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ABSTRACT 

Ritchey, Susan N., Ph.D., Purdue University, December 2014. Non-Intrusive Two-Phase 
Flow Regime Identification and Transport Characterization in Microchannels Subject to 
Uniform and Non-Uniform Heat Input. Major Professor: Suresh V. Garimella, School of 
Mechanical Engineering. 
 
 

Direct integration of compact microchannel heat sinks is an attractive thermal 

management solution for the dissipation of high heat fluxes, specifically under boiling 

conditions that provide high rates of heat transfer at a uniform heat sink temperature. 

Under two-phase flow conditions, the heat transfer and pressure drop are a function of the 

local flow regime. Development of sensors that detect local void fraction and flow 

regimes may enable better understanding of the fundamental flow phenomena. 

The void fraction in air-water two-phase adiabatic flow in a microchannel is 

measured in this work using a custom-designed impedance-based sensor with electrodes 

on opposing walls of a single microchannel, a ‘crosswise’ geometry. The impedance 

response of the sensor is calibrated against the time-averaged void fraction determined 

via high-speed flow visualizations. The temporal signal is depicted as a probability 

density function that is used for quantitative determination of two-phase flow regimes 

using a Kohonen Self-Organizing Map. 

To characterize the sensor impedance response, numerical simulations are 

implemented in two- and three-dimensions. Electrical simulations of the crosswise 



xxi 

 

electrode geometry are performed to acquire both instantaneous and time-averaged 

responses. For arbitrarily defined voids, the shape and distribution has no effect on the 

simulated impedance; the relationship between the void fraction and impedance is found 

to be non-linear. Time-averaged three-dimensional impedance simulations are in good 

agreement with the experimental data. 

A second set of experiments are performed using multiple electrodes placed along 

the flow direction of a single microchannel wall, a ‘streamwise’ geometry. Multiple water 

electrical conductivities are tested, and an optimal range between 100 and 175 S/cm is 

found to provide maximum instrument sensitivity. The dependency of the impedance 

output on water conductivity is characterized to fit all of the data to a single calibration 

curve, independent of water conductivity. 

One application where the determination of the local void fraction is important is 

in the case of non-uniform heating in microchannels. An experimental investigation is 

performed to explore flow boiling phenomena in a microchannel heat sink with hotspots, 

as well as non-uniform streamwise and transverse heating conditions across the entire 

heat sink. Local heat transfer coefficients and wall temperatures are measured while the 

location of boiling incipience is observed via high-speed visualizations of the flow. It is 

found that even though the substrate thickness beneath the microchannels is very small 

(200 um), significant lateral conduction occurs and must be accounted for in the 

calculation of the local heat flux imposed. For non-uniform heat input profiles, with peak 

heat fluxes along the central streamwise and transverse directions, it is found that the 

local flow regimes, heat transfer coefficients, and wall temperatures deviate significantly 

from a uniformly heated case.  
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A simple computational model is developed to predict the thermal performance of 

a microchannel heat sink with an imposed non-uniform heating profile. While the model 

underpredicts the base temperatures and overpredicts the heat transfer coefficients, the 

trends agree with experimental data. For the cases investigated with the model, flow non-

uniformities between the channels are estimated using image analysis of high-speed 

videos taken during the experiments. It is observed that flow maldistribution must be 

taken into account in the model for heating profiles that are prone to flow maldistribution 

in order to improve the match to experimental data. 

Another experimental investigation is performed to measure the critical heat flux 

(CHF) in a microchannel heat sink with uniform heating and various hotspot heating 

locations. It is found that a hotspot spanning the entire length of the heat sink in the flow 

direction produces the lowest CHF of all the cases investigated due to the flow 

maldistribution induced by boiling. A single hotspot spanning the heat sink perpendicular 

to the flow direction produces different CHF values based on its streamwise location. The 

visualizations reveal that CHF occurs when there is a sudden and unalleviated upstream 

expansion of vapor in one or more channels above the hotspot, causing the local wall 

temperature to rapidly increase. The proximity of the hotspot to the inlet manifold, which 

communicates between all channels and can relieve upstream vapor expansion, appears to 

determine the resiliency of the heat sink to CHF. 

Non-uniform heating profiles often found in actual applications greatly affect the 

thermal performance of microchannel heat sinks. Measuring the void fraction and 

understanding how the location of hotspots affects local heat transfer allows for the 

creation of a computational model to aid future heat sink designs. 
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CHAPTER 1. INTRODUCTION 

1.1 Background 

The development of high-power electronics systems for use in commercial, 

automotive, and military applications has led to an increasing demand for more effective 

and compact electronics cooling methods. The functionality of microelectronics is 

increasing while the system packaging volume is decreasing, yielding higher densities of 

heat generation. Novel methods are required for removing excess heat from these systems. 

Microchannel heat sinks are an attractive solution due to their compact size and 

effectiveness at removing high heat fluxes. Microchannel heat sinks can also be 

integrated directly into semiconductor heat generation sources thus decreasing the overall 

thermal packaging volume. Additionally, operating under flow boiling conditions allows 

for higher heat transfer rates and a more uniform temperature profile.

In order to determine heat transfer rates and pressure drops under boiling 

conditions in microchannels, void fraction and flow regime-dependent correlations are 

required. Quantitative determination of the flow regime, and direct measurement of the 

void fraction, will aid in understanding fundamental flow characteristics, and enable the 

design of future heat sinks. Previously, Serizawa et al.[1] performed flow visualizations 

to determine the void fraction and flow regimes in microchannels. A small electrical 

impedance-based sensor has the ability to measure the temporal variations of the void 
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fraction and characterize the two-phase flow based on the inherent electrical property 

differences between gas and liquid phases. Yang et al. [2] used electrical impedance void 

meters to measure the void fraction in a rod bundle. Numerical simulations were 

performed by Rosa et al. [3] to optimize the geometry of an impedance-based sensor in 

pipes. 

The effects of microchannel size, heat flux, and mass flux on the boiling regimes 

in microchannels has been recently studied; however, correlations and performance 

models are developed only for uniform heating conditions. Liu et al. [4] developed an 

analytical model to predict the onset of nucleate boiling of water in copper microchannels. 

Lee and Garimella [5] measured the pressure drop and heat transfer coefficient of water 

boiling in silicon microchannels, while Bertsch et al. [6] measured the heat transfer 

coefficient for refrigerants in copper microchannels. Both Revellin and Thome [7] and 

Kosar [8] developed models to predict the critical heat flux in microchannels. Harirchian 

and Garimella [9,10,11] performed an extensive experimental investigation of the effects 

of heat flux, mass flux, and channel dimension on boiling heat transfer as well as 

developed comprehensive flow regime maps. All of this work has been conducted using 

uniform heating profiles. Thinner and more compact systems prevent the use of thick heat 

spreading layers to mitigate heat generation non-uniformities at the die level. Thus, non-

uniform heat flux profiles are imposed directly on the heat sink base, and impact the two-

phase flow characteristics and thermal performance limits. 
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1.2 Objectives and Major Contributions 

The main goals of this work are: (1) to develop a non-intrusive impedance-based 

void fraction sensor to quantitatively determine the local flow regime in two-phase 

microchannel flows, (2) to study the effects of non-uniform global substrate heating 

profiles on two-phase flow through microchannels to better understand their operation 

under realistic boundary conditions, and (3) to measure the change in the location and 

quantitative value of the critical heat flux under non-uniform heating conditions. 

Experiments are performed for air-water adiabatic two-phase flow in a single 

microchannel using an impedance-based void fraction sensor to measure the electrical 

characteristics of multiple flow regimes. High-speed videos are recorded and analyzed to 

determine the actual void fraction for sensor calibration; a calibration equation is 

developed between the electrical impedance of the flow and the void fraction. The 

temporal impedance response of the sensor is processed via a neural network to 

quantitatively determine the flow regime. Numerical simulations are also performed to 

predict the response of the sensor using different electrode orientations, void fractions, 

and void shapes. 

Experiments are performed using FC-77 for hotspot as well as non-uniform peak 

heating conditions imposed on a silicon microchannel heat sink to explore flow boiling 

phenomena. High-speed videos are also recorded to observe instabilities not present in 

uniform heating situations, while local wall temperatures and heat transfer coefficients 

are measured. It is found that these parameters as well as local flow regimes deviate 

significantly from uniform heating conditions, and the trends are assessed as a function of 
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the increase in the relative magnitude of the nonuniformity between peak and background 

heat fluxes. 

Experiments are performed using HFE-7100 for hotspot heating conditions 

imposed on a silicon microchannel heat sink to explore the location and quantitative 

values of the critical heat flux (CHF). The fluid was changed from FC-77 to HFE-7100 in 

order to reach CHF without exceeding the operational temperature limit of the test chip. 

High-speed videos are recorded to observe the locations of the critical heat flux 

simultaneously with measurement of local wall temperatures and heat transfer 

coefficients. It is found that both the configuration and location of the hotspot 

significantly affects both the location and magnitude of the critical heat flux. 

A simple computational model was developed to predict the behavior of a 

microchannel heat sink under any non-uniform heating profile. The model contains a 

three-dimensional conduction analysis in the base of the heat sink, a fin analysis, and 

employs correlations for the heat transfer coefficient in the microchannels based on the 

fluid phase. The flow maldistribution was estimated from high-speed videos and 

incorporated into the model to enable comparison against experimental data. 

 

1.3 Organization of the Document 

Chapter 1 described the background information on two-phase flow in 

microchannels and presented the objectives and major contributions of the current work. 

Chapter 2 provides a comprehensive literature review. Reviewed topics include flow 

regime identification and void fraction measurements in microchannel heat sinks, void 

fraction measurement methods and numerical simulations of impedance-based sensors, 
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and experimental investigations of non-uniform heating conditions in macroscale and 

microscale flow boiling. Chapter 3 describes the experimental setup for measuring void 

fraction using crosswise electrodes and presents the results of the experiments. Chapter 4 

describes a numerical simulation performed to predict the response of an impedance-

based void fraction meter using crosswise electrodes. The results are presented and 

compared to the previous experimental results. Chapter 5 describes a second 

experimental setup for measuring void fraction using streamwise electrodes. It presents 

the results and discusses the sensitivity dependence of the instrument to the electrical 

conductivity of the liquid phase. Chapter 6 describes the experimental setup and results 

for hotspot and non-uniform peak heating conditions in a microchannel heat sink. 

Chapter 7 describes a computational model developed to predict the performance of a 

microchannel heat sink exposed to non-uniform heating conditions. Chapter 8 describes 

the results for hotspot heating conditions on the critical heat flux in a microchannel heat 

sink. Chapter 9 contains a summary of the thesis and suggestions for future work. 
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CHAPTER 2.  LITERATURE REVIEW 

 
2.1 Void Fraction Measurement 

Microchannel heat sinks based on boiling and two-phase flow can meet the 

increasing cooling needs for high-end electronics systems in applications ranging from 

high-performance computers to avionics and spacecraft to electric vehicles. In order to 

design and build such heat sinks, a unified model accounting for the prevalent flow 

regimes is needed to predict the boiling heat transfer rates and pressure drops in 

microchannels. Flow regime-based correlations are desired in two-phase flow analyses 

since a single heat transfer correlation does not apply in all flow regimes [12]. A number 

of studies in recent years have attempted to better understand the flow patterns during 

boiling in microchannels using various working fluids as reviewed in [13,14,15]. A 

systematic investigation into the effects of channel size, mass flux, and heat flux on the 

boiling flow patterns and heat transfer in microchannels was recently performed by 

Harirchian and Garimella [9,10]. A generalized flow regime map for boiling in 

microchannels covering a wide range of channel geometries, heat fluxes, and mass fluxes 

was developed in terms of three nondimensional parameters ‒ Boiling number, Reynolds 

number, and Bond number ‒ by Harirchian and Garimella [11]. In order to further 

develop predictive models for flow regime transitions, it is necessary to measure the void 

fraction in two-phase flow, since the void fraction and its temporal variation is a 
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characteristic of the flow regime. Several studies in the past have relied on flow 

visualization for the identification of flow regimes as well as for the measurement of void 

fraction [1,16,17,18]. Even though flow regimes can be determined by observing high-

speed movie camera recordings, the method is subjective and cannot be used for 

conditions in which intermittent phenomena occur, as well as when the aspect ratios of 

the observed field is such that the mechanisms are obscured from visual observation. In 

order to overcome these shortcomings, a non-intrusive void fraction measurement 

technique, which is based on the measurement of electrical impedance, is explored. 

Electrical impedance-based void fraction measurements have been successfully 

performed in the past several decades in macroscale two-phase flows. For cross-sectional 

area-averaged or volume-averaged measurements, impedance void fraction meters with 

electrodes flush mounted to the channel walls were used by Asali et al. [19], Andreussi et 

al. [20], Tsochatzidis et al. [21], Fossa [22], and Mi et al. [23]. A theoretical basis for this 

design is given by Coney [24]. A single conductive ring was used as an electrical 

impedance tomographic sensor to perform image reconstruction on air-water two-phase 

flow in a tube [25]. The conductive ring was used in lieu of multiple electrodes to achieve 

a more homogenous sensitivity distribution throughout the sensing domain. Another 

experimental study used flush mounted stainless steel ring electrodes in a pipe to 

determine the liquid hold-up in two-phase flow [20]. Annular, stratified, and bubbly 

flows were created in a pipe to calibrate the probe and it was found that the impedance 

method has a large sensitivity to different flow patterns; however a distance between the 

electrodes in the range of 1.5 to 2.5 pipe diameters provides a good compromise between 

obtaining a localized measurement and a reading independent of the flow regime. 
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A similar impedance void fraction meter configuration is adapted to the 

microscale channels considered in this thesis. The practical implementation of the 

electronic circuit measures the net electrical admittance, or the inverse of the electrical 

impedance, of the two-phase mixture. The admittance is a function of the material 

properties (the specific conductance and electrical permittivity of the two phases), the 

void fraction, and the flow regime. The specific conductance determines the conductive 

reactance, while the permittivity determines the capacitive reactance. For a given 

geometry of the electrodes, an appropriately normalized admittance is a function of the 

void fraction and the flow regime. 

In addition to electrical impedance-based sensors, capacitance-based sensors have 

been widely used. A wire mesh sensor has been used to measure transient phase fraction 

distributions in a thin rectangular channel via permittivity (capacitance) measurements 

[26]. Two planes were embedded with 16 wires each and assembled perpendicular to 

each other. Measurements were taken at the points of wire intersection, giving 256 spatial 

points at a rate of 625 frames per second. Images of air bubbles in silicone oil were 

reconstructed using the measured data. A set of capacitance probes was used to measure 

the void fraction of HFC refrigerants in a horizontal tube at the macroscale [27]. The 

concave probes were placed opposite each other around the tube and three flow regimes 

were observed: slug, intermittent, and annular. A set of twelve capacitance probes was 

used to measure the void fraction of an oil-gas mixture in a 50 mm diameter pipe, as well 

as polyethylene particles in air for a 100 mm diameter pipe [28]. The electrodes were 

arranged in a circle around the pipe providing 66 independent capacitance measurements. 
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A mathematical model was developed to reconstruct an image of the distribution of the 

voids. 

Two-phase flow regimes are typically described using qualitative categorization 

of flow visualizations. This involves subjectivity in their identification. In order to 

overcome this difficulty, Jones and Zuber [29] first employed quantitative means for flow 

regime determination. Using an X-ray source, they measured the temporal variation of 

the area-averaged void fraction in a rectangular channel with a cross-section of 10 cm × 1 

cm and plotted a probability density function (PDF) of the void fraction. The significant 

differences in the PDF between various flow regimes suggested their use for flow regime 

determination. Later studies by Tutu [30] and Matsui [31] used void fraction distributions 

obtained with differential pressure transducers, while non-intrusive impedance void 

fraction meters were used by Mi et al. [23] as flow regime indicators. A comprehensive 

study by Costigan and Whalley [32] on flow regimes in vertical upflow used segmental 

impedance electrodes to determine the void fraction, combined with the PDF technique. 

Recently, bubble chord-length distributions obtained from conductivity probes were used 

as flow regime indicators by Julia et al. [33]. Caniere et al. [27] used the fuzzy c-means 

clustering algorithm for flow regime classification based on the signal, variance, and 

frequency measured from capacitance probes. The quantitative flow regime classification 

proposed by Mi et al. [23] is adapted in this study to identify the flow regimes.  

While many experimental studies have been performed, few numerical 

simulations have been implemented to determine the response to electrical impedance-

based sensors. An experimental and numerical study investigated two-phase flow in 

macroscale pipes using an impedance meter [3]. The electrodes consisted of a stainless 
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steel electrode electrically insulated from the pipe, and the pipe itself, assembled in a 

streamwise configuration. Using the electro-quasi-static framework, the output voltage 

was solved via the Laplace equation and the impedance was evaluated for pipe diameters 

ranging from 25 mm to 100 mm. Experiments were performed under adiabatic conditions 

using co-current air and water in an upward tube with a diameter of 26 mm. Bubbly, 

spherical cap, stable and unstable slug, and semi-annular flows were observed. A 

stepwise correlation using separate linear fits corresponding to annular, intermittent, and 

bubble flows was developed to predict the relationship between the time-averaged void 

fraction and the normalized sensor output. 

In summary, there are many electrical sensor-based methods for measuring void 

fraction [34]. These methods rely on the fluid permittivity (capacitance), resistance, or 

both (impedance). While many previous studies have included primarily capacitance 

measurements, the use of impedance based measurements removes limitations on feasible 

fluids for use in applications by taking advantage of the difference in the electrical 

conductivities of the fluids. Previous studies have been conducted at the macroscale; 

however, microscale studies are needed to determine the optimal sensor design for use in 

microchannel heat sinks. Numerical simulations that accurately capture the 

experimentally measured sensor output can be leveraged in the design process. 

 

2.2 Effects of Non-Uniform Base Heating on Microchannel Flow Boiling 

Many studies in the literature have investigated uniform base heating profiles 

applied to microchannel heat sinks, as reviewed, for example, by Tullius [35], Kandlikar 

[36], and Garimella and Harirchian [37]. These studies experimentally measured the 
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onset of nucleate boiling [4], pressure drop [5,9], and heat transfer coefficients [5,6,38], 

and also developed models to predict the critical heat flux (CHF) [7,8]. In addition, flow 

regime maps have been developed under a variety of operating conditions [11,39]. While 

these studies have provided a thorough understanding of microchannel flow boiling under 

ideal heating conditions, realistic applications may impose highly non-uniform heat 

fluxes due to chip- and system-level variations [40]. In order to reliably predict the 

performance in actual applications, a better understanding of two-phase microchannel 

cooling under non-uniform heating conditions is needed, especially in terms of deviation 

in heat transfer performance and flow behavior compared to uniform heating conditions. 

A discretized theoretical model for assessment of non-uniform heating in 

microchannels was developed by Koo et al. [41] using correlations for flow boiling heat 

transfer and pressure drop. The model was used to explore optimal geometric designs, but 

was limited in its ability to assess lateral flow instabilities across channels and for CHF 

prediction. A numerical simulation of the effect of header shape on flow maldistribution 

was performed by Cho et al. [42] for a microchannel heat sink. While an optimally 

designed header produced a low deviation in the mass flow distribution under uniform 

heating conditions, poor flow distribution was present in the case of a large locally 

applied thermal load. A numerical model developed by Sarangi et al. [43] predicted the 

pressure drop and thermal resistance of a uniformly heated microchannel, and location of 

boiling incipience. The models were also extended to include non-uniform heating 

conditions, which showed a large impact on the overall fluid dynamics and heat transfer 

of the system. Revellin and Thome [7] developed a one-dimensional theoretical model to 
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predict CHF in microchannels under uniform heating conditions, which was further 

modified by Revellin et al. [44] to incorporate non-uniform axial heat fluxes.  

Past experimental efforts have studied the effects of non-uniform microchannel 

heating on flow boiling instabilities [45], pressure drop, and maximum wall temperatures 

[46,47,48]. It was found that hotspots near the inlet created a large transverse temperature 

variation across the heat sink due to non-uniform fluid distribution. Maldistribution was 

caused by a local increase in two-phase pressure drop due to boiling, which diverted 

single-phase liquid to other locations; this effect was most pronounced for a hotspot at the 

inlet. Transient non-uniform heating situations have also been investigated [46,49]. 

Despite the numerous experimental studies conducted on microchannel heat sinks for 

uniform heating conditions, far fewer experiments utilizing non-uniform heating profiles 

have been conducted. 

Prior experimental studies with non-uniform heating conditions have typically 

focused on single point hotspots. The effect of location and configuration of the hotspot 

as well as that of multiple hotspots on thermal performance has not been fully explored. 

In addition, a rigorous study of other heating profiles, especially superposed on a uniform 

background heat flux as would be realized in application, has not been reported. This 

thesis studies both local hotspots and increasingly non-uniform peak heating profiles 

across the heat sink, both in the flow direction and perpendicular to it, with respect to 

thermal performance and flow boiling phenomena. This work considers the effects of 

non-uniform heating on the local heat transfer coefficients, wall temperatures, heat fluxes, 

and boiling characteristics of a microchannel heat sink. Concentration of the heat input 

typically results in higher local heat transfer coefficients due to transition into the more 
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efficient boiling regime at the expense of increased local wall temperatures. This work 

enables better assessment of existing heat transfer models for prediction of non-uniform 

heating profiles.  

 

2.3 Effects of Non-Uniform Base Heating on the Critical Heat Flux 

There have been many studies in the literature that have investigated the critical 

heat flux (CHF) in microchannels and have been summarized at length in [35,36,50,51]. 

Studies typically conduct experiments to investigate critical heat flux using either a single 

channel [52,53]or a parallel array of channels [54,55,56,57]. Although these studies have 

provided a better understanding of the parameters affecting the critical heat flux under 

uniform heating conditions, realistic applications typically impose highly non-uniform 

heat fluxes due to variation at both the chip and system levels [40]. A better 

understanding of how the location of hotspots affect the critical heat flux in two-phase 

microchannel cooling is needed to reliably predict the performance of heat sinks in actual 

applications. 

Experiments using a single, circular channel were performed by Del Col and 

Bortolin [53] using three refrigerants. A non-uniform heat flux was imposed on the 

channel by using a hot water jacket to heat the test section, however, the entire flow 

length was supplied heat. The dryout quality and average critical heat flux were measured 

during annular flow. The data was compared to several models that were developed for 

uniformly heated microchannels [7,8,36,58,59] and were found to overpredict the critical 

heat flux. 
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Experimental investigations by Qu and Mudawar [54] and Chen and Garimella 

[55] were performed using a parallel array of microchannels. At near-CHF conditions, 

both studies reported that significant amounts of vapor in some channels were seen to 

reverse flow into the inlet manifold thus altering the inlet bulk fluid temperature. This 

vapor backflow negated any advantage of utilizing inlet subcooling and proved to have 

no effect on the critical heat flux. An abrupt decrease in the pressure drop was measured 

by Chen and Garimella [55] during CHF, and found that CHF is strongly dependent on 

the fluid properties, flow rate, and area of heat flux. Additionally, a CHF correlation 

developed for a single channel was used as a comparison to the measured data from Qu 

and Mudawar [54] but was shown to be a poor predictor for multiple-channel heat sinks. 

A few studies have been performed to compare data from multiple CHF 

experiments to correlations found in the literature to determine which best predict CHF 

[59,60,61]. Zhang et al. [59] determined that the Hall-Mudawar correlation [62] best 

predicted CHF for subcooled water while the Shah correlation [63] best predicted CHF 

for saturated water. Although they developed their own correlation, Zhang et al. [59] 

clearly state it is limited to use for uniform heating situations. Revellin et al. [60] denoted 

that the most accuracte correlations for predicting CHF should be categorized based on 

the fluid used. For non-aqueous fluids, the theoretical model by Revellin and Thome [7] 

best matches extant data, while for water, the correlation by Zhang et al. [59] best 

matches. Additionally, other studies have proposed CHF models based on experimental 

data found in the literature [7,8,64,65]. Of these models, only those that were developed 

by Revellin and Thome [7] can be used with non-uniform heat fluxes; the model is never 

compared to non-uniform heating experimental data. 
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Although most studies involving microchannel heat sinks only look at uniform 

heating profiles, there are some that have looked at hotspot heating effects on flow 

boiling [66,67]. These investigations have shown that local hotspots cause a significant 

deviation of the local wall temperatures, local heat fluxes, and the total power dissipated 

as compared to a uniformly heated case. However, these studies lack experimental CHF 

data and cannot predict the effects of hotspot heating on the critical heat flux. 

Critical heat flux values in non-uniformly heated macroscale tubes have been 

reported in the literature [68,69,70]. According to Yang et al. [68] the critical heat flux in 

an axial non-uniform heat flux distribution test section of inner diameter 5.46 mm could 

occur at single or multiple locations simultaneously and shift up or downstream 

depending on the inlet temperature andm ass flux. Olekhnovitch et al. [70] studied the 

effect of circumferentially non-uniform heating in 22 mm diameter round tubes. 

Significant bowing of the tubes was noted after running the experiments. Even though 

critical heat flux values for non-uniform heating cases at the macroscale are found in the 

literature, this phenomenon has not previously been tested in a microchannel heat sink. 

This thesis studies several canonical hotspot heating cases to determine their 

effect on the critical heat flux in a microchannel heat sink. Local wall temperatures and 

heat fluxes are reported, and the location of the hotspot is determined to have a 

significant effect on CHF. This work gives a better understanding of how non-uniform 

heating profiles change the critical heat flux as compared to a uniform heating case. 
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CHAPTER 3. VOID FRACTION MEASUREMENT USING CROSSWISE 
ELECTRODES          

The electrical impedance of a two-phase mixture is a function of the void fraction 

and phase distribution. The difference in the specific electrical conductance and 

permittivity of the two phases can be exploited to measure the electrical impedance to 

obtain the void fraction and flow regime characteristics of a mixture. An experimental 

investigation of the void fraction using an electrically impedance-based sensor is studied 

in this chapter for a variety of adiabatic air-water two-phase flow conditions in a 

microchannel. Flow regimes are identified quantitatively using the statistics of the signals 

acquired by the impedance void fraction sensor. The material in this chapter was 

presented at the ASME Pacific Rim Technical Conference and Exhibition on Packaging 

and Integration of Electronic and Photonic Systems in 2011 and published in the 

proceedings [71]. It was later refined and published in the International Journal of 

Multiphase Flow [72]. The author would like to thank Sidharth Paranjape for designing 

and building the experimental facility, designing and building the impedance void 

fraction meter, collecting experimental data, collecting high-speed flow visualizations, 

and performing the calibration and flow regime identification analysis. 
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3.1 Experimental Method 

3.1.1 Test Section 

An experimental test cell to measure the void fraction of two-phase air-water flow 

was fabricated using clear transparent acrylic. The experimental facility was designed by 

Sidharth Paranjape. A photograph and drawing of the test cell is shown in Figure 3.1. A 

single flow channel with a 780 m × 780 m square cross-section and length of 50.8 mm 

is cut into the base plate. Two stainless steel 304 electrodes are embedded in the base 

plate so that the faces of the electrodes are flush-mounted to the side walls of the channel. 

The electrodes are located 25.4 mm (32.6 hydraulic diameters) from the inlet of the 

microchannel. The electrodes were designed to be identical to the width and height to the 

flow channel, i.e., 780 m. Inlet and outlet plenums are machined into the top cover plate 

to provide manifolds for water flow into the flow channel. The top cover plate is 

equipped with tube fittings to connect the test cell to the flow loop. Liquid water enters 

the flow channel from the inlet manifold and air is directly injected into the flow channel 

through a 0.3 mm diameter orifice at the bottom of the channel. The air inlet orifice is 

located 10 mm downstream from the inlet of the flow channel. The electrodes are 

connected to an electronic circuit via 14 gauge copper cables. Silver epoxy is used to 

minimize the contact resistance between the electrodes and copper cables. 

A flow loop is constructed to provide air and water flow through the test cell and 

is shown in Figure 3.2. Deionized water is used as the liquid and a small amount of 

morpholine and ammonium-hydroxide (1 mg of each per liter of deionized water) is 

added in order to increase its electrical conductivity while maintaining a pH value of 7. 

The addition of these chemicals has a negligible impact on the flow regime through a 
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change in surface tension as suggested by Mi et al. [23]. The specific conductivity of the 

water is maintained at 100 S/cm. The water flow loop is equipped with a frequency-

controlled water pump and a needle valve to control the water flow rate. The water flow 

rate is measured with a micro-turbine flow meter (McMillan Flo-106) with a range of 0 to 

200 mL/min. Air flow is provided by a compressed air cylinder equipped with a pressure 

regulator and is controlled by a needle valve. The air flow rate through the test cell is 

measured via an air mass flow sensor (Omega FMA6704) with a range of 0 to 100 

mL/min. The flow sensor also measures the temperature and pressure of the gas at the 

flow meter. The measured temperature and pressure are used to correct the mass flow rate 

from standard conditions since the flow sensor is factory-calibrated at standard 

temperature and pressure. Pressure is measured at the inlet and outlet of the channel. The 

local pressure at the measurement point in the channel is interpolated based on these two 

measurements. The actual volumetric flux of air is corrected for the interpolated pressure 

at the measurement location. The water storage tank is open to the atmosphere and serves 

as an air-water flow separator. Special care is taken to avoid flow instabilities from 

occurring due to the accumulation of air in various tube fittings in the exit section of the 

flow loop. In order to do this, flexible tubing (Saint-Gobain Tygon) is used to connect the 

exit of the test cell to the storage tank, which is located at a higher elevation than the test 

cell. 

 

3.1.2 Impedance Void Fraction Meter 

An auto-balancing bridge method is implemented in a custom-built unit for 

measurement of the electrical impedance of the two-phase mixture in the test cell. The 
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instrument was designed by Sidharth Paranjape. The details of auto-balancing bridge 

methods can be found in Tumanski [73]. The signal processing scheme is shown in 

Figure 3.3. The test cell is excited with an alternating sine wave voltage signal with a 

peak-to-peak voltage difference of 3 V. The exciter signal is set to a frequency of 20 kHz. 

A current-to-voltage amplifier is used to measure the resulting current. The voltage 

measured across the reference resistor of the amplifier circuit serves as a measure of the 

current flowing through the test cell. This signal is referred to as the modulated signal, 

while the exciter signal is taken as the carrier wave. Both of these voltage signals are 

logged to a high-speed data acquisition system (National Instruments NI 6259-USB) and 

are sampled at a rate of 500 kHz. The data acquisition system has a 16-bit quantization 

for analog to digital conversion in the voltage range of -5 V to +5 V. The signals are then 

processed numerically using a MATLAB program developed in-house. The acquired 

signal is synchronously demodulated using the excitation signal and a 90° phase-shifted 

excitation signal in order to calculate the real and imaginary parts of the impedance 

across the channel. A low-pass Butterworth filter with a cut-off frequency of 10 kHz is 

used to filter out the excitation signal. The filtered signal is proportional to the electrical 

impedance of the two-phase mixture between the electrodes. 

 

3.2 Image Analysis and Data Reduction 

3.2.1 Flow Visualization and Image Processing 

A Photron Fastcam-Ultima APX high-speed digital video camera combined with 

a Keyence VH-Z50L lens at 100X magnification is used for flow visualization. The 

videos are acquired at a frame rate of 24,000 frames per second with a shutter speed of 
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120,000 Hz. An illumination source (Henke-Sass Wolf) is used to illuminate the 

microchannels from below for visualization. This combination provides a spatial 

resolution of 8 m per pixel. The digital videos are acquired for 4 s for each flow 

condition. The stored images are further processed in order to calculate the void fraction. 

The image processing is performed in the sequence described below. The complete 

MATLAB script can be found in Appendix A. 

The video frames are taken through a number of image processing steps to 

determine the air and water regions. First, each frame is rotated and cropped to the area of 

interest. This is a square-shaped interrogation window that has the same width as that of 

the flow channel. Second, the background is subtracted and the gray-scale image is 

passed through a threshold to obtain the negative of the image and increase the contrast. 

Third, the edges of the air regions are detected using the Canny algorithm implemented in 

MATLAB [74]. Fourth, the interior boundaries due to light reflection are then removed 

via algorithms implemented in MATLAB. The details of the algorithm are explained in 

Soille [75]. Fifth, the objects are passed through a convex hull algorithm to remove cusps 

and concave boundaries. Sixth, the volumes and cross-sectional areas of the bubbles are 

calculated and hence the volumetric void fraction and cross-sectional area-averaged void 

fractions, respectively. In order to calculate the bubble volume from a two-dimensional 

image obtained via flow visualization, the bubbles are assumed to be axisymmetric about 

their major axes. An approximate uncertainty analysis was performed for the calculation 

of bubble volumes for the simple geometries of spherical and cylindrical bubbles. The 

maximum error was found to be 8% of the measured value. Lastly, steps 1 through 6 are 

repeated for each frame in the video to obtain a time series of the void fraction. In 
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addition, the time-averaged volume- and area-averaged void fractions are calculated for 

each flow condition. 

The morphological operations performed to extract the boundaries of the bubbles 

from the original image are shown in Figure 3.4. The time-averaged void fractions 

calculated from processing the images in the videos are used as reference measurements 

to calibrate the impedance void fraction meter. 

 

3.2.2 Uncertainty Analysis 

The uncertainties in the measurements of the steady-state values of the gas and 

liquid flow rates stem from a combination of uncertainty in the measurement by the flow 

meters and the inherent physical fluctuations in the flow conditions. The measurement 

uncertainties for the instruments used in the experiment are shown in Table 3.1. The last 

column denotes the maximum standard deviation as a percentage of the measured value 

that was observed in the dataset that consists of 71 flow conditions. 

For each flow condition, the quantities were acquired at 500 Hz for 10 seconds to 

obtain time-averaged values after reaching steady state. The resulting maximum 

uncertainties in the measurement of gas and liquid flow rates are found to be 2.5% and 1% 

of measured values, respectively. 

 

3.3 Results and Discussion 

Void fraction measurements were performed under 71 different flow conditions. 

Data was collected by Sidharth Paranjape. Each condition was characterized by the 

velocity inlet boundary conditions: volumetric flux of the gas, , and volumetric flux 
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of the liquid, . The range of flow conditions covered are 0.13 m/s <  < 2.65 m/s 

and 0.8 m/s <  < 5.1 m/s. The test matrix is shown in Figure 3.5 using coordinates of 

volumetric flux of the gas and liquid flow. 

 

3.3.1 Calibration of the Impedance Void Fraction Meter 

High-speed visualization revealed the flow regimes observed under the set of test 

conditions. The images obtained using the high-speed video camera in various flow 

regimes are shown in Figure 3.6. The images are presented as acquired by the camera 

without any morphological transformations. The void fraction reported for each image is 

the time-averaged value of the volume-averaged void fraction calculated using the image 

processing algorithm. The time series of the volume-averaged void fractions 

corresponding to each flow conditions is also shown in Figure 3.6. 

The measurement method utilized determines the current passing through the test 

cell for a given potential difference at a known excitation frequency. The measured 

current is proportional to the admittance, or the inverse of the impedance of the two-

phase mixture in the test cell. In order to make the measurement independent of the 

material properties, the measured admittance is normalized as 

 
 (3.1) 

where  is the instantaneous two-phase mixture admittance,  is the admittance for a 

void fraction of zero (for single-phase liquid) and  is the admittance for a void fraction 

of unity (for single-phase gas). The liquid fraction of the mixture is a monotonically 

increasing function of normalized admittance, , and the void fraction is proportional to 
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. For finely dispersed bubbly flow (a void fraction less than 10%), the 

functional relationship can be obtained by the effective conductivity of a medium 

impregnated with uniformly distributed non-conducting spheres. The expression for the 

effective conductivity given by Maxwell [76] to a first-order approximation is  

 
 (3.2) 

where  is the void fraction of the dispersed phase. This model is applicable to the 

bubbly flow regime for void fractions less than 0.2. For void fractions above this limit, 

the sensor must be calibrated due to the statistical nature of the distribution of voids, 

where no closed-form analytical solution is available. The impedance void fraction meter 

is calibrated in a time-averaged sense. The time-averaged value of the impedance void 

fraction meter reading, , is compared with the time-averaged void fraction, 

, obtained by flow visualization. 

The calibration curve of the impedance void fraction meter against the void 

fraction obtained by image processing for various flow regimes is shown in Figure 3.7. 

The data show that the instrument has a nearly linear response. The data are also 

compared with Equation (3.2) for bubbly flow conditions. It can be observed that the data 

match the predicted values from this equation closely for void fractions less than 0.15. A 

third-order polynomial curve is fit to the data to obtain a calibration curve. The 

calibration curve is given by  

  (3.3) 

In order to assess the accuracy of the measurement, the mean square deviation is 

calculated as  
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 (3.4) 

where  and  are void fractions obtained from the calibration curve and by 

image processing, respectively. The mean square deviation is 0.023. 

In order to validate the measurement of void fraction by the impedance void 

fraction meter, the void fraction measured by the sensor is plotted against the ratio of gas 

volumetric flux to total volumetric flux, , which is defined as 

 
 (3.5) 

In the case of the homogenous equilibrium model, or under the assumptions of 

uniform distribution phases in flow cross-section and equal velocities, the void fraction is 

given by  

  (3.6) 

In view of the drift flux model, the relation between void fraction and volumetric 

fluxes is given by Zuber and Findlay [77],  

 
 (3.7) 

In Equation (3.7),  is the distribution parameter, while  is the void-

weighted drift velocity. These two parameters are specified by empirical correlations. 

The recommended value for the distribution parameter is 1.2 as suggested by Armand 

[78], Ali et al. [79], and Mishima and Hibiki [80]. For horizontal flow, the drift velocity 

is close to zero. A comparison of the measured void fraction against the homogenous 

flow and drift-flux models is shown in Figure 3.8. The agreement between the predictions 
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from both models and the data is remarkable considering the lack of established values 

for parameters in the drift flux model for the case of microchannel flow. Since the void 

fraction is a function of flow boundary conditions, volumetric fluxes of the gas and liquid, 

the measured void fraction contours are plotted on gas and liquid volumetric flux 

coordinates as shown in Figure 3.9. Contour maps are helpful in developing void fraction 

correlations for microchannel two-phase flows. 

 

3.3.2 Flow Regime Identification 

The approach originally developed by Jones and Zuber [29], which utilizes the 

probability density function (PDF) of the void fraction fluctuations as flow regime 

indicators, is employed for flow regime identification. Physically, the PDF denotes the 

contribution of different kinds of bubbles to the time-averaged void fraction for a given 

flow condition. The normalized time series signal obtained by the impedance void 

fraction meter, , is used for this purpose. The PDF of  denoted by  is 

calculated using the kernel smoothing density estimation method described by Bowman 

and Azzalini [81]. A normal kernel is used as the smoothing function. The PDF  

is evaluated at 200 discrete points in the domain of . Thus, each flow condition 

is represented by a 200-dimensional vector. The problem of identifying flow regimes is 

equivalent to identifying clusters of vectors in 200-dimensional vector space. The clusters 

of vectors are found by minimizing the distance between the vectors representing flow 

conditions and the weight vectors corresponding to a flow regime. After minimization, 

the weight vector positions align with the centroid of the clusters. Thus, the weight 

vectors that denote the positions of the cluster centroids are characteristic of the flow 
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regime. This optimization problem is solved by the Kohonen Self-Organizing Map 

algorithm for pattern recognition implemented in the Neural Network Toolbox of 

MATLAB based on the method developed by Kohonen [82]. Physical interpretation of 

the recognized patterns is accomplished by comparing them with the flow regimes 

observed using the high-speed camera. 

Examples of the impedance void fraction meter signals and corresponding PDFs 

obtained for various air-water flow regimes are shown in Figure 3.10 through Figure 3.14. 

The flow regimes, their qualitative description, and characteristics of the corresponding 

impedance void fraction meter signals are described below. It is noted that stable annular 

flow could not be achieved with the current experimental setup. 

 Bubbly Flow: Bubbly flow is characterized by spherical or ellipsoidal bubbles 

dispersed in the continuous phase. The major diameters of these bubbles are 

smaller than the width of the channel. The PDF  shows a relatively 

small width with a peak at a higher admittance (see Figure 3.10). 

 Cap-Bubbly Flow: As the bubble size increases, it is confined by the channel 

walls. It is distorted and forms a cap-shaped bubble with a round nose at its 

downstream end. The PDF is characterized by two distinct peaks located close 

to each other (see Figure 3.11). The peak corresponding to higher  represents 

the liquid regions between the bubbles, while the peak corresponding to lower 

 represents the cap bubbles. 

 Slug Flow: Long bullet-shaped bubbles are separated by liquid or small 

spherical bubbles. The PDF shows two distinct peaks, with one located at low 

 corresponding to slug bubbles and the other located at high  
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corresponding to the continuous liquid phase between the slug bubbles (see 

Figure 3.12).  

 Churn-Turbulent Flow: Due to turbulent agitation at higher flow rates, churn-

turbulent flow exhibits interacting slug bubbles with a distorted shape. This 

leads to a wider spread in the PDF, where peaks corresponding to slug bubbles 

and liquid gaps between them are merged. It should be noted here that the 

existence of a churn-turbulent regime does not imply a higher void fraction than 

that in the slug flow regime in a time-averaged sense (see Figure 3.13).  

 Long Slug Flow: This regime is characterized by the occurrence of long stable 

slugs such that it appears to have a structure similar to annular flow in a local or 

short-time-averaged sense. The PDF shows a high peak at a low  (see Figure 

3.14). Annular flow was not observed in the current dataset. 

Using the quantitative method of flow regime classification described above, the 

dataset was categorized into five regimes. The result of this classification is shown in 

Figure 3.15. The flow conditions are presented on coordinates of volumetric flux of the 

gas and liquid phases. The contours of the time-averaged void fraction are superimposed 

on the flow regime map. This shows the relationship between the flow regime boundaries 

and the void fraction. This map could be used for the development of theoretical flow 

regime transition criteria in microchannel two-phase flow. 

 

3.4 Conclusions 

The void fraction of air-water two-phase flow is measured in a microchannel with 

a square cross-section of 780 m × 780 m using a custom-designed impedance void 
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fraction meter. The impedance void fraction meter is calibrated against the time-averaged 

void fraction determined from flow visualizations using a high-speed video camera. The 

calculated time-averaged void fraction shows reasonable agreement with those predicted 

by the homogeneous equilibrium and drift-flux models. However, a conclusive statement 

in favor of a particular model cannot be made since the model parameters (the 

distribution parameter and the drift velocity for the drift-flux model) are not available for 

microchannel flows. 

The probability density function (PDF) of the time series signal obtained by the 

impedance meter is utilized for quantitative characterization of two-phase flow regimes. 

The flow regimes are identified using a Kohonen Self-Organizing Map. This study shows 

that the impedance void fraction meter that was designed can be used for microchannel 

two-phase flows for the measurement of void fraction and the identification of flow 

regimes. The void fraction and flow regime data obtained by the impedance void fraction 

meter may be used for developing and benchmarking theoretical flow regime transition 

criteria for microchannel two-phase flows. 

Further studies are discussed in later chapters over developing flow regime maps 

for additional flow channel geometries. The measurement technique developed here can 

be used to study non-adiabatic and boiling flows with a similar geometry of the 

electrodes along with the same electronic circuit, as long as the changes in electrical 

properties of the fluid with temperature are taken into account. 
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Table 3.1. Measurement uncertainties as a percentage of measured value. 
Instrument Reported measurement 

accuracy (%) 
Maximum standard 
deviation (%) 

Liquid flow (mL/min) 0.2 0.74 
Gas flow (mL/min) 0.1 3.2 
Pressure (kPa) 0.2 2 
Temperature (K) 0.1 0.05 
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(a) 

 

(b) 

Figure 3.1. Impedance meter test cell. (a) Top view of the test cell. (b) Base plate with 
flow channel and electrodes. 
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Figure 3.2. Air-water two-phase flow loop. 
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(a) 

 

(b) 

Figure 3.3. Impedance meter circuit. (a) Signal processing scheme. (b) Basic electronic 
circuit. 

 

  



33 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 3.4. Image processing steps. (a) Original image, top view. (b) Rotated and cropped 
image for interrogation window. (c) Background subtracted and threshold adjusted image. 

(d) Edge detection. (e) Interior boundaries removed. (f) Edges after finding the convex 
hull, superimposed on the original image. 
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Figure 3.5. Test matrix. 
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(a) 

 
 

(b) 

 
 

(c) 

 
 

(d) 

 
 

(e) 
Figure 3.6. Flow visualization and void fraction measured by image processing. Flow 

direction is from left to right. (a) Bubbly,  = 0.29 m/s,  = 0.83 m/s,  = 0.20. 
(b) Cap bubbly,  = 0.56 m/s,  = 0.83 m/s,  = 0.37. (c) Slug,  = 1.39 m/s, 

 = 0.83 m/s,  = 0.58. (d) Churn-turbulent,  = 2.26 m/s,  = 4.08 m/s,  
= 0.36. (e) Long slug,  = 2.65 m/s,  = 0.82 m/s,  = 0.65. 
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Figure 3.7. Impedance meter calibration. 
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Figure 3.8. Comparison of the measured void fraction with the homogeneous equilibrium 
and drift-flux models. 
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Figure 3.9. Contours of the void fraction. 
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Figure 3.10. Impedance meter signal and its PDF for bubbly flow,  = 0.29 m/s,  = 
0.83 m/s,  = 0.20. 
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Figure 3.11. Impedance meter signal and its PDF for cap-bubbly flow,  = 0.56 m/s, 
 = 0.83 m/s,  = 0.37. 
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Figure 3.12. Impedance meter signal and its PDF for slug flow,  = 1.39 m/s,  = 
0.83 m/s,  = 0.58. 
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Figure 3.13. Impedance meter signal and its PDF for churn-turbulent flow,  = 2.26 
m/s,  = 4.08 m/s,  = 0.36. 
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Figure 3.14. Impedance meter signal and its PDF for long slug flow,  = 2.65 m/s,  
= 0.82 m/s,  = 0.65. 
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Figure 3.15. Flow regime map obtained using the impedance void fraction meter signals. 
○: Bubbly, : Cap bubbly, ◊: Slug, : Churn-turbulent, □: Long slug, Level lines: Void 

fraction contours. 
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CHAPTER 4. NUMERICAL SIMULATIONS OF CROSSWISE ELECTRODE 
EXPERIMENTS 

The void fraction in microchannel two-phase flow can be measured using an 

electrical impedance-based void fraction sensor. The electrical impedance of the two-

phase mixture is a function of the void fraction and the flow topology due to the 

difference in the electrical properties of the two fluids. Due to the complex geometry of 

the phase interfaces under various flow regimes, this relation cannot simply be expressed 

analytically. Hence, the response of a miniature impedance-based void fraction sensor 

using air-water two-phase flow under adiabatic conditions was numerically investigated 

by solving the Laplace equation for the electrical potential. This chapter studies a range 

of flow regimes via two-dimensional (2D) and three-dimensional (3D) simulations using 

Fluent [83] and MATLAB [74]. The numerical results are then compared to experimental 

results. Portions of the material in this chapter were published in Measurement Science 

and Technology [84].

 

4.1 Modeling and Simulation 

4.1.1 Image Processing 

In order to simulate realistic two-phase flow morphologies that occur in a 

microchannel, high-speed videos of air-water flow through a microchannel were recorded. 

A Photron Fastcam-Ultima APX high-speed digital video camera combined with a 
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Keyence VH-Z50L lens at 100X magnification was used for flow visualization, as 

outlined in Paranjape et al. [72]. Videos were recorded at 24,000 frames per second with 

a shutter speed of 120,000 Hz. The videos recorded are used to determine the air and 

water domain to be used in the numerical simulations. 

The movie frames are taken through a number of image processing steps to 

automatically determine the air and water regions. The image processing steps are the 

same as those presented in the previous chapter and can be seen in Figure 3.4.First, each 

frame is rotated and cropped to the area of interest. In the 3D Fluent simulations, this area 

was limited to a square-shaped window (cube-shaped domain) with the same width as the 

flow channel. For the 3D MATLAB simulations, this area was a rectangular-shaped 

window with the length three times the width of the flow channel. This was done in order 

to capture the additional effects of objects outside the crosswise electrodes on the 

electrical field. Next, the background was subtracted and the gray-scale image was passed 

through a threshold filter to obtain the negative of the image and increase the contrast. 

Then, the edges of the air regions were detected using the Canny algorithm implemented 

in MATLAB [74]. The interior boundaries due to light reflection were then removed, and 

then the flow objects were passed through a convex hull algorithm. 

After the image processing steps are completed, the coordinates of the air-water 

boundaries are known. This information was used to generate 3D meshes in Gambit [85] 

and MATLAB. The Gambit meshes (for the use of Fluent as the solver) were generated 

using two methods, depending on the flow regime. For bubbly and slug flow, the air 

bubbles were assumed to have a perfectly circular cross section. Circles were plotted to 

represent the interface at each streamwise pixel location in the image; a skin was formed 



47 

 

around the series of circles to create the air volume in the channel, as shown in Figure 4.1. 

For churn flow, the air region was assumed to fill the majority of the channel, so the air 

bubbles were modeled to have a square cross section. The same volume formation 

method was used. Once the air and water regions were defined, a tetrahedral volume 

mesh was created. To generate the meshes in MATLAB, first, a uniform grid of cube 

cells was created for the domain. Based on the centroid of each cell and the determined 

coordinates of the bubble boundaries, each cell was identified as belonging to either the 

air or the water region. Once again, bubbly and slug flows were assumed to have a 

circular cross section and churn flows were assumed to have a square cross section. 

 

4.1.2 Numerical Methods 

Fluent [83] was used for 2D and 3D simulations. A MATLAB [74] code was 

written for 3D time-averaged simulations, and can be found in Appendix B. This section 

describes the analysis used in both Fluent and MATLAB for the simulations. A form of 

the Laplace equation for electric potential is used to describe the domain. 

 

 

(4.1) 

Material properties and geometries are substituted into Ohm’s law and the 

equation for charge to obtain the current and charge as a function of voltage. In this form, 

a heat transfer analogy,  

 
 (4.2) 
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can be used to solve for the current and charge. By this analogy, Fluent can be used to 

solve the problem in this form via the energy equation. 

To find the impedance in the channel, a Dirichlet voltage boundary condition was 

applied at the electrodes to provide a voltage difference of 4 V. All other boundaries used 

a Neumann boundary condition with the flux equal to zero. After finding the current and 

charge fluxes at the surface of the electrodes, the resistance, , and capacitance, , can be 

calculated respectively. These can then be used to find the magnitude of the impedance, 

. The impedance is calculated as if it were connected in parallel in a circuit, as 

  

 

 

(4.3) 

The impedances calculated are normalized with respect to a channel filled 

completely with water and air. Since the void fraction is positively correlated with one 

minus the admittance, , it is chosen for presenting results. The normalization of 

 is 

 
 (4.4) 

where  is the admittance for a channel filled only with water and  is the admittance 

for a channel filled only with air. The final value, , is used for correlating with the 

void fraction. 

The Fluent finite volume solver is used for the 2D and 3D meshes created in 

Gambit. The simulation was run by solving the energy equation. The thermal material 
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properties in Fluent were changed to be the electrical properties of air and water and the 

analogy was used to convert the heat transfer parameters into their appropriate electrical 

analogs.  

For the MATLAB solver written in house, the finite volume method is used to 

discretize the above equations for use in a uniform 3D mesh. Kirchhoff’s current law is 

used to balance the currents between a cell and its neighbors as 

 

 
(4.5) 

where  is the coefficient of the th, th, th point,  is the coefficient of the +1, 

th, th point, etc.,  is the source term, and  is the voltage (or charge) for each cell. 

The coefficients  through  are inverse resistance (or capacitance). For an interior point 

in the domain, this equation can be written and rearranged as  

 

(4.6) 

where  is the effective electrical conductivity (or electrical permittivity) and , , 

and  are the dimensions of each cell. 

The system of equations for the 3D domain is solved using a plane-by-plane Tri-

Diagonal Matrix Algorithm (TDMA) method. The TDMA is a form of Gaussian 

elimination used to solve a tri-diagonal system of equations exactly [86]. This one-

dimensional method is expanded into three dimensions by taking one line of cells in the 

volume at a time and solving them with the TDMA. The neighboring cells not included in 
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the line are added into the source term. The method first takes one plane and performs a 

TDMA on each row and column within the plane. It first sweeps the rows and columns 

within a  plane in the positive  direction, the positive  direction, the negative  

direction, then the negative  direction. It moves on to the next  plane and repeats. The 

method loops through all the  planes in the volume, then repeats in the other two 

coordinate directions, until the solution converges.  

The material properties are contant for all simulations. Water has an electrical 

conductivity of 100 S/cm and a dielectric constant of 80. Air has an electrical 

conductivity of 2.5×10-10 S/cm and a dielectric constant of 1. The simulations were run 

under steady state conditions and the electrical impedance was calculated. 

 

4.2 Results and Discussion 

4.2.1 2-Dimensional Simulations in Fluent 

2D simulations were run using Fluent [83]. These simulations consisted of a 

square cross section of a water-filled channel with electrodes on opposite sides. Both 

circular and square air regions were placed in the center of the channel as shown in 

Figure 4.2. The void size was varied to obtain a range of void fractions. The circular 

cross section voids ranged in void fraction from zero (no void) to 0.75. The geometric 

upper limit of the circular voids is 0.785, which corresponds to the area fraction of a 

circle inscribed in a square. The square voids ranged in void fraction from zero to 1.0 (no 

liquid). 

For all cases, the relationship between the void fraction and the impedance is not 

linear. For void fractions less than 0.6 both the circular and square bubbles provided the 
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same normalized impedance for a given void fraction, which is shown in Figure 4.3. 

Above a void fraction of 0.6, the normalized impedance calculated for circular bubbles is 

slightly higher than that for square bubbles. This is due to the difference in the thickness 

of the liquid film next to the electrodes for the two cases. 

A third case consisted of four circular voids that varied in distance from one 

another inside the channel as shown in Figure 4.3. The radii of the voids did not change 

and thus the total void fraction remained constant at 0.256. The centroids of the voids 

were placed at three different spacings within the channel and the impedance was 

calculated. The ratio of the void diameter to the channel width was 0.29 and the ratio of 

the distance between void centers to the channel width was 0.31, 0.5, and 0.69. As shown 

in Figure 4.3, the change in the spacing of the four voids led to a very small change in 

impedance. In addition, the normalized impedances calculated for this case are 

approximately equal to the single square and circular void cases. This indicates that the 

shape and distribution of voids representative of the expected flow regimes have no 

significant effect on the resulting electrical impedance of the system, for voids modeled 

in parallel. 

 

4.2.2 3-Dimensional Simulations in Fluent 

3D simulations were run using Fluent [83]. These simulations consisted of a 

water-filled channel with electrodes on opposite faces. The length of the channel in the 

flow direction was taken to be the width of the electrodes such that the simulation domain 

is cubic. Using the image processing method previously described, air voids of real 

bubbles were placed in the channel. 
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It is important to note that void configurations were randomly chosen from the 

high-speed videos and the data is neither sequential nor time averaged for the 3D Fluent 

simulations. Three flow regimes were simulated: bubbly, slug, and churn flow. The void 

fraction estimated from the images ranged from zero to 0.72 for the random flow field 

snapshots chosen for analysis. The results are shown in Figure 4.4 and Figure 4.5. The 

first figure shows the magnitude of the impedance calculated for a given void fraction. 

The relationship between the two values is parabolic and the points lie on a single line 

regardless of the flow regime. The second figure shows the void fraction plotted with the 

normalized impedance. As with the 2-dimensional case, the relationship between the void 

fraction and the impedance is not linear. Additionally, despite snapshots taken from 

bubbly and slug flow regimes overlapping, all of the points appear to lie closely on a 

single line, continuing to indicate that the shape and distribution of the voids have no 

significant effect on the resulting electrical impedance for voids modeled in parallel. 

 

4.2.3 3-Dimensional Simulations in MATLAB 

3D simulations were run using the MATLAB code described previously. 

MATLAB was used in order to streamline the entire analysis from image processing 

through simulation without changing programs. These simulations consisted of a larger 

portion of a water filled channel with electrodes on opposite faces. Unlike the simulations 

in Fluent, the length of the channel was taken to be three times the width of the electrodes 

so that a portion of the channel before and after the electrodes was also modeled. This 

was done to capture a larger range of the electric field, specifically the lines that bend 

around air regions outside of the electrodes. Using the same image processing method 
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previously described air regions corresponding to real bubbles were modeled in the 

channel. 

Figure 4.6 shows the constant potential lines superposed onto the image of a slug 

bubble used in a simulation. The void fraction and simulated impedance for this video is 

0.33 and 0.41, respectively. Instead of randomly chosen void configurations, sequential 

frames within videos were chosen. The total number of frames was chosen for each video 

to capture one period of the flow regime passing through the domain. For churn flow, a 

regime period is not identifiable and therefore a large number of frames were chosen so 

that it was representative of the particular case. Once again, three flow regimes were 

simulated: bubbly, slug, and churn flow. The estimated void fraction and the normalized 

impedance are shown in Figure 4.7 for all the cases ran. This data represents the 

instantaneous values for each image. Like before, the relationship between these two 

values is not linear. Since consecutive frames were taken for each video, the void fraction 

and calculated impedance varied over a range for each case. For bubbly and slug flows in 

which the flow alternates between large volumes of air and water, some of the frames 

contained partial bubbles that were not located centrally between the electrodes and 

instead were either entering or exiting the area of interest. The presence of these bubbles 

contributed to the calculation of the void fraction, but had a smaller effect on the 

impedance calculated due to their position away from the electrodes. Thus, for bubbly 

and slug flows having void fractions less than 0.4, a large spread can be seen in the data. 

In churn flow this happens much less often and the instantaneous data lie closely around 

a single line. 
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The void fraction and normalized impedance data calculated for the images taken 

from each video were averaged to generate a time-averaged dataset. This data is shown in 

Figure 4.8. The relationship between the time-averaged void fraction and the normalized 

impedance is once again non-linear. However, the shape of the curve is slightly different 

from the instantaneous data and different trends can be seen for different flow regimes. 

Bubbly flow, characterized by small void fractions below 0.2, produced impedance 

values that are slightly lower than a linear relationship. Slug flow, having void fractions 

between 0.1 and 0.4, produced impedance values that are slightly higher than a linear 

relationship. Churn flow, having void fractions above 0.3, produced impedance values 

that are even higher than a linear relationship would predict and appear to be more 

similar to the instantaneous data previously shown compared to the other two flow 

regimes. 

The time-averaged simulated impedance data was plotted against the 

experimental data discussed in the previous chapter and is shown in Figure 4.9. For slug 

flow, the data matches well within 30% error bands and the mean average error for the 

data is 7.6%. However, the numerical simulations underpredict the impedance for bubbly 

flow and overpredict the impedance for churn flow. 

 

4.3 Conclusions 

Numerical simulations were performed with two-phase air-water adiabatic flow in 

a microchannel to predict the response of an impedance-based void fraction sensor. 2D 

and 3D simulations of the channel were run in Fluent for instantaneous responses of the 

electrical impedance sensor. MATLAB was used for 3D simulations for both 
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instantaneous and time-averaged responses in a larger domain. It was found that the 

shape and distribution of the voids had no significant effect on the simulated impedance 

for void modeled in parallel. In addition, the relationship between the void fraction and 

the impedance is non-linear for all cases. Time-averaged 3D simulations were compared 

to experiments with good agreement and a mean average error of 7.6%. 
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Figure 4.1. Using image processing to create 3-dimensional domains of real bubbles. 
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Figure 4.2. Cross sectional channel geometry with circular (left), square (middle), and 

four circular (right) air voids. 
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Figure 4.3. The results of the 2-dimensional simulations using Fluent. 

 

  



59 

 

 
Figure 4.4. The magnitude of the impedance as a function of the void fraction for the 3-

dimensional simulations using Fluent. 
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Figure 4.5. The void fraction plotted with the normalized impedance data for the 3-

dimensional simulations using Fluent. 
 

  



61 

 

 
Figure 4.6. Constant potential lines superposed on an image of a slug bubble used in a 

simulation. The void fraction for this video is 0.33 and the simulated impedance is 0.41. 
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Figure 4.7. The instantaneous void fraction plotted with the normalized impedance data 

for the 3-dimensional simulations using MATLAB. 
 

  



63 

 

 
Figure 4.8. The time-averaged void fraction plotted with the normalized impedance data 

for the 3-dimensional simulations using MATLAB. 
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Figure 4.9. The time-averaged simulated impedance plotted with the measured 

impedance from experiments. The mean average error is 7.6%. 
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CHAPTER 5. VOID FRACTION MEASUREMENT USING STREAMWISE 
ELECTRODES 

An electrical impedance-based void fraction sensor is used to measure the void 

fraction of air-water two-phase flow under adiabatic conditions in a microchannel. The 

electrical impedance of the mixture is dependent on the void fraction, flow topology, and 

the electrical properties of the fluids. Previous chapters studied a miniature electrical 

impedance-based void fraction meter with electrodes arranged in a crosswise geometry. 

The sensor was modified to place electrodes spaced at various separation distances along 

the streamwise direction that were flush mounted to the top of a 780 micron square 

channel. A high-speed camera was used to obtain flow visualizations to determine the 

time-averaged void fraction in order to calibrate the sensor. As an extension of the 

previous chapters, an experimental investigation of the impedance void fraction meter 

response with the electrodes arranged in a streamwise geometry is performed. The effects 

of the flow conditions, electrode spacings, and water electrical properties on the 

sensitivity of the instrument were explored. 

 

5.1 Experimental Methods 

5.1.1 Test Section 

An experimental test section for void fraction measurements in air-water two-

phase flow was fabricated in clear transparent acrylic to allow for high-speed imaging. 
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The experiment was designed by Sidharth Paranjape. A photograph of the test section is 

shown in Figure 5.1. This test section was designed to be the same as the crosswise 

electrodes test section discussed previously in 3.1.1with the exception of the placement of 

the electrodes. A square-shaped flow channel with side dimensions of 780 microns is cut 

into the base plate. The length of the channel is approximately 50.8 mm. Four 302 

stainless steel electrodes are embedded in the top plate such that the faces of the 

electrodes are flush-mounted to the top wall of the channel. The electrodes are located in 

the middle of the flow stream, span the width of the channel, and have different 

streamwise gaps of 780 microns, 1560 microns, and 2340 microns (i.e., one, two, and 

three channel widths, respectively). These electrode gaps can be tested by connecting 

different electrodes to the impedance measurement circuit. The width of the electrodes is 

identical to the width of the flow channel; the exposed area of each electrode to the 

channel is the same as the cross section of the channel. Inlet and outlet plenums are 

machined into the top cover plate to route water flow into the channel. Air is directly 

injected into the flow channel through a 0.3 mm diameter orifice at the bottom of the 

channel. The air inlet orifice is located 10 mm from the inlet of the flow channel. The 

electrodes are connected to the electronic circuit via alligator clips. 

The same flow loop is used as in the previous crosswise electrodes experiments 

and is shown in Figure 3.2. De-ionized water is used for the liquid stream; morpholine 

and ammonium hydroxide are once again added to the water in order to increase its 

electrical conductivity while keeping the pH value near 7. The effect of various electrical 

conductivities of the water was explored and the exact amounts of the chemicals varied 

between tests. The impact of the addition of these chemicals on the flow regimes 
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(through an effective change in the surface tension) is negligible [23]. The specific 

conductivity of water was maintained between 50 and 300 S/cm. The water flow loop is 

equipped with a frequency-controlled water pump and a needle valve to control the water 

flow rate. The water flow rate is measured with two McMillan micro-turbine flow meters 

with ranges of 0 to 100 mL/min and 0 to 200 mL/min. Air flow is provided by a 

compressed air cylinder equipped with a pressure regulator. Two Omega FMA6700 

series air mass flow sensors with ranges of 0 to 200 mL/min and 0 to 500 mL/min were 

used to measure the air flow rate through the test cell. The flow sensors also measure the 

temperature and pressure of the gas at the flow meter. The measured temperature and 

pressure are used to correct the mass flow rate from standard conditions since the flow 

sensor is factory-calibrated at standard temperature and pressure. The air flow rate is 

controlled by a needle valve. The storage tank is open to the atmosphere and also serves 

as an air-water flow separator. Special care is taken to avoid flow instabilities occurring 

due to the accumulations of air in various tube fittings in the exit section of the flow loop. 

In order to achieve this, flexible tygon tubing is used to connect the exit of the test section 

to the storage tank, which is located at a higher elevation than the test section. 

 

5.1.2 Impedance Void Fraction Meter 

The same impedance void fraction meter used in the crosswise electrodes 

experiments is again used here. A description of the sensor can be found in 3.1.2 and the 

signal-processing scheme is shown in Figure 3.3.  
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5.1.3 Image Analysis 

A high-speed Photon Fastcam-Ultima APX digital video camera along with a 

Keyence VH-Z50L lens at 100X magnification was used for flow visualization. The 

videos are recorded at 30,000 frames per second with a shutter speed of 30,000 Hz. A 

Henke-Sass Wolf illumination source is used to illuminate the microchannel for 

visualization. This combination provides a special resolution of approximately 8 m per 

pixel. The digital videos are acquired for 4 seconds for each flow condition. The optical 

images are processed in MATLAB in order to obtain an experimental void fraction 

measurement. The same image processing techniques used in the crosswise electrodes 

experiments are again used here. A description of the algorithm can be found in 3.2.1. 

Figure 3.4 shows the morphological operations performed for each step. 

 

5.1.4 Procedure 

When running a test, a water flow rate is chosen and remains the same throughout 

the test. A full air and full water reading is taken at the beginning and end of each test so 

that the impedance meter output can be normalized. The water flow rate is kept constant, 

and the air flow rate is incrementally increased to vary the flow regime; data is recorded 

once the flow conditions are stable at the desired test point. 

 

5.2 Results and Discussion 

5.2.1 Calibration of the Impedance Void Fraction Meter 

The void fraction from image analysis was plotted against the air volumetric flow 

fraction, , and is shown in Figure 5.2. The legend shows the water volumetric flow rate 
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in mL/min, the gap spacing of the electrodes (1CW means one channel width), and the 

electrical conductivity of the water in S/cm, respectively. The color of the markers 

indicates the water electrical conductivity and the shape indicates the spacing of the 

electrodes. The data is also plotted with the homogenous equilibrium and drift flux 

models as described in Section 3.3.1. All of the data lie close to the two models and there 

is not a significant difference by varying the spacing of the electrodes, the water flow rate, 

or the water conductivity. 

The void fraction was measured under a variety of different flow conditions. Each 

flow condition was characterized by the velocity inlet boundary conditions: the 

volumetric flux of gas, , and volumetric flux of liquid, . The ranges of flow 

conditions covered in these experiments are 0.17 m/s <  < 13.7 m/s and 0.68 m/s < 

 < 5.48 m/s. 

The measured, instantaneous impedance is normalized as  

 
 (5.1) 

where  is the instantaneous two-phase mixture admittance,  is the admittance with a 

void fraction of zero (water only) and  is the admittance with a void fraction of one (air 

only). The liquid fraction is a monotonically increasing function of normalized 

admittance, , which means the void fraction is proportional to . The 

impedance meter is calibrated in a time-averaged sense. That is, the time-averaged value 

of the impedance meter reading  is compared with the time-averaged void fraction 

 obtained by flow visualization. 
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Figure 5.3 shows the data from the impedance meter versus the void fraction 

obtained from image processing for a variety of water electrical conductivities. Like the 

previous figure, Figure 5.2, the legend shows the water volumetric flow rate, the 

electrode spacing, and the electrical conductivity of water. It was found that the water 

flow rate and electrode spacing had almost no effect on the results; however the electrical 

conductivity of the water produced a significant change. Very high conductivities of 200 

S/cm and higher as well as a low conductivity of 50 S/cm produced very low 

impedance values even at high void fractions. Other conductivities between 50 and 200 

S/cm produced impedance values as expected. 

 

5.2.2 Dependence on Water Electrical Conductivity 

The data show that the instrument has a nearly linear response, but the slope 

depends on the electrical conductivity of the water. High and low conductivities of 

approximately 50, 200, and 300 S/cm produced a large slope while intermediate 

conductivities of approximately 100, 125, 150, and 175 S/cm produced a slope close to 

one. This indicates that there is an optimal range for maximum sensitivity of the 

instrument. 

The sensitivity is defined as the percent of the total range of the impedance meter 

that is used. This can be found by finding the inverse of the slope of a linear best-fit line 

for a single test. For example, the test run with a water flow rate of 100 mL/min, 

electrode spacing of one channel width, and a water conductivity of 171 S/cm, has a 

linear best-fit line with a slope of 1.86 which means the sensitivity of the instrument at 

that conductivity is about 53.8% by this definition. Figure 5.4 shows the sensitivity of the 
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impedance meter plotted as a function of water electrical conductivity. Conductivities 

between 100 and 175 S/cm had the highest sensitivities of about 55% while all other 

conductivities produced low sensitivities below 20%. The optimal range of the water 

electrical conductivity for this instrument is between 100 and 175 S/cm.  

The impedance meter reading was correlated to the water conductivity as shown 

in Figure 5.5. A linear line was fit to the data and is shown in addition to 30% error bands. 

Most of the data in this figure lie between the bands regardless of water flow rate or 

electrode spacing. In addition, the data show a much larger spread and utilize almost the 

entire range of the normalized axes. If it is desired to operate outside of the optimal range 

of water conductivities, it can be done by simply adjusting the impedance meter output 

according to the water conductivity. 

The impedance meter with a streamwise electrode geometry can easily be 

implemented in a microchannel heat sink under boiling conditions. Although the 

electrical conductivity of the fluid varies with temperature, the range in fluid 

temperatures in this scenario is quite small leading to a relatively constant conductivity 

[84]. Even though the calibration of the impedance meter has been conducted under 

adiabatic conditions, the behavior of the sensor is expected to remain the same. 

 

5.3 Conclusions 

The void fraction was measured in air-water two-phase flow in a microchannel 

with a 780 × 780 square cross section using a custom-designed impedance void fraction 

meter. The measurements from the impedance void fraction meter were plotted against 

the time-averaged void fraction determined from flow visualization using a high-speed 
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camera. Multiple water electrical conductivities were tested and a clear dependence was 

shown. For maximum instrument sensitivity, an optimal range between 100 and 175 

S/cm was found. In addition, the impedance meter output can be adjusted according to 

the water conductivity to collapse all of the data onto a single line. 
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(a) 

 
(b) 

Figure 5.1. Impedance meter test cell. (a) Top view of the test cell. (b) Top plate with 
electrodes. The blue dashed lines indicate where the channel is located. 
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Figure 5.2. Void fraction from image analysis plotted against the air volumetric flow 

fraction for a variety of flow rates. The legend shows the water volumetric flow rate in 
mL/min, the spacing of the electrodes (1CW means one channel width), and the electrical 

conductivity of the water in S/cm, respectively. 
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Figure 5.3. Void fraction from image analysis plotted against the normalized impedance 

void fraction meter output for a variety of water conductivities. The legend shows the 
water volumetric flow rate in mL/min, the spacing of the electrodes (1CW means one 

channel width), and the electrical conductivity of the water in S/cm. 
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Figure 5.4. The sensitivity of the impedance void fraction meter as a function of the water 

electrical conductivity. 
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Figure 5.5. The void fraction from image analysis plotted against the adjusted normalized 

impedance void fraction meter output for a variety of water conductivities. The legend 
shows the water volumetric flow rate in mL/min, the spacing of the electrodes (1CW 

means one channel width), and the electrical conductivity of the water in S/cm. 
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CHAPTER 6. EFFECTS OF NON-UNIFORM HEATING ON BOILING IN 
MICROCHANNELS 

As electronics packages become increasingly thinner and more compact due to 

size, weight, and performance demands, the use of large intermediate heat spreaders to 

mitigate heat generation non-uniformities are no longer a viable option. Instead, non-

uniform heat flux profiles produced from chip-scale variations or from multiple discrete 

devices are experienced directly by the ultimate heat sink. In order to address these 

thermal packaging trends, a better understanding of the impacts of non-uniform heating 

on two-phase flow characteristics and thermal performance limits for microchannel heat 

sinks is needed. This chapter studies flow boiling phenomena in a microchannel heat sink 

with local hotspots, as well as increasingly non-uniform peak-heating profiles across the 

heat sink, both in the flow direction and perpendicular to it, with respect to thermal 

performance and flow boiling phenomena. This work enables better assessment of 

existing heat transfer models for prediction of non-uniform heating profiles. The material 

in this chapter was presented at the ASME International Technical Conference and 

Exhibition on Packaging and Integration of Electronic and Photonic Microsystems in 

July 2013 and published in the proceedings [87]. It was later refined and published in the 

International Journal of Heat and Mass Transfer [88].
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6.1 Experimental Methods 

6.1.1 Test Section 

The microchannel test section used in the experiments was described in detail by 

Harirchian and Garimella [11]; it was modified for the purposes of the current study and 

is shown in Figure 6.1. A transparent, polycarbonate manifold cover plate seals and 

routes the working fluid through a silicon microchannel heat sink with a base area of 12.7 

mm × 12.7 mm. The total silicon thickness is approximately 650 m. The heat sink is 

mounted on a printed circuit board (PCB)1 that is offset from an electrical quick-connect 

board with an insulating G10 glass-epoxy composite layer. An insulating 0.4 mm thick 

borosilicate glass sheet is sandwiched between the microchannel heat sink and cover 

plate to protect the polycarbonate (rated to a temperature of 115-130 °C), and forms the 

rigid top wall of the microchannels. The fluid enters the channels through an inlet header 

section with a flow length of 10 mm, width of 12.7 mm, and a height equal to that of the 

heat sink plus borosilicate glass thickness. 

Parallel microchannels are cut into the top surface of the silicon chip using a 

dicing saw, and are shown in Figure 6.2. A single heat sink with 35 microchannels was 

used for the experiments (240 m channel width, 370 m channel depth, and 100 m fin 

width). Each channel was cut with a number of passes, which created some waviness on 

the bottom surface. The average channel bottom roughness in the region of a single cut is 

0.2 m, and the overall average surface roughness of the bottom and sides of the channels 

are 0.82 m and 0.1 m, respectively.  

                                                 
1 The author would like to thank Bruce Myers and Darrel Peugh of Delphi Electronics and Safety, Kokomo, 
Indiana, for providing the silicon microchannel heat sink. 
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A 5 × 5 array of resistance heaters and temperature-sensing diodes is fabricated 

on the bottom side of the heat sink, as shown in Figure 6.2. Since the individual heater 

resistances are nearly identical, a single voltage can be applied across multiple heaters in 

parallel to provide a uniform flux over a desired area. Up to two DC voltage power 

supplies are connected to provide the customized, non-uniform heat flux profiles applied 

to the underside of the microchannels investigated in the current study. The heat 

generated and local temperature at each element are calculated based on the calibrated 

heater/sensor resistance and the applied voltage. The relationship between the voltage and 

temperature of each sensor is calibrated in a convection oven. More details about the 

calibration procedure for each element can be found in [89].  

 

6.1.2 Flow Loop 

The experimental flow loop used is the same as that described by Harirchian and 

Garimella [89], and a schematic diagram is shown in Figure 6.3. The dielectric fluid, FC-

77, is circulated through the flow loop using a Micropump 415A magnetically coupled 

gear pump. A preheater sets the fluid to the desired inlet temperature upstream of the test 

section. Downstream of the test section, a liquid-to-air heat exchanger cools the fluid 

back to room temperature before it enters the reservoir. A McMillan Flo-114 liquid flow 

meter, with a range of 20-200 mL/min, measures the liquid flow rate through the loop. T-

type thermocouples are located upstream of the preheater, upstream and downstream of 

the test section, and downstream of the heat exchanger. A 2200 series Omega differential 

pressure transducer measures the pressure drop across the test section. 
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High-speed visualization is performed with a Photron Fastcam Ultima APX high-

speed digital video camera and a Nikon ED 200 mm lens. A Sunoptics Titan 300 xenon 

arc lamp is used for inline illumination of the test chip for the visualizations. Images are 

extracted from high-speed videos captured at 6,000 frames per second with a shutter 

speed of 6 kHz. 

 

6.1.3 Test Procedure 

Before running a test, the liquid is degassed using an expandable reservoir and a 

vacuum pump. The degassing procedure and the design of the expandable reservoir are 

adapted from [90]. The test fluid, FC-77, contains 41% air by volume, or 283 ppm, at 

ambient temperature and pressure. An expandable container with a locking mechanism 

allows expansion and contraction of the reservoir to control the system pressure. First, the 

reservoir is expanded to create a gas space at the top of the reservoir. A vacuum pump 

connected to the top of the reservoir lid is turned on for 5 minutes to remove air and the 

FC-77 vapor that has collected in the gas space. The reservoir is left expanded and at a 

vacuum pressure for one hour to allow air to diffuse from the liquid into the gas space. 

The process is repeated until the pressure in the reservoir remains constant with time, 

indicating that air is not actively dissolving out of the liquid in the reservoir. The fluid is 

cycled through the loop and the reservoir degassing process is repeated several times. To 

ensure the fluid is fully degassed, the system is set to atmospheric pressure, fluid is 

pumped through the loop, and the preheater is used to boil the fluid. The measured 

preheater fluid temperature at incipience is confirmed to be the saturation temperature of 

FC-77 (97 °C). 
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Experiments are conducted at a single mass flux of 890 kg/m2s. Fluid is pumped 

through the loop at a constant flow rate and preheated to approximately 91 °C, which 

corresponds to a subcooling of 6 °C at the inlet to the heat sink. The flow rate and inlet 

temperature are maintained at a constant values throughout the test. The expandable 

reservoir is used to set the system at atmospheric pressure prior to turning on the heater 

elements. During testing, the system pressure increases slightly due to the bulk 

temperature rise of the fluid; however, this increase is minor (12.4 kPa), and smaller than 

is practically correctable with the expandable reservoir system. 

 

6.1.4 Test Cases 

A variety of heating cases were investigated as summarized in Figure 6.4. The 

heat transfer coefficients, wall temperatures, fluid temperatures, and the locations of 

boiling via high-speed imaging are obtained for each case.  

The first cases correspond to hotspots that span either the width or length of the 

microchannel heat sink in transverse and streamwise directions: singular central 

transverse (1a), central streamwise (1b), inlet transverse (1c), and two transverse hotspots 

(1d) at the inlet and outlet. The hotspot heater locations are turned on (shown in red) 

while the rest are powered off (shown in gray). For these hotspot heating cases, the heat 

supplied to the strips of active heaters is incremented from zero until the maximum heat 

flux for the test is reached. The maximum heat flux limit is reached when the wall 

temperature reaches 140 °C, to prevent the solder bumps in the test chip from degrading.  

The second set of test cases consider a non-uniform heating condition where a 

peak heat input is imposed along the width and length of the microchannel in the 
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transverse (2a) and streamwise (2b) directions. In these latter two non-uniform heating 

cases, the total power input to the chip remains constant, but the local power input 

distribution is adjusted to increase the disparity between the peak and background heat 

fluxes. The total constant power input in this second set of cases is the same as the 

maximum power input for the corresponding hotspot heating cases.  

 

6.2 Data Reduction 

The data reduction method presented here is a modified version of the one used 

by Harirchian and Garimella [9]. Key modifications to this process take into account the 

enhanced substrate spreading that occurs for non-uniform heating profiles. Pressure-

dependent local fluid properties and saturation temperatures are accounted for in the data 

reduction procedure to account for variations along the flow length. A MATLAB script 

of the data reduction process can be found in Appendix C. 

The local heat transfer rate from the microchannels to the fluid, , is calculated 

based on an energy balance for each heating element as  

  (6.1) 

The energy generated by the heating elements is denoted as  and is calculated 

as . The heat loss from each heating element is by natural convection to the 

ambient air, radiation to the surroundings, and conduction from the microchannel heat 

sink to the cover plate and circuit board. A relationship between the base temperature and 

heat loss is experimentally obtained via measuring the amount of heat input that can be 

sustained before the test section is charged with coolant. A complete description of the 

procedure used to obtain the heat loss for each sensor is found in [91]. The energy 
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conducted laterally from one heating element to the next is denoted as . When non-

uniform heating profiles are imposed, there is significant lateral conduction of heat 

through the silicon heat sink. Heat conduction between elements is calculated as  

 
 (6.2) 

where the total net conduction is dependent on the four neighboring elements to heater . 

During single-phase flow, the bulk fluid temperature above each heating element 

is calculated as  

 
 (6.3) 

where  is the sum of the net heat transfer to the fluid from the inlet to the heating 

element in question. The fluid temperature rise is based on the available sensible heat up 

until the saturation temperature is reached, at which point the fluid temperature is set 

equal to the saturation temperature. 

The local wall temperature is corrected from the measured diode temperature by 

accounting for conduction from the substrate to the base of the microchannel, calculated 

as  

 
 (6.4) 

The heat flux through the base is calculated from the local net heat transfer rate as 

 
 (6.5) 



85 

 

The local heat transfer coefficient for each heating element, which represents an 

average along the channel height at a particular point along the flow length, is calculated 

considering the microchannel walls as extended fins, according to  

 
 (6.6) 

where  is the wall heat flux calculated using the net heat transfer rate, , and the 

total wetted area of the microchannels, .  is the overall surface efficiency of the 

microchannel heat sink, defined as 

 
 (6.7) 

where  represents the wetted area of a microchannel fin and  is the efficiency of a fin 

with an adiabatic tip. This adiabatic assumption is valid due to the heat transfer to the 

cover plate being significantly lower than the heat transfer to the liquid in the 

microchannels. It is calculated as  

 
 (6.8) 

where  

 
 (6.9) 

The heat transfer coefficient is initially calculated assuming an overall surface 

efficiency of 100% and is iterated until the value converges. The overall efficiencies of 

the microchannel heat sinks were found to be above 95.6% for all cases. 
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6.2.1 Uncertainty Analysis 

Since the facility is the same as that used by Harirchian [89], the same uncertainty 

analysis is also used. The flow meter has a measurement uncertainty of 1% of full scale 

and the pressure transducers have a measurement uncertainty of 0.25% of full scale. The 

uncertainty measurements of the channels dimensions are ±15 m, the T-type 

thermocouples ±0.3 °C, and the diode temperature sensors 0.3 °C. The microheater 

resistance measurement uncertainty is 0.002% and the applied voltage measurement 

uncertainty is 0.004%. The uncertainties for the wall heat flux and heat transfer 

coefficient were found using a standard uncertainty analysis [92] and are found to be 2.0 

to 11.4% and 2.2 to 11.7%, respectively. These two uncertainties are largely affected by 

the uncertainties in the measurement of the channel area; the uncertainties in the net heat 

transfer rate, wall temperature, and saturation temperature are small in comparison. 

Please see Harirchian [89] for the detailed analysis. 

 

6.3 Results and Discussion 

The results are split into two heating cases as previously described: (1) hotspots 

that span the length or width of the heat sink tested with increasing power input against 

an unpowered background, and (2) non-uniform heating conditions with a peak along the 

width or length of the heat sink.  

In cases 1a through 1c, 5 of the 25 individual heating elements are powered up to 

simulate a hotspot while the rest are unpowered. The total power supplied to these 

heating elements is incremented until the maximum allowable wall temperature is 

reached. In case 1d, a dual hotspot, 10 of the 25 individual heating elements are powered 
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up. For the second set of non-uniform heating cases (2a and 2b), all of the heating 

elements are initially supplied the same power level, resembling a uniform heating case. 

The power to 5 of the 25 heating elements is proportionally incremented, while 

maintaining a constant total power input to the entire test section. A subset of the data is 

presented in the figures in this chapter. Figures containing the full dataset can be found in 

Appendix D. 

 

6.3.1 Case 1: Hotspot Heating 

The maximum total power input, maximum local heat flux at that power, and 

maximum local wall temperature are summarized for all cases in Table 6.1. For Case 1, 

as the power input increases, the heat flux to the fluid, , always reaches a maximum 

above the active heater elements. The individual trends for each single hotspot are 

described below. Case 1d is discussed in Appendix D. 

 

6.3.1.1 Case 1a (Central Transverse Hotspot) 

The first heating profile tested was with a central transverse hotspot. The five 

transverse heater elements located along the center of the flow length were supplied with 

power, while the remaining 20 were turned off. The maximum heat flux recorded is 24.23 

W/cm2. Even though heat is only generated in 5 of the 25 heater elements, significant 

lateral conduction causes the remaining 20 heater locations to also experience positive 

heat fluxes ranging from 0.29 W/cm2 to 2.73 W/cm2 for a power input of 32.4 W, with 
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the value depending on distance from the heated elements. The heat flux transferred to 

the fluid along the flow length for increasing input power levels is shown in Figure 6.5a.  

The wall temperature reaches a maximum at the central transverse strip of 

powered heater elements. The input power is incremented until the maximum 

temperature reaches 136.9 °C; further increases would damage the test chip and solder 

joint. The measured wall temperatures along the flow length for increasing input power 

levels are shown in Figure 6.5b. The wall temperatures downstream of the activated 

heater elements are higher than at the upstream elements; a difference of 7.93 °C exists 

between the inlet and outlet at a power input of 32.4 W due to the temperature rise of the 

bulk fluid. The maximum bulk fluid temperature is calculated to be 99.1 °C (the local 

saturation temperature at the measured pressure); the largest bulk fluid temperature 

gradient is observed as fluid flows over the hotspot.  

Boiling curves are constructed from the heat flux transferred to the fluid and the 

wall excess temperature, and are shown in Figure 6.6 for sensors 3, 13, and 23. The wall 

excess temperature is calculated with respect to the local bulk fluid temperature in the 

case of single-phase flow, and the saturation temperature in two-phase operation. As the 

heat flux is increased, the slope of the curve is initially constant, reflecting the relatively 

constant single-phase heat transfer coefficient. For the upstream and downstream sensors, 

which are not actively powered, the heat flux is initially negative because the fluid is 

hotter than the wall and transfers heat to the substrate; this continues until a higher power 

input is reached and the active strip of heaters spreads heat to these locations. Boiling 

begins at the heated sensor location at a local heat flux of 16.8 W/cm2 and a 38.2 °C 

excess temperature, and is indicated by the increased slope in the boiling curve. This 
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incipience of boiling is confirmed via in situ visualization. Lower power input levels 

produced bubbly flow while and increased power input led to slug flow. At the largest 

power input, large vapor regions can be seen. All visualizations shown herein have a field 

of view that captures the boiling behavior over the entire test chip. After boiling 

incipience occurs at sensor 13, the downstream wall temperature at sensor 23 decreases; 

the increased (two-phase) heat transfer coefficient at the heated sensor location draws a 

larger percentage of the heat out of the center and keeps it from spreading by conduction 

to the outlet. 

 

6.3.1.2 Case 1b (Central Streamwise Hotspot) 

The next heating profile tested was with a central streamwise hotspot, with only 

the five streamwise heater elements located along the center of the heat sink powered. In 

the streamwise direction, the largest heat flux occurs at the inlet; while the heat flux has a 

local peak at the location of boiling, the global maximum occurs at the inlet due to 

entrance effects. As in Case 1a, there is significant lateral conduction through the chip, 

and the remaining 20 sensors have small positive heat fluxes ranging from 0.80 W/cm2 to 

4.37 W/cm2 at a total power input of 25.6 W. The heat flux to the fluid is plotted across 

the central transverse temperature sensors for increasing power input levels in Figure 6.7a. 

The trends in the flow direction along the single strip of active heaters closely resemble 

the uniform heating trends presented later in this chapter for Case 2b; however, 

significant differences are observed transverse to the flow direction. 
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As the power input increases, the wall temperature is always highest at the hotspot. 

Along the hotspot in the streamwise direction, the highest wall temperature occurs at the 

outlet, as would be observed in a uniform heating case under similar conditions. The wall 

temperatures measured across the central transverse sensors at increasing input power 

levels to the hotspot elements are plotted in Figure 6.7b. The maximum allowable 

operating temperature in the chip is reached at a total power input that is lower by 26.6% 

for the streamwise hotspot compared to the transverse hotspot, due to the bulk fluid 

temperature increase along the flow length in the streamwise case. Along the hotspot, the 

fluid temperature reaches the saturation temperature roughly halfway along the flow 

length.  

Boiling curves (wall heat flux versus excess temperature at the wall) are shown in 

Figure 6.8 for sensors 3, 13, and 23. Up to a total power input of 18.4 W, the streamwise 

hotspot channels exhibit single-phase operation. The steeper slope for the inlet sensor in 

the boiling curve is attributed to entrance effects. Boiling only occurs in the hotspot 

channels, and begins at a heat flux of 8.80 W/cm2 and a wall excess temperature of 

26.9 °C at the outlet. As the power level increases, the location of incipience of boiling 

advances closer to the inlet. As this occurs, the heat flux transferred to the fluid decreases 

at the outlet (while the wall temperature upon dryout continues to increase) due to 

conduction spreading toward the lower temperature upstream area.  
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6.3.1.3 Case 1c (Inlet Transverse Hotspot) 

A transverse hotspot at the inlet, with the first row of elements activated, is 

considered net. The heat flux to the fluid is plotted across the central streamwise column 

at increasing power input levels in Figure 6.9a. It can be seen that 98% of the input heat 

is transferred to the fluid over the heated length, which is the first 2.54 mm, or 20% of the 

total flow length (compared to 77.6% for the centrally located heated length in Case 1a). 

There is less heat spreading in this case compared to Case 1a due to the absence of an 

upstream flow length to contribute to heat spreading. In addition, the fluid reaches the 

saturation temperature near the inlet, rendering the downstream portion of the heat sink 

less effective. This reduces heat spreading to the downstream locations. The flow length 

downstream of the hotspot is longer than in Case 1a, allowing the outlet wall temperature 

to decrease below the fluid saturation temperature. The wall temperatures measured along 

the central streamwise temperature elements with increasing power input levels are 

shown in Figure 6.9b. Boiling curves of the wall heat flux versus the excess wall 

temperature are shown in Figure 6.10 for sensors 3, 13, and 23. Boiling begins at the inlet 

hotspot at a heat flux of 23.1 W/cm2 and a wall excess temperature of 42.5 ˚C. As in Case 

1a, lower power input levels produce bubbly flow while an increased power input leads 

to slug flow. At higher power levels, long slugs of vapor form at the hotspot and begin to 

condense at the outlet. 
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6.3.2 Case 2: Non-Uniform Peak Heating 

The degree of nonuniformity imposed in the distribution of a given total input 

power to different portions of the chip is quantified by comparing the amount of peak 

heating to the background heating through the parameter  

 

 (6.10) 

where  refers to the total power input to the heater elements in a region, and  refers 

to the number of heater elements in that region. The subscripts  and  refer to the 

heater element regions at peak and background power inputs, respectively. With this 

definition, a uniform heating case gives  = 0 while a hotspot case gives  = 1. 

 

6.3.2.1 Case 2a (Non-Uniform Transverse Peak) 

For the central transverse peak heating case, 17 discrete  values were imposed at 

an average constant total input power level of 33.0 W. The total power input for each of 

the peak heating cases studied, along with the maximum local heat fluxes for  = 1 

(hotspot) and  = 0 (uniform heating), are summarized in Table 6.2. The heat flux to the 

fluid over the flow length for increasing  values is shown in Figure 6.11a. As the 

difference between the peak and background heater power levels increases (at a constant 

total power input), the heat flux to the fluid increases at the central transverse heater 

elements. The heat flux upstream of the transverse peak-heated strip is greater than that 

downstream due to the higher heat transfer coefficient at the inlet.  
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As the degree of nonuniformity  increases, the highest wall temperatures are 

seen along the transverse central heater elements; however at very low values of , the 

wall temperature is highest at the outlet as would be expected for a uniform heating case 

with an increasing streamwise temperature for a single-phase fluid. The wall 

temperatures measured along the flow length for increasing  values are shown in Figure 

6.11b. The maximum wall temperatures range from 128.3 °C for a uniform case to 

136.5 °C for  = 1, and occur at different locations. In a uniform case the maximum wall 

temperature is located at the outlet, while for  =1 the maximum wall temperature is 

located above the peak heater element.  

The heat transfer coefficient was also calculated along the flow length, and is 

shown in Figure 6.11c. As the input power nonuniformity  increases, the heat transfer 

coefficient above the peak-heated region increases. For nonuniformities with  > 0.38, 

the highest heat transfer coefficient is observed at the transverse central heater elements, 

where boiling occurs locally. At the central heater element (sensor 13), the heat transfer 

coefficient ranges from 1870 W/m2K for a uniform case to 5970 W/m2K at  =1. Boiling 

does not occur at the inlet for any of the  values investigated, and therefore the heat 

transfer coefficient remains unchanged at the upstream locations (sensors 1-10). Once 

vigorous boiling starts above the heated strip, the heat transfer coefficient at the outlet 

sees a significant drop. This is similar to the effect seen in the corresponding hotspot case, 

Case 1a. At large  values, more effective heat transfer at the heat sensor locations 

reduces the heat available for spreading to the outlet, reducing the local wall temperature 

and heat flux in the outlet region, but maintaining a high fluid temperature due to 

upstream boiling.  
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Figure 6.12 plots the heat transfer coefficient as a function of temperature 

difference between the wall and fluid for sensors 3, 13, and 23. Boiling occurs at the peak 

transverse heat input locations for all  values greater than zero. Therefore, as the surface 

temperature increases with increasing , the heat transfer coefficient at sensor 13 

increases significantly, as expected for a boiling regime. The single-phase heat transfer 

coefficient at the inlet sensor remains relatively constant. The heat transfer coefficient at 

the outlet sensor increases for the early part of the increase in , and subsequently 

decreases, even as the wall excess temperature continually decreases. The increase at low 

 values occurs because of the relatively constant heat flux transferred to the fluid at that 

location due to heat spreading, coupled with a decrease in the difference between the wall 

and fluid temperatures. For large  values, the heat transfer coefficient reduction is likely 

due to a combination of a reduced heat flux (brought about by reduced heat spreading) 

and a high local vapor quality at the outlet. 

High speed images extracted from videos at different degrees of nonuniformity  

are shown in Figure 6.13 for a central transverse peak-heating profile. The images are 

extracted from videos recorded at 10,000 frames per second with a shutter speed of 10 

kHz. In the figure the degrees of nonuniformity of 0.15, 0.38, 0.66, and 1.0 are shown; a 

significant difference in the number of active boiling channels can be seen over this range. 

For  = 0.15, boiling does not occur in all of the channels, and some channels display 

more vigorous boiling than others. As the local heat flux increases, boiling is observed in 

more of the channels for  = 0.38, and in all of the channels for  = 0.66 and for  = 1. 

Additionally, the location of boiling incipience moves toward the peak-heated sensors as 

 increases. 
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6.3.2.2 Case 2b (Non-Uniform Streamwise Peak) 

Non-uniform peak heating in the orthogonal direction is tested in Case 2b with a 

central streamwise peak. Fifteen discrete  values were imposed with a constant total 

input power of 24.4 W. As with the transverse peak, the heat transferred to the fluid 

peaks at the central streamwise heater elements as the difference between the peak and 

background heater power  increases. The heat flux to the fluid in the central transverse 

heater elements for increasing  values is shown in Figure 6.14. 

As  increases, the wall temperature becomes highest at the central heater 

elements, and increases in the streamwise direction. The maximum wall temperature 

ranges from 121.2 °C for a uniform case to 138.7 °C for  =1. The wall temperatures 

measured along the flow length for increasing  values are shown in Figure 6.15a. At 

low values of , the wall temperature continually increases from inlet to outlet, 

indicating single-phase heat transfer. As  increases to 0.17, boiling occurs near the 

outlet and the wall temperatures for the last two sensors become constant while those 

near the inlet continue to rise. As the location of boiling advances toward the inlet (  = 

0.61), dryout conditions occur at the outlet and the outlet wall temperature begins to rise 

again. 

As the degree of nonuniformity  is increased, the associated spatial variation of 

heat transfer coefficient yields insights into the underlying heat transfer mechanisms. The 

heat transfer coefficients along the flow length are shown for increasing  values in 

Figure 6.15b. Initially, for uniform heating conditions (  =0), the flow remains entirely 
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in the single-phase regime along the entire channel length. The heat transfer coefficient is 

greatest at the inlet (3870 W/m2K) due to entrance effects, and asymptotically decreases 

to a fully-developed, constant value (1290 W/m2K). The relative magnitude of this 

entrance-effect enhancement is similar to that observed in a previous study [93] for 

uniform heating conditions. With an increase in  to 0.17, the upstream trend remains 

similar; however, boiling incipience occurs near the outlet, and the heat transfer 

coefficient increases at this location. As  increases further, the location of boiling 

incipience advances upstream, and the associated heat transfer coefficient increase 

propagates in the same direction. Ultimately, boiling occurs at the inlet, and a maximum 

heat transfer coefficient of 4440 W/m2K is observed at this location for  = 1. At the 

outlet, while the heat transfer coefficient initially increases as boiling occurs and moves 

upstream, the heat transfer coefficient decreases as the nonuniformity reaches  = 0.61. 

This is indicative of partial dryout in the downstream ends of the central channels. 

The heat transfer coefficient is shown as a function of the wall excess temperature 

in Figure 6.16 for sensors 3, 13, and 23. In this case, boiling begins at the outlet at a low 

value of  and the location moves upstream at higher  values. As the location of 

boiling moves upstream, the heat transfer coefficient at the middle sensor increases 

sharply. The heat transfer coefficient at the outlet sensor peaks and then begins to 

decrease at higher  values as the more effective boiling incipience regime moves 

upstream. Boiling only occurs at the central strip of streamwise heater elements shown in 

the figure. 

Images extracted from high-speed videos at different degrees of nonuniformity  

are shown in Figure 6.17 for a central streamwise peak-heating profile; degrees of 
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nonuniformity of 0.01, 0.23, 0.61, and 1.0 are shown. Boiling does not occur in all of the 

channels for all values of . At high  values, significant flow reversal can be seen in 

the central channels above the peak-heated sensors, causing flow maldistribution in the 

heat sink and partial dryout at the outlet. At these large values the heated channels 

contain a very large amount of vapor while neighboring channels exhibit bubbly flow. 

Boiling in the channels associated with the peak-heated elements causes an increase in 

the local pressure drop, forcing both liquid and vapor bubbles back into the inlet manifold. 

Vapor in the inlet manifold reroutes to channels with lower flow resistance where little or 

no boiling occurs. A reduced flow rate in the channels above the peak-heated sensors 

causes the remaining liquid to vaporize entirely, causing partial dryout. Once a significant 

amount of vapor leaves the channel through the outlet, the pressure equalizes, liquid 

flows back into the channels above the peak-heated sensors, and the process repeats. 

 

6.4 Conclusions 

In this chapter the effects of non-uniform hotspots and heating profiles in a 

microchannel heat sink on heat transfer coefficients, wall temperatures, and the location 

of boiling incipience were investigated. To properly assess the local heat dissipation 

under non-uniform heating conditions, lateral conduction through the microchannel heat 

sink base was taken into account. Experimental results show that even with a very thin 

substrate, significant lateral conduction occurs in the base of the heat sink. 

Single hotspots that span the width or length of a silicon microchannel heat sink 

were investigated as a function of increasing local heat flux. In the case of a transverse 

hotspot in the center of the heat sink, once boiling begins in the heated sensor location, 
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the wall temperature at the outlet decreases and conduction away from the center is 

mitigated due to reduced convection thermal resistance. In the case of a streamwise 

hotspot along the central column of the heat sink, conduction causes some lateral heating, 

but boiling only occurs in the channels located above the hotspot. In this configuration, 

the maximum sustainable total power input achieved is reduced by 26.6% compared to 

the transverse hotspot case. In the case of a transverse hotspot located at the inlet, 

although the maximum sustainable total power input is similar to the central transverse 

hotspot, the local maximum heat flux is increased by 35.7% as a result of significantly 

reduced upstream heat spreading. These test cases show that the same total power input 

distributed in different locations and configurations across the heat sink can cause 

significantly different limits on the maximum heat fluxes and wall temperatures that can 

be supported. 

A second non-uniform heating condition was investigated to understand the effect 

of the degree of nonuniformity imposed in the distribution of a given total input power to 

different portions of the chip, by incrementing the nonuniformity between the peak and 

background heat flux values. For non-uniform transverse peak-heating profiles, an 

increase in the heating nonuniformity results in significant boiling at the location of the 

peak heat input, whereas no boiling occurs under uniform heating conditions. For non-

uniform streamwise peak heating profiles, an increase in the heating nonuniformity for a 

constant total power input results in boiling at the location of the peak heat input location; 

the location of boiling incipience moves upstream as the nonuniformity increases. For 

both hotspot and peak heating in the streamwise direction, significant flow reversal is 

observed leading to dryout in the channels above the peak heated region. In both cases, 
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the local heat transfer coefficients and wall temperatures deviate significantly from a 

uniformly heated case. Local heat flux concentrations result in high local two-phase flow 

heat transfer coefficients, but at the expense of increased wall temperatures. 
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Table 6.1. Summary of results for the hotspot heating cases. 
 Maximum total 

power input (W) 
Maximum local 
heat flux (W/cm2) 

Maximum local wall 
temperature (˚C) 

Case 1a: Central 
transverse hotspot 

32.4 24.23 136.9 

Case 1b: Central 
streamwise hotspot 

25.6 16.14 146.3 

Case 1c: Inlet 
transverse hotspot 

35.8 32.89 138.8 

Case 1d: Dual 
transverse hotspots 

65.0 32.21 133.7 
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Table 6.2. Summary of results for the peak heating cases. 
 Total power 

input (W) 
Maximum local heat 
flux, =1 (W/cm2) 

Maximum local heat 
flux, =0 (W/cm2) 

Case 2a: Non-uniform 
transverse peak 

33.0 23.70 8.17 

Case 2b: Non-uniform 
streamwise peak 

24.4 15.29 6.23 
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Figure 6.1. Image of the microchannel test section. 
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Figure 6.2. Images of the 5 × 5 array of heater elements and a schematic diagram of the 
microchannel heat sink. 
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Figure 6.3. Schematic diagram of the experimental setup showing the flow loop 
components and high-speed visualization optics. 
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Figure 6.4. (a) Hotspot, and (b) non-uniform peak-heating profile configurations 
investigated. 
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Figure 6.5. (a) Local heat flux transferred to the fluid, and (b) wall temperature along the 
flow length at increasing power input levels for a central transverse hotspot. The local 
quantities are presented for the central streamwise elements, as indicated by the dark 
black rectangle in the heater power diagram.  
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Figure 6.6. Heat flux transferred to the fluid plotted against the wall excess temperature 
for sensors 3, 13, and 23 for a central transverse hotspot. 
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Figure 6.7. (a)Local heat flux transferred to the fluid, and (b) wall temperature over the 
width of the chip for increasing power levels for a central streamwise hotspot. The local 
quantities are presented for the transverse elements, as indicated by the black line on the 

heater power diagram.  
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Figure 6.8. Heat flux transferred to the fluid plotted against the wall excess temperature 
for sensors 3, 13, and 23 for a central streamwise hotspot. 
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Figure 6.9. (a) Local heat flux transferred to the fluid, and (b) wall temperature over the 
length of the chip for increasing power input levels for an inlet transverse hotspot. The 

local quantities are presented for the streamwise elements, as indicated by the black line 
on the heater power diagram. 
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Figure 6.10. Heat flux transferred to the fluid plotted against the wall excess temperature 
for sensors 3, 13, and 23 for an inlet transverse hotspot. 
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Figure 6.11. (a) Local heat flux transferred to the fluid, (b) wall temperature, and (c) heat 
transfer coefficient over the flow length at increasing degrees of nonuniformity between 

the heat flux at the peak and the background heater locations for Case 2a. 
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Figure 6.12. The heat transfer coefficient as a function of excess wall temperature for 
sensors 3, 13, and 23 for Case 2a. 
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Figure 6.13. Images at increasing  values for a central transverse peak extracted from 
high-speed video. Red lines indicate the locations of the peak heated sensors. 
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Figure 6.14. The local heat flux transferred to the fluid over the width of the chip at 
increasing degrees of nonuniformity between the heat flux at the peak and background 

heater location for Case 2b. 
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Figure 6.15. (a) Local wall temperature, and (b) heat transfer coefficient over the flow 
length at increasing degrees of nonuniformity between the heat flux at the peak and 

background heater locations for Case 2b. 
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Figure 6.16. The heat transfer coefficient plotted against the wall excess temperature for 
sensors 3, 13, and 23 for Case 2b. 
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Figure 6.17. Images at increase  values for a central streamwise peak extracted from 
high-speed video. Red lines indicate the locations of the peak heated sensors. 
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CHAPTER 7. COMPUTATIONAL MODEL TO PREDICT NON-UNIFORM 
HEATING RESULTS 

The effects of non-uniform heating cases other than those presented in the 

previous chapters on the thermal performance of a microchannel heat sink is not well 

known. Conducting experiments using a large number of non-uniform heating cases to 

study the effects on local wall temperatures and heat transfer coefficients is both time 

consuming and cumbersome. A simplified computational model that can predict the 

effects in a microchannel heat sink allows rapid analysis of multiple different cases. This 

chapter presents a computational model that was developed to predict the results obtained 

from experiments presented in CHAPTER 6. The model includes three-dimensional (3D) 

conduction in the base of the microchannel heat sink, as well as a fin analysis, to 

determine the local temperatures and heat fluxes throughout the domain. The results are 

then compared to the previously obtained experimental results. 

 

7.1 Modeling and Simulation 

A MATLAB [74] code was written in-house to model non-uniform heating in a 

microchannel heat sink and can be found in Appendix G. The author would like to thank 

Professor Tine Baelmans of KU Leuven for providing some of the logic in the code. A 

flow chart of the model algorithm is shown inFigure 7.1. First, the user inputs the 

parameters for a case in a graphical user interface (GUI). This includes the dimensions of 
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the microchannel heat sink, flow conditions, and a heating profile. Next, the code 

generates a mesh for the conduction domain inside the base of the heat sink. After the 

mesh is generated and the variables are initialized, the code loops through calculations of 

conduction in the base, pressure drop in each channel, local heat transfer coefficients as 

determined from correlation, local wall heat fluxes, and local quality. The code then 

checks the maximum change percentage of the temperature in the domain to see if the 

solution has converged. Otherwise, it uses the calculated values to initialize a new 

iteration. After the solution has converged, the code displays the output using a GUI. 

Images of the input and output GUIs are shown in Figure 7.2.  

 

7.1.1 Numerical Methods 

The computational model was split into several subfunctions that each perform 

different calculations. The portion of the model that calculates 3D conduction in the 

substrate uses an energy balance on each cell to calculate the local temperatures in the 

domain. Fourier’s Law is used to calculate the conduction between cells. The cells on the 

bottom surface (  = 0) have a heat flux imposed based on the heating profile specified. 

Heat loss from the heat sink is also imposed on these cells. The heat loss from the heat 

sink is calculated based on local temperatures using a correlation derived from 

experimental data calculated as 

  (7.1) 

The cells on the side surfaces of the heat sink use a Neumann boundary condition 

with the heat flux equal to zero. The cells on the top surface are connected to the channels 

where they experience convection with the fluid, and to fins where they experience 
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conduction through the channel walls. Values for the heat transfer coefficient from 

previous iteration are used to calculate the local wall heat flux in these cells. 

The finite-volume method is used to discretize the energy balance equations used 

in the 3D mesh. The general equation for a cell in the domain is represented as 

 

 
(7.2) 

where  is the coefficient of the cell in question,  is the coefficient of the right 

neighbor,  is the coefficient of the left neighbor, etc., and  is the temperature for 

each cell.  is the source term representing the heat input, heat loss, or convection. 

For a cell on the bottom surface of the domain, this equation can be written and 

rearranged as 

 

 

(7.3) 

where  is the thermal conductivity of silicon, , , and  are the dimensions of each 

cell, and  is the energy into the cell based on the heating profile. 

The system of equations for the 3D domain is solved using a plane-by-plane Tri-

Diagonal Matrix Algorithm (TDMA) method. The TDMA is a form of Gaussian 

elimination used to solve a tri-diagonal system of equations exactly [86]. This is the same 

method utilized in Section 4.1. 
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7.1.2 Heat Transfer Correlations  

The local heat transfer coefficients are calculated using well knowncorrelations 

found in the literature that apply to internal flow in microchannels. The correlation by 

Lee and Garimella [5] was used for single-phase thermally developing flow and is 

calculated as 

 
 (7.4) 

This correlation was used until the single-phase flow was determined to be 

thermally fully developed. The dimensionless thermal entrance length, , was 

calculated with a correlation by Lee and Garimella [94] using the aspect ratio as 

 

 

(7.5) 

Once the single-phase flow was determined to be thermally fully developed, a 

correlation by Lee and Garimella [94] was employed and is calculated as 

 
 (7.6) 

To determine when the flow through each channel reaches saturation, the local 

thermodynamic vapor quality was calculated at each axial location as 

 
 (7.7) 

where  is the sum of the heat transfer rate to the th channel from the inlet to 

location . Once  is positive, the flow is considered to be in saturated two-phase flow. 
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A correlation by Bertsch et al. [95] was used for the saturated two-phase flow heat 

transfer coefficient and is calculated as 

  (7.8) 

where  is the nucleate boiling heat transfer coefficient from the Cooper correlation 

[96] and  is the convective heat transfer coefficient. It is calculated using the 

vapor quality as 

  (7.9) 

The liquid and vapor convective heat transfer coefficients are calculated using the 

Hausen correlation [97] for developing laminar flow and given as 

 

 (7.10) 

where  denotes the liquid or vapor phase. 

To prevent a large discontinuity in the heat transfer coefficients when moving 

between single- and two-phase flow regions, a smoothing function was used and is 

calculated as 

  (7.11) 

where  is the heat transfer coefficient calculated for single-phase flow and  is the 

heat transfer coefficient calculated for two-phase flow. A nondimensional weighting 

factor, , is calculated as 

  (7.12) 
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where  is the current location in the channel,  is the location of the onset of 

nucleate boiling, and  is the location where saturated boiling begins, which is 

determined to be where the vapor quality is positive. The superheat criteria to determine 

the location of the onset of nucleate boiling is calculated using the correlation by Liu et al. 

[4] as 

 
 (7.13) 

After the local heat transfer coefficients are calculated, the local wall heat flux is 

calculated using a fin analysis. The heat flux to the fluid for a fin is calculated as 

  (7.14) 

where  is the overall surface efficiency calculated as 

 
 (7.15) 

which is based on the area of a single fin, , the total heat transfer area, , and the fin 

efficiency, , calculated for an adiabatic tip as 

 
 (7.16) 

 

7.1.3 Flow Maldistribution  

When non-uniform heating profiles in the streamwise direction are imposed on a 

microchannel heat sink, as is the case for a central streamwise hotspot, significant flow 

maldistribution is observed to occur between the channels in experiments. At high power 

input levels, flow reversal can even be seen in the channels above the hotspot. Cases are 
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performed with and without considering flow non-uniformities to assess the amount of 

error introduced into the calculated results. 

The flow maldistribution was estimated by image processing high-speed video 

frames of boiling in the heat sink. The videos used in the estimation are discussed in 

Section 6.3. A modified version of the MATLAB image processing code discussed in 

Section 3.2 was utilized for this task. First, each frame is rotated and cropped to the area 

of interest. Second, the background is subtracted and the gray-scale image is passed 

through a threshold to produce a negative image with increased contrast. Next, 

characteristic edges of the two-phase flow are detected using the Canny algorithm 

implemented within MATLAB [74] and a binary image is produced. For the image 

processing code to calculate a void fraction, the exact air-water interface needs to be 

resolved. However, to estimate the flow velocities, the exact liquid-vapor interface is not 

needed, but only characteristic shapes of the two-phase flow. Figure 7.3a shows an 

example of the characteristic shapes that were detected in one test case. The bubble 

velocity in each channel is estimated using a two-dimensional cross-correlation algorithm 

within MATLAB between frames. A minimum of 50 sequential frames is used and the 

average velocity among the frames is estimated. The average bubble velocity for the test 

case is shown in Figure 7.3b. Once the two-phase flow velocity in each channel is known, 

the mass flux is estimated. The remaining mass flux is assumed to be evenly distributed 

among channels that contain only liquid. 
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7.2 Results and Discussion 

The results of the computational model were compared with the experimental 

results presented in Section 6.3. Three cases are discussed: a uniform heating profile, a 

central transverse hotspot, and a central streamwise hotspot. The central streamwise 

hotspot was tested with and without taking flow maldistribution into consideration while 

the other cases were tested without flow maldistribution. 

The base temperatures, wall heat fluxes, and heat transfer coefficients for a 

uniform heating profile with a total power input of 33 W is shown in Figure 7.4. In a 

uniform case, the computational model underpredicts the base temperature and 

overpredicts the heat transfer coefficient, but the trends for all three values match those 

for the experiments. This result is indicative primarily of the accuracy of the heat transfer 

coefficient correlations, not the model itself; since all three of these variables are coupled, 

a correction in the heat transfer coefficient would ultimately improve the results for the 

base temperature.  

For the central transverse hotspot case at a power input of 33 W the base 

temperatures, wall heat fluxes, and heat transfer coefficients are shown in Figure 7.5. The 

computational model matches the experimental results with good agreement. As in the 

uniform case, the heat transfer coefficient is overpredicted by the model while the base 

temperature is slightly underpredicted. Even though the correlations used to calculate the 

heat transfer coefficient were originally developed for a uniformly applied heat flux, the 

trends predicted by the model still match the experimental trends well. 

The base temperatures, wall heat fluxes, and heat transfer coefficients for a central 

streamwise hotspot are plotted in Figure 7.6. The plots show the experimental data as 
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well as the results from the computational model with and without flow maldistribution 

taken into account. For the flow maldistribution case, the middle 7 channels located 

directly above the hotspot used a mass flux of 75% of the average mass flux in a channel. 

The remaining 28 non-boiling channels used a mass flux of 106.25% of the average mass 

flux in a channel so that the total mass flux remained the same as in the case without flow 

maldistribution. Like the previous cases, the model predicts the trends well, however the 

base temperature is still underpredicted while the heat transfer coefficient is 

overpredicted. Accounting for decreased flow in the channels above the hotspot improves 

the results slightly. Additionally in this case, the flow maldistribution predicts the 

location of boiling incipience in the channel further upstream, as observed in the 

experiments. 

 

7.3 Conclusions 

In this chapter a simple computational model was developed to predict the 

thermal performance of a microchannel heat sink exposed to non-uniform heating 

profiles. The predictions from the model were compared to experimental data for four 

cases with reasonable agreement. While the model underpredicts the base temperatures 

and overpredicts the heat transfer coefficients; this is suspected to be due to the accuracy 

of the correlations for predicting the heat transfer coefficient under the current 

experimental conditions. Results for a central streamwise hotspot were compared with 

and without considering flow maldistribution. Taking into account flow maldistribution 

in the channels improved the match between the results from the model and experimental 

data, demonstrating that large amounts of flow maldistribution cannot be ignored. Even 
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though the model does not fully capture flow instabilities within a microchannel heat sink, 

it is still a useful tool for predicting the effects of non-uniform heating on thermal 

performance.   
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Figure 7.1. The algorithm used in the computational model. 
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Figure 7.2. The (a) input and (b) output GUIs of the computational model. 
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Figure 7.3. (a) Characteristic shapes detected to calculate the (b) bubble velocity in each 
channel. 
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Figure 7.4. (a) The base temperature, (b) wall heat flux, and (c) heat transfer coefficients 
for a uniform heating case with a power input of 33 W. 
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Figure 7.5. (a) The base temperature, (b) wall heat flux, and (c) heat transfer coefficients 
for a central transverse hotspot with a power input of 33 W. 
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Figure 7.6. (a) The base temperature, (b) heat transfer coefficients, and (c) wall heat flux 
for a central streamwise hotspot with a power input of 24.4 W with and without flow 

maldistribution. 
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CHAPTER 8. EFFECTS OF NON-UNIFORM HEATING ON THE CRITICAL HEAT 
FLUX 

The demanding performance, weight, and size constraints placed on modern 

electronics systems has driven packages and components increasingly thinner and more 

compact; incorporation of thick heat spreaders to mitigate propagation of heat generation 

non-uniformities is an obsolete thermal management strategy in high-performance 

systems. Instead, non-uniform heat flux profiles must be directly accommodated by the 

heat sink. Microchannel heat sinks are an excellent choice due to their ability to handle 

high heat fluxes, but an improved understanding of the effects of non-uniform heating 

profiles on the heat dissipation limits of microchannel heat sinks is needed to address 

these thermal packing trends. This chapter studies the location and magnitude of the 

critical heat flux in a microchannel heat sink with several canonical hotspot heating cases. 

This work gives a better understanding of how non-uniform heating profiles change the 

critical heat flux as compared to a uniform case. The material in this chapter was 

submitted to be considered for publication in the International Journal of Micro-Nano 

Scale Transport. 
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8.1 Experimental Methods 

8.1.1 Test Section 

The microchannel test section used in the current study is the same as that 

described in Section 6.1.1 and is shown as an inset in the flow loop schematic diagram 

Figure 8.1, a summary of the details are provided here. The working fluid routes through 

a silicon microchannel heat sink with a base area of 12.7 mm × 12.7 mm via a transparent 

manifold cover plate made of polycarbonate. The silicon heat sink is mounted directly on 

a printed circuit board (PCB) that is connected to an electrical quick-connect board; a 

G10 glass-epoxy composite layer is placed in between the PCB and quick-connect board 

as thermal insulation. A 0.8 mm-thick silicone rubber sheet is sandwiched between the 

microchannel heat sink and cover plate to insulate the polycarbonate from thermal 

damage (rated to a temperature of 115-130 °C), and forms a seal from the cover plate to 

the top walls of the microchannel fins to prevent cross flow between the channels. The 

manifold has inlet and outlet header sections, each with a flow length of 10 mm, width of 

12.7 mm, and height of approximately 1.4 mm. 

The silicon heat sink is manufactured by cutting microchannels in parallel into the 

top surface of a 650 μm-thick chip via a dicing saw. A single heat sink with 35 

microchannels is used in the current study; the channel widths are 240 μm, channel 

depths are 370 μm, and fin widths are 110 μm. The channels were cut with multiple 

passes creating waviness on the bottom channel surface. The average roughness of a 

single cut is 0.2 μm, and the overall average surface roughness of the bottom of the 

channels is 0.82 μm. The sides of the channels have a surface roughness of 0.1 μm [9]. 
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A 5 × 5 array of resistance heaters and temperature-sensing diodes is located on 

the bottom side of the heat sink. The equivalent individual heater resistances allow a 

single voltage to be applied in parallel to produce a uniform flux over the desired area. 

Connector pins are used to connect a DC voltage power supply to specific heaters to 

provide customized, non-uniform heating profiles to the underside of the microchannel 

heat sink. From the applied voltage, the local temperature at each diode and heat 

generated by the resistors are calculated based on a calibration of the resistance of each 

sensor. Details about the calibration procedure for each sensor is found in [9]. 

To prevent damage to the test chip while investigating CHF, a cutoff sensor is 

connected to the power supply. When the sensor detects a chip temperature above a 

preset threshold, the power supply is almost immediately (within a few milliseconds) 

disconnected from the heaters. The preset threshold was chosen as the upper limit of safe 

operating temperatures for the test chip, approximately 140 °C. 

 

8.1.2 Flow Loop 

The experimental flow loop is a modified version of that described in Section 

8.1.2, and a schematic diagram is shown in Figure 8.1. A Micropump 415A magnetically 

coupled gear pump circulates the dielectric fluid HFE-7100 through the loop and a 

preheater warms the fluid to the desired test section inlet temperature. The fluid HFE-

7100 was chosen for its low boiling point (61 °C at 1 atm) so that experiments can be run 

up to CHF within the safe operating temperature range of the test chip; note this is a 

different fluid than that used previously in [88]. A liquid-to-air heat exchanger is placed 

downstream of the test section to cool the fluid before reentering the reservoir. The liquid 
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flow rate is measured using a 20-200 mL/min McMillan S-114 microturbine flow meter. 

The fluid temperature is measured using T-type thermocouples upstream of the preheater, 

upstream and downstream of the test section, and downstream of the heat exchanger. The 

inlet pressure is measured using a 0-30 psia Gems Sensors 2200 series pressure 

transducer. The pressure drop across the test section is measured using a 0-10 psi Omega 

PX2300 series differential pressure transducer. 

High-speed videos viewing normal to the top of the heat sink are captured using a 

Photron Fastcam Ultima APX high-speed digital video camera combined with a Nikon 

AF Micro-Nikkor 200 mm IF-ED lens. The microchannel heat sink is illuminated using a 

Sunoptic Technologies Titan 300 xenon arc lamp. High-speed videos are captured at 

8,000 frames per second using a shutter speed of 8 kHz. 

 

8.1.3 Test Procedure 

Prior to collecting data, the fluid is degassed using a vacuum pump connected to 

an expandable reservoir. The expandable reservoir design is detailed in [90]. At ambient 

temperature and pressure, HFE-7100 contains 53% air by volume [98].The expandable 

reservoir is first fully expanded to create a gas space at the top. A vacuum pump is used 

to produce a vacuum pressure equal to the vapor pressure of the fluid for 2 min to remove 

the combination of air and HFE-7100 vapor that has collected in the gas space. The 

expanded reservoir is then left at a vacuum pressure for at least one hour to allow the 

dissolved air to diffuse from the liquid into the gas space. The process is repeated until 

the vacuum pressure in the reservoir is constant with time, which indicates that air is no 

longer diffusing out of the liquid. The fluid is then cycled through the flow loop and the 
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process is repeated to ensure that all air is removed from the system. The fluid is 

considered fully degassed once the measured fluid temperature at incipience is equal to 

the saturation temperature of HFE-7100 when boiled in the preheater. 

Experiments in the current study are performed at a single mass flux of 797 

kg/m2s. After a constant flow rate is maintained, the fluid is preheated to a test section 

inlet temperature of approximately 50.8 °C that remains fixed throughout the test. The 

expandable reservoir is allowed to expand freely in order to maintain a relatively constant 

system pressure near atmospheric. 

Power is supplied to individual heating elements to simulate various hotspot 

configurations. The total power supplied to these heating elements is incremented from 

zero until the critical heat flux is reached. At each power input level, the system is 

allowed to reach steady state before moving on to the next. When CHF is reached, the 

local temperature rapidly increases and the cutoff sensor is triggered. When the cutoff is 

triggered the first time, the total power supplied is noted and the system is reset. After the 

system is reset, the power input is set to just below the level that first triggered the cutoff, 

such that CHF can be approached in fine power input increments. After successive 

honing in on the power input nearing CHF, the system is allowed to reach steady state at 

a heater power at which any perceptible increase will cause it to reach CHF. This 

procedure provides an accurate measurement of CHF and the system conditions just 

below CHF. Transient CHF data is not included due to the limited frequency of the chip 

temperature measurements. High-speed videos of the microchannel heat sink are 

recorded while CHF is reached to visually capture the phenomenon. 



140 

 

The cutoff sensor conveniently allows repeated activation of critical heat flux 

using a single test chip without damage. A test chip was sacrificed to demonstrate the 

damage done if CHF is allowed to occur uninterrupted. Fifteen of the temperature sensors 

were permanently damaged and the silicon heat sink itself was cracked. Images of an 

undamaged test piece and a test piece damaged by CHF are shown in Figure 8.2. 

 

8.1.4 Data Reduction 

Local heat fluxes, wall temperatures, and fluid temperatures are measured for all 

data at steady state. The data reduction method briefly summarized here is the same as 

that used in Section 6.2; fluid properties have been updated to account for the change in 

fluid from FC-77 to HFE-7100. This process takes into account heat spreading that 

occurs within the heat sink base for cases with non-uniform heating. A MATLAB script 

of the data reduction process can be found in Appendix C. 

The net local heat transfer rate from the microchannel heat sink to the fluid  is 

calculated based on an energy balance for each heating element which consists of the 

energy generated, the heat loss, and lateral conduction between elements as 

  (8.1) 

The test section heat loss is calibrated as a function of the base temperature. A 

complete description of the calibration procedure is found in [91]. Lateral conduction that 

occurs when non-uniform heating profiles are imposed is calculated between elements as 

  (8.2) 

where the total net conduction depends on the four neighboring elements to heater . 
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The bulk fluid temperature above each heating element in single-phase flow is 

calculated as 

 
 (8.3) 

where   represents the sum total of net heat transferred to the fluid from the inlet 

to the heating element in question. After sufficient sensible heating to the saturation 

temperature, the fluid temperature is then maintained equal to the saturation temperature 

at the local pressure. 

A corrected local wall temperature is calculated based on the measured diode 

temperature by accounting for conduction through the base of the microchannel heat sink 

and is calculated as 

 
 (8.4) 

The local base heat flux is calculated using the local net heat transfer rate as 

 
 (8.5) 

The local heat flux transferred to the fluid is also calculated using the local net 

heat transfer rate and is based on the wetted area of the channels as 

 
 (8.6) 

 

8.1.5 Test Cases 

A variety of non-uniform heating profiles were investigated and are shown in 

Figure 8.3. Heaters in the hotspot locations (displayed in red) are turned on while the 
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remainder (displayed in gray) are powered off. The first case is a uniformly heated profile 

that serves as a basis of comparison for the remaining non-uniform cases. The next three 

cases correspond to hotspots that span the width of the heat sink in the transverse 

direction, placed at the inlet, center, and outlet of the flow path. The next case 

corresponds to a centered hotspot that spans the length of the heat sink in the streamwise 

direction. The last case corresponds to two transverse hotspots located at the inlet and 

outlet. 

 

8.2 Results and Discussion 

The total power input, local heat flux, and maximum wall excess temperature at 

the critical heat flux are summarized for all cases in Table 8.1. Selected cases from this 

table will be analyzed in greater detail in subsequent paragraphs to illustrate the key 

effects of non-uniform heating on CHF observed. Figures containing the full dataset can 

be found in Appendix F. For all cases, the local heat flux and wall temperature are 

maximum above the active heater elements, as expected. The influence of non-uniform 

heating on the trends in local wall temperatures, heat fluxes, and heat transfer coefficients 

leading up to CHF are explained in detail in Section 6.3. Interested readers should refer to 

this previous section for detailed discussion of these trends; the discussion herein is 

exclusive to the influence on CHF (note that a different working fluid is used in the 

current chapter). 

Boiling curves for a central transverse hotspot (sensors 11-15) and a central 

streamwise hotspot (sensors 3, 8, 13, 18, and 23) are shown in Figure 8.4. These curves 

are produced using the local heat flux transferred to the fluid and the local wall excess 
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temperature. For single-phase flow, the wall excess temperature is calculated using the 

local bulk fluid temperature, and for two-phase flow it is calculated using the saturation 

temperature. 

In the central transverse hotspot case, the wall excess temperature initially 

increases with a constant slope as the heat flux is increased. This reflects the relatively 

constant heat transfer coefficient characteristic of single-phase flow. The lines for all 

heated sensors overlap in this region. Boiling incipience is indicated by the wall 

temperature reduction and increased slope of the lines, and is confirmed in the high-speed 

videos. In the two-phase region, lines corresponding to the three middle sensors overlap 

(12-14); the two sensors on the boundaries (11 and 15) show a larger wall excess 

temperature. In this case, CHF occurs above sensor 15 on the boundary; as CHF is 

approached, a simultaneous decrease in the heat flux transferred to the fluid and increase 

in wall excess temperature is observed. This behavior aids identification of the general 

location of CHF for all cases; the exact location is confirmed using visual evidence from 

the high-speed imaging. Throughout this study, CHF typically occurs in a location near 

the lateral boundaries of the microchannel heat sink (unless that area is not heated). This 

location can be confirmed for all cases via high-speed images and the boiling curve (as 

was demonstrated for the central transverse case here). It is likely that CHF occurs in 

these locations because of maldistribution caused by the inlet manifold geometry that 

reduces the flow into these channels [99]. 

High-speed images during the period where the temperature cutoff is triggered are 

shown in Figure 8.5; CHF is determined to occur in the bottommost channel in the 

images. The images show a portion of the flow length across the chip and only the 4 
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channels nearest the edge of the heat sink over hotspot sensor 15. At time  = 0 ms, the 

system is at a stable point just prior to the occurrence of CHF. In the bottommost channel, 

small bubbles nucleate over the hotspot, grow, and are carried downstream. A short time 

later (  = 44.9 ms), CHF is reached and larger bubbles form in the channel which 

coalesce to form a larger vapor region. This vapor region quickly expands in both 

directions until the channel is almost completely full of vapor (  = 50.5 ms). This sudden 

vapor expansion causes a local rapid temperature increase and triggers the cutoff sensor. 

Additionally, the local pressure within the channel increases preventing liquid from 

entering and creating local flow reversal. After the power is cut off and the pressure in 

the bottom channel has equalized, liquid is allowed to flush through the channel and the 

wall temperature is reduced (  = 58.5-82.4 ms). Sudden vapor expansion is characteristic 

of CHF for all cases; however, it was most cleanly observed in the high-speed videos of 

the central transverse hotspot case. 

Boiling curves for the central streamwise hotspot case are shown in Figure 8.4b. 

Like the central transverse hotspot case, a single-phase region with constant slope is 

observed. This slope is largest for the heater furthest upstream (sensor 3), corresponding 

to the higher heat transfer coefficient in the entrance region of thermally developing flow, 

and decreases for sensors successively downstream. Once again, boiling incipience is 

indicated when the slope of the lines change, as is confirmed with high-speed videos. In 

this case, since the entire flow path of the middle channels over the hotspot is heated, the 

behavior is expected to be similar to a uniformly heated case where CHF always occurs 

at the outlet [54]. In the case of the central streamwise hotspot, the temperature rise from 

sensors 3 to 8 in the upstream portion of the heat sink generally follows the trends for a 
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uniform heating case, however rapid vapor expansion leads to a rapid temperature 

increase (i.e., CHF) slightly upstream of the outlet, above sensor 18. This is reflected in 

the boiling curve where the largest wall excess temperature is measured at sensor 18 and 

corresponds with a drop in the heat flux transferred to the fluid. High-speed video 

evidence for this case also indicates that bidirectional vapor expansion in the channels 

begins upstream of the outlet, centered over sensors 13 and 18. In this study, CHF always 

occurs within the footprint of the hotspot, and unlike uniform heating, does not 

necessarily occur at the outlet (even if it is part of the hotspot). 

The boiling curve results showed that the location where the cutoff sensor triggers, 

considered the location where CHF occurs, is strongly dependent on the heating profile.  

Further interrogation of the data shows that the maximum wall excess temperature at 

CHF also varies significantly based on the heating configuration and ranges from 54.1 °C 

to 73.9 °C, as seen in Table 8.1. One mechanism for these differences is heat spreading in 

the substrate. Transverse hotspot cases conduct heat through the silicon substrate both up 

and downstream; streamwise hotspot cases conduct heat transverse to the flow direction 

between channels. Another possible mechanism for this difference is advection of heated 

fluid to non-heated regions within a channel. Since transverse hotspot cases allow for this 

to happen, it is expected that a transverse hotspot would see lower maximum wall excess 

temperatures at CHF as compared to streamwise and uniform heating profiles, where 

heated fluid continues to flow over downstream heated regions. In fact, the only cases 

where this is true lack a hotspot at the outlet of the heat sink. The two transverse cases 

that have active heaters at the outlet, viz., a transverse hotspot at the outlet and the dual 
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transverse hotspots, have wall excess temperatures similar in magnitude to that of a 

uniformly heated case. 

To explore the effect of a hotspot with the same basic heating profile placed in 

different locations on the heat sink, a transverse hotspot was investigated at inlet, central, 

and outlet locations along the microchannel flow path. The differences between these 

three cases are summarized in Table 8.1. Critical heat flux is reached at the highest base 

heat flux of total power input (61.3 W) when the hotspot is located in the center (not to be 

confused with the highest local wall flux). This is because heat has a path to spread both 

up and downstream to non-heated regions within the heat sink, whereas the inlet and 

outlet cases limit heat spreading to one direction. When the hotspot is moved to the outlet 

or inlet, CHF is reached at a lower total power input. 

The local wall critical heat flux itself also varies based on the streamwise location 

of the transverse hotspot, and is indicative of the different hydrodynamics for each 

location at CHF. Temperature and heat flux maps of the three transverse hotspot cases at 

CHF are shown in Figure 8.6. The location where CHF occurs is marked with an “X”. 

When the hotspot is located at the outlet, the local critical heat flux is the lowest of the 

three cases at 29.7 W/cm2. When the hotspot is at the inlet, the local critical heat flux of 

53.4 W/cm2 is the highest for all the cases tested. In general, the critical heat flux 

decreases as the hotspot moves downstream, and the wall excess temperature increases. 

The reason for this behavior has to do with the ability of the location of the hotspot to 

communicate with the inlet manifold. When the hotspot is located at the inlet, quickly 

expanding vapor regions more easily are able to reverse back into the manifold, which 

allows fresh liquid to enter the channel before thermal runaway. When the hotspot is 
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located further downstream, vapor that may expand upstream must travel a longer 

distance to reach the inlet manifold. In the current study, the expanding vapor region was 

never observed to reach the inlet manifold in either the central or outlet transverse hotspot 

cases; the critical heat fluxes are hence decreased compared to the inlet case. 

 

8.3 Design Principles 

When designing a microchannel heat sink for a given non-uniform heating 

configuration, there are a few generic design principles that should be followed. First, the 

heat sink should be oriented so that the hotspot is located at the inlet. This will increase 

the critical heat flux and recuce the wall excess temperature. Second, the heat sink should 

be oriented so that as many channels as possible are located above the hotspot, in a 

transverse configuration. This will reduce the flow maldistribution in the heat sink and 

prevent a decrease in the critical heat flux. Third, the heat sink should be oriented so that 

the heated length imposed on the channels is minimized. If the hotspot cannot be 

distributed amongst all of the channels, reducing the heated length will reduce the flow 

maldistribution and mitigate any decrease in the critical heat flux.  

 

8.4 Conclusions 

The effects of non-uniform heating profiles on the location and conditions for the 

critical heat flux in a microchannel heat sink were investigated. Local wall temperatures, 

local wall heat fluxes, and total power input were measured using an array of embedded 

temperature sensors and high-speed videos were obtained. Hotspots that spanned the 
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width or length of a silicon microchannel heat sink were explored by increasing the 

supplied input power until CHF was achieved. 

In terms of the total power input necessary to reach CHF, a central streamwise 

hotspot is the worst case tested. Transverse hotspots generally have a larger total power 

input than a streamwise hotspot at CHF; the maximum power input is dissipated at CHF 

when a transverse hotspot is located in the center of the flow length, due to the auxiliary 

capability to conduct heat upstream and downstream. It was found that the central 

streamwise case yielded the lowest critical heat flux and largest maximum wall excess 

temperatures at CHF in comparison to all transverse cases. This is due to active heaters 

present along the entire flow length of the heat sink creating flow maldistribution among 

the channels. The transverse hotspot cases produced higher critical heat fluxes and lower 

maximum wall excess temperatures at CHF; the critical heat flux decreased and 

temperature increased as the hotspot moved from the inlet to the outlet. The high critical 

heat flux and low wall excess temperature that occurs when the hotspot is located at the 

inlet is attributed to the ability for expanding vapor regions to communicate with the inlet 

manifold. 

The critical heat flux was identified based on trends in the boiling curves and a 

rapidly increasing local wall temperature that tripped a power supply cutoff sensor; the 

location of critical heat flux was confirmed via high-speed movies. A rapid vapor 

expansion in one or more channels above the hotspot leads to CHF. The location of CHF 

depended on the heating configuration and only occurred at the location of the hotspot, 

and not necessarily at the outlet. Furthermore, in the current study, CHF typically 

occurred in channels within the regions of the hotspot located on the lateral boundaries of 
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the heat sink. The repeatable occurrence of CHF in these same channel locations is very 

likely due to slight flow maldistribution caused by the inlet manifold geometry. Thus, the 

location of CHF can be anticipated based on a combination of the heating profile and 

flow maldistribution between the channels. 
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Table 8.1. Summary of results for all test cases. 
 Total power input 

at CHF (W) 
Local heat flux 
at CHF (W/cm2) 

Maximum wall excess 
temperature at CHF (°C) 

Uniform 137.2 14.2 67.0 
Inlet transverse 57.2 53.4 54.1 
Central transverse 61.3 42.8 62.5 
Outlet transverse 44.8 29.7 67.4 
Central streamwise 34.9 8.7 73.9 
Dual transverse 89.7 25.9 65.9 
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Figure 8.1. Schematic diagram of the flow loop; a photograph of the microchannel test 
section is inset. 
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Figure 8.2. The microchannel heat sink and corresponding backside PCB traces shown 
for (a) an undamaged test chip and (b) a test chip damaged after CHF. Red lines indicate 

the location of the heat sink on the opposite side of the PCB to scale. 
  

(a) 

(b) 
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Figure 8.3. Non-uniform heating profiles investigated in the current study. 
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Figure 8.4. Heat flux transferred to the fluid plotted against the wall excess temperature 

for (a) a central transverse hotspot and (b) a central streamwise hotspot. “X” indicates the 
location of CHF.  
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Figure 8.5. High-speed images recorded at 8000 frames per second for a central 

transverse hotspot at CHF. Flow goes from left to right; the hotspot is indicated by the 
red dashed lines. Vapor expands rapidly in the bottommost channel (maximum upstream 

distance at  = 50.5 ms) at CHF before the heater power is cut off. 
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Figure 8.6. Wall excess temperature map for (a) inlet transverse, (b) central transverse, 
and (c) outlet transverse hotspot heating cases at CHF. Heat flux map for (d) inlet 

transverse, (e) central transverse, and (f) outlet transverse hotspot heating cases at CHF. 
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CHAPTER 9. CONCLUSIONS AND RECOMMENDATIONS  

The main conclusions of this thesis are summarized in this chapter and 

recommendations for future work are provided.

 

9.1 Conclusions 

In this work, two-phase flow in a microchannel heat sink was investigated. 

Experimental and numerical investigations of an impedance-based sensor were 

performed to measure the void fraction in air-water adiabatic flow in a square 

microchannel. Both crosswise and streamwise electrode configurations were examined 

and the void fraction was estimated using image analysis of high-speed videos. 

Additionally, an experimental study of the effects of non-uniform heating on a 

microchannel heat sink was performed. Several canonical hotspot and non-uniform peak 

heating cases were tested and the local wall temperatures, heat fluxes, and heat transfer 

coefficients were obtained. High-speed videos of boiling in the heat sink were also 

captured. A simple computational model was developed to predict the thermal 

performance of a microchannel heat sink exposed to non-uniform heating profiles and the 

predictions were compared to the obtained experimental data. Finally, an experimental 

study was performed to determine the effects of hotspots on the location and magnitude 

of the critical heat flux in a microchannel heat sink. Major findings of this thesis include: 
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1. The calculated time-averaged void fraction shows reasonable agreement with 

those predicted by the homogeneous equilibrium and drift-flux models. 

2. The impedance void fraction meter measurement techniques can be used to 

study non-adiabatic and boiling flows with similar crosswise electrode 

geometry as long as changes in electrical properties of the fluid with 

temperature are taken into account. 

3. The relationship between the void fraction and measured impedance is non-

linear for all cases tested. 

4. The shape and distribution of voids had no significant effect on simulated 

impedance for voids modeled in parallel. 

5. A clear dependence on the fluid electrical conductivity was observed and an 

optimal range between 100 and 175 S/cm was found for electrodes placed in 

a streamwise configuration. 

6. For non-uniform heating in microchannel heat sinks, experimental results 

show that even with a very thin substrate, significant lateral conduction occurs 

in the base. 

7. For a central streamwise hotspot, the maximum sustainable total power input 

achieved is reduced by 26.6% compared to a central transverse hotspot. 

8. For a transverse hotspot located at the inlet, although the maximum 

sustainable total power input is similar to that of a central transverse hotspot 

case, the local maximum heat flux is increased by 35.7% as a result of 

significantly reduced upstream heat spreading. 
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9. The same total power input distributed in different locations and 

configurations across the heat sink can cause significantly different limits on 

the maximum heat fluxes and wall temperatures that can be supported. 

10. For a non-uniform transverse peak-heating profile, an increase in the heating 

nonuniformity results in significant boiling at the location of peak heat input, 

whereas no boiling occurs under uniform heating conditions. 

11. Taking into account flow maldistribution improved the match between the 

computational model and experimental data; large amounts of flow 

maldistribution cannot be ignored. 

12. Of all the cases tested, a central streamwise hotspot is the worst case; it 

yielded the lowest critical heat flux and largest maximum wall excess 

temperature at CHF. 

13. Active heaters present along the entire flow length of the heat sink create flow 

maldistribution among the channels and lowers the critical heat flux. 

14. As a transverse hotspot is moved from the inlet to the outlet, CHF decreases 

and the maximum wall excess temperature increases. 

15. A rapid vapor expansion in one or more channels above the hotspot leads to 

CHF. 

16. The location of CHF depends on the heating configuration and only occurs at 

the location of the hotspot, and not necessarily at the outlet. 

 

9.2 Suggestions for Future Work 

Potential future work following that described in this thesis include: 
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1. The development of a critical heat flux correlation for non-uniform heating in 

a microchannel heat sink. The correlations for CHF found in the literature 

were all developed under uniform heating conditions. The experimental 

results showed a large difference in the local heat flux between uniform and 

non-uniform cases; current models cannot accurately predict the magnitude or 

the location of CHF. Once a correlation is developed, it can be implemented 

in the computational model for improved results. 

2. Perform experiments to measure the pressure drop in each channel of a 

microchannel heat sink in order to better calculate flow maldistribution. Both 

the experiments and computational model show that when analyzing the 

thermal performance of a microchannel heat sink significant flow 

maldistribution cannot be ignored. Although the flow non-uniformities can be 

estimated using image analysis of high-speed videos, a more robust model 

based on local pressure drop is desired both for accuracy and for ease of 

measurement. 

3. Incorporate improved heat transfer coefficent correlations into the 

computational model for improved results. The correlations for heat transfer 

coefficient used in the computational model were all derived for uniform 

heating conditions. An improved correlation either found in the literature or 

developed from experimental data presented in this thesis that takes into 

account the nuances of non-uniform heating will greatly improve the results of 

the computational model. 
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Appendix A MATLAB Script for Image Processing 

A MATLAB script was developed to analyze high-speed videos as discussed in 

Section 3.2.1 to determine the void fraction. The following script reads in each frame of a 

movie file, determines the boundaries of the gas regions, and calculates the void fraction. 

It is split up into many functions; Table A.1 displays the function number, name, 

description, and page number where it can be found. 

 

Table A.1. A list of all of the functions of the image analysis script. 
Function 
Number Function Name Description Page 

Number 
1 voidfrac.m The main program 171 

2 annpoints.m Organizes detected edge points for annular 
flow 176 

3 annvoid.m Calculates void fraction data for annular flow 177 

4 backg.m Generates a background image and subtracts 
it for all frames 178 

5 contbound.m Fills in points to obtain a closed object 179 

6 edgedetann.m Detects bubbles edges in annular flow 179 

7 edgedetect.m Detects bubbles edges 180 

8 fit_ellipse.m Fits an ellipse to the detected edge points in 
bubbly flow 181 

9 GetBgImage.m Obtains a user specified background image 
and subtracts it for all frames 184 

10 identify.m Identifies objects in an image 185 

11 inputin.m Obtains information from the user 187 

12 joinpoints.m Find a neighboring point to connect two 
segments 188 

13 movieplot1.m Capture images to create a movie 189 

14 outputann.m Calculate the output for annular flow 190 

15 outputbub.m Calculate the output 190 
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Table A.1. Continued. 
Function 
Number Function Name Description Page 

Number 
16 plotdataann.m Plot the output for annular flow 191 

17 plotdatabub.m Plot the output 191 

18 points.m Obtain points above a line of symmetry 192 

19 readrotate.m Read in and rotate frames from a movie 192 

20 rotatebub.m Rotate detected edge points in a bubble 193 

21 slugvoid.m Calculate void fraction data for slug flow 194 

22 symmetry.m Find a line of symmetry for an object 195 

23 trap.m Calculate a volume rotation using the 
trapezoid rule 196 

 

Function 1. voidfrac.m: 
clear all; 
close all; 
tic; 
[filename,width,depth,regime,xfrac,StartFrame,EndFrame,OutFileName,Angl
eRotate,CropUpRow,CropDnRow,CropLCol,CropRCol,NFrameBG,BGFileName,BGFra
meNumber,ImAdjustLow,ImAdjustHigh,ImAdjustLowAnn,ImAdjustHighAnn,CannyL
ow,CannyHigh,CannyWidth,CannyLowAnn,CannyHighAnn,CannyWidthAnn,findback
g]=inputin();   %input info from user 
disp('reading movie...'); 
[frames,movs,movcolor]=readrotate(filename,StartFrame,EndFrame,AngleRot
ate,CropUpRow,CropDnRow,CropLCol,CropRCol);       %read in movie frames 
%findbackg=input('User supplied background? yes=1, no=0 '); 
if findbackg    %user supplied background 
 BGUsr=GetBgImage(BGFileName,BGFrameNumber,AngleRotate,CropUpRow,Cro
pDnRow,CropLCol,CropRCol); 
    [bg,frames2]=backg(frames,movs,NFrameBG,BGUsr); 
else            %need to find background 
    if regime==1 
        BGUsr=0; 
        [bg,frames2]=backg(frames,movs,NFrameBG,BGUsr);      %subtract 
background from frames 
    else 
        bg=255*ones(size(frames{1}),'uint8'); 
        frames2=frames; 
    end 
end 
fln=strrep(filename,'.avi','');                     %test name 
%name of log file 
filen=strcat('logfile_',fln,'_2_',num2str(StartFrame),'to',num2str(EndF
rame),'.txt'); 
file1=fopen(filen,'w');                             %create log file 
fprintf(file1,'Log File for test %s\n',fln); 
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fprintf(file1,'Start frame: %4.0f\n',StartFrame); 
fprintf(file1,'End frame: %4.0f\n',EndFrame); 
if regime==1 
    fprintf(file1,'Flow regime: bubbly\n'); 
elseif regime==2 
    fprintf(file1,'Flow regime: slug\n'); 
else 
    fprintf(file1,'Flow regime: churn/annular\n'); 
end 
fprintf(file1,'Channel dimensions:%4.0f x%4.0f square 
microns\n',width,depth); 
s=size(frames{1}); 
fprintf(file1,'Image dimensions:%4.0f x%4.0f square 
pixels\n',s(1),s(2)); 
fprintf(file1,'------------------------------------------------\n'); 
%preallocate variables 
voidf=zeros(1,movs(2)); 
Avoid=zeros(1,movs(2)); 
SAtot=zeros(1,movs(2)); 
BW=cell(1,movs(2)); 
coords=cell(movs(2),1); 
xsall=cell(movs(2),1); 
ysall=cell(movs(2),1); 
yn3all=cell(movs(2),1); 
xn2all=cell(movs(2),1); 
mall=cell(movs(2),1); 
ball=cell(movs(2),1); 
allframes(movs(2))=struct('cdata',[],'colormap',[]); 
disp('running calculations'); 
for n=1:movs(2) 
    disp([num2str(100*n/movs(2)) '% complete']);    %display percent 
complete 
    if frames2{n}==255        %if frame is completely white (no bubbles) 
        disp('skiped frame'); 
        fprintf(file1,'Skipped frame %i, same as background\n',n); 
        s3=size(frames2{n}); 
        if regime~=1 && regime~=2 
            BW{n}=zeros(s3(1)+2*(CannyWidthAnn+1),s3(2)); 
            BW{n}=logical(BW{n}); 

[allframes(n)]=movieplot1(frames{n},coords{n},xline,0,[s3(1
)+2*(CannyWidthAnn+1),s3(2)],WBbox); 
        else 
            BW{n}=zeros(s3(1)+2*(CannyWidth+1),s3(2)+2*(CannyWidth+1)); 
            BW{n}=logical(BW{n}); 

[allframes(n)]=movieplot1(frames{n},coords{n},xline,0,s3+2*
(CannyWidth+1),WBbox); 
        end 
        continue; 
    end 
    if regime==1 || regime==2 

[BW{n},WBbox]=edgedetect(frames2{n},ImAdjustLow,ImAdjustHigh,Ca
nnyLow,CannyHigh,CannyWidth);    %detect bubble edges (bubbly, slug) 
    else 
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[BW{n},WBbox]=edgedetann(frames2{n},ImAdjustLowAnn,ImAdjustHigh
Ann,CannyLowAnn,CannyHighAnn,CannyWidthAnn); %detect bubble edges 
(churn, annular) 
    end 
    %identify bubble coordinates 

[bound,bound2,dpixels,xline,s,ss,wratio,linebub]=identify(BW{n},WBbo
x,width,depth,xfrac,regime); 
    coords{n}=bound2; 
    for i=1:s(1) 
        if linebub 
            fprintf(file1,'Skipped bubble %i in frame %i, bubble is a 
line\n',i,n); 
        end 
    end 
    %optional movie with edges drawn on top 
    [allframes(n)]=movieplot1(frames{n},bound2,xline,s,ss,WBbox); 
    %[colormap2,allframes{n}]=movieplot2(frames2{n},movcolor,bound); 
    if regime==1                %calculations for bubbly flow 
        %preallocate variables 
        Abub=zeros(1,s(1)); 
        Vtot=zeros(1,s(1)); 
        SAt=zeros(1,s(1)); 
        mall{n}=cell(s(1),1); 
        ball{n}=cell(s(1),1); 
        xsall{n}=cell(s(1),1); 
        ysall{n}=cell(s(1),1); 
        yn3all{n}=cell(s(1),1); 
        xn2all{n}=cell(s(1),1); 
        for i=1:s(1)            %calculations for each bubble in frame 
            [Abub(i),m,b,empty]=symmetry(bound2{i},xline,ss);  %find 
line of symmetry (3D assumption) 
            mall{n}{i}=m; 
            ball{n}{i}=b; 
            if empty==1 
                fprintf(file1,'Skipped bubble %i in frame %i, no 
bubble\n',i,n); 
                continue; 
            elseif empty==2 
                fprintf(file1,'Skipped bubble %i in frame %i, out of 
frame\n',i,n); 
                %continue; 
            end 
            [xs,ys]=points(bound2{i},m,b);  %extract useful points 
            xsall{n}{i}=xs; 
            ysall{n}{i}=ys; 
            if length(xs)<2      %too many of these means it is picking 
                disp('skip 2');  %up a lot of noise, try changing the 
                fprintf(file1,'Skipped bubble %i in frame %i, too 
small\n',i,n); 
                continue         %thresholds in edgedetect 
            end 
            [xn2,yn3]=rotatebub(xs,ys,m,b); %rotate points for easier 
calculations 
            yn3all{n}{i}=yn3; 
            xn2all{n}{i}=xn2; 
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[Vtot(i),SAt(i),cylinder]=trap(xn2,yn3,dpixels); %calculate 
volume and surface area 
            if cylinder==1 
                fprintf(file1,'Bubble %i in frame %i represented as a 
cylinder\n',i,n); 
            end 
            Vbox=(ss(1)-2*WBbox)*(ss(2)-2*WBbox)*dpixels; 
            if Vtot(i)>Vbox 
                fprintf(file1,'Bubble %i in frame %i bigger than 
channel\n',i,n); 
            end 
        end 
        %calculate frame totals 

[voidf(n),Avoid(n),SAtot(n)]=outputbub(Vtot,Abub,ss,dpixels,SAt
,wratio,WBbox); 
    elseif regime==2            %calculations for slug flow 
        [aa]=annpoints(s,ss,bound2);        %extract useful points 
        if isempty(aa{1}) || isempty(aa{2}) 
            Vtot=0; 
            Abub=0; 
            SAt=0; 
        else 
            %calculate volume and surface area 
            [Vtot,Abub,SAt]=slugvoid(aa,ss,xline); 
        end 
        %calculate frame totals 

[voidf(n),Avoid(n),SAtot(n)]=outputann(Vtot,Abub,ss,dpixels,SAt
,wratio,regime,WBbox); 
    else                        %calculations for annular/churn flow 
        [aa]=annpoints(s,ss,bound2);        %extract useful points 
        if isempty(aa{1}) || isempty(aa{2}) 
            Vtot=0; 
            Abub=0; 
            SAt=0; 
        else 
            %calculate volume and surface area 
            [Vtot,Abub,SAt]=annvoid(aa,ss,xline,dpixels); 
        end 
        %calculate frame totals 

[voidf(n),Avoid(n),SAtot(n)]=outputann(Vtot,Abub,ss,dpixels,SAt
,wratio,regime,WBbox); 
    end 
end 
if regime==1 
    plotdatabub(Avoid,voidf,SAtot);  %plot data by frame number (bubbly) 
end 
if regime==2 || regime==3 
    %plot data by frame number (slug, churn, annular) 
    plotdataann(Avoid,voidf,SAtot); 
end 
time=toc; 
disp(['This movie took ' num2str(time) ' seconds to run.']); 
fprintf(file1,'------------------------------------------------\n'); 
fprintf(file1,'Time averaged void fraction: %4.2f\n',mean(voidf)); 
fprintf(file1,'Time averaged area void fraction: %4.2f\n',mean(Avoid)); 



175 

 

fprintf(file1,'------------------------------------------------\n'); 
fprintf(file1,'This movie took %4.2f seconds to run.\n',time); 
c=clock; 
fprintf(file1,'This program ran at %i:%02.0f:%02.0f 
on %i/%i/%i.',c(4),c(5),c(6),c(2),c(3),c(1)); 
fclose(file1);          %close log file 
save(OutFileName) 
OutFileName2=strrep(OutFileName,'.mat',''); 
OutFileName2=strcat(OutFileName2,'.avi'); 
disp('Finished!'); 
%end of program 
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Function 2. annpoints.m: 
%organize points for annular flow 
function [aa]=annpoints(s,ss,bound2) 
%assume bubble is a cylinder 
a=cell(2,s(1));                         %define size of cell 
for i=1:s(1)                            %number of objects detected 
    temp=bound2{i}(:,1);                %put x values in column 1 
    bound2{i}(:,1)=bound2{i}(:,2);      %put y values in column 2 
    bound2{i}(:,2)=temp; 
    s2=size(bound2{i}); 
    for j=1:s2(1) 
            a{1,i}(j,1)=bound2{i}(j,1); %add x value to top 
            a{1,i}(j,2)=bound2{i}(j,2); %add y value to top 
            a{2,i}(j,1)=bound2{i}(j,1); %add x value to bottom 
            a{2,i}(j,2)=bound2{i}(j,2); %add y value to bottom 
    end 
    a{1,i}=unique(a{1,i},'rows'); %eliminate repeated values for top 
    a{2,i}=unique(a{2,i},'rows'); %eliminate repeated values for bottom 
end 
aa=cell(2,1); 
for i=1:s(1) 
    aa{1}=[aa{1};a{1,i}];    %create single matrix of top x,y values 
    aa{2}=[aa{2};a{2,i}];    %create single matrix of bottom x,y values 
end 
end 
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Function 3. annvoid.m: 
%calculate various void fraction data for annular flow 
function [Vtot3,Abub3,SAt]=annvoid(aa,ss,xline,dpixels) 
s2=max(size(aa{1}),size(aa{2}));        %number of unique points 
Vtot3=zeros(1,ss(2)); 
SAt=zeros(1,ss(2)); 
k=0; 
for i=1:ss(2)                          %sweep across x axis 
                                       %a1 is top points 
                                       %a2 is bottom points 
    a1=find(aa{1}(:,1)==i,s2(1));      %find top x values equal to i 
    a2=find(aa{2}(:,1)==i,s2(1));      %find bottom x values equal to i 
    if isempty(a1) || isempty(a2) 
        continue                  %if no points found, move to next set 
    end 
    %calculation of prism volume (length*width*height) 
    Vtot3(i)=(i-k)*(max(aa{1}(a1,2))-min(aa{2}(a2,2)))*(dpixels-
ss(1)+max(aa{1}(a1,2))-min(aa{2}(a2,2))); 
    %ave void volume 
    SAt(i)=2*(i-k)*(max(aa{1}(a1,2))-min(aa{2}(a2,2)))+2*(i-
k)*(dpixels-ss(1)+max(aa{1}(a1,2))-min(aa{2}(a2,2))); 
    %surface area of void 
    k=i; 
end 
a1=find(aa{1}(:,1)==xline);      %top x value bubble points on xline 
a2=find(aa{2}(:,1)==xline);      %bottom x value bubble points on xline 
Abub3=0; 
if ~isempty(a1) && ~isempty(a2) 
    d=max(aa{1}(a1,2))-min(aa{2}(a2,2));  %calculate ave width of 
bubble on xline 
    Abub3=d*(dpixels-ss(1)+d);            %calculate the ave area of 
the bubble on xline 
end 
end 
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Function 4. backg.m: 
%obtain a background image and subtract it from all frames uses concept 
% that background pixels are the most common pixel in a series of 
% consecutive frames, this assumption does not work as well for annular 
% flow or regimes with a high density of bubbles 
function [bg,frames2]=backg(frames,movs,NFrameBG,BGUsr) 
s=size(frames{1});      %image size 
row=s(1); 
col=s(2); 
if ~BGUsr  
    if NFrameBG<=0 
        disp('Need greater than 0 frames to obtain a background image'); 
    end 
    n=NFrameBG;        %number of frames needed to get background image 
    fr=zeros(row,col,n);    %dummy variable so we don't overwrite the 
original image 
    for i=1:n 
        fr(:,:,i)=frames{i}; 
    end 
    bg=zeros(row,col); 
    for i=1:row 
        for j=1:col 
            x=double(reshape(fr(i,j,:),1,n));   %obtain all values of 
one pixel over many frames 
            dx=diff(x); %create vector pixel differences between frames 
            y=zeros((n-3),1); 
            for k=1:(n-3) 
                y(k)=sum(abs(dx(k:(k+2))));     %sum differences across 
4 frames 
            end 
            ind=find(y==min(y));                %find least changing 
(smallest difference) 
            bg(i,j)=floor(mean(x(ind:(ind+3)))); %background pixel is 
equal to value 
        end 
    end 
    bg=uint8(bg); 
else 
    bg=BGUsr; 
end 
frames2=frames; 
for n=1:movs(2) 
    for i=1:row 
        for j=1:col 
            temp1=double(frames{n}(i,j));   %frame pixel value 
            temp2=double(bg(i,j));          %background pixel value 
            if abs(temp1-temp2)<=10         %if frame pixel is within 
10 of background value 
                frames2{n}(i,j)=255;     %rewrite frame pixel to white 
            end 
        end 
    end 
end 
end  
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Function 5. contbound.m: 
function [jcvbound]=contbound(cvbound) 
jcvbound(1,:)=cvbound(1,:); 
for i=1:length(cvbound(:,1))-1 
    x1=cvbound(i,1); 
    y1=cvbound(i,2); 
    x2=cvbound(i+1,1); 
    y2=cvbound(i+1,2); 
    [joinedmatrix]=joinpoints(x1,y1,x2,y2); 
    jcvbound=[jcvbound; joinedmatrix(2:end,:)]; 
end 
x1=cvbound(end,1); 
y1=cvbound(end,2); 
x2=cvbound(1,1); 
y2=cvbound(1,2); 
[joinedmatrix]=joinpoints(x1,y1,x2,y2); 
jcvbound=[jcvbound; joinedmatrix(2:end,:)]; 
end 
 

Function 6. edgedetann.m: 
%detect edges in image 
%annular flow 
function 
[BW,WBbox]=edgedetann(I,ImAdjustLowAnn,ImAdjustHighAnn,CannyLowAnn,Cann
yHighAnn,CannyWidthAnn) 
%detect edges of bubbles 
s=size(I); 
WBbox=uint8(CannyWidthAnn)+1;   %bounding box width = width of canny 
algorithm +1 pixel 
WBbox=double(WBbox); 
I2(1:(s(1)+2*WBbox),1:s(2))=255; 
I2((WBbox+1):(s(1)+WBbox),1:s(2))=I; 
I2=uint8(I2); 
%change threshhold values to correspond to pure liquid images 
%have pixels at 50% and above changed to 100% (white) 
%have pixels at 25% and below changed to 0% (black) 
%apply same threshold values to all frames 
J=imadjust(I2,[ImAdjustLowAnn ImAdjustHighAnn],[1 0]);  %adjust image 
and make it negative 
BW=edge(J,'canny',[CannyLowAnn CannyHighAnn],CannyWidthAnn);    %detect 
edges in image 
end 
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Function 7. edgedetect.m: 
%detect edges in image 
function 
[BW,WBbox]=edgedetect(I,ImAdjustLow,ImAdjustHigh,CannyLow,CannyHigh,Can
nyWidth) 
%detect edges of bubbles 
s=size(I); 
WBbox=uint8(CannyWidth)+1;      %bounding box width = width of canny 
algorithm +1 pixel 
WBbox=double(WBbox); 
I2(1:(s(1)+2*WBbox),1:(s(2)+2*WBbox))=255; 
I2((WBbox+1):(s(1)+WBbox),(WBbox+1):(s(2)+WBbox))=I; 
I2=uint8(I2); 
%change threshhold values to correspond to pure liquid images 
%have pixels at 70% and above changed to 100% (white) 
%have pixels at 30% and below changed to 0% (black) 
%apply same threshold values to all frames 
J=imadjust(I2,[ImAdjustLow ImAdjustHigh],[1 0]);    %adjust images and 
makes a negative 
BW=edge(J,'canny',[CannyLow CannyHigh],CannyWidth); %detect edges in 
image 
end 
 

  



181 

 

Function 8. fit_ellipse.m: 
function ellipse_t = fit_ellipse( x,y,axis_handle ) 
% finds the best fit to an ellipse for the given set of points. 
% initialize 
orientation_tolerance = 1e-3; 
% empty warning stack 
warning( '' ); 
% prepare vectors, must be column vectors 
x = x(:); 
y = y(:); 
% remove bias of the ellipse - to make matrix inversion more accurate. 
(will be added later on). 
mean_x = mean(x); 
mean_y = mean(y); 
x = x-mean_x; 
y = y-mean_y; 
% the estimation for the conic equation of the ellipse 
X = [x.^2, x.*y, y.^2, x, y ]; 
if X==0 
    ellipse_t.phi=[]; 
    return 
end 
con=cond(X); 
if con>1e4 
    ellipse_t.phi=[]; 
    return 
end 
a = sum(X)/(X'*X); 
% check for warnings 
if ~isempty( lastwarn ) 
    disp( 'stopped because of a warning regarding matrix inversion' ); 
    ellipse_t = struct( ... 
        'a',[],... 
        'b',[],... 
        'phi',[],... 
        'X0',[],... 
        'Y0',[],... 
        'X0_in',[],... 
        'Y0_in',[],... 
        'long_axis',[],... 
        'short_axis',[],... 
        'status',''); 
    return 
end 
% extract parameters from the conic equation 
[a,b,c,d,e] = deal( a(1),a(2),a(3),a(4),a(5) ); 
% remove the orientation from the ellipse 
if ( min(abs(b/a),abs(b/c)) > orientation_tolerance ) 
    orientation_rad = 1/2 * atan( b/(c-a) ); 
    cos_phi = cos( orientation_rad ); 
    sin_phi = sin( orientation_rad ); 
    [a,b,c,d,e] = deal(... 
        a*cos_phi^2 - b*cos_phi*sin_phi + c*sin_phi^2,... 
        0,... 
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        a*sin_phi^2 + b*cos_phi*sin_phi + c*cos_phi^2,... 
        d*cos_phi - e*sin_phi,... 
        d*sin_phi + e*cos_phi ); 
    [mean_x,mean_y] = deal( ... 
        cos_phi*mean_x - sin_phi*mean_y,... 
        sin_phi*mean_x + cos_phi*mean_y ); 
else 
    orientation_rad = 0; 
    cos_phi = cos( orientation_rad ); 
    sin_phi = sin( orientation_rad ); 
end 
% check if conic equation represents an ellipse 
test = a*c; 
status = ''; 
% if we found an ellipse return it's data 
if (test>0) 
    % make sure coefficients are positive as required 
    if (a<0), [a,c,d,e] = deal( -a,-c,-d,-e ); end 
    % final ellipse parameters 
    X0          = mean_x - d/2/a; 
    Y0          = mean_y - e/2/c; 
    F           = 1 + (d^2)/(4*a) + (e^2)/(4*c); 
    [a,b]       = deal( sqrt( F/a ),sqrt( F/c ) );     
    long_axis   = 2*max(a,b); 
    short_axis  = 2*min(a,b); 
    % rotate the axes backwards to find the center point of the 
original TILTED ellipse 
    R           = [ cos_phi sin_phi; -sin_phi cos_phi ]; 
    P_in        = R * [X0;Y0]; 
    X0_in       = P_in(1); 
    Y0_in       = P_in(2); 
    % pack ellipse into a structure 
    ellipse_t = struct( ... 
        'a',a,... 
        'b',b,... 
        'phi',orientation_rad,... 
        'X0',X0,... 
        'Y0',Y0,... 
        'X0_in',X0_in,... 
        'Y0_in',Y0_in,... 
        'long_axis',long_axis,... 
        'short_axis',short_axis,... 
        'status','' ); 
else 
    % report an empty structure 
    ellipse_t = struct( ... 
        'a',[],... 
        'b',[],... 
        'phi',[],... 
        'X0',[],... 
        'Y0',[],... 
        'X0_in',[],... 
        'Y0_in',[],... 
        'long_axis',[],... 
        'short_axis',[],... 
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        'status',status ); 
end 
% check if we need to plot an ellipse with it's axes. 
if (nargin>2) && ~isempty( axis_handle ) && (test>0) 
    % rotation matrix to rotate the axes with respect to an angle phi 
    R = [ cos_phi sin_phi; -sin_phi cos_phi ]; 
    % the axes 
    ver_line        = [ [X0 X0]; Y0+b*[-1 1] ]; 
    horz_line       = [ X0+a*[-1 1]; [Y0 Y0] ]; 
    new_ver_line    = R*ver_line; 
    new_horz_line   = R*horz_line; 
    % the ellipse 
    theta_r         = linspace(0,2*pi); 
    ellipse_x_r     = X0 + a*cos( theta_r ); 
    ellipse_y_r     = Y0 + b*sin( theta_r ); 
    rotated_ellipse = R * [ellipse_x_r;ellipse_y_r]; 
    % draw 
    hold_state = get( axis_handle,'NextPlot' ); 
    set( axis_handle,'NextPlot','add' ); 
    plot( new_ver_line(1,:),new_ver_line(2,:),'r' ); 
    plot( new_horz_line(1,:),new_horz_line(2,:),'r' ); 
    plot( rotated_ellipse(1,:),rotated_ellipse(2,:),'r' ); 
    set( axis_handle,'NextPlot',hold_state ); 
end 
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Function 9. GetBgImage.m: 
function 
[bg]=GetBgImage(BGFileName,BGFrameNumber,AngleRotate,CropUpRow,CropDnRo
w,CropLCol,CropRCol) 
mov=aviread(BGFileName,BGFrameNumber); 
frames(:,:,:)=mov(1).cdata; 
framesr=imrotate(frames,AngleRotate); 
bg=framesr(CropUpRow:CropDnRow,CropLCol:CropRCol,:); 
end 
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Function 10. identify.m: 
%identify objects in image 
function 
[bound,bound2,dpixels,xline,s,ss,wratio,linebub]=identify(BW,WBbox,widt
h,depth,xfrac,regime) 
%identify objects in image 
BW2=imfill(BW,'holes');          %fill in holes in image 
bound=bwboundaries(BW2);         %find boundaries of shapes in image 
                                 %bound{i}(:,1)=y values 
                                 %bound{i}(:,2)=x values 
s=size(bound);                   %determines number of shapes, use s(1) 
ss=size(BW2);                    %determines size of image, use ss(1) 
if s(1)>1            %if more than 2 objects, see if inside one another 
    for i=1:s(1) 
        if isempty(bound{i}) 
            continue; 
        end 
     msk1=poly2mask(bound{i}(:,1),bound{i}(:,2),ss(2),ss(1)); %object 1 
        for j=1:s(1) 
            if i==j                     %use different objects 
                continue; 
            end 
            if isempty(bound{j}) 
                continue; 
            end 
     msk2=poly2mask(bound{j}(:,1),bound{j}(:,2),ss(2),ss(1)); %object 2 
            a=msk1(msk2); 
            inside=0; 
            if ~isempty(a) 
               inside=all(a); %determine if object 2 is inside object 1 
            end 
            if inside              %if inside 
                bound{j}=[];       %delete coordinates of inside object 
            end 
        end 
    end 
end 
s=size(bound); 
if regime==1 || regime==2 
    for i=1:s(1) 
        bound{i}=bound{i}-WBbox; 
    end 
else 
    for i=1:s(1) 
        bound{i}(:,1)=bound{i}(:,1)-WBbox; 
    end 
end 
% Convex Hull routine here to modify bound. 
cvbound = cell(1,s(1)); %Allocate cell array for Convex Hull Boundaries 
jcvbound=cell(1,s(1)); 
linebub=cell(1,s(1)); 
if regime==1 
    for BoundIndex = 1:s(1) 
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        collinear8 = @(varargin) rank(cat(1,varargin{:}) - 
circshift(cat(1,varargin{:}),1)) == 1; 
        if ~collinear8(bound{BoundIndex}) 

CVIndex = 
convhull(bound{BoundIndex}(:,2),bound{BoundIndex}(:,1)); %obtain 
convhull indices 

cvbound{BoundIndex}(:,:)=bound{BoundIndex}(CVIndex,:);%only 
use convhull points 

jcvbound{BoundIndex}=contbound(cvbound{BoundIndex});  %fill 
in remaining to get a closed object 
            linebub=false; 
        else 
            jcvbound{BoundIndex}=[]; 
            linebub=true; 
        end 
    end 
end 
bound2=cell(1,s(1)); 
if regime==1 
    for i=1:s(1) 
        bound2{i}(:,1)=(ss(1)-2*WBbox)-jcvbound{i}(:,1); %correct y 
values so image isn't flipped 
        bound2{i}(:,2)=jcvbound{i}(:,2);    %add x values to new matrix 
    end 
else 
    for i=1:s(1) 
        bound2{i}(:,1)=(ss(1)-2*WBbox)-bound{i}(:,1); 
        bound2{i}(:,2)=bound{i}(:,2); 
    end 
end 
bound2=bound2';                         %transpose cell 
wratio=(ss(1)-2*WBbox)/width; %ratio of pixels to microns in channel 
width 
dpixels=wratio*depth;                   %pixels in channel depth 
if regime==1 || regime==2 
    xline=floor((ss(2)-2*WBbox)*xfrac+WBbox);   %vertical plane for 
cross sectional area void fraction 
else 
    xline=floor((ss(2)-2*WBbox-1)*xfrac+WBbox); 
end 
if xline==0 
    xline=1; 
end 
end 
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Function 11. inputin.m: 
%input information from the user 
function 
[filename,width,depth,regime,xfrac,StartFrame,EndFrame,OutFileName,Angl
eRotate,CropUpRow,CropDnRow,CropLCol,CropRCol,NFrameBG,BGFileName,BGFra
meNumber,ImAdjustLow,ImAdjustHigh,ImAdjustLowAnn,ImAdjustHighAnn,CannyL
ow,CannyHigh,CannyWidth,CannyLowAnn,CannyHighAnn,CannyWidthAnn,findback
g]=inputin() 
%collect channel dimensions and video information 
RunName='/home/citadel/b/shared/Sidharth/ONR/TwoPhaseAirWater/TestCell2
/TestSet6/Videos/TC2TS6_C001S0'; 
movnum='222'; 
ExtName='avi';              %video file type 
filename=[RunName movnum '/TC2TS6_C001S0' movnum '.' ExtName]; 
StartFrame = 1;             %first frame 
EndFrame = 50;              %last frame 
OutFileName=['/home/citadel/b/shared/Sidharth/ONR/TwoPhaseAirWater/Test
Cell2/TestSet6/ProcVideos/TC2TS6_C0001S0' movnum '_' num2str(StartFrame) 
'to' num2str(EndFrame) '.mat'];    %save file name 
AngleRotate=0;           %frame rotation angle 
CropUpRow=361;               %top pixel 
CropDnRow=913;              %bottom pixel 
CropLCol=1;               %left pixel 
CropRCol=512;               %right pixel 
NFrameBG=40;          %number of frames to use to find background image 
BGFileName='/home/citadel/b/willi319/ONRMicroChannel/TwoPhaseAirWater/T
estCell1/TestSet2/Videos/TC1TS2_C001S0015/TC1TS2_C001S0015.avi';  %file
name of background image 
BGFrameNumber=1;            %frame number of background image 
findbackg=0;                %user supplied background? yes=1, no=0 
ImAdjustLow=0.3;            %lower threshold for image adjusting 
ImAdjustHigh=0.7;           %upper threshold for image adjusting 
ImAdjustLowAnn=0.25;        %lower threshold for image adjusting, 
annular flow 
ImAdjustHighAnn=0.5;        %upper threshold for image adjusting, 
annular flow 
CannyLow=0.25;              %lower threshold for canny edge detection 
CannyHigh=0.85;             %upper threshold for canny edge detection 
CannyWidth=2;               %sigma value for canny edge detection 
CannyLowAnn=0.1;            %lower threshold for canny edge detection, 
annular flow 
CannyHighAnn=0.8;           %upper threshold for canny edge detection, 
annular flow 
CannyWidthAnn=1.5;          %sigma value for canny edge detection, 
annular flow 
width=780;                  %channel width in microns 
depth=780;                  %channel depth in microns 
regime=1;                   %flow regime, 1 for bubbly flow, 2 for slug 
flow, 3 for annular/churn flow 
xfrac=0;                    %location for area void fraction 
end 
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Function 12. joinpoints.m: 
function [joinedmatrix]=joinpoints(x1,y1,x2,y2) 
joinedmatrix=[x1 y1]; 
%isneighbor  
if abs(x1-x2)<=1 && abs(y1-y2)<=1    %they are neighboring points 
    joinedmatrix=[joinedmatrix; x2 y2]; 
else 
    if x1==x2        %vertical line 
        deltay=y2-y1; 
        ynext=y1+sign(deltay); 
        joinedmatrix=[joinedmatrix; x1 ynext]; 
        while ynext~=y2 
            ynext=ynext+sign(deltay); 
            joinedmatrix=[joinedmatrix; x1 ynext]; 
        end 
    else        %find slope and make a line 
        slope=(y2-y1)/(x2-x1); 
        if abs(slope)<1 
            %xtrace 
            deltax=x2-x1; 
            xnext=x1+sign(deltax); 
            ynext=round(slope*(xnext-x1))+y1; 
            joinedmatrix=[joinedmatrix; xnext ynext]; 
            while xnext~=x2 
                xnext=xnext+sign(deltax); 
                ynext=round(slope*(xnext-x1))+y1; 
                joinedmatrix=[joinedmatrix; xnext ynext]; 
            end 
        else 
            %ytrace 
            deltay=y2-y1; 
            ynext=y1+sign(deltay); 
            xnext=round(1/slope*(ynext-y1))+x1; 
            joinedmatrix=[joinedmatrix; xnext ynext]; 
            while ynext~=y2 
                ynext=ynext+sign(deltay); 
                xnext=round(1/slope*(ynext-y1))+x1; 
                joinedmatrix=[joinedmatrix; xnext ynext]; 
            end 
        end 
    end 
end 
end 
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Function 13. movieplot1.m: 
%capture images for movie 
%can capture rotated and cropped images 
%can capture images with objects plotted on top 
%objects plotted on top after convexhull applied 
function [allframes]=movieplot1(I,bound,xline,s,ss,WBbox) 
%plot objects in image, one at a time 
if ~isempty(bound)          %if bound is not empty 
    for i=1:s(1) 
        bound{i}(:,1)=(ss(1)-2*WBbox)-bound{i}(:,1);  %correct y values 
so image isn't flipped 
    end 
end 
imshow(I);                      %display original image 
%allframes=getframe;             %turn on if you want rotated and 
cropped images only 
hold on;             %plot multiple shapes on same graph over image 
axis equal;          %make axes equal in value so graph is easy to read 
for i=1:s(1) 
    b=mod(i,7); 
    if b==0 
        plot(bound{i}(:,2),bound{i}(:,1),'r');  %plot shape in red 
    elseif b==1 
        plot(bound{i}(:,2),bound{i}(:,1),'b');  %plot shape in blue 
    elseif b==2 
        plot(bound{i}(:,2),bound{i}(:,1),'g');  %plot shape in green 
    elseif b==3 
        plot(bound{i}(:,2),bound{i}(:,1),'y');  %plot shape in yellow 
    elseif b==4 
        plot(bound{i}(:,2),bound{i}(:,1),'m');  %plot shape in magenta 
    else 
        plot(bound{i}(:,2),bound{i}(:,1),'c');  %plot shape in cyan 
    end 
end 
plot([xline,xline],[0,ss(1)],'--r'); 
pause(0.1); 
allframes=getframe;         %turn on if you want images with objects 
plotted on top 
hold off; 
end 
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Function 14. outputann.m: 
%calculate output from annular flow calculations 
function 
[voidf3,Avoid3,SAtot]=outputann(Vtot3,Abub3,ss,dpixels,SAt,wratio,regim
e,WBbox) 
if regime==2 
    Vbox=(ss(1)-2*WBbox)*(ss(2)-2*WBbox)*dpixels;           %volume of 
channel, slug flow [pixels^3] 
else 
    Vbox=(ss(1)-2*WBbox)*ss(2)*dpixels;               %volume of 
channel, annular flow [pixels^3] 
end 
%calculation output 
Vvoid3=sum(Vtot3);              %volume of all voids [pixels^3], [ave] 
voidf3=Vvoid3/Vbox*100;         %void fraction, [ave] 
%area void fraction output 
area=dpixels*(ss(1)-2*WBbox);         %cross sectional area [pixels^2] 
Avoid3=Abub3/area*100;                %ave possible area void fraction 
SAtot=sum(SAt);                %surface area of voids [pixels^2] 
SAtot=SAtot/Vvoid3;            %surface area to volume ratio [1/pixels] 
end 
 

Function 15. outputbub.m: 
%calculate output from bubbly/slug flow calculations 
function 
[voidf3,Avoid,SAtot]=outputbub(Vtot3,Abub,ss,dpixels,SAt,wratio,WBbox) 
Vbox=(ss(1)-2*WBbox)*(ss(2)-2*WBbox)*dpixels;   %volume of channel 
[pixels^3] 
%trapezoid rule output 
Vvoid3=sum(Vtot3);         %volume of all voids [pixels^3], [trapezoid] 
voidf3=Vvoid3/Vbox*100;    %void fraction, [trapezoid] 
%area void fraction output 
Atot=sum(Abub);                %total void at cross section [pixels^2] 
area=dpixels*(ss(1)-2*WBbox);  %cross sectional area [pixels^2] 
Avoid=Atot/area*100;           %area void fraction 
SAtot=sum(SAt);                %surface area of all voids [pixels^2] 
SAtot=SAtot/Vbox;              %surface area to volume ratio [1/pixels] 
end 
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Function 16. plotdataann.m: 
%plot output data for annular flow 
function []=plotdataann(Avoid1,voidf,SAtot) 
figure 
plot(Avoid1,'-ob'); 
xlabel('Frame Number','fontsize',16); 
ylabel('Area void fraction [max] (%)','fontsize',16); 
figure 
plot(voidf,'-ob'); 
xlabel('Frame Number','fontsize',16); 
ylabel('Volume void fraction [max] (%)','fontsize',16); 
figure 
plot(SAtot,'-ob'); 
xlabel('Frame Number','fontsize',16); 
ylabel('Surface area concentration [1/pixels]','fontsize',16); 
end 
 

Function 17. plotdatabub.m: 
%plot output data for bubbly flow 
function []=plotdatabub(Avoid,voidf3,SAtot) 
figure 
plot(Avoid,'-ob'); 
xlabel('Frame Number','fontsize',16); 
ylabel('Area void fraction (%)','fontsize',16); 
figure 
plot(voidf3,'-ob'); 
xlabel('Frame Number','fontsize',16); 
ylabel('Volume void fraction [trapezoid] (%)','fontsize',16); 
figure 
plot(SAtot,'-ob'); 
xlabel('Frame Number','fontsize',16); 
ylabel('Surface area concentration [1/pixels]','fontsize',16); 
end 
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Function 18. points.m: 
%obtain points above line of symmetry 
function [xs,ys]=points(bound2,m,b) 
k=1; 
xs=[]; 
ys=[]; 
s=size(bound2);           %determines number of edge points for bubble 
for j=1:s(1) 
    temp=m*bound2(j,2)+b; %determine if edge point is above line of 
symmetry 
    if bound2(j,1)>temp 
        xs(k)=bound2(j,2); %x value if point is above line of symmetry 
        ys(k)=bound2(j,1); %y value if point is above line of symmetry 
        k=k+1; 
    end 
end 
a=unique([xs' ys'],'rows'); 
if isempty(a) 
    xs=0; 
    ys=0; 
else 
    xs=a(:,1)'; 
    ys=a(:,2)'; 
end 
end 
 

Function 19. readrotate.m: 
%read frames of movie and rotate images 
function 
[frames2,movs,movcolor]=readrotate(filename,StartFrame,EndFrame,AngleRo
tate,CropUpRow,CropDnRow,CropLCol,CropRCol) 
%mov=aviread(filename,StartFrame:EndFrame);      %read in avi file 
%movs=size(mov);             %number of frames 
movs=[1 (EndFrame-StartFrame+1)]; 
frames=cell(1,movs(2)); 
frames2=cell(1,movs(2)); 
for i=1:movs(2) 
    fprintf('...'); 
    if mod(i,20)==0 
        a=100*i/movs(2); 
        fprintf('%4.1f%% complete\n',a); 
    end 
    mov=aviread(filename,(StartFrame-1+i)); 
    frames{i}(:,:,:)=mov.cdata;        %pull out frame image from movie 
    framesr=imrotate(frames{i},AngleRotate);       %rotate frame image 

frames2{i}=framesr(CropUpRow:CropDnRow,CropLCol:CropRCol,:);   %crop 
frame image 
end 
fprintf('100%% complete\n'); 
mov=aviread(filename,StartFrame); 
movcolor=mov.colormap;   %obtain movie colormap 
end  
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Function 20. rotatebub.m: 
%rotate points in bubble 
function [xn2,yn3]=rotatebub(xs,ys,m,b) 
s=length(xs);   %determine number of edge points above line of symmetry 
xb=zeros(1,s); 
yb=zeros(1,s); 
xb=(m*ys+xs-m*b)/(m^2+1);  %rotation calculations 
yb=(m^2*ys+m*xs+b)/(m^2+1); 
xs1=min(xb); 
ys1=min(yb); 
if ((yb(2)-yb(1))/(xb(2)-xb(1)))<0 
    ys1=max(yb); 
end 
xn=sqrt((ys1-yb).^2+(xs1-xb).^2);       %rotated x values 
yn=sqrt((ys-yb).^2+(xs-xb).^2);         %rotated y values 
a=[xn' yn']; 
s=size(a); 
anew=zeros(s(1),2); 
for j=1:s(1) 
    a1=find(a(:,1)==a(j,1),s(1)); 
    anew(j,1)=a(j,1);              %for x values with multiple y values 
    anew(j,2)=max(a(a1,2));        %use only the maximum y value 
end 
anew=unique(anew,'rows');          %delete repeated pairs of points 
xn2=anew(:,1)';                    %unique x values 
yn3=anew(:,2)';                    %unique y values 
end 
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Function 21. slugvoid.m: 
%calculate various void fraction data for annular flow 
function [Vtot3,Abub3,SAt]=slugvoid(aa,ss,xline) 
s2=max(size(aa{1}),size(aa{2}));        %number of unique points 
Vtot3=zeros(1,ss(2)); 
SAt=zeros(1,ss(2)); 
k=0; 
for i=1:ss(2)                          %sweep across x axis 
                                       %a1 is top points 
                                       %a2 is bottom points 
    a1=find(aa{1}(:,1)==i,s2(1));      %find top x values equal to i 
    a2=find(aa{2}(:,1)==i,s2(1));      %find bottom x values equal to i 
    if isempty(a1) || isempty(a2) 
        continue                  %if no points found, move to next set 
    end 
    Vtot3(i)=(i-k)*pi/4*(max(aa{1}(a1,2))-min(aa{2}(a2,2)))^2;    %ave 
void fraction 
    SAt(i)=(i-k)*pi*(max(aa{1}(a1,2))-min(aa{2}(a2,2)));   %surface 
area of void 
    k=i; 
end 
a1=find(aa{1}(:,1)==xline);      %top x value bubble points on xline 
a2=find(aa{2}(:,1)==xline);      %bottom x value bubble points on xline 
Abub3=0; 
if isempty(a1)==0 && isempty(a2)==0 
    d=max(aa{1}(a1,2))-min(aa{2}(a2,2));  %calculate ave width of 
bubble on xline 
    Abub3=pi/4*d^2;  %calculate the ave area of the bubble on xline 
end 
end 
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Function 22. symmetry.m: 
%find best line of symmetry for object 
function [Abub,m,b,empty]=symmetry(bound2,xline,ss) 
%determine best line of symmetry for bubble 
bound2=unique(bound2,'rows');        %delete repeated pairs of points 
x=bound2(:,2);                          %x values for bubble 
y=bound2(:,1);                          %y values for bubble 
ellipse_t=fit_ellipse(x,y); %use best fit ellipse program to determine 
                            %best line of symmetry 
a=find(bound2(:,2)==xline); %find bubble points on xline to use for 
area void fraction 
Abub=0; 
if ~isempty(a) 
    d=max(bound2(a,1))-min(bound2(a,1));%calculate diameter of bubble 
on xline 
    Abub=pi/4*d^2;         %calculate the area of the bubble on xline 
end 
empty=0; 
if isempty(ellipse_t.phi) 
    disp('skip 1'); 
    empty=1; 
    Abub=0; 
    m=0; 
    b=0; 
    return 
end 
x0=ellipse_t.X0_in;             %x coordinate of center of ellipse 
y0=ellipse_t.Y0_in;             %y coordinate of center of ellipse 
alpha=ellipse_t.phi;            %orientation angle of ellipse 
if abs(x0)>2*ss(2) || abs(y0)>2*ss(1) 
    empty=2; 
    Abub=0; 
    m=0; 
    b=0; 
    return 
end 
m=-tan(alpha);                  %slope of line of symmetry 
b=y0+tan(alpha)*x0;             %y intercept of best line of symmetry 
end 
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Function 23. trap.m: 
%volume rotation using trapezoid rule 
function [Vtot,SAt,cylinder]=trap(x,y,dpixels) 
s=length(x); 
V=zeros(1,s-1); 
SA=zeros(1,s-1); 
ff=max(y); 
cylinder=false; 
if 2*ff>dpixels              %determine if bubble should be calculated 
    cylinder=true;           %as a cylinder 
end 
  
if ~cylinder;   %bubble height smaller than channel depth, spheroid 
    for j=1:(s-1)%trapezoid rule and pappus theorem for volume and area 
        V(j)=pi/3*abs(x(j+1)-x(j))*((y(j))^2+y(j)*y(j+1)+(y(j+1))^2); 
        SA(j)=pi*(y(j)+y(j+1))*sqrt((y(j)-y(j+1))^2+(x(j+1)-x(j))^2); 
    end 
else            %bubble height larger than channel depth, cylinder 
    for j=1:(s-1)       %trapezoid rule times height 
        V(j)=abs(x(j+1)-x(j))*(y(j)+y(j+1))*dpixels; 
        SA(j)=2*abs(x(j+1)-x(j))*(y(j)+y(j+1))+2*dpixels*sqrt((y(j)-
y(j+1))^2+(x(j+1)-x(j))^2); 
    end 
end 
Vtot=sum(V);        %bubble volume [trapezoid rule] [pixels^3] 
SAt=sum(SA);        %bubble surface area [pixels^2] 
end 
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Appendix B MATLAB Script for Numerical Simulation of Electrical Impedance 

A MATLAB script was developed to simulate the response of a miniature 

impedance-based void fraction meter as discussed in Section 4.1.2. The following script 

generates a 3D domain based on high-speed videos and solves for the impedance across 

two electrodes. It is split up into several functions; Table B.1 displays the function 

number, name, a description, and the page number where it is found. Several functions 

are omitted due to their repetitive nature and length. These are run using the data 

generated from the image processing scripts. 

 

Table B.1. A list of all of the functions for numerical simulations. 
Function 
Number Function Name Description Page 

Number 

24 gambitjou.m Generates a 3D mesh from images for bubbly 
flow 197 

25 gambitjou2.m Generates a 3D mesh from images for slug 
flow 201 

26 gambitjou3.m Generates a 3D mesh from images for annular 
flow 204 

27 lap3dsolver.m 3D Laplace solver to find the resistance 207 

28 lap3dsolver2.m 3D Laplace solver to find the capacitance 212 

29 tdma.m TDMA solver 217 

30 tdmaline.m Line-by-line TDMA solver 218 
 

Function 24. gambitjou.m: 
%use for bubbly flow 
%run using data generated from voidfrac.m 
k=logical(false((ss(1)-2*WBbox),(ss(2)-2*WBbox),dpixels)); 
siz=size(xsall{frame});             %number of bubbles, use siz(1) 
for j=1:siz(1)                      %loop for each bubble 
    m=mall{frame}{j};               %slope of line of symmetry 
    b=ball{frame}{j};               %y intercept of line of symmetry 
    x=xsall{frame}{j};              %x coordinates of bubble 
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    y=ysall{frame}{j};              %y coordinates of bubble 
    xb=(m*y+x-m*b)/(m^2+1);         %x coordinate of rotation 
    yb=(m^2*y+m*x+b)/(m^2+1);       %y coordinate of rotation 
    yn3=sqrt((y-yb).^2+(x-xb).^2);  %magnitude of point from line of 
symmetry 
    si=size(x);                     %number of points, use si(2) 
    minx=min(x);                    %leftmost point 
    maxx=max(x);                    %rightmost point 
    p1=[0 minx-1 m*(minx-1)+b];     %point on line of rotation 
    p2=[0 maxx+1 m*(maxx+1)+b];     %point on line of rotation 
    p=rand(1,3);                    %random point in 3D 
    r=cross(p-p1,p2-p1);       %line perpendicular to line of rotation 
    s=cross(r,p2-p1);          %line perpendicular to line of rotation 
    r=r/sqrt(dot(r,r));             %normalize vector 
    s=s/sqrt(dot(s,s));             %normalize vector 
    tempx=zeros(si(2),1); 
    tempy=zeros(si(2),1); 
    tempz=zeros(si(2),1); 
    for i=1:si(2) 
        theta=0:(2*pi/180):(2*pi);        %angles of rotation 
        for n=1:180 
            %calculate point in 3D space 

tempz=yn3(i)*cos(theta(n))*r(1)+yn3(i)*sin(theta(n))*s(1); 
%z coordinate 

tempx=xb(i)+yn3(i)*cos(theta(n))*r(2)+yn3(i)*sin(theta(n))*
s(2); %x coordinate 

tempy=yb(i)+yn3(i)*cos(theta(n))*r(3)+yn3(i)*sin(theta(n))*
s(3); %y coordinate 
            %translate into cell coordinates 
            tempy=(ss(1)-WBbox)-round(tempy); %nearest cell in y 
direction 
            tempz=round(tempz+dpixels/2); %nearest cell in z direction 
            tempx=round(tempx);          %nearest cell in x direction 
            if tempx<1 
                tempx=1; 
            end 
            if tempx>(ss(2)-2*WBbox) 
                tempx=ss(2)-2*WBbox; 
            end 
            if tempy<1 
                tempy=1; 
            end 
            if tempy>(ss(1)-2*WBbox) 
                tempy=ss(1)-2*WBbox; 
            end 
            k(tempy,tempx,tempz)=true; 
        end 
    end 
end 
%close boundaries and fill holes 
se=ones(5); 
se([1 1 end end],[1 end 1 end])=0; %create morphological structuring 
element 
k4=logical(false((ss(1)-2*WBbox),(ss(2)-
2*WBbox),dpixels)); %preallocate 
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for i=1:dpixels                    %loop over each z plane 
    k2=imdilate(k(:,:,i),se);      %dilate image to form closed object 
    k3=imfill(k2,'holes');         %fill objects 
    k4(:,:,i)=imerode(k3,se);%erode image so boundary is back to normal 
end 
clear k2 k3 k 
%k4 is 3D logical matrix describing bubble areas 
%1 indicates part of bubble, 0 is background 
%downsample to make calculations faster 
%transform cube of 8 voxels into one new voxel 
N=size(k4); 
ax1=mod(N(1),2); 
ax2=mod(N(2),2); 
ax3=mod(N(3),2); 
k5=logical(false(floor(N(1)/2)+ax1,floor(N(2)/2)+ax2,floor(N(3)/2)+ax3)
); 
for i=1:2:(N(1)-ax1) 
    for j=1:2:(N(2)-ax2) 
        for k=1:2:(N(3)-ax3) 
            k5(round(i/2),round(j/2),round(k/2))=round(mean([k4(i,j,k) 
k4(i+1,j,k) k4(i,j+1,k) k4(i+1,j+1,k) k4(i,j,k+1) k4(i+1,j,k+1) 
k4(i+1,j+1,k+1) k4(i,j+1,k+1)])); 
        end 
    end 
end 
if ax1 
    i=N(1); 
    for j=1:2:(N(2)-ax2) 
        for k=1:2:(N(3)-ax3) 

k5(floor(N(1)/2)+ax1,round(j/2),round(k/2))=round(mean([k4(
i,j,k) k4(i,j+1,k) k4(i,j,k+1) k4(i,j+1,k+1)])); 
        end 
    end 
end 
if ax2 
    j=N(2); 
    for i=1:2:(N(1)-ax1) 
        for k=1:2:(N(3)-ax3) 

k5(round(i/2),floor(N(2)/2)+ax2,round(k/2))=round(mean([k4(
i,j,k) k4(i+1,j,k) k4(i,j,k+1) k4(i+1,j,k+1)])); 
        end 
    end 
end 
if ax3 
    k=N(3); 
    for i=1:2:(N(1)-ax1) 
        for j=1:2:(N(2)-ax2) 

k5(round(i/2),round(j/2),floor(N(3)/2)+ax3)=round(mean([k4(
i,j,k) k4(i+1,j,k) k4(i,j+1,k) k4(i+1,j+1,k)])); 
        end 
    end 
end 
if ax1 && ax2 
    i=N(1); 
    j=N(2); 
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    for k=1:2:(N(3)-ax3) 
k5(floor(N(1)/2)+ax1,floor(N(2)/2)+ax2,round(k/2))=round(mean([

k4(i,j,k) k4(i,j,k+1)])); 
    end 
end 
if ax1 && ax3 
    i=N(1); 
    k=N(3); 
    for j=1:2:(N(2)-ax2) 

k5(floor(N(1)/2)+ax1,round(j/2),floor(N(3)/2)+ax3)=round(mean([
k4(i,j,k) k4(i,j+1,k)])); 
    end 
end 
if ax2 && ax3 
    j=N(2); 
    k=N(3); 
    for i=1:2:(N(1)-ax1) 

k5(round(i/2),floor(N(2)/2)+ax2,floor(N(3)/2)+ax3)=round(mean([
k4(i,j,k) k4(i+1,j,k)])); 
    end 
end 
if ax1 && ax2 && ax3 

k5(floor(N(1)/2)+ax1,floor(N(2)/2)+ax2,floor(N(3)/2)+ax3)=k4(N(1),N
(2),N(3)); 
end 
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Function 25. gambitjou2.m: 
%use for slug flow 
%run using data generated from voidfrac.m 
k=logical(false((ss(1)-2*WBbox),(ss(2)-2*WBbox),dpixels)); 
siz=size(coords{frame}); 
temp=[]; 
for i=1:siz(1) 
    temp=[temp;coords{frame}{i}];   %put all points into one matrix 
end 
x=temp(:,2);                        %x coordinates of bubble 
y=temp(:,1);                        %y coordinates of bubble 
si=size(x); 
minx=min(x);                        %leftmost point 
maxx=max(x);                        %rightmost point 
for j=0:(ss(2)-2*WBbox)+1           %loop for each x point 
    a1=find(x==j); 
    if isempty(a1) 
        continue 
    end 
    ymin=min(y(a1)); 
    ymax=max(y(a1)); 
    xb=j; 
    yb=(ymin+ymax)/2; 
    p1=[0 minx-1 yb];     %point on line of rotation 
    p2=[0 maxx+1 yb];     %point on line of rotation 
    p=rand(1,3);                    %random point in 3D 
    r=cross(p-p1,p2-p1);       %line perpendicular to line of rotation 
    s=cross(r,p2-p1);          %line perpendicular to line of rotation 
    r=r/sqrt(dot(r,r));             %normalize vector 
    s=s/sqrt(dot(s,s));             %normalize vector 
    yn3=abs(y(a1)-yb); 
    si=size(yn3); 
    tempx=zeros(si(1),1); 
    tempy=zeros(si(1),1); 
    tempz=zeros(si(1),1); 
    for i=1:si(1) 
        theta=0:(2*pi/500):(2*pi);                 %angles of rotation 
        for n=1:500 
            %calculate point in 3D space 

tempz=yn3(i)*cos(theta(n))*r(1)+yn3(i)*sin(theta(n))*s(1); 
%z coordinate 
            tempx=xb; %x coordinate 

tempy=yb+yn3(i)*cos(theta(n))*r(3)+yn3(i)*sin(theta(n))*s(3
); %y coordinate 
            %translate into cell coordinates 
            tempy=(ss(1)-WBbox)-round(tempy); %nearest cell in y 
direction 
            tempz=round(tempz+dpixels/2); %nearest cell in z direction 
            tempx=round(tempx);           %nearest cell in x direction 
            if tempx<1 
                tempx=1; 
            end 
            if tempx>(ss(2)-2*WBbox) 
                tempx=ss(2)-2*WBbox; 
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            end 
            if tempy<1 
                tempy=1; 
            end 
            if tempy>(ss(1)-2*WBbox) 
                tempy=ss(1)-2*WBbox; 
            end 
            if tempz<1 
                tempz=1; 
            end 
            if tempz>dpixels 
                tempz=dpixels; 
            end 
            k(tempy,tempx,tempz)=true; 
        end 
    end 
end 
%close boundaries and fill holes 
se=ones(5); 
se([1 1 end end],[1 end 1 end])=0; %create morphological structuring 
element 
k4=logical(false((ss(1)-2*WBbox),(ss(2)-
2*WBbox),dpixels)); %preallocate 
for i=1:dpixels                    %loop over each z plane 
    k2=imdilate(k(:,:,i),se);      %dilate image to form closed object 
    k3=imfill(k2,'holes');         %fill objects 
    k4(:,:,i)=imerode(k3,se);%erode image so boundary is back to normal 
end 
clear k2 k3 k 
%k4 is 3D logical matrix describing bubble areas 
%1 indicates part of bubble, 0 is background 
%downsample to make calculations faster 
%transform cube of 8 voxels into one new voxel 
N=size(k4); 
ax1=mod(N(1),2); 
ax2=mod(N(2),2); 
ax3=mod(N(3),2); 
k5=logical(false(floor(N(1)/2)+ax1,floor(N(2)/2)+ax2,floor(N(3)/2)+ax3)
); 
for i=1:2:(N(1)-ax1) 
    for j=1:2:(N(2)-ax2) 
        for k=1:2:(N(3)-ax3) 
            k5(round(i/2),round(j/2),round(k/2))=round(mean([k4(i,j,k) 
k4(i+1,j,k) k4(i,j+1,k) k4(i+1,j+1,k) k4(i,j,k+1) k4(i+1,j,k+1) 
k4(i+1,j+1,k+1) k4(i,j+1,k+1)])); 
        end 
    end 
end 
if ax1 
    i=N(1); 
    for j=1:2:(N(2)-ax2) 
        for k=1:2:(N(3)-ax3) 

k5(floor(N(1)/2)+ax1,round(j/2),round(k/2))=round(mean([k4(
i,j,k) k4(i,j+1,k) k4(i,j,k+1) k4(i,j+1,k+1)])); 
        end 



203 

 

    end 
end 
if ax2 
    j=N(2); 
    for i=1:2:(N(1)-ax1) 
        for k=1:2:(N(3)-ax3) 

k5(round(i/2),floor(N(2)/2)+ax2,round(k/2))=round(mean([k4(
i,j,k) k4(i+1,j,k) k4(i,j,k+1) k4(i+1,j,k+1)])); 
        end 
    end 
end 
if ax3 
    k=N(3); 
    for i=1:2:(N(1)-ax1) 
        for j=1:2:(N(2)-ax2) 

k5(round(i/2),round(j/2),floor(N(3)/2)+ax3)=round(mean([k4(
i,j,k) k4(i+1,j,k) k4(i,j+1,k) k4(i+1,j+1,k)])); 
        end 
    end 
end 
if ax1 && ax2 
    i=N(1); 
    j=N(2); 
    for k=1:2:(N(3)-ax3) 

k5(floor(N(1)/2)+ax1,floor(N(2)/2)+ax2,round(k/2))=round(mean([
k4(i,j,k) k4(i,j,k+1)])); 
    end 
end 
if ax1 && ax3 
    i=N(1); 
    k=N(3); 
    for j=1:2:(N(2)-ax2) 

k5(floor(N(1)/2)+ax1,round(j/2),floor(N(3)/2)+ax3)=round(mean([
k4(i,j,k) k4(i,j+1,k)])); 
    end 
end 
if ax2 && ax3 
    j=N(2); 
    k=N(3); 
    for i=1:2:(N(1)-ax1) 

k5(round(i/2),floor(N(2)/2)+ax2,floor(N(3)/2)+ax3)=round(mean([
k4(i,j,k) k4(i+1,j,k)])); 
    end 
end 
if ax1 && ax2 && ax3 

k5(floor(N(1)/2)+ax1,floor(N(2)/2)+ax2,floor(N(3)/2)+ax3)=k4(N(1),N
(2),N(3)); 
end 
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Function 26. gambitjou3.m: 
%use for annular flow 
%run using data generated from voidfrac.m 
k=logical(false((ss(1)-2*WBbox),(ss(2)-2*WBbox),dpixels)); 
siz=size(coords{frame}); 
temp=[]; 
for i=1:siz(1) 
    temp=[temp;coords{frame}{i}];   %put all points into one matrix 
end 
x=temp(:,2);                        %x coordinates of bubble 
y=temp(:,1);                        %y coordinates of bubble 
si=size(x); 
minx=min(x);                        %leftmost point 
maxx=max(x);                        %rightmost point 
for j=0:(ss(2)-2*WBbox)+1           %loop for each x point 
    a1=find(x==j); 
    if isempty(a1) 
        continue 
    end 
    ymin=min(y(a1)); 
    ymax=max(y(a1)); 
    xb=j; 
    yb=(ymin+ymax)/2; 
    yhat=(ymax-ymin)/2; 
    zhat=(dpixels-(ss(1)-2*WBbox)+ymax-ymin)/2; 
    xhat=xb; 
    %calculate point in 3D space 
    tempx=round(xhat);              %nearest cell in x direction 
    tempy1=round((ss(1)-2*WBbox)/2-yhat);   %upper point 
    tempz1=round(dpixels/2-zhat);           %front point 
    tempy2=round((ss(1)-2*WBbox)/2+yhat);   %lower point 
    tempz2=round(dpixels/2+zhat);           %back point 
    %translate into cell coordinates 
    if tempx<1 
        tempx=1; 
    end 
    if tempx>(ss(2)-2*WBbox) 
        tempx=ss(2)-2*WBbox; 
    end 
    if tempy1<2 
        tempy1=2; 
    end 
    if tempy2>(ss(1)-2*WBbox-1) 
        tempy2=ss(1)-2*WBbox-1; 
    end 
    if tempz2>(dpixels-1) 
        tempz2=dpixels-1; 
    end 
    if tempz1<2 
        tempz1=2; 
    end 
    k(tempy1:tempy2,tempx,tempz1:tempz2)=true; 
end 
k4=k; 
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clear k2 k3 k 
%k4 is 3D logical matrix describing bubble areas 
%1 indicates part of bubble, 0 is background 
%downsample to make calculations faster 
%transform cube of 8 voxels into one new voxel 
N=size(k4); 
ax1=mod(N(1),2); 
ax2=mod(N(2),2); 
ax3=mod(N(3),2); 
k5=logical(false(floor(N(1)/2)+ax1,floor(N(2)/2)+ax2,floor(N(3)/2)+ax3)
); 
for i=1:2:(N(1)-ax1) 
    for j=1:2:(N(2)-ax2) 
        for k=1:2:(N(3)-ax3) 
            k5(round(i/2),round(j/2),round(k/2))=round(mean([k4(i,j,k) 
k4(i+1,j,k) k4(i,j+1,k) k4(i+1,j+1,k) k4(i,j,k+1) k4(i+1,j,k+1) 
k4(i+1,j+1,k+1) k4(i,j+1,k+1)])); 
        end 
    end 
end 
if ax1 
    i=N(1); 
    for j=1:2:(N(2)-ax2) 
        for k=1:2:(N(3)-ax3) 

k5(floor(N(1)/2)+ax1,round(j/2),round(k/2))=round(mean([k4(
i,j,k) k4(i,j+1,k) k4(i,j,k+1) k4(i,j+1,k+1)])); 
        end 
    end 
end 
if ax2 
    j=N(2); 
    for i=1:2:(N(1)-ax1) 
        for k=1:2:(N(3)-ax3) 

k5(round(i/2),floor(N(2)/2)+ax2,round(k/2))=round(mean([k4(
i,j,k) k4(i+1,j,k) k4(i,j,k+1) k4(i+1,j,k+1)])); 
        end 
    end 
end 
if ax3 
    k=N(3); 
    for i=1:2:(N(1)-ax1) 
        for j=1:2:(N(2)-ax2) 

k5(round(i/2),round(j/2),floor(N(3)/2)+ax3)=round(mean([k4(
i,j,k) k4(i+1,j,k) k4(i,j+1,k) k4(i+1,j+1,k)])); 
        end 
    end 
end 
if ax1 && ax2 
    i=N(1); 
    j=N(2); 
    for k=1:2:(N(3)-ax3) 

k5(floor(N(1)/2)+ax1,floor(N(2)/2)+ax2,round(k/2))=round(mean([
k4(i,j,k) k4(i,j,k+1)])); 
    end 
end 
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if ax1 && ax3 
    i=N(1); 
    k=N(3); 
    for j=1:2:(N(2)-ax2) 

k5(floor(N(1)/2)+ax1,round(j/2),floor(N(3)/2)+ax3)=round(mean([
k4(i,j,k) k4(i,j+1,k)])); 
    end 
end 
if ax2 && ax3 
    j=N(2); 
    k=N(3); 
    for i=1:2:(N(1)-ax1) 

k5(round(i/2),floor(N(2)/2)+ax2,floor(N(3)/2)+ax3)=round(mean([
k4(i,j,k) k4(i+1,j,k)])); 
    end 
end 
if ax1 && ax2 && ax3 

k5(floor(N(1)/2)+ax1,floor(N(2)/2)+ax2,floor(N(3)/2)+ax3)=k4(N(1),N
(2),N(3)); 
end 
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Function 27. lap3dsolver.m: 
%solve 3D laplace equation for two phase flow in a microchannel 
%run after gambitjou.m 
%________===Ve1===________ 
%|                       | 
%|   bb             bb   | 
%|   bb             bb   | 
%|_______         _______| 
%        ===Ve2=== 
%== are electrodes 
%bb are bubbles 
%3D logical matrix k5 contains bubble cell locations 
%a is coefficient of ith jth kth term, Vp, current point 
%b is coefficient of i+1 jth kth term, Vr, right point 
%c is coefficient of i-1 jth kth term, Vl, left point 
%d is coefficient of ith j+1 kth term, Vm, bottom point 
%e is coefficient of ith j-1 kth term, Vt, top point 
%f is coefficient of ith jth k+1 term, Vb, back point 
%g is coefficient of ith jth k-1 term, Vf, front point 
%h is source term 
%V is voltage for every cell 
%all voltage outputs have units 
len=(ss(2)-2*WBbox)/wratio/1000;  %calculate channel length [mm] 
dx=2*len/(ss(2)-2*WBbox);   %delta x in left and right regions [mm] 
dx2=dx; 
dy=dx;      %delta y in top and bottom regions [mm] 
dy2=dy; 
dz=dx;      %delta z in front and back regions [mm] 
dz2=dz; 
if ax1 
    dx2=dx/2; 
end 
if ax2 
    dy2=dy/2; 
end 
if ax3 
    dz2=dz/2; 
end 
k1=.01;     %electrical conductivity of water region [1/ohm m] 
k2=2.5e-14; %electrical conductivity of bubble region [1/ohm m] 
Ve1=5;      %voltage of electrode 1 
Ve2=1;      %voltage of electrode 2 
N=size(k5); %dimensions of mesh 
            %N(1) is number of rows (y) 
            %N(2) is number of columns (x) 
            %N(3) is number of planes (z) 
tic; 
[a,b,c,d,e,f,g,h]=initmat(dx,dx2,dy,dy2,dz,dz2,k1,k2,Ve1,Ve2,N,k5,ax1,a
x2,ax3); 
disp('matrices initialized'); 
toc; 
tic; 
counter=0;  %set counter to zeros 
err=0.9;    %error from one iteration to the next 
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V=abs((Ve2-Ve1)/2+Ve1)*ones(N(1),N(2),N(3));    %initial guess 
while err>0.00001 
    one=V; 
    for k=1:N(3)    %planes first 
        a1=reshape(a(:,:,k),N(1),N(2)); 
        b1=reshape(b(:,:,k),N(1),N(2)); 
        c1=reshape(c(:,:,k),N(1),N(2)); 
        d1=reshape(d(:,:,k),N(1),N(2)); 
        e1=reshape(e(:,:,k),N(1),N(2)); 
        f1=reshape(f(:,:,k),N(1),N(2)); 
        g1=reshape(g(:,:,k),N(1),N(2)); 
        if k==1 
       h1=reshape(h(:,:,k),N(1),N(2))+f1.*reshape(V(:,:,k+1),N(1),N(2)); 
        elseif k==N(3) 
            h1=reshape(h(:,:,k),N(1),N(2))+g1.*reshape(V(:,:,k-
1),N(1),N(2)); 
        else 

h1=reshape(h(:,:,k),N(1),N(2))+f1.*reshape(V(:,:,k+1),N(1),
N(2))+g1.*reshape(V(:,:,k-1),N(1),N(2)); 
        end 
        V1=reshape(V(:,:,k),N(1),N(2)); 
        V(:,:,k)=tdmaline(a1,b1,c1,d1,e1,h1,V1); 
    end 
    for j=1:N(2)    %columns second 
        a1=reshape(a(:,j,:),N(1),N(3)); 
        b1=reshape(b(:,j,:),N(1),N(3)); 
        c1=reshape(c(:,j,:),N(1),N(3)); 
        d1=reshape(d(:,j,:),N(1),N(3)); 
        e1=reshape(e(:,j,:),N(1),N(3)); 
        f1=reshape(f(:,j,:),N(1),N(3)); 
        g1=reshape(g(:,j,:),N(1),N(3)); 
        if j==1 
       h1=reshape(h(:,j,:),N(1),N(3))+b1.*reshape(V(:,j+1,:),N(1),N(3)); 
        elseif j==N(2) 
            h1=reshape(h(:,j,:),N(1),N(3))+c1.*reshape(V(:,j-
1,:),N(1),N(3)); 
        else 

h1=reshape(h(:,j,:),N(1),N(3))+b1.*reshape(V(:,j+1,:),N(1),
N(3))+c1.*reshape(V(:,j-1,:),N(1),N(3)); 
        end 
        V1=reshape(V(:,j,:),N(1),N(3)); 
        V(:,j,:)=tdmaline(a1,f1,g1,d1,e1,h1,V1); 
    end 
    for i=1:N(1)    %rows third 
        a1=reshape(a(i,:,:),N(2),N(3)); 
        b1=reshape(b(i,:,:),N(2),N(3)); 
        c1=reshape(c(i,:,:),N(2),N(3)); 
        d1=reshape(d(i,:,:),N(2),N(3)); 
        e1=reshape(e(i,:,:),N(2),N(3)); 
        f1=reshape(f(i,:,:),N(2),N(3)); 
        g1=reshape(g(i,:,:),N(2),N(3)); 
        if i==1 
       h1=reshape(h(i,:,:),N(2),N(3))+d1.*reshape(V(i+1,:,:),N(2),N(3)); 
        elseif i==N(1) 
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            h1=reshape(h(i,:,:),N(2),N(3))+e1.*reshape(V(i-
1,:,:),N(2),N(3)); 
        else 

h1=reshape(h(i,:,:),N(2),N(3))+d1.*reshape(V(i+1,:,:),N(2),
N(3))+e1.*reshape(V(i-1,:,:),N(2),N(3)); 
        end 
        V1=reshape(V(i,:,:),N(2),N(3)); 
        V(i,:,:)=tdmaline(a1,f1,g1,b1,c1,h1,V1); 
    end 
    for k=N(3):-1:1 %backwards planes fourth 
        a1=reshape(a(:,:,k),N(1),N(2)); 
        b1=reshape(b(:,:,k),N(1),N(2)); 
        c1=reshape(c(:,:,k),N(1),N(2)); 
        d1=reshape(d(:,:,k),N(1),N(2)); 
        e1=reshape(e(:,:,k),N(1),N(2)); 
        f1=reshape(f(:,:,k),N(1),N(2)); 
        g1=reshape(g(:,:,k),N(1),N(2)); 
        if k==1 
       h1=reshape(h(:,:,k),N(1),N(2))+f1.*reshape(V(:,:,k+1),N(1),N(2)); 
        elseif k==N(3) 
            h1=reshape(h(:,:,k),N(1),N(2))+g1.*reshape(V(:,:,k-
1),N(1),N(2)); 
        else 

h1=reshape(h(:,:,k),N(1),N(2))+f1.*reshape(V(:,:,k+1),N(1),
N(2))+g1.*reshape(V(:,:,k-1),N(1),N(2)); 
        end 
        V1=reshape(V(:,:,k),N(1),N(2)); 
        V(:,:,k)=tdmaline(a1,b1,c1,d1,e1,h1,V1); 
    end 
    for j=N(2):-1:1 %backwards columns fifth 
        a1=reshape(a(:,j,:),N(1),N(3)); 
        b1=reshape(b(:,j,:),N(1),N(3)); 
        c1=reshape(c(:,j,:),N(1),N(3)); 
        d1=reshape(d(:,j,:),N(1),N(3)); 
        e1=reshape(e(:,j,:),N(1),N(3)); 
        f1=reshape(f(:,j,:),N(1),N(3)); 
        g1=reshape(g(:,j,:),N(1),N(3)); 
        if j==1 
       h1=reshape(h(:,j,:),N(1),N(3))+b1.*reshape(V(:,j+1,:),N(1),N(3)); 
        elseif j==N(2) 
            h1=reshape(h(:,j,:),N(1),N(3))+c1.*reshape(V(:,j-
1,:),N(1),N(3)); 
        else 

h1=reshape(h(:,j,:),N(1),N(3))+b1.*reshape(V(:,j+1,:),N(1),
N(3))+c1.*reshape(V(:,j-1,:),N(1),N(3)); 
        end 
        V1=reshape(V(:,j,:),N(1),N(3)); 
        V(:,j,:)=tdmaline(a1,f1,g1,d1,e1,h1,V1); 
    end 
    for i=N(1):-1:1 %backwards rows sixth 
        a1=reshape(a(i,:,:),N(2),N(3)); 
        b1=reshape(b(i,:,:),N(2),N(3)); 
        c1=reshape(c(i,:,:),N(2),N(3)); 
        d1=reshape(d(i,:,:),N(2),N(3)); 
        e1=reshape(e(i,:,:),N(2),N(3)); 
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        f1=reshape(f(i,:,:),N(2),N(3)); 
        g1=reshape(g(i,:,:),N(2),N(3)); 
        if i==1 
       h1=reshape(h(i,:,:),N(2),N(3))+d1.*reshape(V(i+1,:,:),N(2),N(3)); 
        elseif i==N(1) 
            h1=reshape(h(i,:,:),N(2),N(3))+e1.*reshape(V(i-
1,:,:),N(2),N(3)); 
        else 

h1=reshape(h(i,:,:),N(2),N(3))+d1.*reshape(V(i+1,:,:),N(2),
N(3))+e1.*reshape(V(i-1,:,:),N(2),N(3)); 
        end 
        V1=reshape(V(i,:,:),N(2),N(3)); 
        V(i,:,:)=tdmaline(a1,f1,g1,b1,c1,h1,V1); 
    end 
    two=V; 
    err=max(max(max(abs((one-two)./one)))); 
    counter=counter+1; 
    if ~mod(counter,10) 
        disp(sprintf('still going... iteration: %i ave V: %2.3f 
err: %1.5f',counter,mean(mean(mean(V))),err)); 
    end 
    if counter>=1000 
        disp(sprintf('over 1000 outer iterations, error is %1.5f',err)); 
        err=0; 
    end 
    if err>5 
        disp(sprintf('diverging, error is %1.5f',err)); 
        err=0; 
    end 
    one=mean(mean(mean(V))); 
    if one>2*Ve1 
        disp(sprintf('V values too high, error is %1.5f',err)); 
        err=0; 
    end 
end 
toc; 
clear one two a b c d e f g h a1 b1 c1 d1 e1 f1 g1 h1 
xx=ones(N(1),N(2)); 
for i=1:N(1) 
    xx(i,:)=1:N(2); 
end 
yy=ones(N(1),N(2)); 
for j=1:N(2) 
    yy(:,j)=1:N(1); 
end 
figure 
contour(xx,yy,V(:,:,floor(N(3)/2)));    %plot contour of voltages 
title('Voltage contour map','fontsize',16); 
figure 
surf(xx,yy,V(:,:,floor(N(3)/2)));       %plot surface of voltages 
title('Voltage profile','fontsize',16); 
%voltage to resistance calculation 
elec1=round(N(2)/3);    %cell number for left side of electrode 
elec2=round(2*N(2)/3);  %cell number for right side of electrode 
I=zeros((elec2-elec1+1),N(3)); 
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for j=elec1:elec2 
    for k=1:(N(3)-1) 
        i=1; 
        I((j-elec1+1),k)=(Ve1-V(i,j,k))/dy*dx*dz*(k5(i,j,k)*k2+(1-
k5(i,j,k))*k1)*2; 
    end 
    I((j-elec1+1),N(3))=(Ve1-
V(1,elec2,N(3)))/dy*dx*dz2*(k5(1,elec2,N(3))*k2+(1-
k5(1,elec2,N(3)))*k1)*2; 
end 
current=sum(sum(I))/1000; 
resistance(frame)=(Ve1-Ve2)/current; 
save(OutFileName) 
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Function 28. lap3dsolver2.m: 
%solve 3D laplace equation for two phase flow in a microchannel 
%run after gambitjou.m 
%________===Ve1===________ 
%|                       | 
%|   bb             bb   | 
%|   bb             bb   | 
%|_______         _______| 
%        ===Ve2=== 
%== are electrodes 
%bb are bubbles 
%3D logical matrix k4 contains bubble cell locations 
%a is coefficient of ith jth kth term, Vp, current point 
%b is coefficient of i+1 jth kth term, Vr, right point 
%c is coefficient of i-1 jth kth term, Vl, left point 
%d is coefficient of ith j+1 kth term, Vm, bottom point 
%e is coefficient of ith j-1 kth term, Vt, top point 
%f is coefficient of ith jth k+1 term, Vb, back point 
%g is coefficient of ith jth k-1 term, Vf, front point 
%h is source term 
%V is voltage for every cell 
%all voltage outputs have units 
len=(ss(2)-2*WBbox)/wratio/1000;  %calculate channel length [mm] 
dx=2*len/(ss(2)-2*WBbox);   %delta x in left and right regions [mm] 
dx2=dx; 
dy=dx;      %delta y in top and bottom regions [mm] 
dy2=dy; 
dz=dx;      %delta z in front and back regions [mm] 
dz2=dz; 
if ax1 
    dx2=dx/2; 
end 
if ax2 
    dy2=dy/2; 
end 
if ax3 
    dz2=dz/2; 
end 
k1=80;      %dielectric constant of water region [-] 
k2=1;       %dielectric constant of bubble region [-] 
Ve1=5;      %voltage of electrode 1 
Ve2=1;      %voltage of electrode 2 
N=size(k5); %dimensions of mesh 
            %N(1) is number of rows (y) 
            %N(2) is number of columns (x) 
            %N(3) is number of planes (z) 
tic; 
[a,b,c,d,e,f,g,h]=initmat(dx,dx2,dy,dy2,dz,dz2,k1,k2,Ve1,Ve2,N,k5,ax1,a
x2,ax3); 
disp('matrices initialized'); 
toc; 
tic; 
counter=0;  %set counter to zeros 
err=0.9;    %error from one iteration to the next 
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V=abs((Ve2-Ve1)/2+Ve1)*ones(N(1),N(2),N(3));    %initial guess 
while err>0.00001 
    one=V; 
    for k=1:N(3)    %planes first 
        a1=reshape(a(:,:,k),N(1),N(2)); 
        b1=reshape(b(:,:,k),N(1),N(2)); 
        c1=reshape(c(:,:,k),N(1),N(2)); 
        d1=reshape(d(:,:,k),N(1),N(2)); 
        e1=reshape(e(:,:,k),N(1),N(2)); 
        f1=reshape(f(:,:,k),N(1),N(2)); 
        g1=reshape(g(:,:,k),N(1),N(2)); 
        if k==1 
       h1=reshape(h(:,:,k),N(1),N(2))+f1.*reshape(V(:,:,k+1),N(1),N(2)); 
        elseif k==N(3) 
            h1=reshape(h(:,:,k),N(1),N(2))+g1.*reshape(V(:,:,k-
1),N(1),N(2)); 
        else 

h1=reshape(h(:,:,k),N(1),N(2))+f1.*reshape(V(:,:,k+1),N(1),
N(2))+g1.*reshape(V(:,:,k-1),N(1),N(2)); 
        end 
        V1=reshape(V(:,:,k),N(1),N(2)); 
        V(:,:,k)=tdmaline(a1,b1,c1,d1,e1,h1,V1); 
    end 
    for j=1:N(2)    %columns second 
        a1=reshape(a(:,j,:),N(1),N(3)); 
        b1=reshape(b(:,j,:),N(1),N(3)); 
        c1=reshape(c(:,j,:),N(1),N(3)); 
        d1=reshape(d(:,j,:),N(1),N(3)); 
        e1=reshape(e(:,j,:),N(1),N(3)); 
        f1=reshape(f(:,j,:),N(1),N(3)); 
        g1=reshape(g(:,j,:),N(1),N(3)); 
        if j==1 
       h1=reshape(h(:,j,:),N(1),N(3))+b1.*reshape(V(:,j+1,:),N(1),N(3)); 
        elseif j==N(2) 
            h1=reshape(h(:,j,:),N(1),N(3))+c1.*reshape(V(:,j-
1,:),N(1),N(3)); 
        else 

h1=reshape(h(:,j,:),N(1),N(3))+b1.*reshape(V(:,j+1,:),N(1),
N(3))+c1.*reshape(V(:,j-1,:),N(1),N(3)); 
        end 
        V1=reshape(V(:,j,:),N(1),N(3)); 
        V(:,j,:)=tdmaline(a1,f1,g1,d1,e1,h1,V1); 
    end 
    for i=1:N(1)    %rows third 
        a1=reshape(a(i,:,:),N(2),N(3)); 
        b1=reshape(b(i,:,:),N(2),N(3)); 
        c1=reshape(c(i,:,:),N(2),N(3)); 
        d1=reshape(d(i,:,:),N(2),N(3)); 
        e1=reshape(e(i,:,:),N(2),N(3)); 
        f1=reshape(f(i,:,:),N(2),N(3)); 
        g1=reshape(g(i,:,:),N(2),N(3)); 
        if i==1 
       h1=reshape(h(i,:,:),N(2),N(3))+d1.*reshape(V(i+1,:,:),N(2),N(3)); 
        elseif i==N(1) 
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            h1=reshape(h(i,:,:),N(2),N(3))+e1.*reshape(V(i-
1,:,:),N(2),N(3)); 
        else 

h1=reshape(h(i,:,:),N(2),N(3))+d1.*reshape(V(i+1,:,:),N(2),
N(3))+e1.*reshape(V(i-1,:,:),N(2),N(3)); 
        end 
        V1=reshape(V(i,:,:),N(2),N(3)); 
        V(i,:,:)=tdmaline(a1,f1,g1,b1,c1,h1,V1); 
    end 
    for k=N(3):-1:1 %backwards planes fourth 
        a1=reshape(a(:,:,k),N(1),N(2)); 
        b1=reshape(b(:,:,k),N(1),N(2)); 
        c1=reshape(c(:,:,k),N(1),N(2)); 
        d1=reshape(d(:,:,k),N(1),N(2)); 
        e1=reshape(e(:,:,k),N(1),N(2)); 
        f1=reshape(f(:,:,k),N(1),N(2)); 
        g1=reshape(g(:,:,k),N(1),N(2)); 
        if k==1 
       h1=reshape(h(:,:,k),N(1),N(2))+f1.*reshape(V(:,:,k+1),N(1),N(2)); 
        elseif k==N(3) 
            h1=reshape(h(:,:,k),N(1),N(2))+g1.*reshape(V(:,:,k-
1),N(1),N(2)); 
        else 

h1=reshape(h(:,:,k),N(1),N(2))+f1.*reshape(V(:,:,k+1),N(1),
N(2))+g1.*reshape(V(:,:,k-1),N(1),N(2)); 
        end 
        V1=reshape(V(:,:,k),N(1),N(2)); 
        V(:,:,k)=tdmaline(a1,b1,c1,d1,e1,h1,V1); 
    end 
    for j=N(2):-1:1 %backwards columns fifth 
        a1=reshape(a(:,j,:),N(1),N(3)); 
        b1=reshape(b(:,j,:),N(1),N(3)); 
        c1=reshape(c(:,j,:),N(1),N(3)); 
        d1=reshape(d(:,j,:),N(1),N(3)); 
        e1=reshape(e(:,j,:),N(1),N(3)); 
        f1=reshape(f(:,j,:),N(1),N(3)); 
        g1=reshape(g(:,j,:),N(1),N(3)); 
        if j==1 
       h1=reshape(h(:,j,:),N(1),N(3))+b1.*reshape(V(:,j+1,:),N(1),N(3)); 
        elseif j==N(2) 
            h1=reshape(h(:,j,:),N(1),N(3))+c1.*reshape(V(:,j-
1,:),N(1),N(3)); 
        else 

h1=reshape(h(:,j,:),N(1),N(3))+b1.*reshape(V(:,j+1,:),N(1),
N(3))+c1.*reshape(V(:,j-1,:),N(1),N(3)); 
        end 
        V1=reshape(V(:,j,:),N(1),N(3)); 
        V(:,j,:)=tdmaline(a1,f1,g1,d1,e1,h1,V1); 
    end 
    for i=N(1):-1:1 %backwards rows sixth 
        a1=reshape(a(i,:,:),N(2),N(3)); 
        b1=reshape(b(i,:,:),N(2),N(3)); 
        c1=reshape(c(i,:,:),N(2),N(3)); 
        d1=reshape(d(i,:,:),N(2),N(3)); 
        e1=reshape(e(i,:,:),N(2),N(3)); 
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        f1=reshape(f(i,:,:),N(2),N(3)); 
        g1=reshape(g(i,:,:),N(2),N(3)); 
        if i==1 
       h1=reshape(h(i,:,:),N(2),N(3))+d1.*reshape(V(i+1,:,:),N(2),N(3)); 
        elseif i==N(1) 
            h1=reshape(h(i,:,:),N(2),N(3))+e1.*reshape(V(i-
1,:,:),N(2),N(3)); 
        else 

h1=reshape(h(i,:,:),N(2),N(3))+d1.*reshape(V(i+1,:,:),N(2),
N(3))+e1.*reshape(V(i-1,:,:),N(2),N(3)); 
        end 
        V1=reshape(V(i,:,:),N(2),N(3)); 
        V(i,:,:)=tdmaline(a1,f1,g1,b1,c1,h1,V1); 
    end 
    two=V; 
    err=max(max(max(abs((one-two)./one)))); 
    counter=counter+1; 
    if ~mod(counter,10) 
        disp(sprintf('still going... iteration: %i ave V: %2.3f 
err: %1.5f',counter,mean(mean(mean(V))),err)); 
    end 
    if counter>=1000 
        disp(sprintf('over 1000 outer iterations, error is %1.5f',err)); 
        err=0; 
    end 
    if err>5 
        disp(sprintf('diverging, error is %1.5f',err)); 
        err=0; 
    end 
    one=mean(mean(mean(V))); 
    if one>2*Ve1 
        disp(sprintf('V values too high, error is %1.5f',err)); 
        err=0; 
    end 
end 
toc; 
clear one two a b c d e f g h a1 b1 c1 d1 e1 f1 g1 h1 
xx=ones(N(1),N(2)); 
for i=1:N(1) 
    xx(i,:)=1:N(2); 
end 
yy=ones(N(1),N(2)); 
for j=1:N(2) 
    yy(:,j)=1:N(1); 
end 
figure 
contour(xx,yy,V(:,:,floor(N(3)/2)));    %plot contour of voltages 
title('Voltage contour map','fontsize',16); 
figure 
surf(xx,yy,V(:,:,floor(N(3)/2)));       %plot surface of voltages 
title('Voltage profile','fontsize',16); 
%voltage to capacitance calculation 
elec1=round(N(2)/3);    %cell number for left side of electrode 
elec2=round(2*N(2)/3);  %cell number for right side of electrode 
Q=zeros((elec2-elec1+1),N(3)); 
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for j=elec1:elec2 
    for k=1:(N(3)-1) 
        i=1; 
        Q((j-elec1+1),k)=(Ve1-V(i,j,k))/dy*dx*dz*(k5(i,j,k)*k2+(1-
k5(i,j,k))*k1)*2; 
    end 
    Q((j-elec1+1),N(3))=(Ve1-
V(1,elec2,N(3)))/dy*dx*dz2*(k5(1,elec2,N(3))*k2+(1-
k5(1,elec2,N(3)))*k1)*2; 
end 
charge=sum(sum(Q))*8.854e-12/1000; 
capacitance(frame)=charge/(Ve1-Ve2); 
save(OutFileName) 
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Function 29. tdma.m: 
%TDMA solver 
%equation at ith grid point: 
% a_i * phi_i = b_i * phi_i+1 + c_i * phi_i-1 + d_i 
%tridiagonal matrix formed from all grid points: 
% [ a -b 0  0  ]       [ d ] 
% [-c a  -b 0  ] phi = [ d ] 
% [ 0 -c a  -b ]       [ d ] 
% [ 0 0  -c a  ]       [ d ] 
%a is coefficient of ith term 
%b is coefficient of i+1 term 
%c is coefficient of i-1 term 
%d is source term 
%function outputs phi 
function [phi] = tdma(a,b,c,d) 
N=length(a);    %number of grid points 
P=zeros(1,N); 
Q=zeros(1,N); 
P(1)=b(1)/a(1); 
Q(1)=d(1)/a(1); 
for i=2:N 
    P(i)=b(i)/(a(i)-c(i)*P(i-1)); 
    Q(i)=(d(i)+c(i)*Q(i-1))/(a(i)-c(i)*P(i-1)); 
end 
phi(N)=Q(N); 
for i=N-1:-1:1 
    phi(i)=P(i)*phi(i+1)+Q(i); 
end 
end 
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Function 30. tdmaline.m: 
%line by line TDMA solver 
%equation at ith grid point: 
% a_i,j * phi_i,j = b_i,j * phi_i+1,j + c_i,j * phi_i-1,j + d_i,j * 
% phi_i,j+1 + e_i,j * phi_i,j-1 + f 
%tridiagonal matrix formed from all grid points: 
% [ a -b 0  0  ]       [ d ] 
% [-c a  -b 0  ] phi = [ d ] 
% [ 0 -c a  -b ]       [ d ] 
% [ 0 0  -c a  ]       [ d ] 
%a is coefficient of ith jth term 
%b is coefficient of i+1 jth term 
%c is coefficient of i-1 jth term 
%d is coefficient of ith j+1 term 
%e is coefficient of ith j-1 term 
%f is source term 
%g is initial guesses for phi 
%function outputs phi 
function [phi] = tdmaline(a,b,c,d,e,f,g) 
N=size(a);      %number of grid points 
                %N(1) is number of rows 
                %N(2) is number of columns 
    for i=1:N(1)        %rows first 
        a1=a(i,:); 
        b1=b(i,:); 
        c1=c(i,:); 
        if i==1 
            d1=f(i,:)+d(i,:).*g(i+1,:); 
        elseif i==N(1) 
            d1=f(i,:)+e(i,:).*g(i-1,:); 
        else 
            d1=f(i,:)+d(i,:).*g(i+1,:)+e(i,:).*g(i-1,:); 
        end 
        g(i,:)=tdma(a1,b1,c1,d1);   %pass to tdma solver 
    end 
    for j=1:N(2)        %columns second 
        a1=a(:,j); 
        b1=d(:,j); 
        c1=e(:,j); 
        if j==1 
            d1=f(:,j)+b(:,j).*g(:,j+1); 
        elseif j==N(2) 
            d1=f(:,j)+c(:,j).*g(:,j-1); 
        else 
            d1=f(:,j)+b(:,j).*g(:,j+1)+c(:,j).*g(:,j-1); 
        end 
        g(:,j)=tdma(a1,b1,c1,d1);   %pass to tdma solver 
    end 
    for i=N(1):-1:1     %backward rows third 
        a1=a(i,:); 
        b1=b(i,:); 
        c1=c(i,:); 
        if i==1 
            d1=f(i,:)+d(i,:).*g(i+1,:); 
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        elseif i==N(1) 
            d1=f(i,:)+e(i,:).*g(i-1,:); 
        else 
            d1=f(i,:)+d(i,:).*g(i+1,:)+e(i,:).*g(i-1,:); 
        end 
        g(i,:)=tdma(a1,b1,c1,d1);   %pass to tdma solver 
    end 
    for j=N(2):-1:1     %backward columns fourth 
        a1=a(:,j); 
        b1=d(:,j); 
        c1=e(:,j); 
        if j==1 
            d1=f(:,j)+b(:,j).*g(:,j+1); 
        elseif j==N(2) 
            d1=f(:,j)+c(:,j).*g(:,j-1); 
        else 
            d1=f(:,j)+b(:,j).*g(:,j+1)+c(:,j).*g(:,j-1); 
        end 
        g(:,j)=tdma(a1,b1,c1,d1);   %pass to tdma solver 
    end 
phi=g; 
end 
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Appendix C MATLAB Script for Non-Uniform Data Analysis 

A MATLAB script was developed to analyze the data obtained in the non-

uniform heating experiments as discussed in Section 6.2. This script is a modified version 

of the one used by Harirchian [89] to accommodate non-uniform heating profiles. The 

script first reads in the data obtained during experiments. It then applies a set of 

correlations to find the diode temperature, heat generation, and heat loss at every node. It 

then calculates the pressure drop across the test section and the local saturation 

temperature. Next it calculates the net heat transfer between each node and the local fluid 

temperatures. It then calculates the local heat transfer coefficients and records all of the 

data in a spreadsheet. 

 

CalculatorUpdatedConduction2.m: 
clc 
clear 
Boiling = xlsread('CalibrationData', 'Boiling', 'B3:B27'); 
Dimensions = xlsread('CalibrationData', 'Dimensions', 'B1:B7'); 
Heaters = xlsread('TestData','Heaters','B2:B26');    %which heaters are 
turned on 
wf = Dimensions(1); %fin width m 
w = Dimensions(2); %channel width m 
d = Dimensions(3); %channel depth m 
N = Dimensions(4); %number of channels 
Width = Dimensions(5); %chip width m 
Length = Dimensions(6); %chip length m 
t = Dimensions(7); %total chip thickness m 
tbase = t - d; %chip base thickness m 
Aw = N*(w+2*d)*Length; %wetted area m^2 
Af = 2*Length*d; %fin area m^2 
SiliconK = 140;  
hfg = 89000; %Heat of vaporization  
cpf = 1100; %Specific Heat, fluid J/kg*K 
Position = 
[.9 .9 .9 .9 .9 .7 .7 .7 .7 .7 .5 .5 .5 .5 .5 .3 .3 .3 .3 .3 .1 .1 .1 .
1 .1]; 
sigma = .0062; %Fluid surface tension N/m .0062 
rhof = 1600; %Fluid Density kg/m3  1600 
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rhog = 15.84; %Vapor Density kg/m3  15.84 
uf = .00052; %Fluid viscosity .00052 
ug = .00002; %Gas Viscosity .00002 
A1 = 0.01465*0.0228; %Inlet manifold area m^2 
A2 = 0.00165*0.01267; %Plenum Area m^2 
A3 = w*d*N; %Total Channel Area m^2 
A4 = 0.01465*0.00835; %Exit Manifold Area m^2 
%Calibration 
%Diode Calibration 
DiodeV = xlsread('CalibrationData', 'DiodeCalibration', 'A3:Y8'); 
SizeD = size(DiodeV); 
DiodeT = xlsread('CalibrationData', 'DiodeCalibration', 'A11:A16'); 
DiodeVAvg=zeros(1,SizeD(1)); 
for i1 = 1:SizeD(1) 
    DiodeVAvg(i1) = sum(DiodeV(i1,:))/SizeD(2); 
end 
DiodeModel = polyfit(DiodeVAvg', DiodeT, 1); 
%Resistor Calibration 
Resistance = xlsread('CalibrationData', 'ResistorCalibration', 'A3:Y7'); 
SizeR = size(Resistance); 
ResistanceT = xlsread('CalibrationData', 'ResistorCalibration', 
'A11:A15'); 
ResistorModel=zeros(3,SizeR(2)); 
for i1 = 1:SizeR(2) 
    [ResistorModel(:,i1)]=polyfit(ResistanceT,Resistance(:,i1),2); 
end 
%Heat Loss 
Voltage = xlsread('CalibrationData', 'HeatLossCalibration', 'A10:A14'); 
Current = xlsread('CalibrationData', 'HeatLossCalibration', 'B10:B14'); 
DiodeLossVoltage = xlsread('CalibrationData', 'HeatLossCalibration', 
'A3:Y7'); 
LossTemperature = DiodeModel(1).*DiodeLossVoltage + 
ones(size(DiodeLossVoltage))*DiodeModel(2); 
SizeT = size(LossTemperature); 
SizeV = size(Voltage); 
TotalLoss = Voltage.*Current; 
AvgLossTemp=zeros(1,SizeT(1)); 
for i1 = 1:SizeT(1) 
    AvgLossTemp(i1) = sum(LossTemperature(i1,:))/SizeT(2); 
end 
LossResistance=repmat(ResistorModel(1,:),5,1).*LossTemperature.^2+repma
t(ResistorModel(2,:),5,1).*LossTemperature+repmat(ResistorModel(3,:),5,
1); 
LocalHeatLoss=repmat(Voltage,1,25).^2./LossResistance; 
LocalLossModel=zeros(2,SizeT(2)); 
for i1 = 1:SizeT(2) 
    ModelTemperatureTemp=LossTemperature(:,i1); 
    ModelLossTemp=LocalHeatLoss(:,i1); 
   [LocalLossModel(:,i1)]=polyfit(ModelTemperatureTemp,ModelLossTemp,1); 
end 
TotalLossModel = polyfit(AvgLossTemp', TotalLoss, 1); 
%Data Processing 
TestData = xlsread('TestData', 'ExperimentalData'); %Read in 
experimental data 
SampleSize = size(TestData); 
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%Diode Temperature at each node 
TestTemp=DiodeModel(1)*TestData(:,1:25)+DiodeModel(2); 
%Heater resistance in each node 
TestResistance=repmat(ResistorModel(1,:),SampleSize(1),1).*TestTemp.^2+
repmat(ResistorModel(2,:),SampleSize(1),1).*TestTemp+repmat(ResistorMod
el(3,:),SampleSize(1),1); 
%Heat generation at each node 
LocalHeatGeneration=repmat(TestData(:,26),1,25).^2./TestResistance.*(re
pmat(Heaters',SampleSize(1),1)==1) + 
repmat(TestData(:,32),1,25).^2./TestResistance.*(repmat(Heaters',Sample
Size(1),1)==2); 
%Heat loss at each node 
TestLocalHeatLoss=repmat(LocalLossModel(1,:),SampleSize(1),1).*TestTemp
+repmat(LocalLossModel(2,:),SampleSize(1),1); 
%Inlet pressure for each voltage level tested [Pa] 
InletPressure=(14.697+TestData(:,27))/.00014504; 
%Pressure drop for each voltage [Pa] 
DP=(TestData(:,28))/.00014504; 
%Exit fluid temperature [C] 
ExitTemp=TestData(:,30); 
%Inlet fluid temp [C] 
Tin=TestData(:,29); 
%Mass flow rate [mL/min] 
Mdot=TestData(:,31); 
%Mass flux (kg/m^2s) 
G = Mdot/60*(.01)^3*rhof/A3; 
%%%%Pressure drop calculations%%%%% 
%Inlet manifold to plenum [Pa] 
alpha2 = 0.00165/0.01267; 
G2=G*A3/A2; 
Kc2 = .0088*alpha2^2-.1785*alpha2+1.6027; 
DP12 = (1-(A2/A1)^2+Kc2)*0.5*G2.^2/rhof; 
%Plenum to Microchannel [Pa] 
alpha3 = max(w/d, d/w); 
Kc3 = .0088*alpha3^2-.1785*alpha3+1.6027; 
DP23 = (1-(A3/A2)^2+Kc3)*0.5*G.^2/rhof; 
qdotnet = sum((LocalHeatGeneration-TestLocalHeatLoss), 2); 
%Microchannel to exit manifold 
TsatExit=1928./(10.216-log10(InletPressure-DP))-273.15; 
xe=1/hfg*(qdotnet./(G*d*w*N)-cpf*(TsatExit-Tin)); %Exit vapor quality 
(overall) 
for i1 = 1:(SampleSize(1)) 
    if(xe(i1)>1) 
        xe(i1) = .999999999; 
    end 
    if(xe(i1)<0) 
        xe(i1) = .0001; 
    end 
end 
Xvv=(uf/ug)^.5*((1-xe)./xe).^.5*(rhog/rhof)^.5; 
DP34=G.^2/rhof*(A3/A4*(A3/A4-1)).*(1-xe).^2.*(1+5./Xvv+1./Xvv.^2); 
%Pressure drop across channels alone 
DP3=DP-DP12-DP23-DP34; 
%Local pressure at each node 
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LocalPressure=repmat(InletPressure,1,25)-repmat(DP12,1,25)-
repmat(DP23,1,25)-DP3*Position; 
%Local saturation temperature 
Tsat=1928./(10.216-log10(LocalPressure))-273.15; 
TsatAve = mean(Tsat,2); 
%Establish a local fluid temperature matrix with temperature at each 
node for each voltage tested, taking into account single and two-phase 
flow regions 
Ac1= Width*(t-d)/5; 
Ac2= Length*(t-d)/5; 
NetConductionOut=zeros(SampleSize(1),25); 
C1=Ac1*SiliconK/(Length/5); 
C2=Ac2*SiliconK/(Width/5); 
NetConductionOut(:,1)=C2*(TestTemp(:,1)-
TestTemp(:,2))+C1*(TestTemp(:,1)-TestTemp(:,6)); 
NetConductionOut(:,2:4)=C2*(2*TestTemp(:,2:4)-TestTemp(:,3:5)-
TestTemp(:,1:3))+C1*(TestTemp(:,2:4)-TestTemp(:,7:9)); 
NetConductionOut(:,5)=C2*(TestTemp(:,5)-
TestTemp(:,4))+C1*(TestTemp(:,5)-TestTemp(:,10)); 
NetConductionOut(:,6)=C2*(TestTemp(:,6)-
TestTemp(:,7))+C1*(2*TestTemp(:,6)-TestTemp(:,1)-TestTemp(:,11)); 
NetConductionOut(:,7:9)=C2*(2*TestTemp(:,7:9)-TestTemp(:,8:10)-
TestTemp(:,6:8))+C1*(2*TestTemp(:,7:9)-TestTemp(:,2:4)-
TestTemp(:,12:14)); 
NetConductionOut(:,10)=C2*(TestTemp(:,10)-
TestTemp(:,9))+C1*(2*TestTemp(:,10)-TestTemp(:,5)-TestTemp(:,15)); 
NetConductionOut(:,11)=C2*(TestTemp(:,11)-
TestTemp(:,12))+C1*(2*TestTemp(:,11)-TestTemp(:,6)-TestTemp(:,16)); 
NetConductionOut(:,12:14)=C2*(2*TestTemp(:,12:14)-TestTemp(:,13:15)-
TestTemp(:,11:13))+C1*(2*TestTemp(:,12:14)-TestTemp(:,7:9)-
TestTemp(:,17:19)); 
NetConductionOut(:,15)=C2*(TestTemp(:,15)-
TestTemp(:,14))+C1*(2*TestTemp(:,15)-TestTemp(:,10)-TestTemp(:,20)); 
NetConductionOut(:,16)=C2*(TestTemp(:,16)-
TestTemp(:,17))+C1*(2*TestTemp(:,16)-TestTemp(:,11)-TestTemp(:,21)); 
NetConductionOut(:,17:19)=C2*(2*TestTemp(:,17:19)-TestTemp(:,18:20)-
TestTemp(:,16:18))+C1*(2*TestTemp(:,17:19)-TestTemp(:,12:14)-
TestTemp(:,22:24)); 
NetConductionOut(:,20)=C2*(TestTemp(:,20)-
TestTemp(:,19))+C1*(2*TestTemp(:,20)-TestTemp(:,15)-TestTemp(:,25)); 
NetConductionOut(:,21)=C2*(TestTemp(:,21)-
TestTemp(:,22))+C1*(TestTemp(:,21)-TestTemp(:,16)); 
NetConductionOut(:,22:24)=C2*(2*TestTemp(:,22:24)-TestTemp(:,23:25)-
TestTemp(:,21:23))+C1*(TestTemp(:,22:24)-TestTemp(:,17:19)); 
NetConductionOut(:,25)=C2*(TestTemp(:,25)-
TestTemp(:,24))+C1*(TestTemp(:,25)-TestTemp(:,20)); 
NetHeatTransfer=LocalHeatGeneration-TestLocalHeatLoss-NetConductionOut; 
Tf = zeros(SampleSize(1), 25); 
for i1 = 1:(SampleSize(1)) 
    for i2 = 25:-1:1 
        if i2>=21 

Tf(i1,i2)=.5*NetHeatTransfer(i1,i2)/((G(i1)*w*d*N)/5*cpf)+T
in(i1); 
        else 
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Tf(i1,i2)=(.5*NetHeatTransfer(i1,i2)+.5*NetHeatTransfer(i1,
i2+5))/((G(i1)*w*d*N)/5*cpf)+Tf(i1,(i2+5)); 
        end 
        if Tf(i1,i2)>Tsat(i1,i2) 
            Tf(i1,i2) = Tsat(i1,i2); 
        end 
    end 
end 
%Q" on channel walls 
NetHeatFlux = NetHeatTransfer./(Aw/25); 
%Iterative h calculation 
h = NetHeatFlux./(TestTemp - Tf); 
htest = h; 
test = 1; 
while(test>.01) 
    m = ((2*abs(h))/(SiliconK*wf)).^.5; 
    nf = tanh(m*d)./(m*d); 
    no = 1.-N*Af/Aw*(1-nf); 
    h = NetHeatFlux./(no.*(TestTemp - Tf)); 
    test = max(max(abs(h-htest))); 
    htest = h; 
end 
BaseHeatFlux = (sum(NetHeatTransfer,2))/(Width*Length); 
Re = G*(A3/N)^.5/(uf); %Reynolds Number 
Bo = 9.81*(rhof-rhog)*(A3/N)/sigma; %Bond Number 
Bl=NetHeatFlux./(repmat(G,1,25)*hfg); %Boiling number 
%Phase change number 
Npch=NetHeatFlux*(w+2*d)/(A3/N*hfg)*(rhof-
rhog)/(rhof*rhog).*repmat(Position,SampleSize(1),1)*Length./(repmat(G,1
,25)/rhof); 
xLocal=zeros(SampleSize(1),25); 
xLocal(:,21:25)=1/hfg*(.5*NetHeatTransfer(:,21:25)./(repmat(G,1,5)*d*w*
N/5)-cpf*(Tf(:,21:25)-repmat(Tin,1,5))); 
xLocal(:,16:20)=1/hfg*(.5*NetHeatTransfer(:,16:20)./(repmat(G,1,5)*d*w*
N/5)-cpf*(Tf(:,16:20)-Tf(:,21:25))); 
xLocal(:,11:15)=1/hfg*(.5*NetHeatTransfer(:,11:15)./(repmat(G,1,5)*d*w*
N/5)-cpf*(Tf(:,11:15)-Tf(:,16:20))); 
xLocal(:,6:10)=1/hfg*(.5*NetHeatTransfer(:,6:10)./(repmat(G,1,5)*d*w*N/
5)-cpf*(Tf(:,6:10)-Tf(:,11:15))); 
xLocal(:,1:5)=1/hfg*(.5*NetHeatTransfer(:,1:5)./(repmat(G,1,5)*d*w*N/5)
-cpf*(Tf(:,1:5)-Tf(:,6:10))); 
for i1 = 1:SampleSize(1) 
    for i2 = 1:25 
        if(xLocal(i1,i2)>1) 
            xLocal(i1,i2) = 1; 
        elseif(xLocal(i1,i2)<0) 
            xLocal(i1,i2)=0; 
        end 
    end 
end 
xlswrite('Results', NetHeatFlux, 'LocalNetHeatFlux') 
xlswrite('Results', NetHeatTransfer, 'LocalNetHeatTransfer') 
xlswrite('Results', BaseHeatFlux, 'BaseHeatFlux') 
xlswrite('Results', h, 'LocalHeatTransferCoeff') 
xlswrite('Results',TestTemp,'Td') 
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xlswrite('Results',Tf,'Tf') 
xlswrite('Results', G, 'G') 
xlswrite('Results', nf, 'LocalFinEfficiency') 
xlswrite('Results', no, 'LocalOverallEfficiency') 
xlswrite('Results', {'xe', 'Lsp'}, 'ExitQuality, Lsp', 'A1:B1') 
xlswrite('Results', xe, 'ExitQuality, Lsp', 'A2') 
xlswrite('Results', {'Total Drop', 'Microchannel Drop', 'DP12', 'DP23', 
'DP34'}, 'Pressure', 'A1:E1') 
xlswrite('Results', DP, 'Pressure', 'A2') 
xlswrite('Results', DP3, 'Pressure', 'B2') 
xlswrite('Results', DP12, 'Pressure', 'C2') 
xlswrite('Results', DP23, 'Pressure', 'D2') 
xlswrite('Results', DP34, 'Pressure', 'E2') 
xlswrite('Results', {'Diode Model'; 'T=aV+b'; 'a'; 'b'}, 'Models', 
'A1:A4') 
xlswrite('Results', DiodeModel', 'Models', 'B3:B4') 
xlswrite('Results', {'Resistor Model'; 'R=aT^2+bT+c';'a';'b';'c'}, 
'Models', 'A5:A9') 
xlswrite('Results', ResistorModel, 'Models', 'B7') 
xlswrite('Results', {'Heat Loss Model'; 'q=a*T+b'; 'a'; 'b'}, 'Models', 
'A11:A14') 
xlswrite('Results', LocalLossModel, 'Models', 'B13') 
xlswrite('Results', {'Reynolds Number', 'Bond Number'}, 'Bo_Re', 
'A1:B1') 
xlswrite('Results', Re, 'Bo_Re', 'A2'); 
xlswrite('Results', Bo', 'Bo_Re', 'B2'); 
xlswrite('Results', Bl, 'Boiling Number'); 
xlswrite('Results', Npch, 'Phase Change Number'); 
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Appendix D Non-Uniform Heating Plots 

This section contains the set of graphs describing the data collected under hotspot 

and non-uniform peak heating conditions as described in Section 6.3. The graphs are 

grouped by case and contain all of the data recorded. 

 

Case 1a: Central Transverse Hotspot 

 

Figure D.1. (a) Local heat flux transferred to the fluid, (b) fluid temperature along the 
flow length, (c) wall temperature along the flow length, and (d) wall heat flux plotted 

against the wall excess temperature at increasing power input levels for a central 
transverse hotspot. 
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Case 1b: Central Streamwise Hotspot 

 

Figure D.2. (a) Local heat flux transferred to the fluid, (b) fluid temperature along the 
flow length, (c) wall temperature along the flow length, and (d) wall heat flux plotted 

against the wall excess temperature at increasing power input levels for a central 
streamwise hotspot. 
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Case 1c: Inlet Transverse Hotspot 

 

Figure D.3. (a) Local heat flux transferred to the fluid, (b) fluid temperature along the 
flow length, (c) wall temperature along the flow length, and (d) wall heat flux plotted 

against the wall excess temperature at increasing power input levels for an inlet 
transverse hotspot. 
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Case 1d: Double Transverse Hotspot 

The fourth hotspot heating profile tested was Case 1d, dual transverse hotspots. 

Power was supplied to 5 transverse heater elements located at both the inlet and outlet of 

the flow stream while the remaining 15 resistors were unpowered. As the power input 

increases, two local heat flux maxima occur at the inlet and outlet active heater elements; 

the heat flux to the fluid is slightly higher at the inlet as seen along the central streamwise 

sensors in Figure D.4a at increasing power input levels. 

As the power level increases, the wall temperature becomes highest at the hotspot 

locations. The outlet hotspot has a slightly higher wall temperature than the inlet hotspot 

due to the fluid temperature increase along the flow length. At a power input of 65 W, the 

inlet hotspot wall temperature is 133.3 °C and the outlet hotspot wall temperature is 

133.7 °C. The minimum wall temperature occurred at the middle of the heat sink between 

the two hotspots (104.1 °C). This temperature is on the same order as the outlet wall 

temperature of Case 1a (102.5 °C), but larger than the Case 1a inlet wall temperature 

(94.6 °C). The wall temperatures measured across the central streamwise sensors at 

increasing input power levels are shown in Figure D.4c.  

Boiling curves are shown in Figure D.4d for sensors 3, 13, and 23. Boiling begins 

at the outlet (inlet) hotspot at a total input power of 27.5 W (30.6 W) and a local heat flux 

of 11.3 W/cm2 (14.4 W/cm2) with a wall excess temperature of 30.2 °C (32.3 °C). 

Boiling is suppressed up to a comparatively higher heat flux at the inlet due to the larger 

developing-flow single-phase heat transfer coefficient that mitigates surface superheat. 

Images extracted from high-speed videos (Supplementary Video 4) for the dual 

transverse hotspots at different power levels of 21.9 W, 33.7 W, 48.2 W, and 65.0 W are 
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shown in Figure D.5. In this case, boiling incipience occurs at both the inlet and outlet 

hotspots for power levels above 21.9 W; however this boiling does not occur across all 

channels until the power input is increased further. At high power levels vigorous boiling 

occurs at the outlet hotspot, and partial dryout is observed in some channels. Vapor 

bubbles formed at the inlet hotspot affect the downstream flow regime and boiling 

incipience at the outlet hotspot. These bubbles coalesce with those formed at the 

downstream hotspot to form large vapor regions and partial dryout. For similar power 

levels and heat fluxes, this phenomenon is not seen in the other hotspot cases, and is 

unique to dual hot spots. Additionally, the fluid reaches the saturation temperature earlier 

along the flow length, causing partial dryout to occur in several channels prior to 

reaching the outlet hotspot at high power levels. 
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Figure D.4. (a) Local heat flux transferred to the fluid, (b) fluid temperature along the 
flow length, (c) wall temperature along the flow length, and (d) wall heat flux plotted 

against the wall excess temperature at increasing power input levels for a double 
transverse hotspot. 
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Figure D.5. Images at increasing power levels for dual transverse hotspots extracted from 
high-speed video. Red lines indicate the locations of the heated sensors. 
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Case 2a: Non-Uniform Transverse Peak 

 

Figure D.6. (a) Local heat flux transferred to the fluid, (b) fluid temperature along the 
flow length, (c) wall temperature along the flow length, and (d) heat transfer coefficient 
along the flow length at increasing degrees of nonuniformity between the heat flux at the 

peak and the background heater locations for Case 2a. 
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Case 2b: Non-Uniform Streamwise Peak 

 

Figure D.7. (a) Local heat flux transferred to the fluid, (b) fluid temperature along the 
flow length, (c) wall temperature along the flow length, and (d) heat transfer coefficient 
along the flow length at increasing degrees of nonuniformity between the heat flux at the 

peak and the background heater locations for Case 2b. 
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Appendix E Non-Uniform Heating in a Copper Heat Sink 

A second set of experiments were conducted using non-uniform heating profiles 

imposed on an attached copper microchannel heat sink2. The channels are the same 

dimensions as the test piece described in Section 6.1.1, but the heat sink has a thicker 

base. Additionally, the heat sink itself it attached to a smooth silicon thermal test chip 

adding a contact resistance that does not exist in the previous work. 

 

E.1 Test Section 

The microchannel test section used in this study consists of a microchannel heat 

sink provided by Wolverine Tube, Inc. and a thermal test chip provided by IBM, and it is 

shown in Figure E.1. A transparent, polycarbonate manifold cover plate seals and routes 

the working fluid through the microchannel heat sink. The heat sink is made of copper 

110 and has a base area of 12.7 mm × 12.7 mm. The channels have a width of 259 m 

and a depth of 342 m. The heat sink is placed on top of a smooth silicon thermal test 

chip; no thermal interface material (TIM) is used. The thermal test chip has a base area of 

21.3 mm × 21.3 mm and has a thickness of approximately 0.81 mm. A 5 × 5 array of 

resistance heaters and resistance temperature detectors (RTDs) is fabricated on the 

underside of the thermal test chip. 

Since the microchannel heat sink has a smaller base area than the silicon thermal 

test chip, the heat sink was carefully placed in the center so that it only covered the 

                                                 
2 The author would like to thank Peter Beucher of Wolverine Tube, Inc. and Katie Rivera of IBM for 
providing the copper microchannel heat sink and silicon thermal test chip. 
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middle 3 × 3 array of heater elements, as shown in Figure E.2. Silicone rubber sheets 

were placed on the sides of the heat sink to force fluid to flow through the channels and 

prevent it from bypassing the heat sink. In this configuration, fluid flows over a portion 

of the thermal test chip, through the microchannels, and over another portion of the 

thermal test chip. In this way, it is possible for the fluid to increase in temperature before 

entering and after exiting the channels. Since no TIM was used, the heat sink is held in 

place by pressure from the cover plate; the interfacial contact resistance was estimated to 

be 0.5 x 10-4 m2K/W [100]. With the addition of an attached copper heat sink combined 

with a lack of a TIM, it is estimated that there is significantly more lateral conduction and 

heat spreading through the substrate as compared to in the test chip presented in Section 

6.3. 

 

E.2 Calibration 

A calibration of the RTDs, the resistance heaters, and the heat loss to the test 

section was performed. The calibration performed for the RTDs was done in an oven at 

six temperatures ranging from 30 to 100 ˚C and the data is plotted is Figure E.3. A linear 

least squares regression of voltage to temperature was fit to each of the RTDs The 

calibration performed for the heaters was done in an oven at five temperatures ranging 

from 40 to 100 ˚C and the data is plotted in Figure E.4. A quadratic regression line was fit 

to each of the heaters to relate the measured temperature to the resistance. After the RTDs 

and resistance heaters were calibrated, the test section was assembled. In order to 

calibrate the heat loss from the test section, seven power levels ranging from 0 to 0.55 W 

were applied while there was no flow through the test section. The heat loss via natural 
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convection and radiation on the outer surfaces of the test section is measured as the 

amount of power supplied to the heaters and the temperatures are measured. The heat loss 

data as a function of temperature is plotted in Figure E.5 with a linear fit to the data. 

 

E.3 Experimental Procedures 

The flow loop is the same as that described in Section 8.1.2. The working fluid, 

HFE-7100, was chosen for its relatively low boiling point (61 ˚C at atmospheric pressure). 

Experiments are conducted at a single mass flux of 770 kg/m2s. The fluid is heated to 

approximately 51 ˚C at the inlet to the test chip. Both the flow rate and the inlet 

temperature were at maintained at a constant value throughout the test.  

 

E.4 Data Reduction 

Modifications were made to the data reduction analysis described in Section 6.2 

and shown in Appendix C to account for the extra heat spreading in the test section. An 

additional contact resistance between the silicon thermal test chip and copper 

microchannel heat sink was added, as well as a separate calculation for the regions 

upstream and downstream of the heat sink where the fluid is in direct contact with the 

silicon test chip. A schematic diagram of the energy flow in the test section is shown in 

Figure E.6. Finally, fluid properties were updated to account for the change in fluid from 

FC-77 to HFE-7100. 
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E.5 Results and Discussion 

Two cases were tested: (1) a uniform heating case where all nine heaters under the 

microchannel heat sink were activated and (2) a single hotspot case where only the 

central heater was activated. Wall temperatures, heat transfer coefficients, and wall heat 

fluxes along the flow direction for the uniform heating case are shown in Figure E.7. In 

this case, significant lateral conduction within the silicon thermal test chip was observed, 

as expected. The unheated regions upstream and downstream of the heat sink showed a 

considerable rise in the wall temperature, with a relatively small peak in the center of the 

heated region. The heat transfer coefficients and wall heat fluxes above the heated 

regions are significantly larger than those above the unheated regions, as expected.  

The wall temperatures, heat transfer coefficients, and wall heat fluxes along the 

flow direction for a single hotspot case are shown in Figure E.8. Like the uniform case, a 

single hotspot case displays significant heat spreading in both the silicon thermal test chip 

and the copper microchannel heat sink. The highest local wall temperature was measured 

above the active heater element, as expected; however, a significant rise in the wall 

temperatures at the outer parts of the chip was still observed. The highest wall 

temperature recorded was 97.5 ˚C for a single hotspot above the central heater for a 

power input level of 38.1 W; the uniform heating case produced a maximum wall 

temperature of 85.5 ˚C despite a total power input level of 88.7 W, more than twice that 

of the hotspot case.  

In the uniform heating case, boiling incipience was observed at a power input 

level of 33.0 W. Boiling was observed in all of the channels in the heat sink. In the single 

hotspot case, boiling incipience was observed at a power input level of 34.6 W and a 
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maximum wall temperature drop of approximately 3 ˚C was observed due to boiling 

incipience. Boiling was only observed in the region above the hotspot as seen in Figure 

E.9. In both heating cases, boiling begins at about the same total power input despite the 

large difference in the base heated area. This is due to the large amount of heat spreading 

within the thermal test chip and heat sink that effectively smoothed out the hotspot. 

 

E.6 Conclusions 

In this work, a copper microchannel heat sink was attached to a silicon thermal 

test chip and both a uniform and a single hotspot heating case were tested. The thicker 

heat sink base combined with a lack of a TIM between the test chip and heat sink 

increased the lateral conduction within the test section. This led to an increased thermal 

resistance between the heaters and the fluid, causing more heat to flow in the lateral 

direction as compared to the results seen in Section 6.3. The addition of a TIM between 

the silicon and copper would likely decrease heat spreading to the non-heated regions. 

At higher power input levels, the fluid entering the test section is preheated via 

lateral conduction prior to entering the heat sink. If enough heat is supplied to this region, 

the fluid may boil prior to entering the channels and cause flow instabilities in the test 

section and trap vapor in the inlet manifold. It is recommended that a microchannel heat 

sink be placed as close to the inlet of the test section as possible to avoid this situation. 
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Figure E.1. (a) The assembled test section, (b) the silicon thermal test chip, and (c) the 
copper microchannel heat sink. 

  

(a) 
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Figure E.2. A diagram of the microchannel heat sink in relation to the heater locations on 
the thermal test chip. 
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Figure E.3. Calibration lines for each RTD in the thermal test chip. 
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Figure E.4. Calibration lines for each heater element in the thermal test chip. 
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Figure E.5. Calibration lines for the heat loss in the assembled test section. 
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Figure E.6. A diagram of the flow of heat through a cross section of the test section. 
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Figure E.7. (a) The local wall temperature, (b) heat transfer coefficient, and (c) heat flux 
transferred to the fluid over the flow length for a uniform heating case. 
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Figure E.8. (a) The local wall temperature, (b) heat transfer coefficient, and (c) heat flux 
transferred to the fluid over the flow length for a single hotspot case. 
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Figure E.9. Image taken at 38.1 W for a single hotspot. The red dashed lines indicate the 
location of the hotspot. 

 

 

 



249 

 

Appendix F Critical Heat Flux Plots 

This section contains a set of graphs describing the critical heat flux data collected 

using various hotspot heating conditions as described in Section 8.2. The graphs contain 

all of the data recorded for each case. 

 

Uniform Heating 

 

Figure F.1. Heat flux transferred to the fluid plotted against the wall excess temperature 
for a uniform heating profile. “X” indicates the location of CHF. 
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Inlet Transverse Hotspot 

 

Figure F.2. Heat flux transferred to the fluid plotted against the wall excess temperature 
for an inlet transverse hotspot. “X” indicates the location of CHF. 
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Central Transverse Hotspot 

 

Figure F.3. Heat flux transferred to the fluid plotted against the wall excess temperature 
for a central transverse hotspot. “X” indicates the location of CHF. 
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Outlet Transverse Hotspot 

 

Figure F.4. Heat flux transferred to the fluid plotted against the wall excess temperature 
for an outlet transverse hotspot. “X” indicates the location of CHF. 
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Central Streamwise Hotspot 

 

Figure F.5. Heat flux transferred to the fluid plotted against the wall excess temperature 
for a central streamwise hotspot. “X” indicates the location of CHF. 
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Dual Transverse Hotspot 

 

Figure F.6. Heat flux transferred to the fluid plotted against the wall excess temperature 
for a dual transverse hotspot. “X” indicates the location of CHF. 
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Appendix G MATLAB Script of the Microchannel Heat Sink Computational Model 

A MATLAB script was developed to model two-phase heat transfer in a 

microchannel heat sink as discussed in Section 7.1. The following script takes a set of 

user defined inputs and calculates the local temperatures within the base of the heat sink, 

as well as local heat transfer coefficients and wall heat fluxes. It is split into several 

functions; Table G.1 displays the function number, name, description, and page number 

where it can be found. The author would like to thank Professor Tine Baelmans of KU 

Leuven for providing some of the logic for the code. 

 

Table G.1. A list of all of the functions for the computational model. 
Function 
Number Function Name Description Page 

Number 
31 compmodel.m The main program 256 

32 condbasemat.m Generates coefficient matrices for conduction 
analysis 258 

33 conduction.m Plane-by-plane TDMA solver for conduction in 
the heat sink base 265 

34 convection2.m Convection analysis 268 
35 discretize.m Discretize the heat sink base 270 
36 genmesh.m Generates identification matrices for the domain 271 
37 gui_input2.m GUI to read inputs from user 272 
38 gui_output.m GUI to display the results 281 
39 heattranscoeff.m Calculates the heat transfer coefficient 284 
40 inputs.m Contains fluid properties and heating profiles 285 
41 pressuredrop.m Calculates the pressure drop 287 
42 singlephasedp.m Calculates the single-phase pressure drop 288 

43 singlephaseh.m Calculates the single-phase heat transfer 
coefficient 289 

44 tdma.m TDMA solver 289 
45 tdmaline.m Line-by-line TDMA solver 290 

46 twophaseh.m Calculates the two-phase heat transfer 
coefficient 292 

47 vaporphaseh.m Calculates the heat transfer coefficient for vapor 
flow 293 
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Function 31. compmodel.m 
 
clear all 
clc 
[dims,matp,flow,getdata,filename]=inputs(); 
if getdata 
    load(filename) 
else 
    [mesh]=discretize(dims); 
    [mesh]=genmesh(dims,mesh); 
    Nx=mesh.Nx_c+mesh.Nx_f+mesh.Nx_ef; 
    Ny=mesh.Ny; 
    Nz=mesh.Nz; 
    T=ones(Nx,Ny,Nz)*flow.T_in;     %initialize T everywhere 
    Tf=ones(dims.N,Ny)*flow.T_in;   %initialize Tf everywhere 
    h=ones(dims.N,Ny)*5000;         %initialize h everywhere 
    xe=zeros(dims.N,Ny)-1;          %initialize xe everywhere 
    q_in=zeros(Nx,Ny);              %calculate input heat transfer 
    q_w=zeros(dims.N,Ny); 
    dx=[mesh.dx_c mesh.dx_f mesh.dx_ef]; 
    for i=1:Nx 
        for j=1:Ny 
            dx_val=dx(mesh.id.label(i)); 
q_in(i,j)=flow.Q_in(mod(floor(i*5/Ny),5)+1,mod(floor(j*5/Ny),5)+1)*mesh
.dy*dx_val; 
            q_w(mesh.id.num(i),j)=q_w(mesh.id.num(i),j)+q_in(i,j); 
        end 
    end 
    q_w=q_w/mesh.dy/(dims.w+2*dims.d); 
end 
%iterate between conduction in base and heat transfer in fins 
tic; 
counter=0; 
err=1; 
while err>0.000001 
    Told=T; 
    [T]=conduction(dims,matp,mesh,T,Tf,h,q_in); 
    [DP,DPsp,DPtp]=pressuredrop(dims,matp,mesh,flow,xe,Tf); 
    ws=zeros(dims.N,2); 
    ws(:,1)=(max(q_w,[],2)-min(q_w,[],2))./mean(q_w,2); 
    for i=1:dims.N 
        ws(i,1)=(max(q_w(i,:))-min(q_w(i,:)))/mean(q_w(i,:)); 
        if isnan(ws(i,1)) 
            ws(i,1)=0; 
        end 
        x1=find(mesh.id.num==i); 
        ws(i,2)=(max(max(T(x1,:,Nz)))-
min(min(T(x1,:,Nz))))/mean(mean(T(x1,:,Nz))); 
    end 
    [Tf,h,q_w,xe]=convection2(dims,matp,mesh,flow,T,Tf,q_w,DP,xe,ws); 
    err=max(max(max(abs((Told-T)./Told)))); 
    counter=counter+1; 
    if counter==5 
        fprintf('still going...\n'); 
    end 
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    if ~mod(counter,10) 
        fprintf('iteration: %i ave T: %2.3f 
err: %1.6f\n',counter,mean(mean(mean(T))),err); 
    end 
    if counter>=1000 
        fprintf('over 1000 iterations, error is %1.7f\n',err); 
        err=0; 
    end 
    if err>15 
        fprintf('diverging, %i iterations, error 
is %1.7f\n',counter,err); 
        err=0; 
    end 
end 
toc; 
clear Told counter i j dx dx_val x1 
gui_output; 
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Function 32. condbasemat.m 
 
function [a,b,c,d,e,f,g,ho]=condbasemat(mesh,dims,matp,h,q_in,Tf) 
Nx=mesh.Nx_c+mesh.Nx_f+mesh.Nx_ef; 
Ny=mesh.Ny; 
Nz=mesh.Nz; 
N=dims.N; 
dc=dims.d; 
id=mesh.id; 
ks=matp.k_Si; 
dy=mesh.dy; 
dx_c=mesh.dx_c; 
dx_f=mesh.dx_f; 
dx_ef=mesh.dx_ef; 
dx=[dx_c dx_f dx_ef]; 
dz=mesh.dz; 
a_loss=0.003213171*25/Ny/Nx;  %constants from experiment to find q_loss 
b_loss=-0.085901548*25/Ny/Nx; %q_loss=a_loss*T(Nx,Ny,1)+b_loss; %[W], 
25 total 
b=zeros(Nx,Ny,Nz); 
c=zeros(Nx,Ny,Nz); 
d=zeros(Nx,Ny,Nz); 
e=zeros(Nx,Ny,Nz); 
f=zeros(Nx,Ny,Nz); 
g=zeros(Nx,Ny,Nz); 
ho=zeros(Nx,Ny,Nz); 
%interior cells 
for i=2:Nx-1 
    dx_val=(dx(id.label(i))+dx(id.label(i+1)))/2; 
    b(i,2:Ny-1,2:Nz-1)=ks*dy*dz/dx_val; 
    dx_val=(dx(id.label(i))+dx(id.label(i-1)))/2; 
    c(i,2:Ny-1,2:Nz-1)=ks*dy*dz/dx_val; 
    dx_val=dx(id.label(i)); 
    d(i,2:Ny-1,2:Nz-1)=ks*dx_val*dz/dy; 
    e(i,2:Ny-1,2:Nz-1)=d(i,2:Ny-1,2:Nz-1); 
    f(i,2:Ny-1,2:Nz-1)=ks*dx_val*dy/dz; 
    g(i,2:Ny-1,2:Nz-1)=f(i,2:Ny-1,2:Nz-1); 
end 
a=b+c+d+e+f+g; 
%top and bottom faces 
for i=2:Nx-1 
    dx_val=(dx(id.label(i))+dx(id.label(i+1)))/2; 
    b(i,2:Ny-1,1)=ks*dy*dz/dx_val; 
    dx_val=(dx(id.label(i))+dx(id.label(i-1)))/2; 
    c(i,2:Ny-1,1)=ks*dy*dz/dx_val; 
    dx_val=dx(id.label(i)); 
    d(i,2:Ny-1,1)=ks*dx_val*dz/dy; 
    e(i,2:Ny-1,1)=d(i,2:Ny-1,1); 
    f(i,2:Ny-1,1)=ks*dx_val*dy/dz; 
    a(i,2:Ny-1,1)=b(i,2:Ny-1,1)+c(i,2:Ny-1,1)+2*d(i,2:Ny-1,1)+f(i,2:Ny-
1,1)+a_loss; 
    ho(i,2:Ny-1,1)=q_in(i,2:Ny-1)-b_loss; 
    switch id.label(i) 
        case 1 
            dx_val=(dx(id.label(i))+dx(id.label(i+1)))/2; 
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            b(i,2:Ny-1,Nz)=ks*dy*dz/dx_val; 
            dx_val=(dx(id.label(i))+dx(id.label(i-1)))/2; 
            c(i,2:Ny-1,Nz)=ks*dy*dz/dx_val; 
            dx_val=dx(id.label(i)); 
            d(i,2:Ny-1,Nz)=ks*dx_val*dz/dy; 
            e(i,2:Ny-1,Nz)=d(i,2:Ny-1,Nz); 
            g(i,2:Ny-1,Nz)=ks*dx_val*dy/dz; 
            Nc=id.num(i); 
            a(i,2:Ny-1,Nz)=b(i,2:Ny-1,Nz)+c(i,2:Ny-1,Nz)+2*d(i,2:Ny-
1,Nz)+g(i,2:Ny-1,Nz)+h(Nc,2:Ny-1)*dx_val*dy; 
            ho(i,2:Ny-1,Nz)=h(Nc,2:Ny-1)*dx_val*dy.*Tf(Nc,2:Ny-1); 
        case 2 
            dx_val=(dx(id.label(i))+dx(id.label(i+1)))/2; 
            b(i,2:Ny-1,Nz)=ks*dy*dz/dx_val; 
            dx_val=(dx(id.label(i))+dx(id.label(i-1)))/2; 
            c(i,2:Ny-1,Nz)=ks*dy*dz/dx_val; 
            dx_val=dx(id.label(i)); 
            d(i,2:Ny-1,Nz)=ks*dx_val*dz/dy; 
            e(i,2:Ny-1,Nz)=d(i,2:Ny-1,Nz); 
            g(i,2:Ny-1,Nz)=ks*dx_val*dy/dz; 
            Nf=id.num(i); 
            m1=sqrt(h(Nf,2:Ny-1)*2/ks/dx_val); 
            m2=sqrt(h(Nf+1,2:Ny-1)*2/ks/dx_val); 
            a(i,2:Ny-1,Nz)=b(i,2:Ny-1,Nz)+c(i,2:Ny-1,Nz)+2*d(i,2:Ny-
1,Nz)+g(i,2:Ny-1,Nz)+sqrt(h(Nf,2:Ny-
1)*2*dy^2*ks*dx_val).*tanh(m1*dc)/2+sqrt(h(Nf+1,2:Ny-
1)*2*dy^2*ks*dx_val).*tanh(m2*dc)/2; 
            ho(i,2:Ny-1,Nz)=sqrt(h(Nf,2:Ny-
1)*2*dy^2*ks*dx_val).*tanh(m1*dc)/2.*Tf(Nf,2:Ny-1)+sqrt(h(Nf+1,2:Ny-
1)*2*dy^2*ks*dx_val).*tanh(m2*dc)/2.*Tf(Nf+1,2:Ny-1); 
        case 3 
            dx_val=(dx(id.label(i))+dx(id.label(i+1)))/2; 
            b(i,2:Ny-1,Nz)=ks*dy*dz/dx_val; 
            dx_val=(dx(id.label(i))+dx(id.label(i-1)))/2; 
            c(i,2:Ny-1,Nz)=ks*dy*dz/dx_val; 
            dx_val=dx(id.label(i)); 
            d(i,2:Ny-1,Nz)=ks*dx_val*dz/dy; 
            e(i,2:Ny-1,Nz)=d(i,2:Ny-1,Nz); 
            g(i,2:Ny-1,Nz)=ks*dx_val*dy/dz; 
            Nef=id.num(i); 
            m1=sqrt(h(Nef,2:Ny-1)*2/ks/dx_val/mesh.Nx_ef); 
            a(i,2:Ny-1,Nz)=b(i,2:Ny-1,Nz)+c(i,2:Ny-1,Nz)+2*d(i,2:Ny-
1,Nz)+g(i,2:Ny-1,Nz)+sqrt(h(Nef,2:Ny-
1)*4*dy^2*ks*dx_val).*tanh(m1*dc)/2/mesh.Nx_ef; 
            ho(i,2:Ny-1,Nz)=sqrt(h(Nef,2:Ny-
1)*4*dy^2*ks*dx_val).*tanh(m1*dc)/2/mesh.Nx_ef.*Tf(Nef,2:Ny-1); 
    end 
end 
%left face 
b(1,2:Ny-1,2:Nz-1)=ks*dy*dz/dx_ef; 
d(1,2:Ny-1,2:Nz-1)=ks*dx_ef*dz/dy; 
e(1,2:Ny-1,2:Nz-1)=d(1,2:Ny-1,2:Nz-1); 
f(1,2:Ny-1,2:Nz-1)=ks*dx_ef*dy/dz; 
g(1,2:Ny-1,2:Nz-1)=f(1,2:Ny-1,2:Nz-1); 
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a(1,2:Ny-1,2:Nz-1)=b(1,2:Ny-1,2:Nz-1)+2*d(1,2:Ny-1,2:Nz-1)+2*f(1,2:Ny-
1,2:Nz-1); 
%right face 
c(Nx,2:Ny-1,2:Nz-1)=ks*dy*dz/dx_ef; 
d(Nx,2:Ny-1,2:Nz-1)=ks*dx_ef*dz/dy; 
e(Nx,2:Ny-1,2:Nz-1)=d(Nx,2:Ny-1,2:Nz-1); 
f(Nx,2:Ny-1,2:Nz-1)=ks*dx_ef*dy/dz; 
g(Nx,2:Ny-1,2:Nz-1)=f(Nx,2:Ny-1,2:Nz-1); 
a(Nx,2:Ny-1,2:Nz-1)=c(Nx,2:Ny-1,2:Nz-1)+2*d(Nx,2:Ny-1,2:Nz-
1)+2*f(Nx,2:Ny-1,2:Nz-1); 
%front and back faces 
for i=2:Nx-1 
    dx_val=(dx(id.label(i))+dx(id.label(i+1)))/2; 
    b(i,1,2:Nz-1)=ks*dy*dz/dx_val; 
    b(i,Ny,2:Nz-1)=ks*dy*dz/dx_val; 
    dx_val=(dx(id.label(i))+dx(id.label(i-1)))/2; 
    c(i,1,2:Nz-1)=ks*dy*dz/dx_val; 
    c(i,Ny,2:Nz-1)=ks*dy*dz/dx_val; 
    dx_val=dx(id.label(i)); 
    d(i,1,2:Nz-1)=ks*dx_val*dz/dy; 
    f(i,1,2:Nz-1)=ks*dx_val*dy/dz; 
    g(i,1,2:Nz-1)=f(i,1,2:Nz-1); 
    a(i,1,2:Nz-1)=b(i,1,2:Nz-1)+c(i,1,2:Nz-1)+d(i,1,2:Nz-
1)+2*f(i,1,2:Nz-1); 
    e(i,Ny,2:Nz-1)=ks*dx_val*dz/dy; 
    f(i,Ny,2:Nz-1)=ks*dx_val*dy/dz; 
    g(i,Ny,2:Nz-1)=f(i,Ny,2:Nz-1); 
    a(i,Ny,2:Nz-1)=b(i,Ny,2:Nz-1)+c(i,Ny,2:Nz-1)+e(i,Ny,2:Nz-
1)+2*f(i,Ny,2:Nz-1); 
end 
%front left edge 
b(1,1,2:Nz-1)=ks*dy*dz/dx_ef; 
d(1,1,2:Nz-1)=ks*dx_ef*dz/dy; 
f(1,1,2:Nz-1)=ks*dx_ef*dy/dz; 
g(1,1,2:Nz-1)=f(1,1,2:Nz-1); 
a(1,1,2:Nz-1)=b(1,1,2:Nz-1)+d(1,1,2:Nz-1)+2*f(1,1,2:Nz-1); 
%front right edge 
c(Nx,1,2:Nz-1)=ks*dy*dz/dx_ef; 
d(Nx,1,2:Nz-1)=ks*dx_ef*dz/dy; 
f(Nx,1,2:Nz-1)=ks*dx_ef*dy/dz; 
g(Nx,1,2:Nz-1)=f(Nx,1,2:Nz-1); 
a(Nx,1,2:Nz-1)=c(Nx,1,2:Nz-1)+d(Nx,1,2:Nz-1)+2*f(Nx,1,2:Nz-1); 
%back left edge 
b(1,Ny,2:Nz-1)=ks*dy*dz/dx_ef; 
e(1,Ny,2:Nz-1)=ks*dx_ef*dz/dy; 
f(1,Ny,2:Nz-1)=ks*dx_ef*dy/dz; 
g(1,Ny,2:Nz-1)=f(1,Ny,2:Nz-1); 
a(1,Ny,2:Nz-1)=b(1,Ny,2:Nz-1)+e(1,Ny,2:Nz-1)+2*f(1,Ny,2:Nz-1); 
%back right edge 
c(Nx,Ny,2:Nz-1)=ks*dy*dz/dx_ef; 
e(Nx,Ny,2:Nz-1)=ks*dx_ef*dz/dy; 
f(Nx,Ny,2:Nz-1)=ks*dx_ef*dy/dz; 
g(Nx,Ny,2:Nz-1)=f(Nx,Ny,2:Nz-1); 
a(Nx,Ny,2:Nz-1)=c(Nx,Ny,2:Nz-1)+e(Nx,Ny,2:Nz-1)+2*f(Nx,Ny,2:Nz-1); 
%bottom left edge 
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b(1,2:Ny-1,1)=ks*dy*dz/dx_ef; 
d(1,2:Ny-1,1)=ks*dx_ef*dz/dy; 
e(1,2:Ny-1,1)=d(1,2:Ny-1,1); 
f(1,2:Ny-1,1)=ks*dx_ef*dy/dz; 
a(1,2:Ny-1,1)=b(1,2:Ny-1,1)+2*d(1,2:Ny-1,1)+f(1,2:Ny-1,1)+a_loss; 
ho(1,2:Ny-1,1)=q_in(1,2:Ny-1)-b_loss; 
%bottom right edge 
c(Nx,2:Ny-1,1)=ks*dy*dz/dx_ef; 
d(Nx,2:Ny-1,1)=ks*dx_ef*dz/dy; 
e(Nx,2:Ny-1,1)=d(Nx,2:Ny-1,1); 
f(Nx,2:Ny-1,1)=ks*dx_ef*dy/dz; 
a(Nx,2:Ny-1,1)=c(Nx,2:Ny-1,1)+2*d(Nx,2:Ny-1,1)+f(Nx,2:Ny-1,1)+a_loss; 
ho(Nx,2:Ny-1,1)=q_in(Nx,2:Ny-1)-b_loss; 
%top left edge 
b(1,2:Ny-1,Nz)=ks*dy*dz/dx_ef; 
d(1,2:Ny-1,Nz)=ks*dx_ef*dz/dy; 
e(1,2:Ny-1,Nz)=d(1,2:Ny-1,Nz); 
g(1,2:Ny-1,Nz)=ks*dx_ef*dy/dz; 
m1=sqrt(h(1,2:Ny-1)*2/ks/dx_ef/mesh.Nx_ef); 
a(1,2:Ny-1,Nz)=b(1,2:Ny-1,Nz)+2*d(1,2:Ny-1,Nz)+g(1,2:Ny-
1,Nz)+sqrt(h(1,2:Ny-1)*4*dy^2*ks*dx_ef).*tanh(m1*dc)/2/mesh.Nx_ef; 
ho(1,2:Ny-1,Nz)=sqrt(h(1,2:Ny-
1)*4*dy^2*ks*dx_ef).*tanh(m1*dc)/2/mesh.Nx_ef.*Tf(1,2:Ny-1); 
%top right edge 
c(Nx,2:Ny-1,Nz)=ks*dy*dz/dx_ef; 
d(Nx,2:Ny-1,Nz)=ks*dx_ef*dz/dy; 
e(Nx,2:Ny-1,Nz)=d(Nx,2:Ny-1,Nz); 
g(Nx,2:Ny-1,Nz)=ks*dx_ef*dy/dz; 
m1=sqrt(h(N,2:Ny-1)*2/ks/dx_ef/mesh.Nx_ef); 
a(Nx,2:Ny-1,Nz)=c(Nx,2:Ny-1,Nz)+2*d(Nx,2:Ny-1,Nz)+g(Nx,2:Ny-
1,Nz)+sqrt(h(N,2:Ny-1)*4*dy^2*ks*dx_ef).*tanh(m1*dc)/2/mesh.Nx_ef; 
ho(Nx,2:Ny-1,Nz)=sqrt(h(N,2:Ny-
1)*4*dy^2*ks*dx_ef).*tanh(m1*dc)/2/mesh.Nx_ef.*Tf(N,2:Ny-1); 
%front/back top/bottom edges 
for i=2:Nx-1 
    dx_val=(dx(id.label(i))+dx(id.label(i+1)))/2; 
    b(i,1,1)=ks*dy*dz/dx_val; 
    b(i,Ny,1)=ks*dy*dz/dx_val; 
    dx_val=(dx(id.label(i))+dx(id.label(i-1)))/2; 
    c(i,1,1)=ks*dy*dz/dx_val; 
    c(i,Ny,1)=ks*dy*dz/dx_val; 
    dx_val=dx(id.label(i)); 
    d(i,1,1)=ks*dx_val*dz/dy; 
    f(i,1,1)=ks*dx_val*dy/dz; 
    a(i,1,1)=b(i,1,1)+c(i,1,1)+d(i,1,1)+f(i,1,1)+a_loss; 
    ho(i,1,1)=q_in(i,1)-b_loss; 
    e(i,Ny,1)=ks*dx_val*dz/dy; 
    f(i,Ny,1)=ks*dx_val*dy/dz; 
    a(i,Ny,1)=b(i,Ny,1)+c(i,Ny,1)+e(i,Ny,1)+f(i,Ny,1)+a_loss; 
    ho(i,Ny,1)=q_in(i,Ny)-b_loss; 
    switch id.label(i) 
        case 1 
            dx_val=(dx(id.label(i))+dx(id.label(i+1)))/2; 
            b(i,1,Nz)=ks*dy*dz/dx_val; 
            dx_val=(dx(id.label(i))+dx(id.label(i-1)))/2; 
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            c(i,1,Nz)=ks*dy*dz/dx_val; 
            dx_val=dx(id.label(i)); 
            d(i,1,Nz)=ks*dx_val*dz/dy; 
            g(i,1,Nz)=ks*dx_val*dy/dz; 
            Nc=id.num(i); 
a(i,1,Nz)=b(i,1,Nz)+c(i,1,Nz)+d(i,1,Nz)+g(i,1,Nz)+h(Nc,1)*dx_val*dy; 
            ho(i,1,Nz)=h(Nc,1)*dx_val*dy.*Tf(Nc,1); 
            dx_val=(dx(id.label(i))+dx(id.label(i+1)))/2; 
            b(i,Ny,Nz)=ks*dy*dz/dx_val; 
            dx_val=(dx(id.label(i))+dx(id.label(i-1)))/2; 
            c(i,Ny,Nz)=ks*dy*dz/dx_val; 
            dx_val=dx(id.label(i)); 
            e(i,Ny,Nz)=ks*dx_val*dz/dy; 
            g(i,Ny,Nz)=ks*dx_val*dy/dz; 
            Nc=id.num(i); 
a(i,Ny,Nz)=b(i,Ny,Nz)+c(i,Ny,Nz)+e(i,Ny,Nz)+g(i,Ny,Nz)+h(Nc,Ny)*dx_val*
dy; 
            ho(i,Ny,Nz)=h(Nc,Ny)*dx_val*dy.*Tf(Nc,Ny); 
        case 2 
            dx_val=(dx(id.label(i))+dx(id.label(i+1)))/2; 
            b(i,1,Nz)=ks*dy*dz/dx_val; 
            dx_val=(dx(id.label(i))+dx(id.label(i-1)))/2; 
            c(i,1,Nz)=ks*dy*dz/dx_val; 
            dx_val=dx(id.label(i)); 
            d(i,1,Nz)=ks*dx_val*dz/dy; 
            g(i,1,Nz)=ks*dx_val*dy/dz; 
            Nf=id.num(i); 
            m1=sqrt(h(Nf,1)*2/ks/dx_val); 
            m2=sqrt(h(Nf+1,1)*2/ks/dx_val); 
a(i,1,Nz)=b(i,1,Nz)+c(i,1,Nz)+d(i,1,Nz)+g(i,1,Nz)+sqrt(h(Nf,1)*2*dy^2*k
s*dx_val).*tanh(m1*dc)/2+sqrt(h(Nf+1,1)*2*dy^2*ks*dx_val).*tanh(m2*dc)/
2; 
ho(i,1,Nz)=sqrt(h(Nf,1)*2*dy^2*ks*dx_val).*tanh(m1*dc)/2.*Tf(Nf,1)+sqrt
(h(Nf+1,1)*2*dy^2*ks*dx_val).*tanh(m2*dc)/2.*Tf(Nf+1,1); 
            dx_val=(dx(id.label(i))+dx(id.label(i+1)))/2; 
            b(i,Ny,Nz)=ks*dy*dz/dx_val; 
            dx_val=(dx(id.label(i))+dx(id.label(i-1)))/2; 
            c(i,Ny,Nz)=ks*dy*dz/dx_val; 
            dx_val=dx(id.label(i)); 
            e(i,Ny,Nz)=ks*dx_val*dz/dy; 
            g(i,Ny,Nz)=ks*dx_val*dy/dz; 
            Nf=id.num(i); 
            m1=sqrt(h(Nf,Ny)*2/ks/dx_val); 
            m2=sqrt(h(Nf+1,Ny)*2/ks/dx_val); 
a(i,Ny,Nz)=b(i,Ny,Nz)+c(i,Ny,Nz)+e(i,Ny,Nz)+g(i,Ny,Nz)+sqrt(h(Nf,Ny)*2*
dy^2*ks*dx_val).*tanh(m1*dc)/2+sqrt(h(Nf+1,Ny)*2*dy^2*ks*dx_val).*tanh(
m2*dc)/2; 
ho(i,Ny,Nz)=sqrt(h(Nf,Ny)*2*dy^2*ks*dx_val).*tanh(m1*dc)/2.*Tf(Nf,Ny)+s
qrt(h(Nf+1,Ny)*2*dy^2*ks*dx_val).*tanh(m2*dc)/2.*Tf(Nf+1,Ny); 
        case 3 
            dx_val=(dx(id.label(i))+dx(id.label(i+1)))/2; 
            b(i,1,Nz)=ks*dy*dz/dx_val; 
            dx_val=(dx(id.label(i))+dx(id.label(i-1)))/2; 
            c(i,1,Nz)=ks*dy*dz/dx_val; 
            dx_val=dx(id.label(i)); 
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            d(i,1,Nz)=ks*dx_val*dz/dy; 
            g(i,1,Nz)=ks*dx_val*dy/dz; 
            Nef=id.num(i); 
            m1=sqrt(h(Nef,1)*2/ks/dx_val/mesh.Nx_ef); 
a(i,1,Nz)=b(i,1,Nz)+c(i,1,Nz)+d(i,1,Nz)+g(i,1,Nz)+sqrt(h(Nef,1)*4*dy^2*
ks*dx_val).*tanh(m1*dc)/2/mesh.Nx_ef; 
ho(i,1,Nz)=sqrt(h(Nef,1)*4*dy^2*ks*dx_val).*tanh(m1*dc)/2/mesh.Nx_ef.*T
f(Nef,1); 
            dx_val=(dx(id.label(i))+dx(id.label(i+1)))/2; 
            b(i,Ny,Nz)=ks*dy*dz/dx_val; 
            dx_val=(dx(id.label(i))+dx(id.label(i-1)))/2; 
            c(i,Ny,Nz)=ks*dy*dz/dx_val; 
            dx_val=dx(id.label(i)); 
            e(i,Ny,Nz)=ks*dx_val*dz/dy; 
            g(i,Ny,Nz)=ks*dx_val*dy/dz; 
            Nef=id.num(i); 
            m1=sqrt(h(Nef,Ny)*2/ks/dx_val/mesh.Nx_ef); 
a(i,Ny,Nz)=b(i,Ny,Nz)+c(i,Ny,Nz)+e(i,Ny,Nz)+g(i,Ny,Nz)+sqrt(h(Nef,Ny)*4
*dy^2*ks*dx_val).*tanh(m1*dc)/2/mesh.Nx_ef; 
ho(i,Ny,Nz)=sqrt(h(Nef,Ny)*4*dy^2*ks*dx_val).*tanh(m1*dc)/2/mesh.Nx_ef.
*Tf(Nef,Ny); 
    end 
end 
%front top left corner 
b(1,1,Nz)=ks*dy*dz/dx_ef; 
d(1,1,Nz)=ks*dx_ef*dz/dy; 
g(1,1,Nz)=ks*dx_ef*dy/dz; 
m1=sqrt(h(1,1)*2/ks/dx_ef/mesh.Nx_ef); 
a(1,1,Nz)=b(1,1,Nz)+d(1,1,Nz)+g(1,1,Nz)+sqrt(h(1,1)*4*dy^2*ks*dx_ef)*ta
nh(m1*dc)/2/mesh.Nx_ef; 
ho(1,1,Nz)=sqrt(h(1,1)*4*dy^2*ks*dx_ef)*tanh(m1*dc)/2/mesh.Nx_ef*Tf(1,1
); 
%front bottom left corner 
b(1,1,1)=ks*dy*dz/dx_ef; 
d(1,1,1)=ks*dx_ef*dz/dy; 
f(1,1,1)=ks*dx_ef*dy/dz; 
a(1,1,1)=b(1,1,1)+d(1,1,1)+f(1,1,1)+a_loss; 
ho(1,1,1)=q_in(1,1)-b_loss; 
%front top right corner 
c(Nx,1,Nz)=ks*dy*dz/dx_ef; 
d(Nx,1,Nz)=ks*dx_ef*dz/dy; 
g(Nx,1,Nz)=ks*dx_ef*dy/dz; 
m1=sqrt(h(N,1)*2/ks/dx_ef/mesh.Nx_ef); 
a(Nx,1,Nz)=c(Nx,1,Nz)+d(Nx,1,Nz)+g(Nx,1,Nz)+sqrt(h(N,1)*4*dy^2*ks*dx_ef
)*tanh(m1*dc)/2/mesh.Nx_ef; 
ho(Nx,1,Nz)=sqrt(h(N,1)*4*dy^2*ks*dx_ef)*tanh(m1*dc)/2/mesh.Nx_ef*Tf(N,
1); 
%front bottom right corner 
c(Nx,1,1)=ks*dy*dz/dx_ef; 
d(Nx,1,1)=ks*dx_ef*dz/dy; 
f(Nx,1,1)=ks*dx_ef*dy/dz; 
a(Nx,1,1)=c(Nx,1,1)+d(Nx,1,1)+f(Nx,1,1)+a_loss; 
ho(Nx,1,1)=q_in(Nx,1)-b_loss; 
%back top left corner 
b(1,Ny,Nz)=ks*dy*dz/dx_ef; 
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e(1,Ny,Nz)=ks*dx_ef*dz/dy; 
g(1,Ny,Nz)=ks*dx_ef*dy/dz; 
m1=sqrt(h(1,Ny)*2/ks/dx_ef/mesh.Nx_ef); 
a(1,Ny,Nz)=b(1,Ny,Nz)+e(1,Ny,Nz)+g(1,Ny,Nz)+sqrt(h(1,Ny)*4*dy^2*ks*dx_e
f)*tanh(m1*dc)/2/mesh.Nx_ef; 
ho(1,Ny,Nz)=sqrt(h(1,Ny)*4*dy^2*ks*dx_ef)*tanh(m1*dc)/2/mesh.Nx_ef*Tf(1
,Ny); 
%back bottom left corner 
b(1,Ny,1)=ks*dy*dz/dx_ef; 
e(1,Ny,1)=ks*dx_ef*dz/dy; 
f(1,Ny,1)=ks*dx_ef*dy/dz; 
a(1,Ny,1)=b(1,Ny,1)+e(1,Ny,1)+f(1,Ny,1)+a_loss; 
ho(1,Ny,1)=q_in(1,Ny)-b_loss; 
%back top right corner 
c(Nx,Ny,Nz)=ks*dy*dz/dx_ef; 
e(Nx,Ny,Nz)=ks*dx_ef*dz/dy; 
g(Nx,Ny,Nz)=ks*dx_ef*dy/dz; 
m1=sqrt(h(N,Ny)*2/ks/dx_ef/mesh.Nx_ef); 
a(Nx,Ny,Nz)=c(Nx,Ny,Nz)+e(Nx,Ny,Nz)+g(Nx,Ny,Nz)+sqrt(h(N,Ny)*4*dy^2*ks*
dx_ef)*tanh(m1*dc)/2/mesh.Nx_ef; 
ho(Nx,Ny,Nz)=sqrt(h(N,Ny)*4*dy^2*ks*dx_ef)*tanh(m1*dc)/2/mesh.Nx_ef*Tf(
N,Ny); 
%back bottom right corner 
c(Nx,Ny,1)=ks*dy*dz/dx_ef; 
e(Nx,Ny,1)=ks*dx_ef*dz/dy; 
f(Nx,Ny,1)=ks*dx_ef*dy/dz; 
a(Nx,Ny,1)=c(Nx,Ny,1)+e(Nx,Ny,1)+f(Nx,Ny,1)+a_loss; 
ho(Nx,Ny,1)=q_in(Nx,Ny)-b_loss; 
end 
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Function 33. conduction.m 
 
function [T]=conduction(dims,matp,mesh,T,Tf,h,q_in) 
Nx=mesh.Nx_c+mesh.Nx_f+mesh.Nx_ef; 
Ny=mesh.Ny; 
Nz=mesh.Nz; 
[a,b,c,d,e,f,g,ho]=condbasemat(mesh,dims,matp,h,q_in,Tf); 
for n=1:10 
    for i=Nx:-1:1 
        a1=reshape(a(i,:,:),Ny,Nz); 
        b1=reshape(b(i,:,:),Ny,Nz); 
        c1=reshape(c(i,:,:),Ny,Nz); 
        d1=reshape(d(i,:,:),Ny,Nz); 
        e1=reshape(e(i,:,:),Ny,Nz); 
        f1=reshape(f(i,:,:),Ny,Nz); 
        g1=reshape(g(i,:,:),Ny,Nz); 
        if i==1 
h1=reshape(ho(i,:,:),Ny,Nz)+b1.*reshape(T(i+1,:,1:Nz),Ny,Nz); 
        elseif i==Nx 
            h1=reshape(ho(i,:,:),Ny,Nz)+c1.*reshape(T(i-
1,:,1:Nz),Ny,Nz); 
        else 
h1=reshape(ho(i,:,:),Ny,Nz)+b1.*reshape(T(i+1,:,1:Nz),Ny,Nz)+c1.*reshap
e(T(i-1,:,1:Nz),Ny,Nz); 
        end 
        T1=reshape(T(i,:,1:Nz),Ny,Nz); 
        T(i,:,1:Nz)=tdmaline(a1,f1,g1,d1,e1,h1,T1); 
    end 
    for j=Ny:-1:1 
        a1=reshape(a(:,j,:),Nx,Nz); 
        b1=reshape(b(:,j,:),Nx,Nz); 
        c1=reshape(c(:,j,:),Nx,Nz); 
        d1=reshape(d(:,j,:),Nx,Nz); 
        e1=reshape(e(:,j,:),Nx,Nz); 
        f1=reshape(f(:,j,:),Nx,Nz); 
        g1=reshape(g(:,j,:),Nx,Nz); 
        if j==1 
h1=reshape(ho(:,j,:),Nx,Nz)+d1.*reshape(T(:,j+1,1:Nz),Nx,Nz); 
        elseif j==Ny 
            h1=reshape(ho(:,j,:),Nx,Nz)+e1.*reshape(T(:,j-
1,1:Nz),Nx,Nz); 
        else 
h1=reshape(ho(:,j,:),Nx,Nz)+d1.*reshape(T(:,j+1,1:Nz),Nx,Nz)+e1.*reshap
e(T(:,j-1,1:Nz),Nx,Nz); 
        end 
        T1=reshape(T(:,j,1:Nz),Nx,Nz); 
        T(:,j,1:Nz)=tdmaline(a1,f1,g1,b1,c1,h1,T1); 
    end 
    for k=Nz:-1:1 
        a1=reshape(a(:,:,k),Nx,Ny); 
        b1=reshape(b(:,:,k),Nx,Ny); 
        c1=reshape(c(:,:,k),Nx,Ny); 
        d1=reshape(d(:,:,k),Nx,Ny); 
        e1=reshape(e(:,:,k),Nx,Ny); 
        f1=reshape(f(:,:,k),Nx,Ny); 
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        g1=reshape(g(:,:,k),Nx,Ny); 
        if k==1 
            h1=reshape(ho(:,:,k),Nx,Ny)+f1.*reshape(T(:,:,k+1),Nx,Ny); 
        elseif k==Nz 
            h1=reshape(ho(:,:,k),Nx,Ny)+g1.*reshape(T(:,:,k-1),Nx,Ny); 
        else 
h1=reshape(ho(:,:,k),Nx,Ny)+f1.*reshape(T(:,:,k+1),Nx,Ny)+g1.*reshape(T
(:,:,k-1),Nx,Ny); 
        end 
        T1=reshape(T(:,:,k),Nx,Ny); 
        T(:,:,k)=tdmaline(a1,d1,e1,b1,c1,h1,T1); 
    end 
    for i=1:Nx 
        a1=reshape(a(i,:,:),Ny,Nz); 
        b1=reshape(b(i,:,:),Ny,Nz); 
        c1=reshape(c(i,:,:),Ny,Nz); 
        d1=reshape(d(i,:,:),Ny,Nz); 
        e1=reshape(e(i,:,:),Ny,Nz); 
        f1=reshape(f(i,:,:),Ny,Nz); 
        g1=reshape(g(i,:,:),Ny,Nz); 
        if i==1 
h1=reshape(ho(i,:,:),Ny,Nz)+b1.*reshape(T(i+1,:,1:Nz),Ny,Nz); 
        elseif i==Nx 
            h1=reshape(ho(i,:,:),Ny,Nz)+c1.*reshape(T(i-
1,:,1:Nz),Ny,Nz); 
        else 
h1=reshape(ho(i,:,:),Ny,Nz)+b1.*reshape(T(i+1,:,1:Nz),Ny,Nz)+c1.*reshap
e(T(i-1,:,1:Nz),Ny,Nz); 
        end 
        T1=reshape(T(i,:,1:Nz),Ny,Nz); 
        T(i,:,1:Nz)=tdmaline(a1,f1,g1,d1,e1,h1,T1); 
    end 
    for j=1:Ny 
        a1=reshape(a(:,j,:),Nx,Nz); 
        b1=reshape(b(:,j,:),Nx,Nz); 
        c1=reshape(c(:,j,:),Nx,Nz); 
        d1=reshape(d(:,j,:),Nx,Nz); 
        e1=reshape(e(:,j,:),Nx,Nz); 
        f1=reshape(f(:,j,:),Nx,Nz); 
        g1=reshape(g(:,j,:),Nx,Nz); 
        if j==1 
h1=reshape(ho(:,j,:),Nx,Nz)+d1.*reshape(T(:,j+1,1:Nz),Nx,Nz); 
        elseif j==Ny 
            h1=reshape(ho(:,j,:),Nx,Nz)+e1.*reshape(T(:,j-
1,1:Nz),Nx,Nz); 
        else 
h1=reshape(ho(:,j,:),Nx,Nz)+d1.*reshape(T(:,j+1,1:Nz),Nx,Nz)+e1.*reshap
e(T(:,j-1,1:Nz),Nx,Nz); 
        end 
        T1=reshape(T(:,j,1:Nz),Nx,Nz); 
        T(:,j,1:Nz)=tdmaline(a1,f1,g1,b1,c1,h1,T1); 
    end 
    for k=1:Nz 
        a1=reshape(a(:,:,k),Nx,Ny); 
        b1=reshape(b(:,:,k),Nx,Ny); 
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        c1=reshape(c(:,:,k),Nx,Ny); 
        d1=reshape(d(:,:,k),Nx,Ny); 
        e1=reshape(e(:,:,k),Nx,Ny); 
        f1=reshape(f(:,:,k),Nx,Ny); 
        g1=reshape(g(:,:,k),Nx,Ny); 
        if k==1 
            h1=reshape(ho(:,:,k),Nx,Ny)+f1.*reshape(T(:,:,k+1),Nx,Ny); 
         elseif k==Nz 
            h1=reshape(ho(:,:,k),Nx,Ny)+g1.*reshape(T(:,:,k-1),Nx,Ny); 
        else 
h1=reshape(ho(:,:,k),Nx,Ny)+f1.*reshape(T(:,:,k+1),Nx,Ny)+g1.*reshape(T
(:,:,k-1),Nx,Ny); 
        end 
        T1=reshape(T(:,:,k),Nx,Ny); 
        T(:,:,k)=tdmaline(a1,d1,e1,b1,c1,h1,T1); 
    end 
     
end 
end 
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Function 34. convection2.m 
 
function 
[Tf,h,q_w,xe]=convection2(dims,matp,mesh,flow,T,Tf,q_w,DP,xe,ws) 
Nxef=mesh.Nx_ef; 
Nxf=mesh.Nx_f/(dims.N-1); 
Nx=mesh.Nx_c+mesh.Nx_f+mesh.Nx_ef; 
Ny=mesh.Ny; 
Nz=mesh.Nz; 
N=dims.N; 
dx=mesh.dx_c; 
dxf=mesh.dx_f; 
dxef=mesh.dx_ef; 
dy=mesh.dy; 
ks=matp.k_Si; 
d=dims.d; 
w=dims.w; 
L=dims.L; 
%find Tf everywhere 
% fmald=ones(N,1); 
fmald=ones(N,1)+.0625; 
fmald(15:21)=.75; 
Tsat=matp.Tsata./(matp.Tsatb-matp.Tsatc*log10(flow.P_in-DP))-273; 
for i=1:N 
    for j=1:Ny 
Tf(i,j)=flow.T_in+sum(q_w(i,1:j))*(2*d+w)*dy/(flow.m_dot*fmald(i)*densi
ty(matp,Tf(i,j))/N/60/1e6)/specheat(matp,Tf(i,j)); 
        if Tf(i,j)>Tsat(i,j) 
            Tf(i,j)=Tsat(i,j); 
        end 
    end 
end 
%find h everywhere 
[h]=heattranscoeff(dims,matp,mesh,flow,T,Tf,Tsat,q_w,xe,fmald,ws); 
%find q_w [W] everywhere 
wq=zeros(N-1,Ny)+0.5; 
assignin('base','wq',wq); 
q_w=zeros(N,Ny); 
Af=2*d*L; 
Aw=N*(2*d+w)*L; 
for j=1:Ny 
    m1=sqrt(2*h(1,j)/ks/dxef/Nxef); 
    etaf=tanh(m1*d)/m1/d; 
    eta=1-N*Af/Aw*(1-etaf); 
    q_w(1,j)=q_w(1,j)+eta*d*dy*h(1,j)*(mean(T(1:Nxef/2,j,Nz))-Tf(1,j)); 
     
    for i=1:(N-1) 
q_w(i,j)=q_w(i,j)+h(i,j)*dx*dy*sum(T(mesh.id.num==i&mesh.id.label==1,j,
Nz)-Tf(i,j)); 
        m1=sqrt((h(i,j)+h(i+1,j))/ks/dxf/Nxf); 
        etaf=tanh(m1*d)/m1/d; 
        eta=1-N*Af/Aw*(1-etaf); 
q_w(i,j)=q_w(i,j)+eta*2*d*dy*h(i,j)*wq(i,j)*(T(mesh.id.num==i&mesh.id.l
abel==2,j,Nz)-Tf(i,j)); 
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        q_w(i+1,j)=q_w(i+1,j)+eta*2*d*dy*h(i+1,j)*(1-
wq(i,j))*(T(mesh.id.num==i&mesh.id.label==2,j,Nz)-Tf(i+1,j)); 
    end 
q_w(N,j)=q_w(N,j)+h(N,j)*dx*dy*sum(T(mesh.id.num==N&mesh.id.label==1,j,
Nz)-Tf(N,j)); 
    m1=sqrt(2*h(N,j)/ks/dxef/Nxef); 
    etaf=tanh(m1*d)/m1/d; 
    eta=1-N*Af/Aw*(1-etaf); 
    q_w(N,j)=q_w(N,j)+eta*d*dy*h(N,j)*(mean(T(Nx-Nxef/2+1:Nx,j,Nz))-
Tf(N,j)); 
end 
%find xe everywhere 
for i=1:N 
    for j=1:Ny 
xe(i,j)=1/matp.h_fg*(sum(q_w(i,1:j))/(flow.m_dot*fmald(i)/N*density(mat
p,Tf(i,j))/1e6/60)-specheat(matp,Tf(i,j))*(Tsat(i,j)-flow.T_in)); 
    end 
end 
%get q_w [W/m2] 
q_w=q_w/dy/(w+2*d); 
end 
function rho=density(matp,Tf) 
rho=matp.rho_fa+matp.rho_fb*Tf; 
end 
function cp=specheat(matp,Tf) 
cp=matp.c_pfa+matp.c_pfb*Tf; 
end 
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Function 35. discretize.m 
 
function [mesh]=discretize(dims) 
n1=6; 
mesh.Nz=round(n1*(dims.t-dims.d)/dims.t); 
mesh.dz=(dims.t-dims.d)/mesh.Nz; 
Nx=round(dims.W/dims.t*0.95*n1); 
mesh.Nx_c=round(dims.N*dims.w/dims.W*Nx); 
mesh.Nx_f=round((dims.N-1)*dims.w_f/dims.W*Nx); 
mesh.Nx_ef=Nx-mesh.Nx_c-mesh.Nx_f; 
while mod(mesh.Nx_c+mesh.Nx_f+mesh.Nx_ef,5) 
    mesh.Nx_ef=mesh.Nx_ef+1; 
    while mod(mesh.Nx_c,dims.N) 
        mesh.Nx_c=mesh.Nx_c+1; 
    end 
    while mod(mesh.Nx_f,dims.N-1) 
        mesh.Nx_f=mesh.Nx_f+1; 
    end 
    while mod(mesh.Nx_ef,2) 
        mesh.Nx_ef=mesh.Nx_ef+1; 
    end 
end 
mesh.dx_c=dims.N*dims.w/mesh.Nx_c; 
mesh.dx_f=(dims.W-dims.N*dims.w-2*dims.w_ef)/(mesh.Nx_f); 
mesh.dx_ef=2*dims.w_ef/mesh.Nx_ef; 
mesh.Ny=mesh.Nx_c+mesh.Nx_f+mesh.Nx_ef; 
mesh.dy=dims.L/mesh.Ny; 
end 
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Function 36. genmesh.m 
 
function [mesh]=genmesh(dims,mesh) 
Nx_f=mesh.Nx_f; 
Nx_ef=mesh.Nx_ef; 
Nx_c=mesh.Nx_c; 
Nx=Nx_f+Nx_ef+Nx_c; 
N=dims.N; 
id.num=zeros(Nx,1,'uint8'); 
id.num(1:Nx_ef/2)=1; 
id.num(Nx-Nx_ef/2:end)=N; 
id.label=zeros(Nx,1,'uint8'); 
id.label(1:Nx_ef/2)=3; 
id.label(Nx-Nx_ef/2:end)=3; 
for i=1:dims.N 
    x1=Nx_ef/2+1+(i-1)*(Nx_c/N+Nx_f/(N-1)); 
    x2=Nx_ef/2+i*Nx_c/N+(i-1)*Nx_f/(N-1); 
    id.num(x1:x2)=i; 
    id.label(x1:x2)=1; 
end 
for i=1:dims.N-1 
    x1=Nx_ef/2+1+i*Nx_c/N+(i-1)*Nx_f/(N-1); 
    x2=Nx_ef/2+i*(Nx_c/N+Nx_f/(N-1)); 
    id.num(x1:x2)=i; 
    id.label(x1:x2)=2; 
end 
mesh.id=id; 
end 
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Function 37. gui_input2.m 
 
function [out]=gui_input2 
f=figure('visible','off','position',[360,400,450,385],'name','Input 
GUI'); 
%initialize variables in case user doesn't select them 
out.dims.L=0.01267; 
out.dims.W=0.012668; 
out.dims.t=0.000648; 
out.dims.w=0.000239114; 
out.dims.w_f=0.0001108; 
out.dims.d=0.00037144; 
out.dims.N=35; 
out.flow.P_in=101000; 
out.flow.T_in=90.5; 
out.flow.m_dot=104; 
out.power=33; 
out.Phi=1; 
out.heatsink='Silicon'; 
out.fluid='FC-77'; 
out.heating_case='Case 1a'; 
out.getdata=0; 
out.filename=' '; 
out.heaters=zeros(5,5); 
ah1=axes('parent',f,'units','pixels','position',[10 200 150 150]); 
imshow('microchannel1.tif') 
ah2=axes('parent',f,'units','pixels','position',[240 295 150 50]); 
imshow('microchannel3.png') 
Ltag=uicontrol(f,'style','text','string','L 
[mm]','units','pixels','position',[60 365 50 15]); 
Lh=uicontrol(f,'style','edit','string','12.67','units','pixels','positi
on',[60 345 50 20],'callback',@Lh_callback); 
Wtag=uicontrol(f,'style','text','string','W 
[mm]','units','pixels','position',[160 280 50 15]); 
Wh=uicontrol(f,'style','edit','string','12.668','units','pixels','posit
ion',[160 260 50 20],'callback',@Wh_callback); 
ttag=uicontrol(f,'style','text','string','t 
[um]','units','pixels','position',[195 325 50 15]); 
th=uicontrol(f,'style','edit','string','648','units','pixels','position
',[195 305 50 20],'callback',@th_callback); 
wtag=uicontrol(f,'style','text','string','w 
[um]','units','pixels','position',[240 365 50 15]); 
wh=uicontrol(f,'style','edit','string','239.114','units','pixels','posi
tion',[240 345 50 20],'callback',@wh_callback); 
wftag=uicontrol(f,'style','text','string','wf 
[um]','units','pixels','position',[290 365 50 15]); 
wfh=uicontrol(f,'style','edit','string','110.8','units','pixels','posit
ion',[290 345 50 20],'callback',@wfh_callback); 
dtag=uicontrol(f,'style','text','string','d 
[um]','units','pixels','position',[385 330 50 15]); 
dh=uicontrol(f,'style','edit','string','371.44','units','pixels','posit
ion',[385 310 50 20],'callback',@dh_callback); 
Ntag=uicontrol(f,'style','text','string','# of 
channels','units','pixels','position',[250 262 100 15]); 
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Nh=uicontrol(f,'style','edit','string','35','units','pixels','position'
,[350 260 50 20],'callback',@Nh_callback); 
Ptag=uicontrol(f,'style','text','string','P in 
[kPa]','units','pixels','position',[250 242 100 15]); 
Ph=uicontrol(f,'style','edit','string','101','units','pixels','position
',[350 240 50 20],'callback',@Ph_callback); 
Ttag=uicontrol(f,'style','text','string','T in 
[C]','units','pixels','position',[250 222 100 15]); 
Th=uicontrol(f,'style','edit','string','90.5','units','pixels','positio
n',[350 220 50 20],'callback',@Th_callback); 
Vtag=uicontrol(f,'style','text','string','V in 
[mL/min]','units','pixels','position',[250 202 100 15]); 
Vh=uicontrol(f,'style','edit','string','104','units','pixels','position
',[350 200 50 20],'callback',@Vh_callback); 
hspmh=uicontrol(f,'style','popupmenu','string',{'Silicon','Copper'},'va
lue',1,'position',[20 180 60 20],'callback',@hspmh_callback); 
fpmh=uicontrol(f,'style','popupmenu','string',{'FC-77','HFE 
7100'},'value',1,'position',[80 180 60 20],'callback',@fpmh_callback); 
heattag=uicontrol(f,'style','text','string','Heating 
Diagram','units','pixels','position',[20 140 120 15]); 
ah3=axes('parent',f,'units','pixels','position',[20 20 120 115]); 
imshow('heaters.png'); 
h01=uicontrol(f,'style','checkbox','string','','value',0,'position',[35 
110 15 15],'callback',@h01_callback); 
h02=uicontrol(f,'style','checkbox','string','','value',0,'position',[35 
90 15 15],'callback',@h02_callback); 
h03=uicontrol(f,'style','checkbox','string','','value',0,'position',[35 
70 15 15],'callback',@h03_callback); 
h04=uicontrol(f,'style','checkbox','string','','value',0,'position',[35 
50 15 15],'callback',@h04_callback); 
h05=uicontrol(f,'style','checkbox','string','','value',0,'position',[35 
30 15 15],'callback',@h05_callback); 
h06=uicontrol(f,'style','checkbox','string','','value',0,'position',[55 
110 15 15],'callback',@h06_callback); 
h07=uicontrol(f,'style','checkbox','string','','value',0,'position',[55 
90 15 15],'callback',@h07_callback); 
h08=uicontrol(f,'style','checkbox','string','','value',0,'position',[55 
70 15 15],'callback',@h08_callback); 
h09=uicontrol(f,'style','checkbox','string','','value',0,'position',[55 
50 15 15],'callback',@h09_callback); 
h10=uicontrol(f,'style','checkbox','string','','value',0,'position',[55 
30 15 15],'callback',@h10_callback); 
h11=uicontrol(f,'style','checkbox','string','','value',1,'position',[75 
110 15 15],'callback',@h11_callback); 
h12=uicontrol(f,'style','checkbox','string','','value',1,'position',[75 
90 15 15],'callback',@h12_callback); 
h13=uicontrol(f,'style','checkbox','string','','value',1,'position',[75 
70 15 15],'callback',@h13_callback); 
h14=uicontrol(f,'style','checkbox','string','','value',1,'position',[75 
50 15 15],'callback',@h14_callback); 
h15=uicontrol(f,'style','checkbox','string','','value',1,'position',[75 
30 15 15],'callback',@h15_callback); 
h16=uicontrol(f,'style','checkbox','string','','value',0,'position',[95 
110 15 15],'callback',@h16_callback); 
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h17=uicontrol(f,'style','checkbox','string','','value',0,'position',[95 
90 15 15],'callback',@h17_callback); 
h18=uicontrol(f,'style','checkbox','string','','value',0,'position',[95 
70 15 15],'callback',@h18_callback); 
h19=uicontrol(f,'style','checkbox','string','','value',0,'position',[95 
50 15 15],'callback',@h19_callback); 
h20=uicontrol(f,'style','checkbox','string','','value',0,'position',[95 
30 15 15],'callback',@h20_callback); 
h21=uicontrol(f,'style','checkbox','string','','value',0,'position',[11
5 110 15 15],'callback',@h21_callback); 
h22=uicontrol(f,'style','checkbox','string','','value',0,'position',[11
5 90 15 15],'callback',@h22_callback); 
h23=uicontrol(f,'style','checkbox','string','','value',0,'position',[11
5 70 15 15],'callback',@h23_callback); 
h24=uicontrol(f,'style','checkbox','string','','value',0,'position',[11
5 50 15 15],'callback',@h24_callback); 
h25=uicontrol(f,'style','checkbox','string','','value',0,'position',[11
5 30 15 15],'callback',@h25_callback); 
heatpmh=uicontrol(f,'style','popupmenu','string',{'Case 1a','Case 
1b','Case 1c','Case 1d','Case 2a','Case 
2b','custom'},'value',1,'position',[250 140 120 
20],'callback',@heatpmh_callback); 
powtag=uicontrol(f,'style','text','string','Q in 
[W]','units','pixels','position',[250 122 60 15]); 
powh=uicontrol(f,'style','edit','string','33','units','pixels','positio
n',[310 120 60 20],'callback',@powh_callback); 
phitag=uicontrol(f,'style','text','string','Phi','units','pixels','posi
tion',[250 102 60 15]); 
phih=uicontrol(f,'style','edit','string','1','units','pixels','position
',[310 100 60 20],'callback',@phih_callback); 
datah=uicontrol(f,'style','checkbox','string','Use saved 
data?','value',0,'position',[250 75 150 15],'callback',@datah_callback); 
datatx=uicontrol(f,'style','edit','string','results.mat','horizontalali
gnment','left','position',[250 55 150 20],'callback',@datatx_callback); 
goh=uicontrol(f,'style','pushbutton','string','GO!','position',[285 5 
60 40],'callback',@goh_callback); 
myhandles=guihandles(f); 
set(f,'visible','on'); 
uiwait(f); 
    function Lh_callback(hObject,~,~) 
        out.dims.L=str2double(get(hObject,'string'))/1000; 
        guidata(hObject,myhandles); 
    end 
    function Wh_callback(hObject,~,~) 
        out.dims.W=str2double(get(hObject,'string'))/1000; 
        guidata(hObject,myhandles); 
    end 
    function th_callback(hObject,~,~) 
        out.dims.t=str2double(get(hObject,'string'))/1e6; 
        guidata(hObject,myhandles); 
    end 
    function wh_callback(hObject,~,~) 
        out.dims.w=str2double(get(hObject,'string'))/1e6; 
        guidata(hObject,myhandles); 
    end 
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    function wfh_callback(hObject,~,~) 
        out.dims.w_f=str2double(get(hObject,'string'))/1e6; 
        guidata(hObject,myhandles); 
    end 
    function dh_callback(hObject,~,~) 
        out.dims.d=str2double(get(hObject,'string'))/1e6; 
        guidata(hObject,myhandles); 
    end 
    function Nh_callback(hObject,~,~) 
        out.dims.N=str2double(get(hObject,'string')); 
        guidata(hObject,myhandles); 
    end 
    function Ph_callback(hObject,~,~) 
        out.flow.P_in=str2double(get(hObject,'string'))*1000; 
        guidata(hObject,myhandles); 
    end 
    function Th_callback(hObject,~,~) 
        out.flow.T_in=str2double(get(hObject,'string')); 
        guidata(hObject,myhandles); 
    end 
    function Vh_callback(hObject,~,~) 
        out.flow.m_dot=str2double(get(hObject,'string')); 
        guidata(hObject,myhandles); 
    end 
    function powh_callback(hObject,~,~) 
        out.power=str2double(get(hObject,'string')); 
        guidata(hObject,myhandles); 
    end 
    function phih_callback(hObject,~,~) 
        out.Phi=str2double(get(hObject,'string')); 
        guidata(hObject,myhandles); 
    end 
    function hspmh_callback(hObject,~,~) 
        val=get(hObject,'value'); 
        strlist=get(hObject,'string'); 
        out.heatsink=strlist{val}; 
        guidata(hObject,myhandles); 
    end 
    function fpmh_callback(hObject,~,~) 
        val=get(hObject,'value'); 
        strlist=get(hObject,'string'); 
        out.fluid=strlist{val}; 
        guidata(hObject,myhandles); 
    end 
    function heatpmh_callback(hObject,~,~) 
        val=get(hObject,'value'); 
        strlist=get(hObject,'string'); 
        out.heating_case=strlist{val}; 
        guidata(hObject,myhandles); 
        reseth(); 
        switch strlist{val} 
            case 'Case 1a' 
                set(h11,'value',1); 
                set(h12,'value',1); 
                set(h13,'value',1); 



276 

 

                set(h14,'value',1); 
                set(h15,'value',1); 
            case 'Case 1b' 
                set(h03,'value',1); 
                set(h08,'value',1); 
                set(h13,'value',1); 
                set(h18,'value',1); 
                set(h23,'value',1); 
            case 'Case 1c' 
                set(h01,'value',1); 
                set(h02,'value',1); 
                set(h03,'value',1); 
                set(h04,'value',1); 
                set(h05,'value',1); 
            case 'Case 1d' 
                set(h01,'value',1); 
                set(h02,'value',1); 
                set(h03,'value',1); 
                set(h04,'value',1); 
                set(h05,'value',1); 
                set(h21,'value',1); 
                set(h22,'value',1); 
                set(h23,'value',1); 
                set(h24,'value',1); 
                set(h25,'value',1); 
            case 'Case 2a' 
                set(h11,'value',1); 
                set(h12,'value',1); 
                set(h13,'value',1); 
                set(h14,'value',1); 
                set(h15,'value',1); 
            case 'Case 2b' 
                set(h03,'value',1); 
                set(h08,'value',1); 
                set(h13,'value',1); 
                set(h18,'value',1); 
                set(h23,'value',1); 
            otherwise 
        end 
    end 
    function datah_callback(hObject,~,~) 
        if get(hObject,'value')==1 
            out.getdata=1; 
        else 
            out.getdata=0; 
        end 
    end 
    function datatx_callback(hObject,~,~) 
        out.filename=get(hObject,'string'); 
    end 
    function h01_callback(hObject,~,~) 
        if get(hObject,'value')==1 
            out.heaters(1,1)=1; 
        else 
            out.heaters(1,1)=0; 
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        end 
    end 
    function h02_callback(hObject,~,~) 
        if get(hObject,'value')==1 
            out.heaters(2,1)=1; 
        else 
            out.heaters(2,1)=0; 
        end 
    end 
    function h03_callback(hObject,~,~) 
        if get(hObject,'value')==1 
            out.heaters(3,1)=1; 
        else 
            out.heaters(3,1)=0; 
        end 
    end 
    function h04_callback(hObject,~,~) 
        if get(hObject,'value')==1 
            out.heaters(4,1)=1; 
        else 
            out.heaters(4,1)=0; 
        end 
    end 
    function h05_callback(hObject,~,~) 
        if get(hObject,'value')==1 
            out.heaters(5,1)=1; 
        else 
            out.heaters(5,1)=0; 
        end 
    end 
    function h06_callback(hObject,~,~) 
        if get(hObject,'value')==1 
            out.heaters(1,2)=1; 
        else 
            out.heaters(1,2)=0; 
        end 
    end 
    function h07_callback(hObject,~,~) 
        if get(hObject,'value')==1 
            out.heaters(2,2)=1; 
        else 
            out.heaters(2,2)=0; 
        end 
    end 
    function h08_callback(hObject,~,~) 
        if get(hObject,'value')==1 
            out.heaters(3,2)=1; 
        else 
            out.heaters(3,2)=0; 
        end 
    end 
    function h09_callback(hObject,~,~) 
        if get(hObject,'value')==1 
            out.heaters(4,2)=1; 
        else 
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            out.heaters(4,2)=0; 
        end 
    end 
    function h10_callback(hObject,~,~) 
        if get(hObject,'value')==1 
            out.heaters(5,2)=1; 
        else 
            out.heaters(5,2)=0; 
        end 
    end 
    function h11_callback(hObject,~,~) 
        if get(hObject,'value')==1 
            out.heaters(1,3)=1; 
        else 
            out.heaters(1,3)=0; 
        end 
    end 
    function h12_callback(hObject,~,~) 
        if get(hObject,'value')==1 
            out.heaters(2,3)=1; 
        else 
            out.heaters(2,3)=0; 
        end 
    end 
    function h13_callback(hObject,~,~) 
        if get(hObject,'value')==1 
            out.heaters(3,3)=1; 
        else 
            out.heaters(3,3)=0; 
        end 
    end 
    function h14_callback(hObject,~,~) 
        if get(hObject,'value')==1 
            out.heaters(4,3)=1; 
        else 
            out.heaters(4,3)=0; 
        end 
    end 
    function h15_callback(hObject,~,~) 
        if get(hObject,'value')==1 
            out.heaters(5,3)=1; 
        else 
            out.heaters(5,3)=0; 
        end 
    end 
    function h16_callback(hObject,~,~) 
        if get(hObject,'value')==1 
            out.heaters(1,4)=1; 
        else 
            out.heaters(1,4)=0; 
        end 
    end 
    function h17_callback(hObject,~,~) 
        if get(hObject,'value')==1 
            out.heaters(2,4)=1; 
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        else 
            out.heaters(2,4)=0; 
        end 
    end 
    function h18_callback(hObject,~,~) 
        if get(hObject,'value')==1 
            out.heaters(3,4)=1; 
        else 
            out.heaters(3,4)=0; 
        end 
    end 
    function h19_callback(hObject,~,~) 
        if get(hObject,'value')==1 
            out.heaters(4,4)=1; 
        else 
            out.heaters(4,4)=0; 
        end 
    end 
    function h20_callback(hObject,~,~) 
        if get(hObject,'value')==1 
            out.heaters(5,4)=1; 
        else 
            out.heaters(5,4)=0; 
        end 
    end 
    function h21_callback(hObject,~,~) 
        if get(hObject,'value')==1 
            out.heaters(1,5)=1; 
        else 
            out.heaters(1,5)=0; 
        end 
    end 
    function h22_callback(hObject,~,~) 
        if get(hObject,'value')==1 
            out.heaters(2,5)=1; 
        else 
            out.heaters(2,5)=0; 
        end 
    end 
    function h23_callback(hObject,~,~) 
        if get(hObject,'value')==1 
            out.heaters(3,5)=1; 
        else 
            out.heaters(3,5)=0; 
        end 
    end 
    function h24_callback(hObject,~,~) 
        if get(hObject,'value')==1 
            out.heaters(4,5)=1; 
        else 
            out.heaters(4,5)=0; 
        end 
    end 
    function h25_callback(hObject,~,~) 
        if get(hObject,'value')==1 
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            out.heaters(5,5)=1; 
        else 
            out.heaters(5,5)=0; 
        end 
    end 
    function reseth() 
        set(h01,'value',0); 
        set(h02,'value',0); 
        set(h03,'value',0); 
        set(h04,'value',0); 
        set(h05,'value',0); 
        set(h06,'value',0); 
        set(h07,'value',0); 
        set(h08,'value',0); 
        set(h09,'value',0); 
        set(h10,'value',0); 
        set(h11,'value',0); 
        set(h12,'value',0); 
        set(h13,'value',0); 
        set(h14,'value',0); 
        set(h15,'value',0); 
        set(h16,'value',0); 
        set(h17,'value',0); 
        set(h18,'value',0); 
        set(h19,'value',0); 
        set(h20,'value',0); 
        set(h21,'value',0); 
        set(h22,'value',0); 
        set(h23,'value',0); 
        set(h24,'value',0); 
        set(h25,'value',0); 
    end 
    function goh_callback(~,~,~) 
        uiresume(f); 
        display Calculating 
        close(f) 
    end 
end 
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Function 38. gui_output.m 
 
function gui_output 
f=figure('visible','off','position',[360,300,600,500],'name','Output 
GUI'); 
filename=' '; 
flow=evalin('base','flow'); 
heating_case=flow.heating_case; 
quantity='T [C]'; 
position='bottom'; 
T=evalin('base','T'); 
Tf=evalin('base','Tf'); 
h=evalin('base','h'); 
q_w=evalin('base','q_w'); 
xe=evalin('base','xe'); 
DP=evalin('base','DP'); 
DPsp=evalin('base','DPsp'); 
DPtp=evalin('base','DPtp'); 
mesh=evalin('base','mesh'); 
id=mesh.id; 
ah=axes('parent',f,'units','pixels','position',[100 150 370 320]); 
quanttag=uicontrol(f,'style','text','string','Quantity:','position',[50
0 450 75 15]); 
quanth=uicontrol(f,'style','popupmenu','string',{'T [C]','h 
[W/m2K]','q_wall [W/cm2]','x_e [-]','DP 
[Pa]'},'value',1,'position',[500 430 75 
20],'callback',@quanth_callback); 
postag=uicontrol(f,'style','text','string','Location:','position',[500 
410 75 15]); 
posh=uicontrol(f,'style','popupmenu','string',{'bottom','fluid','fins',
'x section fn','x section ch'},'value',1,'position',[500 390 75 
20],'callback',@posh_callback); 
plotb=uicontrol(f,'style','pushbutton','string','Plot','position',[510 
340 55 30],'callback',@plotb_callback); 
savetag=uicontrol(f,'style','text','string','Save results 
to:','horizontalalignment','left','units','pixels','position',[20 40 
100 15]); 
saveh=uicontrol(f,'style','edit','string','results.mat','horizontalalig
nment','left','units','pixels','position',[20 20 300 
20],'callback',@saveh_callback); 
saveb=uicontrol(f,'style','pushbutton','string','Save','position',[320 
20 50 20],'callback',@saveb_callback); 
set(f,'toolbar','figure','visible','on'); 
    function quanth_callback(hObject,~,~) 
        val=get(hObject,'value'); 
        strlist=get(hObject,'string'); 
        quantity=strlist{val}; 
    end 
    function posh_callback(hObject,~,~) 
        val=get(hObject,'value'); 
        strlist=get(hObject,'string'); 
        position=strlist{val}; 
    end 
    function plotb_callback(~,~,~) 
        switch quantity 
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            case 'T [C]' 
                switch position 
                    case 'bottom' 
                        s=size(T); 
                        x=0:1/(s(1)-1):1; 
                        surf(x,x,T(:,:,1),'edgecolor','none') 
                        xlabel('Normalized Flow Length') 
                        ylabel('Normalized Width') 
                        zlabel('T_b [C]') 
                        title(heating_case) 
                    case 'fluid' 
                        s=size(Tf); 
                        x=0:1/(s(2)-1):1; 
                        y=0:1/(s(1)-1):1; 
                        surf(x,y,Tf,'edgecolor','none') 
                        xlabel('Normalized Flow Length') 
                        ylabel('Normalized Width') 
                        zlabel('T_f [C]') 
                        title(heating_case) 
                    case 'fins' 
                        s=size(T); 
                        x=0:1/(s(1)-1):1; 
                        surf(x,x,T(:,:,mesh.Nz),'edgecolor','none') 
                        xlabel('Normalized Flow Length') 
                        ylabel('Normalized Width') 
                        zlabel('T_{fin} [C]') 
                        title(heating_case) 
                    case 'x section fn' 
                        [row,~]=find(id.label==2); 
                        row2=unique(row); 
                        s=size(T); 
                        Tfin=T(row2,floor(s(2)/2),:); 
                        s=size(Tfin); 
                        x=0:1/(s(1)-1):1; 
                        z=0:1/(s(3)-1):1; 
surf(z,x,reshape(Tfin,s(1),s(3)),'edgecolor','none') 
                        xlabel('Normalized Height') 
                        ylabel('Normalized Width') 
                        zlabel('T [C]') 
                        title(heating_case) 
                    case 'x section ch' 
                        [row,~]=find(id.label==1); 
                        row2=unique(row); 
                        s=size(T); 
                        Tch=T(row2,floor(s(2)/2),:); 
                        s=size(Tch); 
                        x=0:1/(s(1)-1):1; 
                        z=0:1/(s(3)-1):1; 
surf(z,x,reshape(Tch,s(1),s(3)),'edgecolor','none') 
                        xlabel('Normalized Height') 
                        ylabel('Normalized Width') 
                        zlabel('T [C]') 
                        title(heating_case) 
                end 
            case 'h [W/m2K]' 
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                s=size(h); 
                x=1:1:s(1); 
                y=0:1/(s(2)-1):1; 
                surf(y,x,h,'edgecolor','none') 
                xlabel('Normalized Flow Length') 
                ylabel('Channel') 
                zlabel('h [W/m^2K]') 
                title(heating_case) 
            case 'q_wall [W/cm2]' 
                s=size(q_w); 
                x=1:1:s(1); 
                y=0:1/(s(2)-1):1; 
                surf(y,x,q_w/10000,'edgecolor','none') 
                xlabel('Normalized Flow Length') 
                ylabel('Channel') 
                zlabel('q_w [W/cm^2]') 
                title(heating_case) 
            case 'x_e [-]' 
                s=size(xe); 
                x=1:1:s(1); 
                y=0:1/(s(2)-1):1; 
                surf(y,x,xe,'edgecolor','none') 
                xlabel('Normalized Flow Length') 
                ylabel('Channel') 
                zlabel('x_e [-]') 
                title(heating_case) 
            case 'DP [Pa]' 
                s=size(DP); 
                x=1:1:s(1); 
                y=0:1/(s(2)-1):1; 
                surf(y,x,DP,'edgecolor','none') 
                xlabel('Normalized Flow Length') 
                ylabel('Channel') 
                zlabel('DP [Pa]') 
                title(heating_case) 
        end 
    end 
    function saveh_callback(hObject,~,~) 
        filename=get(hObject,'string'); 
    end 
    function saveb_callback(~,~,~) 
        evalin('base',['save(''', filename ''')']); 
    end 
end 
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Function 39. heattranscoeff.m 
 
function 
[h]=heattranscoeff(dims,matp,mesh,flow,T,Tf,Tsat,q_w,xe,fmald,ws) 
N=dims.N; 
Ny=mesh.Ny; 
Nz=mesh.Nz; 
dy=mesh.dy; 
xonb=zeros(N,1)+Ny+1; 
xsat=xonb; 
for i=1:N 
    for j=Ny:-1:1 
        if xe(i,j)>=0 
            xsat(i)=j; 
        elseif (sqrt(mean(T(mesh.id.num==i,j,Nz)))-
sqrt(Tsat(i,j)))>=sqrt(2*matp.sigma*q_w(i,j)/densityg(matp,Tf(i,j))/mat
p.h_fg/thermcond(matp,Tf(i,j))) 
            xonb(i)=j; 
        end 
    end 
end 
h=zeros(N,Ny); 
for i=1:N 
    for j=1:Ny 
        Ltf=dy*j; 
        if xe(i,j)>0 && xe(i,j)<1 
h(i,j)=twophaseh(dims,matp,flow,Tf(i,j),q_w(i,j),xe(i,j),fmald(i),ws,Lt
f); 
        elseif xe(i,j)<=0 
            if j<xonb(i) 
h(i,j)=singlephaseh(dims,matp,flow,Tf(i,j),fmald(i),ws(i,:),Ltf); 
            else 
h1=singlephaseh(dims,matp,flow,Tf(i,j),fmald(i),ws(i,:),Ltf); 
h2=twophaseh(dims,matp,flow,Tf(i,j),q_w(i,j),xe(i,j),fmald(i),ws,Ltf); 
                xstar=(j-xonb(i))/(xsat(i)-xonb(i)); 
                h(i,j)=(1-xstar)*h1+xstar*h2; 
            end 
        else 
h(i,j)=vaporphaseh(dims,matp,flow,Tf(i,j),fmald(i),ws(i,:),Ltf); 
        end 
    end 
end 
assignin('base','xonb',xonb); 
assignin('base','xsat',xsat); 
end 
function rho=densityg(matp,Tf) 
rho=matp.rho_ga*Tf^3+matp.rho_gb*Tf^2+matp.rho_gc*Tf+matp.rho_gd; 
end 
function k=thermcond(matp,Tf) 
k=matp.kfa-matp.kfb*Tf; 
end 
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Function 40. inputs.m 
 
function [dims,matp,flow,getdata,filename]=inputs() 
[out]=gui_input2; 
dims=out.dims; 
flow=out.flow; 
flow.heating_case=out.heating_case; 
power=out.power; 
Phi=out.Phi; 
flow.Phi=Phi; 
getdata=out.getdata; 
filename=out.filename; 
heaters=out.heaters; 
if getdata 
    matp=0; 
    return 
end 
dims.w_ef=(dims.W-dims.N*dims.w-(dims.N-1)*dims.w_f)/2; 
switch out.heatsink 
    case 'Silicon' 
        matp.k_Si=140; 
    case 'Copper' 
        matp.k_Si=388; 
end 
switch out.fluid 
    case 'FC-77' 
        matp.h_fg=89000; 
        matp.c_pfa=1014; %cpf=1014+1.554*T[C] 
        matp.c_pfb=1.554; 
        matp.c_pga=0.0019; %cpg=0.0019*T[K]+0.3031 
        matp.c_pgb=0.822085; 
        matp.sigma=0.013; %at STP, sigma=0.0062 used by Tannaz 
        matp.rho_fa=1838; %rhof=1838-2.45*T[C] 
        matp.rho_fb=-2.45; 
        matp.rho_ga=2.9064e-5; %15.84 used by Tannaz, rhog=2.9064e-
5*T[C]^3-2.9053e-3*T[C]^2+0.17218*T[C]-2.6758 
        matp.rho_gb=-2.9053e-3; 
        matp.rho_gc=0.17218; 
        matp.rho_gd=-2.6758; 
        matp.mu_f=0.0004655; %0.00052 used by Tannaz, muf=0.0013 at STP 
        %at 95C nuf=0.29 cSt, rhof=1605.25 kg/m3 => muf=0.0004655 
        matp.mu_g=0.00002; %mug[cP]=2.953e-9*T[C]^3-1.045e-
6*T[C]^2+1.528e-4*T[C]+3.76e-3 
        matp.kfa=0.065; %kf=a-bT, kf=0.065-0.00008*T[C] 
        matp.kfb=0.00008; 
        matp.k_ga=0.0000569; %kg=(0.0569*T[C]+5.4799)/1000 
        matp.k_gb=0.0054799; 
        matp.p_c=1.58e6; 
        matp.M=416; 
        matp.Tsat=97; 
        matp.Tsata=1928; 
        matp.Tsatb=10.216; 
        matp.Tsatc=1; 
    case 'HFE 7100' 
        matp.h_fg=112000; 
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        matp.c_pf=1233; %at 50 C, 1183 at 25 C 
        matp.c_pg=898.682; 
        matp.sigma=.0136; 
        matp.rho_f=1429; %at 55 C, 1510 at 25 C 
        matp.rho_g=9.87; 
        matp.mu_f=0.00039; %at 55 C, 0.00058 at 25 C 
        matp.mu_g=0.00001113; 
        matp.kfa=0.073714; %kf=a-bT 
        matp.kfb=0.00019548; 
        matp.k_g=0.01586; 
        matp.p_c=2.23e6; 
        matp.M=250; 
        matp.Tsat=61; 
        matp.Tsata=3641.9; 
        matp.Tsatb=22.415; 
        matp.Tsatc=1/log10(e); 
end 
matp.e_rb=0.82; 
matp.e_rs=0.1; 
Q_in=zeros(5,5); 
switch out.heating_case 
    case 'Case 1a' 
        Q_in(:,3)=power/5/dims.L/dims.W*25; 
    case 'Case 1b' 
        Q_in(3,:)=power/5/dims.L/dims.W*25; 
    case 'Case 1c' 
        Q_in(:,1)=power/5/dims.L/dims.W*25; 
    case 'Case 1d' 
        Q_in(:,1)=power/10/dims.L/dims.W*25; 
        Q_in(:,5)=power/10/dims.L/dims.W*25; 
    case 'Case 2a' 
        Q_in(:,:)=power*(1-Phi)*4/100/dims.L/dims.W*25; 
        Q_in(:,3)=power*(1/5+4/5*Phi)/5/dims.L/dims.W*25; 
    case 'Case 2b' 
        Q_in(:,:)=power*(1-Phi)*4/100/dims.L/dims.W*25; 
        Q_in(3,:)=power*(1/5+4/5*Phi)/5/dims.L/dims.W*25; 
    case 'custom' 
        Nh=sum(sum(heaters)); 
        Q_in(heaters==0)=power*(1-Phi)/dims.L/dims.W; 
        Q_in(heaters==1)=power*(Phi*(25-Nh)+Nh)/dims.L/dims.W/Nh; 
end 
flow.Q_in=Q_in; 
end 
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Function 41. pressuredrop.m 
 
function [DP,DPsp,DPtp]=pressuredrop(dims,matp,mesh,flow,xe,Tf) 
N=dims.N; 
Ny=mesh.Ny; 
dy=mesh.dy; 
DP=zeros(N,Ny); 
DPsp=DP; 
DPtp=DP; 
for i=1:N 
    for j=1:Ny 
        if xe(i,j)>0 && xe(i,j)<1 
            %two phase 
            Ltf=j*dy; 
            mutp=xe(i,j)*matp.mu_g+(1-xe(i,j))*matp.mu_f; 
            rhotp=1/((1-
xe(i,j))/density(matp,Tf(i,j))+xe(i,j)/densityg(matp,Tf(i,j))); 
            DPtp=singlephasedp(dims,mutp,rhotp,mesh,flow,Ltf); 
        else 
            %single phase 
            Ltf=j*dy; 
            mu=matp.mu_f; 
            rho=density(matp,Tf(i,j)); 
            DPsp(i,j)=singlephasedp(dims,mu,rho,mesh,flow,Ltf); 
        end 
    end 
end 
DP=DPsp+DPtp; 
end 
function rho=density(matp,Tf) 
rho=matp.rho_fa+matp.rho_fb*Tf; 
end 
function rhog=densityg(matp,Tf) 
rhog=matp.rho_ga*Tf^3+matp.rho_gb*Tf^2+matp.rho_gc*Tf+matp.rho_gd; 
end 
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Function 42. singlephasedp.m 
 
function DPsp=singlephasedp(dims,mu,rho,mesh,flow,Ltf) 
Dh=4*dims.d*dims.w/(2*dims.d+dims.w); 
AR=min(dims.d/dims.w,dims.w/dims.d);    %always greater than 1 
sqA=sqrt((AR+1)^2*Dh^2/(4*AR)); 
G=flow.m_dot*rho/dims.N/60/1e6/dims.w/dims.d; 
Resq=abs(G*sqA/mu); 
Re=abs(G*Dh/mu); 
if Re<=2300 
    zcross=Ltf/sqA/Resq; 
    fre=((3.44/sqrt(zcross))^2+(12/(sqrt(AR)*(1+AR)*(1-
192*AR/pi^5*tanh(pi/(2*AR)))))^2)^(1/2); 
    f=4*fre/Resq; 
    ftot=1/2*f*mesh.dy/Dh/rho; 
elseif Re>4000 
    f=((0.79*log(Re)-1.64)^(-2))*(1+4/5*(Dh/Ltf)^(3/4)); 
    ftot=1/2*f*mesh.dy/Dh/rho; 
else 
    zcp=Ltf/(sqA*2300/2*(AR+1)/sqrt(AR)); 
    frep=((3.44/sqrt(zcp))^2+(12/(sqrt(AR)*(1+AR)*(1-
192*AR/pi^5*tanh(pi/(2*AR)))))^2)^(1/2); 
    frp=4*frep/(2300/2*(AR+1)/sqrt(AR)); 
    Afac=Ltf/(sqA/2*(AR+1)/sqrt(AR)); 
    Cfac=(12/(sqrt(AR)*(1+AR)*(1-192*AR/pi^5*tanh(pi/(2*AR)))))^2; 
    Efac=8/((AR+1)/sqrt(AR)); 
    dfr=-
Efac*(2*Afac*Cfac+3.44^2*2300)/(2*Afac*2300^2*sqrt(3.44^2*2300/Afac+Cfa
c)); 
    Ret=4000+1i*1e-20; 
    ff=((0.79*log(Ret)-1.64)^(-2))*(1+4/5*(Dh/Ltf)^(3/4)); 
    ft=real(ff); 
    dft=imag(ff)/1e-20; 
    fft=spline([2300,4000],[dfr,frp,ft,dft]); 
    f=ppval(fft,Re); 
    ftot=1/2*f/rho*mesh.dy/Dh; 
end 
DPsp=ftot*abs(G)*G; 
end 
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Function 43. singlephaseh.m 
 
function [h]=singlephaseh(dims,matp,flow,Tf,fmald,~,Ltf) 
Dh=4*dims.d*dims.w/(2*dims.d+dims.w); 
AR=max(dims.d/dims.w,dims.w/dims.d); 
G=flow.m_dot*fmald*density(matp,Tf)/dims.N/60/1e6/dims.w/dims.d; 
ReD=abs(G*Dh/matp.mu_f); 
Pr=matp.mu_f*specheat(matp,Tf)/thermcond(matp,Tf); 
zstar=Ltf/ReD/Dh/Pr; 
RHS=-1.275e-6*AR^6+4.709e-5*AR^5-6.902e-4*AR^4+5.014e-3*AR^3-
0.01769*AR^2+0.01845*AR+0.05691; 
if zstar<RHS 
    h=(1.766*(ReD*Pr*Dh/Ltf)^0.378*AR^0.1224)*thermcond(matp,Tf)/Dh; 
else 
    h=thermcond(matp,Tf)/Dh*8.235*(1-2.0421/AR+3.0853/AR^2-
2.4765/AR^3+1.0578/AR^4-0.1861/AR^5); 
end 
end 
function rho=density(matp,Tf) 
rho=matp.rho_fa+matp.rho_fb*Tf; 
end 
function cp=specheat(matp,Tf) 
cp=matp.c_pfa+matp.c_pfb*Tf; 
end 
function k=thermcond(matp,Tf) 
k=matp.kfa-matp.kfb*Tf; 
end 
 

Function 44. tdma.m 
 
function [phi] = tdma(a,b,c,d) 
N=length(a);    %number of grid points 
P=zeros(1,N); 
Q=zeros(1,N); 
P(1)=b(1)/a(1); 
Q(1)=d(1)/a(1); 
for i=2:N 
    P(i)=b(i)/(a(i)-c(i)*P(i-1)); 
    Q(i)=(d(i)+c(i)*Q(i-1))/(a(i)-c(i)*P(i-1)); 
end 
phi(N)=Q(N); 
for i=N-1:-1:1 
    phi(i)=P(i)*phi(i+1)+Q(i); 
end 
end 
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Function 45. tdmaline.m 
 
function [phi] = tdmaline(a,b,c,d,e,f,g) 
N=size(a);      %number of grid points 
                %N(1) is number of rows 
                %N(2) is number of columns 
    for i=1:N(1)        %rows first 
        a1=a(i,:); 
        b1=b(i,:); 
        c1=c(i,:); 
        if i==1 
            d1=f(i,:)+d(i,:).*g(i+1,:); 
        elseif i==N(1) 
            d1=f(i,:)+e(i,:).*g(i-1,:); 
        else 
            d1=f(i,:)+d(i,:).*g(i+1,:)+e(i,:).*g(i-1,:); 
        end 
        g(i,:)=tdma(a1,b1,c1,d1);   %pass to tdma solver 
    end 
    for j=1:N(2)        %columns second 
        a1=a(:,j); 
        b1=d(:,j); 
        c1=e(:,j); 
        if j==1 
            d1=f(:,j)+b(:,j).*g(:,j+1); 
        elseif j==N(2) 
            d1=f(:,j)+c(:,j).*g(:,j-1); 
        else 
            d1=f(:,j)+b(:,j).*g(:,j+1)+c(:,j).*g(:,j-1); 
        end 
        g(:,j)=tdma(a1,b1,c1,d1);   %pass to tdma solver 
    end 
    for i=N(1):-1:1     %backward rows third 
        a1=a(i,:); 
        b1=b(i,:); 
        c1=c(i,:); 
        if i==1 
            d1=f(i,:)+d(i,:).*g(i+1,:); 
        elseif i==N(1) 
            d1=f(i,:)+e(i,:).*g(i-1,:); 
        else 
            d1=f(i,:)+d(i,:).*g(i+1,:)+e(i,:).*g(i-1,:); 
        end 
        g(i,:)=tdma(a1,b1,c1,d1);   %pass to tdma solver 
    end 
    for j=N(2):-1:1     %backward columns fourth 
        a1=a(:,j); 
        b1=d(:,j); 
        c1=e(:,j); 
        if j==1 
            d1=f(:,j)+b(:,j).*g(:,j+1); 
        elseif j==N(2) 
            d1=f(:,j)+c(:,j).*g(:,j-1); 
        else 
            d1=f(:,j)+b(:,j).*g(:,j+1)+c(:,j).*g(:,j-1); 
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        end 
        g(:,j)=tdma(a1,b1,c1,d1);   %pass to tdma solver 
    end 
phi=g; 
end 
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Function 46. twophaseh.m 
 
function [h]=twophaseh(dims,matp,flow,Tf,q_w,xe,fmald,~,Ltf) 
Dh=4*dims.d*dims.w/(2*dims.d+dims.w); 
G=flow.m_dot*fmald*density(matp,Tf)/dims.N/60/1e6/dims.w/dims.d; 
ReD=abs(G*Dh/matp.mu_f); 
Pr=matp.mu_f*specheat(matp,Tf)/thermcond(matp,Tf); 
hcl=(3.66+(0.0668*Dh/Ltf*ReD*Pr)/(1+0.04*(Dh/Ltf*ReD*Pr)^(2/3)))*thermc
ond(matp,Tf)/Dh; 
Gv=flow.m_dot*fmald*densityg(matp,Tf)/dims.N/60/1e6/dims.w/dims.d; 
ReDv=abs(Gv*Dh/matp.mu_g); 
Prv=matp.mu_g*specheatg(matp,Tf)/thermcondg(matp,Tf); 
hcv=(3.66+(0.0668*Dh/Ltf*ReDv*Prv)/(1+0.04*(Dh/Ltf*ReDv*Prv)^(2/3)))*th
ermcondg(matp,Tf)/Dh; 
Co=(matp.sigma/(9.81*(density(matp,Tf)-densityg(matp,Tf))*Dh^2))^(1/2); 
Pred=flow.P_in/matp.p_c; 
hnb=55*Pred^(0.12-0.2*log(matp.e_rb)/log(10))*(-log(Pred)/log(10))^(-
0.55)*matp.M^(-0.5)*abs(q_w)^0.67; 
hconv=hcl*(1-xe)+hcv*xe; 
h=hnb*(1-xe)+hconv*(1+80*(xe^2-xe^6)*exp(-0.6*Co)); 
end 
function rho=density(matp,Tf) 
rho=matp.rho_fa+matp.rho_fb*Tf; 
end 
function cp=specheat(matp,Tf) 
cp=matp.c_pfa+matp.c_pfb*Tf; 
end 
function k=thermcond(matp,Tf) 
k=matp.kfa-matp.kfb*Tf; 
end 
function rhog=densityg(matp,Tf) 
rhog=matp.rho_ga*Tf^3+matp.rho_gb*Tf^2+matp.rho_gc*Tf+matp.rho_gd; 
end 
function cp=specheatg(matp,Tf) 
cp=matp.c_pga*Tf+matp.c_pgb; 
end 
function k=thermcondg(matp,Tf) 
k=matp.k_ga*Tf+matp.k_gb; 
end 
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Function 47. vaporphaseh.m 
 
function [h]=vaporphaseh(dims,matp,flow,Tf,fmald,~,Ltf) 
Dh=4*dims.d*dims.w/(2*dims.d+dims.w); 
AR=max(dims.d/dims.w,dims.w/dims.d);  
G=flow.m_dot*fmald*densityg(matp,Tf)/dims.N/60/1e6/dims.w/dims.d; 
ReD=abs(G*Dh/matp.mu_g); 
Pr=matp.mu_g*specheatg(matp,Tf)/thermcondg(matp,Tf); 
zstar=Ltf/ReD/Dh/Pr; 
RHS=-1.275e-6*AR^6+4.709e-5*AR^5-6.902e-4*AR^4+5.014e-3*AR^3-
0.01769*AR^2+0.01845*AR+0.05691; 
if zstar<RHS 
    h=(1.766*(ReD*Pr*Dh/Ltf)^0.378*AR^0.1224)*thermcondg(matp,Tf)/Dh; 
else 
    h=thermcondg(matp,Tf)/Dh*8.235*(1-2.0421/AR+3.0853/AR^2-
2.4765/AR^3+1.0578/AR^4-0.1861/AR^5); 
end 
end 
function rho=densityg(matp,Tf) 
rho=matp.rho_ga*Tf^3+matp.rho_gb*Tf^2+matp.rho_gc*Tf+matp.rho_gd; 
end 
function cp=specheatg(matp,Tf) 
cp=matp.c_pga*Tf+matp.c_pgb; 
end 
function k=thermcondg(matp,Tf) 
k=matp.k_ga*Tf+matp.k_gb; 
end 
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Appendix H List of Experimental Facility Equipment 

This section contains a list of equipment used in the experimental facilities 

described in this thesis. Table H.1 contains the equipment used in the impedance-based 

void fraction sensor facility. Table H.2 contains the equipment used in the non-uniform 

heating facility. 

 

Table H.1. Equipment used in the impedance-based void fraction sensor facility. 

Part Name Vendor / 
Manufacturer Part Number Description 

Microchannel test 
section 

ME Research 
Machine Shop Custom Crosswise electrode 

configuration 

Microchannel test 
section 

Thermophysical 
Properties Research 

Laboratory, Inc. 
Custom 

Streamwise 
electrode 

configuration 

Deionized Water 
Birck 

Nanotechnology 
Center 

- Liquid 

Morpholine Sigma-Aldrich CAS 1132-61-2 Chemical added to 
liquid 

Ammonium 
hydroxide 

Mallinckrodt 
Chemicals CAS 1336-21-6 Chemical added to 

liquid 
Water pump Micropump 415A 500-6000 rpm 

Micro-turbine flow 
meter McMillan Flo-106 10-100 mL/min 

Micro-turbine flow 
meter McMillan Flo-106 20-200 mL/min 

Air cylinder Purdue University 
Stores - Gas 

Mass flow sensor Omega FMA6704 0-100 mL/min 
Mass flow sensor Omega FMA6705 0-200 mL/min 
Mass flow sensor Omega FMA6706 0-500 mL/min 

Pressure transmitter WIKA 8642885 0-10 psig 

Thermocouple Omega T type, sheathed Temperature 
measurement 

Impedance-based 
void fraction sensor 

ME Electronics 
Shop Custom 

Electrical 
impedance 

measurement 
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Table H.1. Continued. 

Part Name Vendor / 
Manufacturer Part Number Description 

High-speed camera Photron Fastcam Ultima 
APX 

1024 × 1024 pixel 
CMOS sensor, 2000 
fps at full resolution 

Lens Keyence VH-Z50L 50-500 X 
Light source Henke-Sass Wolf  Light source 
Light source Cole Parmer 41720 Light source 
Light source Luminar Ace LA-150UE Light source 

Camera mount Velmex, Inc. A6009C-S6-TL-BK Translation stage 
Camera mount Velmex, Inc. A6012C-S6-TL-BK Translation stage 
Camera mount Velmex, Inc. B6012C-S6-TL-BK Translation stage 

Data acquisition 
system 

National 
Instruments USB-6225 Acquisition system 

 

Table H.2. Equipment used in the non-uniform heating facility. 

Part Name Vendor / 
Manufacturer Part Number Description 

Microchannel heat 
sink 

Delphi Electronics 
and Safety Custom Heat sinks 

Cover plate 
Thermophysical 

Properties Research 
Laboratory, Inc. 

Custom Microchannel cover 
plate 

Pyrex sheet  - Microchannel cover 
plate 

FC-77 3M - Liquid 
Liquid pump Micropump 415A 500-6000 rpm 

Preheater Omegalux AHPF Inline heater 

Heat exchanger Comair Rotron PT2B3 Liquid to air heat 
exchanger 

Expandable 
reservoir Made in house Custom Fluid reservoir 

Vacuum pump Thomas 2688VE44 B Vacuum pump 
Micro-turbine flow 

meter McMillan Flo-114 20-200 mL/min 

Thermocouple Omega T type, sheathed Temperature 
measurement 

Pressure transducer Gems Sensors 2200 series 0-30 psia 
Differential pressure 

transducer Omega PX2300 series +/- 10 psid 
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Table H.2. Continued. 

Part Name Vendor / 
Manufacturer Part Number Description 

High-speed camera Photron Fastcam PCI 1024 
1024 × 1024 pixel 

CMOS sensor, 1000 
fps at full resolution 

Lens Keyence VH-Z50L 50-500 X 
Lens Nikon AF Micro-Nikkor 200 mm IF ED lens 

Light source Cole Parmer 41720 Light source 
Camera mount Velmex, Inc. A6009C-S6-TL-BK Translation stage 
Camera mount Velmex, Inc. A6012C-S6-TL-BK Translation stage 
Camera mount Velmex, Inc. B6012C-S6-TL-BK Translation stage 
Power supply Sorensen DCS33-33E 0-33 V, 0-33 A 
Power supply Sorensen DCS20-50E 0-20 V, 0-50 A 
Power supply Sorensen DCS40-25E 0-40 V, 0-25 A 

Data acquisition 
system Agilent 34970A Acquisition system 
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