Γ
i

))

δydΓint = 0.

(2.54)
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The arbitrariness of δx in the bulk leads to the standard momentum balance condi-

tion. Also, it is assumed that the outer boundary of the control volume is fixed. This

allows Eq. (2.54) to be re-written as,

∫

Γint

(

Nασ
αI
PKδx+Nβσ

βI
PKδx

)

dΓint

+

∫

Γint

(

!Ψ" −
N
∑

i=1

µi !ρi" − κ

(

ΨΓ −
N
∑

i=1

µiρ
Γ
i

))

δydΓint = 0.

(2.55)

Rewriting δx as δxtot − F.Nδy, and using Nα = −Nβ, Eq. (2.55) leads to,

∫

Γint

N .
#
σI

PK

$
.δxtotdΓint+

∫

Γint

((

!Ψ" −
N
∑

i=1

µi !ρi" − κ

(

ΨΓ −
N
∑

i=1

µiρ
Γ
i

))

δy −N .σI
PK.FNδy

)

dΓint = 0.

(2.56)

The arbitrariness of δxtot leads to the condition for traction continuity at the interface.

The arbitrariness of δy coupled with the arbitrariness of the area of integration, dΓint

on the other hand, leads to an additional condition for equilibrium which is stated

as,

!Ψ" −
N
∑

i=1

µi !ρi" − κ

(

ΨΓ −
N
∑

i=1

µiρ
Γ
i

)

−N .
#
σI

PK

$
.FN = 0. (2.57)

which can be re-arranged as

N .

⎛

⎜
⎝!Ψ" I − F T

#
σI

PK

$
︸ ︷︷ ︸

Energy-momentum tensor

−
N
∑

i=1

µi !ρi" I − κ

(

ΨΓ −
N
∑

i=1

µiρ
Γ
i

)

I

⎞

⎟
⎠ .N = 0. (2.58)

Other equilibrium conditions can be derived based on the terms that are significant

in the above expression. The first case that we can consider is the one where there
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are no diffusive phenomena. In this case all the terms involving ρi, ρΓi are set to zero.

This leads to a simple interfacial equilibrium condition of the form,

!Ψ" I − F T . !σ"IPK − κΨΓI = 0. (2.59)

This is the equilibrium condition that is frequently used in studies of grain boundary

motion. Another common approximation that is made is that the surface concentra-

tions of the components are assumed to be negligible. This allows Eq. (2.58) to be

written as,

!Ψ" I − F T .
#
σI

PK

$
−

N
∑

i=1

µi !ρi" I − κΨΓI = 0. (2.60)

The above relation is frequently used as an interfacial condition in the study of inter-

facial diffusion processes. The condition above can be re-arranged and written as a

condition on the chemical potential at an interface relating it to the curvature of the

interface. Hence, Eq. (2.60) is also called a generalized form of the standard Gibb’s

Thomson relation [55], as it generalizes the idea to include more effects. Finally, in

the case without any interfacial and diffusive effects, the condition for equilibrium is

written simply as,

!Ψ" I − F T . !σ"IPK = 0. (2.61)

This condition was first derived in [90] as a condition for equilibrium in an elastic

system with a moving interface.
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2.4.3 Note: Variational Thermodynamics and Gradient Energies

A question with variational treatments of thermodynamics is the handling of en-

ergies with gradient energies of the form used in phase field methods. Considering

the standard gradient energy (Eq. (1.8)),

Ψ(φ,∇φ) =
∫

Ω

(

ϵ∥∇φ∥2 +
1

ϵ
f(φ)

)

dΩ. (2.62)

If the variable φ is an arbitrary quantity, the condition for equilibrium is simply the

standard necessary condition for extrema. This can be written as,

δΨ(φ,∇φ) = 0. (2.63)

Or, assuming ∇φ.n = 0, on the outer boundary of the control volume

∫

Ω

(

−2ϵ∇2φ+
1

ϵ
f ′(φ)

)

δφ = 0dΩ. (2.64)

Assuming the arbitrariness of the control volume, or the arbitrariness of δφ, the

condition for equilibrium can be simply written as,

−2ϵ∇2φ+
1

ϵ
f ′(φ) = 0. (2.65)

This is the condition at equilibrium. If Ψ(φ,∇φ) > Ψ(φeq,∇φeq), a descent condition

can be proposed,

∂φ

∂t
= M

(

2ϵ∇2φ−
1

ϵ
f ′(φ)

)

. (2.66)
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If the φ is now interpreted as a diffusing species, the necessary condition for extremal-

ization is no longer the same, instead an augmented functional needs to be used, with

a constraint on the total value of φ. The augmented functional can be written as,

Ψaug = Ψ+ µ

(∫

Ω

φdΩ− C

)

. (2.67)

The necessary conditions for extremalization are now writable as,

δΨaug = δΨ+ µ

∫

Ω

δφdΩ = 0 (2.68a)
∫

Ω

φdΩ = C. (2.68b)

Making the same assumption that, ∇φ.n = 0 on the boundary of the control volume

and assuming that the control volume is arbitrary, the condition for equilibrium can

be written as,

µ = 2ϵ∇2φ−
1

ϵ
f ′(φ). (2.69)

If it is assumed that this solution for the chemical potential is valid even when

Ψ(φ,∇φ) > Ψ(φeq,∇φeq), and the system is allowed to equilibrate through a dif-

fusive process, the governing equations lead to the Cahn-Hilliard equations. Though

Eq. (2.69) is a local relation, it depends on making an assumption on ∇φ on the

boundary of the control volume. This constraint is the same as ∇2φ = 0, or an as-

sumption that no diffusion is occurring. This brings the discussion back to the issue

of using variational equilibrium relations in a non-equilibrium sense. This is discussed

in § 2.4.4.

2.4.4 Use in Non-Equilibrium Settings

The interfacial conditions Eqs. (2.57), (2.60) and (2.61) are used in a non-equilibrium

setting in the same manner as in § 2.2. The equilibrium condition is assumed to hold
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at every point on the interface. Spatial gradients in the quantities such as the chem-

ical potential are then used to drive the non-equilibrium case. The other alternative

approach is the gradient flow approach. The variation of the energy is kept in the

variational form Eq. (2.56) and δy is treated as the normal velocity of the interface.

This velocity is now specified so that the variation of the energy is minimized. This

is an assumption that the interface evolves so that a global equilibrium is reached as

fast as possible. Approaches based on this assumption are called gradient flow ap-

proaches [67,91,92]. The primary challenge with gradient flow approaches is handling

external supplies and the inclusion of additional physics.

These approaches are valid mathematically and lead to physically reasonable mod-

els. However, there are a couple of issues with the variational approach with respect to

their use in non-equilibrium simulations. The first is that the minimization principle

is strictly only valid for the determination of equilibrium conditions. When a mini-

mization approach is used for a non-equilibrium process, it implies an assumption of

linear constitutive laws between the driving forces and the resultant non-equilibrium

fluxes. The other important concern is that in variational approaches like the one

described above, there is no separation between the constitutive laws, the balance

laws and the equilibrium conditions. It is unclear whether the form of Eq. (2.58) is

a result of a physical principle or of the constitutive laws assumed a priori. Owing

to these issues, the variational approach to thermodynamics is problematic for the

study of non-equilibrium effects.

The alternative to the variational approach is the approach of rational thermody-

namics developed by Truesdell and Toupin [28]. The approach has been extended for

the study of problems with interfacial effects by Gurtin and his co-authors in a series

of papers [23,25,26,93]. This approach postulates the existence of an additional force

system that acts in the same way with the velocity related to the interfacial motion

as the standard force system relates to the deformation of the material. Considering

the standard force system to be a deformational force system, the other force system

is called the configurational force system. This is described in the following section.
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2.5 Rational Thermodynamics Approach

In a rational thermodynamics approach, instead of using a variational approach

and defining the intensive quantities as Lagrange multipliers at equilibrium, the in-

tensive quantities are defined as specifying the energetic fluxes associated with fluxes

of the extensive quantities. For example, instead of being defined as the Lagrange

multiplier that enforces the constancy of the mass as in Eq. (2.7), the chemical poten-

tial is defined by defining the energetic fluxes associated with diffusive fluxes (either

in mass terms or in number terms).

D

Dt

∫

Ω

EdiffdΩ =

∫

Γ

−µJ .ndΓ. (2.70)

This is similar to the way that the temperature is defined in rational thermodynamics

through the Clausius-Clayperon inequality relating the change in the entropy over a

control volume to the heat flux across the boundaries of the domain.

D

Dt

∫

Ω

SdΩ ≥ −
∫

Γ

1

T
q.ndΓ. (2.71)

Equality is achieved at equilibrium, which leads to the standard definition of tem-

perature. The standard force terms can also be defined so as to make sense in terms

of energetic fluxes. The standard stress tensors relate the deformation at the bound-

ary of a control volume to the energy supply to the control volume in the form of

work. The first Piola-Kirchhoff stress in the derivation in § 2.3, for example can be

considered to be defined as the tensorial quantity that relates the deformation and

the normal at the boundary of the control volume to the work done on the control

volume. This can be written as,

D

Dt

∫

Ω

EdΩ =

∫

Γ

N .σI
PK.vdΓ. (2.72)
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In § 2.5.2, the above approach is used to define configurational forces that relate to

configurational changes in the domain. These relations are first defined over the bulk

of the material. Following this, relations at the interface are derived.

2.5.1 Bulk Relations

The balances over the bulk of the material are derived in this section. The free

energy inequality in the bulk is used to derive the Maxwell relations in the bulk.

These relations being unsuitable for analysis, a Legendre transform is used to derive

the relation between the strain and the concentration, as well as a simple relation

between the chemical potential and the stress.

Balance of Numbers

The Larché-Cahn approach with the species diffusion measured with respect to

a hypothetical network is used, where the species balance is tracked over a control

volume that deforms along with the lattice. This is in contrast to a more eulerian

approach used in mixture theories [86], where the species are tracked over a control

volume that is attached to a background frame. All the fluxes are measured with

respect to this background frame. For each species that exists in the solid, a balance

equation can be written over an arbitrary control volume Ω of the form,

D

Dt

∫

Ω

ρidΩ =

∫

Γ

−Ji.ndΓ. (2.73)

This relation can be localized using the divergence theorem,

D

Dt
ρi = −∇.Ji. (2.74)
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As the control volume in purely Lagrangian, there are no convective terms

∂ρi
∂t

+∇.Ji = 0. (2.75)

A constraint on the total number of particles, such as Eq. (2.40) can also be written

as a stronger constraint on the sum of the species,

N
∑

i=1

∇.Ji = 0. (2.76)

Balance of Momentum

While writing the momentum balance for the study of moving boundary problems

with diffusion, the inertial terms are usually neglected. This is because the system

reaches equilibrium with respect to stresses much faster than with respect to the

diffusive terms. The momentum balance in the bulk can be written as,

∇.σ +
N
∑

i=1

ρmass
i b = 0. (2.77)

The above relation can also be written in terms of the first Piola-Kirchhoff stress as,

∇X .σI
PK +

N
∑

i=1

ρmass
i b = 0. (2.78)

Balance of Energy

The energy balance for an arbitrary control volume in the absence of kinetic energy

and body forces can be written as,

D

Dt

∫

Ω

EdΩ =

∫

Γ

n.σvdΓ−
N
∑

i=1

∫

Γ

µiJi.ndΓ−
∫

Γ

q.ndΓ. (2.79)
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In the above, q is the heat flux into the domain. Localizing the above relation, and

assuming a Lagrangian control volume,

∂E

∂t
= ∇.(σT .v)−

N
∑

i=1

∇. (µiJi) .−∇.q. (2.80)

This can be expanded as

∂E

∂t
= ∇.σ.v + σ : ∇v −

N
∑

i=1

(∇µi.Ji + µi∇.Ji)−∇.q. (2.81)

From Eq. (2.77), in the absence of body forces, ∇.σ = 0, also, ∇.Ji = −∂ρi
∂t
. With

these, the energy balance can be written as,

∂E

∂T
= σ : ∇v −

N
∑

i=1

∇µi.Ji +
N
∑

i=1

µi
∂ρi
∂t

−∇.q. (2.82)

Free Energy Inequality

To derive the free energy inequality, Eq. (2.71) is localized as,

∂S

∂t
≥ −

1

T
∇.q +

1

T 2
q.∇T. (2.83)

Multiplying Eq. (2.83) by T and subtracting it from Eq. (2.82),

∂E

∂t
− T

∂S

∂t
≤ σ : ∇v −

N
∑

i=1

∇µi.Ji +
N
∑

i=1

µi
∂ρi
∂t

−
1

T 2
∇T.q. (2.84)

Adding and subtracting ∂T
∂t
S and defining Ψ = E−TS, Eq. (2.84) can be written as,

∂Ψ

∂t
+
∂T

∂t
S ≤ σ : ∇v −

N
∑

i=1

∇µi.Ji +
N
∑

i=1

µi
∂ρi
∂t

−
1

T 2
∇T.q. (2.85)
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The above equation can be simplified by splitting ∇v into a symmetric and anti-

symmetric part. Denoting the symmetric part as D, and using the property that the

product of a symmetric and anti-symmetric tensor is 0, the above can be simplified

into

∂Ψ

∂t
+
∂T

∂t
S ≤ σ : D −

N
∑

i=1

∇µi.Ji +
N
∑

i=1

µi
∂ρi
∂t

−
1

T 2
∇T.q. (2.86)

The above equation provides a simple way to test the validity of any constitutive laws

that describe the evolution of the system. In contrast to the variational derivations,

the equation above is valid without any assumptions of equilibrium or constitutive

laws. In order to track the evolution of system, constitutive relations need to be

introduced for the various quantities. In Eq. (2.86), the quantities that need con-

stitutive laws are Ψ, S,σ, µi,Ji and q. The arguments of this function are the rates

and gradients of the other quantities in the expression. Equipresence implies that the

arguments for each of the constitutive laws are the same. Here simple constitutive

laws of the form,

Ψ = Ψ(T, ε, ρi) (2.87a)

σ = σ(T, ε, ρi) (2.87b)

µi = µi(T, ε, ρi) (2.87c)

q = q(T, ε, ρi) (2.87d)

Ji = Ji(T, ε, ρi). (2.87e)

are assumed. Substituting Eq. (2.87) into Eq. (2.86) and grouping terms,

(
∂Ψ

∂ε
− σ

)

: D +
N
∑

i=1

(
∂Ψ

∂ρi
− µi

)

ρ̇+

(
∂Ψ

∂T
+ S

)

Ṫ ≤ −
N
∑

i=1

Ji.∇µi −
1

T 2
q.∇T.

(2.88)
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Eq. (2.88) must hold for arbitrary independent D, ρ̇i and Ṫ . For this to hold,

σ =
∂Ψ

∂ε
(2.89a)

µi =
∂Ψ

∂ρi
(2.89b)

S = −
∂Ψ

∂T
. (2.89c)

The right hand side of Eq. (2.88) describes the dissipation associated with the non-

equilibrium diffusion and heat transfer and needs to be positive. This allows the

definition of simple constitutive laws for these processes. The heat transfer, for ex-

ample can be described by a simple rule,

q = −k∇T. (2.90)

where k is a symmetric positive semi-definite tensor. Similarly, in the absence of

other restrictions on the diffusive processes, the diffusive fluxes can be written as,

Ji = −M∇µi. (2.91)

In the above M is a symmetric positive semi-definite matrix. Maxwell’s relations can

also be written based on Eq. (2.89a). These lead to relations of the form,

∂σ

∂ρi
=
∂µi

∂ε
(2.92a)

∂σ

∂T
= −

∂S

∂ε
(2.92b)

∂µi

∂T
= −

∂S

∂ρi
. (2.92c)

Eqs. (2.92a) and (2.92b) can be integrated to derive a form for Ψ, especially in

cases where the system is assumed to behave in a simple linear form. However,

Eqs. (2.92a) and (2.92b) lead to additional contributions to the stress in terms of

the chemical potential and the entropy. It is difficult to directly apply an additional
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stress in analysis schemes, especially as most numerical schemes are displacement

based. Similarly, it is difficult to relate the chemical potential to the strain. Hence

it is a common practice to use the enthalpy instead of the free energy to derive

constitutive laws. This is done by taking a Legendre transform of Ψ with respect to

the stress. The enthalpy is defined as,

Φ(σ, T, ρi) = Ψ− σ : ε. (2.93)

The constitutive laws can now be defined in terms of the enthalpy as,

∂Φ

∂σ
= −ε (2.94a)

∂Φ

∂ρi
= µi (2.94b)

∂Φ

∂T
= −S. (2.94c)

These lead to Maxwell relations that can be written as,

∂ε

∂ρi
= −

∂µi

∂σ
(2.95a)

∂ε

∂T
=
∂S

∂σ
(2.95b)

∂µi

∂T
= −

∂S

∂ρi
. (2.95c)

For simple elastic systems which are invertible, it is possible to integrate the relations

to get a form for the influence of the stress on the chemical potential and that of the

concentration on the strain. The relationship between the stress and the chemical

potential is derived first. For elastic solids, the stress can be written as,

σ = C : (ε− ε0). (2.96)
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In the above, ε0 is the stress-free strain. Assuming C is invertible, a compliance

matrix K = C−1 is defined. Using this, the strain can be written as,

ε− ε0 = K : σ. (2.97)

Or with ε− ε0 → εelastic

εelastic = K : σ. (2.98)

Eq. (2.95a) can be re-arranged as,

dµi = −
∂ε

∂ρi
dσ. (2.99)

This can be integrated from an initial stress to the current stress as,

µi =

∫ σ

σ0

−
∂ε

∂ρi
dσ + C(ρi). (2.100)

In the above C(ρi) only depends on ρi. Using Eq. (2.97),

∂ε

∂ρi
=
∂K

∂ρi
: σ +

∂ε0
∂ρi

. (2.101)

This can be substituted back into Eq. (2.100) to get

µi =

∫ σ

σ0

(

−
∂K

∂ρi
: σ −

∂ε0
∂ρi

)

dσ + C(ρi). (2.102)

If the compliance is independent of the concentration, and

∂ε0
∂ρi

= βi. (2.103)
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is assumed,

µi = −βi (σ − σ0) + C(ρi). (2.104)

Eq. (2.104) needs to satisfy material symmetry requirements. In the case of cubic

symmetry, it can be shown that an appropriate measure of the stress to be used is

the hydrostatic pressure p = −1
3tr(σ). In the case where the chemical potentials µi

are independent of the concentration of other species and ρtotal =
∑

ρi is a constant,

C(ρi) is usually written as,

C(ρi) = RT ln
ρi
ρtotal

+ C0
i . (2.105)

Or

C(Xi) = RT ln(Xi) + C0
i . (2.106)

The total chemical potential can therefore be written as,

µi = RT ln(Xi) + βip. (2.107)

Similar material symmetry arguments are used to chose the strain measure for

the concentration dependent strain. In the case of cubic symmetry, the concentration

dependent strain should be volumetric. This allows the strain associated with the

change in the concentration of the ith speciesϵi, can be written using Eq. (2.103) as,

εi =

∫ ρ

ρ0i

βidρiI, (2.108)

which allows the strain to be written as

εi = βi
(

ρi − ρ0i
)

I. (2.109)
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In terms of the mole fractions Xi, the above can be written as

εi = ρtotalβi
(

Xi −X0
i

)

I. (2.110)

βi is called the concentration dependent volumetric strain and is related to the atomic

volume of the ith species. The total stress-free strain ε0 can then in this case be

constructed by summing the individual contributions εi. The expression for thermal

strains can likewise be obtained by integrating Eq. (2.95b),

ε = α(T − T 0)I. (2.111)

where α is the co-efficient of thermal expansion. These additional strains are assumed

to be stress-free in the absence of constraints on the displacement. When the method

above is used to define the constitutive laws, standard stress-strain rules are used to

determine the stresses.

2.5.2 Configurational Force Balance

Before introducing the interfacial balances for the numbers, momentum and en-

ergy, the configurational force balance is introduced. There are many different ways

of introducing the configurational force systems into the thermodynamics of problems

with evolving features. Maugin, in [94] treats the configurational force system purely

as a consequence of invariance with respect to certain transformations of the velocity

of evolution. The approach of Gurtin and Fried [23] is the one preferred here and is

described in the following section. The authors in [23] postulate the existence of an

additional stress system c that satisfies,

∇X .c+ g = 0. (2.112)
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In the above c is a tensor quantity that is introduced through the energy supply over

a control volume with accretion (Fig. A.4) while g is a configurational body force. In

analogy to the introduction of the standard stresses as in Eq. (2.72), a configurational

stress c is defined as the power involved in the accretive motion, as

Ẇconf =

∫

Γ

n.c.udΓ. (2.113)

In the above, u is the accretive velocity of the interface. The definition of the standard

stress tensor is modified to account for the control volume with accretion,

Ẇdef =

∫

Γ

n.σI
PK .(v + F .u)dΓ. (2.114)

Using Eqs. (2.113) and (2.114), the free energy imbalance for the control volume in

an isothermal case while neglecting body forces can be written as,

D

Dt

∫

Ω

ΨdΩ ≤
∫

Γ

(

n.σI
PK .(v + F .u) + n.c.u

)

dΓ−
N
∑

i=1

∫

Γ

ρiµiJi.ndΓ. (2.115)

Using the transport theorem for control volumes with accretion Eq. (A.61), the above

relation can be rewritten as,

∫

Ω

Ψ̇dΩ+

∫

Γ

Ψu.ndΓ ≤
∫

Ω

(

(∇X .σI
PK).v + σI

PK .Ḟ
)

dΩ

+

∫

Γ

(

n.c.u+ n.F T .σI
PK .u

)

dΓ

+

∫

Ω

µiρ̇idΩ−
∫

Ω

∇µi.JidΩ+
N
∑

i=1

∫

Γ

ρiµiu.ndΓ.

(2.116)
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In the above, the fact that u is a velocity field that is defined to be uniformly 0

inside the domain. The terms in the above equation can be re-arranged as,

∫

Ω

(

Ψ̇− σI
PK : Ḟ −

N
∑

i=1

µiρ̇i

)

dΩ

+

∫

Γ

((

Ψ−
N
∑

i=1

ρiµi

)

u.n− n.c.u+ n.F T .σI
PK .u

)

dΓ ≤ −
∫

Ω

∇µi.JidΩ.

(2.117)

Most of the terms in Eq. (2.117) lead to the same relations in § 2.5.1. However,

there are additional term related to u. At this point a constitutive assumption is made

in [95] that the configurational power (Eq. (2.113)) is independent of the tangential

component of u. Substituting u = Un + ut. This is only possible for arbitrary u

when,

(

Ψ−
N
∑

i=1

ρiµi

)

I − c+ F T .σI
PK = 0. (2.118)

This can be re-written as

c =

(

Ψ−
N
∑

i=1

ρiµi

)

I + F T .σI
PK . (2.119)

The above relation recovers the Eshelby energy momentum tensor without a varia-

tional treatment, allowing its use in a more general non-equilibrium sense. Another

consequence of the above treatment is that the configurational forces are not of im-

portance in the bulk of the material as the velocity field u is assumed to be 0 in the

interior. Hence they are only significant in the presence of interfaces. In the following

section, the thermodynamics in the presence of an evolving interface is described.

2.5.3 Interfacial Relations

In the following section, relations are developed for the balances of number, mo-

mentum, configurational forces, free energy and momentum that are satisfied at mov-
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ing interfaces. The starting point is the transport theorem for a control volume with

accretion with an evolving interface described in § A.4.

Balance of Number

Using the local form for the interfacial transport theorem Eq. (A.62) with accre-

tion, the balance of number at the interface for the species can be written as,

∂ρΓi
∂t

− κρΓi VΓ = − !Ji" .n+ !ρi"VΓ −∇Γ.hi, (2.120)

where hi is the interfacial flux of the ith species. In most cases, ρΓi → 0 [96]. This

allows the the relation to be written as,

!ρi"VΓ = !Ji" .n+∇Γ.hi. (2.121)

This is the relation most commonly used in studies of interface motion due to diffusion.

In some cases, it is necessary to account for the effects of interfacial supplies due to

reactions or transformations. This requires modification of Eq. (2.121) as,

!ρi"VΓ = !Ji" .n+∇Γ.hi + rΓi . (2.122)

The above relation is used as a boundary condition in studies of diffusion in the

presence of moving evolving interfaces, with the various terms excluded based on the

specific conditions. For example, in the case of surface diffusion, the above relation

can be reduced to,

VΓ = Ω∇Γ.h. (2.123)
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Where it is assumed that there is only one species, with no material on the one side

with Ω = 1
ρ
. Another commonly used statement in studies of growth of phases is [55],

VΓ =
!Ji" .n

!ρ"
. (2.124)

Balance of Momentum

For the balance of momentum, the interfacial flux quantity in the interfacial trans-

port theorem Eq. (A.62) is replaced by a surface stress. The surface stress is an

interfacial tensor, σΓ. This relates surface traction (defined in units of force per unit

length) to the normal to an interfacial loop in the tangent loop.

σΓ.m = tΓ. (2.125)

As any momentum terms are neglected, the accretive terms are not significant and

the interfacial momentum balance can be written as,

∇Γ.σΓ + !σ" .n = 0. (2.126)

This is a generalized form of the Laplace young equation. This can be seen by choos-

ing, σΓ = γP , where P is the interfacial projection tensor I − n ⊗ n. Substituting

for σΓ, Eq. (2.117) can be re-written using Eq. (A.7) as

∇Γ. (γP ) + !σ" .n = 0 (2.127)

∇ΓγP + κn+ !σ" .n = 0. (2.128)
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Separating into tangential and normal components, the above can be reduced into

two expressions

∇Γγ + t !σ" .n = 0 (2.129)

κ+ n. !σ" .n = 0. (2.130)

Eq. (2.130) reduces to the standard Laplace-Young equation when σ = −pI.

Equations of the form Eq. (2.129) are important in the study of Marangoni flows.

While a general theory does exist for surface stresses and surface strains [97], the

surface stresses are not very important at the length scales of most problems in solids.

They are however more important in fluid flow problems at much longer length scales.

Interfacial Configurational Force Balance

Following Gurtin’s approach [23], similar to the balance of momentum (or of

deformational forces) at the interface, an interfacial configurational force balance can

be written. In a manner similar to Eq. (2.117),

∇Γ.cΓ + !c" .n = 0. (2.131)

In the above g is an external configurational force. This is used to account for the

forces that cause grain boundary migration. Usually it is only the normal component

of the interfacial balance is important. This is due to the fact that tangential motions

can’t change the shape of the interface. This means that the tangential component

of the interfacial configurational force balance is usually not significant and can be

neglected. Using the form derived for c in Eq. (2.119), the normal component of the

interfacial configurational force balance can be written as,

n.

(

∇Γ.cΓ + n.

%

ΨI −
N
∑

i=1

ρiµiI − F T .σI
PK

&)

.n = 0. (2.132)
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Again, if the interfacial configurational stress is assumed to be isotropic and equal to

γconfP , Eq. (2.132) can be written as,

γκ+ n.

%

ΨI −
N
∑

i=1

ρiµiI − F T .σI
PK

&

.n = 0. (2.133)

If the assumption is made that the chemical potential is continuous across the inter-

face,

!ρiµi" = !ρi"µi. (2.134)

With Eq. (2.134), Eq. (2.133) reduces to a boundary condition for the chemical po-

tential of the species at the interface.

N
∑

i=1

!ρi"µi = γκ+ n.
#
ΨI − F T .σI

PK

$
.n. (2.135)

Free Energy Inequality

To write an interfacial balance law for the energy, energy fluxes need to be specified

for the interfacial fluxes. Very general derivations are possible for this and a more

general derivation can be found in [23]. As interfacial deformational stresses for

solids are neglected in this work, the power due to them is neglected in the derivation

presented here. The total power on the interfacial control volume can be written as,

W Γ =

∮

C

m.cΓ.uΓdC +

∫

Γ

!n.c.u" dΓ+

∫

Γ

#
n.σI

PK . (v + Fu)
$
dΓ. (2.136)
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For convenience, the heat fluxes are neglected. The energy supplies due to mass fluxes

can be written as,

EΓ =

∮

C

N
∑

i=1

µihi.mdC +

∫

Γ

%
N
∑

i=1

ρiµiV

&

dΓ+

∫

Γ

%
N
∑

i=1

µiJi.n

&

dΓ+

∫

Γ

N
∑

i=1

µr
i ridΓ.

(2.137)

In the above µr
i is the energy added or removed from the system owing to the de-

position or evaporation of the ithspecies. This can be re-written in a localized form

as,

EΓ =

∫

Γ

N
∑

i=1

(∇Γµi.hi + µi∇Γ.h) dΓ+

∫

Γ

%
N
∑

i=1

µiJi.n

&

dΓ+

∫

Γ

N
∑

i=1

µr
i ridΓ. (2.138)

Using Eqs. (2.137) and (2.138), the free energy inequality for the interfacial control

volume can be written as,

∫

Γ

(
∂ΨΓ

∂t
−ΨΓκV

)

dΓ+

∮

C

ΨΓuΓ.mdC ≤
∮

C

m.cΓ.uΓdC +

∫

Γ

#
n.σI

PK .v
$
dΓ

+

∫

Γ

%
N
∑

i=1

ρiµiV + µiJi.n

&

dΓ+

∫

Γ

N
∑

i=1

µiridΓ

−
∫

Γ

N
∑

i=1

(µi∇Γ.hi +∇Γµ.hi) dΓ.

(2.139)

The arbitrariness of C and the velocity uΓ.n leads to the conclusion that ΨΓ =

cΓ. Eq. (2.139) can be further simplified by using the interfacial number balance

(Eq. (2.122)), continuity of tractions at the interface (Eq. (2.126)) and the interfacial

configurational force balance (Eq. (2.135)). This reduces the energy balance to,

∂ΨΓ

∂t
≤ −

N
∑

i=1

∇Γµi.hi −
N
∑

i=1

ri (µi − µr
i ) . (2.140)
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The simplest constitutive laws for the interfacial quantities can therefore be specified

simply as,

hi = −MΓ∇Γµi (2.141a)

ri = −k (µi − µr
i ) . (2.141b)

The combined effect of the two parts of Eq. (2.141) are used in the Chapter 3 to

define the vacancy accumulation rate at the interface as well as surface diffusion at

the interface of voids. In the limited derivation in this section, the dissipation and the

forces related to grain boundary migration by energy minimization are neglected. [23]

has a full description of the physics, including the grain boundary migration.

2.6 Addition of Other Driving Forces

An important concern while developing the thermodynamics for evolution prob-

lems is the inclusion of additional driving forces, especially the electrical potential

gradient. The inclusion of the electrical potential in the thermodynamics depends on

whether the material is metallic or non-metallic. The charge density can not be used

as a variable in metals, as any excess charge will move to the outer surface [98]. This

implies that a relation of the form,

φe =
∂Ψ

∂ρc
, (2.142)

can not be written in the bulk of the material. This means that it is incorrect to

use the electrical potential as a component of the chemical potential, as suggested

by some authors [99]. Non-metals and other insulators are capable of holding an

excess charge. In such a case, the electrical potential acts as a chemical potential

for the charged species. This allows relations of the form Eq. (2.142) to be written

and used. The free energy imbalance then allows a flow rule for the charge in terms

of the electrical potential gradient. In metals, the interaction of the electrical effects
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with the crystal lattice is through two effects. The first effect is the joule heating,

which can be thought of as causing uncorrelated oscillations in the lattice leading to

heating. The other effect is the electronic wind. At the quantum mechanical level of

description, the electronic wind is the force that the atoms in the lattice feel when

the electron wave is scattered [100]. In certain cases, this force is sufficient to knock

the atoms out of their position in the lattice and to activate a diffusive mechanism.

This is called electromigration. Owing to the particular, entirely dissipative nature

of this mechanism, it is incorrect to have the electrical potential be a part of the

free energy. Instead the electronic wind is introduced as an additional driving force,

with an experimentally determined parameter Z∗, or one determined by theory [101].

The driving force for the diffusion is defined due to the electronic wind in metals is

specified as,

felect = Z∗eJφe . (2.143)

In the above Jφe is the electric current density, while e is the fundamental charge of

the electron. This can be re-written in terms of the electrical potential gradient for

Ohmic conductors as Jφe = c∇φe, where c is the conductivity. This allows Eq. (2.143)

to be re-written as,

felect = Z∗ec∇φe. (2.144)

This can then added to the driving force for diffusion (∇µi). Further, it is assumed

that the same mobility applies for both the electromigration driving force as well as

for the standard driving force corresponding to the gradient of the chemical potential,

J = −M (∇µ+ Z∗e∇φe) . (2.145)
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3. A PHASE FIELD MODEL FOR ELECTROMIGRATION: DEVELOPMENT

The decrease in the size of flip-chip solder joints has resulted in a corresponding

increase in the current densities prevalent in the joints. This has led to an increase

in the importance of failure due to electromigration in flip chip solder joints [102].

Electromigration is caused by the momentum exchange between electrons and ions

that forces material diffusion in the direction of electron flow. This leads to the

formation of voids near the cathode that might lead to an open failure. There is also

the likelihood of the formation of hillocks at the anode that might cause a shorting

failure. The formation and motion of the voids is also driven by the existence of

stress and temperature gradients. A unique problem that occurs in solder joints is

the failure due to current crowding. The current density in the signal trace leading

up to the joint is significantly higher than the current density in the solder joint. At

the interface between the two, there is a region of the solder joint, where the current

density is an order of magnitude higher than the rest of the joint ( ≈ 105Acm−2 at the

entrance versus ≈ 104Acm−2 near the middle [102]). This causes the void formation

to be very rapid near the current crowding region (see Fig. 3.1).

The computational simulation of the formation and propagation of voids in solder

is a challenging problem. There are a multitude of interacting physical effects such

as the electrical, thermal and stress fields that determine the void shape and its rate

of evolution. A significant attempt at modeling electromigration in solder joints has

been through use of damage mechanics to simulate the loss in load bearing capacity of

the solder joints [103,104]. These models enable one to find locations of void formation

and in modeling the motion of very small, diffuse, voids, whose boundaries are not

explicitly captured. These methods do not explicitly model the geometry of the voids,

but infer the effects of the formed voids through the damage to load-bearing capacity

they cause. However, geometrically speaking, the removal of material from a region
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Figure 3.1. Formation of pancake voids in the current crowding region [108].

results in the formation of new surfaces. Further, energy-wise, every new surface

formation has an associated surface energy cost [105] that needs to be accounted for

in any complete simulation of the motion of voids.

An alternative approach to modeling electromigration is to capture the divergence

of atomic flux directly within a finite element code [106, 107]. In these approaches,

the modeling of motion and growth of larger voids, appears to rely mostly on element

deletion schemes, which approximate the boundary of the voids accurately in the

limit of mesh refinement [107]. Furthermore, these methods also ignore the surface

energy associated with void boundaries or surface diffusion along the void boundary,

and rely on the underlying physics of electromigration being captured entirely in the

bulk through the divergence of flux.

The phase-field method has been used earlier to study electromigration in Al/Cu

interconnects by various authors [66, 109], as it allows relatively easy handling of

topological changes. In this chapter, a phase field model for simulating the motion

and growth of pre-existing voids in flip-chip solder joints is developed. The presence

of silver and copper in the solder is neglected as they form a very small fraction of

the material in the solder joint. The only diffusion mechanism considered in the bulk

of the solder joints is the self diffusion of Sn atoms due to a a vacancy mechanism. At
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the interface of the voids, the voids evolve due to surface diffusion by motion of Sn

atoms along the interface. In addition, the interface evolves by the accumulation and

coalescence of vacancies at the void interface. In addition to the standard diffusion

due to the gradients in the chemical potential in the bulk and at the interface, the

diffusion is also driven by the electron wind (electromigration) as well as temperature

gradients, (thermo-migration). Another effect that is considered in the model is the

effect of stress. This comes into the picture both due to the back-stress developed on

account of changes in the vacancy concentration in Sn, as well as external loads seen

in the solder joint due to effects such as the mismatch in the co-efficient of thermal

expansion. In § 3.1, a sharp interface model for the evolution of voids in solder joints is

presented. Next, (§ 3.2) the phase field equations for the model are discussed coupled

with a formal asymptotic analysis (§ 3.3) for the developed phase field equations.

A numerical method for the solution of the equations presented here is developed

in Chapter 4. This numerical method is a staggered multi-physics code. Various

numerical validation examples are presented there.

3.1 Sharp Interface Model

In this section, a sharp interface model for the electromigration growth and evo-

lution of voids in solder is presented. The governing equations for the driving force

systems are specified first, followed by the relations for the self-diffusion of tin, and

the motion of the void by surface diffusion and void growth.

3.1.1 Distribution of the Electrical Potential Gradient

As solder is a conductor, there is no charge accumulation at any point in the bulk

of the solder joint. Therefore, the electrical current or charge flux is divergence free,

and the charge evolution is described as,

∇.Jcharge = 0. (3.1)
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The current is driven by gradients in the electrical potential. The current is related

to the gradient in the electrical potential, φe through the conductivity,

Jcharge = −c∇φe. (3.2)

With Eq. (3.1)

−∇.c∇φe = 0. (3.3)

This is solved coupled with Dirichlet boundary conditions on the electrical potential,φe =

φ0
e on Γφe , and Neumann boundary conditions as a condition on total electrical flux,

c∇φe = Je. On the internal void boundaries, the net charge flux into the void is zero,

this leads to,

c∇φe.n = 0. (3.4)

3.1.2 Temperature Distribution

The heat transfer equation is defined as follows,

ρmassCp
∂T

∂t
= −∇.k∇T + s. (3.5)

The heat generation s is due to many causes. Here, only the contributions due

to Joule heating are considered as they are expected to be dominant. The heat

generation due to Joule heating can be written as,

s = c|∇φe|2. (3.6)

In addition, the boundary conditions that can be applied are Dirichlet boundary

conditions of the form, T = T0 on ΓT0
, Neumann boundary conditions on the heat
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flux, k∇T = q on Γq. In addition, simple convection boundary conditions are applied

of the form,

−k∇T.n = hc(T − Tamb). (3.7)

At internal void boundaries, the net flux is assumed to be 0. This is defined through

a boundary condition of the form,

k∇T.n = 0. (3.8)

The assumption here is that while there are some thermal storage terms involved,

the thermal equilibrium is still faster than the pace at which diffusive equilibrium is

attained.

3.1.3 Balance of Momentum

It is assumed that the stress equilibrium is reached much faster than diffusive

equilibrium. Hence the time derivatives of displacement are neglected. The stress

equilibrium condition is therefore simply,

∇.σ = 0. (3.9)

It is assumed that small-strain elasticity is sufficient for the purposes of this study

and the constitutive law is written as,

σ = C : (ε− εthermal − εdiff) . (3.10)

In the above, ε is the standard small strain, defined as,

ε =
∇u+∇uT

2
. (3.11)
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εthermal is the standard thermal strain, defined as,

εthermal = α (T − T0) I. (3.12)

In addition to the thermal strain, as the concentration of vacancies increases, a com-

pressive stress-free strain develops in the solid. In the case, where there are constraints

on the deformation, a stress develops with changes in the vacancy concentration. This

additional stress also contributes to the diffusion of vacancies. This additional strain

is written as,

εdiff = β (X −Xeq) I. (3.13)

β is a co-efficient for this additional strain, and is usually related to the atomic volume

differences between the vacancies and the Sn atoms. β < 0 for vacancies usually. The

reasoning for this form for the additional diffusive strain is provided in Eq. (2.108).

This is because vacancies occupy less volume than the atoms, and if the concentration

of the vacancies in the solid is greater than the equilibrium concentration, there is a

compressive strain generated that tends to relax tensile strains in the solid.

The boundary conditions for the stress equilibrium problem are specified either

as Dirichlet boundary conditions on the displacement, u = uo on Γu. In addition,

the standard Neumann boundary conditions can be applied, σ.n = t on Γt, where t

are the applied tractions. The void surfaces are assumed to be traction free, and the

boundary conditions on the internal surfaces can be written as,

σ.n = 0. (3.14)

3.1.4 Self Diffusion of Tin in the Bulk

The only bulk diffusion mechanism that is assumed to be operational is the self-

diffusion of Sn atoms. This is modeled by a substitutional diffusion mechanism, with
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vacancies assumed to be a hypothetical species, that lie at unoccupied lattice sites.

This is necessary as the concentration of tin over the domain changes very marginally

over the domain. The balance equations for the vacancies are written as,

∂ρvac
∂t

= −∇.Jvac. (3.15)

Jvac is the vacancy flux. Owing to the substitutional flux constraint, this can be

related to the flux of the tin through,

− Jvac + JSn = 0. (3.16)

For substitutional diffusion, it is known that the driving force for diffusion is the

difference in the chemical potentials instead of the chemical potential of the individual

species. The diffusive flux can therefore be written as,

Jvac = −Mvac∇ (µvac − µSn) . (3.17)

. The mobility matrix is defined as a function of the concentration, and other vari-

ables. Rewriting the vacancy balance equation in terms of the number concentrations,

and introducing the mobility diffusivity equation, the equation can be re-written as,

∂ρvac
∂t

= −∇.Jvac = −∇.
−D

RT
ρvac∇ (µvac − µSn) . (3.18)

It is easier to solve the above in terms of the mole fraction instead of the concentration.

This is due to the fact that constitutive laws for the chemical potential are usually

formulated in terms of the mole fraction. Also, numerically quantities in terms of the

mole fractions are better scaled. In terms of mole fractions, the balance equation for

vacancies can be written as,

∂Xvac

∂t
= −∇.Mvac∇ (µvac − µSn) . (3.19)
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The chemical potential for vacancies is assumed to have the form,

µvac = RT ln
Xvac

Xeq
vac

− Ωvacp. (3.20)

In the above Ωvac is the atomic volume of the vacancies and p is the hydrostatic

pressure. With this definition of chemical potential a greater vacancy concentration

is favorable at points where the stress is tensile. The chemical potential for the tin

atoms is specified as,

µSn = RT ln
XSn

Xeq
Sn

− ΩSnp. (3.21)

In most of the domain, XSn ≈ Xeq
Sn. This implies that the first part of the chemical

potential of tin is approximately RT ln 1 = 0. This means that while this is strictly

a substitutional diffusion problem, it can be treated as a simple interstitial diffusion

problem for all practical purposes. Hence, the chemical potential of the vacancies is

directly assumed to be,

µvac = RT ln
Xvac

Xeq
vac

+ βp. (3.22)

In the above β = ΩSn−Ωvac is a parameter that measures the relative atomic volumes

of the tin and the vacancies. This is constructed so that, for positive β, the vacancies

move towards regions of higher tensile stress. The vacancies release this stress by

generating a compressive strain. This behavior of the vacancies is the reasoning

behind many models of diffusion creep [110].

The chemical potential gradient is not the only cause for the diffusive flux. In addi-

tion, there is a diffusive flux due to the applied electric current. The electromigration

driving force is written as,

felec = Z∗eρJcharge. (3.23)
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The above can be re-written as

felec = Z∗e∇φe. (3.24)

Z∗ is an experimentally determined parameter that is determined through electro-

migration experiments that relates the diffusive flux to the applied electrical current.

It has to be noted that this is a parameter that is meaningless outside of the context

of electromigration. The sign of the Z∗ parameter can be either positive or negative

based on the material, and it determines whether the material accumulates at the

cathode or the anode.

In addition, while the temperature of the geometry under consideration is expected

to be more or less constant throughout the domain, for the purposes of evaluating

material properties. Owing to the very small length scales under consideration, even

small changes in the temperature can lead to temperature gradients large enough to

cause mass fluxes. This is specified in a manner similar to the electromigration flux

and the driving force for diffusion due to thermomigration as,

ftherm = Q∗∇T. (3.25)

The thermo-migration is expected to cause the motion of atoms from zones of higher

temperature to zones of lower temperature. The vacancy flux is expected to be equal

and opposite to this flux. Hence the vacancy flux due to thermo-migration will be

the same as the flux of Sn atoms, however, the direction will be reversed. The total

driving force for diffusion is written as,

ftot = RT
∇Xvac

Xvac
+ β∇p+ Z∗e∇φe +Q∗∇T. (3.26)
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To relate the driving force for diffusion with the total flux for diffusion, through the

mobility diffusivity relation. This leads to the total flux of vacancies being defined

as,

Jvac =
D

RT
Xvac

(

RT
∇Xvac

Xvac
+ β∇p+ Z∗e∇φe +Q∗∇T

)

. (3.27)

The total diffusion equation in the bulk can be written as,

∂Xvac

∂t
= ∇.

D

RT
Xvac

(

∇RT ln
Xvac

Xeq
vac

+ β∇p+ Z∗e∇φe +Q∗∇T

)

. (3.28)

Boundary conditions

The boundary conditions for the bulk diffusion are specified as either dirichlet

boundary conditions on the mole fraction. Xvac = X0
vac on ΓX0

vac
. The external

boundaries of the domain are otherwise assumed to be flux-free boundaries. Jvac.n =

0. At the moving void boundaries, the boundary conditions are specified differently.

Balancing the number of vacancies over an interfacial control volume,

XvacV = Jvac.n+ λXvac

(

µΓ
vac − µΓ

Sn

)

. (3.29)

The final term in the above equation is due to the absorption of vacancies at the

interface. The form of Eq. (3.29) can be reasoned as follows. The vacancies are at

equilibrium at the boundary when the difference between the chemical potential of the

vacancies and the chemical potential of the tin is 0. Vacancies are either absorbed

or created at the interface, based on the current concentration of vacancies at the

interface Xvac, a rate constant λ and the difference between the chemical potential of

the tin and the chemical potential of the vacancies. A boundary condition very similar

to Eq. (3.29) is used in [66]. However, the dimensions of the additional applied flux

in that work are incorrect, and the accretive term XvacV is neglected while deriving

the boundary condition. In the absence of any vacancy coalescence at the interface,
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if the interface evolves due to other effects, such as surface diffusion, the vacancies

will pile up in front of a moving void while there will be a deficit of voids at least

temporarily behind the interface Fig. 3.2.

The final term can be understood as a type of evaporation-condensation relation

on the interface. This term will cause the void to grow. Boundary conditions of this

type have a long history in the simulation of void growth in diffusion creep [111–113].

The justification for the form of the vacancy coalescence is through Eq. (2.141) as

this process is very similar to the condensation or evaporation at an interface. If the

chemical potential of the vacancies in the bulk is greater than the chemical potential

of the tin, the vacancies will condense on the interface, causing the void to grow, and

causing a consumption of vacancies in the bulk. On the other hand, if the chemical

potential of the vacancies at the interface is less than that in the bulk, the vacancies

will evaporate and the void will shrink, and the concentration of vacancies in the

bulk will increase. It should be noted that in Eq. (3.29), any contribution due to the

diffusion of vacancies on the void boundaries is neglected.

Direction
of void
motion

Figure 3.2. Vacancy pile up ahead of a moving interface.
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Diffusivity for Vacancies

Self-diffusion of tin is an example of substitutional diffusion. In the case of sub-

stitutional diffusion the mobility matrices for vacancy diffusion and tin diffusion are

not independent but are instead linked by a constraint of the form.

Mvac −MSn = 0. (3.30)

Rewriting the above in terms of the concentration of the vacancies and the diffusivities

of the tin and the vacancies,

Dvacρvac = DSnρSn. (3.31)

Dividing throughout by ρSn, the equation above can be written in terms of mole

fractions.

DvacXvac = DSnXSn. (3.32)

Using the fact that XSn ≈ 1, Eq. (3.32) leads to,

Dvac =
DSn

Xvac
. (3.33)

This relation is necessary as most experimental results state the self diffusivity of

tin, which can’t be directly used with the vacancy diffusion equation. In the process

of simulation it is assumed that the vacancy mole fraction does not change too sig-

nificantly from the equilibrium vacancy concentration of tin, and the diffusivity for

vacancies is assumed to be constant and equal to,

Dvac =
DSn

Xeq
vac

. (3.34)
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3.1.5 Void Motion

Finally, the relations that hold at the void interface are described in this subsec-

tion. The void is assumed to evolve by two mechanisms. The first is through the

diffusion of Sn atoms on the void interface due to the flux of Sn atoms on the inter-

face. This is described by the surface diffusion equation. In addition, the void can

grow or sink based on the accumulation and coalescence of vacancies at the interface.

The balance of number at the interface is written as,

ρSnV = JSn.n+∇Γ.hΓ + λρvac
(

µΓ
vac − µΓ

Sn

)

. (3.35)

In the above, JSn.n is the contribution of the flux of Sn atoms into the interface.

This is negligible compared to the other contributions, and is neglected. ∇Γ.hΓ is the

contribution due to the diffusive motion on the interface. If the ρSn stays reasonably

constant through the evolution and ΩSn = 1
ρSn

. This allows Eq. (3.35) to be written

as,

V = ΩSn

(

∇Γ.hΓ − λρvac
(

µΓ
vac − µΓ

Sn

))

. (3.36)

The final terms in the above are the growth in the void due to vacancy coalescence

at the interface that was specified in Eq. (3.29). The flux for the surface diffusion

needs to be specified now. As shown in Eq. (2.135) The configurational force balance

at the interface leads to,

ρSnµ
Γ
Sn = Ψ− γκ. (3.37)

Using the same arguments used to write Eq. (3.36),

µΓ
Sn = ΩSn (Ψ− γκ) . (3.38)
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All contributions to Ψ other than the strain energy density at the interface are usually

neglected, and

µΓ
Sn = ΩSn (W − γκ) . (3.39)

With this definition of the chemical potential at the interface, the standard surface

diffusion flux is specified as,

h = −M∇µSn. (3.40)

In addition, by the same arguments used to introduce the electromigration and ther-

mal driving force to the bulk vacancy flux, the total surface flux is written as,

h = −M (∇ΓµSn + Z∗
Γe∇Γφe +Q⋆

Γ∇T ) . (3.41)

The surface mobility can now be related to the surface diffusivity using a mobility-

diffusivity relation, assuming a constant volumetric concentration of atoms at the

interface as,

M =
DΓh

RT
. (3.42)

In the above, h is the interfacial thickness, which is usually taken to be one atomic

layer [55]. A more detailed reasoning for this form of the equation can be found in [55].

The final equations for the motion of the interface can therefore be summarized as,

V = Ω
(

∇Γ.MΓ

(

∇Γµ
Γ
Sn + Z∗e∇Γφe +Q∗

Γ∇T
)

+ λρvac
(

µΓ
vac − µΓ

Sn

))

(3.43)

µΓ
Sn = Ω (W − γκ) . (3.44)

These equations are difficult to solve owing to the existence of moving boundaries.

These equations are solved in this thesis using a phase field method. In the diffuse

interface method used in this thesis, the phase field equations have no physical mean-
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ing. The only interpretation that can be attached to them is through the asymptotic

analysis in § 3.3.

3.2 Phase Field Equations

The equations derived in the previous section are solved using a phase field ap-

proach. The phase field or diffuse interface versions of the equations in § 3.1 are

derived by using smoothed approximations for the Heaviside step function and the

Dirac δ function. In this study, the version of the Heaviside step function that is used

is,

H(x) =
1 + tanh r√

2ϵ

2
. (3.45)

In the above r is the distance from the interface. This function is chosen so that it

tends to 0 in the interior of the void and 1 in the bulk of the material. As ϵ → 0,

the function tends to a sharp Heaviside step function. It should be noted that the

Heaviside step function used reaches 1 or 0 only asymptotically. However, the function

is reasonably close to the values of 1, 0 for most practical purposes when r ≪ ϵ. The

Dirac δ function corresponding to this that is used is,

δ(x) = (1− tanh2 r√
2ϵ
)2. (3.46)

This function usually appears in a normalized form in the phase field equations. This

normalization is omitted here, as the value of the normalization constant depends

on the context and is different for the diffuse interface version of the surface motion

equation, and for the vacancy diffusion equation. Using this, the equations for the

driving force systems are described first. The diffuse interface versions of the driving

force systems are described first. This is followed by the diffuse interface equations

for the motion of the interface and the diffuse interface equations for the diffusion

equation. The vacancy diffusion equation is described last as they are more closely



82

related to the phase-field equations for the evolution of the voids, than the other

equations here are.

3.2.1 Electric Potential, Heat Transfer and Momentum Balance

The diffuse interface versions of these three equations are described together as

the bulk equations and the boundary conditions at the interface can be described in

a similar fashion. The sole boundary condition at the moving interface for all three

of these, is a relation of the form,

J .n = 0. (3.47)

The equation for the electrical potential is written by modifying the conductivity as,

c = H(x)c0. (3.48)

This allows the equation to be written as

−∇.H(x)c0∇φe = 0. (3.49)

In finite element solutions of the above, as H(x) → 0, the system matrix will become

singular. To counter this, the conductivity of the material actually used in simulations

is,

cdiff = cdiff(H(x) + η). (3.50)

Where η is a small number, typically ≈ 1×10−6. Similarly, the equation for the stress

equilibrium in the bulk is written for the diffuse interface solution by modifying C to

(H(x) + η)C0. This can be written as,

∇.(H(x) + η)C0 (ε− εthermal − εdiff) = 0. (3.51)
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The heat transfer equation is similarly modified by modifying all the bulk quan-

tities by multiplying them by the Heaviside function. The heat transfer equation is

therefore written in the diffuse interface form as,

ρcp
∂T

∂dt
−∇.H(x)k∇T = c|∇φe|2. (3.52)

3.2.2 The Modified Cahn-Hilliard Equation

From [68], it is known that the Cahn-Hilliard equation with a degenerate mobility

approximates surface motion by the surface diffusion equation. Hence to track the

motion of the interface, a modified form of the Cahn- Hilliard equation is used with

terms added to account for the other driving forces for interface motion. While the

language used for the description of the Cahn-Hilliard model is similar to the language

used in other models. It has to be noted that the Cahn-Hilliard equation here has no

physical meaning. It is solely to be considered as a numerical construct, to recover the

geometric evolution laws in the limit of ϵ→ 0. The modified Cahn-Hilliard equation

for the evolution of the interface is written as,

∂φ

∂t
=

3

2
√
2

(

ΩSn∇.
MΓδ(φ)

ϵ
(∇µΓ + Z∗

Γe∇φe +Q∗
Γ∇T ) +

δ

ϵ
λX (µΓ + µvac)

)

(3.53a)

µΓ = −
3√
2
γΩSn

(

ϵ∇2φ+
1

ϵ
f ′(φ)

)

−
15

8
ΩSnδ(φ)W. (3.53b)

The reasoning behind the constants in Eq. (3.53) will described in the next section

§ 3.3.
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3.2.3 Vacancy Diffusion Equation

For the vacancy diffusion equation, the diffuse interface equations are developed

following the method of [114]. The equation can be written as,

∂HX

∂t
= ∇.HD

(

∇X +X

(

β
∇p

RT
+ Z∗e∇φe +Q∗∇T

))

−
3δ

4
√
2ϵ
λXvac (µvac + µΓ) .

(3.54)

Again, the reasoning for the constants in the above can be seen in the next section.

3.3 Formal Asymptotic Analysis

In the approach used in this work, the phase field equations by themselves don’t

have any physical meaning. It is necessary to show that the diffuse interface equations

can be shown to be the same as the sharp interface equations described in § 3.1. This

is done using the method of matched formal asymptotic analysis. This is done in

two parts. First, the diffuse interface versions of the stress, electric current and heat

transfer equations are analysed to show equivalence to their sharp interface forms.

Then the diffusion equations for the bulk and the interface are analysed. A more

detailed discussion of the technique of formal asymptotic analysis can be found in

Appendices B to D. In the section that follows, ρ is the scaled distance from the

interface, defined as,

ρ =
r

ϵ
. (3.55)

Throughout this section, •ρ, is defined as ∂•
∂ρ
, while •ρρ is defined as ∂2•

∂ρ2
. The domain

for the asymptotic analysis can be seen in Fig. 3.3.

The following statements regarding the Heaviside step function H and the Dirac

δ function, are necessary before starting the asymptotic analysis. In the outer region

I, H = 1 and H = 0 in region II. In both region I and II, δ = 0.
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Outer Region I
r > 0

Outer Region II
r < 0

Inner region

Figure 3.3. Domain for the formal asymptotic analysis.

3.3.1 Asymptotic Analysis of the Driving Force Systems

First the equations related to the driving forces, Eqs. (3.50) to (3.52), are anal-

ysed.

Electrical Potential Field

Expanding the electrical potential in the outer region as φe(x) = φ0
e(x)+ϵφ

I
e(x)+

. . .. As H0 = 1 in the outer region, Eq. (3.50) reduces to the standard charge balance

equation in the outer region. In the inner region, neglecting all tangential components,

the inner equation can be written using Eq. (B.34),

cH

ϵ2
Φeρρ −

cH

ϵ
κΦeρ +

c

ϵ2
HρΦeρρ. (3.56)

Substituting the inner expansion, Φe(ρ) = Φ0
e(ρ) + ϵΦ1

e(ρ) + . . . into Eq. (3.56) and

grouping terms together, the following equations can be written at different orders.

At the ϵ−2 order,

(cHΦ0
eρ)ρ = 0. (3.57)
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The above equation can integrated with respect to ρ to get,

Φ0
e = constant. (3.58)

Using the matching condition, limρ→∞ Φ0
e = limr→0 φ

0
e, it can be concluded that the

limr→0 φ
0
e = constant. The inner solution is continuous with the outer solution at the

leading order. At the ϵ−1 order,

cHΦ1
eρρ

= 0. (3.59)

Integrating the above equation, and using the fact that limr→0− c∇φ0
e.n = 0 (inside

the void)

cHΦ1
eρ = 0 =⇒ lim

r→0+
c∇φ0

e = 0. (3.60)

The above shows that the diffuse interface version of the charge balance correctly and

the no -flux boundary condition at the void interface is correctly captured as ϵ→ 0.

Momentum Balance Field

Writing the temperature in the outer region as T (r) = T0(r) + ϵT1(r) + . . ., as

H → 1 in the outer region I, the standard heat transfer equation is recovered. In the

inner region, the heat generation is 0, as Φeρ = 0 in the inner region. The rest of the

analysis is similar to the analysis for the charge balance system.
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Stress equilibrium

For the stress equilibrium equation in the outer region I, the standard stress

equilibrium equation is recovered as H = 1. For the analysis in the inner region,

using Eq. (B.19),

σ.n = 0. (3.61)

This recovers the traction free boundary condition on the void interfaces. It has to be

noted that in the analysis for the mechanical equilibrium conditions, no mention is

made of the variation of the stress and strain invariants in the interfacial region. These

quantities are not constants over the interfacial region and can cause problems while

calculating the diffusion due to gradients in the stress (pressure gradient), if gradients

in the pressure are not suppressed over the interfacial region. This is ameliorated to

a certain extent by the averaging scheme described by Eqs. (4.3) and (4.4).

3.3.2 Asymptotic Analysis of the Phase Field Equations

The asymptotic analysis for the Eq. (3.53) is based on the analysis in [68]. The

solutions φ, µ to Eq. (3.53) can be expanded in the outer regions as,

µ = µ0 + ϵµ1 + ϵ2µ2 + . . . (3.62a)

φ = φ0 + ϵφ1 + ϵ2φ2 + . . . . (3.62b)

The solution in the inner region can be written as,

µin = µ0
in + ϵµ1

in + ϵ2µ2
in + . . . , (3.63a)

Φ = Φ0 + ϵΦ1 + ϵ2Φ2 + . . . . (3.63b)
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The outer analysis is performed first. Substituting Eq. (3.62) into Eq. (3.53b),

the leading order in the outer expansion is the ϵ−1 term. This leads to,

f ′(φ0) = 0. (3.64)

From Fig. 4.5, it can be seen that f ′(φ0) has two roots at ±1. Hence, the solution to

φ in the outer regions tends to either ±1. This allows the phases to be discriminated,

with 1 indicating the presence of material and−1 the void. This also leads to µ0 = 0 in

the outer region, as the only other term in the ϵ0 order for Eq. (3.53b) is −15
8 ΩSnδW ,

which is 0 in the outer region. Therefore, in the outer region, Eq. (3.53a) can be

reduced to 0 = 0 in all orders.

For the inner-expansion, Eq. (3.53) needs to be transformed into a co-ordinate

system that is attached to the interface. Using Eq. (B.34), the modified Cahn-Hilliard

equation can be written as,

Φt −
1

ϵ
V Φρ =

3

2
√
2

Mδ′(Φ)

ϵ

(
Φρ

ϵ
êρ +∇ΓΦ

)

.

(
Gρ

ϵ
êρ +∇ΓG

)

+
3

2
√
2

Mδ(Φ)

ϵ

(
1

ϵ2
Gρρ −

1

ϵ
κGρ +∇2

Γ (G)

)

+
3

2
√
2

δ(Φ)

ϵ
λρvac (µin + µvac) .

(3.65a)

In the above, G = µin + Z∗eΦe +Q∗T .

µin = −
3√
2
γ

(
1

ϵ
Φρρ − κΦρ +

1

ϵ
f ′(Φ) + ϵ∇2

ΓΦ

)

−
15

8
δ(Φ)W. (3.65b)

Substituting Eq. (3.63) into Eq. (3.65), the leading order terms in Eq. (3.65b) are at

the ϵ−1 order and can be written as,

−Φ0
ρρ + f ′(Φ0) = 0. (3.66)
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The boundary conditions that Eq. (3.66) needs to satisfy the matching conditions

with the outer regions I and II are, limρ→−∞ Φ0 → −1 and limρ→∞ Φ0 → 1. With

these boundary conditions, the solution to Eq. (3.66) is found to be,

Φ0 = tanh
ρ√
2
. (3.67)

This implies that the equilibrium profile of Φ is a hyperbolic tangent. Eq. (3.67)

also explains the choice of the approximation to the Heaviside step function in

Eq. (3.45), as that can be computed quite simply as H(x) = 1+Φ(x)
2 . At the ϵ0

order in Eq. (3.65b), the terms that remain are,

µ0
in =

3√
2
γκΦ0

ρ −
15

8
δ(Φ0)W. (3.68)

To make the left hand side of Eq. (3.68) integrable, both sides are multiplied by Φρ.

Integrating w.r.t ρ over −∞,∞, Eq. (3.68) can be shown to be,

2µ0
in = ΩSn

(

3√
2

2
√
2

3
γκ−

15

8

16

15
δ(Φ)W

)

. (3.69)

The above relation implies

µ0
in = ΩSn (γκ−W ) . (3.70)

In the above, the following integrals are used,

∫ ∞

−∞
tanh

ρ√
2ρ

dρ = 2, (3.71)

∫ ∞

−∞
tanh

ρ√
2

2

ρ

dρ =
2
√
2

3
, (3.72)
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and

∫ ∞

−∞
tanh

ρ√
2ρ

(

1− Φ2
)2

dρ =
16

15
. (3.73)

Eq. (3.70) shows that the phase field equation actually computes the negative of

the chemical potential of the solder interface. An important assumption made in

the above derivation is that the computed value of the strain energy is more or less

constant over the interfacial region. The result Eqs. (3.67) and (3.70) can be used

along with results from the inner solution of the driving force systems in § 3.3.1 to

analyse the solutions to Eq. (3.65a). From the results in § 3.3.1, the following can be

stated,

T 0
ρ = Φ0

eρ = 0. (3.74)

Additionally, Eq. (3.70) also leads to µinρ = 0. The leading orders Eq. (3.65a) are

ϵ−2, ϵ−3. Terms of order ϵ−3 lead to,

(Mδ(Φ)G0
ρ)ρ = 0. (3.75)

Coupled with boundary conditions from the matching conditions,(Eq. (C.12)), the

above leads again to µ0
inρ = 0. The next order that is considered is terms of order

ϵ−2. Grouping these terms leads to,

Mδ′(Φ0)
(

Φ0
ρêρ.∇ΓG

0 +∇ΓΦ.G
0
ρêρ

)

− κG0
ρ = 0. (3.76)

Using the orthogonality of the surface gradient to êρ as well as the fact that G0
ρ = 0.

The above relation reduces to 0 = 0. Considering terms of order ϵ−1, the following

can be written,

−V Φ0
ρ =

3

2
√
2
Mδ(Φ0)∇2

ΓG+
3

2
√
2
ρvacδ(Φ

0)λ(µ0
in + µ0

vac). (3.77)
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Substituting the terms of G, and using the fact that µ0
in = −µΓ

Sn (Eq. (3.70)),

Eq. (3.77) can be written as,

−V Φ0
ρ =

3

2
√
2
Mδ(Φ0)∇2

Γ

(

−µΓ
Sn + Z∗eΦ0

e +Q∗T 0
)

+
3

2
√
2
ρvacδ(Φ

0)(µΓ + µ0
vac).

(3.78)

Integrating the above from −∞ to ∞ with respect to ρ, the expression reduces to,

−2V =
3

2
√
2

4
√
2

3
M∇2

Γ

(

−µΓ + Z∗eΦ0 +Q∗T 0
)

+
3

2
√
2

4
√
2

3
ρvac(−µΓ

Sn + µ0
vac).

(3.79)

On simplification, Eq. (3.78) therefore recovers the relation for the motion of the

interface (Eq. (3.43)).

Vacancy Diffusion Equation

Finally, the phase field version of the vacancy diffusion equation is studied. A

result from this section is used to derive Eq. (3.79). This is the fact that µvacρ = 0

in the inner region. A crucial assumption made in this derivation, here is that the

pressure variation in the interfacial region is negligible. This is not strictly true,

as only the displacements are constant over the interfacial region. However, in this

thesis, the value of the pressure and other stress/ strain related quantities is averaged

over the interfacial region Fig. 4.2 and hence pinρ = 0 is reasonable.

In the outer domain, the interfacial terms drop out as δ(φ) = 0, and the standard

bulk diffusion equation (Eq. (3.28)) is recovered. In the inner region, expanding the

chemical potential as

Xvac = X0
vac + ϵX1

vac + . . . (3.80)
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This lets the chemical potential to be expanded as,

µin vac = µin vac + ϵµ1
in vac + . . . = RT lnX0

vacX
eq
vac + ϵ

RTX1
vac

X0
vac

+ β(p0 + ϵp1 + . . .)

(3.81)

In the leading order

µ0
in vac = RT ln

X0
vac

Xeq
vac

+ βp0. (3.82)

Transforming Eq. (3.54) into the inner co-ordinate system, the diffusion equation in

the inner region can be written using Eq. (B.20) as,

∂HXvac

∂t
−

V

ϵ
(HXvac)ρ =

1

ϵ
n.Jρ +

3

4
√
2

δ

ϵ
Xvacλ

(

µin vac − µΓ
Sn

)

. (3.83)

In the above, J can be written as,

J = HDvacXvac (∇µin vac + Z∗e∇Φe +Q∗∇T ) . (3.84)

Expanding the above in the inner region, terms of order ϵ−1 can be grouped to get,

HDvacXvacµ
0
in vacρ = 0. (3.85)

As HDvacXvac ≥ 0 in the inner region, the above relation implies, µ0
in vac = constant

in the inner region. The implications for the mole fraction are that,

X0
vacρ = −

Xeq
vac

RT
βp0ρ. (3.86)

With the stress/strain quantities smoothed over the interfacial region (Eq. (4.4)),

p0ρ ≈ 0 and this leads to,

X0
vacρ = 0. (3.87)
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Terms of order ϵ−1 in Eq. (3.83) can now be grouped to get,

−V HρXvac − V HXvacρ = n.Jρ +Xvac
3

4
√
2
δλ
(

µin vac − µΓ
Sn

)

. (3.88)

Integrating the above equation from −∞ to ∞, the relation can be re-written as,

−V Xvac = n.J +Xvacλ
(

µin vac − µΓ
Sn

)

. (3.89)

This recovers the boundary condition for the vacancies on the moving interface

Eq. (3.29).

3.4 Summary

The phase field model developed in this chapter is solved using a finite element

method, that is described in the next chapter (Chapter 4). The diffuse interface

model developed in this chapter is summarized in Table 3.1. A numerical imple-

mentation of the diffuse interface model described and analyzed here is described in

Chapter 4. Further details of the implementation, in terms of the code can be found

in Appendix E.
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Table 3.1. Summary of the phase field model. The boundary conditions specified for the sharp interface model are the
boundary conditions on the moving internal interface.

Physics Sharp Interface Model Phase Field Model

Electrical Potential
Distribution

−∇.c∇φe = 0 in Ω
c∇.φe.n = 0on Γ

−∇.cH∇φe = 0 in Ω

Temperature
Distribution

ρmassCp
∂T

∂t
= −∇.k∇T + s in Ω

k.∇T = 0 in Γ
ρcp

∂HT

∂dt
−∇.Hk∇T = cH|∇φe|2 on Ω

Momentum Balance
∇.C. (ε− εthermal − εvac) = 0 in Ω

σ.n = 0 on Γ
∇.HC (ε− εthermal − εvac) = 0 in Ω

Vacancy Diffusion

∂Xvac

∂t
=∇.

D

RT
Xvac

(

∇RT ln
Xvac

Xeq
vac

+β∇p+ Z∗e∇φe +Q∗∇T )

in Ω

XvacV = Jvac.n+ λXvac

(

µΓ
vac − µΓ

Sn

)

on Γ

∂HX

∂t
=∇.HD

(

∇X +X

(

β
∇p

RT

+
Z∗e

RT
∇φe +

Q∗∇T

RT

))

+
3δ

4
√
2ϵ
λXvac (µvac + µΓ)

in Ω

Void Evolution
Equation

V = ΩSn

(

∇Γ.MΓ

(

∇Γµ
Γ
Sn + Z∗e∇Γφe +Q∗

Γ∇T
)

+λρvac
(

µΓ
vac − µΓ

Sn

))

µΓ
Sn = Ω (W − γκ) on Γ

∂φ

∂t
=

3

2
√
2
ΩSn

(

∇.
MΓδ(φ)

ϵ
(∇µΓ + Z∗

Γe∇φe +Q∗
Γ∇T )

+
δ

ϵ
λρvac (µΓ + µvac)

)

µΓ = −
3√
2
γΩSn

(

ϵ∇2φ+
1

ϵ
f ′(φ)

)

−
15

8
ΩSnδ(φ)W
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4. A PHASE FIELD MODEL FOR ELECTROMIGRATION: NUMERICAL

IMPLEMENTATION

In this chapter, the numerical solution to the system of equations derived in Chapter 3

is described. The model developed in Chapter 3 is a system of coupled differential

equations. Ideally, they should be solved simultaneously. However, the coupling

between the different systems is sufficiently weak, and solution by a staggered multi-

physics approach is usually accurate enough. The approach used in this thesis is

shown in Fig. 4.1. A more complete description of the code developed as part of

this thesis can be found in Appendix E. Following the description of the numerical

approach, the use of the code on several examples is demonstrated.

Start Timestep

Compute Electrical Field

Compute Temperature Field

Compute Displacement Field

Average Stress/Strain Invariants at Nodes

Solve Cahn Hilliard over each domain

Update Vacancy field over Domains

Compute Next Timestep

Figure 4.1. Staggered multi-physics simulation of the electromigration model.
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4.1 Finite Element Implementation

The different driving force terms are solved for first, followed by the solution of

the Cahn Hilliard equation to update the interface. This is then followed by the

solution of the vacancy diffusion equation. The solution for the thermal, electrical

and stress problems are computed by the standard finite element method. The stress

problem is solved with a standard displacement based finite element method. The

model for the diffusion of vacancies in the bulk (Eq. (3.28)) require the computation

of the gradient of pressure. Most numerical methods for elasticity and other stress

problems are based on using the displacements as the primary variable. Quantities

related to stress are computed in a post-processing phase after the displacements

have been found out. These values are found at the Gauss points, as the stress

quantities depend on the gradients of the primary displacement variables, the level of

continuity and differentiability is reduced. For example, with linear C0 elements, the

displacements are continuous at the nodes, while the gradients of the displacement are

discontinuous across element boundaries. This makes the computing the gradients of

stres quantities difficult. The stress quantities are therefore computed at the Gauss

points and then extrapolated to the nodes by means of a global least squares solution.

Consider a quantity q̃ defined over the elements. Let q(x) be an approximation

of q̃ at the nodes. q(x) can be found by minimizing the functional,

I(q(x))

∫

Ω

∥q(x)− q̃∥2dΩ. (4.1)

Eq. (4.1) can be minimized by a Galerkin finite element method by letting q =
∑

Niqi.

This leads to the solution of a linear system of equations of the form,

∫

Ω

∑

j

∑

i

NjNiqidΩ =

∫

Ω

∑

j

q̃dΩ. (4.2)

This approach works very well for regular meshes, and meshes without dangling

edges. However, it does not result in a sufficiently smooth approximation of the stress
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over the domain (Fig. 4.2a). Another consideration in this work is to eliminate the

effect of the sharp gradients in the stress quantities at the void interface and the value

of the void. Both these can be solved by adding a small diffusive component to the

solution. The functional Eq. (4.1) is modified by adding a small diffusive contribution.

Further smoothing over the void interface is obtained by only averaging the stress

values over the material regions. This can be written as

I (q(x),∇q(x)) =

∫

Ω

(

∥q(x)− q̃∥2 + (dsmoothingΩel) ∥∇q(x)∥2
)

dΩ. (4.3)

In the above, dsmoothingΩel is an additional diffusivity like quantity. dsmoothing is a

small dimensionless parameter, while Ωel is the volume of the element. This lets

the smoothing goes to zero as the element size goes to zero. The Euler-Lagrange

equations for Eq. (4.3) can be written as,

−∇. (dsmoothingΩel)∇q(x) + h(x) (( q(x)− q̃) = 0. (4.4)

The effect of this smoothing can be seen in Fig. 4.2. On the left, Fig. 4.2a the

pressure and the strain energy as computed by Eq. (4.2) are shown on an adapted

mesh. As the mesh becomes coarser, the approximations for the pressure and the

strain energy develop oscillations. These can be troublesome while solving the dif-

fusion equations, where the gradient of the pressure is needed. The addition of the

diffusive term of Eq. (4.4) allows the features of the stress solution to be captured,

while eliminating the oscillations that develop in the solution § 4.1.

4.1.1 Phase Field Solution

The Cahn Hilliard equation is a non-linear 4th order partial differential equation.

Solving a 4th order partial differential equation using the finite element method di-

rectly requires the use of a C1 discretization [115]. The standard way to solve the

Cahn Hilliard equations using the finite element method is by splitting the equation
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Strain Energy Pressure

(a) Unsmoothed strain energy and pressure.

(b) Smoothed strain energy and pressure with dsmoothing = 1.0.

Figure 4.2. Smoothing of Gauss-point quantities by introducing a diffusive parameter.
The strain energy and pressure distribution for an elliptical void in a rectangle under
uniaxial tension.
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into a system of two equations [116]. The system of equations that needs to be solved

is however still a non-linear system of equations. A further complication is presented

by the nature of the f ′(φ) term in the Cahn-Hilliard equation. This term makes

the system of equations non-convex. As a result, the numerical solution scheme fails

for larger time-step values [72]. In [72], the author proposes a method based on the

splitting the phase field potential function into the difference of two convex functions

(Fig. 4.4),

f(φ) = fconvex(φ)− fconcave(φ). (4.5)

(4.6)

During the time integration of the equations, the convex part of the equation is treated

implicitly, while the concave part is treated explicitly from the previous time step.

This leads to,

f ′(φ) = fconvex(φ
t)− fconcave(φ

t−1). (4.7)

This split can be performed in a way to allow the implicit part of the problem to be

completely linear. Here, f(φ) = 1
4(1− φ2)2 is used. A split for the potential function

that allows the solution to be computed in an easier fashion is the split,

f(φ) = φ2

convex

−
1

4

(

1− 6φ2 + φ4
)

concave

. (4.8)

In Fig. 4.4, the convex and concave parts of the phase field functions are indicated

by the solid black and red lines. It can be seen that the negative of the concave part

of the function is not purely convex. This leads to numerical problems, when the
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time-steps are large, and hence a modified form of the phase field function shown by

the red line in Fig. 4.3 is used. This can be written as,

f(φ) =

⎧

⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎩

(φ+ 1)2 if φ < −1

1
4(1− φ2)2 if ∥φ∥ ≤ 1

(φ− 1)2 if φ > 1

(4.9)

This can be split into a convex and concave function as,

f(φ) = φ2

convex

−

⎧

⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎩

1 + 2φ if φ < −1

1
4 (1− 6φ2 + φ4) if ∥φ∥ ≤ 1

1− 2φ if φ > 1

concave

. (4.10)

As can be seen in the dashed red line in Fig. 4.4, the concave part of the split in

Eq. (4.10) is fully concave. As the convex part of f(φ) is quadratic, f ′
convex(φ) is

linear and treating it implicitly leads to a linear system of equations at every time

step.

In this study, the second order stabilized solution scheme of [73] is modified

and used. In this instead of using a simple concave-convex split, a more involved

split, based on the backward extrapolation of f ′
convex and the forward extrapolation

of f ′
concave. This can be written as,

f ′(φ) = f ′
convex(φ

t)−
f ′′(φt)

2

(

φt − φt−1
)

− f ′
concave(φ

t−1)−
f ′′(φt−1)

2

(

φt − φt−1
)

.

(4.11)

The method of [73], similar to the method of [117] also adds a stabilization term

to the solution. [117] adds a simple penalty stabilization, while [73] adds a small

diffusional stabilization. Here, the diffusional smoothing of [73] is used. This helps

removes some small oscillations that appear in the solutions to the phase field equa-
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−2 −1 0 1 2

0.5

1

1.5

2

φ

f(φ)

Biquadratic Potential

f(φ)
f(φ)approx

Figure 4.3. Biquadratic energy function used for enforcing the phase separation. Also
shown is the relaxed version of the phase field energy.

−2 −1 1 2

1

2

3

4

φ

f(φ)

Biquadratic Potential Split

fconv
f approx
conc

fconc

Figure 4.4. Convex and concave parts of the phase field energy used in the numerical
algorithm.

tions. This is essentially the same as adding a term of the form to the semi-discrete

form of the equation for the surface chemical potential,

ηstab∇2
(

φt − φt−1
)

. (4.12)
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As φt → φt−1, it does not change the solutions too much. However, it does add a

small amount of error to the solution. This has been analyzed in detail in [73,117]. In

all our simulations, a value of ηstab = 10 is used. This value meets the requirements

for ηstab derived in [73].

The final terms that needs to be accounted for in the solution scheme for the phase

field equation is the terms that are related to the coalescence of the vacancies at void

interface. These are handled in a semi implicit manner as,

vac. acc = δ(φ)

(

µt
Γ +RT ln

X t−1

X0
+ βpt

)

. (4.13)

Finally, using Eqs. (4.11) to (4.13), the matrix that needs to be solved at every

time-step for the solution of the phase evolution problem can be written as follows,

⎡

⎣
Aµµ Aµφ

Aφµ Aφφ

⎤

⎦

⎡

⎣
µt

φt

⎤

⎦ =

⎡

⎣
Fµ

Fφ

⎤

⎦ . (4.14)

−2 −1 1 2

−6

−4

−2

2

4

6

φ

f ′(φ)

Biquadratic Potential Derivative

Original
Approx.

Figure 4.5. Derivative of the phase field energy functions, used in this study.
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In the above, the individual submatrices can be written as,

(Aµµ)lm =

∫

Ωel

dt

(
M(φextrap)

ϵ
∇Nl∇Nm

−2
δ(φextrap)

ϵ
λX t−1NlNm

)

dΩel

(4.15a)

(Aµφ)lm =

∫

Ωel

NlNmdΩel (4.15b)

(Aφµ)lm = −
∫

Ωel

NlNmdΩel (4.15c)

(Aφφ)lm =

∫

Ωel

(
γ

ϵ

(
ϵ2

2
+ ηstabdt

)

∇Nl.∇Nm

+
γ

ϵ

(

1−
1

2
f ′′
concave(φ

t−1)

)

NlNm

)

dΩel.

(4.15d)

The elements of the right hand side solution vectors can be shown to be the following,

(Fµ)l =

∫

Ωel

(NlNm+dt
M(φextrap)

ϵ
∇Nl (ZΓ∇φe +QΓ∇T )

+dtNl2λ
δ(φextrap)

ϵ
µt−1
vacX

t−1
vac

)

dΩel.

(4.16a)

(Fφ)l =

∫

Ωel

(

Nl
γ

ϵ

(

f ′
concave(φ

t−1)φt−1 +
1

2
f ′′
concave(φ

t−1)φt−1

)

−
δ(φ)

ϵ
NlW +∇Nl.∇φt−1γ

ϵ

(

−
1

2
ϵ2 + ηstabdt

))

dΩel.

(4.16b)

4.1.2 Vacancy Diffusion Equation

The vacancy diffusion equation is challenging to solve with the finite element

method for a few reasons. The first is that the equations lead to an asymmetric

system of equations. The second is the presence of the advective terms due to the

electromigration flux, thermomigration flux as well as due to the presence of the

pressure gradient driven flux. Finally, the application of the vacancy coalescence

boundary condition on the void interface. With the parameter values commonly seen

in practice however, the concentration gradient terms are significant to eliminate the
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need for stabilization. The interfacial vacancy coalescence terms are non-linear, and

are treated in a semi-implicit fashion. The surface vacancy coalescence relation terms

are written as,

vac. coal. =
δ

ϵ
λX

(

RT ln
X

X0
+ βp+ µΓ

)

. (4.17)

While computing this, the vacancy coalescence term is expanded in a Taylor series

around X t. This can be written as,

vac. coal.t = X t−1(RT lnX t−1) +X t(βpt + µt
Γ)

+

(

RT lnX t−1 +X t−1 RT

X t−1

)
(

X t −X t−1
)

= X t(βpt + µt
Γ +RT lnX t−1 +RT )

−RTX t−1.

(4.18)

The other term that needs to be handled in the solution of the vacancy diffusion

equation is the term related to the time derivative of the vacancies. In order to

handle the accretive terms, the derivative used here is ∂HX
∂t

instead of ∂X
∂t
. This is

expanded as,

∂HX

∂t
=
∂H

∂t
X +H

∂X

∂t
. (4.19)

In the numerical solution, this is approximated as,

∂HX

∂t
≈
(
H t −H t−1

dt

)

X t +H t

(
X t −X t−1

dt

)

. (4.20)

With the above, the system of equations that needs to be solved is

[A][X] = [F ]. (4.21)
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Where, the elements of the matrix A can be written as,

(A)lm =

∫

Ωel

(

NlNm

(

2H t −H t−1 + dtλ
δt

ϵ

(

RT lnX t−1 + µt
Γ + 1

)
)

+dt∇Nl.DH t.∇Nm

+dt∇Nl.DH t. (Ze∇φe + β∇p+Q∗∇T )
)

dΩel.

(4.22)

Similarly, the elements of the force vector can be written as,

(F )l =

∫

Ωel

Nl

(

H tX t−1 + dtλ
δ

ϵ
X t−1

)

dΩel. (4.23)

4.1.3 Linear Solvers

The numerical solution to the electrical and thermal stress are solved using the

conjugate gradient method (provided by PETSc) and preconditioned using an algebraic

multigrid method, (provided by the HYPRE libraries ( also accessible through PETSc).

The stress system, the Cahn Hilliard system and the vacancy diffusion systems are

solved using the GMRES (Generalized Minimum Residual) method preconditioned

by a Jacobi preconditioner. While the HYPRE preconditioner is suitable for the solution

of the stress problem, it is not used owing to the excessive memory demands of

the preconditioner. This also necessitates the use of GMRES instead of conjugate

gradient for the stress solution, as the Jacobi-conjugate gradient combination fails

occasionally. The vacancy diffusion and the Cahn Hilliard system are solved using the

Jacobi -GMRES combination as the matrices are not symmetric. The matrix system

obtained in the solution of the Cahn Hilliard system is suitable for preconditioning

with block-preconditioners but this has not been explored in this dissertation.

4.1.4 Adaptivity

In order to reduce the computational cost of the phase field method, the problem

is solved over an h−adaptive mesh. The adaptivity features in this code are provided
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by libMesh. In this study, the mesh is adapted solely on the basis of the phase field

value. Elements are marked for adaptivity based on the average value of the phase

field parameter over the element. This is computed as,

φav
el =

1

nqp

⎛

⎝

nqpφqpi
∑

i=1

⎞

⎠ . (4.24)

If the value of φav
el is between -0.97 and 0.97, the element is marked for refinement,

otherwise, the element is marked to be coarsened. This method has been preferred to

the alternative of using an error estimator as numerical examples have shown the so-

lution to be more reliable with time stepping. More details about the implementation,

including the setting up of initial conditions can be found in Appendix E.

4.1.5 Validation

The primary validation example for models of electromigration by surface diffusion

is the reproduction of the analytical solution [118]. This provides a relation for the

velocity of the center of area of the void as

vcom ∝
Z∗∇φe

r
. (4.25)

In the above, r is the radius of the prexisting void. It is easy to see from the form of

the phase field equations that for a void of constant radius, the relation v ∝ Z∗∇φe

is automatically satisfied. This is a simple linear relation and is easily verified. The

relation at constant electrical potential gradient, however needs to be verified. The

local value of the electrical potential gradient gets elevated around the void, speeding

up the larger voids. The analytical relation in [118], on the other hand assumes that

the solution is To avoid this, a very large domain, (5× 2) is used, one side of which is

maintained at constant electrical potential, while a unit electrical potential gradient



107

is applied on the other side (Fig. 4.6). The other material properties used in the

validation simulation are listed in Table 4.1.

Table 4.1. Properties for validation.

ϵ 5× 10−3

Z∗
Γe -10

3
2
√
2
MΩSn 1× 10−3

3√
2
γΩSn .05

∆t 5× 10−5

The simulations are run from t = 0 to t = 1.5. The center of area of the void is

computed as,

xc.o.a =

∑

el

∑

qp |Jqp|wqp
1−φqp

2 xqp
∑

el

∑

qp |Jqp|wqp
1−φqp

2

. (4.26)

The velocity of the void is now computed as,

vc.o.a =
x1.5
c.o.a − x0

c.o.a

1.5
. (4.27)

The code is run for four values of the radius of the void, 0.1, 0.15, 0.2 and 0.25. These

values are chosen as they don’t perturb the value of the electrical potential gradient

around the void significantly. The results are plotted in Fig. 4.7b. The initial and

final location of the voids are shown in Fig. 4.7a. Using a power-law fit, the relation

for the velocity with respect to the radius was found to be,

vc.o.a = 0.194r−0.993. (4.28)

This value is extremely close to the analytical result of −1, showing the ability of the

code to capture these effects to a high level of accuracy.

The next test for the validation of the code, is to evaluate the surface diffusion in

the void under the combined effect of surface diffusion with an applied strain energy.
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φe = 0

c∇φe.n = 1

Figure 4.6. Boundary conditions for the validation examples.

The initial condition for this numerical experiment is shown in Fig. 4.8. The size

of the domain used is 2.5 × 1 and an initial elliptical void with semi-major axis 0.3

and semi-minor axis 0.2 is placed in the center of the domain. The domain is placed

under uni-axial tension by encastring the left side and applying a displacement of

0.001 on the right size. The elastic modulus of the material is set to 1 × 10−3, and

γΩSn is varied between,2
√
2

3 , 2
√
2

30 and 2
√
2

300 . The modulus of elasticity is kept constant

at 8
15ΩSn

× 106 and a 0 poisson’s ratio is used. In the first case, Fig. 4.9a, the surface

energy dominates the surface strain energy density, and the elliptical void evolves into

a circular void. In Figs 4.9b and 4.9c, the surface energy is progressively reduced. As

the surface energy is reduced, the void tends to elongate and align itself along the

direction of the loading. This is because the lowest energy state now is a state where

the strain energy rather than the surface energy that is minimum. This is achieved

when the void transforms into a slit. The solution shown here initially transforms into

a rectangular void instead of an elliptical void owing to a small compressing stress

that is generated along the tips of ellipse along the axis of loading.

4.2 Examples

In the section a few examples of the use of the code under various circumstances

is demonstrated. The first two cases that are demonstrated are reproducing the

standard instabilities that are observed tfor a circular void under electromigration

by surface diffusion. The existence of these instabilities can be determined through

a linear stability analysis, [119]. In [119], perturbations on the circle at 0◦ and 180◦
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t = 0.0 t = 1.5

(a) Initial and final location of voids of various sizes, under constant electrical potential
gradient.

0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26

0.1

0.15

0.2
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V
el
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it
y
of

vo
id

c.
o.
a.

Void Speed vs. Void Size

Results from simulation
Fit : 0.0194r−0.993, R2 ≈ 1

(b) Power law fit of velocities to size. The v ∝ 1
r [118] is recovered to very good accuracy.

Figure 4.7. Validation examples for velocity of voids of different sizes under a constant
electrical potential gradient.

to the direction of the current density are found to be unstable. When the surface

energy is high, it stabilizes the void and it trends to translate without shape change.

On the other hand when the electrical current density is much larger than the surface

energy effect, the solution displays actually displays the instabilities. Two types of

solutions are observed, one where the void evolves into a kidney shape [37] while in
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Figure 4.8. Initial condition for comparison of the relative effect of strain energy and
surface energy.

t = 1× 10−3

t = 5× 10−3

t = 1× 10−2

t = 2× 10−2

(a) High Surface Energy,

γΩSn = 2
√
2

3 .

t = 1× 10−3

t = 5× 10−3

t = 1× 10−2

t = 2× 10−2

(b) Medium Surface Energy,

γΩSn = 2
√
2

30 .

t = 1× 10−3

t = 5× 10−3

t = 1× 10−2

t = 2× 10−3

(c) Low Surface Energy,

γΩSn = 2
√
2

300 .

Figure 4.9. Evolution of an elliptic void due to surface diffusion in a solid under
uni-axial loading. The competing effect of the strain energy density and the surface
energy.

the other one, the void splits into two separate voids [120]. Both these solutions are

simulated here with the properties as shown in Table 4.2. The loading for both the
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cases is shown in Fig. 4.10. To simulate the case where the void transforms into a

kidney shape Fig. 4.11, the initial void is an ellipse with the major axis orthogonal

to the direction of the electrical potential gradient. In the second case Fig. 4.12,

the initial void is an ellipse with the major axis aligned with the direction of the

electrical potential gradient. Both these case reproduce the phenomena observed by

earlier sharp and diffuse interface method solutions of the surface electromigration

equations. In Fig. 4.12, after the ellipse splits into two voids, the size relation from

Fig. 4.7 is seen again, and the smaller void moves much faster than the larger void

under the effect of the same electrical potential gradient.

Table 4.2. Material properties and simulation paramters for the simulation of
the demonstration of kidney formation (Fig. 4.11) and the splitting of an ellipse
(Fig. 4.12).

3
2
√
2
γΩSn 0.01

3√
2
MΩSn 0.001

Z∗
Γe -20
∆t 1× 10−5

ϵ 5× 10−3

φe = 0

c∇φe.n = 1

Figure 4.10. Loading conditions for the kidney formation (Fig. 4.11) and void splitting
examples (Fig. 4.12).

4.2.1 Void Growth Due to Vacancy Coalescence

Vacancy coalescence at the interface is a commonly proposed model for the growth

of voids [110,112,121]. As shown in Eq. (3.13), vacancies cause a compressive strain,
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t = 0.0

t = 2× 10−3

t = 4× 10−3

t = 6.5× 10−3

Figure 4.11. Instability at low surface energies.

as the crystal deforms around the site of the vacancy. This also has the effect of

leading to a reduction in the tensile stress. Vacancies therefore, tend to accumulate

in regions of high tensile stress, or where p is most negative. In the case of an elliptical

void loaded as in Fig. 4.13, the regions of highest tensile stress are the regions around
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t = 0.0

t = 2.5× 10−3

t = 3.75× 10−3

t = 0.0

Figure 4.12. Instability in an elliptical void with the major axis aligned with the
direction of the electrical current.

the major axis of the void. The vacancies tend to accumulate in these regions. As

the vacancy concentration increases, it becomes more likely (Eq. (3.29)) that the
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vacancies will coalesce into the void and cause the void to grow. For some loads, the

system will reach a new equilibrium and the void growth will stabilize, however for

some values of the applied load, the void growth will continue unabated and the void

will grow into a crack. This is demonstrated in Fig. 4.14. The material and other

simulation properties used are listed in Table 4.3. There is no electromigration in this

example and hence the parameters related to electromigration are set to 0.

Table 4.3. Simulation parameters used for the simulations of void growth in Fig. 4.14

∆t 1× 10−5

ϵ 5× 10−3

E 1000
ν 0.33

3
2
√
2
γΩSn 0.01

3√
2
MΩSn 0.01

β 1.0
RT 3.0
D 1.0

3√
2
λΩSn 10

t

Figure 4.13. Loading for the simulations shown in Fig. 4.14.

As the load on the system is increased from t = {0, 0} (Fig. 4.14a) to t = {2, 0}

(Fig. 4.14c), the void tends to grow into the region of the highest negative pressure,

as the vacancy concentration in that region increases, in order to release that pres-

sure. At the intermediate loading (Fig. 4.14b), it is seen that the void grows a bit,

however, the system reaches a new equilibrium, and the system doesn’t reach failure.
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t = 5× 10−3

t = 2× 10−2

t = 5.5× 10−2

(a) 0 applied traction

t = 5× 10−3

t = 2× 10−2

t = 5.5× 10−2

(b) Applied traction, t =
{1, 0}

t = 5× 10−3

t = 2× 10−2

t = 5.5× 10−2

(c) Applied traction, t =
{2, 0}

Figure 4.14. Growth of an elliptical void due to vacancy coalescence at the tip. (a) is
a reference case with no applied tractions. (b) has a unit traction applied, while (c)
has a traction of 2 units applied.

This suggests that there is a value of the applied traction, beyond which the system

transitions from having stable solutions to a state where the system fails by void

growth.
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Figure 4.15. Loading conditions for simulations of effect of interconnect size on elec-
tromigration void growth.

4.2.2 Dependence of Void Growth on Size of Interconnect Structure:

Blech Length

The next case that is studied is the effect of the size of the interconnect structure on

the growth rate of voids. This is an important effect in the study of failure behavior,

as the size is an important design parameter. More importantly, the relation of the

size of the joint to the applied current density can be used to determine the maximum

electrical current that can be carried by the joint. In this study, the growth of a void at

the interface in structures of various sizes is tracked. The joint sizes used are, 0.4×1,

0.6 × 1, 0.8 × 1 and 1.2 × 1. A constant unit electrical potential gradient is applied

in each of the cases (∇φe.n = 1). All the boundaries are completely constrained

with respect to deformation. For the vacancy diffusion equation, it is assumed that

the outer boundaries are closed, material neither enters nor exists the interconnect

structure. A constant initial vacancy is applied over the entire domain. An initial

semi-circular void of radius 0.06 is placed at the center of the further corner. The

other simulation parameters used in this study are listed in Table 4.4.

The results of the simulations are shown in Fig. 4.16. As is clearly seen, the void

growth is greatest in the longest void. Also, as the size of the interconnect increases,
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(a) Pressure (b) Concentration

Figure 4.16. Effect of the length of the domain on electromigration void growth. As
the length of the joint is reduced, the back pressure gradient generated due to the
vacancy concentration increases. This reduces the concentration of vacancies available
for void growth, consequently reducing the void growth. The pressures at time t = .54
are shown in (a) while the concentration of vacancies is shown in (b). In (b), darker
regions correspond to regions of greater vacancy concentration. On the other hand,
in (a) darker, regions correspond to regions of greater pressure.
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Table 4.4. Simulation parameters for the study of size effects in interconnect structures
(Fig. 4.16).

∆t 1× 10−5

ϵ 5× 10−3

c 1.0
E 1000
ν 0.33

Z∗e
RT

−1.0
β
RT

20
3

2
√
2
γΩSn 0.01

3√
2
MΩSn 0.01

ρ0 1× 10−5

the void growth in the same timespan is greater. The relationship between the size of

the joint/line and electromigration has long been observed experimentally [122]. The

reasoning for the dependence is that as the electromigration progresses, a chemical

potential gradient develops on account of the concentration gradient developed due

to the vacancy accumulation, as well as the stress developed owing to the increase in

the vacancy concentration (Eq. (3.13)).

4.2.3 Simulations on Assemblies of Solder Joints

Finally the effect of these various effects on the failure of an assembly of solder

joints is studied. The geometry used is shown in Fig. 4.17. The geometry in Fig. 4.17

is chosen to be representative of the cases commonly seen in practice. 4 voids are

placed in various regions that are likely to be locations of failure. The opening of

the solder joint is 1 unit. A potential difference of 2 units is applied across the entire

assembly. This is so that each joint has a unit potential difference across it. In

terms of mechanical loading, tractions t = {−0.1, 0} on the left hand side connector

and t = {0.1, 0} on the right had side connector is applied. In this simulation, it is

assumed that the system is closed, and the only way for the number of vacancies in

the joint to change is through absorption at the void interface.



119

The material properties used in the simulation are listed in Table 4.5. The material

properties are not physical, but are only indicative of the relative properties of tin

and copper. The value of ϵ used in the dissertation is 5× 10−3, and ∆t = 1× 10−4.

Solder 1 Solder 2

Void 1

Void 2 Void 3

Void 4

Copper Copper

Copper

Figure 4.17. Geometry of assembly of solder joints used in simulations of electromi-
gration damage.

Table 4.5. Material properties for simulations on assemblies of solder joints.

csolder 1.0
ccopper 7.0
Csolder 1.0
Ccopper 10.0
ν 0.33

3
2
√
2
γΩSn 0.001

3√
2
MΩSn 0.001

Dvac 1.0
Z∗e
RT

1.0
Z∗

Γe 1.0
3√
2
λΩSn 1.0
β
RT

10.0
ρβ
RT

1.0× 10−4

The results of the simulations are shown in Fig. 4.18. As can be seen, void 1

and void 3 grow, while void 2 and void 4 reduce in size and eventually disappear.

Void 1 grows and evolves into a pancake void, a form of void that has been commonly

observed in the literature (Fig. 3.1, [108]). Another important feature is the difference
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in the growth rates of void 1 and void 3, in spite of both of them having the same

initial size and location from the edge of the joint. The primary difference is the value

of the electrical potential gradient in the vicinity of void 1 and void 3 (Fig. 4.20). As

|∇φe| is greater in the vicinity of the void 1, the mass-flux divergence and vacancy

concentration is higher in that region. This causes void 1 to grow at a significantly

higher rate than void 3. This feature of electromigration failure in assemblies of solder

joints has been frequently observed in experimental studies on daisy chains of solder

joints [102], where depending on the direction of the applied electric current, only

every other solder joint shows electromigration related void growth (Fig. 4.19).

4.3 Extension to 3-Dimensions

The code developed as part of this thesis Appendix E is capable of solving the

electromigration void evolution problem in both 2 and 3 dimensions, as the code

itself is programmed in a dimension agnostic fashion. However, owing to the expense

of 3-dimensional simulations using a phase field method, only limited examples are

presented here. The first example Fig. 4.21. Shows the evolution of a void in a 3-

dimensional line of dimensions 2.5 × 1 × 1. An initial spherical void of radius 0.1

is placed in the line and a constant electrical potential difference of 5 is applied

across the ends of the line. The value of Z∗
Γe used is -1, while 3

2
√
2
MΩSn = 0.1, and

3√
2
γΩSn = 1× 10−2. The timestep used is ∆t = 5× 10−5.

As expected and observed in Fig. 4.7a, The void moves into the region of high

electrical potential. This example was run on an AMD Opteron computer with 96GB

of memory using 24 2.0GHz processors. The code is discretized so that there are 4

elements between ±0.97. On average the code takes a minute per time step. The

results in the simulation took approximately 20 hours to simulate. The solution to

the stress problem was turned off in order to reduce the time required for solution.

A large void was also simulated in order to replicate the instability seen in Fig. 4.11.

This was done by putting an initial oblate spheroid void of size (0.3, 0.3, 0.2) with the
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t = .1

t = 1.3

t = 2.6

Figure 4.18. Evolution of voids in Fig. 4.17. As time progresses, material is removed
from the regions of void 1 and void 3 and deposited in the regions of void 2 and void
4. The deposition of material in the regions of void 2 and void 4, causes the voids to
disappear. Meanwhile, void 1 and void 3 continue to grow. Darker regions represent
regions with higher.

axis aligned with the direction of the electrical potential gradient. These can be seen

in Fig. 4.22.
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Figure 4.19. Electromigration damage in every alternate joint [102].

Figure 4.20. Electrical potential throughout the domain of the solder joints at time
t = 1.3 in Fig. 4.18.

4.4 Summary

In this chapter and the previous one (Chapter 3), a phase field model for the

simulation of electromigration related damage in solder and other interconnect struc-

tures is developed and demonstrated. Various known features of the physics of void

evolution, such as the motion of voids due to surface electromigration § 4.1.5. The

evolution of elliptical voids under the competing effects of strain energy and surface
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energy are demonstrated. Further, the code is demonstrated for simulating the growth

of an elliptical void due to the effect of vacancy coalescence at the tips of the ellipse.

Also demonstrated is the effect of the size of the joint on the growth rate of voids at

the interface. Finally, in § 4.2.3, electromigration is simulated over an assembly of

joints.
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t = 1× 10−4

t = 0.04

t = 0.08

Figure 4.21. 3D void evolution: A single void evolving under electromigration in a
3-dimensional void.
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t = 1× 10−4

t = 3.4× 10−3

t = 6.8× 10−3

Figure 4.22. 3D void evolution: Evolution of a large oblate spheroid into a rotated
kidney shape, under surface electromigration.
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5. SIMULATION OF EFFECT OF CONTACT ANGLE AND DIFFUSION

ANISOTROPY ON ELECTROMIGRATION FAILURE

5.1 Introduction

Sn displays a significant anisotropy in its self diffusivity, with Da

Db
≈ 2 at T =

180◦C and ≈ 3 at T = 223◦C [123]. With large joints, the anisotropy effect is

ameliorated by the polycrystalline nature of the material. In solder joints with a

limited number of grains, the electromigration failure is observed to depend strongly

on the orientation of the grains with respect to the direction of the electromigration

[124]. The anisotropy is also observed to influence the failure behavior under creep,

in the absence of electromigration [125].

This anisotropy is a serious concern as the length scales of interconnects become

smaller and the material can no longer be considered isotropic for modeling purpose.

The mechanics of the growth and evolution of voids is complicated due to surface

energy effects. Additionally the angle of adhesion between the interconnect and the

surrounding is known to affect the electromigration failure of the interconnect [126].

In this chapter, the electromigration model developed in Chapter 3, is extended

to account for the effects of contact energy at the interface between the solder and

the die. Phase field equations are usually solved using a zero Neumann boundary

conditions. This leads to the interface interacting with the outer interface at a 90◦

angle. Energetically, this is the case where the contact is neither favorable or un-

favorable. It is known that as the wetting between the solder and the die becomes

favorable, the contact angle between the void and the interface becomes more acute,

Fig. 5.2a. Conversely, when the wetting between the solder and the die is unfavorable

the contact angle between the void and the die becomes less acute Fig. 5.2b.
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5.2 Modeling Contact Angles

In terms of the model for the electromigration, this can be modeled as a condition

on the configurational force at a triple point Fig. 5.1 where the die, the solder and

the void meet. This can be written as,

γ12t12 + γ23t23 + γ31t31 = 0. (5.1)

Separating Eq. (5.1) into x and y co-ordinates. As the triple point is fixed in the

y directions, the forces in the y direction is indeterminate. In the x direction, the

balance can be written as,

γ12 − γ23 = −γ13 cos θc. (5.2)

Where, θc is the contact angle. Simplifying the relation, the contact angle can be

written as,

θc = arccos
γ23 − γ12
γ13

. (5.3)

θc
Void

Material 1

Material 2

Γ1vΓ1v

Γ12Γ2v

γ2vt2v γ12t12

γ1vt1v

Figure 5.1. Balance of forces at a triple point.
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θc < 90◦

Void Material 1

Material 2

Γ1v

Γ12

Γ2v

(a)

θc > 90◦
Void

Material 1

Material 2

Γ1vΓ1v

Γ12Γ2v

(b)

Figure 5.2. Favorable (a) and unfavorable (b) conditions for solder wetting the die.

In terms of the numerical model developed in § 3.2, the equation Eq. (5.3) is

realized as an neumann boundary condition on Eq. (3.53b). This follows the approach

of [127] for the simulation of contact lines in fluids, and can be written as

3

2
√
2
ϵγ∇φ.n = −

3γ

4
(1− φ2) cos θc. (5.4)

where cos θ is the cosine of the contact angle. This can be reasoned as follows. ∇φ is a

vector field that indicates the normal to the interface. In the standard Cahn-Hilliard

equation, the Neumann boundary condition can be written as,

∇φ.n = 0. (5.5)
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The above relation indicates that the interface is always orthogonal to the outer

interface. In terms of Eq. (5.4), this is the case, when θc =
π
2 . When θc ̸= 0, the right

hand side of Eq. (5.4) is non-zero only when (1− φ2) ̸= 0, and when integrated in an

inner co-ordinate system from −∞ to +∞ over the outer boundary of the system, it

can be shown that,

nφ
Γ.n = − cos θc. (5.6)

The negative sign in Eq. (5.6) arises because the normal to the interface is pointing

outwards as shown in Fig. 5.3, while the opposite sense is used while defining the

contact angles in Fig. 5.1.

nφ
Γ

n

Figure 5.3. Definition of the contact angle at the outer interface for a phase field.

5.3 Numerical Implementation

The numerical formulation of the equations for the bulk of the domain is the same

as in § 4.1. The boundary condition Eq. (5.4) is a non-linear boundary condition,

and can be treated in either a fully explicit, fully implicit or a semi-explicit fashion.

Here the approximation used for numerical solution is purely explicit, based on an
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extrapolated value of φ. This lets the contributions to the Fφ in, Eq. (4.14) due to

the application of Eq. (5.4) be written as

(Fφ)i =

∫

Γel

Niγ
3γ

4
(1− φextrap.)2 cos θcdΓel. (5.7)

In the above, φextrap. = 3
2φ

t−1 − 1
2φ

t−2.

This method of applying contact boundary conditions works well for intermediate

values of the θc. At very low (≈ 0), or very high ≈ π) contact angles, the method

fails to apply the boundary conditions with very good accuracy. A simple verification

is presented in Fig. 5.4. The initial condition is set as a circle of radius 0.5 centered

at (0.1, 0.1). A value of ϵ = 6 × 10−3 is chosen. In Fig. 5.4a, a contact angle of

30◦ is specified. As time progresses, the system reaches the equilibrium value of

approximately 30◦. In Fig. 5.4b, a contact angle of 150◦ is specified. In this case,

the initial condition is significantly different than the initial condition. However, the

system evolves throughout to try and maintain a 150◦ contact angle.

5.4 Numerical Examples

In this section, some numerical examples are demonstrated that study the effect of

anisotropy and the interfacial contact angle at the interface on the growth rate of voids

at the interface. The geometry used for these simulations is shown in Fig. 5.5. The

dimensions for these simulations are in arbitrary units at present, and the various

material parameters are dimensionless. However, the relative numerical values for

the conductivity are chosen to mimic the relative properties of copper and tin. The

properties for the other material properties are similarly indicative. The value of the

surface diffusion properties are chosen to minimize them so that the bulk diffusion

processes dominate the dynamics. These are found in Tables 5.1 and 5.2.

A constant unit electric potential is applied between the top pad and the base

of the copper pillar. Two sets of anisotropic diffusivities are used. In the first, the

diffusivity is dominant along the x axis ( roughly orthogonal to the direction of the
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τ = 0

τ = 0.9

(a)

τ = 0.5

τ = 1

(b)

Figure 5.4. Validation of contact angle boundary condition application. In (a) A
contact angle of 30◦ is applied on the interface, while in (b) a contact angle of 150◦

is applied on the interface.

Table 5.1. Conductivity properties for the materials.

Material property Copper Solder

Conductivity 10 1

applied potential gradient). In the second the diffusivity is dominant along the y axis,

in the direction of the potential gradient. A small semi-ellipsoidal void with major

axis 0.04 and minor axis 0.03 is placed close to the current crowding region of the

solder joint. The growth of this void with time is tracked using the code. For the

vacancy concentration, the bottom copper-solder interface is assumed to be a source

of vacancies at Xvac = 1.0. The initial condition is set so that the vacancies are at

equilibrium with the surface of the void at the end of the first time step. A time-step

of ∆t = 5× 10−5 is used. Note that this time step is in arbitrary units. The contact

angle at the interface is set to 160◦ in the first set of examples, and to 80◦ in the
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Solder

Copper

Copper Void

2

1

1

0..5

2.0

1.6

Figure 5.5. Geometry used for simulations.

Table 5.2. Diffusion and phase motion related properties for the solder.

Material property Solder

γΩ 4.7× 10−4

DΓh
RT

1.17×10−8

Da 0.25
Db 0.05
ZeΓ 0.0
ZeΩ
RT

1.0
α 0.94
RT 1

second set. A contact angle of 80◦ implies that the adhesion between the copper and

the solder is greater than the adhesion between the copper and the void, while the

contact angle of 160◦ implies that the adhesion between the copper and the solder
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Table 5.3. Parameters used in the simulations.

∆t 5× 10−5

ϵ 5× 10−3

is poor and it is easy to remove material from the interface. The stress effects are

neglected in the simulations below.

t = 1× 10−2

t = 0.3

t = 1

(a) Diffusivity dominant along the
x−axis.

t = 1× 10−2

t = 0.3

t = 1

(b) Diffusivity dominant along the
y−axis.

Figure 5.6. Evolution of void at interface due to vacancy accumulation under different
anisotropic diffusivities and a contact angle of 160◦.

From Figs. 5.6 and 5.7, It can be seen that the growth of the interfacial void

is most rapid when the principal diffusivity is along the same direction where the
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t = 1× 10−2

t = 0.3

t = 1

(a) Diffusivity dominant along the
x−axis.

t = 1× 10−2

t = 0.3

t = 1

(b) Diffusivity dominant along the
y−axis.

Figure 5.7. Evolution of void at interface due to vacancy accumulation under different
anisotropic diffusivities and a contact angle of 80◦.
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electrical potential gradient is maximum, and when the spreading of the void along

the interface is energetically favorable. This appears to agree with the experimental

observations in the literature [124, 126]. On the other hand, when the spreading of

the void is not energetically favorable, the spreading of the void along the interface

is minimal. Furthermore, as the supply of vacancies to allow the growth of the void

is limited, the void does not extend significantly into the interfacial region. On the

other hand, when the diffusivity is parallel to the direction of the electrical potential

gradient and the spreading of the void is unfavorable, the void can grow to a large

size simply because of the large supply of vacancies into the region of the void.

5.5 Summary

The effect of anisotropy and contact angle on the growth of voids at a copper

solder interface are studied using a newly developed phase field code. It is found

that the contact line conditions at the interface between the solder and copper plays

an important part in the evolution of the voids. It is suspected on the basis of

these simulations that the anisotropy of the solder is more likely to dominate the

failure effects. The effect of the concentration related stress is not included in these

simulations, and the interaction of the diffusion driven stress on the void growth rates

remains to be studied. The behavior at the interface Eq. (5.3) is likely to be a more

general adhesive law, and the effect of this on the growth needs to be studied.



136

6. PHASE EVOLUTION IN MULTIPHASE SOLIDS: DEVELOPMENT

Real material systems often consist of many phases, whose evolution frequently has

engineering significance. For example, void evolution in solder joints is actually a

multiphase problem, with the void evolution usually occurring at regions such as

grain boundaries, junctions, and at the copper/solder interface. The evolution of the

void is governed by the properties of all the phases adjoining the void. An example of

the complicated mechanics of void evolution in anisotropic joints with multiple phases

can be seen in Fig. 6.1, where the growth of the void at the junction of the grains due

to electromigration is affected by the anisotropic diffusivity of the different grains.

Figure 6.1. Growth of a void at the junction of two solder grains and the copper pillar.
The anisotropy of the diffusivity of copper in the solder leads to the selective growth
of the void in one grain [124].

The primary challenges in constructing numerical models to simulate the evolu-

tion of multi-phase systems are separating the domain into the different phases and

assigning material properties. The other challenge is the assigning of interface proper-

ties to the different possible combinations of interfaces. This is especially challenging

in cases where there are greater than 3 phases.

In this chapter and in Chapter 7, a phase field model is developed for the study of

systems with multiple phases based on a micro-force balance [45, 46]. This model is
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very similar to the one developed in [128]. Here, the model is also extended to allow

for the simulation of intergranular void evolution by surface electromigration.

In the first part of this chapter, the reasons why the standard methods of derivation

used for the study of multi-phase evolution are insufficient are discussed and the

concept of a micro-force balance is introduced. This motivates the concept of a micro-

force balance. These micro-force balances are coupled with the idea of the Larché-

Cahn derivatives, [19] to derive a phase field model that is usable for an n−phase

energy function with gradient terms. This model is studied with both constant and

degenerate concentration dependent mobilities. A preliminary analysis is done to

show the existence of solutions that separate into phases. Further, the model is

studied at locations where only two of the phases are non-zero to determine the

actual geometric evolution law being solved at the point and to find the constants

that relate the diffuse interface model to the sharp interface equations determined

from continuum mechanics. A more thorough analysis for the triple (in 2-D) and

quadruple (in 3-D) points can be found in [129,130].

In Chapter 7, a numerical implementation based on an Implicit-Explicit solution,

where the phase field energy is split into the difference of a convex function and

a concave function, with the convex part being treated implicitly is demonstrated.

Finally, a few examples of the use of the implementation, such as phase separation

in an n−phase system with degenerate and non-degenerate mobilities, the evolution

of three phase systems to equilibrium, and electromigration in three phase systems is

demonstrated.

6.1 Derivation of Phase Field Equations Based on Continuum Mechanics

It is challenging to derive equations of the phase field type as the free energy

function driving the evolution of the system depends on the gradient of the phase
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field variable. The traditional derivation defines the chemical potential through the

variational derivative of the free energy functional
∫

Ω Ψ(φ,∇φ)dΩ.

µ =
δΨ(φ,∇φ, ε)

δφ
. (6.1)

For the Cahn-Hilliard evolution of the phase field is then governed through a Fick’s

diffusion law

D

Dt
φ = ∇.M(φ).∇µ. (6.2)

The variational derivative in Eq. (6.1) for a general functional
∫

Ω F (φ,∇φ, . . .)dΩ is

defined through the following,

δ

∫

Ω

F (φ,∇φ, . . .)dΩ =

∫

Ω

δF (φ,∇φ, . . .)
δφ

δφdΩ. (6.3)

For the related Allen-Cahn equation, the evolution is defined as a steepest descent

rule as,

D

Dt
φ = −M

δ
∫

Ω Ψ(φ,∇φ, ε)dΩ
δφ

. (6.4)

The function Ψ(φ,∇φ, ε) most commonly used for the Cahn-Hilliard equation is a

gradient energy of the form,

Ψ(φ,∇φ) =
∫

Ω

(

γ ||∇φ||2 + f(φ)
)

dΩ. (6.5)

with f(φ) a non-negative function with two roots at φ1,φ2 and reaching ∞ as φ →

±∞. The above derivations are physically reasonable and intuitive. However, the

mathematical form makes it inconvenient to add additional features to the evolution.

An alternative way to derive and define the above relations is by considering the

evolution equations as gradient flows. Gradient flows [131] for functionals are defined
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as follows. Consider a functional I =
∫

Ω F (φ,∇φ)dΩ. The variation of the functional

can be written as follows,

δI =

〈
δF (φ,∇φ)

δφ
, δφ

〉

. (6.6)

The above equation is a gradient for the functional I. The right hand side of Eq. (6.6)

is an inner product in a particular norm and can be written as,

δI =

〈
δF (φ,∇φ)

δφ
,Lδφ

〉

, (6.7)

where L is a linear positive-semi definite operator that defines the inner product and

the norm. Assuming that the system evolves so that the energy rate is minimized,

the system evolves according to

D

Dt
φ = −L−1δF (φ,∇φ). (6.8)

This is a steepest descent argument similar to the one used in Eq. (6.4). The Allen-

Cahn equation itself can be described as a gradient flow in an L2 norm. The Cahn-

Hilliard equation on the other hand can be described and derived as a gradient flow

in the H−1 [67, 132] norm, which is defined as follows,

⟨u, v⟩H−1 ≡ ⟨∇ψu,∇ψv⟩L2 . (6.9a)

where

∇2ψu,v = u, v on Ω (6.9b)

∇ψu,v.n = 0 on Γ (6.9c)
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and

∫

Ω

ψudΩ = 0. (6.9d)

Eq. (6.9d) ensures that a gradient flow in the H−1 inner product conserves the value

of the evolving quantity over the domain. To get the Cahn-Hilliard equation from the

definition of the gradient energy ) the first variation of Eq. (6.5) is taken and written

as follows,

δΨ(φ,∇φ) =
∫

Ω

(

−γ∇2φ+ f ′(φ)
)

δφdΩ. (6.10)

Replacing the δφ in the right hand side with δφ = ∇2ψδφ, integrating by parts once

and using ∇ψδφ.n = 0,

δΨ(φ,∇φ) =
∫

Ω

∇
(

−γ∇2φ+ f ′(φ)
)

.∇ψδφdΩ. (6.11)

Comparing this to the right hand side of Eq. (6.9a),

δΨ(φ,∇φ) =
〈

∇
(

−γ∇2φ+ f ′(φ)
)

,∇ψδφ

〉

L2 . (6.12)

From Eq. (6.9a),

〈
δΨ

δφ
, δφ

〉

=
〈

∇2
(

−γ∇2φ+ f ′(φ)
)

, δφ
〉

H−1 . (6.13)

Using the definition of the gradient flow, the evolution rule can now be written as

∂φ

∂t
= −M∇2

(

−γ∇2φ+ f ′(φ)
)

. (6.14)

The approaches above (other than the gradient flow approach) have the advan-

tage that they are simple, intuitive and physically reasonable. The gradient flow

derivations have a convenient interpretation in terms of constrained optimization by
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projected steepest descent [133]. However, they have serious deficiencies in terms of

including additional physics such as stress and deformation, electrically driven fluxes

etc. It is also difficult to modify these relationships to account for external fluxes.

A serious limitation is that the kinetics for the evolution is limited a priori to lin-

ear laws. It is difficult to ascribe physical meaning to the various inner products and

their related gradient flows. The methods of rational thermodynamics and continuum

mechanics allow the definition and derivation of equations of motion for continuous

systems in the most general form with the minimum of assumptions and limitations

on the form of the free energy function and the resulting evolution models.

6.2 Limitations of Continuum Mechanics for Systems with Gradient Based

Energies

Consider a system with a free energy density function,

ψ = ψ(φ,∇φ, ε). (6.15)

φ is an arbitrary conserved quantity that evolves by diffusion. Hence it can be assumed

to follow the following conservation rule,

D

Dt
φ = −∇.Jφ. (6.16)

In addition, it is assumed that the system is in mechanical equilibrium and hence,

the stress is divergence-free,

∇.σ = 0. (6.17)
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For the above system, the free energy change for an arbitrary control volume, ne-

glecting any thermal flows can be written as,

D

Dt

∫

Ω

ψdΩ ≤
∫

Γ

(v.(σ.n)− µJφ) dΓ. (6.18)

Localizing this relation and using Eq. (6.16) gives,

ψ̇ ≤ σ : ε̇+ φ̇µ− Jφ.∇µ. (6.19)

Or

ψ̇ − σ : ε̇− φ̇µ ≤ −Jφ.∇µ. (6.20)

The relation Eq. (6.20) should hold for all possible physical processes of the type

under consideration. In addition to the constitutive law Eq. (6.15), the following

constitutive laws are introduced for the quantities, σ, µ,Jφ as,

σ = σ(φ,∇φ, ε) (6.21)

µ = µ(φ,∇φ, ε) (6.22)

J = µ(φ,∇φ, ε. (6.23)

Substituting the constitutive laws Eq. (6.15) into Eq. (6.20), neglecting any ex-

plicit time dependence in ψ and grouping terms,

(
∂ψ

∂φ
− µ

)

φ̇+

(
∂ψ

∂ϵ
− σ

)

ϵ̇+
∂ψ

∂∇φ
∇̇φ ≤ −∇µ.Jφ. (6.24)
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Imposing that the above should be valid for arbitrary variations of the arguments (φ̇,

ε̇ and ∇̇φ). This is only possible if the following conditions hold,

−∇µ.Jφ ≥ 0 (6.25a)

∂ψ

∂φ
= µ (6.25b)

∂ψ

∂ε
= σ (6.25c)

∂ψ

∂∇φ
= 0. (6.25d)

. Eq. (6.25d) implies that there can be no dependence of the free energy function

on the gradient of the order parameter variable φ. Thus the conventional theory is

incomplete for use in developing models for phase field and other similar models.

6.3 Definition of Microforces

To allow the process of continuum mechanics to be used for models with gradient

energies, the concept of interstitial working or microforces was introduced in [45,46].

Changes in the total energy of a control volume are related to the power supplied by

the change in φ̇ across the boundary of a control volume by defining a microstress

denoted by xi. This is defined as,

Ẇ =

∫

Γ

ξ.nφ̇dΓ. (6.26a)

Localizing, this can be written as,

Ẇlocal = ∇.ξφ̇− ∇̇φ.ξ. (6.26b)
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The functioning of these forces can be observed by adding Eq. (6.26a) to the right

hand side of Eq. (6.18).

D

Dt

∫

Ω

ψdΩ ≤
∫

Γ

(

v.(σ.n)− µJφ + (ξ.n)φ̇
)

dΓ. (6.27)

Localizing Eq. (6.27),

ψ̇ − σ : ε̇− φ̇µ+∇.ξφ̇− ∇̇φ.ξ ≤ −Jφ.∇µ. (6.28)

Introducing the constitutive law Eq. (6.15) and grouping terms, Eq. (6.28) can be

re-written as,

(
∂ψ

∂φ
− µ+∇.ξ

)

φ̇+

(
∂ψ

∂ε
− σ

)

ε̇+

(
∂ψ

∂∇φ
− ξ

)

∇̇φ ≤ −∇µ.Jφ. (6.29)

For the above to be true for any arbitrary processes, the following conditions need to

be satisfied,

σ =
∂Ψ

∂ε
, (6.30a)

µ =
∂Ψ

∂φ
−∇.ξ, (6.30b)

ξ =
∂Ψ

∂∇φ
(6.30c)

along with the condition

−∇µ.Jφ ≥ 0. (6.30d)

Equations of the type Eq. (6.30c) are called microforce balances in [46].
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6.3.1 Derivation of the Cahn-Hilliard Equation through Micro-forces

To get a better understanding of the mechanics of the process, consider the fol-

lowing specialized form for the for the free energy function,

Ψ(φ,∇φ) =
γ

2ϵ
(1− φ2)2 +

γϵ

2
||∇φ||2 . (6.31)

Applying the process of Eq. (6.30) to Eq. (6.31), the equations of motion can be

written as,

ξ =
∂Ψ

∂∇φ
= γϵ∇φ (6.32a)

µ = −
γ

ϵ
(1− φ2)φ−∇.ξ. (6.32b)

In addition to the above two relations, a form needs to be specified for Jφ such that

−Jφ.∇µ ≥ 0. The simplest law that satisfies a relation of this form is,

Jφ = −M∇µ. (6.33)

Substituting the relation Eq. (6.33) into Eq. (6.16), the following evolution equation

is obtained

∂φ

∂t
= ∇.M∇µ. (6.34)

Eq. (6.34) along with Eq. (6.32) define the classical Cahn-Hilliard equation. In the

following section, the above process will be generalized to a system with n phases

evolving via a diffusion equation.
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6.4 n-Phase Cahn-Hilliard system

The n phase system of Cahn-Hilliard equations is a non-linear n component dif-

fusion equation with the general form,

∂φi

∂t
= ∇.(Ji) (6.35a)

subject to the constraint,

n
∑

i=1

φi = 1. (6.35b)

This is usually derived from an augmented n-Phase gradient energy functional of the

form,

Ψaug(φi=1,...n,λ) =

∫

Ω

n
∑

i=1

γi ||∇φi||2 + f(φi=1,...n) + λ(
n
∑

i=1

φi − 1)dΩ. (6.36)

In the above λ is a field of Lagrange multipliers that enforces Eq. (6.35b) everywhere

in the domain. f(φi,...n) is a function such that f(. . . ,φi = 0, 1, . . .) = 0. Also,

f(φi...n) ≥ 0∀φi ∈ Rn. The n-Phase Cahn-Hilliard equation can then be derived by

defining the chemical potentials as,

µi =
δΨ

δφi

= −γi∇2φi +
∂f(φ1,...n)

∂φi

+ λ.

(6.37)

This is then used to define the flux in the standard form as,

∂φi

∂t
= ∇.Mi∇µi. (6.38)
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The pointwise Lagrange multiplier λ can be eliminated (for constant equal Mi,

and γi) by adding Eq. (6.37) for each of the phases, giving,

n
∑

i=1

µi = −γ
n
∑

i=1

∇2φi +
n
∑

i=1

(
∂f(φ1,...n

∂φi

+ λ

)

. (6.39)

As
∑n

i=1 ∇2φi = ∇2
∑n

i=1 φi = ∇21 = 0,

n
∑

i=1

µi =
n
∑

i=1

∂f(φ1,...n)

∂φi

+ nλ. (6.40)

Adding Eq. (6.38) for each of the phases, and using ∂
∑n

i=1 φi

∂t
= 0

0 = ∇.

n
∑

i=1

Mi∇µi. (6.41)

One of the solutions to this, with the boundary conditions ∇µi.n = 0 leads to

∇

(
n
∑

i=1

µi

)

= 0, (6.42)

which implies that
∑n

i=1 µi = constant which can be set as

n
∑

i=1

µi = 0. (6.43)

Using this in Eq. (6.40)

0 =
n
∑

i=1

∂f(φ1...n)

∂φi

+ nλ (6.44)

λ = −
1

n

n
∑

i=1

∂f(φ1...n)

∂φi

. (6.45)
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The above equations can also be derived as a gradient flow in the H−1 space.

Following Eq. (6.13), for each of the phase variables

〈
δΨ

δφi

, δφi

〉

=

〈

∇2

(

−γ∇2φi +
∂f(φ1...n)

∂φi

+ λ

)

, δφi

〉

H−1

. (6.46)

This can then be used to define an evolution law of the same form as Eq. (6.38). The

Lagrange multiplier can now be eliminated in the same way. The above derivations

have the same benefits of being mathematically and physically reasonable. However,

the method of this derivation imposes certain very onerous restrictions on the form

of the evolution equation, and on the method of solution. The first is the use of the

Lagrange multiplier to enforce the constraint that the phase variables add up to one.

As shown above, in order to eliminate this constraint it is necessary to assume that the

mobilities are constant and equal. There are attempts in the literature to eliminate

the Lagrange multiplier in the absence of this constraint [63,64] but this comes at the

cost of tying the energetic quantities γi into the mobilities Mi. Ideally these should

be independent. This also means that it is difficult to assign independent mobility

properties to each pair of phases, restricting options in terms of modeling the interface

evolution between pairs of phases. In the following section, the microforce approach

is extended to a system with n phases evolving via a diffusion equation. Owing to

the use of continuum mechanics, the model will allow independent definition of the

mobilities without using a Lagrange multiplier to enforce the constraint.

6.4.1 Microforce Balance Derivation of the n-Phase Cahn-Hilliard Equa-

tions

Owing to the limitations listed above, a derivation of the n-phase Cahn-Hilliard

equations is presented below. This is done by extending the idea of the microforces

to more than one phase variable. Hence the microforces for each of the phases is

defined through the work done towards the change of φ̇i over the boundaries of a
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control volume by forces external to the control volume. A very similar derivation is

presented in [128]

Wi =

∫

Γ

φ̇iξi.ndΓ. (6.47)

In addition to the micro-forces, the chemical potentials µi are defined as

Ei =

∫

Γ

µiJ .ndΓ. (6.48)

This relates the chemical potential of each of the phases with the total energy supply

by diffusive fluxes of that phase through the boundary of the control volume. In

contrast to the earlier derivation in § 6.3.1, the difference in the derivation for the n-

phase case is the existence of the contraint,
∑n

i=1 φi = 1. This has certain implications

for the phase balance and the postulation of constitutive laws.

Balance of Phases

The phase-variable balance for each phase can be written as,

D

Dt
φi = −∇.Ji. (6.49)

Adding the species balance equations together, this leads to

D

Dt

n
∑

i=1

φi = −
n
∑

i=1

∇.Ji. (6.50)

As,
∑n

i=1φi = 1, the above can be written as

n
∑

i=1

∇.Ji = 0 (6.51)
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or, a stronger condition, which is

n
∑

i=1

Ji = 0. (6.52)

Balance of Energy

Before writing the balance of energy, the consequences of the constraint on the

phase field variables on the net energy fluxes on the domain need to be examined. As

the chemical potentials are energetic quantities, the total energy flux into a control

volume due to diffusive fluxes should be invariant under a transformation of the

type [23]

µi → µi + λ. (6.53)

In the above the λ is an arbitrary scalar. The net energy flux into the domain due to

diffusion can therefore be written as

Ediff =

∫

Γ

n
∑

i=1

µiJi.ndΓ =

∫

Γ

n
∑

i=1

(µi + λ)Ji.ndΓ =

∫

Γ

n
∑

i=1

µiJ .ndΓ+

∫

Γ

λ

n
∑

i=1

Ji.ndΓ.

(6.54)

Using Eq. (6.52)

Ediff =
n
∑

i=1

∫

Γ

µiJi.ndΓ =

∫

Γ

n
∑

i=1

(µi + λ)Ji.ndΓ. (6.55)

As λ is an arbitrary constant, it can now be set equal to µj, where j is a chosen

reference phase. This is written concisely as,

Ediff =

∫

Γ

n
∑

i=1

µijJi.ndΓ. (6.56)
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In the above µij ≡ µi − µj For the microstresses, the same argument can’t quite be

made. However relative microstresses will be introduced with the following argument.

Say phase φj is evolving at a rate φ̇j. The net power due to this change is defined

through the micro-force ξj. However the evolution of φj is not independent. It

necessarily means that the other species are evolving such that
∑n

i=1,i ̸=jφ̇i = −φ̇j.

Choosing a species (say φj ) as a reference species, the net power supplied due to the

change in the value of any species can be written as,

Ẇ =

∫

Γ

n
∑

i=1,i ̸=j

φ̇i (ξi − ξj) .ndΓ. (6.57a)

Expanding this out, the above can be written as

Ẇ =

∫

Γ

n
∑

i=1,i ̸=j

φ̇iξi.ndΓ−
∫

Γ

n
∑

i=1,i ̸=j

φ̇iξj.ndΓ (6.57b)

=⇒ Ẇ =

∫

Γ

n
∑

i=1

φ̇iξi.ndΓ. (6.57c)

From the above discussion, it is possible to define a relative microstress of the form,

ξij = ξi − ξj. (6.58)

It is clear from Eq. (6.57) that no information is lost by the definition of this relative

quantity.

Neglecting thermal energy fluxes, the free energy inequality for the control volume

Ω can now be written as follows,

D

Dt

∫

Ω

ΨdΩ ≤
∫

Γ

(n.σ).vdΓ−
∫

Γ

n
∑

i=1

µijJi.ndΓ+

∫

Γ

n
∑

i=1

φ̇iξij.ndΓ. (6.59)
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As stress equilibrium is set up much quicker than diffusion and phase evolution pro-

cesses, the momentum balance can be assumed,

∇.σ = 0. (6.60)

Localizing Eq. (6.59) using the divergence theorem, with the phase balance equations

(Eq. (6.49)) and the stress equilibrium condition, the free energy inequality at an

arbitrary point can be written as,

Ψ̇ ≤ σ : ε+
n
∑

i=1

(

µijφ̇i −∇µij.Ji

)

+
n
∑

i=1

(

ξij∇φ̇−∇.ξijφ̇
)

(6.61)

=⇒ Ψ̇− σ : ε−
n
∑

i=1

µijφ̇i −
n
∑

i=1

ξij∇φ̇−
n
∑

i=1

∇.ξijφ̇ ≤ −
n
∑

i=1

∇µij.∇Ji. (6.62)

Constitutive relations are now introduced of the form,

Ψ = Ψ(φ1...n,∇φ1...n, ε) (6.63a)

σ = σ(φ1...n,∇φ1...n, ε) (6.63b)

µi = µi(φ1...n,∇φ1...n, ε) (6.63c)

ξi = ξi(φ1...n,∇φ1...n, ε) (6.63d)

Ji = Ji(φ1...n,∇φ1...n, ε). (6.63e)

The standard treatment does not apply here as the partial derivatives of Ψ with

respect to each of the phase field variables are not independent. This problem is

solved through the use of the Larché Cahn derivatives introduced in [18] for the

development of the thermodynamics of systems undergoing substitutional diffusion.

Consider a function g(φ1,...n), with a constraint on the variables
∑n

i=1 φi = c, where

c is a positive constant. Choosing φj = c −
∑n

i=1,i ̸=j φi is chosen as a reference, and

the function g(φ1,...n) is redefined as follows,

g(j)(φi=1...j−1,j+1...) = g(φi=1...j−1,j+1...n). (6.64)
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The Larché Cahn derivatives of the function are then defined as,

∂g(j)

∂φ(i)
and

∂2g(j)

∂φi∂φk

. (6.65)

This also implies that,

∂g(j)

∂φj

= 0. (6.66)

The derivatives can also be defined as follows,

∂g(j)

∂φi

=
d

dϵ
g(φ1, . . . ,φi + ϵ, . . . ,φj − ϵ, . . . ,φn)|ϵ=0. (6.67)

In the above, the change in one quantity is compensated by a change in the reference

species. In a similar fashion the second Larché Cahn can be defined as

∂2(j)g

∂φi∂φk

=
d2

dϵdλ
g(φ1, . . . ,φi + ϵ, . . . ,

φj − ϵ− γ, . . . ,φk + γ . . . ,φn)|ϵ=0,λ=0.

(6.68)

The two definitions can be shown to be equivalent. Some important properties of the

Larché Cahn derivatives are as follows. The first is,

∂(j)g

∂φi

= −
∂(i)g

∂φj

. (6.69)

This can be seen easily from Eq. (6.67). Similarly, the chain rule for a function

g(φ1...n(t)) is given as

˙g(φ1...n(t)) =
n
∑

i=1,i ̸=j

∂f (j)

∂φi

φ̇i. (6.70)
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Definition of Constitutive Laws

The material derivative of the free energy, with the arguments can be written by

substituting Eq. (6.63) into Eq. (6.62) and grouping terms,

n
∑

i=1

(
∂Ψ(j)

∂φi

− µij +∇.ξij

)

φ̇i +
n
∑

i=1

(
∂Ψ(j)

∂∇φi

− ξij

)

˙∇φi

+

(
∂Ψ

∂ε
− σ

)

ε̇ ≤ −
n
∑

i=1

∇µij.Ji.

(6.71)

In the above, instead of partial derivatives with respect to φi and ∇φi, the Larché

Cahn derivatives are used. This allows the variation of all terms i ̸= j to be treated as

arbitrary and independent, while for the case where i = j, the Larché Cahn derivatives

are 0. In essence, the process of taking Larché-Cahn derivatives reduces the number

of free variables by one. For Eq. (6.71) to be true for any variations of φi ̸=j and ε,

the following relations need to hold for all allowed processes.

∂Ψ(j)

∂φi

= µij −∇.ξij (6.72a)

∂Ψ(j)

∂∇φi

= ξij (6.72b)

∂Ψ

∂ε
= σ. (6.72c)

Additionally, for Eq. (6.71) to be valid for arbitrary diffusive processes, the simplest

flux rule is given as,

Ji = −
n
∑

k=1

M(φi=1,...n,σ)ik∇µkj. (6.73)

where, M is a positive semi-definite matrix. The elements of the matrix Mij are not

independent owing to the existence of the constraint on all the phases, this needs to

satisfy two conditions [23]

• The flux should be invariant with respect to the choice of the reference species.
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• The fluxes should sum to 0 Eq. (6.52)

The consequences of the first limitation can be seen by changing the reference species

from j to p.

Ji = −
n
∑

k=1

M(φi=1,...n,σ)ik∇µkj = −
n
∑

k=1

M(φi=1,...n,σ)ik∇µkp (6.74)

=⇒
n
∑

k=1

M(φi=1,...n,σ)ik∇µkj =
n
∑

k=1

M(φi=1,...n,σ)ik∇(µkj − µpj) (6.75)

=⇒

(
n
∑

k=1

M(φi=1,...n,σ)ik

)

∇µpj = 0 (6.76)

=⇒

(
n
∑

k=1

M(φi=1,...n,σ)ik

)

= 0. (6.77)

Hence, the invariance with respect to the choice of the reference species leads to a

constraint that each row of M sums to zero. The strong flux constraint, Eq. (6.52)

with Eq. (6.73), leads to

−
n
∑

i=1

n
∑

k=1

M(φi=1,...n,σ)ik∇µkj = 0. (6.78)

The above must hold irrespective for arbitrary choice of j, this can be shown to be

n
∑

i=1

M(φi=1,...n,σ)ik = 0. (6.79)

The section above allows us to construct a system of equations given an energy

function that depends on the gradients of an arbitrary number of phase-field like

parameters, as long as the relations Eqs. (6.52), (6.77) and (6.79) are satisfied. This

allows phase field equations to be easily constructed in a systematic fashion, based

either on a simple extension of the binary gradient energy or the more involved anti-

symmetric Steinbach-Pezzola type energy [134].
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To make this clearer, in the following equation, particular equations will be derived

from a given energy function. In this dissertation, the standard multiphase energy

which can be written as the sum of n gradient terms is used [63,131].

6.5 Specialization of Equations

In this section, the results of the section above are applied to a given free energy

function that depends on n order parameter values as well as their gradients. As

the interest is in developing a phase field model that can be used for the simulation

of arbitrary geometric evolution laws, a standard multi-phase energy of the form

considered in [63] is considered.

Ψ(φi,...n) =
n
∑

i=1

γi

(
ϵ

2
|∇φi|2 +

1

ϵ
f(φi)

)

(6.80)

where

f(φ) = φ2(1− φ)2. (6.81)

For convenience, the following function is also defined,

F (φi=1,...n) =
n
∑

i=1

γif(φi). (6.82)

The functional above has the property that the minimizers to
∫

Ω ΨdΩ tend to either

1 or 0 in most of the domain. Coupled with the fact that the evolution equations

restrict the values to the Gibbs simplex Fig. 7.2, this allows the evolution of n phases
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to be tracked. Applying the conclusions of Eq. (6.72) to Eq. (6.80) and choosing φn

to be the reference species,

µin =
∂F (n)

∂φi

+∇.ξin

=
∂F

∂φi

−
∂F

∂φn

+∇.ξin

(6.83a)

ξin = γi∇φi − γn∇φn (6.83b)

∂φi

∂t
= −∇.

n
∑

j=1

Mij∇µjn. (6.83c)

This is a valid n phase system of Cahn-Hilliard equations, which satisfies the con-

straint
∑n

i=1φi = 1 as long as Eqs. (6.77) and (6.79) are satisfied byM . The properties

of this system of equation will be considered in § 6.6.

For numerical implementations, the elimination of the nth phase is useful as it

reduces the number of equations to be solved significantly. Using the substitution,

φn = 1−
∑n−1

i=1 φi, the derivatives in terms of φn can be re-written using the chain-rule

as

∂F

∂φn

=
n−1
∑

i=1

∂F

∂φi

∂φi

∂φn

(6.84)

=⇒
∂F

∂φn

= −
n−1
∑

i=1

∂F

∂φi

. (6.85)

As

∂φj

∂φk

= −1 (6.86)

for arbitrary j ̸= k. The constraint also allows in a simpler fashion

∇φn = −
n−1
∑

i=1

∇φi. (6.87)
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Using Eqs. (6.85) and (6.87) in Eq. (6.83), it can now be written as,

µin =
∂F

∂φi

+
n−1
∑

j=1

∂F

∂φj

+∇.ξin (6.88)

ξin = γi∇φi + γn

n−1
∑

i=1

∇φj. (6.89)

While it may seem that the species φn is being treated differently from the other

species in order to eliminate it, it must be noted that invariance in terms of the

choice of φn is built into the choice of the mobility matrix M . A simple form for the

matrix M can be defined as

Mij,i ̸=j = Mji = M0
ijand M0

ij < 0 (6.90a)

Mii =
n
∑

j=1,j ̸=i

−Mij. (6.90b)

As the rows and columns add up to 0, the matrix M is singular and hence indefinite.

Also, it can be shown that the non-zero eigenvalues of this matrix are positive, hence

satisfying the condition for allowable mobilities. This satisfies the restriction on

diffusive processes causing an increase of the free energy. A more useful form from

the perspective of modeling phase evolution problems is the degenerate mobility. This

is a mobility function that is non-zero only in the interfacial region, and hence restricts

the phase evolution to the interface. The simple form that is considered in this work

is,

Mij,i ̸=j = Mji = M0
ijφ

2
iφ

2
j , and M0

ij < 0 (6.91a)

Mii =
n
∑

j=1,j ̸=i

−M0
ijφ

2
iφ

2
j . (6.91b)

As in Eq. (6.90), the rows and columns of the matrix M add up to 0 and hence satisfy

both Eqs. (6.77) and (6.79) as well as the requirement that the energy of the system

not increase.



159

A significant advantage of the model developed in the above section (Eqs. (6.83),

(6.88), (6.90) and (6.91) is that for a 3-phase system, it allows the definition of the

mobilities and the surface tensions in a pairwise fashion without linking the two

quantities together (as done in [63]) and this is done without the use of a Lagrange

multiplier to enforce the constraint on the phase field variables. These two properties

together make it easy to use this model to simulate more complex phenomena with

driven diffusion and other evolution phenomena added to the interfaces.

6.5.1 Adding Electromigration Terms

The simplest extension to the model presented here is to add electromigration at

the interfaces. This is done through a simple addition to the flux term of the form,

J elec
i =

i ̸=j,n
∑

i=1

MijZij∇φe. (6.92)

To maintain the constraint on the sum of the phases, Zij is not free, but has the

following constraint on it

Zij = −Zji. (6.93)

In the simplest case, where there no other phases,

J elec
i + J elec

j = Mij(Zij + Zji)∇φe (6.94)

=⇒ J elec
i + J elec

j = 0. (6.95)

6.6 Analysis of the n− Phase System of Cahn-Hilliard Equations

In this section, the n− phase system of Cahn-Hilliard equations described in the

section above is analysed using a simplified formal analysis. The first part is to study

the outer solution to show that the solutions to the phase field equations lead to phase
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separation. The next step is to study the equations when only two of the phases are

present. It will be seen in this section that the 2-phase equations don’t correspond

to a physical process in the case of constant mobilities. However, with degenerate

mobility functions, the equations reduce to motion of each pair of interfaces by surface

diffusion. In the multi-phase field case, further analysis is needed where more than

one phase is non-zero. This analysis is not part of this dissertation and can be found

in [129, 130]. The primary result from the analysis at points where more than two

phases are non-zero for the multi-phase field equations is that the interfaces satisfy

Young’s rule for contact at triple points,

sin θ12
γ12

=
sin θ23
γ23

=
sin θ13
γ13

. (6.96)

The angles used here can be seen in Fig. 6.2.

φ1

φ2

φ3

γ13

γ12

γ23

θ13

θ23
θ12

Figure 6.2. Young’s rule at triple points.

The analysis in this section is performed on the following scaled version of the n−

phase Cahn-Hilliard equation,
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∂φi

∂t
= ∇.

n
∑

i=1

Mij

ϵ
(∇µjn + Zij∇φe) (6.97a)

µin = −∇.ϵ (γi∇φi − γn∇φn) +
1

ϵ
(γif

′(φi)− γnf
′(φn)) . (6.97b)

To perform the asymptotic analysis, the solution is split into inner and outer

solutions (Appendix B). The outer solution is studied first. The term of the highest

order in the outer region for Eq. (6.97) are the terms of order ϵ−1 related to the

derivatives of the phase field potential function. These can be written as,

f ′(φi)− f ′(φn) = 0. (6.98)

The above is true for all φi. This allows us to state more generally that, f ′(φi) = 0

for all i. f ′(φi) has two roots at φ = 0, 1 (Fig. 7.4. This implies that in the solutions

to the n−phase Cahn-Hilliard equations tend to φi = 1, 0, over the outer regions.

As,
∑n

i=1φi = 1, this implies that solutions to the n−Phase Cahn-Hilliard equations

separate the domain into regions where,

φi = 1, φj ̸=i = 0. (6.99)

This relation holds for both the degenerate as well as the constant mobility cases,

and it clearly shows that Eq. (6.97) leads to phase separation.

6.6.1 Constant Mobility

The constant mobility is case is now analyzed for the case where there are only two

phases present. The electromigration is neglected for the case of constant mobility.

As the choice of the reference phase is arbitrary, the phases chosen are φ1 and φ2 with
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φ2 as the reference phase. Also, as there are only 2 phases present, φ2 = 1−φ1. This

transforms Eq. (6.97), into

∂φ1

∂t
= ∇.

(
M

ϵ

)

∇µ12 (6.100a)

µ12 = −ϵ (γ1 + γ2)∇.∇φ1 +
1

ϵ
(γ1 + γ2) f

′(φi). (6.100b)

Here, two facts have been used, the first that∇φ1 = −∇φ2, and the second is f ′(φ1) =

−f ′(φ2). The n−phase Cahn-Hilliard equation therefore reduces to a standard binary

Cahn-Hilliard equation in the case of the absence of the other phases. An important

thing to note here is that constant-equal mobilities are considered for all the phases

here. The reason for this is that the mobilities are not separable in terms of pairs of

phases in the binary case with constant mobilities.

6.6.2 Degenerate Mobility

In the case of a degenerate mobility, with the mobility function of the form

Eq. (6.91), Eq. (6.97) reduces to,

∂φ1

∂t
= ∇.

M12φ
2
1(1− φ1)2

ϵ
(∇µ12 + Z12∇φe) (6.101a)

µ12 = −ϵ (γ1 + γ2) +
1

ϵ
(γ1 + γ2) f

′(φi). (6.101b)

In contrast to the Eq. (6.100), the mobility in the degenerate case can be completely

separated as the mobilities are zero in the absence of the other phases when both

the phases corresponding to the particular interface are not present. Eq. (6.101) is

a standard degenerate Cahn-Hilliard equation. This can be shown to be equivalent

to the surface diffusion equation. (In this case the surface diffusion equation with

an electromigration term.) The scaling parameters for this equation can be easily

determined through a classical 2-phase asymptotic analysis. The coordinate system

used for this is shown in Fig. 6.3. The inner expansion to Eq. (6.101), can be written
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ρ

s

φ1 = 0

φ2 = 0

Figure 6.3. Co-ordinate system used in the asymptotic analysis

in the (ρ, s) co-ordinate system as,

Φ1(ρ, s; ϵ) = Φ0
1(ρ, s; ϵ) + ϵΦ1

1(ρ, s; ϵ) + ϵ2Φ2
1(ρ, s; ϵ) + . . . (6.102a)

µ12(ρ, s; ϵ) = µ0
12(ρ, s; ϵ) + ϵµ1

12(ρ, s; ϵ) + ϵ2µ2
12(ρ, s; ϵ). (6.102b)

Substituting these into an appropriately scaled version of Eq. (6.101). The leading

order term of Eq. (6.101b) (ϵ−1) leads to,

∂2Φ0
1

∂ρ2
+ f ′(Φ0

1) = 0. (6.103)

The solution to the above with the boundary conditions limρ→−∞ Φ0
1 = 0, limρ→∞ Φ0

1 =

1 leads to,

Φ0
1(ρ) =

1 + tanh ρ√
2

2
. (6.104)

Hence the n− phase system of Cahn-Hilliard equations as formulated here leads to

a hyperbolic tangent approximation of the Heaviside step function between any two

phases. As φ1 + φ2 = 1, the value of φ2 in the interfacial region can be written as,

Φ0
2(ρ) =

1− tanh ρ√
2

2
. (6.105)
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Terms of ϵ0 order in Eq. (6.101b) leads to,

µ0
12 = (γ1 + γ2)κ12Φ

0
1ρ. (6.106)

κ12 is the curvature of the interface between phase 1 and phase 2. Integrating

Eq. (6.106) from −∞ to ∞ after multiplying both sides by Φ0
1ρ,

∫ ∞

−∞
µ0
12Φ

0
1ρdρ = (γ1 + γ2)κ12

∫ ∞

−∞
Φ0

1
2
ρdρ (6.107)

This leads to

µ0
12 =

1

3
√
2
(γ1 + γ2)κ12. (6.108)

The ϵ−1 order terms of Eq. (6.101a) now lead to,

−V12Φ
1
0ρ = M12(Φ

0
1)

2(1− Φ0
1)

2∇2
Γ.
(

µ0
12 + Z12Φe

)

. (6.109)

Integrating both sides from −∞ to ∞,

−V12 = ∇2
Γ

(
1

3
√
2
(γ1 + γ2)κ+ Z12Φe

)∫ ∞

−∞
(Φ0

1)
2(1− Φ0

1)
2dρ. (6.110)

The final integral is equal to 1
6
√
2
, and hence

V12 = −
1

36
.∇2

Γ ((γ1 + γ2)κ+ Z12Φe) . (6.111)

Hence, the model in Eq. (6.97), leads to a surface electromigration equation between

any two phases. The relation of the simulation parameters γi to the actual physical

surface energies γij are specified in the next section. An important case that is not

mentioned in the analysis here is the analysis at the triple point. A detailed derivation

of such cases can be found in [129, 130]. The approach is to integrate terms of type

Eq. (6.108) for each pair of phases over a triangular region containing the triple point.
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6.6.3 Construction of Surface Energies

From Eqs. (6.100) and (6.101) it is clear that the surface energy term that appears

in the reduced 2-phase components of the Cahn Hilliard system are γi + γj where i

and j are the two phases that are non-zero, and are separated by the interface.

Considering a system with n phase field variables, the surface energy contributions

for each interface can be written as,

γij = γi + γj. (6.112)

This system of equations possesses a unique non-trivial solution, only in the case

where there are less than 3 phases, or if all the surface energies are equal. For the

simple 3 phase case, the solution can be written as,

γ1 =
1

2
(γ12 + γ13 − γ23) (6.113a)

γ2 =
1

2
(γ12 + γ23 − γ13) (6.113b)

γ3 =
1

2
(γ23 + γ13 − γ12) . (6.113c)

For systems with more than 3 phases, the Steinbach-Pezzola multiphase energy is

more appropriate [134]. As it is formulated directly in terms of the surface energies

between the different phases, a solution of the type shown here in Eq. (6.113) is

unnecessary. As much of the derivation in this chapter was independent of the form of

Ψ(φi,∇φi), the same equations can be used for the Steinbach-Pezzola energy without

significant modification.

However, the form of the final partial differential equations obtained is more com-

plex, and the model developed here is sufficient for several practical problems. In

Chapter 7, a numerical implementation of the phase field model derived and analysed

here is described, and some simulation examples are presented.
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7. PHASE EVOLUTION IN MULTIPHASE SOLIDS: NUMERICAL

FORMULATION AND IMPLEMENTATION

The system of partial differential equations derived in Chapter 6, are coupled non-

linear partial differential equations. Numerical solution to these equations are expen-

sive owing to the multiple degrees of freedom at every node (A system with 4 phases

will have 6 degrees of freedom at every node). Similar to the numerical algorithm

described in Chapter 4, a convex-concave implicit splitting is used to solve the differ-

ential equations Eq. (6.97). This numerical approach is described in § 7.1. Following

this numerical examples are presented. In § 7.2, examples of phase separation from

initially random input are presented. The effect of degenerate and constant mobilities

are shown. This is followed by specific examples of phase evolution in a 3-phase case,

with the lens formation (§ 7.3) and double bubble (§ 7.4). Finally, a few examples of

multi-phase evolution with electromigration are presented in § 7.5.

7.1 Numerical Implementation of the n−Phase System Cahn-Hilliard Equa-

tions

The approach used in this work is similar to the approach described in [64]. How-

ever, while the authors in [64] use a Lagrange multiplier to enforce the constraint of

the sum of the phases being unity, the derivation in Chapter 6 based on continuum

mechanics eliminates the necessity of the Lagrange multiplier. The constraint is au-

tomatically enforced. The convex-concave splitting [72] is used in these simulations

to reduce the cost of the solution of non-linear problems. All the simulations in this

dissertation use a biquadratic potential. The combined effect of the potential over

the Gibbs simplex can be seen in Fig. 7.2. For different combinations of the γi, the

free energy contours, possess different shapes. In this formulation of the n−phase
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Cahn-Hilliard equations, it is possible for the combination of γi to cause a loss of

convexity and consequent failure of the solution algorithm.

−0.2 0 0.2 0.4 0.6 0.8 1 1.2

5 · 10−2

0.1

0.15

φ

f(φ)

Biquadratic Potential

Original
Approx.

Figure 7.1. Biquadratic and modified phase field energy form used in the simulations.
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1
3 ,

1
3}
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0.058

0.086
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0.144

0.173

(a) γi = 1.0.

φi = {1, 0, 0}

φi = {0, 1, 0} φi = {0, 0, 1}

φi = { 1

3
, 1

3
, 1

3
}

0.000

0.039

0.077

0.116

0.155

0.193

(b) γ1 = γ2 = 1, γ3 = 2.

Figure 7.2. Biquadratic potentials over the Gibbs simplex for a 3 phase case.
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Instead of the standard biquadratic potential function,
∑N

i=1γφ
2
i (1−φi)2, a modi-

fied form based on the form used in [73], is used. This can be written as f(φi=1,...n) =
∑N

i=1γifi(φi). f(φi) is a function that is defined piecewise as,

f(φi) =

⎧

⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎩

φ2
i if φi ≤ 0

φ2
i (1− φi)2 if 0 < φi < 1

(φi − 1)2 if φi ≥ 1

. (7.1)

This is shown by the red line in Fig. 7.1. The numerical simulations are simplified

when the potential functions are treated as the difference of two convex functions. A

split for the standard phase field function is written as,

fi(φi) = φ2
i − φi

convex

−
(

φi − 2φ3
i + φ4

)

concave

. (7.2)

This is shown by the black line and the solid red line in Fig. 7.3. As can be seen

the concave part of the function is not entirely convex. This causes problems with

the numerical solution. For the modified phase field potential function, Eq. (7.1), the

split is written as,

fm
i (φi) = φ2

i − φi

convex

−

⎧

⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎩

φi, if φi ≤ 0

φ4
i − 2φ3

i + φi, if 0 < φi < 1

1− φi, if φi ≥ 1

concave

. (7.3)

This split is shown by the black line and the dashed red line in Fig. 7.3. As can be

seen, the two functions are the same in the domain 0 < φi < 1, and are monotonically

increasing and decreasing in the rest of the domain, in contrast with the standard

split. This reduces the possibility of instabilities in the numerical solution schemes.

The nature of the convex and concave functions over the Gibbs’ simplex can be seen

in Fig. 7.5.
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Figure 7.3. Bi-quadratic and modified phase field energy form used in the simulations.
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Figure 7.4. Derivative of the biquadratic and the modified phase field function.
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φi = {1, 0, 0}

φi = {0, 1, 0} φi = {0, 0, 1}

φi = {1
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1
3 ,

1
3}

−0.762
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φi = { 1

3
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3
}

−0.400
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0.005
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Concave part

Figure 7.5. The convex and concave parts of the phase field functions over the Gibbs
triangle for equal surface energies.
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Using the split in Eq. (7.3), the finite element solutions for Eq. (6.97) can be

written as follows for the

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

Aφφ
i=j Aφφ

i ̸=j Aφµ
i=j Aφµ

i ̸=j

Aφφ
i ̸=j Aφφ

i=j Aφµ
i ̸=j Aφµ

i=j

Aµφ
i=j Aµφ

i ̸=j Aφµ
i=j Aφµ

i ̸=j

Aµφ
i ̸=j Aµφ

i=j Aµµ
i ̸=j Aµµ

i=j

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

φt
i

φt
j

µt
in

µt
jn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

F φ
i

F φ
j

F µ
in

F µ
jn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (7.4)

In Eq. (7.4), the elements of the system matrix can be written as follows,

(Aφφ
i=j)lm =

∫

Ωel

[(γi + γn)ϵ∇Nl∇Nm+

(γif ′′
convex(φ

t
i) + γnf

′′
convex(φ

t
n))

ϵ
NlNm

]

dΩel

(7.5a)

(Aφφ
i ̸=j)lm =

∫

Ωel

[

γn

(

ϵ∇Nl∇Nm +
f ′′
convex(φ

t
n)

ϵ
NlNm

)]

dΩel (7.5b)

(Aφµ
i=j)lm = −Aµφ

i=j =

∫

Ωel

−NlNmdΩel (7.5c)

(Aφµ
i ̸=j)lm = Aµφ

i ̸=j = 0 (7.5d)

(Aµµ
i=j)lm =

∫

Ωel

dt

N
∑

j=1

Mij(φ
extrap
i,...n )

ϵ
∇Nl∇NmdΩel (7.5e)

(Aµµ
i ̸=j)lm = −

∫

Ωel

dt
Mij(φ

extrap
i,...n )

ϵ
∇Nl∇NmdΩel. (7.5f)

The mobilities can be computed in either a fully implicit fashion, a fully explicit

fashion. Here the mobility is computed based on extrapolated values for the phase

field variables. Specifically,

φextrap
i =

3

2
φt−1
i −

1

2
φt−2
i . (7.6)
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This acts as an estimate for the current value on the phase field based on past values.

The elements of the the right hand can be written as,

(F φ
i )m =

∫

Ωel

[

Nm

(γi
ϵ
f ′
concave(φ

t−1
i )−

γn
ϵ
f ′
concave(φ

t−1
n )

)]

dΩel (7.7a)

(F µ
i )m =

∫

Ωel

[

Nmφ
t−1
i + dt

n,i ̸=j
∑

j=1

Mij(φ
extrap
i,...n )

ϵ
Zij∇Nm∇φe

]

dΩel. (7.7b)

It should be noted in the terms of the form γif
′
convex(φi)− γnf

′
convex(φn) appear in the

matrix. The retention of the convexity of the entire matrix can be seen by noting that

these terms are constrained derivatives over paths on the Gibb’s triangle. Fig. 7.5

show that the functions are convex/concave over any path on the Gibb’s triangle,

and hence their constrained derivatives have properties similar to the derivatives of

convex/concave functions. This can be shown more rigorously, but this is skipped

here.

7.2 Phase Separation

The approach is first tested with an example of phase separation. The numerical

method is implemented in a manner such that the phase separation of any number

of phases can be studied. In the example presented below, phase separation for 4

phases presented. A random initial condition is set over a square with 150 × 150

unit mesh of linear quadrilateral elements. This is set using the C++ std::rand()

function as std::rand()%10/30. This leads to a random value of between 0 and

0.333 for phases φ1..3. φ4 is set as 1 −
∑N

i=1φi. γ12, γ23, and γ31 are set equal to 1.

The mobility functions for all the phases are set as Mil = 1 in the non-degenerate

case. For the degenerate case, the mobility function is set as, Mik = M0δ(φ1,φ2),

where δ(φ1,φ2) =
3

2
√
2
φ2
1φ

2
2. The system is solved with ϵ = 5× 10−3. and a timestep,

∆τ = 1× 10−3.

The results of the simulation for constant mobility are shown in Fig. 7.6a. Initially,

the phases precipitate out. Where the system, precipitates into 1 phase completely en-
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τ = 0.15

τ = 0.625

τ = 2.5

τ = 10

(a) Constant mobility.

τ = 0.15

τ = 0.625

τ = 2.5

1
1τ = 10

(b) Degenerate mobility.

Figure 7.6. Phase separation examples with constant and degenerate mobilities. The
examples start with random noise with 4 phases. The figures on the left (a) are with a
constant mobility M0, and the examples on the right (b) are solved with a degenerate
mobility M0δ(φi,φj) .



174

capsulated by another phase, the precipitates are circular, as required by the isotropy

of the surface energy. At locations where the system evolves into multiple adjacent

phases, the system evolves while satisfying the conditions on the contact angle at

triple points. As the mobility is constant, the system continues to evolve to minimize

the total surface energy of the system, over all the combinations of interface. On

the other hand, with the degenerate mobility Fig. 7.6b, Initially, as the values of the

phase field variables φi are not close to 0, 1. The evolution of the system is similar to

the case with the constant mobility. However, once the phases separate, the mobility

function is restricted only to the interfacial regions. The system still evolves to mini-

mize the total surface energy of the system. However, this is no longer possible by the

coarsening of the phases. Phases only coarsen when two phases come into contact.

Following this, the precipitates evolve by surface diffusion at the boundaries.

An important measure for the success of numerical algorithms for the Cahn-

Hilliard and related equations is the accuracy with which the volume of the phases

is conserved with time. In numerical experiments it is observed that the volume

conservation evaluated as
∫

Ω φi(x, t)dΩ is satisfied to O(10−5) over time.

7.3 Lens Formation

The other important example that is commonly studied in multiphase system is

the formation of lenses at interfaces. For this, the code is used with the adaptivity

turned on. The mesh is adapted based on the Kelly error adaptor. This tends to

add more elements in regions where the gradient in the solution is highest. The error

measure in this case is computed by weighting the Kelly error for φ1 and φ2. 70%

of the elements are marked for refinement, based on the value of the error. The rest

of the elements are marked to be coarsened. The initial condition (Fig. 7.7) is set in

the following manner. The lens is created as the product of two Heaviside functions.

One for the parting line between phase 1 and phase 2. the second is the semi-circle
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between the phase 1 phase 3. This is repeated for phase s2. The equation of the

Heaviside function for the line is written as,

φl
1(x) =

1 + tanh y−0.5√
2ϵ

2
. (7.8)

The Heaviside function for the semi-circle between φ1 and φ3 is written as,

φc
1(x) =

1 + tanh r−r0√
2ϵ

2
. (7.9)

In the above, r is the distance of the point xfrom the center of the phase 3 precipitate

{0.5, 0.5}. r0 is the radius of the precipitate. The combined Heaviside function for

phase 1, which is used for the initial condition is then set as,

φ1(x) = φc
1(x)φ

l
1(x). (7.10)

The initial condition for φ2 is set in a similar manner, except,

φl
2(x) =

1− tanh y−0.5√
2ϵ

2
. (7.11)

In the results shown below, r0 = 0.13, ϵ = 5× 10−3. The initial mesh is a unit square,

with 10 linear quadrilateral elements to each side, which is refined 4 times, to better

approximate the initial conditions. All the results for the lens formation, as well as

for the evolution of the double bubble use a degenerate mobility, with the evolution

restricted to the interfacial region.

The first test that is performed is the case when the surface energies are the same

for all three of the interfaces. i.e γ12 = γ23 = γ31 = 0.1. In this case (Fig. 7.8a), the

system evolves to minimize the total surface energy. The minimum energy state for a

3 phase system needs to satisfy the condition for included angles between the phase

boundaries at the triple points. For equal surface energies. It can be shown that the

included angles are all 2π
3 . This can be seen in Fig. 7.8a where the interfaces evolve
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Phase 3

Phase 2

Phase 1

Figure 7.7. Initial configuration for lens formation examples.

(a) γ12 = γ23 = γ31 = 0.1 (b) γ12 = .19,γ23 = γ31 = 0.1

Figure 7.8. Lens formation in a 3-phase system for different combinations of γ12, γ23,
and γ13 at τ = 5, starting from the initial condition Fig. 7.7.

so that the angle between the interfaces is maintained at 2π
3 . In Fig. 7.8b, the 1-2

interface is penalized and its length reduces as the system evolves. As the volume

is conserved, the lens flattens and spreads at the interface. The included angles still

match the conditions at the interface governed by the condition Eq. (6.96).
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7.4 Double Bubble

The next case that is studied is the case of the double bubble. In the case of the

double bubble, the phases 1 and 2 are adjacent to each other as shown in Fig. 7.9. The

initial conditions are set in a manner similar to the way in § 7.3. The only difference

is that the signs are flipped. Hence,

φl
1(x) =

1− tanh y−0.5√
2ϵ

2
. (7.12)

φc
1,2(x) =

1− tanh r−r0√
2ϵ

2
. (7.13)

For the examples in this section, r0 = 0.18. The mesh used is the same as the mesh

used in § 7.3

Phase 3
Phase 2

Phase 1

Figure 7.9. Initial condition for the double-bubble examples.

Similar to the examples in § 7.3, the first example is the case with equal surface

energies for all the phases. In this case, (Fig. 7.10a) the system evolves so that the

included angles reach the 2π
3 value. The 1-3 and 2-3 phase boundaries then evolve to

circular sectors to minimize their surface energy. In Fig. 7.10b, the energy of the 1-2

phase interface is very high compared to the energy of the 1-3 and the 2-3 interfaces.

As the system evolves, it is energetically favorable for the 1-2 interface to shrink. This

causes the double bubble to separate into two circles. Another example of the same

effect is seen in Fig. 7.10c. In this case, the 2-3 interface is penalized by it’s high
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(a) γ12 = γ23 = γ31 = 0.1 (b) γ12 = 5 and γ31 = γ23 = .1

(c) γ12 = γ31 = 0.1, and γ23 = 10

Figure 7.10. Solutions to the double-bubble problem for different combinations of
γ12, γ23 and γ13.

energy. As the system evolves, this interface shortens. As the volume is conserved,

this causes phase 1 to spread around phase 2, as this reduces the length of the 2-3

phase.
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7.5 Electromigration

The final examples in the chapter are those of void electromigration in a multi-

phase system. The construction of the initial conditions is similar to the cases de-

scribed in § 7.3. In addition, there is a constant unit potential difference applied

between two opposite sides of the mesh. The conductivity of the material is written

as

η =
3
∑

i=1

ηiφi (7.14)

In the simulation results that follow, it is assumed that η1,2 = 1.0 and η3 = 0.0. The

electromigration parameters at each interface are also assumed to have unit magnitude

or |Zij| = 1.

The first case considered is the motion of a void along a phase interface. An

initially circular void is placed with the center coinciding with the phase boundary.

In the first example, (Fig. 7.12a), it is assumed that the phase boundary itself is not

affected by the electrical potential gradient (Z12 = 0). In this case, it is observed

that the void initially evolves to take a lens like shape. Following this, the void

propagates along the interface, while maintaining the same lens-like profile. In the

second example of void motion along the interface Fig. 7.12b, Z12 = 1.0, allowing the

1-2 interface to evolve in response to the applied electrical potential gradient. It has

to be noted that though, evolution of the 1-2 interface is allowed, the steady motion

seen in Fig. 7.12a is still a possible solution for this case. This is due to the fact that

the surface divergence of the surface gradient of the electrical potential, is initially

0, and hence the normal velocity of the phase interface due to electromigration is

zero. However, when the void propagates, it sets up small perturbations in the 1-2

interface. These perturbations grow to to cause the motion of the 1-2 interface seen in

Fig. 7.12b. The instability of a flat surface which can evolve under electromigration

is a known fact, and has been analyzed using linear stability analysis in [135].
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Phase 1

Phase 2
Void

(a) Initial condition for simulations of void
electromigration along the interface

Phase 1

Phase 2

Void

(b) Initial condition for the electromigration
- void pinch-off examples.

Figure 7.11. Initial condition for the electromigration examples.

Next the motion of a void that is separating from an interface is simulated. In

this case a unit potential difference is applied between the top and the bottom of a

unit square and a circular void (phase 3) is placed at the 1-2 interface Fig. 7.11b.

ϵ = 5× 10−3 is used, as in the other examples. In the first set of examples, Fig. 7.13,

the mobility for all three interfaces is a unit degenerate mobility. However, while the

1-3 and 2-3 interfaces are allowed to evolve by electromigration. The 1-2 interface only

evolves as a reaction to the evolution to the evolution of the 1-3 and 2-3 interfaces.

The three columns in Fig. 7.13 correspond to three different combinations of the the

relative surface energies between the phases. In Fig. 7.13a, γ23, and γ13 are set equal

to each other at 1 × 10−3, while γ12 is set to 1 × 10−2. In this case, the void initial

starts spreading across the 1-2 interface. However, the electromigration prevents this

from happening and causes the void to pinch off from the interface. It should be

noted that the angle condition at the triple point is still maintained to a fair extent.

In the example in Fig. 7.13b, γ12, γ23 = 1 × 10−2, while γ13 = 1 × 10−3. In this case

the 1-3 interface is energetically favorable compared to the 2-3 and 1-2 interface. This

causes the neck at τ = 1.5 is much narrower. In the final example in Fig. 7.13, it

is γ23 that is reduced to 1 × 10−3. Hence it is energetically favorable for the void to

maintain contact with the interface for as long as possible. Hence, at τ = 3.0, it is the
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only case where the void is still in contact with the interface. Following pinch-off, the

voids behave normally and move in the direction of the electrical potential gradient.

In the final group of electromigration examples, the 1-2 interface is also allowed

to evolve through electromigration. The motion of the 1-2 interface is usually not

significant as the surface gradient of the electrical potential is usually not significant

along the 1-2 interface. In Fig. 7.14a, γij = 1×10−2 . Similar to the case in Fig. 7.13a.

The void tends to initially spread along the interface and then the electromigration

tends to cause the void to pinch-off. In contrast to Fig. 7.13a, though, the 1-2

interface also evolves and develops a waviness that persists and grows owing to the

electromigration. In Fig. 7.14b, γ12 = γ23 = 1 × 10−1, while γ13 = 1 × 10−2. In this

case the pinch-off progresses faster as the void possesses lower surface energy in the

1 phase than at the interface. Finally in Fig. 7.14c, it is γ23 that is the lowest at

1 × 10−3. As the system evolves, the void tends to maintain contact with the 1-2

interface. As the 1-2 interface also evolves in this case, it rises along with the void.

7.6 Summary

The n−Phase and 3 phase simulations demonstrated in this thesis, serve mostly as

a validation of the numerical approach developed in this thesis. The idea of numerical

phase field approaches such as the one developed in this thesis, is to augment the phase

field equation with additional physics, in order to simulate different physical velocity

laws. As shown in Eq. (6.109), the velocity for the evolution of the different interfaces

is applied at the 1
ϵ
. This allows a fairly simple extension to applying arbitrary velocity

profiles over the interface at the 1
ϵ
level. This can be exploited for the simulation of

various physical phenomena, a simple and obvious one being the simulation of inter-

granular void growth during diffusional creep [136]. Other phenomena that need to

be explored are a more thorough investigation of intergranular void evolution during

electromigration.
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τ = .5

τ = 1.5

τ = 3.0

τ = 5.0

(a) No electromigration evolution of 1-2
interface

τ = .5

τ = 1.5

τ = 3.0

τ = 5.0

(b) Electromigration evolution of 1-2 in-
terface

Figure 7.12. Evolution of void at interface with an electrical potential gradient aligned
with the interface. Z12 = 0 in a and Z12 = −1 in b. In both, Z23 = Z31 = −1.
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τ = .5

τ = 1.5

τ = 3.0

τ = 5.0

(a) γ23 = γ13 = 1 ×
10−3, γ12 = 0.1

τ = .5

τ = 1.5

τ = 3.0

τ = 5.0

(b) γ12 = γ23 = 0.1, γ13 =
1× 10−1

τ = .5

τ = 1.5

τ = 3.0

τ = 5.0

(c) γ12 = γ13 = 0.1, γ23 =
1× 10−3

Figure 7.13. Void electromigration in a 3-phase system. The void is initially attached
to the 1-2 phase interface. The electric potential then drives the void upwards via
surface diffusion. In this case the 1-2 interface is not allowed to evolve via electromi-
gration.
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τ = .5

τ = 1.5

τ = 3.0

τ = 5.0

(a) γij = 1× 10−2

τ = .5

τ = 1.5

τ = 3.0

τ = 5.0

(b) γ12 = γ23 = 0.1, γ13 =
1× 10−3

τ = .5

τ = 1.5

τ = 3.0

τ = 5.0

(c) γ12 = γ13 = 0.1, γ23 =
1× 10−3

Figure 7.14. Void electromigration in a 3-phase system. The void is initially attached
to the 1-2 phase interface. The electric potential then drives the void upwards via
surface diffusion. In this case all three interfaces are allowed to evolve by electromi-
gration.
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8. SUMMARY AND RECOMMENDATIONS

This dissertation describes the formulation, diffuse interface approximation and nu-

merical implementation of a model for the growth and evolution of voids in solids.

The continuum thermodynamics and mechanics for the growth and evolution of inter-

faces in solids was studied. This was used in Chapter 3 to demonstrate a phase field

model for the evolution of voids in solder joints and other interconnect structures.

Both the evolution of voids due to surface diffusion, as well as their growth due to

vacancy accumulation was considered. The phase field model has been implemented

in a C++ code using libMesh for the finite element framework. This code was also

extended to include the effects of the contact angle at the interface of the solder cop-

per joint, and the effect of various phenomenon on the failure of the joint are studied.

In Chapters 6 and 7, a multi-phase Cahn-Hilliard model was derived for simulation

of cases where more than two distinct phases are to be tracked. This was used then

to construct a phase field model for the motion of interfaces in multiphase solids due

to surface electromigration. In this chapter, some thoughts on the advantages and

disadvantages of phase field schemes for the modeling of moving boundary problems

are presented based on experience. This is followed by a few recommendations for

future research.

8.1 Advantages of Phase Field Schemes

The primary advantage of phase field schemes is the ease of implementation. In

contrast to various other methods, phase–field methods give rise to a series of standard

diffusion equations. This makes it very easy and time efficient from the point of

view of implementation, if a robust framework for solution of PDEs based on finite

elements, finite volume or finite differences is available. Recently, a variety of open
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source projects [137–142] for this purpose have become available for general use.

These software libraries make it relatively easy to implement solution schemes for

phase field and other equations. These can be easily used on computers of all speeds

(from desktops to supercomputers), with the limit on the size of the simulations

only being dictated by the availability of computational resources. Improvements in

linear and non-linear solver technology [138, 143, 144] have also improved the time

and memory efficiency of the simulations. The computational expense argument

against the use of phase field methods has been eliminated to a certain extent. The

time and computational cost of 3-Dimensional simulations of problems with moving

boundaries is expected to be significant for any computational method, and hence

phase field methods are a reasonable tool. The other important advantage of phase

field type schemes is the automatic separation of scales that they provide. In cases,

where the boundary conditions are simple, this separation allows for application of

boundary conditions through simple modifications of the governing equations [114].

However, this is not without limitations and boundary conditions involving multiple

field variables and non-linearities are difficult to analyse, while implementation is not

expected to present significant additional difficulty.

8.2 Disadvantages of Phase Field Schemes

While solutions using phase field methods have become more reasonable, the nu-

merical challenges are still the most significant stumbling block. The first major

challenge is the value the notional interface thickness ϵ. To capture some of the fea-

tures of physical systems at the smallest length scales, this must be much smaller

than the smallest radius of curvature present in the system. As for successful solu-

tions the discretization size h ≪ ϵ ≪ 1
κmax

. These two facts together, severely limit

the utility of phase field methods for the study of actual physical problems, involving

very sharp anisotropies or fractal phenomena such as dendrite formation. However,

numerical solution for such problems is very likely to be prohibitive irrespective of the
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choice of the numerical method used. Adaptive mesh codes [137, 139, 141, 142] have

ameliorated this to a certain extent, however some of the benefits accrued from the

usage of adaptive meshing techniques is lost due to the necessity of reconstructing

the mesh data structures frequently. These costs can be significant, and this must be

considered while making a choice about numerical methods.

The most significant point with developing phase field models, where the phase

field is only used as a numerical approximation, is that boundary conditions are

always applied in a weak averaged sense. This is often insufficient for more complex

boundary conditions. The author is unaware of attempts to handle cases such as

sliding interfaces using the phase field method.

8.3 Recommendations for Future Research

This section lists some suggestions for further research in moving boundary prob-

lems. Phase field methods are suited to the solution of the problems suggested here,

though it is also possible to use other methods for solution such as the standard

level-set scheme with interface reconstruction [36], or NURBS based compositional

iso-geometric approaches [145].

8.3.1 Computational Improvements

Phase field methods are computationally intensive, and even small improvements

in computational efficiency can make a significant improvement in the ability to solve

problems. Over the course of this research project, first a method based on fixed

point iterations were used for solution of the phase field equations. Following this,

a method based on the obstacle potential, solved using the method of Douglas and

Rachford was tried [146]. This method had the advantage of reducing the region over

which the problem needs to be solved. The phase field equations with an obstacle

potential can also be solved using an optimization based methods such as a semi-

smooth Newton solver [147]. These methods have the advantage of generating very
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accurate solutions while having sharply defined interfacial regions. However, there

are difficulties with handling degenerate mobilities, as the solution for the chemical

potential loses quality at the boundary of the interfacial region. The splitting schemes

used in this dissertation have been found to been the most computationally tractable

for the solution of small to medium problems on 10-20 processors. In the case of

multiphase simulations, the problem with solutions based on an obstacle potential

is that one of the constraints,
∑n−1

i=1 φi < 1 is not writable in the form of a bounds

constraint. Optimization algorithms for constraints of this type are developed in

terms of very few variables and are not suitable for the millions of degrees of freedom

usually seen in phase field problems [133]. A common tool that is used in solutions of

large non-linear coupled multiphysics problems is the Jacobian Free Newton Krylov

method [143], which has been exploited to allow much larger fully coupled solutions

by eliminating the construction of the full Jacobian and thereby reducing memory

requirements. The use of this method in both phase field and also the compositional

approaches needs to be evaluated.

Mesh Improvements

A significant cost in phase field solutions is the necessity of using very dense

meshes. The current approach is based on using an h−adaptive mesh, where the

mesh is subdivided in the interfacial region. However, this approach imposes two

additional costs on the computational process. The first is the cost of constructing

the sparsity patterns at the end of each time step. The second is the cost of applying

constraints on the degrees of freedom at the hanging nodes. In r−adaptive or moving

mesh schemes [148], the positions of the nodes themselves are treated as variable and

are moved in order to better approximate sharp gradients (Fig. 8.1). The governing

partial differential equations are usually recast into an arbitrary Lagrange-Eulerian

(ALE) framework and an additional PDE is solved for the node locations. While this

moving mesh PDE is usually highly non-linear, this can be ameliorated to a certain
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extent by using semi-implicit schemes, and treating terms of order greater than 2

explicitly. The approach has been used for the solution of the Cahn-Hilliard Navier-

Stokes equations [117]. Its utility for other variants of the Cahn-Hilliard equation, as

well as other variants of the phase field equations needs to be evaluated.

Figure 8.1. An example of an r−adaptive mesh. The mesh is evolved by moving the
nodes into locations where the solution shows sharper gradients. The connectivity of
the mesh is kept constant [149].

Time-stepping improvements

Purely explicit and implicit timesteps face severe restrictions while using the phase

field method. The splitting schemes used here provide a compromise between the

two. However, they are still limited to fairly small time-steps. It is therefore essential

to evaluate time-stepping schemes for the phase field problem that ameliorate this

problem to an extent. An approach that is likely to help are error based adaptive

time-stepping schemes [150]. In these schemes, the value of the next time step is

decided based on the value of the error in the solution (computed using the Kelly

error estimator [151], say), and updated, to keep the error within acceptable bounds.



190

8.3.2 Multiphase Multicomponent Systems

There are many problems in the study of multiphase- multicomponent systems

that have not been studied in great detail. This is due to the extremely non-linear

nature of the problem and the difficulty in experimentally verifying model results.

A few of these problems are described below. These are amenable to solution using

both phase field as well as sharp interface methods.

Coarsening in Multicomponent Systems

The Gibbs-Thomson condition is simple to analyse in binary systems [152]. This is

because at equilibrium, the interfacial concentration of the species is solely dependent

on the curvature of the interface. This simplifies the analysis of Ostwald ripening in

binary systems. In addition to the interface concentration, the only additional relation

required is a kinetic relation that relates the velocity of the interface to the interfacial

concentration.

In mixtures with 3 or more components, the interfacial concentration can’t be

written only in terms of the curvature [153, 154]. In addition to the curvature of the

interface, the relative concentrations of the components also play a part as can be

seen by the form of the Gibbs-Thomson relation at the interface,

N
∑

i=1

!ρi"µi = γκ. (8.1)

This needs to be taken into account when the interface evolves. To the best

of the author’s knowledge, there haven’t been numerical studies of these systems

for arbitrary geometries [121]. However, owing to the complicated nature of these

boundary conditions, it is likely that sharp interface methods are more suited to their

solution.
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Intermetallic Growth Kinetics

As electronics components reduce in size, the solder joints reduce in size. In

some of the designs that are being proposed/evaluated, the solder joint is composed

almost entirely of intermetallic compounds (Fig. 8.2a). Intermetallic compounds are

stiff and brittle materials. As a result they are at cross-purposes with the role of

solder joints in providing compliance in electronics packages. The growth of the

intermetallics is known to be accelerated or retarded by electromigration depending on

the direction of the electric field . Models of the electromigration accelerated growth

of the intermetallics have hitherto been restricted to 1-dimensional models [155] or

to complex physical phase field models [156]. These models are useful for the study

of early stage coarsening. For late stage coarsening, there is value to developing

numerical models based on continuum mechanics, assuming sharp interfaces. These

features are expected to have an effect on the fracture behavior of the joint, especially

under delamination fracture. This is owing to the fact that the crack is forced to travel

a longer distance on a scalloped interface as opposed to a smooth interface [12]. The

models developed in this dissertation for the solution of void growth due to vacancy

accumulation can be modified to study this effect, and this problem constitutes a

relatively easy extension to the abilities of the code developed here (Fig. 8.2b).

Another applied problem that exists in next generation electronics packages is

the formation of voids in through silicon vias (TSV) during thermal annealing. The

preliminary studies [158] suggest, that the void growth mechanism is controlled by

a vacancy diffusion mechanism. The numerical tools developed in this dissertation

are a good method to verify the models suggested for void growth in TSVs during

annealing.

8.3.3 Phase Field Simulations of Diffusion Driven Fracture

The phase field method has been used successfully for the study of brittle fracture

in the past few years by many authors, using both finite elements [61, 62] as well
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(a) Formation of intermetallic scallops in SnPb/Cu solder joints [157]. As can be seen, a
significant part of the solder joint is composed of the intermetallic

Intermetallic

Tin

Initial
Interface

Final
Interface

Infinite Copper Source

(b) Initial simulation results using DiffCodeshowing the formation of scallops due to dif-
fusion driven growth. In the figure above, the grey line shows the initial profile of the
intermetallic. The bottom surface is kept at a constant concentration of copper. The cop-
per diffuses through the intermetallic and reacts with the tin above the interface to form
the scallops. This process is controlled by a curvature dependent boundary condition on
the copper concentration at the intermetallic/tin interface.

Figure 8.2. Intermetallic formation in solder joints.

as using isogeometric methods [159]. The phase field method is uniquely suited for

fracture methods, owing to the relative simplicity of the boundary conditions in the

absence of contact and sliding, and the easy interpretation of the phase field parameter

φ as a damage parameter. When there is species diffusion in a brittle matrix, the

strains due to the change in the species concentration can be significant enough to

cause fracture. This is a serious concern in lithium ion batteries [160], where the

existence of finite strains complicates the problem. A related issue is the fracture

of intermetallics (Fig. 8.3). As the growth of the intermetallics is coupled with its

fracture, this can be thought to be an example of diffusion coupled with fracture.
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Figure 8.3. Fracture in intermetallics [12]

A comparison of the phase field fracture approach to the iso-geometric and XFEM

type approaches for problems of this nature, should be instructive. Grain boundary

diffusion and surface diffusion causing the evolution and intergranular voids is a com-

mon model for creep in metals [136,161–163]. The multi-phase field model developed

in Chapters 6 and 7 can be extended to study the mechanisms of creep due to inter-

granular diffusion and creep.
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Exactes et Naturelles, 6(2):1–24, 1901.

[42] P. C. Hohenberg and B. I. Halperin. Theory of Dynamic Critical Phenomena.
Reviews of Modern Physics, 49(3):435, 1977.



197

[43] D. Danilov and B. Nestler. Phase-field Modeling of Solidification in Multi-
component and Multi-phase Alloys. Phase Transformations in Multicomponent
Melts, 2009.

[44] D. A. Cogswell. A Phase-Field Study of Ternary Multiphase Microstructures.
PhD thesis, Massachusetts Institute of Technology, 2010.

[45] J. E. Dunn and J. Serrin. On the Thermomechanics of Interstitial Working.
In The Breadth and Depth of Continuum Mechanics, pages 705–743. Springer,
1986.

[46] M. E. Gurtin. Generalized Ginzburg-Landau and Cahn-Hilliard Equations
Based on a Microforce Balance. Physica D: Nonlinear Phenomena, 92(3):178–
192, 1996.

[47] J. W. Cahn and J. E. Hilliard. Free Energy of a Nonuniform System. I. Inter-
facial Free Energy. The Journal of Chemical Physics, 28(2):258–267, 1958.

[48] S. M. Allen and J. W. Cahn. A Microscopic Theory for Antiphase Boundary
Motion and its Application to Antiphase Domain Coarsening. Acta Metallur-
gica, 27(6):1085–1095, 1979.

[49] G. Caginalp. Solidification Problems as Systems of Nonlinear Differential Equa-
tions. Lectures in Applied Mathematics, 23:347–369, 1986.

[50] S.-L. Wang, R. F. Sekerka, A. A. Wheeler, B. T. Murray, S. R. Coriell, R. J.
Braun, and G. B. McFadden. Thermodynamically Consistent Phase-Field Mod-
els for Solidification. Physica D: Nonlinear Phenomena, 69(1):189–200, 1993.

[51] J. E. Guyer, W. J. Boettinger, J. A. Warren, and G. B. McFadden. Phase Field
Modeling of Electrochemistry. I. Equilibrium. Physical Review E, 69(2):021603,
2004.

[52] J. E. Guyer, W. J. Boettinger, J. A. Warren, and G. B. McFadden. Phase Field
Modeling of Electrochemistry. II. Kinetics. Physical Review E, 69(2):021604,
2004.

[53] W. Villanueva, W. J. Boettinger, G. B. McFadden, and J. A. Warren. A diffuse-
interface model of reactive wetting with intermetallic formation. Acta Materi-
alia, 60(9):3799–3814, 2012.

[54] M. S. Park, S. L. Gibbons, and R. Arróyave. Prediction of Processing Maps for
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A. DERIVATION OF A TRANSPORT THEOREM FOR INTERFACIAL

QUANTITIES

In this appendix, the balance laws that are needed for the formulation of the thermo-

dynamics of problems with moving interfaces are derived. The approach used in [82]

is used where interfacial vector and tensor fields as well as differential operators on

the surface are defined through the projection of the corresponding bulk operators on

the interface. This is done by defining the interfacial projection operator P defined

as,

P = I − n⊗ n. (A.1)

The surface differential operators (gradient and divergence) are then defined in

terms of the gradient and divergence of a smooth extension of the surface field into

the bulk. This approach allows the usage of standard continuum mechanics to derive

transport theorems and balance laws on the interface without necessitating the use

of differential geometry and Christoffel symbols [164].

A.1 Definition of Surface Differential Operators

The surface gradient of an interfacial scalar field is defined as the projection of

the gradient of the smooth extension of the interfacial field in 3-Dimensional space

onto the interface.

∇Γφ = P .∇φΩ. (A.2)
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In the above φΩ is an extension of the interfacial field into the bulk. This can be

done, for example by maintaining a constant value along the normals. Similarly the

surface gradient of an interfacial vector field is defined as follows,

∇Γv = ∇v.P . (A.3)

This allows the surface divergence of an interfacial vector field to be defined, in a

manner similar to the bulk divergence [165] as

∇Γ.v = tr(∇Γv) = ∇v : P . (A.4)

Similarly for a (3-Dimensional) tensor field defined on the interface, the surface di-

vergence is defined through the following relationship,

(∇Γ.B).a = ∇Γ.(B.a). (A.5)

A.1.1 Curvature Tensor and Invariants

The curvature tensor L = −∇Γn provides information at the rate at which the

normal changes direction. This tensor is related to the Weingarten map of differential

geometry [164]. The invariants of the curvature tensor are then defined as the mean

and the Gaussian curvature. The total curvature κ, twice the mean curvature is

defined as

κ = tr(L) = −∇Γ.n. (A.6)

The Gaussian curvature G is defined as the detL .G is a useful quantity in models

where the interfacial quantities depend on κ. It can be shown that,

∇Γ.P = κn. (A.7)
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Using the standard definition of the divergence of a tensor,

(∇Γ.B) .a = ∇Γ.
(

BTa
)

(A.8)

where a is a constant vector. Substituting the surface projection tensor P = I−n⊗n

in Eq. (A.8)

(∇Γ. (I − n⊗ n)) .a = (∇Γ.a)−∇Γ. ((n.a)n) (A.9)

(∇Γ. (I − n⊗ n)) .a = −∇Γ. ((n.a)n) (A.10)

(∇Γ.P ) .a = (n.a)κ+ (∇Γn.n).a+ (∇Γ.a)n.n. (A.11)

∇Γ.n = −κn and ∇Γn.n = 0, and ∇Γ.a = 0

(∇Γ.P )a = κ(n.a) =⇒ ∇Γ.P = κn. (A.12)

Also, for tensor fields that are purely tangential (i.e. n.(B.a) = 0, where a is a vector

tangential to the interface)

n.∇ΓB = B.L. (A.13)

A.2 Surface Divergence Theorem

A divergence theorem can now be defined relating a loop integral on an interface to

an integral over the area bounded by the loop. Defining m as the outward normal at

every point on the bounding curve C of a section of a surface Γ, the surface divergence

theorem for a tangential vector field v on an interface is defined as

∮

C

v.mdC =

∫

Γ

∇Γ.vdΓ. (A.14)
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For a tangential tensor B, the surface divergence theorem is defined as,

∮

C

B.mdC =

∫

Γ

∇Γ.BdΓ. (A.15)

Ωβ

Ωα

ΓC

n

h.m

Figure A.1. Schematic showing the definition of various terms in the surface divergence
theorem.

A.3 Material Derivative of an Interfacial Section

To derive balance laws for control volumes that are intersected by moving bound-

aries, the material derivative of a section dΓ of the interface is needed. Consider the

vector area differential ndΓ. To compute the material derivative of this quantity, it

is first transformed to an arbitrary reference domain through Nanson’s formula [166].

ndΓ = JF−TNdΓ0. (A.16)
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Using D
Dt
NdΓ0 = 0

D

Dt
ndΓ =

⎡

⎣J̇F−TN
I

+Φ(X)JḞ−TN

II

⎤

⎦ dΓ0. (A.17)

For term I, it is known that J̇ = J∇.v. Hence, it can be written as ∇.vJF−TN . The

term II requires the computation of Ḟ−T . To evaluate this, the following identity is

considered,

F TF−T = I (A.18)

Ḟ TF−T + F T Ḟ−T = O (A.19)

Now, Ḟ = ∇vF

=⇒ Ḟ T = F T∇vT . (A.20)

Substituting it back

F T Ḟ−T = −F T∇vTF−T (A.21)

Premultiplying both sides by F−T

Ḟ−T = −∇vTF−T . (A.22)

The derivative can therefore be rewritten as

D

Dt
ndΓ =

(

∇.vI −∇vT
)

JF−TNdΓ0 (A.23)
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or

D

Dt
ndΓ =

(

∇.vI −∇vT
)

ndΓ0. (A.24)

As n.n = 1,

2n.
D

Dt
n = 0. (A.25)

This implies that the normal n is orthogonal to D
Dt
n. Using D

Dt
ndΓ = D

Dt
ndΓ+n D

Dt
dΓ,

and taking the dot product of Eq. (A.23) with n

D

Dt
dΓ = n.

(

∇.vI −∇vT
)

ndΓ (A.26)

Expanding the above,

D

Dt
dΓ =

(

∇.v − n.∇vTn
)

dΓ (A.27)

or,

D

Dt
dΓ = ∇v : (I − n⊗ n) dΓ (A.28)

=⇒
D

Dt
dΓ = ∇Γ.vdΓ. (A.29)

Substituting this back into the expression for D
Dt
ndΓ, the material derivative of

the normal can now be written as

D

Dt
n =

(

∇.vI −∇vT −∇Γ.vI
)

n (A.30)

Writing ∇.vI as ∇Γ.vI + n⊗ n : ∇vT

D

Dt
n = (n⊗ n− I) .∇vTn (A.31)
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or

D

Dt
n = −∇Γv

Tn. (A.32)

Any velocity v for an interface can be decomposed into normal and tangential com-

ponents as V n+P .v. It is important to note that the tangential velocity components

P .v can not change the shape of the interface. Hence, in most physical problems,

it is only the normal component V that plays an important part. Substituting the

decomposed velocity v into Eq. (A.26) and letting P .v = vt,

D

Dt
dΓ = (∇Γ.(V n+ vt)) dΓ (A.33)

D

Dt
dΓ = (∇Γ.(V n) +∇Γ.vt) dΓ (A.34)

D

Dt
dΓ = (∇ΓV.n+ V∇Γ.n+∇Γ.vt) dΓ (A.35)

As ∇ΓV is a vector tangent to the interface,

∇ΓV.n = 0 (A.36)

Using Eq. (A.6), and the above

D

Dt
dΓ = (−κV +∇Γ.vt)dΓ. (A.37)

In variational treatments, as the tangential velocity components play no part, this

relation is directly stated as,

δdΓ = −κ(δx.n)dΓ. (A.38)

Substituting the decomposed velocity into Eq. (A.30) leads to

D

Dt
n = −∇Γ (V n+ vt)

T .n. (A.39)
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Expanding the terms

D

Dt
n = −∇Γ(V n)T .n−∇Γv

T
t .n. (A.40)

Using ∇Γ(V n) = ∇ΓV ⊗ n+ V∇Γn

D

Dt
n = −(n⊗∇ΓV ).n− V∇Γn

T .n−∇Γv
T
t .n. (A.41)

Again, ∇Γn
T is an interfacial tensor, and hence ∇Γn

T .n = 0 leading to

D

Dt
n = −(n⊗∇ΓV ).n−∇Γv

T
t .n. (A.42)

This can be further simplified into

D

Dt
n = −∇ΓV −∇Γv

T
t .n. (A.43)

In variational treatments, the above relation is stated as

δn = −∇Γ (δx.n) . (A.44)

This relation plays an important part in cases where the surface energy is anisotropic

which is often captured by including a dependence on the direction of the normal. In

this case, the variation or material derivative of the normal is required.

A.3.1 Material Derivative of Surface Integrals

The relations derived above can now be used to derive the material derivative of

a surface integral. This relationship is useful in deriving local forms of interfacial

transport theorems. Consider the material derivative of the integral of an interfacial

field φ(x) over a part of the interface Γ,
∫

Γ φ(x)dΓ. It is assumed that φ(x) can be

extended into the bulk, such that ∇φ(x).n = 0 (Fig. A.2). Using Eq. (A.33),
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n
φ(xΓ)

φ(x+∆x.n) = φ(x)

Figure A.2. Interfacial function with constant normal extension into the bulk.

D

Dt

∫

Γ

φ(x)dΓ =

∫

Γ

D

Dt
φ(x)dΓ+

∫

Γ

φ(x) (−κV +∇Γ.vt) dΓ. (A.45)

Expanding D
Dt
φ(x) = ∂φ(x)

∂t
+∇φ(x).v

D

Dt

∫

Γ

φ(x)dΓ =

∫

Γ

(
∂φ(x)

∂t
+∇φ(x).v − φ(x)κV +∇Γ.vt

)

dΓ. (A.46)

Now, separating ∇φ(x) as ∇Γφ(x) +
∂φ(x)
∂n

n,

∇φ(x).v = ∇Γφ(x).(V n+ vt) +
∂φ(x)

∂n
n.(V n+ vt) (A.47)

which gives, using the property of the constant normal extension

∇φ(x).v = ∇Γφ(x).vt. (A.48)

Substituting this back into the expression

D

Dt

∫

Γ

φ(x)dΓ =

∫

Γ

(
∂φ(x)

∂t
+∇Γφ(x).vt − φ(x)κV + φ(x)∇Γ.vt

)

dΓ. (A.49)

Using the identity, ∇Γ.(φ(x)vt) = ∇Γφ(x).vt + φ(x)∇Γ.(vt),

D

Dt

∫

Γ

φ(x)dΓ =

∫

Γ

(
∂φ(x)

∂t
+∇Γ.(φ(x)vt)− φ(x)κV

)

dΓ. (A.50)



215

Applying the surface divergence theorem (Eq. (A.14))

D

Dt

∫

Γ

φ(x)dΓ =

∫

Γ

(
∂φ(x)

∂t
− κφ(x)V

)

dΓ+

∮

C

φ(x)vtdC. (A.51)

In the absence of an assumption of constant normal extension for φ(x) some authors

[167], define an alternative time derivative φ̊(x) = ∂φ(x)
∂t

+ ∂φ(x)
∂n

V , called the time

derivative following the interface. Another point to note in the above derivation is

that the velocity v is the velocity of the interface and not the velocity of particles

that form part of the interface. In most cases, the tangential velocity of the interface

doesn’t play a part in the evolution of the interface. Hence it is possible to arbitrarily

set vt to 0, without losing any information.

A.4 Control Volumes with Accretion

In the derivation of the standard transport theorems for control volumes in La-

grangian frames of reference, the control is defined over a fixed set of material points

and the evolution of fields over this fixed set of material points is related to fluxes

through the boundaries of the control volume. The control volume Ω shown in Fig. A.3

contains a fixed set of material points.

Ω

Γ
Γ

F
Ω

Figure A.3. Lagrangian control volume. The set of material points contained in the
control volume don’t change through the transformation.
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Writing the transport theorem for an arbitrary quantity φ(x),

D

Dt

∫

Ω

φ(x)dΩ = −
∫

Γ

J .ndΓ. (A.52)

Expanding the material derivative, as the differentiation is in purely Lagrangian co-

ordinates, the terms related to the convective velocities, as well as the term related

to the D
Dt
dΩ are zero. Using the divergence theorem on the right hand side

∂φ(x)

∂t
= −∇.J . (A.53)

Ω

Γ
Γ

F
Ω

Figure A.4. Control volume with accretion. The set of material points that are con-
tained in the control volume changes.

This control volume is insufficient to develop the equations of motion for moving

boundary problems. In moving boundary problems, the total value of the field over

the domain changes on account of the addition of material points to the control

volume through accretion, as shown in Fig. A.4. To allow this to occur an additional

term is added to Eq. (A.52), to account for the increase due to the volume swept

by the motion of the boundaries of the control volume. The motion of the outer

boundary of the control volume can be completely described by a normal velocity U .

The additional contribution to the integral due to this swept volume is
∫

Γ φ(x)UdΓ

and the balance law can be written as,

D

Dt

∫

Ω

φ(x)dΩ = −
∫

Γ

J .ndΓ+

∫

Γ

φ(x)UdΓ. (A.54)
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In a more general Eulerian control volume Fig. A.6 the relation above can be written

as

∫

Ω

∂φ(x)

∂t
dΩ = −

∫

Γ

J .ndΓ+

∫

Γ

φ(x)(U − v.n)dΓ. (A.55)

While localizing the above integral it is assumed that the velocity field u, with u.n =

U on Γ is uniformly 0 inside the domain. Eqs. (A.54) and (A.55) can now be used to

derive a transport theorem for a domain divided by a moving interface.

A.5 Transport Theorem for an Interfacial Pillbox

Interfacial pillboxes Fig. A.5 formalize the process to derive local balance relations

at interfaces. Consider the domain Ω = Ωα ∪Ωβ divided by the interface Γ shown in

Fig. A.5. Ωα and Ωβ are bounded otherwise by Γα and Γβ. As usual, an arbitrary

field φ(x) is considered, with the values in each of the phases specified by φα(x) and

φβ(x). For the control volumes Ωα,β the boundaries of the control volumes Γ,Γα,β

are allowed to move with an arbitrary normal velocity function U that is uniformly 0

inside the domain. The balance law for each phase can now be written as,

D

Dt

∫

Ωα,β

φα,β(x)dΩα,β = −
∫

Γα,β

Jα,β.nαβdΓα,β −
∫

Γ

J .nΓα,β
dΓ+

∫

Γα,β

φα,β(x)Uα,βdΓα,β +

∫

Γ

φα,β(x)UΓα,β
dΓ.

(A.56)

The interface is now considered as a separate domain, bounded by the curve C.

A surface density φΓ(xΓ) is defined which is changed by inflows due to a flux h in the

tangent plane of the interface. The normal to the curve C in the tangent plane of Γ

is denoted m. The balance law for the interface is now written as,

D

Dt

∫

Γ

φΓ(xΓ)dΓ = −
∮

C

h.mdC +

∮

C

φΓ(xΓ)WΓdC. (A.57)
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n

nβ

nα

n

nβ

nα

Ωα

Ωβ

Γβ

Γα

Γβ
Γ Γ

m m

Jβ

Jβ

Jα

Jα

h h

Γα

Figure A.5. Reducing an interfacial pillbox

In the above WΓ is an accretive growth velocity of the control volume similar to U

in Eq. (A.54). Using Eq. (A.45) and assuming that φΓ(xΓ) has a constant normal

extension, the above can be written as

∫

Γ

(
∂φΓ(xΓ)

∂t
− κφΓ(xΓ)VΓ

)

dΓ = −
∫

Γ

∇Γ.hdΓ+

∮

C

φΓ(xΓ)(WΓ − vt.m)dC.

(A.58)

To be able to define a transport theorem for the interfacial pillbox, Eqs. (A.56)

and (A.57) need to be combined together. This leads to

D

Dt

(
∫

Γ

φΓ(xΓ)dΓ+
∑

i=α,β

∫

Ωi

φi(x)dΩi

)

=
∑

i=α,β

(

−
∫

Γi

Ji.nidΓi −
∫

Γ

J .nΓi
dΓ

+

∫

Γi

φi(x)UidΓi +

∫

Γ

φi(x)UΓi
dΓ

)

−
∫

Γ

∇Γ.hdΓ+

∮

C

φΓ(xΓ)WΓdC.

(A.59)
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The following simplifications are made to Eq. (A.59).

1. The outer control surfaces Γα,β are now assumed to be infinitesimally close to

the inner control surface Γ. As Γα,β → Γ, Ω → 0 and the bulk integral terms

drop out.

2. The nΓα is set equal to n. This implies that nΓβ
= −n. Also, nα = −n,nβ = n.

3. The accretive normal velocities of the Γ interface from both sides, uΓα,β
are set

to be the same as the velocity of the interface vΓ. Together with the condition

on the normals, this leads to,

VΓ = UΓα = −UΓβ
. (A.60)

4. There is no flux that crosses the Γ interface. Hence
∫

Γ J .nΓi
dΓ = 0.

5. The outer control loop for the interface Γ is held fixed, hence WΓ = 0. It is also

assumed that the accretion at the external boundaries can be neglected.

6. As the shape change of the interface is completely described by its normal ve-

locity, the tangential velocity vt = 0.

These simplifications lead to,

∫

Γ

(
∂φΓ(x)

∂t
− κφΓ(x)VΓ

)

dΓ =−
∫

Γ

(Jα − Jβ).nΓdΓ

+

∫

Γ

(φα(x)− φβ(x))VΓdΓ

−
∫

Γ

∇Γ.hdΓ.

(A.61)

In the above, it is assumed that the derivatives are treated in a Lagrangian fashion.

This leads to the absence of any convective terms, and consequently any fluxes across

the boundary owing to the deformation motion of the system. The terms (Jα−Jβ) and

(φα(x)− φβ(x)) are replaced with !J" and !φ(x)". Using the fact that the domain
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of integration Γ is arbitrary, and making the substitutions for the jump terms, a local

form of the balance, valid at every point in the interface can be written as,

∂φΓ(x)

∂t
− κφΓ(x)VΓ = − !J" .n+ !φ(x)"VΓ −∇Γ.h. (A.62)

While the above transport theorem was derived for a scalar field, similar relations

can be defined for vector fields.

The above derivation is a reasonable transport theorem in the presence of evolution

of interfaces in solids as accretion type processes are distinct from deformation type

processes. The effect of deformation kinematics was limited in the previous derivation

by using a purely Lagrangian approach, which eliminated all the convective terms.

For a multiphase fluid, the same derivation can be carried out with the accretive

velocities set to zero but with the convective components active.

vf
uacc.n

Ω

Γ

Figure A.6. Growing Eulerian control volume.
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A.5.1 Interfacial Balance for Multiphase Fluids

Neglecting all the accretive velocities in Eq. (A.59), it can be rewritten as,

D

Dt

(
∫

Γ

φΓ(xΓ)dΓ+
∑

i=α,β

∫

Ωi

φ(x)dΩi

)

=
∑

i=α,β

(

−
∫

Γi

Ji.nidΓi −
∫

Γ

J .nΓi
dΓ

)

−
∫

Γ

∇Γ.hdΓ.

(A.63)

Expanding the material derivatives in Eq. (A.63) and eliminating the bulk integrals

in the limit as Γα,β → Γ, it can be rewritten as,

∫

Γ

(
∂φΓ(xΓ)

∂t
− φΓ(xΓ)κVΓ

)

dΓ =
∑

i=α,β

(

−
∫

Γi

(Ji.ni − φ(x)vi.ni) dΓi

−
∫

Γ

(J .nΓi
− φ(x)vi.nΓi

) dΓ

)

−
∫

Γ

(∇Γ.h+∇Γ.(φΓ(xΓ)vΓt)) dΓ.

(A.64)

The following simplifications are now applied Eq. (A.64)

1. There is no flux that goes across the interface Γ. Also there is no convective flux

of φ(x) across the interface. This also implies vα = vΓ = vβ.

2. The normal points from α into β, and is the same as the normal to the interface.

nΓ = nΓα = −nΓβ
. (A.65)

∫

Γ

(
∂φΓ(xΓ)

∂t
− φΓ(xΓ)κVΓ

)

dΓ =−
∫

Γ

!JnΓ" dΓ−
∫

Γ

!φ(x)VΓ" dΓ−

−
∫

Γ

∇Γ.(h+∇Γ.(φΓ(xΓ)vΓt)dΓ.

(A.66)
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As the domain of integration is arbitrary, the following is true at every point on the

interface

∂φΓ(xΓ)

∂t
− φΓ(xΓ)κVΓ = !J" .nΓ − !φ(x)"VΓ −∇Γ.(h+ φΓ(xΓ)vΓt). (A.67)
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B. COORDINATE TRANSFORMATIONS FOR USE IN ASYMPTOTIC

ANALYSIS

In phase field models dependent on a notional interfacial parameter thickness ϵ, and

a bulk free energy function F (φ) that has only numerical meaning, it is necessary

to show the equivalence of the phase field equations to corresponding sharp interface

equations. This is done best when the differential equations are transformed into a

moving coordinate system attached to an interface Γ moving with a normal velocity

V n (Fig. B.1). This appendix describes the process of transforming the equations

into this frame. The derivation here is based on the derivation in [68].

x

y

z

s1

ρ

s2

Γ

Figure B.1. Transformation of coordinate system from a global coordinate system to
an interface attached coordinate system.

Consider a point p described as

pê123 = x1êx1
+ x2êx2

+ x3êx3
. (B.1)

In an interface attached coordinate frame, this can be written as

pΓ = s1ês1 + s2ês2 + rn. (B.2)
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In the above ês1,s2 are two arbitrary directions in the plane tangential to the interface

at an arbitrary origin on the interface at OΓ. n is the unit normal to the interface

at OΓ, with the orientation as chosen. r is the normal signed distance from the

interface. While working with the inner solution, the coordinate system is also scaled

by 1
ϵ
. Hence, the point p is written in the scaled coordinate system as

pΓ = s1ês1 + s2ês2 + ρn. (B.3)

In the above,

ρ =
r

ϵ
. (B.4)

Given a scalar field u(x, t), it can be written in the transformed interface attached

coordinate frame as u(r, t). The temporal and spatial derivatives of this field u(r, t)

need to be written in terms of this moving coordinate frame.

B.1 Time Derivatives

The temporal derivative of the field u(r, t) can be written as,

∂u(x, t)

∂t
=
∂u

∂t
+
∂r

∂t
.∇ru. (B.5)

In the above ∂r
∂t

is the term associated with the evolution of the coordinate system,

while ∇ru is the gradient of the field u in the coordinate system. The gradient of a

function f(r) in the coordinate system can be written as,

∇rf =
∂f

∂s1
ês1 +

∂f

∂s2
ês2 +

∂f

∂r
n (B.6)
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The two tangential components of the gradient are referred to as the surface gradient

of the function f , given by

∇Γf =
∂f

∂s1
ês1 +

∂f

∂s2
ês2 . (B.7)

The other term in the time derivative (Eq. (B.5)) is the time derivative of the position

vector r. Instantaneously in the interface attached coordinate frame, this can be

written as

∂r

∂t
=
∂s1
∂t

ês1 +
∂s2
∂t

ês2 +
∂r

∂t
n. (B.8)

The signed distance from the interface r satisfies the level-set equation. This is due

to the fact that a point on the interface is always at 0 distance from the interface.

D

Dt
r =

∂r

∂t
+ v.∇r = 0. (B.9)

As the distance function is a linearly increasing function with no tangential variation

∇r =
∂r

∂r
n = n. (B.10)

This allows the time derivative of the distance to be written as

∂r

∂t
+ v.n = 0, (B.11)

or

∂r

∂t
= −V. (B.12)
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Using Eqs. (B.8) and (B.12) in Eq. (B.5), the time derivative of u(r, t) can be written

as,

D

Dt
u =

∂u

∂t
− V

∂u

∂r
+∇Γu.

(
∂s1
∂t

ês1 +
∂s2
∂t

ês2

)

. (B.13)

In the scaled coordinate system,

∂u

∂r
=
∂u

∂ρ

∂ρ

∂r
=

1

ϵ

∂u

∂ρ
. (B.14)

Hence,

D

Dt
u =

∂u

∂t
− V

1

ϵ

∂u

∂ρ
+∇Γu.

(
∂s1
∂t

ês1 +
∂s2
∂t

ês2

)

. (B.15)

B.2 Spatial Derivatives

In this section the spatial derivatives of quantities are transformed from a coor-

dinate system {x1, x2, x3} to a coordinate system {s1, s2, r}. First the gradient is

derived, followed by the Laplacian. The derivation of the Laplacian is more relevant

to the purposes of this document as it provides a way to introduce the effects of

curvature into diffuse interface models.

B.2.1 Gradient of a Function

The gradient in the {x1, x2, x3} coordinate system can be related to the gradient

in the {s1, s2, r} coordinate system through the Jacobian of transformation as follows,

∇u =

[
∂si
∂xj

]T

.∇Γu+
∂u

∂r
∇r. (B.16)
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For vector functions, transforming the derivatives of a vector function u(x1, x2, x3) to

a co-ordinate system u(s1, s2, r), can be accomplished in the same manner.

∇u(x1, x2, x3) =
∂u

∂r
⊗∇r +

∂u

∂s1
⊗∇s1 +

∂u

∂s2
⊗∇s2, (B.17)

=
∂u

∂r
⊗ n+

∂u

∂s1
⊗∇s1 +

∂u

∂s2
⊗∇s2. (B.18)

The divergence of the function can now be defined as the trace of Eq. (B.17). This

leads to,

∇.u(x1, x2, x3) =
∂u

∂r
.n+

∂u

∂s1
.∇s1 +

∂u

∂s2
.∇s2. (B.19)

In the scaled co-ordinate system, the above can be written as,

∇.u(x1, x2, x3) =
1

ϵ

∂u

∂ρ
.n+

∂u

∂s1
.∇s1 +

∂u

∂s2
.∇s2. (B.20)

The above relation is now used to derive a relation for the Laplacian of a function

in the two coordinate systems.

B.2.2 Laplacian of a Function

The Laplacian ∇2u of a function u is defined as,

∇2u = ∇.(∇u). (B.21)

Using Eq. (B.16), the Laplacian in the {x1, x2, x3} coordinate system can be written

as
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∇2u = ∇. (∇u) (B.22)

= ∇.

(
[
∂si
∂xj

]T

.∇Γu+
∂u

∂r
∇r

)

(B.23)

= ∇.

(
[
∂si
∂xj

]T

∇Γu

)

I

+∇.

(
∂u

∂r
∇r

)

II

. (B.24)

The terms I and II can now be evaluated separately. Term I can be expanded as

follows,

I = ∇.

(
[
∂si
∂xj

]T

.∇Γu

)

(B.25)

= ∇.

([
∂si
∂xj

])

.∇Γu+

[
∂si
∂xj

]T

: ∇(∇Γu). (B.26)

In the above, the fact
[
∂si
∂xj

]T

.∇r = 0 is used. This is due to the fact that
[
∂si
∂xj

]

is a tensor that is tangential to the interface, while ∇r is normal to the interface.

Hence any normal components drop out while evaluating the term and only tangential

components remain. The term Eq. (B.26) is referred to as the surface laplacian of u.

Evaluating the term II,

II = ∇.

(
∂u

∂r
∇r

)

(B.27)

= ∇(
∂u

∂r
).∇r +

∂u

∂r
∇2r (B.28)

=
∂2u

∂r2
+
∂u

∂r
∇2r. (B.29)

As,

∇2r = ∇.(∇r) = ∇.n (B.30)
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for interfaces with small curvature, ∇Γ ≈ ∇ and for small r

∇.n ≈ ∇Γ.n+O(r) = −κ+O(r). (B.31)

Hence II can be written as being approximately equal to,

II ≈
∂2u

∂r2
−
∂u

∂r
κ+O(r). (B.32)

Using Eq. (B.26) and § B.2.2, the Laplacian of u in the {s1, s2, r} coordinate system

can be written as

∇2u = ∇2
Γu+

∂2u

∂r2
−
∂u

∂r
κ+O(r). (B.33)

In the scaled coordinate system, can now be written as

∇2u = ∇2
Γu+

1

ϵ2
∂2u

∂ρ2
−

1

ϵ

∂u

∂ρ
κ+O(r). (B.34)

In the above, the curvature is still being measured in the same length-scale as r.
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C. MATCHING CONDITIONS FOR FORMAL ASYMPTOTIC ANALYSIS

Showing the equivalence of diffuse interface equations to sharp interface formulations

derivable from continuum mechanics can be achieved in multiple ways. The first is

through the means of Γ - convergence [60], where the equivalence is shown through

the convergence of a series of minimizers to an energy functional in a phase field form

to a sharp interface equation. This approach is very demanding mathematically, and

becomes more involved with the addition of additional physics to the phase field

equations.

The alternative approach is through the use of formal asymptotic analysis. In

formal asymptotic analysis the solution to the phase field equation is assumed to exist.

This solution to the phase field equation has a form where there is a rapid variation

next to the interface and a more or less constant value is reached at distances which

are very far from the interface. This allows the solution to be split into two parts,

one which is valid close to the interface, called the inner solution and another that

is valid at longer length scales called the outer solution (Fig. C.1).

These assumed solutions are substituted into the phase field equation and their

behavior is studied as ϵ → 0. Care must be taken to choose a coordinate system

for the analysis, where it is easy to solve the equations analytically. Typically for

interface evolution processes, interfacial coordinate systems are best, especially when

tangential variation is not expected to play a significant role. In the normal direction,

the partial differential equations can be reduced to one-dimensional ordinary or partial

differential equations. The main condition with which these solutions are tested is that

the inner and outer solutions need to match in the domain where the two solutions

overlap. This implies that the value of the inner solution at a point far away from

the interface, should match with the value of the outer solution at a point close to

the interface. Some essential matching relations are developed for 1-D systems in this
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Outer solution
u0

Inner Solution
U0

Overlapping region

Figure C.1. Validity of the inner and outer solution in asymptotic analysis. In most
cases the inner, outer and overlapping regions are only definable as limits.

appendix. More details can be found in [59,168]. The approach here is based on the

derivations in [59].

C.1 Inner and Outer Solutions

In this section, the distance from the interface is parametrized by r. In addition

a length scale ϵ is specified so that the extent of the influence of the inner solution

is O(ϵ). The outer solution is written as u(r). The inner solution is written as U(ρ),

where ρ = r
ϵ
. As they are both solutions to the same equation, they should match in

the overlapping region. This is expressed as,

lim
ρ→∞

U(ρ) = lim
r→0

u(r). (C.1)
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It is assumed that the solutions U(ρ) and u(r) are differentiable, and as they are

describing the same function, the first derivatives of both functions should match in

the overlapping region.

lim
ρ→∞

∂U(ρ)

∂r
= lim

r→0

∂u(r)

∂r
(C.2)

Or, using the chain rule

lim
ρ→∞

1

ϵ

∂U(ρ)

∂ρ
= lim

r→0

∂u(r)

∂r
. (C.3)

It is not possible to obtain the solutions U and u at the same time. Instead, as the

functions are assumed to be differentiable, the solutions are written as an expansion

in powers of ϵ. The outer solution is expanded as

u(r) = u0(r) + ϵu1(r) + ϵ2u2(r) + ϵ3u3(r) + . . . . (C.4)

For the inner solution, the expansion is written as

U(ρ) = U0(ρ) + ϵU1(ρ) + ϵ2U2(ρ) + ϵ3U3(ρ) + . . . . (C.5)

These solutions can be determined by substituting these into the differential equation

(written in terms of r and ρ for the outer and inner solutions) and grouping terms

by powers of ϵ. This will lead to an equation for each power of ϵ considered in the

inner and outer solution. These equations need to be solved with boundary conditions

derived from the matching conditions in the following section.
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C.2 Derivation of Matching Conditions

The matching conditions for the function value are first derived. Substituting

r = ϵρ into Eq. (C.1), and considering terms up to ϵ2,

U0(ρ) + ϵU1(ρ) + ϵ2U2(ρ) = u0(ϵρ) + ϵu1(ϵρ) + ϵ2u2(ϵρ) +O(ϵ3). (C.6)

The terms on the right hand side are now each expanded in a Taylor series in r around

r = 0. Keeping all terms up to the quadratic and grouping in terms of ϵ,

U0(ρ) + ϵU1(ρ) + ϵ2U2(ρ) =u0(0) + ϵ

(
∂u0

∂r

∣
∣
r=0

ρ+ u1(0)

)

+ ϵ2
(
1

2

∂2u0

∂r2

∣
∣
r=0

ρ2 +
∂u1

∂r

∣
∣
r=0

ρ+ u2(0)

)

. . .

(C.7)

Moving all the terms over to one side,

U0(ρ)− u0(0) + ϵ

(

U1(ρ)−
(
∂u0

∂r

∣
∣
r=0

ρ+ u1(0)

))

+ ϵ2
(

U2(ρ)−
(
1

2

∂2u0

∂r2

∣
∣
r=0

ρ2 +
∂u1

∂r

∣
∣
r=0

ρ+ u2(0)

))

. . . = 0.

(C.8)

As ϵ is a positive number, the co-efficients of each power of ϵ should be 0 in order for

Eq. (C.8) to be 0. This leads to the following matching conditions for terms up to ϵ2

as ϵ→ 0 and ρ→ ∞,

U0(ρ) = u0(0) (C.9a)

U1(ρ) = u1(0) +
∂u0

∂r

∣
∣
r=0

ρ (C.9b)

U2(ρ) = u2(0) +
∂u1

∂r

∣
∣
r=0

ρ+
1

2

∂2u0

∂r2
ρ2
∣
∣
ρ→0

. (C.9c)
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In the above approach, it is assumed that ϵ → 0 faster than ρ → ∞. A similar

approach is used to derive the matching conditions for the derivatives of the inner

and the outer solution,

∂U0

∂ρ
+ ϵ

∂U1

∂ρ
+ ϵ2

∂U2

∂ρ
=
∂u0(ϵρ)

∂ρ
+ ϵ

∂u1(ϵρ)

∂ρ
+ ϵ2

∂u2(ϵρ)

∂ρ
+ . . . (C.10)

Again expanding the right hand side using a Taylor series around r = 0, and using

∂u
∂ρ

= ∂r
∂ρ

∂u
∂r

= ϵ∂u
∂r

the above can be written as

∂U0

∂ρ
+ ϵ

∂U1

∂ρ
+ ϵ2

∂U2

∂ρ
= ϵ

∂u0

∂r

∣
∣
r=0

+ ϵ2
(
1

2

∂2u0

∂r2

∣
∣
r=0

ρ+
∂u1

∂r

)

+ . . . (C.11)

By the same arguments as for the solution value, the matching conditions for the

gradient can be written as,

∂U0

∂ρ
= 0 (C.12a)

∂U1

∂ρ
=
∂u0

∂r

∣
∣
r=0

(C.12b)

∂U2

∂ρ
=

1

2

∂2u0

∂r2

∣
∣
r=0

ρ+
∂u1

∂r

∣
∣
r=0

. (C.12c)

Usually, the leading and the first order terms are the ones of most interest.



235

D. NECESSARY INTEGRALS FOR ASYMPTOTIC ANALYSIS

In this appendix, the integrals necessary for asymptotic analysis for various choices

of the regularized Heaviside and Dirac delta functions are specified. This is useful for

deriving the constants necessary to scale the modified PDE appropriately to recover

the sharp interface equations. The sinusoidal and hyperbolic tangent regularization

functions are described here.

D.1 Sinusoidal Regularization

The sinusoidal regularization function is obtained as the solution to the phase

field equations with the obstacle potential. This is due to the fact that they are the

solutions to the differential equation,

αφrr + βφ = 0. (D.1)

The solutions to the above equation are of the form sin
√

β
α
r, cos

√

β
α
r. The Heaviside

function associated with the solution to Eq. (D.1) can be written as,

h(r) =

⎧

⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎩

0, if r ≤ −π
2

√
α
β

1+sin
√

β
α
r

2 , −π
2

√
α
β
≤ r ≤ π

2

√
α
β

1, r ≥ π
2

√
α
β
.

(D.2)

The first option for use as a Dirac δ function is,

g(r) = h′(r) =

⎧

⎪
⎨

⎪
⎩

0, |r| ≥ π
2

√
α
β

c
2

√

β
α
cos
√

β
α
r, |r| ≤ π

2

√
α
β

. (D.3)
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This needs to be normalized so that
∫∞
−∞ δ(r) = 1. For the function in Eq. (D.3),

the integral is c and hence no further normalization is required. If instead of the h′(r),

φ′(r) is used as the Dirac δ function, the integral can be written as,

∫ ∞

−∞
φ′(r) =

∫ π
2

√
α
β

−π
2

√
α
β

√

β

α
cos

√

β

α
r = 2. (D.4)

This implies that the normalization constant c is 1
2 . The most common Dirac δ

function associated with the sinusoidal regularization is,

δ(r) = c
(

1− φ2
)

=

⎧

⎪
⎨

⎪
⎩

0, |r| ≥ π
2

√
α
β

c cos2
√

β
α
r, |r| ≤ π

2

√
α
β
.

(D.5)

The normalization constant for the above is derived by integration from −∞, to ∞.

This leads to,

∫ ∞

−∞
δ(r) = c

∫ π
2

√
α
β

−π
2

√
α
β

cos2
√
α

β
r =

cπ

2

√
α

β
. (D.6)

This leads to

=⇒ c =
2

π

√

β

α
. (D.7)

The final option for the Dirac δ function is,

δ(r) = ch(r)(1− h(r)) ==

⎧

⎪
⎨

⎪
⎩

0, |r| ≥ π
2

√
α
β

c
4 cos

2
√

β
α
r, |r| ≤ π

2

√
α
β

. (D.8)

Integration of the above shows the normalization constant to be,

=⇒ c =
8

π

√

β

α
. (D.9)
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D.2 Hyperbolic Tangent Regularization

The hyperbolic tangent regularization functions are obtained as solutions to the

phase field equations with the biquadratic obstacle potential. The hyperbolic tangent

functions are solutions to the differential equation,

−αφrr + f ′(φ) = 0. (D.10)

Where

f(φ) = β
(

1− φ2
)2

(D.11)

or

f ′(φ) = −4β
(

φ− φ3
)

. (D.12)

One of the solutions Eq. (D.10) is,

φ(r) = tanh

√

2β

α
r. (D.13)

The Heaviside function associated with the solution in Eq. (D.13) can be written as,

h(r) =
1 + φ(r)

2
. (D.14)

The Dirac δ functions associated with the above expressions for φ(r) and h(r) are sim-

ilar to the expressions in § D.1. The first one considered is δ(r) = ch′(r). Integrating

h′(r) from −∞ to ∞,

c

∫ ∞

−∞
h′(r)dr = c

∫ ∞

−∞

1 + tanh
√

2β
α
r

2
dr. (D.15)
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For Eq. (D.15), c = 1. Similar to the derivation in § D.1, for the Dirac δ function

φ′(r), the factor c = 1
2 . The next Dirac δ function approximation that needs to be

considered is,

δ(r) = c(1− φ2) = csech2

√

2β

α
r. (D.16)

This can be integrated over (−∞,∞) to get c =
√

β
2α . For the Dirac δ function

specified by,

δ(r) = c(1− φ2)2 = csech4

√

2β

α
r (D.17)

The value of the normalization constant for this version of the Dirac δ function is

found by integration to be,

c =
3

2
√
2

√

β

α
. (D.18)

The final Dirac δ functions are in terms of h(r). The simplest one is defined as

δ(r) = c(h(r)(1− h(r)). This can also be written as,

δ(r) = c(h(r)(1− h(r)) =
c

4
sech2

√

2β

α
r. (D.19)

The constant c can be shown to be 2
√

2β
α
. For the squared version of the above,

written as, δ(r) = ch(r)2(1− h(r))2, the simplified version can be written as,

δ(r) =
c

16
sech4

√

2β

α
. (D.20)

where the constant c can be shown to be equal to 12
√

2β
α
.
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D.3 Summary

The results in the above sections are summarized in terms of functions of r in

Table D.1, and the Dirac δ functions in terms of the phase field function in Table D.2.

Table D.1. Summary of Heaviside and Dirac δ functions used in phase field models
in terms of r.

Sinusoidal Hyperbolic Tangent

Solution φ(r)

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

−1, r ≤ −π
2

√
α
β

sin
√

β
α
r, −π

2

√
α
β
≤ r ≤ π

2

√
α
β

1, r ≥ π
2

√
α
β
.

tanh
√

2β
α
r

Dirac δ : cφ′(r)

⎧

⎨

⎩

0, |r| ≥ π
2

√
α
β

1
2

√

β
α
cos
√

β
α
r, |r| ≤ π

2

√
α
β

1
2

√

2β
α
sech2

√

2β
α
r

Dirac δ : c(1− φ(r)2)

⎧

⎨

⎩

0, |r| ≥ π
2

√
α
β

2
π

√

β
α
cos2

√

β
α
r, |r| ≤ π

2

√
α
β

”

Dirac δ : c(1− φ(r)2)2 – 3
2
√
2

√

β
α
sech4

√

2β
α
r

Table D.2. Values of c for various Dirac δ functions in terms of φ(r) or h(r).

Dirac δ Sinusoidal Hyperbolic Tangent

cφ′ 1
2

1
2

ch′ 1 1

c(1− φ2) 2
π

√

β
α

√

β
2α

c(1− φ2)2 – 3
2
√
2

√

β
α

ch(1− h) 8
π

√

β
α

2
√

2β
α

ch2(1− h)2 – 12
√

2β
α
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E. DIFFCODE: A SIMULATION SYSTEM TO STUDY DIFFUSION DRIVEN

FAILURE IN INTERCONNECTS

The structure and use of the simulation tool, DiffCode developed in this thesis is

described in this appendix. DiffCode is a C++ code developed using the libMesh

finite element toolkit [137]. The libMesh finite element toolkit is developed in C++

on top of many well tested and widely used scientific software suites. It has the ability

to use either the PETSc, [138,169,170] or the Trilinos [144] suite of linear and non-

linear solvers. Other software packages that are used by libMesh are Metis and

Parmetis for the construction of sparsity patterns and for partitioning the mesh for

parallel simulations. libMesh allows the usage of the Exodus II, VTK and Tecplot

tools for output and visualization. It has been used widely over the past 10 years

for various large scale simulation tools, including the MOOSE [171] framework for the

simulation of large scale multi-physics problems.

E.1 Code Structure

DiffCode has approximately 6000 lines of code built on top of libMesh and as-

sumes that PETSc is available. At present, it is not possible to use DiffCode with

other solver packages such as Trilinos. The problem information is stored in a main

class called DiffCode. This class is derived from the libMesh EquationSystems class

and acts as a container for all the classes corresponding to the solutions of the driving

fields and the phase-field solver. The class also has methods to read the input files for

material properties, geometry definition, time stepping and choice of output fields.

The rest of the code consists of solver classes for the solution of the different fields.

There is also an additional solver class for the computation of nodal approximations
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to element quantities. Additionally there are classes which are used for storage of

computed fields. The general structure of the code is described in Fig. E.1.

End

t < tf

i = nfout?

DiffCode::output()

1. Compute Void C.O.M

2. Compute Joint Resistance

3. Output Exodus II File

3. Refine Initial Mesh

2. Read Mesh

1. Read Input File

DiffCode::step()

1. Solve Electrical Problem

2. Solve Thermal Problem

3. Solve for Displacements

4. Compute Stresses at Nodes

5. Update Phase Field Systems

6. Update Diffusion Systems

7. Collate Diffusion and Phase Field Systems

8. Refine and Coarsen Mesh

Start

Figure E.1. General flow of DiffCode

E.1.1 Solver Classes

The solution to the electric potential and stress are implemented as friend classes

of the DiffCode classes and are derived from the libMesh LinearImplicitSystem

class. The dirichlet boundary conditions are applied using the libMesh Dirichlet-

Boundaries framework. Additional NeumannBoundary classes are used to hold and

apply the neumann boundary conditions. The heat transfer field solution is derived

from libMesh’s TransientLinearImplicitSystem class. The libMesh transient sys-

tems allow the solution of time-stepping problems and to consider initial conditions.

The Dirichlet and Neumann boundaries are applied in the same way.
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AverageToNodes

In addition, there is an additional AverageToNodes class. The AverageToNodes

class implements methods to take information that is available at gauss points and

extrapolates it to the nodes. In addition, it also uses a small diffusive component to

eliminate the noise that enters the solution when fields are extrapolated to the nodes.

This is implemented as a libMesh LinearImplicitSystem. This class is also used

for the computation of the stress fields. The stress fields and the stress invariants are

computed at the gauss points and then averaged to the nodes using a global least

squares solution, with the mentioned diffusive smoothing.

LinearCahnHilliard

The LinearCahnHIlliard class is derived from libMesh’s TransientLinearIm-

plicitSystem. A LinearCahnHilliard object is created for each region which is

indicated to be a phase-field region in the input file. libMesh allows the solution for

the system to be restricted to a local region of the mesh. While there are no Dirichlet

boundary conditions for the solution of the Cahn Hilliard system, contact angle con-

ditions are needed. These are applied as Neumann boundary conditions which are

implemented as C++ struct.

Diffusion

Similar to the LinearCahnHilliard object, there is a Diffusion object that

corresponds to each of regions that is marked as a phase-field region. These are

implemented as derived from libMesh’s TransientLinearImplicitSystem. Both

Neumann and Dirichlet boundary conditions are implemented and can be applied.
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E.1.2 Utility Classes

In addition to the solver classes, there are a couple of utility classes that are used

for book-keeping and for organizing data. These are described in this section.

Material

The material properties for each material in the problem domain are stored as a

Material object. The material object has methods to set and get all the material

properties. The material properties are stored in a C++ map in the DiffCode class.

The name of the material is used as the key in the map.

ActiveRegion

The next utility class that is implemented is the ActiveRegion class. The Ac-

tiveRegion object is equivalent to an ABAQUS section assignment. It holds the

information of the elements and nodes corresponding to each of the components of

the mesh. For example in an assembly with a solder joint, with an associated line

and substrate, there is an active region for each of the three parts. In addition, if

the active region has diffusion and the phase-field problem needs to be solved over

the domain, it is marked as a phase-field region. Finally, if the active region is a

phase-field region, the ActiveRegion object has the methods to create the initial

void conditions.

CollatedPhaseField

It is inconvenient to access each LinearCahnHilliard separately while construct-

ing the material properties for the solution of the electrical potential gradient and

the stresses. Another place where access is needed to the phase-field variable in all

regions is when the mesh is being refined. Hence, the values of the phase-field and the

vacancy concentration are collated into an object of the CollatedPhaseField. This
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is implemented as an extension of the ExplicitSystem class in libMesh. Explicit-

System is the super class of ImplicitSystem in libMesh, and is similar except for a

solve() method. This allows the value of the phase-field to be collected into a single

system for output and for the purpose of computing material properties.

In addition, the CollatedPhaseField class has methods for mesh refinement with

respect to the phase-field value. This is achieved by computing the average value of

the phase-field variable over each element as,

φaverage =

∑nqp

i=1φqp

nqp
. (E.1)

In the above nqp is the number of quadrature points. φaverage is compared with the

upper and lower limits for the phase-field, and if the value of φaverage lies between the

two limits, the element is marked for refinement. Otherwise, the element is marked

to be coarsened.

StressSystem

The solution of the diffusion and phase-field problems need the gradient of stress

based quantities. This is achieved by using another class derived from libMesh’s Ex-

plicitSystem class. The class has variables corresponding to all the stress and strain

variables. In addition, there are variables for the stress invariants and strain energy.

The values computed in the AverageToNodes object are stored in the StressSystem

class.

E.2 Code Usage

Some details on the usage of the code are described in the following. In the first

part of the section, the creation of geometry and the initial void configuration is

described. Later the actual compilation and building of the code is discussed, as
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well as the creation of input files and options files to pass information and material

properties to the DiffCode.

E.2.1 Geometry Input

DiffCode gets geometry and mesh information from ABAQUS .inp files. While

libMesh provides an AbaqusIO class which provides functions to read ABAQUS

meshes. However, this is not capable of reading all ABAQUS .inp files. In particular

the libMesh version of AbaqusIO is incapable of reading files generated by ABAQUS

CAE. Instead, DiffCode uses a modified version of AbaqusIO, with features which are

specific to the needs of DiffCode. The major differences are support for generated

node and element sets. In addition, the modified AbaqusIO allows the selection of

specific node and element sets for reading and allows them to be designated as active

regions.

To create a mesh in ABAQUS CAE suitable for use with DiffCode, the different

regions of the mesh for material assignment should be part of a consistent node and

element set. The easiest way to construct this is through geometry sets in ABAQUS

CAE, which constructs a node and element set of the same name. The boundaries of

the geometry are to be created as ABAQUS surfaces. It is easier to apply Neumann

boundary conditions on ABAQUS surfaces as opposed to standard ABAQUS node

and element sets as it is easier to determine the direction of the surface elements.

Each of the geometry sets in the ABAQUS CAE input file corresponds to an Dif-

fCode active region object. The code can at present not handle intersecting geometry

sets, and the geometry sets need to be disjoint. DiffCode active regions correspond

to ABAQUS section assignments. While defining an active region in the DiffCode

input file, it is necessary to define the node and element set file corresponding to

the active region, the material property associated with the region, and finally if the

active region is a phase-field region.
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E.2.2 Initial Conditions

The code allows arbitrary numbers of elliptical (in 2D) and ellipsoidal (in 3D)

voids to be created as initial conditions. The voids are created by using the equations

for the ellipse and the ellipsoid in plane polar or spherical polar co-ordinates. The

equation for an ellipse with axes (a, b) in the plane polar co-ordinates (r, θ) can be

written as,

r = ab
(

b2 cos2 θ + a2 sin2 θ
)− 1

2 . (E.2)

In the above, a is the axis of the ellipse along θ = 0, while b is the axis along θ = π
2 .

Similarly, the equation for an ellipsoid with axes (a, b, c) in the spherical polar co-

ordinates (r, θ,ψ) can be written as,

r = abc
(

b2c2 cos2 θ sin2 ψ + a2c2 sin2 θ sin2 ψ + a2b2 cos2 ψ
)− 1

2 . (E.3)

In the above, θ ∈ [0, 2π] and ψ ∈ [−π
2 ,

π
2 ]. a is the axis of the ellipsoid at θ = 0,ψ = 0,

b is axis of the ellipsoid at θ = π
2 ,ψ = 0, while c is at ψ = ±π

2 .

If a ≈ b(≈ c), r(θ) orr(θ,ψ) can be used as an approximate distance function

for the ellipse or ellipsoid. This can be used to construct phase-field versions of the

ellipses and ellipsoid. The information needed for the construction of the ellipse or

ellipsoid are the center of the ellipse/ellipsoid, (x0, y0, z0) and the angles (θ1, θ2, θ3).

(Only θ1 is required in the case of the ellipse.) (θ1, θ2, θ3) are the angles of rotations

applied to the a, b and c axes of the ellipsoid sequentially. To find the value of the

phase-field corresponding to a given point (x, y, z), the point is first transformed into

a rotated - translated co-ordinate system with origin at the center of the ellipse,

{x, y, z} → R−1
1 R−1

2 R−1
3 {x− x0, y − y0, z − z0}. (E.4)



247

In the above, R is the standard rotation matrix,

Rmn
i =

⎧

⎪
⎨

⎪
⎩

δmn, m = i, or n = i

Rrot(θi), m, n ̸= i.

. (E.5)

Rrot(θ) is the standard rotation matrix,

⎡

⎣
cos θ sin θ

− sin θ cos θ

⎤

⎦ . (E.6)

The co-ordinates of the point in the transformed (xt, yt, yt) co-ordinate systems are

now used to compute the values of rt, θt and ψt as,

rt =
√

x2
t + y2t + z2t (E.7)

θt = tan−1 xt

yt
(E.8)

ψt = cos−1 zt
rt
. (E.9)

These value of θt,φt are used to compute the distance of the ellipse from the center

of the ellipse in the particular direction. This can be used to compute the value of

the phase-field function, by substituting into the appropriate equilibrium phase-field

profile for the potential function. For the bi-quadratic potential, the equilibrium

profile can be written as,

φ(d) = tanh
d√
2ϵ
. (E.10)

where, d is the signed distance from the interface. The signed distance can be com-

puted as, d = r − rt, and the value of the phase-field is computed, φ(r − rt).
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Multiple Voids

The code allows the initial void shape to be specified as the Boolean union of an

arbitrary number of voids. This is implemented by computing a vector with the value

of the phase-field function for each of the voids. The final void geometry can then be

specified as the minimum of these values,

φ∪ = min{φ1,φ2, . . .}. (E.11)

This can be thought of in terms of the R−functions [172].

E.2.3 Input Files

An example of the input file used by DiffCode is presented here in Listing E.1,

along with comments. More details on generating these input files are found in [173].

Listing E.1DiffCode input file example

# DiffCode input file.

###################################################

jobname=multi_joint_test # name of the job

###################################################

abqfile=2soldermodel.inp # name of the abaqus input file

dim=2 # dimension of problem

####################################################

small_number=1e-8 # small number to prevent singular matrices

###################################################

dt=1e-4 # timestep

dt0=1e-4 # initial timestep

tf =1 # final time

ofreq=20 # frequency of output

output_everything=false # switch to output working solutions
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epsilon=1e-2 # notional interface thickness parameter

###################################################

# Refinement information

###################################################

init_refinement=3 # number of levels of initial refinement in the void

region

init_uniform_refinement=1 # number of initial uniform refinement

refinement_levels=4# maximum number of refinement levels

refine_fraction=0.9 # fraction of elements that need refienement

coarsen_fraction=0.1 # fraction of elements that need to be coarsened

refinement_loops=1 #number of refinement loops

lower_pf=-0.95 # lower limit for phase field variable

upper_pf=0.95 # upper limit for phase field variable

error_based_refinement=false # switch between error based and value based

refinement

##########################################

stabilization_param=5.0 # stabilization parameter for use with the cahn

hilliard solver

second_order=true # switch to allow second order solution

###################################################

# active region information

###################################################

n_regions=5 # total number of regions

region_1=solder1

region_2=solder2

region_3=top1

region_4=top2

region_5=base # name for each of the region

##################################################

# active regions

##################################################
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[regions] # regions section..

[./solder1] # first region

material=solder # material name

phase_field_region=true # whether the region needs the phase field equation

to be solved

element_set=solder1 # abaqus element set corresponding to the element set

n_surfs=2 # number of surfaces

surfaces=’solder1bottom solder1top’ # names of the surfaces

n_voids=2 # number of voids

[./void_1] #info for first void

center=’-3.10 .86 ’ # center of void

size=’0.06 0.06’ # major and minor axis of ellipsoid

angles=’0 0’ # angle of void 1 angle for 2 d and 3 for 3 d

[../void_2] #info for second void

center=’-3. .56 ’ # center of void

size=’0.04 0.06’ # major and minor axis of ellipsoid

angles=’0 0’ # angle of void 1 angle for 2 d and 3 for 3 d

[]

.

. # information for second solder joint

.

[]

######################################################################

[regions/top1]

material=copper

phase_field_region=false

element_set=top1

n_surfs=2

surfaces=’left1 top1’

[]

########################################################################
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[materials] # material definition

n_mats=2 # no. of materials

name_1=solder # name of first material

name_2=copper # name of second material

[]

[materials/solder]

c=1.0 # electrical conductivity

E=1000.0 # young’s modulus

nu=0.33 # poisson’s ration

sZ=5.0 # surface electromigration parameter

sE=-1.0 # surface Elastic Energy parameter

sR=0.0 # surface reaction rate

sQ=1.0 # surface thermomigration parameter

dT=’.25 .25 0.0’ # bulk diffusivity tensor in Voigt form

sd=1.0 # surface diffusivity

gamma=1.0 # surface energy

Z=0.0 # bulk electromigration parameter

Q=1.0 # bulk thermomigration parameter

rt=10.0 # Gas constant times temperature

omega=0.0 # stress diffusion parameter

k=1.0# thermal conductivity

rhocp=1.0 # thermal mass

alpha=1e-6 # thermal expansivity

hf=1.0 # heat factor for joule heating

[]

[materials/copper]

#definition of other material

[]

# Boundary conditions

[cahn_hilliard/solder1]

n_nbcs=’2 false false’
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nbc1=’solder1bottom 90 1’

nbc2=’solder1top 90 1’

[]

# boundary conditions for other cahn hilliard

[]

[stress]

n_nbcs=1 #no. of neumann boundary conditions

nbc1=’top 0.1 0.0’ #surface followed by x,y values of traction

n_dbcs=1

dbc1=’base_bottom 0.0 0.0 yes yes’ #surface followed by values and whether

the particular constraint is active (to allow for rollers)

invar=’2 p ener vm’ # invariants to compute (pressure energy, von-mises

stress)

[]

### boundary conditions for diffusion problem

[diffusion/solder1]

n_dbcs=1

dbc1=’solder1bottom 1.0’

[]

# boundary conditions for other diffusion parameters

[]

[int_av]

int_param=.01 # part of the interface to average quantities over

alpha=1.0 # direct average

beta=0.0001 # diffusional term

[]

Petsc Options

DiffCode assumes that libMesh is installed with PETSc. PETSc provides an easy

way to configure the solvers and preconditioners through the command line. This
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allows an easy way to drastically change the solvers being used without significant

programming. There are multiple linear solvers that are called throughout a run

of DiffCode, and they require very different options for efficient solution. This is

accomplished by PETSc by assigning a prefix for the command line options. The

prefixes for each of the solvers is tabulated in Table E.1.

Table E.1. Prefixes to set options for the various PETSc solvers.

Solver Prefix

Electrical potential elec
Stress solver stress solve
Temperature therm
Vacancy Diffusion diff solve
Cahn Hilliard ch solve

E.2.4 Making and Running DiffCode

To run the code, the system should have libMesh and PETSc installed. In the

code folder (assuming bash),

EXPORT LIBMESH_DIR=/path/to/libmesh/installation

This will ensure the availability of libMesh variables while building the code. The

code is best compiled with the MPI compilers with which libMesh and PETSc have been

compiled. This is best achieved by adding the bin folder of the PETSc architecture

with which libMesh has been to the PATH. This is done by,

EXPORT PATH=/path/to/petsc/architecture/bin:$PATH

The code can now be built by,

make

To run the code, the executable should be available in the path. This is done by,

EXPORT PATH=/path/to/code:$PATH
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The executable is available in the system PATH and can be used for simulations. To run

the code, the input file, the PETSc options file and the ABAQUS .inp file containing

the mesh should be available in the system PATH. The PETSc options can also be

directly supplied at the command lines. The code is run as

diff_code --inp=input_file -options_file petsc_options_file -

other_petsc_options

In case the code is to be run in parallel, it is recommended that the same mpirun

command that PETSc is compiled with be available on the PATH. The code can then

be run as,

mpirun -n <np> diff_code --inp=input_file -options_file petsc_options_file

-other_petsc_options

The code has currently been tested on upto 48 processors.
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