
Purdue University
Purdue e-Pubs

Open Access Dissertations Theses and Dissertations

Fall 2014

Non-intrusive two-phase flow regime identification
and transport characterization in microchannels
subject to uniform and non-uniform heat input
Susan N. Ritchey
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations

Part of the Mechanical Engineering Commons

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Recommended Citation
Ritchey, Susan N., "Non-intrusive two-phase flow regime identification and transport characterization in microchannels subject to
uniform and non-uniform heat input" (2014). Open Access Dissertations. 350.
https://docs.lib.purdue.edu/open_access_dissertations/350

https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F350&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F350&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/etd?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F350&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F350&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F350&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations/350?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F350&utm_medium=PDF&utm_campaign=PDFCoverPages

i

NON-INTRUSIVE TWO-PHASE FLOW REGIME IDENTIFICATION AND
TRANSPORT CHARACTERIZATION IN MICROCHANNELS SUBJECT TO

UNIFORM AND NON-UNIFORM HEAT INPUT

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Susan N. Ritchey

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

December 2014

Purdue University

West Lafayette, Indiana

ii

To my husband, who has always supported me in everything I do.

iii

ACKNOWLEDGEMENTS

 I would like to thank my advisor, Professor Suresh Garimella, for his support and

advice throughout my studies at Purdue University. I would also like to thank my

committee, Professors Jayathi Murthy, Jong Hyun Choi, and Shripad Revankar for their

guidance in this work.

 I would like to extend a special thank you to my labmates for their help and

feedback on my research. I would especially like to thank Professor Justin Weibel. His

help was greatly appreciated.

Finally, I would like to thank my husband, Philip Ritchey, my parents, Frank and

Susan Williams, and my sister, Christine Williams, for their continued support. I could

not have done this without them.

 Finanacial support for this work was provided by the Cooling Technologies

Research Center, a National Science Foundation Industry/University Cooperative

Research Center at Purdue University and by the Office of Naval Research (Grant No.

N000141010921).

iv

TABLE OF CONTENTS

Page

LIST OF TABLES ... viii

LIST OF FIGURES ... ix

NOMENCLATURE .. xvi

ABSTRACT .. xx

CHAPTER 1. INTRODUCTION ... 1

1.1 Background ..1

1.2 Objectives and Major Contributions ..3

1.3 Organization of the Document ...4

CHAPTER 2. LITERATURE REVIEW .. 6

2.1 Void Fraction Measurement ...6

2.2 Effects of Non-Uniform Base Heating on Microchannel Flow Boiling ..10

2.3 Effects of Non-Uniform Base Heating on the Critical Heat Flux13

CHAPTER 3. VOID FRACTION MEASUREMENT USING CROSSWISE
ELECTRODES .. 16

3.1 Experimental Method ...17

3.1.1 Test Section ..17

3.1.2 Impedance Void Fraction Meter ...18

3.2 Image Analysis and Data Reduction ..19

3.2.1 Flow Visualization and Image Processing ..19

3.2.2 Uncertainty Analysis ..21

3.3 Results and Discussion ...21

3.3.1 Calibration of the Impedance Void Fraction Meter22

3.3.2 Flow Regime Identification ..25

3.4 Conclusions ..27

v

Page

CHAPTER 4. NUMERICAL SIMULATIONS OF CROSSWISE ELECTRODE
EXPERIMENTS ... 45

4.1 Modeling and Simulation ...45

4.1.1 Image Processing ..45

4.1.2 Numerical Methods ..47

4.2 Results and Discussion ...50

4.2.1 2-Dimensional Simulations in Fluent ...50

4.2.2 3-Dimensional Simulations in Fluent ...51

4.2.3 3-Dimensional Simulations in MATLAB ..52

4.3 Conclusions ..54

CHAPTER 5. VOID FRACTION MEASUREMENT USING STREAMWISE
ELECTRODES .. 65

5.1 Experimental Methods ...65

5.1.1 Test Section ..65

5.1.2 Impedance Void Fraction Meter ...67

5.1.3 Image Analysis ...68

5.1.4 Procedure ..68

5.2 Results and Discussion ...68

5.2.1 Calibration of the Impedance Void Fraction Meter68

5.2.2 Dependence on Water Electrical Conductivity70

5.3 Conclusions ..71

CHAPTER 6. EFFECTS OF NON-UNIFORM HEATING ON BOILING IN
MICROCHANNELS .. 78

6.1 Experimental Methods ...79

6.1.1 Test Section ..79

6.1.2 Flow Loop ...80

6.1.3 Test Procedure ..81

6.1.4 Test Cases ...82

6.2 Data Reduction ...83

6.2.1 Uncertainty Analysis ..86

6.3 Results and Discussion ...86

vi

 Page

6.3.1 Case 1: Hotspot Heating ...87

6.3.1.1 Case 1a (Central Transverse Hotspot) ... 87

6.3.1.2 Case 1b (Central Streamwise Hotspot) .. 89

6.3.1.3 Case 1c (Inlet Transverse Hotspot) ... 91
6.3.2 Case 2: Non-Uniform Peak Heating ...92

6.3.2.1 Case 2a (Non-Uniform Transverse Peak) .. 92

6.3.2.2 Case 2b (Non-Uniform Streamwise Peak) .. 95

6.4 Conclusions ..97

CHAPTER 7. COMPUTATIONAL MODEL TO PREDICT NON-UNIFORM
HEATING RESULTS .. 119

7.1 Modeling and Simulation ...119

7.1.1 Numerical Methods ..120

7.1.2 Heat Transfer Correlations ...122

7.1.3 Flow Maldistribution ..124

7.2 Results and Discussion ...126

7.3 Conclusions ..127

CHAPTER 8. EFFECTS OF NON-UNIFORM HEATING ON THE CRITICAL
HEAT FLUX .. 135

8.1 Experimental Methods ...136

8.1.1 Test Section ..136

8.1.2 Flow Loop ...137

8.1.3 Test Procedure ..138

8.1.4 Data Reduction ...140

8.1.5 Test Cases ...141

8.2 Results and Discussion ...142

8.3 Design Principles ...147

8.4 Conclusions ..147

CHAPTER 9. CONCLUSIONS AND RECOMMENDATIONS 157

9.1 Conclusions ..157

9.2 Suggestions for Future Work ...159

LIST OF REFERENCES .. 161

vii

 Page

APPENDICES

Appendix A MATLAB Script for Image Processing ...170

Appendix B MATLAB Script for Numerical Simulation of Electrical Impedance ...197

Appendix C MATLAB Script for Non-Uniform Data Analysis220

Appendix D Non-Uniform Heating Plots ...226

Appendix E Non-Uniform Heating in a Copper Heat Sink235

Appendix F Critical Heat Flux Plots ..249

Appendix G MATLAB Script of the Microchannel Heat Sink Computational

Model ..255

Appendix H List of Experimental Facility Equipment ...294

VITA .. 297

PUBLICATIONS .. 298

viii

LIST OF TABLES

Table .. Page

Table 3.1. Measurement uncertainties as a percentage of measured value. 29

Table 6.1. Summary of results for the hotspot heating cases.. 100

Table 6.2. Summary of results for the peak heating cases. ... 101

Table 8.1. Summary of results for all test cases. .. 150

Table A.1. A list of all of the functions of the image analysis script.............................. 170

Table B.1. A list of all of the functions for numerical simulations. 197

Table G.1. A list of all of the functions for the computational model. 255

Table H.1. Equipment used in the impedance-based void fraction sensor facility. 294

Table H.2. Equipment used in the non-uniform heating facility. 295

ix

LIST OF FIGURES

Figure ... Page

Figure 3.1. Impedance meter test cell. (a) Top view of the test cell. (b) Base plate with
flow channel and electrodes. ... 30

Figure 3.2. Air-water two-phase flow loop. .. 31

Figure 3.3. Impedance meter circuit. (a) Signal processing scheme. (b) Basic electronic
circuit. ... 32

Figure 3.4. Image processing steps. (a) Original image, top view. (b) Rotated and
cropped image for interrogation window. (c) Background subtracted and
threshold adjusted image. (d) Edge detection. (e) Interior boundaries removed.
(f) Edges after finding the convex hull, superimposed on the original image. 33

Figure 3.5. Test matrix. ... 34

Figure 3.6. Flow visualization and void fraction measured by image processing. Flow
direction is from left to right. (a) Bubbly, = 0.29 m/s, = 0.83 m/s, =
0.20. (b) Cap bubbly, = 0.56 m/s, = 0.83 m/s, = 0.37. (c) Slug, =
1.39 m/s, = 0.83 m/s, = 0.58. (d) Churn-turbulent, = 2.26 m/s, =
4.08 m/s, = 0.36. (e) Long slug, = 2.65 m/s, = 0.82 m/s, = 0.65. .. 35

Figure 3.7. Impedance meter calibration. ... 36

Figure 3.8. Comparison of the measured void fraction with the homogeneous
equilibrium and drift-flux models. .. 37

Figure 3.9. Contours of the void fraction. ... 38

Figure 3.10. Impedance meter signal and its PDF for bubbly flow, = 0.29 m/s, =
0.83 m/s, = 0.20. .. 39

Figure 3.11. Impedance meter signal and its PDF for cap-bubbly flow, = 0.56 m/s,
 = 0.83 m/s, = 0.37. ... 40

x

Figure Page

Figure 3.12. Impedance meter signal and its PDF for slug flow, = 1.39 m/s, =
0.83 m/s, = 0.58. .. 41

Figure 3.13. Impedance meter signal and its PDF for churn-turbulent flow, =
2.26 m/s, = 4.08 m/s, = 0.36. ... 42

Figure 3.14. Impedance meter signal and its PDF for long slug flow, = 2.65 m/s,
 = 0.82 m/s, = 0.65. ... 43

Figure 3.15. Flow regime map obtained using the impedance void fraction meter
signals. : Bubbly, : Cap bubbly, ◊: Slug, : Churn-turbulent, : Long
slug, Level lines: Void fraction contours. ... 44

Figure 4.1. Using image processing to create 3-dimensional domains of real bubbles. ... 56

Figure 4.2. Cross sectional channel geometry with circular (left), square (middle), and
four circular (right) air voids... 57

Figure 4.3. The results of the 2-dimensional simulations using Fluent. 58

Figure 4.4. The magnitude of the impedance as a function of the void fraction for the
3-dimensional simulations using Fluent. .. 59

Figure 4.5. The void fraction plotted with the normalized impedance data for the 3-
dimensional simulations using Fluent. .. 60

Figure 4.6. Constant potential lines superposed on an image of a slug bubble used in a
simulation. The void fraction for this video is 0.33 and the simulated
impedance is 0.41.. 61

Figure 4.7. The instantaneous void fraction plotted with the normalized impedance
data for the 3-dimensional simulations using MATLAB. 62

Figure 4.8. The time-averaged void fraction plotted with the normalized impedance
data for the 3-dimensional simulations using MATLAB. 63

Figure 4.9. The time-averaged simulated impedance plotted with the measured
impedance from experiments. The mean average error is 7.6%. 64

Figure 5.1. Impedance meter test cell. (a) Top view of the test cell. (b) Top plate with
electrodes. The blue dashed lines indicate where the channel is located. 73

xi

Figure Page

Figure 5.2. Void fraction from image analysis plotted against the air volumetric flow
fraction for a variety of flow rates. The legend shows the water volumetric
flow rate in mL/min, the spacing of the electrodes (1CW means one channel
width), and the electrical conductivity of the water in S/cm, respectively. 74

Figure 5.3. Void fraction from image analysis plotted against the normalized
impedance void fraction meter output for a variety of water conductivities.
The legend shows the water volumetric flow rate in mL/min, the spacing of
the electrodes (1CW means one channel width), and the electrical conductivity
of the water in S/cm. ... 75

Figure 5.4. The sensitivity of the impedance void fraction meter as a function of the
water electrical conductivity. .. 76

Figure 5.5. The void fraction from image analysis plotted against the adjusted
normalized impedance void fraction meter output for a variety of water
conductivities. The legend shows the water volumetric flow rate in mL/min,
the spacing of the electrodes (1CW means one channel width), and the
electrical conductivity of the water in S/cm. .. 77

Figure 6.1. Image of the microchannel test section. ... 102

Figure 6.2. Images of the 5 × 5 array of heater elements and a schematic diagram of
the microchannel heat sink.. 103

Figure 6.3. Schematic diagram of the experimental setup showing the flow loop
components and high-speed visualization optics. ... 104

Figure 6.4. (a) Hotspot, and (b) non-uniform peak-heating profile configurations
investigated. .. 105

Figure 6.5. (a) Local heat flux transferred to the fluid, and (b) wall temperature along
the flow length at increasing power input levels for a central transverse
hotspot. The local quantities are presented for the central streamwise
elements, as indicated by the dark black rectangle in the heater power
diagram. .. 106

Figure 6.6. Heat flux transferred to the fluid plotted against the wall excess
temperature for sensors 3, 13, and 23 for a central transverse hotspot. 107

Figure 6.7. (a)Local heat flux transferred to the fluid, and (b) wall temperature over
the width of the chip for increasing power levels for a central streamwise
hotspot. The local quantities are presented for the transverse elements, as
indicated by the black line on the heater power diagram. 108

xii

Figure Page

Figure 6.8. Heat flux transferred to the fluid plotted against the wall excess
temperature for sensors 3, 13, and 23 for a central streamwise hotspot. 109

Figure 6.9. (a) Local heat flux transferred to the fluid, and (b) wall temperature over
the length of the chip for increasing power input levels for an inlet transverse
hotspot. The local quantities are presented for the streamwise elements, as
indicated by the black line on the heater power diagram. 110

Figure 6.10. Heat flux transferred to the fluid plotted against the wall excess
temperature for sensors 3, 13, and 23 for an inlet transverse hotspot. 111

Figure 6.11. (a) Local heat flux transferred to the fluid, (b) wall temperature, and (c)
heat transfer coefficient over the flow length at increasing degrees of
nonuniformity between the heat flux at the peak and the background heater
locations for Case 2a. .. 112

Figure 6.12. The heat transfer coefficient as a function of excess wall temperature
for sensors 3, 13, and 23 for Case 2a. ... 113

Figure 6.13. Images at increasing values for a central transverse peak extracted
from high-speed video. Red lines indicate the locations of the peak heated
sensors. .. 114

Figure 6.14. The local heat flux transferred to the fluid over the width of the chip at
increasing degrees of nonuniformity between the heat flux at the peak and
background heater location for Case 2b.. 115

Figure 6.15. (a) Local wall temperature, and (b) heat transfer coefficient over the
flow length at increasing degrees of nonuniformity between the heat flux at
the peak and background heater locations for Case 2b. 116

Figure 6.16. The heat transfer coefficient plotted against the wall excess temperature
for sensors 3, 13, and 23 for Case 2b. ... 117

Figure 6.17. Images at increase values for a central streamwise peak extracted
from high-speed video. Red lines indicate the locations of the peak heated
sensors. .. 118

Figure 7.1. The algorithm used in the computational model. ... 129

Figure 7.2. The (a) input and (b) output GUIs of the computational model. 130

Figure 7.3. (a) Characteristic shapes detected to calculate the (b) bubble velocity in
each channel. ... 131

xiii

Figure Page

Figure 7.4. (a) The base temperature, (b) wall heat flux, and (c) heat transfer
coefficients for a uniform heating case with a power input of 33 W. 132

Figure 7.5. (a) The base temperature, (b) wall heat flux, and (c) heat transfer
coefficients for a central transverse hotspot with a power input of 33 W. 133

Figure 7.6. (a) The base temperature, (b) heat transfer coefficients, and (c) wall heat
flux for a central streamwise hotspot with a power input of 24.4 W with and
without flow maldistribution... 134

Figure 8.1. Schematic diagram of the flow loop; a photograph of the microchannel
test section is inset. ... 151

Figure 8.2. The microchannel heat sink and corresponding backside PCB traces
shown for (a) an undamaged test chip and (b) a test chip damaged after CHF.
Red lines indicate the location of the heat sink on the opposite side of the
PCB to scale. ... 152

Figure 8.3. Non-uniform heating profiles investigated in the current study. 153

Figure 8.4. Heat flux transferred to the fluid plotted against the wall excess
temperature for (a) a central transverse hotspot and (b) a central streamwise
hotspot. “X” indicates the location of CHF. ... 154

Figure 8.5. High-speed images recorded at 8000 frames per second for a central
transverse hotspot at CHF. Flow goes from left to right; the hotspot is
indicated by the red dashed lines. Vapor expands rapidly in the bottommost
channel (maximum upstream distance at = 50.5 ms) at CHF before the
heater power is cut off... 155

Figure 8.6. Wall excess temperature map for (a) inlet transverse, (b) central
transverse, and (c) outlet transverse hotspot heating cases at CHF. Heat flux
map for (d) inlet transverse, (e) central transverse, and (f) outlet transverse
hotspot heating cases at CHF. ... 156

Figure D.1. (a) Local heat flux transferred to the fluid, (b) fluid temperature along the
flow length, (c) wall temperature along the flow length, and (d) wall heat flux
plotted against the wall excess temperature at increasing power input levels
for a central transverse hotspot. .. 226

Figure D.2. (a) Local heat flux transferred to the fluid, (b) fluid temperature along
the flow length, (c) wall temperature along the flow length, and (d) wall heat
flux plotted against the wall excess temperature at increasing power input
levels for a central streamwise hotspot. .. 227

xiv

Appendix Figure Page

Figure D.3. (a) Local heat flux transferred to the fluid, (b) fluid temperature along
the flow length, (c) wall temperature along the flow length, and (d) wall heat
flux plotted against the wall excess temperature at increasing power input
levels for an inlet transverse hotspot. .. 228

Figure D.4. (a) Local heat flux transferred to the fluid, (b) fluid temperature along
the flow length, (c) wall temperature along the flow length, and (d) wall heat
flux plotted against the wall excess temperature at increasing power input
levels for a double transverse hotspot. .. 231

Figure D.5. Images at increasing power levels for dual transverse hotspots extracted
from high-speed video. Red lines indicate the locations of the heated sensors. . 232

Figure D.6. (a) Local heat flux transferred to the fluid, (b) fluid temperature along
the flow length, (c) wall temperature along the flow length, and (d) heat
transfer coefficient along the flow length at increasing degrees of
nonuniformity between the heat flux at the peak and the background heater
locations for Case 2a. .. 233

Figure D.7. (a) Local heat flux transferred to the fluid, (b) fluid temperature along
the flow length, (c) wall temperature along the flow length, and (d) heat
transfer coefficient along the flow length at increasing degrees of
nonuniformity between the heat flux at the peak and the background heater
locations for Case 2b. .. 234

Figure E.1. (a) The assembled test section, (b) the silicon thermal test chip, and (c)

the copper microchannel heat sink. ... 240

Figure E.2. A diagram of the microchannel heat sink in relation to the heater
locations on the thermal test chip. ... 241

Figure E.3. Calibration lines for each RTD in the thermal test chip. 242

Figure E.4. Calibration lines for each heater element in the thermal test chip. 243

Figure E.5. Calibration lines for the heat loss in the assembled test section. 244

Figure E.6. A diagram of the flow of heat through a cross section of the test section. .. 245

Figure E.7. (a) The local wall temperature, (b) heat transfer coefficient, and (c) heat
flux transferred to the fluid over the flow length for a uniform heating case. 246

Figure E.8. (a) The local wall temperature, (b) heat transfer coefficient, and (c) heat
flux transferred to the fluid over the flow length for a single hotspot case. 247

xv

Appendix Figure Page

Figure E.9. Image taken at 38.1 W for a single hotspot. The red dashed lines indicate
the location of the hotspot. .. 248

Figure F.1. Heat flux transferred to the fluid plotted against the wall excess

temperature for a uniform heating profile. “X” indicates the location of CHF. . 249

Figure F.2. Heat flux transferred to the fluid plotted against the wall excess
temperature for an inlet transverse hotspot. “X” indicates the location of CHF. 250

Figure F.3. Heat flux transferred to the fluid plotted against the wall excess
temperature for a central transverse hotspot. “X” indicates the location of
CHF. .. 251

Figure F.4. Heat flux transferred to the fluid plotted against the wall excess
temperature for an outlet transverse hotspot. “X” indicates the location of
CHF. .. 252

Figure F.5. Heat flux transferred to the fluid plotted against the wall excess
temperature for a central streamwise hotspot. “X” indicates the location of
CHF. .. 253

Figure F.6. Heat flux transferred to the fluid plotted against the wall excess
temperature for a dual transverse hotspot. “X” indicates the location of CHF. .. 254

xvi

NOMENCLATURE

 coefficient of the th, th, th point

 area, m2

 base area of the heat sink, m2

 wetted area of a fin, m2

 total wetted area of the microchannels, m2

 coefficient of the +1, th, th point

 coefficient of the -1, th, th point

 specific heat, J kg-1 K-1

 electrical capacitance, F; shape factor

 distribution parameter from the drift flux model

 Confinement number

 depth of the microchannel, m

 coefficient of the th, +1, th point

 charge flux, C m-2

 hydraulic diameter, m

 coefficient of the th, -1, th point

 mean square deviation

 coefficient of the th, th, +1 point

 coefficient of the th, th, -1 point

 mass flux, kg m-2 s-1; admittance, ohm-1

 heat transfer coefficient, W m2 K-1

 source term for the th, th, th point

 latent heat of vaporization, J kg-1

xvii

 volumetric flux or superficial velocity, m s-1

 current flux, C m-2 s-1

 relative permittivity or dielectric constant; thermal conductivity, W m-1 K-1

 total length and width of the microchannel heat sink, m

 variable in fin efficiency calculation, m-1

 mass flow rate, kg s-1

 number of elements; number of microchannels

 Prandtl number

 heat transfer rate, W

 heat flux, W m-2

 power input, W

 electrical resistance, ohm

 resistive impedance, the real part of the electrical impedance, ohm

 Reynolds number

 total thickness of the microchannel heat sink, m

 temperature, °C

 drift velocity, m s-1

 voltage, V

 width of the microchannel, m

 width of a fin, m

 vapor quality

 non-dimensional weighting factor

 reactive impedance, the imaginary part of the electrical impedance, ohm

 electrical impedance, ohm

 non-dimensional thermal entrance length

GREEK SYMBOLS

 x-dimension of the cell

 y-dimension of the cell

 z-dimension of the cell

xviii

 degree of nonuniformity

 void fraction; aspect ratio

 ratio of gas volumetric flux to total volumetric flux, homogeneous equilibrium

model void fraction

 permittivity of free space, F m-1

 fin efficiency

 overall surface efficiency

 electrical resistivity, ohm m; density, kg m-3

 surface tension, N m-1

 electric potential, V

 angular frequency, rad s-1

SUBSCRIPTS

 normalized

 fully developed

 liquid

 gas

 base; cell to the back

 calibration

 conduction

 convective

 diode

 effective

 exit

 liquid; the cell to the front

 flow boiling

 gas

 generated

 peak heater element region

 th point; heater element in the flow direction

xix

 from image analysis

 impedance meter

 inlet

 th point; heater element in the transverse direction

 th point

 cell to the left; liquid

 heat loss

 background heater element region

 mixture; cell to the bottom

 n-phase

 nucleate boiling

 net or total

 onset of nucleate boiling

 current cell

 cell to the right

 surface

 single-phase

 saturation

 silicon

 time averaged; cell to the top

 two-phase

 wall

 vapor

 volume averaged

xx

ABSTRACT

Ritchey, Susan N., Ph.D., Purdue University, December 2014. Non-Intrusive Two-Phase
Flow Regime Identification and Transport Characterization in Microchannels Subject to
Uniform and Non-Uniform Heat Input. Major Professor: Suresh V. Garimella, School of
Mechanical Engineering.

Direct integration of compact microchannel heat sinks is an attractive thermal

management solution for the dissipation of high heat fluxes, specifically under boiling

conditions that provide high rates of heat transfer at a uniform heat sink temperature.

Under two-phase flow conditions, the heat transfer and pressure drop are a function of the

local flow regime. Development of sensors that detect local void fraction and flow

regimes may enable better understanding of the fundamental flow phenomena.

The void fraction in air-water two-phase adiabatic flow in a microchannel is

measured in this work using a custom-designed impedance-based sensor with electrodes

on opposing walls of a single microchannel, a ‘crosswise’ geometry. The impedance

response of the sensor is calibrated against the time-averaged void fraction determined

via high-speed flow visualizations. The temporal signal is depicted as a probability

density function that is used for quantitative determination of two-phase flow regimes

using a Kohonen Self-Organizing Map.

To characterize the sensor impedance response, numerical simulations are

implemented in two- and three-dimensions. Electrical simulations of the crosswise

xxi

electrode geometry are performed to acquire both instantaneous and time-averaged

responses. For arbitrarily defined voids, the shape and distribution has no effect on the

simulated impedance; the relationship between the void fraction and impedance is found

to be non-linear. Time-averaged three-dimensional impedance simulations are in good

agreement with the experimental data.

A second set of experiments are performed using multiple electrodes placed along

the flow direction of a single microchannel wall, a ‘streamwise’ geometry. Multiple water

electrical conductivities are tested, and an optimal range between 100 and 175 S/cm is

found to provide maximum instrument sensitivity. The dependency of the impedance

output on water conductivity is characterized to fit all of the data to a single calibration

curve, independent of water conductivity.

One application where the determination of the local void fraction is important is

in the case of non-uniform heating in microchannels. An experimental investigation is

performed to explore flow boiling phenomena in a microchannel heat sink with hotspots,

as well as non-uniform streamwise and transverse heating conditions across the entire

heat sink. Local heat transfer coefficients and wall temperatures are measured while the

location of boiling incipience is observed via high-speed visualizations of the flow. It is

found that even though the substrate thickness beneath the microchannels is very small

(200 um), significant lateral conduction occurs and must be accounted for in the

calculation of the local heat flux imposed. For non-uniform heat input profiles, with peak

heat fluxes along the central streamwise and transverse directions, it is found that the

local flow regimes, heat transfer coefficients, and wall temperatures deviate significantly

from a uniformly heated case.

xxii

A simple computational model is developed to predict the thermal performance of

a microchannel heat sink with an imposed non-uniform heating profile. While the model

underpredicts the base temperatures and overpredicts the heat transfer coefficients, the

trends agree with experimental data. For the cases investigated with the model, flow non-

uniformities between the channels are estimated using image analysis of high-speed

videos taken during the experiments. It is observed that flow maldistribution must be

taken into account in the model for heating profiles that are prone to flow maldistribution

in order to improve the match to experimental data.

Another experimental investigation is performed to measure the critical heat flux

(CHF) in a microchannel heat sink with uniform heating and various hotspot heating

locations. It is found that a hotspot spanning the entire length of the heat sink in the flow

direction produces the lowest CHF of all the cases investigated due to the flow

maldistribution induced by boiling. A single hotspot spanning the heat sink perpendicular

to the flow direction produces different CHF values based on its streamwise location. The

visualizations reveal that CHF occurs when there is a sudden and unalleviated upstream

expansion of vapor in one or more channels above the hotspot, causing the local wall

temperature to rapidly increase. The proximity of the hotspot to the inlet manifold, which

communicates between all channels and can relieve upstream vapor expansion, appears to

determine the resiliency of the heat sink to CHF.

Non-uniform heating profiles often found in actual applications greatly affect the

thermal performance of microchannel heat sinks. Measuring the void fraction and

understanding how the location of hotspots affects local heat transfer allows for the

creation of a computational model to aid future heat sink designs.

1

CHAPTER 1. INTRODUCTION

1.1 Background

The development of high-power electronics systems for use in commercial,

automotive, and military applications has led to an increasing demand for more effective

and compact electronics cooling methods. The functionality of microelectronics is

increasing while the system packaging volume is decreasing, yielding higher densities of

heat generation. Novel methods are required for removing excess heat from these systems.

Microchannel heat sinks are an attractive solution due to their compact size and

effectiveness at removing high heat fluxes. Microchannel heat sinks can also be

integrated directly into semiconductor heat generation sources thus decreasing the overall

thermal packaging volume. Additionally, operating under flow boiling conditions allows

for higher heat transfer rates and a more uniform temperature profile.

In order to determine heat transfer rates and pressure drops under boiling

conditions in microchannels, void fraction and flow regime-dependent correlations are

required. Quantitative determination of the flow regime, and direct measurement of the

void fraction, will aid in understanding fundamental flow characteristics, and enable the

design of future heat sinks. Previously, Serizawa et al.[1] performed flow visualizations

to determine the void fraction and flow regimes in microchannels. A small electrical

impedance-based sensor has the ability to measure the temporal variations of the void

2

fraction and characterize the two-phase flow based on the inherent electrical property

differences between gas and liquid phases. Yang et al. [2] used electrical impedance void

meters to measure the void fraction in a rod bundle. Numerical simulations were

performed by Rosa et al. [3] to optimize the geometry of an impedance-based sensor in

pipes.

The effects of microchannel size, heat flux, and mass flux on the boiling regimes

in microchannels has been recently studied; however, correlations and performance

models are developed only for uniform heating conditions. Liu et al. [4] developed an

analytical model to predict the onset of nucleate boiling of water in copper microchannels.

Lee and Garimella [5] measured the pressure drop and heat transfer coefficient of water

boiling in silicon microchannels, while Bertsch et al. [6] measured the heat transfer

coefficient for refrigerants in copper microchannels. Both Revellin and Thome [7] and

Kosar [8] developed models to predict the critical heat flux in microchannels. Harirchian

and Garimella [9,10,11] performed an extensive experimental investigation of the effects

of heat flux, mass flux, and channel dimension on boiling heat transfer as well as

developed comprehensive flow regime maps. All of this work has been conducted using

uniform heating profiles. Thinner and more compact systems prevent the use of thick heat

spreading layers to mitigate heat generation non-uniformities at the die level. Thus, non-

uniform heat flux profiles are imposed directly on the heat sink base, and impact the two-

phase flow characteristics and thermal performance limits.

3

1.2 Objectives and Major Contributions

The main goals of this work are: (1) to develop a non-intrusive impedance-based

void fraction sensor to quantitatively determine the local flow regime in two-phase

microchannel flows, (2) to study the effects of non-uniform global substrate heating

profiles on two-phase flow through microchannels to better understand their operation

under realistic boundary conditions, and (3) to measure the change in the location and

quantitative value of the critical heat flux under non-uniform heating conditions.

Experiments are performed for air-water adiabatic two-phase flow in a single

microchannel using an impedance-based void fraction sensor to measure the electrical

characteristics of multiple flow regimes. High-speed videos are recorded and analyzed to

determine the actual void fraction for sensor calibration; a calibration equation is

developed between the electrical impedance of the flow and the void fraction. The

temporal impedance response of the sensor is processed via a neural network to

quantitatively determine the flow regime. Numerical simulations are also performed to

predict the response of the sensor using different electrode orientations, void fractions,

and void shapes.

Experiments are performed using FC-77 for hotspot as well as non-uniform peak

heating conditions imposed on a silicon microchannel heat sink to explore flow boiling

phenomena. High-speed videos are also recorded to observe instabilities not present in

uniform heating situations, while local wall temperatures and heat transfer coefficients

are measured. It is found that these parameters as well as local flow regimes deviate

significantly from uniform heating conditions, and the trends are assessed as a function of

4

the increase in the relative magnitude of the nonuniformity between peak and background

heat fluxes.

Experiments are performed using HFE-7100 for hotspot heating conditions

imposed on a silicon microchannel heat sink to explore the location and quantitative

values of the critical heat flux (CHF). The fluid was changed from FC-77 to HFE-7100 in

order to reach CHF without exceeding the operational temperature limit of the test chip.

High-speed videos are recorded to observe the locations of the critical heat flux

simultaneously with measurement of local wall temperatures and heat transfer

coefficients. It is found that both the configuration and location of the hotspot

significantly affects both the location and magnitude of the critical heat flux.

A simple computational model was developed to predict the behavior of a

microchannel heat sink under any non-uniform heating profile. The model contains a

three-dimensional conduction analysis in the base of the heat sink, a fin analysis, and

employs correlations for the heat transfer coefficient in the microchannels based on the

fluid phase. The flow maldistribution was estimated from high-speed videos and

incorporated into the model to enable comparison against experimental data.

1.3 Organization of the Document

Chapter 1 described the background information on two-phase flow in

microchannels and presented the objectives and major contributions of the current work.

Chapter 2 provides a comprehensive literature review. Reviewed topics include flow

regime identification and void fraction measurements in microchannel heat sinks, void

fraction measurement methods and numerical simulations of impedance-based sensors,

5

and experimental investigations of non-uniform heating conditions in macroscale and

microscale flow boiling. Chapter 3 describes the experimental setup for measuring void

fraction using crosswise electrodes and presents the results of the experiments. Chapter 4

describes a numerical simulation performed to predict the response of an impedance-

based void fraction meter using crosswise electrodes. The results are presented and

compared to the previous experimental results. Chapter 5 describes a second

experimental setup for measuring void fraction using streamwise electrodes. It presents

the results and discusses the sensitivity dependence of the instrument to the electrical

conductivity of the liquid phase. Chapter 6 describes the experimental setup and results

for hotspot and non-uniform peak heating conditions in a microchannel heat sink.

Chapter 7 describes a computational model developed to predict the performance of a

microchannel heat sink exposed to non-uniform heating conditions. Chapter 8 describes

the results for hotspot heating conditions on the critical heat flux in a microchannel heat

sink. Chapter 9 contains a summary of the thesis and suggestions for future work.

6

CHAPTER 2. LITERATURE REVIEW

2.1 Void Fraction Measurement

Microchannel heat sinks based on boiling and two-phase flow can meet the

increasing cooling needs for high-end electronics systems in applications ranging from

high-performance computers to avionics and spacecraft to electric vehicles. In order to

design and build such heat sinks, a unified model accounting for the prevalent flow

regimes is needed to predict the boiling heat transfer rates and pressure drops in

microchannels. Flow regime-based correlations are desired in two-phase flow analyses

since a single heat transfer correlation does not apply in all flow regimes [12]. A number

of studies in recent years have attempted to better understand the flow patterns during

boiling in microchannels using various working fluids as reviewed in [13,14,15]. A

systematic investigation into the effects of channel size, mass flux, and heat flux on the

boiling flow patterns and heat transfer in microchannels was recently performed by

Harirchian and Garimella [9,10]. A generalized flow regime map for boiling in

microchannels covering a wide range of channel geometries, heat fluxes, and mass fluxes

was developed in terms of three nondimensional parameters ‒ Boiling number, Reynolds

number, and Bond number ‒ by Harirchian and Garimella [11]. In order to further

develop predictive models for flow regime transitions, it is necessary to measure the void

fraction in two-phase flow, since the void fraction and its temporal variation is a

7

characteristic of the flow regime. Several studies in the past have relied on flow

visualization for the identification of flow regimes as well as for the measurement of void

fraction [1,16,17,18]. Even though flow regimes can be determined by observing high-

speed movie camera recordings, the method is subjective and cannot be used for

conditions in which intermittent phenomena occur, as well as when the aspect ratios of

the observed field is such that the mechanisms are obscured from visual observation. In

order to overcome these shortcomings, a non-intrusive void fraction measurement

technique, which is based on the measurement of electrical impedance, is explored.

Electrical impedance-based void fraction measurements have been successfully

performed in the past several decades in macroscale two-phase flows. For cross-sectional

area-averaged or volume-averaged measurements, impedance void fraction meters with

electrodes flush mounted to the channel walls were used by Asali et al. [19], Andreussi et

al. [20], Tsochatzidis et al. [21], Fossa [22], and Mi et al. [23]. A theoretical basis for this

design is given by Coney [24]. A single conductive ring was used as an electrical

impedance tomographic sensor to perform image reconstruction on air-water two-phase

flow in a tube [25]. The conductive ring was used in lieu of multiple electrodes to achieve

a more homogenous sensitivity distribution throughout the sensing domain. Another

experimental study used flush mounted stainless steel ring electrodes in a pipe to

determine the liquid hold-up in two-phase flow [20]. Annular, stratified, and bubbly

flows were created in a pipe to calibrate the probe and it was found that the impedance

method has a large sensitivity to different flow patterns; however a distance between the

electrodes in the range of 1.5 to 2.5 pipe diameters provides a good compromise between

obtaining a localized measurement and a reading independent of the flow regime.

8

A similar impedance void fraction meter configuration is adapted to the

microscale channels considered in this thesis. The practical implementation of the

electronic circuit measures the net electrical admittance, or the inverse of the electrical

impedance, of the two-phase mixture. The admittance is a function of the material

properties (the specific conductance and electrical permittivity of the two phases), the

void fraction, and the flow regime. The specific conductance determines the conductive

reactance, while the permittivity determines the capacitive reactance. For a given

geometry of the electrodes, an appropriately normalized admittance is a function of the

void fraction and the flow regime.

In addition to electrical impedance-based sensors, capacitance-based sensors have

been widely used. A wire mesh sensor has been used to measure transient phase fraction

distributions in a thin rectangular channel via permittivity (capacitance) measurements

[26]. Two planes were embedded with 16 wires each and assembled perpendicular to

each other. Measurements were taken at the points of wire intersection, giving 256 spatial

points at a rate of 625 frames per second. Images of air bubbles in silicone oil were

reconstructed using the measured data. A set of capacitance probes was used to measure

the void fraction of HFC refrigerants in a horizontal tube at the macroscale [27]. The

concave probes were placed opposite each other around the tube and three flow regimes

were observed: slug, intermittent, and annular. A set of twelve capacitance probes was

used to measure the void fraction of an oil-gas mixture in a 50 mm diameter pipe, as well

as polyethylene particles in air for a 100 mm diameter pipe [28]. The electrodes were

arranged in a circle around the pipe providing 66 independent capacitance measurements.

9

A mathematical model was developed to reconstruct an image of the distribution of the

voids.

Two-phase flow regimes are typically described using qualitative categorization

of flow visualizations. This involves subjectivity in their identification. In order to

overcome this difficulty, Jones and Zuber [29] first employed quantitative means for flow

regime determination. Using an X-ray source, they measured the temporal variation of

the area-averaged void fraction in a rectangular channel with a cross-section of 10 cm × 1

cm and plotted a probability density function (PDF) of the void fraction. The significant

differences in the PDF between various flow regimes suggested their use for flow regime

determination. Later studies by Tutu [30] and Matsui [31] used void fraction distributions

obtained with differential pressure transducers, while non-intrusive impedance void

fraction meters were used by Mi et al. [23] as flow regime indicators. A comprehensive

study by Costigan and Whalley [32] on flow regimes in vertical upflow used segmental

impedance electrodes to determine the void fraction, combined with the PDF technique.

Recently, bubble chord-length distributions obtained from conductivity probes were used

as flow regime indicators by Julia et al. [33]. Caniere et al. [27] used the fuzzy c-means

clustering algorithm for flow regime classification based on the signal, variance, and

frequency measured from capacitance probes. The quantitative flow regime classification

proposed by Mi et al. [23] is adapted in this study to identify the flow regimes.

While many experimental studies have been performed, few numerical

simulations have been implemented to determine the response to electrical impedance-

based sensors. An experimental and numerical study investigated two-phase flow in

macroscale pipes using an impedance meter [3]. The electrodes consisted of a stainless

10

steel electrode electrically insulated from the pipe, and the pipe itself, assembled in a

streamwise configuration. Using the electro-quasi-static framework, the output voltage

was solved via the Laplace equation and the impedance was evaluated for pipe diameters

ranging from 25 mm to 100 mm. Experiments were performed under adiabatic conditions

using co-current air and water in an upward tube with a diameter of 26 mm. Bubbly,

spherical cap, stable and unstable slug, and semi-annular flows were observed. A

stepwise correlation using separate linear fits corresponding to annular, intermittent, and

bubble flows was developed to predict the relationship between the time-averaged void

fraction and the normalized sensor output.

In summary, there are many electrical sensor-based methods for measuring void

fraction [34]. These methods rely on the fluid permittivity (capacitance), resistance, or

both (impedance). While many previous studies have included primarily capacitance

measurements, the use of impedance based measurements removes limitations on feasible

fluids for use in applications by taking advantage of the difference in the electrical

conductivities of the fluids. Previous studies have been conducted at the macroscale;

however, microscale studies are needed to determine the optimal sensor design for use in

microchannel heat sinks. Numerical simulations that accurately capture the

experimentally measured sensor output can be leveraged in the design process.

2.2 Effects of Non-Uniform Base Heating on Microchannel Flow Boiling

Many studies in the literature have investigated uniform base heating profiles

applied to microchannel heat sinks, as reviewed, for example, by Tullius [35], Kandlikar

[36], and Garimella and Harirchian [37]. These studies experimentally measured the

11

onset of nucleate boiling [4], pressure drop [5,9], and heat transfer coefficients [5,6,38],

and also developed models to predict the critical heat flux (CHF) [7,8]. In addition, flow

regime maps have been developed under a variety of operating conditions [11,39]. While

these studies have provided a thorough understanding of microchannel flow boiling under

ideal heating conditions, realistic applications may impose highly non-uniform heat

fluxes due to chip- and system-level variations [40]. In order to reliably predict the

performance in actual applications, a better understanding of two-phase microchannel

cooling under non-uniform heating conditions is needed, especially in terms of deviation

in heat transfer performance and flow behavior compared to uniform heating conditions.

A discretized theoretical model for assessment of non-uniform heating in

microchannels was developed by Koo et al. [41] using correlations for flow boiling heat

transfer and pressure drop. The model was used to explore optimal geometric designs, but

was limited in its ability to assess lateral flow instabilities across channels and for CHF

prediction. A numerical simulation of the effect of header shape on flow maldistribution

was performed by Cho et al. [42] for a microchannel heat sink. While an optimally

designed header produced a low deviation in the mass flow distribution under uniform

heating conditions, poor flow distribution was present in the case of a large locally

applied thermal load. A numerical model developed by Sarangi et al. [43] predicted the

pressure drop and thermal resistance of a uniformly heated microchannel, and location of

boiling incipience. The models were also extended to include non-uniform heating

conditions, which showed a large impact on the overall fluid dynamics and heat transfer

of the system. Revellin and Thome [7] developed a one-dimensional theoretical model to

12

predict CHF in microchannels under uniform heating conditions, which was further

modified by Revellin et al. [44] to incorporate non-uniform axial heat fluxes.

Past experimental efforts have studied the effects of non-uniform microchannel

heating on flow boiling instabilities [45], pressure drop, and maximum wall temperatures

[46,47,48]. It was found that hotspots near the inlet created a large transverse temperature

variation across the heat sink due to non-uniform fluid distribution. Maldistribution was

caused by a local increase in two-phase pressure drop due to boiling, which diverted

single-phase liquid to other locations; this effect was most pronounced for a hotspot at the

inlet. Transient non-uniform heating situations have also been investigated [46,49].

Despite the numerous experimental studies conducted on microchannel heat sinks for

uniform heating conditions, far fewer experiments utilizing non-uniform heating profiles

have been conducted.

Prior experimental studies with non-uniform heating conditions have typically

focused on single point hotspots. The effect of location and configuration of the hotspot

as well as that of multiple hotspots on thermal performance has not been fully explored.

In addition, a rigorous study of other heating profiles, especially superposed on a uniform

background heat flux as would be realized in application, has not been reported. This

thesis studies both local hotspots and increasingly non-uniform peak heating profiles

across the heat sink, both in the flow direction and perpendicular to it, with respect to

thermal performance and flow boiling phenomena. This work considers the effects of

non-uniform heating on the local heat transfer coefficients, wall temperatures, heat fluxes,

and boiling characteristics of a microchannel heat sink. Concentration of the heat input

typically results in higher local heat transfer coefficients due to transition into the more

13

efficient boiling regime at the expense of increased local wall temperatures. This work

enables better assessment of existing heat transfer models for prediction of non-uniform

heating profiles.

2.3 Effects of Non-Uniform Base Heating on the Critical Heat Flux

There have been many studies in the literature that have investigated the critical

heat flux (CHF) in microchannels and have been summarized at length in [35,36,50,51].

Studies typically conduct experiments to investigate critical heat flux using either a single

channel [52,53]or a parallel array of channels [54,55,56,57]. Although these studies have

provided a better understanding of the parameters affecting the critical heat flux under

uniform heating conditions, realistic applications typically impose highly non-uniform

heat fluxes due to variation at both the chip and system levels [40]. A better

understanding of how the location of hotspots affect the critical heat flux in two-phase

microchannel cooling is needed to reliably predict the performance of heat sinks in actual

applications.

Experiments using a single, circular channel were performed by Del Col and

Bortolin [53] using three refrigerants. A non-uniform heat flux was imposed on the

channel by using a hot water jacket to heat the test section, however, the entire flow

length was supplied heat. The dryout quality and average critical heat flux were measured

during annular flow. The data was compared to several models that were developed for

uniformly heated microchannels [7,8,36,58,59] and were found to overpredict the critical

heat flux.

14

Experimental investigations by Qu and Mudawar [54] and Chen and Garimella

[55] were performed using a parallel array of microchannels. At near-CHF conditions,

both studies reported that significant amounts of vapor in some channels were seen to

reverse flow into the inlet manifold thus altering the inlet bulk fluid temperature. This

vapor backflow negated any advantage of utilizing inlet subcooling and proved to have

no effect on the critical heat flux. An abrupt decrease in the pressure drop was measured

by Chen and Garimella [55] during CHF, and found that CHF is strongly dependent on

the fluid properties, flow rate, and area of heat flux. Additionally, a CHF correlation

developed for a single channel was used as a comparison to the measured data from Qu

and Mudawar [54] but was shown to be a poor predictor for multiple-channel heat sinks.

A few studies have been performed to compare data from multiple CHF

experiments to correlations found in the literature to determine which best predict CHF

[59,60,61]. Zhang et al. [59] determined that the Hall-Mudawar correlation [62] best

predicted CHF for subcooled water while the Shah correlation [63] best predicted CHF

for saturated water. Although they developed their own correlation, Zhang et al. [59]

clearly state it is limited to use for uniform heating situations. Revellin et al. [60] denoted

that the most accuracte correlations for predicting CHF should be categorized based on

the fluid used. For non-aqueous fluids, the theoretical model by Revellin and Thome [7]

best matches extant data, while for water, the correlation by Zhang et al. [59] best

matches. Additionally, other studies have proposed CHF models based on experimental

data found in the literature [7,8,64,65]. Of these models, only those that were developed

by Revellin and Thome [7] can be used with non-uniform heat fluxes; the model is never

compared to non-uniform heating experimental data.

15

Although most studies involving microchannel heat sinks only look at uniform

heating profiles, there are some that have looked at hotspot heating effects on flow

boiling [66,67]. These investigations have shown that local hotspots cause a significant

deviation of the local wall temperatures, local heat fluxes, and the total power dissipated

as compared to a uniformly heated case. However, these studies lack experimental CHF

data and cannot predict the effects of hotspot heating on the critical heat flux.

Critical heat flux values in non-uniformly heated macroscale tubes have been

reported in the literature [68,69,70]. According to Yang et al. [68] the critical heat flux in

an axial non-uniform heat flux distribution test section of inner diameter 5.46 mm could

occur at single or multiple locations simultaneously and shift up or downstream

depending on the inlet temperature andm ass flux. Olekhnovitch et al. [70] studied the

effect of circumferentially non-uniform heating in 22 mm diameter round tubes.

Significant bowing of the tubes was noted after running the experiments. Even though

critical heat flux values for non-uniform heating cases at the macroscale are found in the

literature, this phenomenon has not previously been tested in a microchannel heat sink.

This thesis studies several canonical hotspot heating cases to determine their

effect on the critical heat flux in a microchannel heat sink. Local wall temperatures and

heat fluxes are reported, and the location of the hotspot is determined to have a

significant effect on CHF. This work gives a better understanding of how non-uniform

heating profiles change the critical heat flux as compared to a uniform heating case.

16

CHAPTER 3. VOID FRACTION MEASUREMENT USING CROSSWISE
ELECTRODES

The electrical impedance of a two-phase mixture is a function of the void fraction

and phase distribution. The difference in the specific electrical conductance and

permittivity of the two phases can be exploited to measure the electrical impedance to

obtain the void fraction and flow regime characteristics of a mixture. An experimental

investigation of the void fraction using an electrically impedance-based sensor is studied

in this chapter for a variety of adiabatic air-water two-phase flow conditions in a

microchannel. Flow regimes are identified quantitatively using the statistics of the signals

acquired by the impedance void fraction sensor. The material in this chapter was

presented at the ASME Pacific Rim Technical Conference and Exhibition on Packaging

and Integration of Electronic and Photonic Systems in 2011 and published in the

proceedings [71]. It was later refined and published in the International Journal of

Multiphase Flow [72]. The author would like to thank Sidharth Paranjape for designing

and building the experimental facility, designing and building the impedance void

fraction meter, collecting experimental data, collecting high-speed flow visualizations,

and performing the calibration and flow regime identification analysis.

17

3.1 Experimental Method

3.1.1 Test Section

An experimental test cell to measure the void fraction of two-phase air-water flow

was fabricated using clear transparent acrylic. The experimental facility was designed by

Sidharth Paranjape. A photograph and drawing of the test cell is shown in Figure 3.1. A

single flow channel with a 780 m × 780 m square cross-section and length of 50.8 mm

is cut into the base plate. Two stainless steel 304 electrodes are embedded in the base

plate so that the faces of the electrodes are flush-mounted to the side walls of the channel.

The electrodes are located 25.4 mm (32.6 hydraulic diameters) from the inlet of the

microchannel. The electrodes were designed to be identical to the width and height to the

flow channel, i.e., 780 m. Inlet and outlet plenums are machined into the top cover plate

to provide manifolds for water flow into the flow channel. The top cover plate is

equipped with tube fittings to connect the test cell to the flow loop. Liquid water enters

the flow channel from the inlet manifold and air is directly injected into the flow channel

through a 0.3 mm diameter orifice at the bottom of the channel. The air inlet orifice is

located 10 mm downstream from the inlet of the flow channel. The electrodes are

connected to an electronic circuit via 14 gauge copper cables. Silver epoxy is used to

minimize the contact resistance between the electrodes and copper cables.

A flow loop is constructed to provide air and water flow through the test cell and

is shown in Figure 3.2. Deionized water is used as the liquid and a small amount of

morpholine and ammonium-hydroxide (1 mg of each per liter of deionized water) is

added in order to increase its electrical conductivity while maintaining a pH value of 7.

The addition of these chemicals has a negligible impact on the flow regime through a

18

change in surface tension as suggested by Mi et al. [23]. The specific conductivity of the

water is maintained at 100 S/cm. The water flow loop is equipped with a frequency-

controlled water pump and a needle valve to control the water flow rate. The water flow

rate is measured with a micro-turbine flow meter (McMillan Flo-106) with a range of 0 to

200 mL/min. Air flow is provided by a compressed air cylinder equipped with a pressure

regulator and is controlled by a needle valve. The air flow rate through the test cell is

measured via an air mass flow sensor (Omega FMA6704) with a range of 0 to 100

mL/min. The flow sensor also measures the temperature and pressure of the gas at the

flow meter. The measured temperature and pressure are used to correct the mass flow rate

from standard conditions since the flow sensor is factory-calibrated at standard

temperature and pressure. Pressure is measured at the inlet and outlet of the channel. The

local pressure at the measurement point in the channel is interpolated based on these two

measurements. The actual volumetric flux of air is corrected for the interpolated pressure

at the measurement location. The water storage tank is open to the atmosphere and serves

as an air-water flow separator. Special care is taken to avoid flow instabilities from

occurring due to the accumulation of air in various tube fittings in the exit section of the

flow loop. In order to do this, flexible tubing (Saint-Gobain Tygon) is used to connect the

exit of the test cell to the storage tank, which is located at a higher elevation than the test

cell.

3.1.2 Impedance Void Fraction Meter

An auto-balancing bridge method is implemented in a custom-built unit for

measurement of the electrical impedance of the two-phase mixture in the test cell. The

19

instrument was designed by Sidharth Paranjape. The details of auto-balancing bridge

methods can be found in Tumanski [73]. The signal processing scheme is shown in

Figure 3.3. The test cell is excited with an alternating sine wave voltage signal with a

peak-to-peak voltage difference of 3 V. The exciter signal is set to a frequency of 20 kHz.

A current-to-voltage amplifier is used to measure the resulting current. The voltage

measured across the reference resistor of the amplifier circuit serves as a measure of the

current flowing through the test cell. This signal is referred to as the modulated signal,

while the exciter signal is taken as the carrier wave. Both of these voltage signals are

logged to a high-speed data acquisition system (National Instruments NI 6259-USB) and

are sampled at a rate of 500 kHz. The data acquisition system has a 16-bit quantization

for analog to digital conversion in the voltage range of -5 V to +5 V. The signals are then

processed numerically using a MATLAB program developed in-house. The acquired

signal is synchronously demodulated using the excitation signal and a 90° phase-shifted

excitation signal in order to calculate the real and imaginary parts of the impedance

across the channel. A low-pass Butterworth filter with a cut-off frequency of 10 kHz is

used to filter out the excitation signal. The filtered signal is proportional to the electrical

impedance of the two-phase mixture between the electrodes.

3.2 Image Analysis and Data Reduction

3.2.1 Flow Visualization and Image Processing

A Photron Fastcam-Ultima APX high-speed digital video camera combined with

a Keyence VH-Z50L lens at 100X magnification is used for flow visualization. The

videos are acquired at a frame rate of 24,000 frames per second with a shutter speed of

20

120,000 Hz. An illumination source (Henke-Sass Wolf) is used to illuminate the

microchannels from below for visualization. This combination provides a spatial

resolution of 8 m per pixel. The digital videos are acquired for 4 s for each flow

condition. The stored images are further processed in order to calculate the void fraction.

The image processing is performed in the sequence described below. The complete

MATLAB script can be found in Appendix A.

The video frames are taken through a number of image processing steps to

determine the air and water regions. First, each frame is rotated and cropped to the area of

interest. This is a square-shaped interrogation window that has the same width as that of

the flow channel. Second, the background is subtracted and the gray-scale image is

passed through a threshold to obtain the negative of the image and increase the contrast.

Third, the edges of the air regions are detected using the Canny algorithm implemented in

MATLAB [74]. Fourth, the interior boundaries due to light reflection are then removed

via algorithms implemented in MATLAB. The details of the algorithm are explained in

Soille [75]. Fifth, the objects are passed through a convex hull algorithm to remove cusps

and concave boundaries. Sixth, the volumes and cross-sectional areas of the bubbles are

calculated and hence the volumetric void fraction and cross-sectional area-averaged void

fractions, respectively. In order to calculate the bubble volume from a two-dimensional

image obtained via flow visualization, the bubbles are assumed to be axisymmetric about

their major axes. An approximate uncertainty analysis was performed for the calculation

of bubble volumes for the simple geometries of spherical and cylindrical bubbles. The

maximum error was found to be 8% of the measured value. Lastly, steps 1 through 6 are

repeated for each frame in the video to obtain a time series of the void fraction. In

21

addition, the time-averaged volume- and area-averaged void fractions are calculated for

each flow condition.

The morphological operations performed to extract the boundaries of the bubbles

from the original image are shown in Figure 3.4. The time-averaged void fractions

calculated from processing the images in the videos are used as reference measurements

to calibrate the impedance void fraction meter.

3.2.2 Uncertainty Analysis

The uncertainties in the measurements of the steady-state values of the gas and

liquid flow rates stem from a combination of uncertainty in the measurement by the flow

meters and the inherent physical fluctuations in the flow conditions. The measurement

uncertainties for the instruments used in the experiment are shown in Table 3.1. The last

column denotes the maximum standard deviation as a percentage of the measured value

that was observed in the dataset that consists of 71 flow conditions.

For each flow condition, the quantities were acquired at 500 Hz for 10 seconds to

obtain time-averaged values after reaching steady state. The resulting maximum

uncertainties in the measurement of gas and liquid flow rates are found to be 2.5% and 1%

of measured values, respectively.

3.3 Results and Discussion

Void fraction measurements were performed under 71 different flow conditions.

Data was collected by Sidharth Paranjape. Each condition was characterized by the

velocity inlet boundary conditions: volumetric flux of the gas, , and volumetric flux

22

of the liquid, . The range of flow conditions covered are 0.13 m/s < < 2.65 m/s

and 0.8 m/s < < 5.1 m/s. The test matrix is shown in Figure 3.5 using coordinates of

volumetric flux of the gas and liquid flow.

3.3.1 Calibration of the Impedance Void Fraction Meter

High-speed visualization revealed the flow regimes observed under the set of test

conditions. The images obtained using the high-speed video camera in various flow

regimes are shown in Figure 3.6. The images are presented as acquired by the camera

without any morphological transformations. The void fraction reported for each image is

the time-averaged value of the volume-averaged void fraction calculated using the image

processing algorithm. The time series of the volume-averaged void fractions

corresponding to each flow conditions is also shown in Figure 3.6.

The measurement method utilized determines the current passing through the test

cell for a given potential difference at a known excitation frequency. The measured

current is proportional to the admittance, or the inverse of the impedance of the two-

phase mixture in the test cell. In order to make the measurement independent of the

material properties, the measured admittance is normalized as

 (3.1)

where is the instantaneous two-phase mixture admittance, is the admittance for a

void fraction of zero (for single-phase liquid) and is the admittance for a void fraction

of unity (for single-phase gas). The liquid fraction of the mixture is a monotonically

increasing function of normalized admittance, , and the void fraction is proportional to

23

. For finely dispersed bubbly flow (a void fraction less than 10%), the

functional relationship can be obtained by the effective conductivity of a medium

impregnated with uniformly distributed non-conducting spheres. The expression for the

effective conductivity given by Maxwell [76] to a first-order approximation is

 (3.2)

where is the void fraction of the dispersed phase. This model is applicable to the

bubbly flow regime for void fractions less than 0.2. For void fractions above this limit,

the sensor must be calibrated due to the statistical nature of the distribution of voids,

where no closed-form analytical solution is available. The impedance void fraction meter

is calibrated in a time-averaged sense. The time-averaged value of the impedance void

fraction meter reading, , is compared with the time-averaged void fraction,

, obtained by flow visualization.

The calibration curve of the impedance void fraction meter against the void

fraction obtained by image processing for various flow regimes is shown in Figure 3.7.

The data show that the instrument has a nearly linear response. The data are also

compared with Equation (3.2) for bubbly flow conditions. It can be observed that the data

match the predicted values from this equation closely for void fractions less than 0.15. A

third-order polynomial curve is fit to the data to obtain a calibration curve. The

calibration curve is given by

 (3.3)

In order to assess the accuracy of the measurement, the mean square deviation is

calculated as

24

 (3.4)

where and are void fractions obtained from the calibration curve and by

image processing, respectively. The mean square deviation is 0.023.

In order to validate the measurement of void fraction by the impedance void

fraction meter, the void fraction measured by the sensor is plotted against the ratio of gas

volumetric flux to total volumetric flux, , which is defined as

 (3.5)

In the case of the homogenous equilibrium model, or under the assumptions of

uniform distribution phases in flow cross-section and equal velocities, the void fraction is

given by

 (3.6)

In view of the drift flux model, the relation between void fraction and volumetric

fluxes is given by Zuber and Findlay [77],

 (3.7)

In Equation (3.7), is the distribution parameter, while is the void-

weighted drift velocity. These two parameters are specified by empirical correlations.

The recommended value for the distribution parameter is 1.2 as suggested by Armand

[78], Ali et al. [79], and Mishima and Hibiki [80]. For horizontal flow, the drift velocity

is close to zero. A comparison of the measured void fraction against the homogenous

flow and drift-flux models is shown in Figure 3.8. The agreement between the predictions

25

from both models and the data is remarkable considering the lack of established values

for parameters in the drift flux model for the case of microchannel flow. Since the void

fraction is a function of flow boundary conditions, volumetric fluxes of the gas and liquid,

the measured void fraction contours are plotted on gas and liquid volumetric flux

coordinates as shown in Figure 3.9. Contour maps are helpful in developing void fraction

correlations for microchannel two-phase flows.

3.3.2 Flow Regime Identification

The approach originally developed by Jones and Zuber [29], which utilizes the

probability density function (PDF) of the void fraction fluctuations as flow regime

indicators, is employed for flow regime identification. Physically, the PDF denotes the

contribution of different kinds of bubbles to the time-averaged void fraction for a given

flow condition. The normalized time series signal obtained by the impedance void

fraction meter, , is used for this purpose. The PDF of denoted by is

calculated using the kernel smoothing density estimation method described by Bowman

and Azzalini [81]. A normal kernel is used as the smoothing function. The PDF

is evaluated at 200 discrete points in the domain of . Thus, each flow condition

is represented by a 200-dimensional vector. The problem of identifying flow regimes is

equivalent to identifying clusters of vectors in 200-dimensional vector space. The clusters

of vectors are found by minimizing the distance between the vectors representing flow

conditions and the weight vectors corresponding to a flow regime. After minimization,

the weight vector positions align with the centroid of the clusters. Thus, the weight

vectors that denote the positions of the cluster centroids are characteristic of the flow

26

regime. This optimization problem is solved by the Kohonen Self-Organizing Map

algorithm for pattern recognition implemented in the Neural Network Toolbox of

MATLAB based on the method developed by Kohonen [82]. Physical interpretation of

the recognized patterns is accomplished by comparing them with the flow regimes

observed using the high-speed camera.

Examples of the impedance void fraction meter signals and corresponding PDFs

obtained for various air-water flow regimes are shown in Figure 3.10 through Figure 3.14.

The flow regimes, their qualitative description, and characteristics of the corresponding

impedance void fraction meter signals are described below. It is noted that stable annular

flow could not be achieved with the current experimental setup.

 Bubbly Flow: Bubbly flow is characterized by spherical or ellipsoidal bubbles

dispersed in the continuous phase. The major diameters of these bubbles are

smaller than the width of the channel. The PDF shows a relatively

small width with a peak at a higher admittance (see Figure 3.10).

 Cap-Bubbly Flow: As the bubble size increases, it is confined by the channel

walls. It is distorted and forms a cap-shaped bubble with a round nose at its

downstream end. The PDF is characterized by two distinct peaks located close

to each other (see Figure 3.11). The peak corresponding to higher represents

the liquid regions between the bubbles, while the peak corresponding to lower

 represents the cap bubbles.

 Slug Flow: Long bullet-shaped bubbles are separated by liquid or small

spherical bubbles. The PDF shows two distinct peaks, with one located at low

 corresponding to slug bubbles and the other located at high

27

corresponding to the continuous liquid phase between the slug bubbles (see

Figure 3.12).

 Churn-Turbulent Flow: Due to turbulent agitation at higher flow rates, churn-

turbulent flow exhibits interacting slug bubbles with a distorted shape. This

leads to a wider spread in the PDF, where peaks corresponding to slug bubbles

and liquid gaps between them are merged. It should be noted here that the

existence of a churn-turbulent regime does not imply a higher void fraction than

that in the slug flow regime in a time-averaged sense (see Figure 3.13).

 Long Slug Flow: This regime is characterized by the occurrence of long stable

slugs such that it appears to have a structure similar to annular flow in a local or

short-time-averaged sense. The PDF shows a high peak at a low (see Figure

3.14). Annular flow was not observed in the current dataset.

Using the quantitative method of flow regime classification described above, the

dataset was categorized into five regimes. The result of this classification is shown in

Figure 3.15. The flow conditions are presented on coordinates of volumetric flux of the

gas and liquid phases. The contours of the time-averaged void fraction are superimposed

on the flow regime map. This shows the relationship between the flow regime boundaries

and the void fraction. This map could be used for the development of theoretical flow

regime transition criteria in microchannel two-phase flow.

3.4 Conclusions

The void fraction of air-water two-phase flow is measured in a microchannel with

a square cross-section of 780 m × 780 m using a custom-designed impedance void

28

fraction meter. The impedance void fraction meter is calibrated against the time-averaged

void fraction determined from flow visualizations using a high-speed video camera. The

calculated time-averaged void fraction shows reasonable agreement with those predicted

by the homogeneous equilibrium and drift-flux models. However, a conclusive statement

in favor of a particular model cannot be made since the model parameters (the

distribution parameter and the drift velocity for the drift-flux model) are not available for

microchannel flows.

The probability density function (PDF) of the time series signal obtained by the

impedance meter is utilized for quantitative characterization of two-phase flow regimes.

The flow regimes are identified using a Kohonen Self-Organizing Map. This study shows

that the impedance void fraction meter that was designed can be used for microchannel

two-phase flows for the measurement of void fraction and the identification of flow

regimes. The void fraction and flow regime data obtained by the impedance void fraction

meter may be used for developing and benchmarking theoretical flow regime transition

criteria for microchannel two-phase flows.

Further studies are discussed in later chapters over developing flow regime maps

for additional flow channel geometries. The measurement technique developed here can

be used to study non-adiabatic and boiling flows with a similar geometry of the

electrodes along with the same electronic circuit, as long as the changes in electrical

properties of the fluid with temperature are taken into account.

29

Table 3.1. Measurement uncertainties as a percentage of measured value.
Instrument Reported measurement

accuracy (%)
Maximum standard
deviation (%)

Liquid flow (mL/min) 0.2 0.74
Gas flow (mL/min) 0.1 3.2
Pressure (kPa) 0.2 2
Temperature (K) 0.1 0.05

30

(a)

(b)

Figure 3.1. Impedance meter test cell. (a) Top view of the test cell. (b) Base plate with
flow channel and electrodes.

31

Figure 3.2. Air-water two-phase flow loop.

32

(a)

(b)

Figure 3.3. Impedance meter circuit. (a) Signal processing scheme. (b) Basic electronic
circuit.

33

(a)

(b)

(c)

(d)

(e)

(f)

Figure 3.4. Image processing steps. (a) Original image, top view. (b) Rotated and cropped
image for interrogation window. (c) Background subtracted and threshold adjusted image.

(d) Edge detection. (e) Interior boundaries removed. (f) Edges after finding the convex
hull, superimposed on the original image.

34

Figure 3.5. Test matrix.

35

(a)

(b)

(c)

(d)

(e)
Figure 3.6. Flow visualization and void fraction measured by image processing. Flow

direction is from left to right. (a) Bubbly, = 0.29 m/s, = 0.83 m/s, = 0.20.
(b) Cap bubbly, = 0.56 m/s, = 0.83 m/s, = 0.37. (c) Slug, = 1.39 m/s,

 = 0.83 m/s, = 0.58. (d) Churn-turbulent, = 2.26 m/s, = 4.08 m/s,
= 0.36. (e) Long slug, = 2.65 m/s, = 0.82 m/s, = 0.65.

36

Figure 3.7. Impedance meter calibration.

37

Figure 3.8. Comparison of the measured void fraction with the homogeneous equilibrium
and drift-flux models.

38

Figure 3.9. Contours of the void fraction.

39

Figure 3.10. Impedance meter signal and its PDF for bubbly flow, = 0.29 m/s, =
0.83 m/s, = 0.20.

40

Figure 3.11. Impedance meter signal and its PDF for cap-bubbly flow, = 0.56 m/s,
 = 0.83 m/s, = 0.37.

41

Figure 3.12. Impedance meter signal and its PDF for slug flow, = 1.39 m/s, =
0.83 m/s, = 0.58.

42

Figure 3.13. Impedance meter signal and its PDF for churn-turbulent flow, = 2.26
m/s, = 4.08 m/s, = 0.36.

43

Figure 3.14. Impedance meter signal and its PDF for long slug flow, = 2.65 m/s,
= 0.82 m/s, = 0.65.

44

Figure 3.15. Flow regime map obtained using the impedance void fraction meter signals.
○: Bubbly, : Cap bubbly, ◊: Slug, : Churn-turbulent, □: Long slug, Level lines: Void

fraction contours.

45

CHAPTER 4. NUMERICAL SIMULATIONS OF CROSSWISE ELECTRODE
EXPERIMENTS

The void fraction in microchannel two-phase flow can be measured using an

electrical impedance-based void fraction sensor. The electrical impedance of the two-

phase mixture is a function of the void fraction and the flow topology due to the

difference in the electrical properties of the two fluids. Due to the complex geometry of

the phase interfaces under various flow regimes, this relation cannot simply be expressed

analytically. Hence, the response of a miniature impedance-based void fraction sensor

using air-water two-phase flow under adiabatic conditions was numerically investigated

by solving the Laplace equation for the electrical potential. This chapter studies a range

of flow regimes via two-dimensional (2D) and three-dimensional (3D) simulations using

Fluent [83] and MATLAB [74]. The numerical results are then compared to experimental

results. Portions of the material in this chapter were published in Measurement Science

and Technology [84].

4.1 Modeling and Simulation

4.1.1 Image Processing

In order to simulate realistic two-phase flow morphologies that occur in a

microchannel, high-speed videos of air-water flow through a microchannel were recorded.

A Photron Fastcam-Ultima APX high-speed digital video camera combined with a

46

Keyence VH-Z50L lens at 100X magnification was used for flow visualization, as

outlined in Paranjape et al. [72]. Videos were recorded at 24,000 frames per second with

a shutter speed of 120,000 Hz. The videos recorded are used to determine the air and

water domain to be used in the numerical simulations.

The movie frames are taken through a number of image processing steps to

automatically determine the air and water regions. The image processing steps are the

same as those presented in the previous chapter and can be seen in Figure 3.4.First, each

frame is rotated and cropped to the area of interest. In the 3D Fluent simulations, this area

was limited to a square-shaped window (cube-shaped domain) with the same width as the

flow channel. For the 3D MATLAB simulations, this area was a rectangular-shaped

window with the length three times the width of the flow channel. This was done in order

to capture the additional effects of objects outside the crosswise electrodes on the

electrical field. Next, the background was subtracted and the gray-scale image was passed

through a threshold filter to obtain the negative of the image and increase the contrast.

Then, the edges of the air regions were detected using the Canny algorithm implemented

in MATLAB [74]. The interior boundaries due to light reflection were then removed, and

then the flow objects were passed through a convex hull algorithm.

After the image processing steps are completed, the coordinates of the air-water

boundaries are known. This information was used to generate 3D meshes in Gambit [85]

and MATLAB. The Gambit meshes (for the use of Fluent as the solver) were generated

using two methods, depending on the flow regime. For bubbly and slug flow, the air

bubbles were assumed to have a perfectly circular cross section. Circles were plotted to

represent the interface at each streamwise pixel location in the image; a skin was formed

47

around the series of circles to create the air volume in the channel, as shown in Figure 4.1.

For churn flow, the air region was assumed to fill the majority of the channel, so the air

bubbles were modeled to have a square cross section. The same volume formation

method was used. Once the air and water regions were defined, a tetrahedral volume

mesh was created. To generate the meshes in MATLAB, first, a uniform grid of cube

cells was created for the domain. Based on the centroid of each cell and the determined

coordinates of the bubble boundaries, each cell was identified as belonging to either the

air or the water region. Once again, bubbly and slug flows were assumed to have a

circular cross section and churn flows were assumed to have a square cross section.

4.1.2 Numerical Methods

Fluent [83] was used for 2D and 3D simulations. A MATLAB [74] code was

written for 3D time-averaged simulations, and can be found in Appendix B. This section

describes the analysis used in both Fluent and MATLAB for the simulations. A form of

the Laplace equation for electric potential is used to describe the domain.

(4.1)

Material properties and geometries are substituted into Ohm’s law and the

equation for charge to obtain the current and charge as a function of voltage. In this form,

a heat transfer analogy,

 (4.2)

48

can be used to solve for the current and charge. By this analogy, Fluent can be used to

solve the problem in this form via the energy equation.

To find the impedance in the channel, a Dirichlet voltage boundary condition was

applied at the electrodes to provide a voltage difference of 4 V. All other boundaries used

a Neumann boundary condition with the flux equal to zero. After finding the current and

charge fluxes at the surface of the electrodes, the resistance, , and capacitance, , can be

calculated respectively. These can then be used to find the magnitude of the impedance,

. The impedance is calculated as if it were connected in parallel in a circuit, as

(4.3)

The impedances calculated are normalized with respect to a channel filled

completely with water and air. Since the void fraction is positively correlated with one

minus the admittance, , it is chosen for presenting results. The normalization of

 is

 (4.4)

where is the admittance for a channel filled only with water and is the admittance

for a channel filled only with air. The final value, , is used for correlating with the

void fraction.

The Fluent finite volume solver is used for the 2D and 3D meshes created in

Gambit. The simulation was run by solving the energy equation. The thermal material

49

properties in Fluent were changed to be the electrical properties of air and water and the

analogy was used to convert the heat transfer parameters into their appropriate electrical

analogs.

For the MATLAB solver written in house, the finite volume method is used to

discretize the above equations for use in a uniform 3D mesh. Kirchhoff’s current law is

used to balance the currents between a cell and its neighbors as

(4.5)

where is the coefficient of the th, th, th point, is the coefficient of the +1,

th, th point, etc., is the source term, and is the voltage (or charge) for each cell.

The coefficients through are inverse resistance (or capacitance). For an interior point

in the domain, this equation can be written and rearranged as

(4.6)

where is the effective electrical conductivity (or electrical permittivity) and , ,

and are the dimensions of each cell.

The system of equations for the 3D domain is solved using a plane-by-plane Tri-

Diagonal Matrix Algorithm (TDMA) method. The TDMA is a form of Gaussian

elimination used to solve a tri-diagonal system of equations exactly [86]. This one-

dimensional method is expanded into three dimensions by taking one line of cells in the

volume at a time and solving them with the TDMA. The neighboring cells not included in

50

the line are added into the source term. The method first takes one plane and performs a

TDMA on each row and column within the plane. It first sweeps the rows and columns

within a plane in the positive direction, the positive direction, the negative

direction, then the negative direction. It moves on to the next plane and repeats. The

method loops through all the planes in the volume, then repeats in the other two

coordinate directions, until the solution converges.

The material properties are contant for all simulations. Water has an electrical

conductivity of 100 S/cm and a dielectric constant of 80. Air has an electrical

conductivity of 2.5×10-10 S/cm and a dielectric constant of 1. The simulations were run

under steady state conditions and the electrical impedance was calculated.

4.2 Results and Discussion

4.2.1 2-Dimensional Simulations in Fluent

2D simulations were run using Fluent [83]. These simulations consisted of a

square cross section of a water-filled channel with electrodes on opposite sides. Both

circular and square air regions were placed in the center of the channel as shown in

Figure 4.2. The void size was varied to obtain a range of void fractions. The circular

cross section voids ranged in void fraction from zero (no void) to 0.75. The geometric

upper limit of the circular voids is 0.785, which corresponds to the area fraction of a

circle inscribed in a square. The square voids ranged in void fraction from zero to 1.0 (no

liquid).

For all cases, the relationship between the void fraction and the impedance is not

linear. For void fractions less than 0.6 both the circular and square bubbles provided the

51

same normalized impedance for a given void fraction, which is shown in Figure 4.3.

Above a void fraction of 0.6, the normalized impedance calculated for circular bubbles is

slightly higher than that for square bubbles. This is due to the difference in the thickness

of the liquid film next to the electrodes for the two cases.

A third case consisted of four circular voids that varied in distance from one

another inside the channel as shown in Figure 4.3. The radii of the voids did not change

and thus the total void fraction remained constant at 0.256. The centroids of the voids

were placed at three different spacings within the channel and the impedance was

calculated. The ratio of the void diameter to the channel width was 0.29 and the ratio of

the distance between void centers to the channel width was 0.31, 0.5, and 0.69. As shown

in Figure 4.3, the change in the spacing of the four voids led to a very small change in

impedance. In addition, the normalized impedances calculated for this case are

approximately equal to the single square and circular void cases. This indicates that the

shape and distribution of voids representative of the expected flow regimes have no

significant effect on the resulting electrical impedance of the system, for voids modeled

in parallel.

4.2.2 3-Dimensional Simulations in Fluent

3D simulations were run using Fluent [83]. These simulations consisted of a

water-filled channel with electrodes on opposite faces. The length of the channel in the

flow direction was taken to be the width of the electrodes such that the simulation domain

is cubic. Using the image processing method previously described, air voids of real

bubbles were placed in the channel.

52

It is important to note that void configurations were randomly chosen from the

high-speed videos and the data is neither sequential nor time averaged for the 3D Fluent

simulations. Three flow regimes were simulated: bubbly, slug, and churn flow. The void

fraction estimated from the images ranged from zero to 0.72 for the random flow field

snapshots chosen for analysis. The results are shown in Figure 4.4 and Figure 4.5. The

first figure shows the magnitude of the impedance calculated for a given void fraction.

The relationship between the two values is parabolic and the points lie on a single line

regardless of the flow regime. The second figure shows the void fraction plotted with the

normalized impedance. As with the 2-dimensional case, the relationship between the void

fraction and the impedance is not linear. Additionally, despite snapshots taken from

bubbly and slug flow regimes overlapping, all of the points appear to lie closely on a

single line, continuing to indicate that the shape and distribution of the voids have no

significant effect on the resulting electrical impedance for voids modeled in parallel.

4.2.3 3-Dimensional Simulations in MATLAB

3D simulations were run using the MATLAB code described previously.

MATLAB was used in order to streamline the entire analysis from image processing

through simulation without changing programs. These simulations consisted of a larger

portion of a water filled channel with electrodes on opposite faces. Unlike the simulations

in Fluent, the length of the channel was taken to be three times the width of the electrodes

so that a portion of the channel before and after the electrodes was also modeled. This

was done to capture a larger range of the electric field, specifically the lines that bend

around air regions outside of the electrodes. Using the same image processing method

53

previously described air regions corresponding to real bubbles were modeled in the

channel.

Figure 4.6 shows the constant potential lines superposed onto the image of a slug

bubble used in a simulation. The void fraction and simulated impedance for this video is

0.33 and 0.41, respectively. Instead of randomly chosen void configurations, sequential

frames within videos were chosen. The total number of frames was chosen for each video

to capture one period of the flow regime passing through the domain. For churn flow, a

regime period is not identifiable and therefore a large number of frames were chosen so

that it was representative of the particular case. Once again, three flow regimes were

simulated: bubbly, slug, and churn flow. The estimated void fraction and the normalized

impedance are shown in Figure 4.7 for all the cases ran. This data represents the

instantaneous values for each image. Like before, the relationship between these two

values is not linear. Since consecutive frames were taken for each video, the void fraction

and calculated impedance varied over a range for each case. For bubbly and slug flows in

which the flow alternates between large volumes of air and water, some of the frames

contained partial bubbles that were not located centrally between the electrodes and

instead were either entering or exiting the area of interest. The presence of these bubbles

contributed to the calculation of the void fraction, but had a smaller effect on the

impedance calculated due to their position away from the electrodes. Thus, for bubbly

and slug flows having void fractions less than 0.4, a large spread can be seen in the data.

In churn flow this happens much less often and the instantaneous data lie closely around

a single line.

54

The void fraction and normalized impedance data calculated for the images taken

from each video were averaged to generate a time-averaged dataset. This data is shown in

Figure 4.8. The relationship between the time-averaged void fraction and the normalized

impedance is once again non-linear. However, the shape of the curve is slightly different

from the instantaneous data and different trends can be seen for different flow regimes.

Bubbly flow, characterized by small void fractions below 0.2, produced impedance

values that are slightly lower than a linear relationship. Slug flow, having void fractions

between 0.1 and 0.4, produced impedance values that are slightly higher than a linear

relationship. Churn flow, having void fractions above 0.3, produced impedance values

that are even higher than a linear relationship would predict and appear to be more

similar to the instantaneous data previously shown compared to the other two flow

regimes.

The time-averaged simulated impedance data was plotted against the

experimental data discussed in the previous chapter and is shown in Figure 4.9. For slug

flow, the data matches well within 30% error bands and the mean average error for the

data is 7.6%. However, the numerical simulations underpredict the impedance for bubbly

flow and overpredict the impedance for churn flow.

4.3 Conclusions

Numerical simulations were performed with two-phase air-water adiabatic flow in

a microchannel to predict the response of an impedance-based void fraction sensor. 2D

and 3D simulations of the channel were run in Fluent for instantaneous responses of the

electrical impedance sensor. MATLAB was used for 3D simulations for both

55

instantaneous and time-averaged responses in a larger domain. It was found that the

shape and distribution of the voids had no significant effect on the simulated impedance

for void modeled in parallel. In addition, the relationship between the void fraction and

the impedance is non-linear for all cases. Time-averaged 3D simulations were compared

to experiments with good agreement and a mean average error of 7.6%.

56

Figure 4.1. Using image processing to create 3-dimensional domains of real bubbles.

57

Figure 4.2. Cross sectional channel geometry with circular (left), square (middle), and

four circular (right) air voids.

58

Figure 4.3. The results of the 2-dimensional simulations using Fluent.

59

Figure 4.4. The magnitude of the impedance as a function of the void fraction for the 3-

dimensional simulations using Fluent.

60

Figure 4.5. The void fraction plotted with the normalized impedance data for the 3-

dimensional simulations using Fluent.

61

Figure 4.6. Constant potential lines superposed on an image of a slug bubble used in a

simulation. The void fraction for this video is 0.33 and the simulated impedance is 0.41.

62

Figure 4.7. The instantaneous void fraction plotted with the normalized impedance data

for the 3-dimensional simulations using MATLAB.

63

Figure 4.8. The time-averaged void fraction plotted with the normalized impedance data

for the 3-dimensional simulations using MATLAB.

64

Figure 4.9. The time-averaged simulated impedance plotted with the measured

impedance from experiments. The mean average error is 7.6%.

65

CHAPTER 5. VOID FRACTION MEASUREMENT USING STREAMWISE
ELECTRODES

An electrical impedance-based void fraction sensor is used to measure the void

fraction of air-water two-phase flow under adiabatic conditions in a microchannel. The

electrical impedance of the mixture is dependent on the void fraction, flow topology, and

the electrical properties of the fluids. Previous chapters studied a miniature electrical

impedance-based void fraction meter with electrodes arranged in a crosswise geometry.

The sensor was modified to place electrodes spaced at various separation distances along

the streamwise direction that were flush mounted to the top of a 780 micron square

channel. A high-speed camera was used to obtain flow visualizations to determine the

time-averaged void fraction in order to calibrate the sensor. As an extension of the

previous chapters, an experimental investigation of the impedance void fraction meter

response with the electrodes arranged in a streamwise geometry is performed. The effects

of the flow conditions, electrode spacings, and water electrical properties on the

sensitivity of the instrument were explored.

5.1 Experimental Methods

5.1.1 Test Section

An experimental test section for void fraction measurements in air-water two-

phase flow was fabricated in clear transparent acrylic to allow for high-speed imaging.

66

The experiment was designed by Sidharth Paranjape. A photograph of the test section is

shown in Figure 5.1. This test section was designed to be the same as the crosswise

electrodes test section discussed previously in 3.1.1with the exception of the placement of

the electrodes. A square-shaped flow channel with side dimensions of 780 microns is cut

into the base plate. The length of the channel is approximately 50.8 mm. Four 302

stainless steel electrodes are embedded in the top plate such that the faces of the

electrodes are flush-mounted to the top wall of the channel. The electrodes are located in

the middle of the flow stream, span the width of the channel, and have different

streamwise gaps of 780 microns, 1560 microns, and 2340 microns (i.e., one, two, and

three channel widths, respectively). These electrode gaps can be tested by connecting

different electrodes to the impedance measurement circuit. The width of the electrodes is

identical to the width of the flow channel; the exposed area of each electrode to the

channel is the same as the cross section of the channel. Inlet and outlet plenums are

machined into the top cover plate to route water flow into the channel. Air is directly

injected into the flow channel through a 0.3 mm diameter orifice at the bottom of the

channel. The air inlet orifice is located 10 mm from the inlet of the flow channel. The

electrodes are connected to the electronic circuit via alligator clips.

The same flow loop is used as in the previous crosswise electrodes experiments

and is shown in Figure 3.2. De-ionized water is used for the liquid stream; morpholine

and ammonium hydroxide are once again added to the water in order to increase its

electrical conductivity while keeping the pH value near 7. The effect of various electrical

conductivities of the water was explored and the exact amounts of the chemicals varied

between tests. The impact of the addition of these chemicals on the flow regimes

67

(through an effective change in the surface tension) is negligible [23]. The specific

conductivity of water was maintained between 50 and 300 S/cm. The water flow loop is

equipped with a frequency-controlled water pump and a needle valve to control the water

flow rate. The water flow rate is measured with two McMillan micro-turbine flow meters

with ranges of 0 to 100 mL/min and 0 to 200 mL/min. Air flow is provided by a

compressed air cylinder equipped with a pressure regulator. Two Omega FMA6700

series air mass flow sensors with ranges of 0 to 200 mL/min and 0 to 500 mL/min were

used to measure the air flow rate through the test cell. The flow sensors also measure the

temperature and pressure of the gas at the flow meter. The measured temperature and

pressure are used to correct the mass flow rate from standard conditions since the flow

sensor is factory-calibrated at standard temperature and pressure. The air flow rate is

controlled by a needle valve. The storage tank is open to the atmosphere and also serves

as an air-water flow separator. Special care is taken to avoid flow instabilities occurring

due to the accumulations of air in various tube fittings in the exit section of the flow loop.

In order to achieve this, flexible tygon tubing is used to connect the exit of the test section

to the storage tank, which is located at a higher elevation than the test section.

5.1.2 Impedance Void Fraction Meter

The same impedance void fraction meter used in the crosswise electrodes

experiments is again used here. A description of the sensor can be found in 3.1.2 and the

signal-processing scheme is shown in Figure 3.3.

68

5.1.3 Image Analysis

A high-speed Photon Fastcam-Ultima APX digital video camera along with a

Keyence VH-Z50L lens at 100X magnification was used for flow visualization. The

videos are recorded at 30,000 frames per second with a shutter speed of 30,000 Hz. A

Henke-Sass Wolf illumination source is used to illuminate the microchannel for

visualization. This combination provides a special resolution of approximately 8 m per

pixel. The digital videos are acquired for 4 seconds for each flow condition. The optical

images are processed in MATLAB in order to obtain an experimental void fraction

measurement. The same image processing techniques used in the crosswise electrodes

experiments are again used here. A description of the algorithm can be found in 3.2.1.

Figure 3.4 shows the morphological operations performed for each step.

5.1.4 Procedure

When running a test, a water flow rate is chosen and remains the same throughout

the test. A full air and full water reading is taken at the beginning and end of each test so

that the impedance meter output can be normalized. The water flow rate is kept constant,

and the air flow rate is incrementally increased to vary the flow regime; data is recorded

once the flow conditions are stable at the desired test point.

5.2 Results and Discussion

5.2.1 Calibration of the Impedance Void Fraction Meter

The void fraction from image analysis was plotted against the air volumetric flow

fraction, , and is shown in Figure 5.2. The legend shows the water volumetric flow rate

69

in mL/min, the gap spacing of the electrodes (1CW means one channel width), and the

electrical conductivity of the water in S/cm, respectively. The color of the markers

indicates the water electrical conductivity and the shape indicates the spacing of the

electrodes. The data is also plotted with the homogenous equilibrium and drift flux

models as described in Section 3.3.1. All of the data lie close to the two models and there

is not a significant difference by varying the spacing of the electrodes, the water flow rate,

or the water conductivity.

The void fraction was measured under a variety of different flow conditions. Each

flow condition was characterized by the velocity inlet boundary conditions: the

volumetric flux of gas, , and volumetric flux of liquid, . The ranges of flow

conditions covered in these experiments are 0.17 m/s < < 13.7 m/s and 0.68 m/s <

 < 5.48 m/s.

The measured, instantaneous impedance is normalized as

 (5.1)

where is the instantaneous two-phase mixture admittance, is the admittance with a

void fraction of zero (water only) and is the admittance with a void fraction of one (air

only). The liquid fraction is a monotonically increasing function of normalized

admittance, , which means the void fraction is proportional to . The

impedance meter is calibrated in a time-averaged sense. That is, the time-averaged value

of the impedance meter reading is compared with the time-averaged void fraction

 obtained by flow visualization.

70

Figure 5.3 shows the data from the impedance meter versus the void fraction

obtained from image processing for a variety of water electrical conductivities. Like the

previous figure, Figure 5.2, the legend shows the water volumetric flow rate, the

electrode spacing, and the electrical conductivity of water. It was found that the water

flow rate and electrode spacing had almost no effect on the results; however the electrical

conductivity of the water produced a significant change. Very high conductivities of 200

S/cm and higher as well as a low conductivity of 50 S/cm produced very low

impedance values even at high void fractions. Other conductivities between 50 and 200

S/cm produced impedance values as expected.

5.2.2 Dependence on Water Electrical Conductivity

The data show that the instrument has a nearly linear response, but the slope

depends on the electrical conductivity of the water. High and low conductivities of

approximately 50, 200, and 300 S/cm produced a large slope while intermediate

conductivities of approximately 100, 125, 150, and 175 S/cm produced a slope close to

one. This indicates that there is an optimal range for maximum sensitivity of the

instrument.

The sensitivity is defined as the percent of the total range of the impedance meter

that is used. This can be found by finding the inverse of the slope of a linear best-fit line

for a single test. For example, the test run with a water flow rate of 100 mL/min,

electrode spacing of one channel width, and a water conductivity of 171 S/cm, has a

linear best-fit line with a slope of 1.86 which means the sensitivity of the instrument at

that conductivity is about 53.8% by this definition. Figure 5.4 shows the sensitivity of the

71

impedance meter plotted as a function of water electrical conductivity. Conductivities

between 100 and 175 S/cm had the highest sensitivities of about 55% while all other

conductivities produced low sensitivities below 20%. The optimal range of the water

electrical conductivity for this instrument is between 100 and 175 S/cm.

The impedance meter reading was correlated to the water conductivity as shown

in Figure 5.5. A linear line was fit to the data and is shown in addition to 30% error bands.

Most of the data in this figure lie between the bands regardless of water flow rate or

electrode spacing. In addition, the data show a much larger spread and utilize almost the

entire range of the normalized axes. If it is desired to operate outside of the optimal range

of water conductivities, it can be done by simply adjusting the impedance meter output

according to the water conductivity.

The impedance meter with a streamwise electrode geometry can easily be

implemented in a microchannel heat sink under boiling conditions. Although the

electrical conductivity of the fluid varies with temperature, the range in fluid

temperatures in this scenario is quite small leading to a relatively constant conductivity

[84]. Even though the calibration of the impedance meter has been conducted under

adiabatic conditions, the behavior of the sensor is expected to remain the same.

5.3 Conclusions

The void fraction was measured in air-water two-phase flow in a microchannel

with a 780 × 780 square cross section using a custom-designed impedance void fraction

meter. The measurements from the impedance void fraction meter were plotted against

the time-averaged void fraction determined from flow visualization using a high-speed

72

camera. Multiple water electrical conductivities were tested and a clear dependence was

shown. For maximum instrument sensitivity, an optimal range between 100 and 175

S/cm was found. In addition, the impedance meter output can be adjusted according to

the water conductivity to collapse all of the data onto a single line.

73

(a)

(b)

Figure 5.1. Impedance meter test cell. (a) Top view of the test cell. (b) Top plate with
electrodes. The blue dashed lines indicate where the channel is located.

74

Figure 5.2. Void fraction from image analysis plotted against the air volumetric flow

fraction for a variety of flow rates. The legend shows the water volumetric flow rate in
mL/min, the spacing of the electrodes (1CW means one channel width), and the electrical

conductivity of the water in S/cm, respectively.

75

Figure 5.3. Void fraction from image analysis plotted against the normalized impedance

void fraction meter output for a variety of water conductivities. The legend shows the
water volumetric flow rate in mL/min, the spacing of the electrodes (1CW means one

channel width), and the electrical conductivity of the water in S/cm.

76

Figure 5.4. The sensitivity of the impedance void fraction meter as a function of the water

electrical conductivity.

77

Figure 5.5. The void fraction from image analysis plotted against the adjusted normalized

impedance void fraction meter output for a variety of water conductivities. The legend
shows the water volumetric flow rate in mL/min, the spacing of the electrodes (1CW

means one channel width), and the electrical conductivity of the water in S/cm.

78

CHAPTER 6. EFFECTS OF NON-UNIFORM HEATING ON BOILING IN
MICROCHANNELS

As electronics packages become increasingly thinner and more compact due to

size, weight, and performance demands, the use of large intermediate heat spreaders to

mitigate heat generation non-uniformities are no longer a viable option. Instead, non-

uniform heat flux profiles produced from chip-scale variations or from multiple discrete

devices are experienced directly by the ultimate heat sink. In order to address these

thermal packaging trends, a better understanding of the impacts of non-uniform heating

on two-phase flow characteristics and thermal performance limits for microchannel heat

sinks is needed. This chapter studies flow boiling phenomena in a microchannel heat sink

with local hotspots, as well as increasingly non-uniform peak-heating profiles across the

heat sink, both in the flow direction and perpendicular to it, with respect to thermal

performance and flow boiling phenomena. This work enables better assessment of

existing heat transfer models for prediction of non-uniform heating profiles. The material

in this chapter was presented at the ASME International Technical Conference and

Exhibition on Packaging and Integration of Electronic and Photonic Microsystems in

July 2013 and published in the proceedings [87]. It was later refined and published in the

International Journal of Heat and Mass Transfer [88].

79

6.1 Experimental Methods

6.1.1 Test Section

The microchannel test section used in the experiments was described in detail by

Harirchian and Garimella [11]; it was modified for the purposes of the current study and

is shown in Figure 6.1. A transparent, polycarbonate manifold cover plate seals and

routes the working fluid through a silicon microchannel heat sink with a base area of 12.7

mm × 12.7 mm. The total silicon thickness is approximately 650 m. The heat sink is

mounted on a printed circuit board (PCB)1 that is offset from an electrical quick-connect

board with an insulating G10 glass-epoxy composite layer. An insulating 0.4 mm thick

borosilicate glass sheet is sandwiched between the microchannel heat sink and cover

plate to protect the polycarbonate (rated to a temperature of 115-130 °C), and forms the

rigid top wall of the microchannels. The fluid enters the channels through an inlet header

section with a flow length of 10 mm, width of 12.7 mm, and a height equal to that of the

heat sink plus borosilicate glass thickness.

Parallel microchannels are cut into the top surface of the silicon chip using a

dicing saw, and are shown in Figure 6.2. A single heat sink with 35 microchannels was

used for the experiments (240 m channel width, 370 m channel depth, and 100 m fin

width). Each channel was cut with a number of passes, which created some waviness on

the bottom surface. The average channel bottom roughness in the region of a single cut is

0.2 m, and the overall average surface roughness of the bottom and sides of the channels

are 0.82 m and 0.1 m, respectively.

1 The author would like to thank Bruce Myers and Darrel Peugh of Delphi Electronics and Safety, Kokomo,
Indiana, for providing the silicon microchannel heat sink.

80

A 5 × 5 array of resistance heaters and temperature-sensing diodes is fabricated

on the bottom side of the heat sink, as shown in Figure 6.2. Since the individual heater

resistances are nearly identical, a single voltage can be applied across multiple heaters in

parallel to provide a uniform flux over a desired area. Up to two DC voltage power

supplies are connected to provide the customized, non-uniform heat flux profiles applied

to the underside of the microchannels investigated in the current study. The heat

generated and local temperature at each element are calculated based on the calibrated

heater/sensor resistance and the applied voltage. The relationship between the voltage and

temperature of each sensor is calibrated in a convection oven. More details about the

calibration procedure for each element can be found in [89].

6.1.2 Flow Loop

The experimental flow loop used is the same as that described by Harirchian and

Garimella [89], and a schematic diagram is shown in Figure 6.3. The dielectric fluid, FC-

77, is circulated through the flow loop using a Micropump 415A magnetically coupled

gear pump. A preheater sets the fluid to the desired inlet temperature upstream of the test

section. Downstream of the test section, a liquid-to-air heat exchanger cools the fluid

back to room temperature before it enters the reservoir. A McMillan Flo-114 liquid flow

meter, with a range of 20-200 mL/min, measures the liquid flow rate through the loop. T-

type thermocouples are located upstream of the preheater, upstream and downstream of

the test section, and downstream of the heat exchanger. A 2200 series Omega differential

pressure transducer measures the pressure drop across the test section.

81

High-speed visualization is performed with a Photron Fastcam Ultima APX high-

speed digital video camera and a Nikon ED 200 mm lens. A Sunoptics Titan 300 xenon

arc lamp is used for inline illumination of the test chip for the visualizations. Images are

extracted from high-speed videos captured at 6,000 frames per second with a shutter

speed of 6 kHz.

6.1.3 Test Procedure

Before running a test, the liquid is degassed using an expandable reservoir and a

vacuum pump. The degassing procedure and the design of the expandable reservoir are

adapted from [90]. The test fluid, FC-77, contains 41% air by volume, or 283 ppm, at

ambient temperature and pressure. An expandable container with a locking mechanism

allows expansion and contraction of the reservoir to control the system pressure. First, the

reservoir is expanded to create a gas space at the top of the reservoir. A vacuum pump

connected to the top of the reservoir lid is turned on for 5 minutes to remove air and the

FC-77 vapor that has collected in the gas space. The reservoir is left expanded and at a

vacuum pressure for one hour to allow air to diffuse from the liquid into the gas space.

The process is repeated until the pressure in the reservoir remains constant with time,

indicating that air is not actively dissolving out of the liquid in the reservoir. The fluid is

cycled through the loop and the reservoir degassing process is repeated several times. To

ensure the fluid is fully degassed, the system is set to atmospheric pressure, fluid is

pumped through the loop, and the preheater is used to boil the fluid. The measured

preheater fluid temperature at incipience is confirmed to be the saturation temperature of

FC-77 (97 °C).

82

Experiments are conducted at a single mass flux of 890 kg/m2s. Fluid is pumped

through the loop at a constant flow rate and preheated to approximately 91 °C, which

corresponds to a subcooling of 6 °C at the inlet to the heat sink. The flow rate and inlet

temperature are maintained at a constant values throughout the test. The expandable

reservoir is used to set the system at atmospheric pressure prior to turning on the heater

elements. During testing, the system pressure increases slightly due to the bulk

temperature rise of the fluid; however, this increase is minor (12.4 kPa), and smaller than

is practically correctable with the expandable reservoir system.

6.1.4 Test Cases

A variety of heating cases were investigated as summarized in Figure 6.4. The

heat transfer coefficients, wall temperatures, fluid temperatures, and the locations of

boiling via high-speed imaging are obtained for each case.

The first cases correspond to hotspots that span either the width or length of the

microchannel heat sink in transverse and streamwise directions: singular central

transverse (1a), central streamwise (1b), inlet transverse (1c), and two transverse hotspots

(1d) at the inlet and outlet. The hotspot heater locations are turned on (shown in red)

while the rest are powered off (shown in gray). For these hotspot heating cases, the heat

supplied to the strips of active heaters is incremented from zero until the maximum heat

flux for the test is reached. The maximum heat flux limit is reached when the wall

temperature reaches 140 °C, to prevent the solder bumps in the test chip from degrading.

The second set of test cases consider a non-uniform heating condition where a

peak heat input is imposed along the width and length of the microchannel in the

83

transverse (2a) and streamwise (2b) directions. In these latter two non-uniform heating

cases, the total power input to the chip remains constant, but the local power input

distribution is adjusted to increase the disparity between the peak and background heat

fluxes. The total constant power input in this second set of cases is the same as the

maximum power input for the corresponding hotspot heating cases.

6.2 Data Reduction

The data reduction method presented here is a modified version of the one used

by Harirchian and Garimella [9]. Key modifications to this process take into account the

enhanced substrate spreading that occurs for non-uniform heating profiles. Pressure-

dependent local fluid properties and saturation temperatures are accounted for in the data

reduction procedure to account for variations along the flow length. A MATLAB script

of the data reduction process can be found in Appendix C.

The local heat transfer rate from the microchannels to the fluid, , is calculated

based on an energy balance for each heating element as

 (6.1)

The energy generated by the heating elements is denoted as and is calculated

as . The heat loss from each heating element is by natural convection to the

ambient air, radiation to the surroundings, and conduction from the microchannel heat

sink to the cover plate and circuit board. A relationship between the base temperature and

heat loss is experimentally obtained via measuring the amount of heat input that can be

sustained before the test section is charged with coolant. A complete description of the

procedure used to obtain the heat loss for each sensor is found in [91]. The energy

84

conducted laterally from one heating element to the next is denoted as . When non-

uniform heating profiles are imposed, there is significant lateral conduction of heat

through the silicon heat sink. Heat conduction between elements is calculated as

 (6.2)

where the total net conduction is dependent on the four neighboring elements to heater .

During single-phase flow, the bulk fluid temperature above each heating element

is calculated as

 (6.3)

where is the sum of the net heat transfer to the fluid from the inlet to the heating

element in question. The fluid temperature rise is based on the available sensible heat up

until the saturation temperature is reached, at which point the fluid temperature is set

equal to the saturation temperature.

The local wall temperature is corrected from the measured diode temperature by

accounting for conduction from the substrate to the base of the microchannel, calculated

as

 (6.4)

The heat flux through the base is calculated from the local net heat transfer rate as

 (6.5)

85

The local heat transfer coefficient for each heating element, which represents an

average along the channel height at a particular point along the flow length, is calculated

considering the microchannel walls as extended fins, according to

 (6.6)

where is the wall heat flux calculated using the net heat transfer rate, , and the

total wetted area of the microchannels, . is the overall surface efficiency of the

microchannel heat sink, defined as

 (6.7)

where represents the wetted area of a microchannel fin and is the efficiency of a fin

with an adiabatic tip. This adiabatic assumption is valid due to the heat transfer to the

cover plate being significantly lower than the heat transfer to the liquid in the

microchannels. It is calculated as

 (6.8)

where

 (6.9)

The heat transfer coefficient is initially calculated assuming an overall surface

efficiency of 100% and is iterated until the value converges. The overall efficiencies of

the microchannel heat sinks were found to be above 95.6% for all cases.

86

6.2.1 Uncertainty Analysis

Since the facility is the same as that used by Harirchian [89], the same uncertainty

analysis is also used. The flow meter has a measurement uncertainty of 1% of full scale

and the pressure transducers have a measurement uncertainty of 0.25% of full scale. The

uncertainty measurements of the channels dimensions are ±15 m, the T-type

thermocouples ±0.3 °C, and the diode temperature sensors 0.3 °C. The microheater

resistance measurement uncertainty is 0.002% and the applied voltage measurement

uncertainty is 0.004%. The uncertainties for the wall heat flux and heat transfer

coefficient were found using a standard uncertainty analysis [92] and are found to be 2.0

to 11.4% and 2.2 to 11.7%, respectively. These two uncertainties are largely affected by

the uncertainties in the measurement of the channel area; the uncertainties in the net heat

transfer rate, wall temperature, and saturation temperature are small in comparison.

Please see Harirchian [89] for the detailed analysis.

6.3 Results and Discussion

The results are split into two heating cases as previously described: (1) hotspots

that span the length or width of the heat sink tested with increasing power input against

an unpowered background, and (2) non-uniform heating conditions with a peak along the

width or length of the heat sink.

In cases 1a through 1c, 5 of the 25 individual heating elements are powered up to

simulate a hotspot while the rest are unpowered. The total power supplied to these

heating elements is incremented until the maximum allowable wall temperature is

reached. In case 1d, a dual hotspot, 10 of the 25 individual heating elements are powered

87

up. For the second set of non-uniform heating cases (2a and 2b), all of the heating

elements are initially supplied the same power level, resembling a uniform heating case.

The power to 5 of the 25 heating elements is proportionally incremented, while

maintaining a constant total power input to the entire test section. A subset of the data is

presented in the figures in this chapter. Figures containing the full dataset can be found in

Appendix D.

6.3.1 Case 1: Hotspot Heating

The maximum total power input, maximum local heat flux at that power, and

maximum local wall temperature are summarized for all cases in Table 6.1. For Case 1,

as the power input increases, the heat flux to the fluid, , always reaches a maximum

above the active heater elements. The individual trends for each single hotspot are

described below. Case 1d is discussed in Appendix D.

6.3.1.1 Case 1a (Central Transverse Hotspot)

The first heating profile tested was with a central transverse hotspot. The five

transverse heater elements located along the center of the flow length were supplied with

power, while the remaining 20 were turned off. The maximum heat flux recorded is 24.23

W/cm2. Even though heat is only generated in 5 of the 25 heater elements, significant

lateral conduction causes the remaining 20 heater locations to also experience positive

heat fluxes ranging from 0.29 W/cm2 to 2.73 W/cm2 for a power input of 32.4 W, with

88

the value depending on distance from the heated elements. The heat flux transferred to

the fluid along the flow length for increasing input power levels is shown in Figure 6.5a.

The wall temperature reaches a maximum at the central transverse strip of

powered heater elements. The input power is incremented until the maximum

temperature reaches 136.9 °C; further increases would damage the test chip and solder

joint. The measured wall temperatures along the flow length for increasing input power

levels are shown in Figure 6.5b. The wall temperatures downstream of the activated

heater elements are higher than at the upstream elements; a difference of 7.93 °C exists

between the inlet and outlet at a power input of 32.4 W due to the temperature rise of the

bulk fluid. The maximum bulk fluid temperature is calculated to be 99.1 °C (the local

saturation temperature at the measured pressure); the largest bulk fluid temperature

gradient is observed as fluid flows over the hotspot.

Boiling curves are constructed from the heat flux transferred to the fluid and the

wall excess temperature, and are shown in Figure 6.6 for sensors 3, 13, and 23. The wall

excess temperature is calculated with respect to the local bulk fluid temperature in the

case of single-phase flow, and the saturation temperature in two-phase operation. As the

heat flux is increased, the slope of the curve is initially constant, reflecting the relatively

constant single-phase heat transfer coefficient. For the upstream and downstream sensors,

which are not actively powered, the heat flux is initially negative because the fluid is

hotter than the wall and transfers heat to the substrate; this continues until a higher power

input is reached and the active strip of heaters spreads heat to these locations. Boiling

begins at the heated sensor location at a local heat flux of 16.8 W/cm2 and a 38.2 °C

excess temperature, and is indicated by the increased slope in the boiling curve. This

89

incipience of boiling is confirmed via in situ visualization. Lower power input levels

produced bubbly flow while and increased power input led to slug flow. At the largest

power input, large vapor regions can be seen. All visualizations shown herein have a field

of view that captures the boiling behavior over the entire test chip. After boiling

incipience occurs at sensor 13, the downstream wall temperature at sensor 23 decreases;

the increased (two-phase) heat transfer coefficient at the heated sensor location draws a

larger percentage of the heat out of the center and keeps it from spreading by conduction

to the outlet.

6.3.1.2 Case 1b (Central Streamwise Hotspot)

The next heating profile tested was with a central streamwise hotspot, with only

the five streamwise heater elements located along the center of the heat sink powered. In

the streamwise direction, the largest heat flux occurs at the inlet; while the heat flux has a

local peak at the location of boiling, the global maximum occurs at the inlet due to

entrance effects. As in Case 1a, there is significant lateral conduction through the chip,

and the remaining 20 sensors have small positive heat fluxes ranging from 0.80 W/cm2 to

4.37 W/cm2 at a total power input of 25.6 W. The heat flux to the fluid is plotted across

the central transverse temperature sensors for increasing power input levels in Figure 6.7a.

The trends in the flow direction along the single strip of active heaters closely resemble

the uniform heating trends presented later in this chapter for Case 2b; however,

significant differences are observed transverse to the flow direction.

90

As the power input increases, the wall temperature is always highest at the hotspot.

Along the hotspot in the streamwise direction, the highest wall temperature occurs at the

outlet, as would be observed in a uniform heating case under similar conditions. The wall

temperatures measured across the central transverse sensors at increasing input power

levels to the hotspot elements are plotted in Figure 6.7b. The maximum allowable

operating temperature in the chip is reached at a total power input that is lower by 26.6%

for the streamwise hotspot compared to the transverse hotspot, due to the bulk fluid

temperature increase along the flow length in the streamwise case. Along the hotspot, the

fluid temperature reaches the saturation temperature roughly halfway along the flow

length.

Boiling curves (wall heat flux versus excess temperature at the wall) are shown in

Figure 6.8 for sensors 3, 13, and 23. Up to a total power input of 18.4 W, the streamwise

hotspot channels exhibit single-phase operation. The steeper slope for the inlet sensor in

the boiling curve is attributed to entrance effects. Boiling only occurs in the hotspot

channels, and begins at a heat flux of 8.80 W/cm2 and a wall excess temperature of

26.9 °C at the outlet. As the power level increases, the location of incipience of boiling

advances closer to the inlet. As this occurs, the heat flux transferred to the fluid decreases

at the outlet (while the wall temperature upon dryout continues to increase) due to

conduction spreading toward the lower temperature upstream area.

91

6.3.1.3 Case 1c (Inlet Transverse Hotspot)

A transverse hotspot at the inlet, with the first row of elements activated, is

considered net. The heat flux to the fluid is plotted across the central streamwise column

at increasing power input levels in Figure 6.9a. It can be seen that 98% of the input heat

is transferred to the fluid over the heated length, which is the first 2.54 mm, or 20% of the

total flow length (compared to 77.6% for the centrally located heated length in Case 1a).

There is less heat spreading in this case compared to Case 1a due to the absence of an

upstream flow length to contribute to heat spreading. In addition, the fluid reaches the

saturation temperature near the inlet, rendering the downstream portion of the heat sink

less effective. This reduces heat spreading to the downstream locations. The flow length

downstream of the hotspot is longer than in Case 1a, allowing the outlet wall temperature

to decrease below the fluid saturation temperature. The wall temperatures measured along

the central streamwise temperature elements with increasing power input levels are

shown in Figure 6.9b. Boiling curves of the wall heat flux versus the excess wall

temperature are shown in Figure 6.10 for sensors 3, 13, and 23. Boiling begins at the inlet

hotspot at a heat flux of 23.1 W/cm2 and a wall excess temperature of 42.5 ˚C. As in Case

1a, lower power input levels produce bubbly flow while an increased power input leads

to slug flow. At higher power levels, long slugs of vapor form at the hotspot and begin to

condense at the outlet.

92

6.3.2 Case 2: Non-Uniform Peak Heating

The degree of nonuniformity imposed in the distribution of a given total input

power to different portions of the chip is quantified by comparing the amount of peak

heating to the background heating through the parameter

 (6.10)

where refers to the total power input to the heater elements in a region, and refers

to the number of heater elements in that region. The subscripts and refer to the

heater element regions at peak and background power inputs, respectively. With this

definition, a uniform heating case gives = 0 while a hotspot case gives = 1.

6.3.2.1 Case 2a (Non-Uniform Transverse Peak)

For the central transverse peak heating case, 17 discrete values were imposed at

an average constant total input power level of 33.0 W. The total power input for each of

the peak heating cases studied, along with the maximum local heat fluxes for = 1

(hotspot) and = 0 (uniform heating), are summarized in Table 6.2. The heat flux to the

fluid over the flow length for increasing values is shown in Figure 6.11a. As the

difference between the peak and background heater power levels increases (at a constant

total power input), the heat flux to the fluid increases at the central transverse heater

elements. The heat flux upstream of the transverse peak-heated strip is greater than that

downstream due to the higher heat transfer coefficient at the inlet.

93

As the degree of nonuniformity increases, the highest wall temperatures are

seen along the transverse central heater elements; however at very low values of , the

wall temperature is highest at the outlet as would be expected for a uniform heating case

with an increasing streamwise temperature for a single-phase fluid. The wall

temperatures measured along the flow length for increasing values are shown in Figure

6.11b. The maximum wall temperatures range from 128.3 °C for a uniform case to

136.5 °C for = 1, and occur at different locations. In a uniform case the maximum wall

temperature is located at the outlet, while for =1 the maximum wall temperature is

located above the peak heater element.

The heat transfer coefficient was also calculated along the flow length, and is

shown in Figure 6.11c. As the input power nonuniformity increases, the heat transfer

coefficient above the peak-heated region increases. For nonuniformities with > 0.38,

the highest heat transfer coefficient is observed at the transverse central heater elements,

where boiling occurs locally. At the central heater element (sensor 13), the heat transfer

coefficient ranges from 1870 W/m2K for a uniform case to 5970 W/m2K at =1. Boiling

does not occur at the inlet for any of the values investigated, and therefore the heat

transfer coefficient remains unchanged at the upstream locations (sensors 1-10). Once

vigorous boiling starts above the heated strip, the heat transfer coefficient at the outlet

sees a significant drop. This is similar to the effect seen in the corresponding hotspot case,

Case 1a. At large values, more effective heat transfer at the heat sensor locations

reduces the heat available for spreading to the outlet, reducing the local wall temperature

and heat flux in the outlet region, but maintaining a high fluid temperature due to

upstream boiling.

94

Figure 6.12 plots the heat transfer coefficient as a function of temperature

difference between the wall and fluid for sensors 3, 13, and 23. Boiling occurs at the peak

transverse heat input locations for all values greater than zero. Therefore, as the surface

temperature increases with increasing , the heat transfer coefficient at sensor 13

increases significantly, as expected for a boiling regime. The single-phase heat transfer

coefficient at the inlet sensor remains relatively constant. The heat transfer coefficient at

the outlet sensor increases for the early part of the increase in , and subsequently

decreases, even as the wall excess temperature continually decreases. The increase at low

 values occurs because of the relatively constant heat flux transferred to the fluid at that

location due to heat spreading, coupled with a decrease in the difference between the wall

and fluid temperatures. For large values, the heat transfer coefficient reduction is likely

due to a combination of a reduced heat flux (brought about by reduced heat spreading)

and a high local vapor quality at the outlet.

High speed images extracted from videos at different degrees of nonuniformity

are shown in Figure 6.13 for a central transverse peak-heating profile. The images are

extracted from videos recorded at 10,000 frames per second with a shutter speed of 10

kHz. In the figure the degrees of nonuniformity of 0.15, 0.38, 0.66, and 1.0 are shown; a

significant difference in the number of active boiling channels can be seen over this range.

For = 0.15, boiling does not occur in all of the channels, and some channels display

more vigorous boiling than others. As the local heat flux increases, boiling is observed in

more of the channels for = 0.38, and in all of the channels for = 0.66 and for = 1.

Additionally, the location of boiling incipience moves toward the peak-heated sensors as

 increases.

95

6.3.2.2 Case 2b (Non-Uniform Streamwise Peak)

Non-uniform peak heating in the orthogonal direction is tested in Case 2b with a

central streamwise peak. Fifteen discrete values were imposed with a constant total

input power of 24.4 W. As with the transverse peak, the heat transferred to the fluid

peaks at the central streamwise heater elements as the difference between the peak and

background heater power increases. The heat flux to the fluid in the central transverse

heater elements for increasing values is shown in Figure 6.14.

As increases, the wall temperature becomes highest at the central heater

elements, and increases in the streamwise direction. The maximum wall temperature

ranges from 121.2 °C for a uniform case to 138.7 °C for =1. The wall temperatures

measured along the flow length for increasing values are shown in Figure 6.15a. At

low values of , the wall temperature continually increases from inlet to outlet,

indicating single-phase heat transfer. As increases to 0.17, boiling occurs near the

outlet and the wall temperatures for the last two sensors become constant while those

near the inlet continue to rise. As the location of boiling advances toward the inlet (=

0.61), dryout conditions occur at the outlet and the outlet wall temperature begins to rise

again.

As the degree of nonuniformity is increased, the associated spatial variation of

heat transfer coefficient yields insights into the underlying heat transfer mechanisms. The

heat transfer coefficients along the flow length are shown for increasing values in

Figure 6.15b. Initially, for uniform heating conditions (=0), the flow remains entirely

96

in the single-phase regime along the entire channel length. The heat transfer coefficient is

greatest at the inlet (3870 W/m2K) due to entrance effects, and asymptotically decreases

to a fully-developed, constant value (1290 W/m2K). The relative magnitude of this

entrance-effect enhancement is similar to that observed in a previous study [93] for

uniform heating conditions. With an increase in to 0.17, the upstream trend remains

similar; however, boiling incipience occurs near the outlet, and the heat transfer

coefficient increases at this location. As increases further, the location of boiling

incipience advances upstream, and the associated heat transfer coefficient increase

propagates in the same direction. Ultimately, boiling occurs at the inlet, and a maximum

heat transfer coefficient of 4440 W/m2K is observed at this location for = 1. At the

outlet, while the heat transfer coefficient initially increases as boiling occurs and moves

upstream, the heat transfer coefficient decreases as the nonuniformity reaches = 0.61.

This is indicative of partial dryout in the downstream ends of the central channels.

The heat transfer coefficient is shown as a function of the wall excess temperature

in Figure 6.16 for sensors 3, 13, and 23. In this case, boiling begins at the outlet at a low

value of and the location moves upstream at higher values. As the location of

boiling moves upstream, the heat transfer coefficient at the middle sensor increases

sharply. The heat transfer coefficient at the outlet sensor peaks and then begins to

decrease at higher values as the more effective boiling incipience regime moves

upstream. Boiling only occurs at the central strip of streamwise heater elements shown in

the figure.

Images extracted from high-speed videos at different degrees of nonuniformity

are shown in Figure 6.17 for a central streamwise peak-heating profile; degrees of

97

nonuniformity of 0.01, 0.23, 0.61, and 1.0 are shown. Boiling does not occur in all of the

channels for all values of . At high values, significant flow reversal can be seen in

the central channels above the peak-heated sensors, causing flow maldistribution in the

heat sink and partial dryout at the outlet. At these large values the heated channels

contain a very large amount of vapor while neighboring channels exhibit bubbly flow.

Boiling in the channels associated with the peak-heated elements causes an increase in

the local pressure drop, forcing both liquid and vapor bubbles back into the inlet manifold.

Vapor in the inlet manifold reroutes to channels with lower flow resistance where little or

no boiling occurs. A reduced flow rate in the channels above the peak-heated sensors

causes the remaining liquid to vaporize entirely, causing partial dryout. Once a significant

amount of vapor leaves the channel through the outlet, the pressure equalizes, liquid

flows back into the channels above the peak-heated sensors, and the process repeats.

6.4 Conclusions

In this chapter the effects of non-uniform hotspots and heating profiles in a

microchannel heat sink on heat transfer coefficients, wall temperatures, and the location

of boiling incipience were investigated. To properly assess the local heat dissipation

under non-uniform heating conditions, lateral conduction through the microchannel heat

sink base was taken into account. Experimental results show that even with a very thin

substrate, significant lateral conduction occurs in the base of the heat sink.

Single hotspots that span the width or length of a silicon microchannel heat sink

were investigated as a function of increasing local heat flux. In the case of a transverse

hotspot in the center of the heat sink, once boiling begins in the heated sensor location,

98

the wall temperature at the outlet decreases and conduction away from the center is

mitigated due to reduced convection thermal resistance. In the case of a streamwise

hotspot along the central column of the heat sink, conduction causes some lateral heating,

but boiling only occurs in the channels located above the hotspot. In this configuration,

the maximum sustainable total power input achieved is reduced by 26.6% compared to

the transverse hotspot case. In the case of a transverse hotspot located at the inlet,

although the maximum sustainable total power input is similar to the central transverse

hotspot, the local maximum heat flux is increased by 35.7% as a result of significantly

reduced upstream heat spreading. These test cases show that the same total power input

distributed in different locations and configurations across the heat sink can cause

significantly different limits on the maximum heat fluxes and wall temperatures that can

be supported.

A second non-uniform heating condition was investigated to understand the effect

of the degree of nonuniformity imposed in the distribution of a given total input power to

different portions of the chip, by incrementing the nonuniformity between the peak and

background heat flux values. For non-uniform transverse peak-heating profiles, an

increase in the heating nonuniformity results in significant boiling at the location of the

peak heat input, whereas no boiling occurs under uniform heating conditions. For non-

uniform streamwise peak heating profiles, an increase in the heating nonuniformity for a

constant total power input results in boiling at the location of the peak heat input location;

the location of boiling incipience moves upstream as the nonuniformity increases. For

both hotspot and peak heating in the streamwise direction, significant flow reversal is

observed leading to dryout in the channels above the peak heated region. In both cases,

99

the local heat transfer coefficients and wall temperatures deviate significantly from a

uniformly heated case. Local heat flux concentrations result in high local two-phase flow

heat transfer coefficients, but at the expense of increased wall temperatures.

100

Table 6.1. Summary of results for the hotspot heating cases.
 Maximum total

power input (W)
Maximum local
heat flux (W/cm2)

Maximum local wall
temperature (˚C)

Case 1a: Central
transverse hotspot

32.4 24.23 136.9

Case 1b: Central
streamwise hotspot

25.6 16.14 146.3

Case 1c: Inlet
transverse hotspot

35.8 32.89 138.8

Case 1d: Dual
transverse hotspots

65.0 32.21 133.7

101

Table 6.2. Summary of results for the peak heating cases.
 Total power

input (W)
Maximum local heat
flux, =1 (W/cm2)

Maximum local heat
flux, =0 (W/cm2)

Case 2a: Non-uniform
transverse peak

33.0 23.70 8.17

Case 2b: Non-uniform
streamwise peak

24.4 15.29 6.23

102

Figure 6.1. Image of the microchannel test section.

Temperature p

Fluid outlet d ou e

Fluid inlet

Pressure ports P

Microchannel
heat sink

103

Figure 6.2. Images of the 5 × 5 array of heater elements and a schematic diagram of the
microchannel heat sink.

104

Figure 6.3. Schematic diagram of the experimental setup showing the flow loop
components and high-speed visualization optics.

FilterFilter Pump

Fluid
Reservoir

Heat
Exchanger

Flow
Meter

Preheater

Test
Section

High-Speed
Camera

P

T

T

P

P

T

T

T

P

T

To Vacuum
Pump

Bypass
T

T

P

Valve

Metering
Valve

Thermocouple

Pressure
Transducer

105

Figure 6.4. (a) Hotspot, and (b) non-uniform peak-heating profile configurations
investigated.

(a)

(b)

106

Figure 6.5. (a) Local heat flux transferred to the fluid, and (b) wall temperature along the
flow length at increasing power input levels for a central transverse hotspot. The local
quantities are presented for the central streamwise elements, as indicated by the dark
black rectangle in the heater power diagram.

(a)

(b)

Normalized Flow Length

Normalized Flow Length

q w
” [

W
/c

m
2]

T w
 [°

C
]

107

Figure 6.6. Heat flux transferred to the fluid plotted against the wall excess temperature
for sensors 3, 13, and 23 for a central transverse hotspot.

Tw – Tf [°C]

q w
” [

W
/c

m
2]

Increasing Q

Increasing Q

108

Figure 6.7. (a)Local heat flux transferred to the fluid, and (b) wall temperature over the
width of the chip for increasing power levels for a central streamwise hotspot. The local
quantities are presented for the transverse elements, as indicated by the black line on the

heater power diagram.

(a)

(b)
Normalized Flow Length

Normalized Flow Length

q w
” [

W
/c

m
2]

T w
 [°

C
]

109

Figure 6.8. Heat flux transferred to the fluid plotted against the wall excess temperature
for sensors 3, 13, and 23 for a central streamwise hotspot.

Tw – Tf [°C]

q w
” [

W
/c

m
2]

Increasing Q

110

Figure 6.9. (a) Local heat flux transferred to the fluid, and (b) wall temperature over the
length of the chip for increasing power input levels for an inlet transverse hotspot. The

local quantities are presented for the streamwise elements, as indicated by the black line
on the heater power diagram.

(a)

(b)

Normalized Flow Length

Normalized Flow Length

q w
” [

W
/c

m
2]

T w
 [°

C
]

111

Figure 6.10. Heat flux transferred to the fluid plotted against the wall excess temperature
for sensors 3, 13, and 23 for an inlet transverse hotspot.

Increasing Q

Increasing Q
q w

” [
W

/c
m

2]

Tw – Tf [°C]

112

Figure 6.11. (a) Local heat flux transferred to the fluid, (b) wall temperature, and (c) heat
transfer coefficient over the flow length at increasing degrees of nonuniformity between

the heat flux at the peak and the background heater locations for Case 2a.

(a)

(b)

(c)

Normalized Flow Length

Normalized Flow Length

Normalized Flow Length

q w
” [

W
/c

m
2]

T w
 [°

C
]

h
[W

/m
2 K

]

113

Figure 6.12. The heat transfer coefficient as a function of excess wall temperature for
sensors 3, 13, and 23 for Case 2a.

Tw – Tf [°C]

h
[W

/m
2 K

]

Increasing

114

Figure 6.13. Images at increasing values for a central transverse peak extracted from
high-speed video. Red lines indicate the locations of the peak heated sensors.

 0.15 0.38

 0.66 1.0

115

Figure 6.14. The local heat flux transferred to the fluid over the width of the chip at
increasing degrees of nonuniformity between the heat flux at the peak and background

heater location for Case 2b.

Normalized Width

q w
” [

W
/c

m
2]

116

Figure 6.15. (a) Local wall temperature, and (b) heat transfer coefficient over the flow
length at increasing degrees of nonuniformity between the heat flux at the peak and

background heater locations for Case 2b.

(a)

(b)

Normalized Flow Length

Normalized Flow Length

h
[W

/m
2 K

]
T w

 [°
C

]

117

Figure 6.16. The heat transfer coefficient plotted against the wall excess temperature for
sensors 3, 13, and 23 for Case 2b.

Tw – Tf [°C]

h
[W

/m
2 K

]
Increasing

118

Figure 6.17. Images at increase values for a central streamwise peak extracted from
high-speed video. Red lines indicate the locations of the peak heated sensors.

 0.01 0.23

 0.61 1.0

119

CHAPTER 7. COMPUTATIONAL MODEL TO PREDICT NON-UNIFORM
HEATING RESULTS

The effects of non-uniform heating cases other than those presented in the

previous chapters on the thermal performance of a microchannel heat sink is not well

known. Conducting experiments using a large number of non-uniform heating cases to

study the effects on local wall temperatures and heat transfer coefficients is both time

consuming and cumbersome. A simplified computational model that can predict the

effects in a microchannel heat sink allows rapid analysis of multiple different cases. This

chapter presents a computational model that was developed to predict the results obtained

from experiments presented in CHAPTER 6. The model includes three-dimensional (3D)

conduction in the base of the microchannel heat sink, as well as a fin analysis, to

determine the local temperatures and heat fluxes throughout the domain. The results are

then compared to the previously obtained experimental results.

7.1 Modeling and Simulation

A MATLAB [74] code was written in-house to model non-uniform heating in a

microchannel heat sink and can be found in Appendix G. The author would like to thank

Professor Tine Baelmans of KU Leuven for providing some of the logic in the code. A

flow chart of the model algorithm is shown inFigure 7.1. First, the user inputs the

parameters for a case in a graphical user interface (GUI). This includes the dimensions of

120

the microchannel heat sink, flow conditions, and a heating profile. Next, the code

generates a mesh for the conduction domain inside the base of the heat sink. After the

mesh is generated and the variables are initialized, the code loops through calculations of

conduction in the base, pressure drop in each channel, local heat transfer coefficients as

determined from correlation, local wall heat fluxes, and local quality. The code then

checks the maximum change percentage of the temperature in the domain to see if the

solution has converged. Otherwise, it uses the calculated values to initialize a new

iteration. After the solution has converged, the code displays the output using a GUI.

Images of the input and output GUIs are shown in Figure 7.2.

7.1.1 Numerical Methods

The computational model was split into several subfunctions that each perform

different calculations. The portion of the model that calculates 3D conduction in the

substrate uses an energy balance on each cell to calculate the local temperatures in the

domain. Fourier’s Law is used to calculate the conduction between cells. The cells on the

bottom surface (= 0) have a heat flux imposed based on the heating profile specified.

Heat loss from the heat sink is also imposed on these cells. The heat loss from the heat

sink is calculated based on local temperatures using a correlation derived from

experimental data calculated as

 (7.1)

The cells on the side surfaces of the heat sink use a Neumann boundary condition

with the heat flux equal to zero. The cells on the top surface are connected to the channels

where they experience convection with the fluid, and to fins where they experience

121

conduction through the channel walls. Values for the heat transfer coefficient from

previous iteration are used to calculate the local wall heat flux in these cells.

The finite-volume method is used to discretize the energy balance equations used

in the 3D mesh. The general equation for a cell in the domain is represented as

(7.2)

where is the coefficient of the cell in question, is the coefficient of the right

neighbor, is the coefficient of the left neighbor, etc., and is the temperature for

each cell. is the source term representing the heat input, heat loss, or convection.

For a cell on the bottom surface of the domain, this equation can be written and

rearranged as

(7.3)

where is the thermal conductivity of silicon, , , and are the dimensions of each

cell, and is the energy into the cell based on the heating profile.

The system of equations for the 3D domain is solved using a plane-by-plane Tri-

Diagonal Matrix Algorithm (TDMA) method. The TDMA is a form of Gaussian

elimination used to solve a tri-diagonal system of equations exactly [86]. This is the same

method utilized in Section 4.1.

122

7.1.2 Heat Transfer Correlations

The local heat transfer coefficients are calculated using well knowncorrelations

found in the literature that apply to internal flow in microchannels. The correlation by

Lee and Garimella [5] was used for single-phase thermally developing flow and is

calculated as

 (7.4)

This correlation was used until the single-phase flow was determined to be

thermally fully developed. The dimensionless thermal entrance length, , was

calculated with a correlation by Lee and Garimella [94] using the aspect ratio as

(7.5)

Once the single-phase flow was determined to be thermally fully developed, a

correlation by Lee and Garimella [94] was employed and is calculated as

 (7.6)

To determine when the flow through each channel reaches saturation, the local

thermodynamic vapor quality was calculated at each axial location as

 (7.7)

where is the sum of the heat transfer rate to the th channel from the inlet to

location . Once is positive, the flow is considered to be in saturated two-phase flow.

123

A correlation by Bertsch et al. [95] was used for the saturated two-phase flow heat

transfer coefficient and is calculated as

 (7.8)

where is the nucleate boiling heat transfer coefficient from the Cooper correlation

[96] and is the convective heat transfer coefficient. It is calculated using the

vapor quality as

 (7.9)

The liquid and vapor convective heat transfer coefficients are calculated using the

Hausen correlation [97] for developing laminar flow and given as

 (7.10)

where denotes the liquid or vapor phase.

To prevent a large discontinuity in the heat transfer coefficients when moving

between single- and two-phase flow regions, a smoothing function was used and is

calculated as

 (7.11)

where is the heat transfer coefficient calculated for single-phase flow and is the

heat transfer coefficient calculated for two-phase flow. A nondimensional weighting

factor, , is calculated as

 (7.12)

124

where is the current location in the channel, is the location of the onset of

nucleate boiling, and is the location where saturated boiling begins, which is

determined to be where the vapor quality is positive. The superheat criteria to determine

the location of the onset of nucleate boiling is calculated using the correlation by Liu et al.

[4] as

 (7.13)

After the local heat transfer coefficients are calculated, the local wall heat flux is

calculated using a fin analysis. The heat flux to the fluid for a fin is calculated as

 (7.14)

where is the overall surface efficiency calculated as

 (7.15)

which is based on the area of a single fin, , the total heat transfer area, , and the fin

efficiency, , calculated for an adiabatic tip as

 (7.16)

7.1.3 Flow Maldistribution

When non-uniform heating profiles in the streamwise direction are imposed on a

microchannel heat sink, as is the case for a central streamwise hotspot, significant flow

maldistribution is observed to occur between the channels in experiments. At high power

input levels, flow reversal can even be seen in the channels above the hotspot. Cases are

125

performed with and without considering flow non-uniformities to assess the amount of

error introduced into the calculated results.

The flow maldistribution was estimated by image processing high-speed video

frames of boiling in the heat sink. The videos used in the estimation are discussed in

Section 6.3. A modified version of the MATLAB image processing code discussed in

Section 3.2 was utilized for this task. First, each frame is rotated and cropped to the area

of interest. Second, the background is subtracted and the gray-scale image is passed

through a threshold to produce a negative image with increased contrast. Next,

characteristic edges of the two-phase flow are detected using the Canny algorithm

implemented within MATLAB [74] and a binary image is produced. For the image

processing code to calculate a void fraction, the exact air-water interface needs to be

resolved. However, to estimate the flow velocities, the exact liquid-vapor interface is not

needed, but only characteristic shapes of the two-phase flow. Figure 7.3a shows an

example of the characteristic shapes that were detected in one test case. The bubble

velocity in each channel is estimated using a two-dimensional cross-correlation algorithm

within MATLAB between frames. A minimum of 50 sequential frames is used and the

average velocity among the frames is estimated. The average bubble velocity for the test

case is shown in Figure 7.3b. Once the two-phase flow velocity in each channel is known,

the mass flux is estimated. The remaining mass flux is assumed to be evenly distributed

among channels that contain only liquid.

126

7.2 Results and Discussion

The results of the computational model were compared with the experimental

results presented in Section 6.3. Three cases are discussed: a uniform heating profile, a

central transverse hotspot, and a central streamwise hotspot. The central streamwise

hotspot was tested with and without taking flow maldistribution into consideration while

the other cases were tested without flow maldistribution.

The base temperatures, wall heat fluxes, and heat transfer coefficients for a

uniform heating profile with a total power input of 33 W is shown in Figure 7.4. In a

uniform case, the computational model underpredicts the base temperature and

overpredicts the heat transfer coefficient, but the trends for all three values match those

for the experiments. This result is indicative primarily of the accuracy of the heat transfer

coefficient correlations, not the model itself; since all three of these variables are coupled,

a correction in the heat transfer coefficient would ultimately improve the results for the

base temperature.

For the central transverse hotspot case at a power input of 33 W the base

temperatures, wall heat fluxes, and heat transfer coefficients are shown in Figure 7.5. The

computational model matches the experimental results with good agreement. As in the

uniform case, the heat transfer coefficient is overpredicted by the model while the base

temperature is slightly underpredicted. Even though the correlations used to calculate the

heat transfer coefficient were originally developed for a uniformly applied heat flux, the

trends predicted by the model still match the experimental trends well.

The base temperatures, wall heat fluxes, and heat transfer coefficients for a central

streamwise hotspot are plotted in Figure 7.6. The plots show the experimental data as

127

well as the results from the computational model with and without flow maldistribution

taken into account. For the flow maldistribution case, the middle 7 channels located

directly above the hotspot used a mass flux of 75% of the average mass flux in a channel.

The remaining 28 non-boiling channels used a mass flux of 106.25% of the average mass

flux in a channel so that the total mass flux remained the same as in the case without flow

maldistribution. Like the previous cases, the model predicts the trends well, however the

base temperature is still underpredicted while the heat transfer coefficient is

overpredicted. Accounting for decreased flow in the channels above the hotspot improves

the results slightly. Additionally in this case, the flow maldistribution predicts the

location of boiling incipience in the channel further upstream, as observed in the

experiments.

7.3 Conclusions

In this chapter a simple computational model was developed to predict the

thermal performance of a microchannel heat sink exposed to non-uniform heating

profiles. The predictions from the model were compared to experimental data for four

cases with reasonable agreement. While the model underpredicts the base temperatures

and overpredicts the heat transfer coefficients; this is suspected to be due to the accuracy

of the correlations for predicting the heat transfer coefficient under the current

experimental conditions. Results for a central streamwise hotspot were compared with

and without considering flow maldistribution. Taking into account flow maldistribution

in the channels improved the match between the results from the model and experimental

data, demonstrating that large amounts of flow maldistribution cannot be ignored. Even

128

though the model does not fully capture flow instabilities within a microchannel heat sink,

it is still a useful tool for predicting the effects of non-uniform heating on thermal

performance.

129

Figure 7.1. The algorithm used in the computational model.

START

Input Parameters (heat sink
dimensions, fluid conditions,

heating case)

Generate Mesh

Conduction in Base

Calculate
Pressure Drop

Calculate Heat Transfer
Coefficients

Calculate Wall
Heat Fluxes

Calculate
Quality

Output (wall temperatures,
wall heat fluxes, heat

transfer coefficients, quality)

Single-
Phase?

Equation
7.13

No

Yes

Thermally
developing?

Equation 7.4

Yes
Equation 7.6

No

Yes

Equation 7.8

No

No

Equation 7.11

Yes

130

Figure 7.2. The (a) input and (b) output GUIs of the computational model.

(a) (b)

131

Figure 7.3. (a) Characteristic shapes detected to calculate the (b) bubble velocity in each
channel.

(a)

(b)

132

Figure 7.4. (a) The base temperature, (b) wall heat flux, and (c) heat transfer coefficients
for a uniform heating case with a power input of 33 W.

(a)

(b)

(c)

1 6 11 16 21

2 7 12 17 22

3 8 13 18 23

4 9 14 19 24

5 10 15 20 25

Flow direction

Heater Power

133

Figure 7.5. (a) The base temperature, (b) wall heat flux, and (c) heat transfer coefficients
for a central transverse hotspot with a power input of 33 W.

(a)

(b)

(c)

1 6 11 16 21

2 7 12 17 22

3 8 13 18 23

4 9 14 19 24

5 10 15 20 25

Flow direction

Heater Power

134

Figure 7.6. (a) The base temperature, (b) heat transfer coefficients, and (c) wall heat flux
for a central streamwise hotspot with a power input of 24.4 W with and without flow

maldistribution.

1 6 11 16 21

2 7 12 17 22

3 8 13 18 23

4 9 14 19 24

5 10 15 20 25

Flow direction

Heater Power

(a)

(b)

(c)
1 6 11 16 21

2 7 12 17 22

3 8 13 18 23

4 9 14 19 24

5 10 15 20 25

Flow direction

Heater Power

135

CHAPTER 8. EFFECTS OF NON-UNIFORM HEATING ON THE CRITICAL HEAT
FLUX

The demanding performance, weight, and size constraints placed on modern

electronics systems has driven packages and components increasingly thinner and more

compact; incorporation of thick heat spreaders to mitigate propagation of heat generation

non-uniformities is an obsolete thermal management strategy in high-performance

systems. Instead, non-uniform heat flux profiles must be directly accommodated by the

heat sink. Microchannel heat sinks are an excellent choice due to their ability to handle

high heat fluxes, but an improved understanding of the effects of non-uniform heating

profiles on the heat dissipation limits of microchannel heat sinks is needed to address

these thermal packing trends. This chapter studies the location and magnitude of the

critical heat flux in a microchannel heat sink with several canonical hotspot heating cases.

This work gives a better understanding of how non-uniform heating profiles change the

critical heat flux as compared to a uniform case. The material in this chapter was

submitted to be considered for publication in the International Journal of Micro-Nano

Scale Transport.

136

8.1 Experimental Methods

8.1.1 Test Section

The microchannel test section used in the current study is the same as that

described in Section 6.1.1 and is shown as an inset in the flow loop schematic diagram

Figure 8.1, a summary of the details are provided here. The working fluid routes through

a silicon microchannel heat sink with a base area of 12.7 mm × 12.7 mm via a transparent

manifold cover plate made of polycarbonate. The silicon heat sink is mounted directly on

a printed circuit board (PCB) that is connected to an electrical quick-connect board; a

G10 glass-epoxy composite layer is placed in between the PCB and quick-connect board

as thermal insulation. A 0.8 mm-thick silicone rubber sheet is sandwiched between the

microchannel heat sink and cover plate to insulate the polycarbonate from thermal

damage (rated to a temperature of 115-130 °C), and forms a seal from the cover plate to

the top walls of the microchannel fins to prevent cross flow between the channels. The

manifold has inlet and outlet header sections, each with a flow length of 10 mm, width of

12.7 mm, and height of approximately 1.4 mm.

The silicon heat sink is manufactured by cutting microchannels in parallel into the

top surface of a 650 μm-thick chip via a dicing saw. A single heat sink with 35

microchannels is used in the current study; the channel widths are 240 μm, channel

depths are 370 μm, and fin widths are 110 μm. The channels were cut with multiple

passes creating waviness on the bottom channel surface. The average roughness of a

single cut is 0.2 μm, and the overall average surface roughness of the bottom of the

channels is 0.82 μm. The sides of the channels have a surface roughness of 0.1 μm [9].

137

A 5 × 5 array of resistance heaters and temperature-sensing diodes is located on

the bottom side of the heat sink. The equivalent individual heater resistances allow a

single voltage to be applied in parallel to produce a uniform flux over the desired area.

Connector pins are used to connect a DC voltage power supply to specific heaters to

provide customized, non-uniform heating profiles to the underside of the microchannel

heat sink. From the applied voltage, the local temperature at each diode and heat

generated by the resistors are calculated based on a calibration of the resistance of each

sensor. Details about the calibration procedure for each sensor is found in [9].

To prevent damage to the test chip while investigating CHF, a cutoff sensor is

connected to the power supply. When the sensor detects a chip temperature above a

preset threshold, the power supply is almost immediately (within a few milliseconds)

disconnected from the heaters. The preset threshold was chosen as the upper limit of safe

operating temperatures for the test chip, approximately 140 °C.

8.1.2 Flow Loop

The experimental flow loop is a modified version of that described in Section

8.1.2, and a schematic diagram is shown in Figure 8.1. A Micropump 415A magnetically

coupled gear pump circulates the dielectric fluid HFE-7100 through the loop and a

preheater warms the fluid to the desired test section inlet temperature. The fluid HFE-

7100 was chosen for its low boiling point (61 °C at 1 atm) so that experiments can be run

up to CHF within the safe operating temperature range of the test chip; note this is a

different fluid than that used previously in [88]. A liquid-to-air heat exchanger is placed

downstream of the test section to cool the fluid before reentering the reservoir. The liquid

138

flow rate is measured using a 20-200 mL/min McMillan S-114 microturbine flow meter.

The fluid temperature is measured using T-type thermocouples upstream of the preheater,

upstream and downstream of the test section, and downstream of the heat exchanger. The

inlet pressure is measured using a 0-30 psia Gems Sensors 2200 series pressure

transducer. The pressure drop across the test section is measured using a 0-10 psi Omega

PX2300 series differential pressure transducer.

High-speed videos viewing normal to the top of the heat sink are captured using a

Photron Fastcam Ultima APX high-speed digital video camera combined with a Nikon

AF Micro-Nikkor 200 mm IF-ED lens. The microchannel heat sink is illuminated using a

Sunoptic Technologies Titan 300 xenon arc lamp. High-speed videos are captured at

8,000 frames per second using a shutter speed of 8 kHz.

8.1.3 Test Procedure

Prior to collecting data, the fluid is degassed using a vacuum pump connected to

an expandable reservoir. The expandable reservoir design is detailed in [90]. At ambient

temperature and pressure, HFE-7100 contains 53% air by volume [98].The expandable

reservoir is first fully expanded to create a gas space at the top. A vacuum pump is used

to produce a vacuum pressure equal to the vapor pressure of the fluid for 2 min to remove

the combination of air and HFE-7100 vapor that has collected in the gas space. The

expanded reservoir is then left at a vacuum pressure for at least one hour to allow the

dissolved air to diffuse from the liquid into the gas space. The process is repeated until

the vacuum pressure in the reservoir is constant with time, which indicates that air is no

longer diffusing out of the liquid. The fluid is then cycled through the flow loop and the

139

process is repeated to ensure that all air is removed from the system. The fluid is

considered fully degassed once the measured fluid temperature at incipience is equal to

the saturation temperature of HFE-7100 when boiled in the preheater.

Experiments in the current study are performed at a single mass flux of 797

kg/m2s. After a constant flow rate is maintained, the fluid is preheated to a test section

inlet temperature of approximately 50.8 °C that remains fixed throughout the test. The

expandable reservoir is allowed to expand freely in order to maintain a relatively constant

system pressure near atmospheric.

Power is supplied to individual heating elements to simulate various hotspot

configurations. The total power supplied to these heating elements is incremented from

zero until the critical heat flux is reached. At each power input level, the system is

allowed to reach steady state before moving on to the next. When CHF is reached, the

local temperature rapidly increases and the cutoff sensor is triggered. When the cutoff is

triggered the first time, the total power supplied is noted and the system is reset. After the

system is reset, the power input is set to just below the level that first triggered the cutoff,

such that CHF can be approached in fine power input increments. After successive

honing in on the power input nearing CHF, the system is allowed to reach steady state at

a heater power at which any perceptible increase will cause it to reach CHF. This

procedure provides an accurate measurement of CHF and the system conditions just

below CHF. Transient CHF data is not included due to the limited frequency of the chip

temperature measurements. High-speed videos of the microchannel heat sink are

recorded while CHF is reached to visually capture the phenomenon.

140

The cutoff sensor conveniently allows repeated activation of critical heat flux

using a single test chip without damage. A test chip was sacrificed to demonstrate the

damage done if CHF is allowed to occur uninterrupted. Fifteen of the temperature sensors

were permanently damaged and the silicon heat sink itself was cracked. Images of an

undamaged test piece and a test piece damaged by CHF are shown in Figure 8.2.

8.1.4 Data Reduction

Local heat fluxes, wall temperatures, and fluid temperatures are measured for all

data at steady state. The data reduction method briefly summarized here is the same as

that used in Section 6.2; fluid properties have been updated to account for the change in

fluid from FC-77 to HFE-7100. This process takes into account heat spreading that

occurs within the heat sink base for cases with non-uniform heating. A MATLAB script

of the data reduction process can be found in Appendix C.

The net local heat transfer rate from the microchannel heat sink to the fluid is

calculated based on an energy balance for each heating element which consists of the

energy generated, the heat loss, and lateral conduction between elements as

 (8.1)

The test section heat loss is calibrated as a function of the base temperature. A

complete description of the calibration procedure is found in [91]. Lateral conduction that

occurs when non-uniform heating profiles are imposed is calculated between elements as

 (8.2)

where the total net conduction depends on the four neighboring elements to heater .

141

The bulk fluid temperature above each heating element in single-phase flow is

calculated as

 (8.3)

where represents the sum total of net heat transferred to the fluid from the inlet

to the heating element in question. After sufficient sensible heating to the saturation

temperature, the fluid temperature is then maintained equal to the saturation temperature

at the local pressure.

A corrected local wall temperature is calculated based on the measured diode

temperature by accounting for conduction through the base of the microchannel heat sink

and is calculated as

 (8.4)

The local base heat flux is calculated using the local net heat transfer rate as

 (8.5)

The local heat flux transferred to the fluid is also calculated using the local net

heat transfer rate and is based on the wetted area of the channels as

 (8.6)

8.1.5 Test Cases

A variety of non-uniform heating profiles were investigated and are shown in

Figure 8.3. Heaters in the hotspot locations (displayed in red) are turned on while the

142

remainder (displayed in gray) are powered off. The first case is a uniformly heated profile

that serves as a basis of comparison for the remaining non-uniform cases. The next three

cases correspond to hotspots that span the width of the heat sink in the transverse

direction, placed at the inlet, center, and outlet of the flow path. The next case

corresponds to a centered hotspot that spans the length of the heat sink in the streamwise

direction. The last case corresponds to two transverse hotspots located at the inlet and

outlet.

8.2 Results and Discussion

The total power input, local heat flux, and maximum wall excess temperature at

the critical heat flux are summarized for all cases in Table 8.1. Selected cases from this

table will be analyzed in greater detail in subsequent paragraphs to illustrate the key

effects of non-uniform heating on CHF observed. Figures containing the full dataset can

be found in Appendix F. For all cases, the local heat flux and wall temperature are

maximum above the active heater elements, as expected. The influence of non-uniform

heating on the trends in local wall temperatures, heat fluxes, and heat transfer coefficients

leading up to CHF are explained in detail in Section 6.3. Interested readers should refer to

this previous section for detailed discussion of these trends; the discussion herein is

exclusive to the influence on CHF (note that a different working fluid is used in the

current chapter).

Boiling curves for a central transverse hotspot (sensors 11-15) and a central

streamwise hotspot (sensors 3, 8, 13, 18, and 23) are shown in Figure 8.4. These curves

are produced using the local heat flux transferred to the fluid and the local wall excess

143

temperature. For single-phase flow, the wall excess temperature is calculated using the

local bulk fluid temperature, and for two-phase flow it is calculated using the saturation

temperature.

In the central transverse hotspot case, the wall excess temperature initially

increases with a constant slope as the heat flux is increased. This reflects the relatively

constant heat transfer coefficient characteristic of single-phase flow. The lines for all

heated sensors overlap in this region. Boiling incipience is indicated by the wall

temperature reduction and increased slope of the lines, and is confirmed in the high-speed

videos. In the two-phase region, lines corresponding to the three middle sensors overlap

(12-14); the two sensors on the boundaries (11 and 15) show a larger wall excess

temperature. In this case, CHF occurs above sensor 15 on the boundary; as CHF is

approached, a simultaneous decrease in the heat flux transferred to the fluid and increase

in wall excess temperature is observed. This behavior aids identification of the general

location of CHF for all cases; the exact location is confirmed using visual evidence from

the high-speed imaging. Throughout this study, CHF typically occurs in a location near

the lateral boundaries of the microchannel heat sink (unless that area is not heated). This

location can be confirmed for all cases via high-speed images and the boiling curve (as

was demonstrated for the central transverse case here). It is likely that CHF occurs in

these locations because of maldistribution caused by the inlet manifold geometry that

reduces the flow into these channels [99].

High-speed images during the period where the temperature cutoff is triggered are

shown in Figure 8.5; CHF is determined to occur in the bottommost channel in the

images. The images show a portion of the flow length across the chip and only the 4

144

channels nearest the edge of the heat sink over hotspot sensor 15. At time = 0 ms, the

system is at a stable point just prior to the occurrence of CHF. In the bottommost channel,

small bubbles nucleate over the hotspot, grow, and are carried downstream. A short time

later (= 44.9 ms), CHF is reached and larger bubbles form in the channel which

coalesce to form a larger vapor region. This vapor region quickly expands in both

directions until the channel is almost completely full of vapor (= 50.5 ms). This sudden

vapor expansion causes a local rapid temperature increase and triggers the cutoff sensor.

Additionally, the local pressure within the channel increases preventing liquid from

entering and creating local flow reversal. After the power is cut off and the pressure in

the bottom channel has equalized, liquid is allowed to flush through the channel and the

wall temperature is reduced (= 58.5-82.4 ms). Sudden vapor expansion is characteristic

of CHF for all cases; however, it was most cleanly observed in the high-speed videos of

the central transverse hotspot case.

Boiling curves for the central streamwise hotspot case are shown in Figure 8.4b.

Like the central transverse hotspot case, a single-phase region with constant slope is

observed. This slope is largest for the heater furthest upstream (sensor 3), corresponding

to the higher heat transfer coefficient in the entrance region of thermally developing flow,

and decreases for sensors successively downstream. Once again, boiling incipience is

indicated when the slope of the lines change, as is confirmed with high-speed videos. In

this case, since the entire flow path of the middle channels over the hotspot is heated, the

behavior is expected to be similar to a uniformly heated case where CHF always occurs

at the outlet [54]. In the case of the central streamwise hotspot, the temperature rise from

sensors 3 to 8 in the upstream portion of the heat sink generally follows the trends for a

145

uniform heating case, however rapid vapor expansion leads to a rapid temperature

increase (i.e., CHF) slightly upstream of the outlet, above sensor 18. This is reflected in

the boiling curve where the largest wall excess temperature is measured at sensor 18 and

corresponds with a drop in the heat flux transferred to the fluid. High-speed video

evidence for this case also indicates that bidirectional vapor expansion in the channels

begins upstream of the outlet, centered over sensors 13 and 18. In this study, CHF always

occurs within the footprint of the hotspot, and unlike uniform heating, does not

necessarily occur at the outlet (even if it is part of the hotspot).

The boiling curve results showed that the location where the cutoff sensor triggers,

considered the location where CHF occurs, is strongly dependent on the heating profile.

Further interrogation of the data shows that the maximum wall excess temperature at

CHF also varies significantly based on the heating configuration and ranges from 54.1 °C

to 73.9 °C, as seen in Table 8.1. One mechanism for these differences is heat spreading in

the substrate. Transverse hotspot cases conduct heat through the silicon substrate both up

and downstream; streamwise hotspot cases conduct heat transverse to the flow direction

between channels. Another possible mechanism for this difference is advection of heated

fluid to non-heated regions within a channel. Since transverse hotspot cases allow for this

to happen, it is expected that a transverse hotspot would see lower maximum wall excess

temperatures at CHF as compared to streamwise and uniform heating profiles, where

heated fluid continues to flow over downstream heated regions. In fact, the only cases

where this is true lack a hotspot at the outlet of the heat sink. The two transverse cases

that have active heaters at the outlet, viz., a transverse hotspot at the outlet and the dual

146

transverse hotspots, have wall excess temperatures similar in magnitude to that of a

uniformly heated case.

To explore the effect of a hotspot with the same basic heating profile placed in

different locations on the heat sink, a transverse hotspot was investigated at inlet, central,

and outlet locations along the microchannel flow path. The differences between these

three cases are summarized in Table 8.1. Critical heat flux is reached at the highest base

heat flux of total power input (61.3 W) when the hotspot is located in the center (not to be

confused with the highest local wall flux). This is because heat has a path to spread both

up and downstream to non-heated regions within the heat sink, whereas the inlet and

outlet cases limit heat spreading to one direction. When the hotspot is moved to the outlet

or inlet, CHF is reached at a lower total power input.

The local wall critical heat flux itself also varies based on the streamwise location

of the transverse hotspot, and is indicative of the different hydrodynamics for each

location at CHF. Temperature and heat flux maps of the three transverse hotspot cases at

CHF are shown in Figure 8.6. The location where CHF occurs is marked with an “X”.

When the hotspot is located at the outlet, the local critical heat flux is the lowest of the

three cases at 29.7 W/cm2. When the hotspot is at the inlet, the local critical heat flux of

53.4 W/cm2 is the highest for all the cases tested. In general, the critical heat flux

decreases as the hotspot moves downstream, and the wall excess temperature increases.

The reason for this behavior has to do with the ability of the location of the hotspot to

communicate with the inlet manifold. When the hotspot is located at the inlet, quickly

expanding vapor regions more easily are able to reverse back into the manifold, which

allows fresh liquid to enter the channel before thermal runaway. When the hotspot is

147

located further downstream, vapor that may expand upstream must travel a longer

distance to reach the inlet manifold. In the current study, the expanding vapor region was

never observed to reach the inlet manifold in either the central or outlet transverse hotspot

cases; the critical heat fluxes are hence decreased compared to the inlet case.

8.3 Design Principles

When designing a microchannel heat sink for a given non-uniform heating

configuration, there are a few generic design principles that should be followed. First, the

heat sink should be oriented so that the hotspot is located at the inlet. This will increase

the critical heat flux and recuce the wall excess temperature. Second, the heat sink should

be oriented so that as many channels as possible are located above the hotspot, in a

transverse configuration. This will reduce the flow maldistribution in the heat sink and

prevent a decrease in the critical heat flux. Third, the heat sink should be oriented so that

the heated length imposed on the channels is minimized. If the hotspot cannot be

distributed amongst all of the channels, reducing the heated length will reduce the flow

maldistribution and mitigate any decrease in the critical heat flux.

8.4 Conclusions

The effects of non-uniform heating profiles on the location and conditions for the

critical heat flux in a microchannel heat sink were investigated. Local wall temperatures,

local wall heat fluxes, and total power input were measured using an array of embedded

temperature sensors and high-speed videos were obtained. Hotspots that spanned the

148

width or length of a silicon microchannel heat sink were explored by increasing the

supplied input power until CHF was achieved.

In terms of the total power input necessary to reach CHF, a central streamwise

hotspot is the worst case tested. Transverse hotspots generally have a larger total power

input than a streamwise hotspot at CHF; the maximum power input is dissipated at CHF

when a transverse hotspot is located in the center of the flow length, due to the auxiliary

capability to conduct heat upstream and downstream. It was found that the central

streamwise case yielded the lowest critical heat flux and largest maximum wall excess

temperatures at CHF in comparison to all transverse cases. This is due to active heaters

present along the entire flow length of the heat sink creating flow maldistribution among

the channels. The transverse hotspot cases produced higher critical heat fluxes and lower

maximum wall excess temperatures at CHF; the critical heat flux decreased and

temperature increased as the hotspot moved from the inlet to the outlet. The high critical

heat flux and low wall excess temperature that occurs when the hotspot is located at the

inlet is attributed to the ability for expanding vapor regions to communicate with the inlet

manifold.

The critical heat flux was identified based on trends in the boiling curves and a

rapidly increasing local wall temperature that tripped a power supply cutoff sensor; the

location of critical heat flux was confirmed via high-speed movies. A rapid vapor

expansion in one or more channels above the hotspot leads to CHF. The location of CHF

depended on the heating configuration and only occurred at the location of the hotspot,

and not necessarily at the outlet. Furthermore, in the current study, CHF typically

occurred in channels within the regions of the hotspot located on the lateral boundaries of

149

the heat sink. The repeatable occurrence of CHF in these same channel locations is very

likely due to slight flow maldistribution caused by the inlet manifold geometry. Thus, the

location of CHF can be anticipated based on a combination of the heating profile and

flow maldistribution between the channels.

150

Table 8.1. Summary of results for all test cases.
 Total power input

at CHF (W)
Local heat flux
at CHF (W/cm2)

Maximum wall excess
temperature at CHF (°C)

Uniform 137.2 14.2 67.0
Inlet transverse 57.2 53.4 54.1
Central transverse 61.3 42.8 62.5
Outlet transverse 44.8 29.7 67.4
Central streamwise 34.9 8.7 73.9
Dual transverse 89.7 25.9 65.9

151

Figure 8.1. Schematic diagram of the flow loop; a photograph of the microchannel test
section is inset.

FilterFilter Pump

Fluid
Reservoir

Heat
Exchanger

Flow
Meter

Preheater

Test
Section

High-Speed
Camera

P

T

T

P

P

T

T

T

P

T

To Vacuum
Pump

Bypass

T

T

P

Valve

Metering
Valve

Thermocouple

Pressure
Transducer

Bypass

Test Section

152

Figure 8.2. The microchannel heat sink and corresponding backside PCB traces shown
for (a) an undamaged test chip and (b) a test chip damaged after CHF. Red lines indicate

the location of the heat sink on the opposite side of the PCB to scale.

(a)

(b)

153

Figure 8.3. Non-uniform heating profiles investigated in the current study.

1 6 11 16 21

2 7 12 17 22

3 8 13 18 23

4 9 14 19 24

5 10 15 20 25

1 6 11 16 21

2 7 12 17 22

3 8 13 18 23

4 9 14 19 24

5 10 15 20 25

1 6 11 16 21

2 7 12 17 22

3 8 13 18 23

4 9 14 19 24

5 10 15 20 25

1 6 11 16 21

2 7 12 17 22

3 8 13 18 23

4 9 14 19 24

5 10 15 20 25

1 6 11 16 21

2 7 12 17 22

3 8 13 18 23

4 9 14 19 24

5 10 15 20 25

Flow direction

Uniform
heating

1 6 11 16 21

Central transverse
hotspot

Inlet transverse
hotspot

1 6 11 16 21

Outlet transverse
hotspot

Central streamwise
hotspot

Dual transverse
hotspot

1 6 11 16 21

2 7 12 17 22

3 8 13 18 23

4 9 14 19 24

5 10 15 20 25

154

Figure 8.4. Heat flux transferred to the fluid plotted against the wall excess temperature

for (a) a central transverse hotspot and (b) a central streamwise hotspot. “X” indicates the
location of CHF.

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

Twall-Tf [C]

q" w
[W

/c
m

2]

3 8 13 18 23

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

Twall-Tf [C]

q" w
[W

/c
m

2]

11
12
13
14
15

(a)

(b)

1 6 11 16 21

2 7 12 17 22

3 8 13 18 23

4 9 14 19 24

5 10 15 20 25

Flow direction

Heater Power

1 6 11 16 21

2 7 12 17 22

3 8 13 18 23

4 9 14 19 24

5 10 15 20 25

Flow direction

Heater Power

155

Figure 8.5. High-speed images recorded at 8000 frames per second for a central

transverse hotspot at CHF. Flow goes from left to right; the hotspot is indicated by the
red dashed lines. Vapor expands rapidly in the bottommost channel (maximum upstream

distance at = 50.5 ms) at CHF before the heater power is cut off.

(a) t = 0

(b) t = 44.9 ms

(c) t = 50.5 ms

(d) t = 58.5 ms

(e) t = 82.4 ms

156

Figure 8.6. Wall excess temperature map for (a) inlet transverse, (b) central transverse,
and (c) outlet transverse hotspot heating cases at CHF. Heat flux map for (d) inlet

transverse, (e) central transverse, and (f) outlet transverse hotspot heating cases at CHF.

Flow direction

(°C)
0 7035

0 6030
(W/cm2)

(a) (b) (c)

(d) (e) (f)

157

CHAPTER 9. CONCLUSIONS AND RECOMMENDATIONS

The main conclusions of this thesis are summarized in this chapter and

recommendations for future work are provided.

9.1 Conclusions

In this work, two-phase flow in a microchannel heat sink was investigated.

Experimental and numerical investigations of an impedance-based sensor were

performed to measure the void fraction in air-water adiabatic flow in a square

microchannel. Both crosswise and streamwise electrode configurations were examined

and the void fraction was estimated using image analysis of high-speed videos.

Additionally, an experimental study of the effects of non-uniform heating on a

microchannel heat sink was performed. Several canonical hotspot and non-uniform peak

heating cases were tested and the local wall temperatures, heat fluxes, and heat transfer

coefficients were obtained. High-speed videos of boiling in the heat sink were also

captured. A simple computational model was developed to predict the thermal

performance of a microchannel heat sink exposed to non-uniform heating profiles and the

predictions were compared to the obtained experimental data. Finally, an experimental

study was performed to determine the effects of hotspots on the location and magnitude

of the critical heat flux in a microchannel heat sink. Major findings of this thesis include:

158

1. The calculated time-averaged void fraction shows reasonable agreement with

those predicted by the homogeneous equilibrium and drift-flux models.

2. The impedance void fraction meter measurement techniques can be used to

study non-adiabatic and boiling flows with similar crosswise electrode

geometry as long as changes in electrical properties of the fluid with

temperature are taken into account.

3. The relationship between the void fraction and measured impedance is non-

linear for all cases tested.

4. The shape and distribution of voids had no significant effect on simulated

impedance for voids modeled in parallel.

5. A clear dependence on the fluid electrical conductivity was observed and an

optimal range between 100 and 175 S/cm was found for electrodes placed in

a streamwise configuration.

6. For non-uniform heating in microchannel heat sinks, experimental results

show that even with a very thin substrate, significant lateral conduction occurs

in the base.

7. For a central streamwise hotspot, the maximum sustainable total power input

achieved is reduced by 26.6% compared to a central transverse hotspot.

8. For a transverse hotspot located at the inlet, although the maximum

sustainable total power input is similar to that of a central transverse hotspot

case, the local maximum heat flux is increased by 35.7% as a result of

significantly reduced upstream heat spreading.

159

9. The same total power input distributed in different locations and

configurations across the heat sink can cause significantly different limits on

the maximum heat fluxes and wall temperatures that can be supported.

10. For a non-uniform transverse peak-heating profile, an increase in the heating

nonuniformity results in significant boiling at the location of peak heat input,

whereas no boiling occurs under uniform heating conditions.

11. Taking into account flow maldistribution improved the match between the

computational model and experimental data; large amounts of flow

maldistribution cannot be ignored.

12. Of all the cases tested, a central streamwise hotspot is the worst case; it

yielded the lowest critical heat flux and largest maximum wall excess

temperature at CHF.

13. Active heaters present along the entire flow length of the heat sink create flow

maldistribution among the channels and lowers the critical heat flux.

14. As a transverse hotspot is moved from the inlet to the outlet, CHF decreases

and the maximum wall excess temperature increases.

15. A rapid vapor expansion in one or more channels above the hotspot leads to

CHF.

16. The location of CHF depends on the heating configuration and only occurs at

the location of the hotspot, and not necessarily at the outlet.

9.2 Suggestions for Future Work

Potential future work following that described in this thesis include:

160

1. The development of a critical heat flux correlation for non-uniform heating in

a microchannel heat sink. The correlations for CHF found in the literature

were all developed under uniform heating conditions. The experimental

results showed a large difference in the local heat flux between uniform and

non-uniform cases; current models cannot accurately predict the magnitude or

the location of CHF. Once a correlation is developed, it can be implemented

in the computational model for improved results.

2. Perform experiments to measure the pressure drop in each channel of a

microchannel heat sink in order to better calculate flow maldistribution. Both

the experiments and computational model show that when analyzing the

thermal performance of a microchannel heat sink significant flow

maldistribution cannot be ignored. Although the flow non-uniformities can be

estimated using image analysis of high-speed videos, a more robust model

based on local pressure drop is desired both for accuracy and for ease of

measurement.

3. Incorporate improved heat transfer coefficent correlations into the

computational model for improved results. The correlations for heat transfer

coefficient used in the computational model were all derived for uniform

heating conditions. An improved correlation either found in the literature or

developed from experimental data presented in this thesis that takes into

account the nuances of non-uniform heating will greatly improve the results of

the computational model.

161

LIST OF REFERENCES

161

LIST OF REFERENCES

[1] A. Serizawa, Z. Feng, Z. and Kawara, 2002, “Two-phase flow in microchannels,

Experimental Thermal Fluid Sciences, 26, pp. 703-714.

[2] X. Yang, J. Schlegel, Y. Liu, S. Paranjape, T. Hibiki and M. Ishii, 2012,
“Measurement and modeling of two-phase flow parameters in scaled 8x8 BWR
rod bundle,” International Journal of Heat and Fluid Flow, 34, pp. 85-97.

[3] E.S. Rosa, B.F. Flora and M.A.S.F. Souza, 2012, “Design and performance prediction
of an impedance void meter applied to the petroleum industry,” Measurement
Science and Technology, 23, pp. 1-14.

[4] D. Liu, P.S. Lee and S.V. Garimella, 2005, “Prediction of the onset of nucleate
boiling in microchannel flow,” International Journal of Heat and Mass Transfer,
48, pp. 5134-5149.

[5] P.S. Lee and S.V. Garimella, 2008, “Saturated flow boiling heat transfer and pressure
drop in silicon microchannel arrays,” International Journal of Heat and Mass
Transfer, 51, pp. 789-806.

[6] S.S. Bertsch, E.A. Groll and S.V. Garimella, 2009, “Effects of heat flux, mass flux,
vapor quality, and saturation temperature on flow boiling heat transfer in
microchannels,” International Journal of Multiphase Flow, 35, pp. 142-154.

[7] R. Revellin and J.R. Thome, 2008, “A theoretical model for the prediction of the
critical heat flux in heated microchannels,” International Journal of Heat and
Mass Transfer, 51, pp. 1216-1225.

[8] A. Kosar, 2009, “A model to predict saturated critical heat flux in minichannels and
microchannels,” International Journal of Thermal Sciences, 48, pp. 261-270.

[9] T. Harirchian and S.V. Garimella, 2008, “Microchannel size effects on local flow
boiling heat transfer to a dielectric fluid,” International Journal of Heat and Mass
Transfer, 51, pp. 3724-3735.

162

[10] T. Harirchian and S.V. Garimella, 2009, “Effects of channel dimension, heat flux

and mass flux on flow boiling regimes in microchannels,” International Journal of
Multiphase Flow, 35, pp. 349-362.

[11] T. Harirchian and S.V. Garimella, 2010, “A comprehensive flow regime map for
microchannel flow boiling with quantitative transition criteria,” International
Journal of Heat and Mass Transfer, 53, pp. 2694-2702.

[12] G.F. Hewitt, 1983, “Two-phase flow and its applications: past, present and future,”
Heat Transfer Engineering, 4, pp. 67-79.

[13] C.B. Sobhan and S.V. Garimella, 2001, “A comparative analysis of studies on heat
transfer and fluid flow in microchannels,” Microscale Thermophysics
Engineering, 5, pp. 293-311.

[14] S.V. Garimella and C.B. Sobhan, 2003, “Transport in microchannels – a critical
review,” Annual Review of Heat Transfer, 13, pp. 1-50.

[15] S.S. Bertsch, E.A. Groll and S.V. Garimella, 2008, “Review and comparative
analysis of studies on saturated flow boiling in small channels,” Nanoscale
Microscale Thermophysical Engineering, 12, pp. 187-227.

[16] A. Kawahara, M. Sadatomi, and K. Kumagae, 2006, “Effects of gas-liquid
inlet/mixing conditions on two-phase flow in microchannels,” Progress in
Multiphase Flow Research, 1, pp. 197-203.

[17] A. Kawahara, M. Sadatomi, K. Nie, and H. Matsuo, 2009, “Experimental study on
bubble velocity, void fraction and pressure drop for gas-liquid two-phase flow in
a circular microchannel,” International Journal of Heat and Fluid Flow, 30, pp.
831-841.

[18] M. Kawaji, A. Kawahara, K. Mori, M. Sadatomi, and K. Kumagae, 2006, “Gas-
liquid two-phase flow in microchannels: the effects of gas-liquid injection
methods,” in Proceedings of the 18th National and Sevelth ISHMT-ASME Heat
Transfer.

[19] J.C. Asali, T.J. Hanratty and P. Andreussi, 1985, “Interfacial drag and film height in
vertical annular flow,” AIChE Journal, 31, pp. 895-902.

[20] P. Andreussi, A. Di Donfrancesco and M. Messia, 1988, “An impedance method for
the measurement of liquid hold up in two-phase flow,” International Journal of
Multiphase Flow, 14, pp. 777-785.

[21] N.A. Tsochatzidis, T.D. Karapantios, M.V. Kostoglou and A.J. Karabelas, 1992, “A
conductance method for measuring liquid fraction in pipes and packed beds,”
International Journal of Multiphase Flow, 5, pp. 653-667.

163

[22] M. Fossa, 1998, “Design and performance of a conductance probe for measuring the

liquid fraction in two-phase gas-liquid flows,” Journal of Flow Measurement and
Instrumentation, 9, pp. 103-109.

[23] Y. Mi, M. Ishii, and L.H. Tsoukalas, 1998, “Vertical two-phase flow identification
using advanced instrumentation and neural networks,” Nuclear Engineering and
Design, 184, pp. 409-420.

[24] M.W.E. Coney, 1973, “The theory and application of conductance probes for the
measurement of liquid film thickness in two-phase flow,” Journal of Physics E
(Scientific Instruments), 6, pp. 903-911.

[25] M. Wang, W. Yin and N. Holliday, 2002, “A highly adaptive electrical impedance
sensing system for flow measurement,” Measurement Science and Technology,
13, pp. 1884-1889.

[26] M.J. Da Silva, E. Schleicher and U. Hampel, 2007, “Capacitance wire-mesh sensor
for fast measurement of phase fraction distributions,” Measurement Science and
Technology, 18, pp. 2245-2251.

[27] H. Caniere, B. Bauwens, C. T’Joen and M. De Paepe, 2010, “Mapping of horizontal
refrigerant two-phase flow patterns based on clustering of capacitive sensor
signals,” International Journal of Heat and Mass Transfer, 53, pp. 5298-5307.

[28] Z. Huang, B. Wang and H. Li, 2003, “Application of electrical capacitance
tomography to the void fraction measurement of two-phase flow,” IEEE
Transactions on Instrumentation and Measurement, 52, pp. 7-12.

[29] O. Jones, Jr. and N. Zuber, 1975, “The interrelation between void fraction
fluctuations and flow patterns in two-phase flow,” International Journal of
Multiphase Flow, 2, pp. 273-306.

[30] N.K. Tutu, 1982, “Pressure fluctuations and flow pattern recognition in vertical two
phase gas-liquid flows,” International Journal of Multiphase Flow, 8, pp. 443-447.

[31] G. Matsui, 1984, “Identification of flow regimes in vertical gas-liquid two-phase
flow using differential pressure fluctuations,” International Journal of Multiphase
Flow, 10, pp. 711-720.

[32] G. Costigan and P.B. Whalley, 1997, “Slug flow regime identification from dynamic
void fraction measurements in vertical air-water flows,” International Journal of
Multiphase Flow, 23, pp. 263-282.

[33] J.E. Julia, Y. Liu, S. Paranjape and M. Ishii, 2008, “Local flow regimes analysis in
vertical upward two-phase flow,” Nuclear Engineering Design, 238, pp. 156-169.

164

[34] E.A. Hammer, T. Dyakowski and G.A. Johansen, 2006, Multiphase Flow Handbook,

Editor: C.T. Crowe, CRC Press, Boca Raton, FL.

[35] J.F. Tullius, R. Vajtai and Y. Bayazitoglu, 2011, “A review of cooling in
microchannels,” Heat Transfer Engineering, 32, pp. 527-541.

[36] S. Kandlikar, 2012, “History, advances, and challenges in liquid flow and flow
boiling heat transfer in microchannels: a critical review,” Journal of Heat Transfer,
134.

[37] S.V. Garimella and T. Harirchian, 2013, Encyclopedia of Thermal Packaging,
Volume 1: Microchannel Heat Sinks for Electronics Cooling, World Scientific,
Singapore.

[38] E. Costa-Patry, J. Olivier, B. Michel and J.R. Thome, 2011, “Two-phase flow of
refrigerants in 85 m-wide multi-microchannels: part II – heat transfer with 35
local heaters,” International Journal of Heat and Fluid Flow, 32, pp. 464-476.

[39] T.Y. Liu, P.L. Li, C.W. Liu and C. Gau, 2011, “Boiling flow characteristics in
microchannels with very hydrophobic surface to super-hydrophilic surface,”
International Journal of Heat and Mass Transfer, 54, pp. 126-134.

[40] H.F. Hamann, A. Weger, J.A. Lacey, Z. Hu, P. Bose, E. Cohen, and J. Wakil, 2007,
“Hotspot-limited microprocessors: direct temperature and power distribution
measurements,” Journal of Solid-State Circuits, 42, pp. 56-65.

[41] J.M. Koo, L. Jiang, A. Bari, L. Zhang, E. Wang, T.W. Kenny, J.G. Santiago and K.E.
Goodson, 2002, “Convective boiling in microchannel heat sinks with spatially-
varying heat generation,” in Proceedings of the ASME 8th Intersociety Conference
on Thermal and Thermomechanical Phenomena in Electroic Systems (ITHERM),
San Diego, CA, pp. 341-346.

[42] E.S. Cho, J.W. Choi, J.S. Yoon, and M.S. Kim, 2010, “Modeling and simulation on
the mass flow distribution in microchannel heat sinks with non-uniform heat flux
conditions,” International Journal of Heat and Mass Transfer, 53, pp. 1341-1348.

[43] R.K. Sarangi, A. Bhattacharya, and R.S. Prasher, 2009, “Numerical modeling of
boiling heat transfer in microchannels,” Applied Thermal Engineering, 29, pp.
300-309.

[44] R. Revellin, J.M Quiben, J. Bonjour and J.R. Thome, 2008, “Effect of local hot spots
on the maximum dissipation rates during flow boiling in a microchannel,” IEEE
Transactions on Components and Packaging Technologies, 31, pp. 407-416.

165

[45] D. Bogojevic, K. Sefiane, A.J. Walton, H. Lin, G. Cummins, D.B.R. Kenning and

T.G. Karayiannis, 2009, “Experimental investigation of non-uniform heating on
flow boiling instabilities in a microchannels based heat sink,” in Proceedings of
the ASME 7th International Conference on Nanochannels, Microchannels and
Minichannels (ICNMM), Pohang, South Korea, 82121.

[46] E. Costa-Patry, 2011, “Cooling high heat flux micro-electronic systems using
refrigerants in high aspect ratio multi-microchannel evaporators,” PhD Thesis,
Ecole Polytechnique Federale De Lausanne.

[47] E.S. Cho, J.W. Choi, J.S. Yoon, and M.S. Kim, 2010, “Experimental study on
microchannel heat sinks considering mass flow distribution with non-uniform
heat flux conditions,” International Journal of Heat and Mass Transfer, 53, pp.
2159-2168.

[48] T. Alam, P.S. Lee, C.R. Yap, and L. Jin, 2013, “A comparative study of flow boiling
heat transfer and pressure drop characteristics in microgap and microchannel heat
sink and an evaluation of microgap heat sink for hotspot mitigation,” International
Journal of Heat and Mass Transfer, 58, pp. 335-347.

[49] J.L. Miler, R. Flynn, G. Refai-Ahmed, M. Touzelbaev, M. David, J. Steinbrenner,
and K.E. Goodson, 2009, “Effects of transient heating on two-phase flow
response in microchannel heat exchangers,” in Proceedings of the ASME 2009
InterPACK Conference, San Francisco, CA, USA, InterPACK2009-89325.

[50] A.P. Roday and M.K. Jensen, 2009, “A review of the critical heat flux condition in
mini- and microchannels,” Journal of Mechanical Science and Technology, 23, pp.
2529-2547.

[51] C.B. Tibirica and G. Ribatski, 2013, “Flow boiling in micro-scale channels –
Synthesized literature review,” International Journal of Refrigeration, 36, pp. 301-
324.

[52] L. Wojtan, R. Revellin, and J.R. Thome, 2006, “Investigation of saturated critical
heat flux in a single, uniformly heated microchannel,” Experimental Thermal and
Fluid Science, 30, pp. 765-774.

[53] D. Del Col and S. Bortolin, 2012, “Investigation of dryout during flow boiling in a
single microchannel under non-uniform axial heat flux,” International Journal of
Thermal Sciences, 57, pp. 25-36.

[54] W. Qu and I. Mudawar, 2004, “Measurement and correlation of critical heat flux in
two-phase micro-channel heat sinks,” International Journal of Heat and Mass
Transfer, 47, pp. 2045-2059.

166

[55] T. Chen and S.V. Garimella, 2012, “A study of critical heat flux during flow boiling

in microchannel heat sinks,” Journal of Heat Transfer, 134, 0011504.

[56] A. Kosar, Y. Peles, A.E. Bergles, and G.S. Cole, 2009, “Experimental investigation
of critical heat flux in microchannels for flow-field probes,” in ASME Seventh
International Conference on Nanochannels, Microchannels, and Minichannels,
Pohang, South Korea, June 22-24, Paper No. ICNMM2009-82214.

[57] M.B. Bowers and I. Mudawar, 1994, “High flux boiling in low flow rate, low
pressure drop mini-channel and micro-channel heat sinks,” International Journal
of Heat and Mass Transfer, 37, pp. 321-332.

[58] Y. Katto and H. Ohno, 1984, “An improved version of the generalized correlation of
critical heat flux for the forced convective boiling in uniformly heated vertical
tubes,” International Journal of Heat and Mass Transfer, 27, pp. 1641-1648.

[59] W. Zhang, T. Hibiki, K. Mishima, and Y. Mi, 2006, “Correlation of critical heat flux
for flow boiling of water in mini-channels,” International Journal of Heat and
Mass Transfer, 49, pp. 1058-1072.

[60] R. Revellin, K. Mishima, and J.R. Thome, 2009, “Status of prediction methods for
critical heat fluxes in mini and microchannels,” International Journal of Heat and
Fluid Flow, 30, pp. 983-992.

[61] C.B. Tibirica, H.O.M. Felcar, and G. Ribatski, 2008, “An analysis of experimental
data and prediction methods for critical heat fluxes in micro-scale channels,” in
5th European Thermal-Science Conference, Eindhoven, Netherlands, May 18-22.

[62] D.D. Hall and I. Mudawar, 2000, “Critical heat flux (CHF) for water flow in tubes –
II. Subcooled CHF correlations,” International Journal of Heat and Mass Transfer,
43, pp. 2605-2640.

[63] M.M. Shah, 1987, “Improved general correlation for critical heat flux during upflow
in uniformly heated vertical tubes,” International Journal of Heat and Fluid Flow,
8, pp. 326-335.

[64] R. Revellin and J.R. Thome, 2009, “Critical heat flux during flow boiling in
microchannels: A parametric study,” Heat Transfer Engineering, 30, pp. 556-563.

[65] S.G. Kandlikar, 2010, “A scale analysis based theoretical force balance model for
critical heat flux (CHF) during saturated flow boiling in microchannels and
minichannels,” Journal of Heat Transfer, 132, 081501.

[66] E. Costa-Patry and J.R. Thome, 2012, “On-chip cooling of hot-spots with a copper
micro-evaporator,” in 28th Annual IEEE Semiconductor Thermal Measurement
and Management Symposium (SEMI-THERM), San Jose, CA, March 18-22.

167

[67] C.K. Liu, S.J. Yang, Y.L. Chao, K.Y. Liou, and C.C. Wang, 2013, “Effect of non-

uniform heating on the performance of the microchannel heat sinks,” International
Communications in Heat and Mass Transfer, 43, pp. 57-62.

[68] J. Yang, D. Groeneveld, L. Leung, S. Cheng, and M. El Nakla, 2006, “An
experimental and analytical study of the effect of axial power profile on CHF,”
Nuclear Engineering and Design, 236, pp. 1384-1395.

[69] E. Rosal, J. Cermak, L. Tong, J. Caterline, S. Kokolis, and B. Matzner, 1974, “High
pressure rod bundle DNB data with axially non-uniform heat flux,” Nuclear
Engineering and Design, 31, pp. 1-20.

[70] A. Olekhnovitch, J. Sun, and A. Teyssedou, 2008, “A complex but accurate
correlation for predicting critical heat flux in a round tube for low and medium
pressures under circumferentially non-uniform heating conditions,” International
Journal of Heat and Mass Transfer, 51, pp. 2041-2054.

[71] S. Paranjape, S.N. Ritchey, and S.V. Garimella, 2011, “Impedance-based void
fraction measurement and flow regime identification in microchannel flows,” in
Pacific Rim Technical Conference & Exposition on Packaging and Integration of
Electronic and Photonic Systems (InterPACK), Portland, OR, July 6-8.

[72] S. Paranjape, S.N. Ritchey, and S.V. Garimella, 2012, “Impedance-based void
fraction measurement and flow regime identification in microchannel flows under
adiabatic conditions,” International Journal of Multiphase Flow, 42, pp. 175-183.

[73] S. Tumanski, 2006, Principles of Electrical Measurement, CRC Press, Taylor &
Francis, USA.

[74] The Mathworks, Inc., 2009, MATLAB version 2009b.

[75] P. Soille, 2003, Morphological Image Process, 2nd Ed., Springer-Verlag, Germany.

[76] J.C. Maxwell, 1873, A Treatise on Electricity and Magnetism, 3rd Ed., Clarendon
Press, Oxford, England.

[77] N. Zuber and J.A. Findlay, 1965, “Average volumetric concentration in two-phase
flow systems,” Journal of Heat Transfer, 87, pp. 453-468.

[78] A.A. Armand, 1946, “The resistance during the movement of a two-phase system in
horizontal pipes,” Izv. Vses. Teplotekh., Inst., 1, pp. 16-23 (AERE-Lib/Trans
828).

[79] M.I. Ali, M. Sadatomi, and M. Kawaji, 1993, “Two-phase flow in narrow channels
between flat plates,” Can. Journal of Chemical Engineering, 71, pp. 657-666.

168

[80] K. Mishima and T. Hibiki, 1996, “Some characteristics of air-water two-phase flow

in small diameter vertical tubes,” International Journal of Multiphase Flow, 22, pp.
703-712.

[81] A.W. Bowman and A. Azzalini, 1997, Applied Smoothing Techniques for Data
Analysis, Oxford University press, New York.

[82] T. Kohonen, 1997, Self-Organizing Maps, 2nd Ed., Springer-Verlag, Berlin.

[83] ANSYS, Inc., 2009, ANSYS Fluent, Release 12.0.

[84] P. Valiorgue, S.N. Ritchey, J.A. Weibel and S.V. Garimella, 2014, “Design of a non-
intrusive electrical impedance-based void fraction sensor for microchannel two-
phase flows,” Measurement Science and Technology, 25, 095301.

[85] Fluent, Inc., 2007, Gambit version 2.4.6.

[86] S.V. Patankar, 1980, “Numerical Heat Transfer and Fluid Flow, Hemisphere
Publishing, Washington, D.C.

[87] S.N. Ritchey, J.A. Weibel and S.V. Garimella, 2013, “Effects of non-uniform
heating on two-phase flow through microchannels,” In Proceedings of the ASME
International Technical Conference and Exhibition on Packaging and Integration
of Electronic and Photonic Microsystems (InterPACK), Burlingame, CA, 73058.

[88] S.N. Ritchey, J.A. Weibel, and S.V. Garimella, 2014, “Local measurement of flow
boiling heat transfer in an array of non-uniformly heated microchannels,”
International Journal of Heat and Mass Transfer, 71, pp. 206-216.

[89] T. Harirchian, 2010, “Two-phase flow and heat transfer in microchannels,” PhD
Thesis, Purdue University.

[90] T. Chen and S.V. Garimella, 2006, “Effect of dissolved air on subcooled flow
boiling of a dielectric coolant in a microchannel heat sink,” Journal of Electronic
Packaging, 128, pp. 398-404.

[91] T. Chen and S.V. Garimella, 2006, “Measurements and high-speed visualization of
flow boiling of a dielectric fluid in a silicon microchannel heat sink,”
International Journal of Multiphase Flow, 32, pp. 957-971.

[92] J. Taylor, 1997, An Introduction to Error Analysis, 2nd Ed., University Science
Books.

169

[93] R.S. Patel, T. Harirchian and S.V. Garimella, 2011, “Dependence of flow boiling

heat transfer coefficient on location and vapor quality in a microchannel heat sink,”
in Proceedings of the Pacific Rim Technical Conference & Exposition on
Packaging and Integration of Electronic and Photonic Systems (InterPACK),
Portland, OR, 52089.

[94] P.S. Lee and S.V. Garimella, 2006, “Thermally developing flow and heat transfer in
rectangular microchannels of different aspect ratios,” International Journal of
Heat and Mass Transfer, 49, pp. 3060-3067.

[95] S.S. Bertsch, E.A. Groll, and S.V. Garimella, 2009, “A composite heat transfer
correlation for saturated flow boiling in small channels,” International Journal of
Heat and Mass Transfer, 52, pp. 2110-2118.

[96] M.G. Cooper, 1984, “Heat flow rates in saturated nucleate pool boiling – a wide-
ranging examination using reduced properties,” Advanced Heat Transfer, 16, pp.
157-239.

[97] H. Hausen, 1943, “Darstellung des Warmeuberganges in Rohren durch
verallgemeinerte Potenzbeziehungen,” Z. VDI Beiheft Verfahrenstechnik, 4, pp.
91-102.

[98] 3M, 2002, “3M Novec Engineering Fluid HFE-7100 for Heat Transfer,” 3M, St.
Paul, MN, pp. 1-8.

[99] B.J. Jones, P.S. Lee, and S.V. Garimella, 2008, “Infrared micro-particle image
velocimetry measurements and predictions of flow distribution in a microchannel
heat sink,” International Journal of Heat and Mass Transfer, 51, pp. 1877-1887.

[100] A.M. Khounsary, D. Chojnowski, and L. Assoufid, 1997, “Thermal contact
resistance across a copper-silicon interface,” in Optical Science, Engineering and
Instrumentation, International Society for Optics and Photonics, pp. 45-51.

170

APPENDICES

170

Appendix A MATLAB Script for Image Processing

A MATLAB script was developed to analyze high-speed videos as discussed in

Section 3.2.1 to determine the void fraction. The following script reads in each frame of a

movie file, determines the boundaries of the gas regions, and calculates the void fraction.

It is split up into many functions; Table A.1 displays the function number, name,

description, and page number where it can be found.

Table A.1. A list of all of the functions of the image analysis script.
Function
Number Function Name Description Page

Number
1 voidfrac.m The main program 171

2 annpoints.m Organizes detected edge points for annular
flow 176

3 annvoid.m Calculates void fraction data for annular flow 177

4 backg.m Generates a background image and subtracts
it for all frames 178

5 contbound.m Fills in points to obtain a closed object 179

6 edgedetann.m Detects bubbles edges in annular flow 179

7 edgedetect.m Detects bubbles edges 180

8 fit_ellipse.m Fits an ellipse to the detected edge points in
bubbly flow 181

9 GetBgImage.m Obtains a user specified background image
and subtracts it for all frames 184

10 identify.m Identifies objects in an image 185

11 inputin.m Obtains information from the user 187

12 joinpoints.m Find a neighboring point to connect two
segments 188

13 movieplot1.m Capture images to create a movie 189

14 outputann.m Calculate the output for annular flow 190

15 outputbub.m Calculate the output 190

171

Table A.1. Continued.
Function
Number Function Name Description Page

Number
16 plotdataann.m Plot the output for annular flow 191

17 plotdatabub.m Plot the output 191

18 points.m Obtain points above a line of symmetry 192

19 readrotate.m Read in and rotate frames from a movie 192

20 rotatebub.m Rotate detected edge points in a bubble 193

21 slugvoid.m Calculate void fraction data for slug flow 194

22 symmetry.m Find a line of symmetry for an object 195

23 trap.m Calculate a volume rotation using the
trapezoid rule 196

Function 1. voidfrac.m:
clear all;
close all;
tic;
[filename,width,depth,regime,xfrac,StartFrame,EndFrame,OutFileName,Angl
eRotate,CropUpRow,CropDnRow,CropLCol,CropRCol,NFrameBG,BGFileName,BGFra
meNumber,ImAdjustLow,ImAdjustHigh,ImAdjustLowAnn,ImAdjustHighAnn,CannyL
ow,CannyHigh,CannyWidth,CannyLowAnn,CannyHighAnn,CannyWidthAnn,findback
g]=inputin(); %input info from user
disp('reading movie...');
[frames,movs,movcolor]=readrotate(filename,StartFrame,EndFrame,AngleRot
ate,CropUpRow,CropDnRow,CropLCol,CropRCol); %read in movie frames
%findbackg=input('User supplied background? yes=1, no=0 ');
if findbackg %user supplied background
 BGUsr=GetBgImage(BGFileName,BGFrameNumber,AngleRotate,CropUpRow,Cro
pDnRow,CropLCol,CropRCol);
 [bg,frames2]=backg(frames,movs,NFrameBG,BGUsr);
else %need to find background
 if regime==1
 BGUsr=0;
 [bg,frames2]=backg(frames,movs,NFrameBG,BGUsr); %subtract
background from frames
 else
 bg=255*ones(size(frames{1}),'uint8');
 frames2=frames;
 end
end
fln=strrep(filename,'.avi',''); %test name
%name of log file
filen=strcat('logfile_',fln,'_2_',num2str(StartFrame),'to',num2str(EndF
rame),'.txt');
file1=fopen(filen,'w'); %create log file
fprintf(file1,'Log File for test %s\n',fln);

172

fprintf(file1,'Start frame: %4.0f\n',StartFrame);
fprintf(file1,'End frame: %4.0f\n',EndFrame);
if regime==1
 fprintf(file1,'Flow regime: bubbly\n');
elseif regime==2
 fprintf(file1,'Flow regime: slug\n');
else
 fprintf(file1,'Flow regime: churn/annular\n');
end
fprintf(file1,'Channel dimensions:%4.0f x%4.0f square
microns\n',width,depth);
s=size(frames{1});
fprintf(file1,'Image dimensions:%4.0f x%4.0f square
pixels\n',s(1),s(2));
fprintf(file1,'--\n');
%preallocate variables
voidf=zeros(1,movs(2));
Avoid=zeros(1,movs(2));
SAtot=zeros(1,movs(2));
BW=cell(1,movs(2));
coords=cell(movs(2),1);
xsall=cell(movs(2),1);
ysall=cell(movs(2),1);
yn3all=cell(movs(2),1);
xn2all=cell(movs(2),1);
mall=cell(movs(2),1);
ball=cell(movs(2),1);
allframes(movs(2))=struct('cdata',[],'colormap',[]);
disp('running calculations');
for n=1:movs(2)
 disp([num2str(100*n/movs(2)) '% complete']); %display percent
complete
 if frames2{n}==255 %if frame is completely white (no bubbles)
 disp('skiped frame');
 fprintf(file1,'Skipped frame %i, same as background\n',n);
 s3=size(frames2{n});
 if regime~=1 && regime~=2
 BW{n}=zeros(s3(1)+2*(CannyWidthAnn+1),s3(2));
 BW{n}=logical(BW{n});

[allframes(n)]=movieplot1(frames{n},coords{n},xline,0,[s3(1
)+2*(CannyWidthAnn+1),s3(2)],WBbox);
 else
 BW{n}=zeros(s3(1)+2*(CannyWidth+1),s3(2)+2*(CannyWidth+1));
 BW{n}=logical(BW{n});

[allframes(n)]=movieplot1(frames{n},coords{n},xline,0,s3+2*
(CannyWidth+1),WBbox);
 end
 continue;
 end
 if regime==1 || regime==2

[BW{n},WBbox]=edgedetect(frames2{n},ImAdjustLow,ImAdjustHigh,Ca
nnyLow,CannyHigh,CannyWidth); %detect bubble edges (bubbly, slug)
 else

173

[BW{n},WBbox]=edgedetann(frames2{n},ImAdjustLowAnn,ImAdjustHigh
Ann,CannyLowAnn,CannyHighAnn,CannyWidthAnn); %detect bubble edges
(churn, annular)
 end
 %identify bubble coordinates

[bound,bound2,dpixels,xline,s,ss,wratio,linebub]=identify(BW{n},WBbo
x,width,depth,xfrac,regime);
 coords{n}=bound2;
 for i=1:s(1)
 if linebub
 fprintf(file1,'Skipped bubble %i in frame %i, bubble is a
line\n',i,n);
 end
 end
 %optional movie with edges drawn on top
 [allframes(n)]=movieplot1(frames{n},bound2,xline,s,ss,WBbox);
 %[colormap2,allframes{n}]=movieplot2(frames2{n},movcolor,bound);
 if regime==1 %calculations for bubbly flow
 %preallocate variables
 Abub=zeros(1,s(1));
 Vtot=zeros(1,s(1));
 SAt=zeros(1,s(1));
 mall{n}=cell(s(1),1);
 ball{n}=cell(s(1),1);
 xsall{n}=cell(s(1),1);
 ysall{n}=cell(s(1),1);
 yn3all{n}=cell(s(1),1);
 xn2all{n}=cell(s(1),1);
 for i=1:s(1) %calculations for each bubble in frame
 [Abub(i),m,b,empty]=symmetry(bound2{i},xline,ss); %find
line of symmetry (3D assumption)
 mall{n}{i}=m;
 ball{n}{i}=b;
 if empty==1
 fprintf(file1,'Skipped bubble %i in frame %i, no
bubble\n',i,n);
 continue;
 elseif empty==2
 fprintf(file1,'Skipped bubble %i in frame %i, out of
frame\n',i,n);
 %continue;
 end
 [xs,ys]=points(bound2{i},m,b); %extract useful points
 xsall{n}{i}=xs;
 ysall{n}{i}=ys;
 if length(xs)<2 %too many of these means it is picking
 disp('skip 2'); %up a lot of noise, try changing the
 fprintf(file1,'Skipped bubble %i in frame %i, too
small\n',i,n);
 continue %thresholds in edgedetect
 end
 [xn2,yn3]=rotatebub(xs,ys,m,b); %rotate points for easier
calculations
 yn3all{n}{i}=yn3;
 xn2all{n}{i}=xn2;

174

[Vtot(i),SAt(i),cylinder]=trap(xn2,yn3,dpixels); %calculate
volume and surface area
 if cylinder==1
 fprintf(file1,'Bubble %i in frame %i represented as a
cylinder\n',i,n);
 end
 Vbox=(ss(1)-2*WBbox)*(ss(2)-2*WBbox)*dpixels;
 if Vtot(i)>Vbox
 fprintf(file1,'Bubble %i in frame %i bigger than
channel\n',i,n);
 end
 end
 %calculate frame totals

[voidf(n),Avoid(n),SAtot(n)]=outputbub(Vtot,Abub,ss,dpixels,SAt
,wratio,WBbox);
 elseif regime==2 %calculations for slug flow
 [aa]=annpoints(s,ss,bound2); %extract useful points
 if isempty(aa{1}) || isempty(aa{2})
 Vtot=0;
 Abub=0;
 SAt=0;
 else
 %calculate volume and surface area
 [Vtot,Abub,SAt]=slugvoid(aa,ss,xline);
 end
 %calculate frame totals

[voidf(n),Avoid(n),SAtot(n)]=outputann(Vtot,Abub,ss,dpixels,SAt
,wratio,regime,WBbox);
 else %calculations for annular/churn flow
 [aa]=annpoints(s,ss,bound2); %extract useful points
 if isempty(aa{1}) || isempty(aa{2})
 Vtot=0;
 Abub=0;
 SAt=0;
 else
 %calculate volume and surface area
 [Vtot,Abub,SAt]=annvoid(aa,ss,xline,dpixels);
 end
 %calculate frame totals

[voidf(n),Avoid(n),SAtot(n)]=outputann(Vtot,Abub,ss,dpixels,SAt
,wratio,regime,WBbox);
 end
end
if regime==1
 plotdatabub(Avoid,voidf,SAtot); %plot data by frame number (bubbly)
end
if regime==2 || regime==3
 %plot data by frame number (slug, churn, annular)
 plotdataann(Avoid,voidf,SAtot);
end
time=toc;
disp(['This movie took ' num2str(time) ' seconds to run.']);
fprintf(file1,'--\n');
fprintf(file1,'Time averaged void fraction: %4.2f\n',mean(voidf));
fprintf(file1,'Time averaged area void fraction: %4.2f\n',mean(Avoid));

175

fprintf(file1,'--\n');
fprintf(file1,'This movie took %4.2f seconds to run.\n',time);
c=clock;
fprintf(file1,'This program ran at %i:%02.0f:%02.0f
on %i/%i/%i.',c(4),c(5),c(6),c(2),c(3),c(1));
fclose(file1); %close log file
save(OutFileName)
OutFileName2=strrep(OutFileName,'.mat','');
OutFileName2=strcat(OutFileName2,'.avi');
disp('Finished!');
%end of program

176

Function 2. annpoints.m:
%organize points for annular flow
function [aa]=annpoints(s,ss,bound2)
%assume bubble is a cylinder
a=cell(2,s(1)); %define size of cell
for i=1:s(1) %number of objects detected
 temp=bound2{i}(:,1); %put x values in column 1
 bound2{i}(:,1)=bound2{i}(:,2); %put y values in column 2
 bound2{i}(:,2)=temp;
 s2=size(bound2{i});
 for j=1:s2(1)
 a{1,i}(j,1)=bound2{i}(j,1); %add x value to top
 a{1,i}(j,2)=bound2{i}(j,2); %add y value to top
 a{2,i}(j,1)=bound2{i}(j,1); %add x value to bottom
 a{2,i}(j,2)=bound2{i}(j,2); %add y value to bottom
 end
 a{1,i}=unique(a{1,i},'rows'); %eliminate repeated values for top
 a{2,i}=unique(a{2,i},'rows'); %eliminate repeated values for bottom
end
aa=cell(2,1);
for i=1:s(1)
 aa{1}=[aa{1};a{1,i}]; %create single matrix of top x,y values
 aa{2}=[aa{2};a{2,i}]; %create single matrix of bottom x,y values
end
end

177

Function 3. annvoid.m:
%calculate various void fraction data for annular flow
function [Vtot3,Abub3,SAt]=annvoid(aa,ss,xline,dpixels)
s2=max(size(aa{1}),size(aa{2})); %number of unique points
Vtot3=zeros(1,ss(2));
SAt=zeros(1,ss(2));
k=0;
for i=1:ss(2) %sweep across x axis
 %a1 is top points
 %a2 is bottom points
 a1=find(aa{1}(:,1)==i,s2(1)); %find top x values equal to i
 a2=find(aa{2}(:,1)==i,s2(1)); %find bottom x values equal to i
 if isempty(a1) || isempty(a2)
 continue %if no points found, move to next set
 end
 %calculation of prism volume (length*width*height)
 Vtot3(i)=(i-k)*(max(aa{1}(a1,2))-min(aa{2}(a2,2)))*(dpixels-
ss(1)+max(aa{1}(a1,2))-min(aa{2}(a2,2)));
 %ave void volume
 SAt(i)=2*(i-k)*(max(aa{1}(a1,2))-min(aa{2}(a2,2)))+2*(i-
k)*(dpixels-ss(1)+max(aa{1}(a1,2))-min(aa{2}(a2,2)));
 %surface area of void
 k=i;
end
a1=find(aa{1}(:,1)==xline); %top x value bubble points on xline
a2=find(aa{2}(:,1)==xline); %bottom x value bubble points on xline
Abub3=0;
if ~isempty(a1) && ~isempty(a2)
 d=max(aa{1}(a1,2))-min(aa{2}(a2,2)); %calculate ave width of
bubble on xline
 Abub3=d*(dpixels-ss(1)+d); %calculate the ave area of
the bubble on xline
end
end

178

Function 4. backg.m:
%obtain a background image and subtract it from all frames uses concept
% that background pixels are the most common pixel in a series of
% consecutive frames, this assumption does not work as well for annular
% flow or regimes with a high density of bubbles
function [bg,frames2]=backg(frames,movs,NFrameBG,BGUsr)
s=size(frames{1}); %image size
row=s(1);
col=s(2);
if ~BGUsr
 if NFrameBG<=0
 disp('Need greater than 0 frames to obtain a background image');
 end
 n=NFrameBG; %number of frames needed to get background image
 fr=zeros(row,col,n); %dummy variable so we don't overwrite the
original image
 for i=1:n
 fr(:,:,i)=frames{i};
 end
 bg=zeros(row,col);
 for i=1:row
 for j=1:col
 x=double(reshape(fr(i,j,:),1,n)); %obtain all values of
one pixel over many frames
 dx=diff(x); %create vector pixel differences between frames
 y=zeros((n-3),1);
 for k=1:(n-3)
 y(k)=sum(abs(dx(k:(k+2)))); %sum differences across
4 frames
 end
 ind=find(y==min(y)); %find least changing
(smallest difference)
 bg(i,j)=floor(mean(x(ind:(ind+3)))); %background pixel is
equal to value
 end
 end
 bg=uint8(bg);
else
 bg=BGUsr;
end
frames2=frames;
for n=1:movs(2)
 for i=1:row
 for j=1:col
 temp1=double(frames{n}(i,j)); %frame pixel value
 temp2=double(bg(i,j)); %background pixel value
 if abs(temp1-temp2)<=10 %if frame pixel is within
10 of background value
 frames2{n}(i,j)=255; %rewrite frame pixel to white
 end
 end
 end
end
end

179

Function 5. contbound.m:
function [jcvbound]=contbound(cvbound)
jcvbound(1,:)=cvbound(1,:);
for i=1:length(cvbound(:,1))-1
 x1=cvbound(i,1);
 y1=cvbound(i,2);
 x2=cvbound(i+1,1);
 y2=cvbound(i+1,2);
 [joinedmatrix]=joinpoints(x1,y1,x2,y2);
 jcvbound=[jcvbound; joinedmatrix(2:end,:)];
end
x1=cvbound(end,1);
y1=cvbound(end,2);
x2=cvbound(1,1);
y2=cvbound(1,2);
[joinedmatrix]=joinpoints(x1,y1,x2,y2);
jcvbound=[jcvbound; joinedmatrix(2:end,:)];
end

Function 6. edgedetann.m:
%detect edges in image
%annular flow
function
[BW,WBbox]=edgedetann(I,ImAdjustLowAnn,ImAdjustHighAnn,CannyLowAnn,Cann
yHighAnn,CannyWidthAnn)
%detect edges of bubbles
s=size(I);
WBbox=uint8(CannyWidthAnn)+1; %bounding box width = width of canny
algorithm +1 pixel
WBbox=double(WBbox);
I2(1:(s(1)+2*WBbox),1:s(2))=255;
I2((WBbox+1):(s(1)+WBbox),1:s(2))=I;
I2=uint8(I2);
%change threshhold values to correspond to pure liquid images
%have pixels at 50% and above changed to 100% (white)
%have pixels at 25% and below changed to 0% (black)
%apply same threshold values to all frames
J=imadjust(I2,[ImAdjustLowAnn ImAdjustHighAnn],[1 0]); %adjust image
and make it negative
BW=edge(J,'canny',[CannyLowAnn CannyHighAnn],CannyWidthAnn); %detect
edges in image
end

180

Function 7. edgedetect.m:
%detect edges in image
function
[BW,WBbox]=edgedetect(I,ImAdjustLow,ImAdjustHigh,CannyLow,CannyHigh,Can
nyWidth)
%detect edges of bubbles
s=size(I);
WBbox=uint8(CannyWidth)+1; %bounding box width = width of canny
algorithm +1 pixel
WBbox=double(WBbox);
I2(1:(s(1)+2*WBbox),1:(s(2)+2*WBbox))=255;
I2((WBbox+1):(s(1)+WBbox),(WBbox+1):(s(2)+WBbox))=I;
I2=uint8(I2);
%change threshhold values to correspond to pure liquid images
%have pixels at 70% and above changed to 100% (white)
%have pixels at 30% and below changed to 0% (black)
%apply same threshold values to all frames
J=imadjust(I2,[ImAdjustLow ImAdjustHigh],[1 0]); %adjust images and
makes a negative
BW=edge(J,'canny',[CannyLow CannyHigh],CannyWidth); %detect edges in
image
end

181

Function 8. fit_ellipse.m:
function ellipse_t = fit_ellipse(x,y,axis_handle)
% finds the best fit to an ellipse for the given set of points.
% initialize
orientation_tolerance = 1e-3;
% empty warning stack
warning('');
% prepare vectors, must be column vectors
x = x(:);
y = y(:);
% remove bias of the ellipse - to make matrix inversion more accurate.
(will be added later on).
mean_x = mean(x);
mean_y = mean(y);
x = x-mean_x;
y = y-mean_y;
% the estimation for the conic equation of the ellipse
X = [x.^2, x.*y, y.^2, x, y];
if X==0
 ellipse_t.phi=[];
 return
end
con=cond(X);
if con>1e4
 ellipse_t.phi=[];
 return
end
a = sum(X)/(X'*X);
% check for warnings
if ~isempty(lastwarn)
 disp('stopped because of a warning regarding matrix inversion');
 ellipse_t = struct(...
 'a',[],...
 'b',[],...
 'phi',[],...
 'X0',[],...
 'Y0',[],...
 'X0_in',[],...
 'Y0_in',[],...
 'long_axis',[],...
 'short_axis',[],...
 'status','');
 return
end
% extract parameters from the conic equation
[a,b,c,d,e] = deal(a(1),a(2),a(3),a(4),a(5));
% remove the orientation from the ellipse
if (min(abs(b/a),abs(b/c)) > orientation_tolerance)
 orientation_rad = 1/2 * atan(b/(c-a));
 cos_phi = cos(orientation_rad);
 sin_phi = sin(orientation_rad);
 [a,b,c,d,e] = deal(...
 a*cos_phi^2 - b*cos_phi*sin_phi + c*sin_phi^2,...
 0,...

182

 a*sin_phi^2 + b*cos_phi*sin_phi + c*cos_phi^2,...
 d*cos_phi - e*sin_phi,...
 d*sin_phi + e*cos_phi);
 [mean_x,mean_y] = deal(...
 cos_phi*mean_x - sin_phi*mean_y,...
 sin_phi*mean_x + cos_phi*mean_y);
else
 orientation_rad = 0;
 cos_phi = cos(orientation_rad);
 sin_phi = sin(orientation_rad);
end
% check if conic equation represents an ellipse
test = a*c;
status = '';
% if we found an ellipse return it's data
if (test>0)
 % make sure coefficients are positive as required
 if (a<0), [a,c,d,e] = deal(-a,-c,-d,-e); end
 % final ellipse parameters
 X0 = mean_x - d/2/a;
 Y0 = mean_y - e/2/c;
 F = 1 + (d^2)/(4*a) + (e^2)/(4*c);
 [a,b] = deal(sqrt(F/a),sqrt(F/c));
 long_axis = 2*max(a,b);
 short_axis = 2*min(a,b);
 % rotate the axes backwards to find the center point of the
original TILTED ellipse
 R = [cos_phi sin_phi; -sin_phi cos_phi];
 P_in = R * [X0;Y0];
 X0_in = P_in(1);
 Y0_in = P_in(2);
 % pack ellipse into a structure
 ellipse_t = struct(...
 'a',a,...
 'b',b,...
 'phi',orientation_rad,...
 'X0',X0,...
 'Y0',Y0,...
 'X0_in',X0_in,...
 'Y0_in',Y0_in,...
 'long_axis',long_axis,...
 'short_axis',short_axis,...
 'status','');
else
 % report an empty structure
 ellipse_t = struct(...
 'a',[],...
 'b',[],...
 'phi',[],...
 'X0',[],...
 'Y0',[],...
 'X0_in',[],...
 'Y0_in',[],...
 'long_axis',[],...
 'short_axis',[],...

183

 'status',status);
end
% check if we need to plot an ellipse with it's axes.
if (nargin>2) && ~isempty(axis_handle) && (test>0)
 % rotation matrix to rotate the axes with respect to an angle phi
 R = [cos_phi sin_phi; -sin_phi cos_phi];
 % the axes
 ver_line = [[X0 X0]; Y0+b*[-1 1]];
 horz_line = [X0+a*[-1 1]; [Y0 Y0]];
 new_ver_line = R*ver_line;
 new_horz_line = R*horz_line;
 % the ellipse
 theta_r = linspace(0,2*pi);
 ellipse_x_r = X0 + a*cos(theta_r);
 ellipse_y_r = Y0 + b*sin(theta_r);
 rotated_ellipse = R * [ellipse_x_r;ellipse_y_r];
 % draw
 hold_state = get(axis_handle,'NextPlot');
 set(axis_handle,'NextPlot','add');
 plot(new_ver_line(1,:),new_ver_line(2,:),'r');
 plot(new_horz_line(1,:),new_horz_line(2,:),'r');
 plot(rotated_ellipse(1,:),rotated_ellipse(2,:),'r');
 set(axis_handle,'NextPlot',hold_state);
end

184

Function 9. GetBgImage.m:
function
[bg]=GetBgImage(BGFileName,BGFrameNumber,AngleRotate,CropUpRow,CropDnRo
w,CropLCol,CropRCol)
mov=aviread(BGFileName,BGFrameNumber);
frames(:,:,:)=mov(1).cdata;
framesr=imrotate(frames,AngleRotate);
bg=framesr(CropUpRow:CropDnRow,CropLCol:CropRCol,:);
end

185

Function 10. identify.m:
%identify objects in image
function
[bound,bound2,dpixels,xline,s,ss,wratio,linebub]=identify(BW,WBbox,widt
h,depth,xfrac,regime)
%identify objects in image
BW2=imfill(BW,'holes'); %fill in holes in image
bound=bwboundaries(BW2); %find boundaries of shapes in image
 %bound{i}(:,1)=y values
 %bound{i}(:,2)=x values
s=size(bound); %determines number of shapes, use s(1)
ss=size(BW2); %determines size of image, use ss(1)
if s(1)>1 %if more than 2 objects, see if inside one another
 for i=1:s(1)
 if isempty(bound{i})
 continue;
 end
 msk1=poly2mask(bound{i}(:,1),bound{i}(:,2),ss(2),ss(1)); %object 1
 for j=1:s(1)
 if i==j %use different objects
 continue;
 end
 if isempty(bound{j})
 continue;
 end
 msk2=poly2mask(bound{j}(:,1),bound{j}(:,2),ss(2),ss(1)); %object 2
 a=msk1(msk2);
 inside=0;
 if ~isempty(a)
 inside=all(a); %determine if object 2 is inside object 1
 end
 if inside %if inside
 bound{j}=[]; %delete coordinates of inside object
 end
 end
 end
end
s=size(bound);
if regime==1 || regime==2
 for i=1:s(1)
 bound{i}=bound{i}-WBbox;
 end
else
 for i=1:s(1)
 bound{i}(:,1)=bound{i}(:,1)-WBbox;
 end
end
% Convex Hull routine here to modify bound.
cvbound = cell(1,s(1)); %Allocate cell array for Convex Hull Boundaries
jcvbound=cell(1,s(1));
linebub=cell(1,s(1));
if regime==1
 for BoundIndex = 1:s(1)

186

 collinear8 = @(varargin) rank(cat(1,varargin{:}) -
circshift(cat(1,varargin{:}),1)) == 1;
 if ~collinear8(bound{BoundIndex})

CVIndex =
convhull(bound{BoundIndex}(:,2),bound{BoundIndex}(:,1)); %obtain
convhull indices

cvbound{BoundIndex}(:,:)=bound{BoundIndex}(CVIndex,:);%only
use convhull points

jcvbound{BoundIndex}=contbound(cvbound{BoundIndex}); %fill
in remaining to get a closed object
 linebub=false;
 else
 jcvbound{BoundIndex}=[];
 linebub=true;
 end
 end
end
bound2=cell(1,s(1));
if regime==1
 for i=1:s(1)
 bound2{i}(:,1)=(ss(1)-2*WBbox)-jcvbound{i}(:,1); %correct y
values so image isn't flipped
 bound2{i}(:,2)=jcvbound{i}(:,2); %add x values to new matrix
 end
else
 for i=1:s(1)
 bound2{i}(:,1)=(ss(1)-2*WBbox)-bound{i}(:,1);
 bound2{i}(:,2)=bound{i}(:,2);
 end
end
bound2=bound2'; %transpose cell
wratio=(ss(1)-2*WBbox)/width; %ratio of pixels to microns in channel
width
dpixels=wratio*depth; %pixels in channel depth
if regime==1 || regime==2
 xline=floor((ss(2)-2*WBbox)*xfrac+WBbox); %vertical plane for
cross sectional area void fraction
else
 xline=floor((ss(2)-2*WBbox-1)*xfrac+WBbox);
end
if xline==0
 xline=1;
end
end

187

Function 11. inputin.m:
%input information from the user
function
[filename,width,depth,regime,xfrac,StartFrame,EndFrame,OutFileName,Angl
eRotate,CropUpRow,CropDnRow,CropLCol,CropRCol,NFrameBG,BGFileName,BGFra
meNumber,ImAdjustLow,ImAdjustHigh,ImAdjustLowAnn,ImAdjustHighAnn,CannyL
ow,CannyHigh,CannyWidth,CannyLowAnn,CannyHighAnn,CannyWidthAnn,findback
g]=inputin()
%collect channel dimensions and video information
RunName='/home/citadel/b/shared/Sidharth/ONR/TwoPhaseAirWater/TestCell2
/TestSet6/Videos/TC2TS6_C001S0';
movnum='222';
ExtName='avi'; %video file type
filename=[RunName movnum '/TC2TS6_C001S0' movnum '.' ExtName];
StartFrame = 1; %first frame
EndFrame = 50; %last frame
OutFileName=['/home/citadel/b/shared/Sidharth/ONR/TwoPhaseAirWater/Test
Cell2/TestSet6/ProcVideos/TC2TS6_C0001S0' movnum '_' num2str(StartFrame)
'to' num2str(EndFrame) '.mat']; %save file name
AngleRotate=0; %frame rotation angle
CropUpRow=361; %top pixel
CropDnRow=913; %bottom pixel
CropLCol=1; %left pixel
CropRCol=512; %right pixel
NFrameBG=40; %number of frames to use to find background image
BGFileName='/home/citadel/b/willi319/ONRMicroChannel/TwoPhaseAirWater/T
estCell1/TestSet2/Videos/TC1TS2_C001S0015/TC1TS2_C001S0015.avi'; %file
name of background image
BGFrameNumber=1; %frame number of background image
findbackg=0; %user supplied background? yes=1, no=0
ImAdjustLow=0.3; %lower threshold for image adjusting
ImAdjustHigh=0.7; %upper threshold for image adjusting
ImAdjustLowAnn=0.25; %lower threshold for image adjusting,
annular flow
ImAdjustHighAnn=0.5; %upper threshold for image adjusting,
annular flow
CannyLow=0.25; %lower threshold for canny edge detection
CannyHigh=0.85; %upper threshold for canny edge detection
CannyWidth=2; %sigma value for canny edge detection
CannyLowAnn=0.1; %lower threshold for canny edge detection,
annular flow
CannyHighAnn=0.8; %upper threshold for canny edge detection,
annular flow
CannyWidthAnn=1.5; %sigma value for canny edge detection,
annular flow
width=780; %channel width in microns
depth=780; %channel depth in microns
regime=1; %flow regime, 1 for bubbly flow, 2 for slug
flow, 3 for annular/churn flow
xfrac=0; %location for area void fraction
end

188

Function 12. joinpoints.m:
function [joinedmatrix]=joinpoints(x1,y1,x2,y2)
joinedmatrix=[x1 y1];
%isneighbor
if abs(x1-x2)<=1 && abs(y1-y2)<=1 %they are neighboring points
 joinedmatrix=[joinedmatrix; x2 y2];
else
 if x1==x2 %vertical line
 deltay=y2-y1;
 ynext=y1+sign(deltay);
 joinedmatrix=[joinedmatrix; x1 ynext];
 while ynext~=y2
 ynext=ynext+sign(deltay);
 joinedmatrix=[joinedmatrix; x1 ynext];
 end
 else %find slope and make a line
 slope=(y2-y1)/(x2-x1);
 if abs(slope)<1
 %xtrace
 deltax=x2-x1;
 xnext=x1+sign(deltax);
 ynext=round(slope*(xnext-x1))+y1;
 joinedmatrix=[joinedmatrix; xnext ynext];
 while xnext~=x2
 xnext=xnext+sign(deltax);
 ynext=round(slope*(xnext-x1))+y1;
 joinedmatrix=[joinedmatrix; xnext ynext];
 end
 else
 %ytrace
 deltay=y2-y1;
 ynext=y1+sign(deltay);
 xnext=round(1/slope*(ynext-y1))+x1;
 joinedmatrix=[joinedmatrix; xnext ynext];
 while ynext~=y2
 ynext=ynext+sign(deltay);
 xnext=round(1/slope*(ynext-y1))+x1;
 joinedmatrix=[joinedmatrix; xnext ynext];
 end
 end
 end
end
end

189

Function 13. movieplot1.m:
%capture images for movie
%can capture rotated and cropped images
%can capture images with objects plotted on top
%objects plotted on top after convexhull applied
function [allframes]=movieplot1(I,bound,xline,s,ss,WBbox)
%plot objects in image, one at a time
if ~isempty(bound) %if bound is not empty
 for i=1:s(1)
 bound{i}(:,1)=(ss(1)-2*WBbox)-bound{i}(:,1); %correct y values
so image isn't flipped
 end
end
imshow(I); %display original image
%allframes=getframe; %turn on if you want rotated and
cropped images only
hold on; %plot multiple shapes on same graph over image
axis equal; %make axes equal in value so graph is easy to read
for i=1:s(1)
 b=mod(i,7);
 if b==0
 plot(bound{i}(:,2),bound{i}(:,1),'r'); %plot shape in red
 elseif b==1
 plot(bound{i}(:,2),bound{i}(:,1),'b'); %plot shape in blue
 elseif b==2
 plot(bound{i}(:,2),bound{i}(:,1),'g'); %plot shape in green
 elseif b==3
 plot(bound{i}(:,2),bound{i}(:,1),'y'); %plot shape in yellow
 elseif b==4
 plot(bound{i}(:,2),bound{i}(:,1),'m'); %plot shape in magenta
 else
 plot(bound{i}(:,2),bound{i}(:,1),'c'); %plot shape in cyan
 end
end
plot([xline,xline],[0,ss(1)],'--r');
pause(0.1);
allframes=getframe; %turn on if you want images with objects
plotted on top
hold off;
end

190

Function 14. outputann.m:
%calculate output from annular flow calculations
function
[voidf3,Avoid3,SAtot]=outputann(Vtot3,Abub3,ss,dpixels,SAt,wratio,regim
e,WBbox)
if regime==2
 Vbox=(ss(1)-2*WBbox)*(ss(2)-2*WBbox)*dpixels; %volume of
channel, slug flow [pixels^3]
else
 Vbox=(ss(1)-2*WBbox)*ss(2)*dpixels; %volume of
channel, annular flow [pixels^3]
end
%calculation output
Vvoid3=sum(Vtot3); %volume of all voids [pixels^3], [ave]
voidf3=Vvoid3/Vbox*100; %void fraction, [ave]
%area void fraction output
area=dpixels*(ss(1)-2*WBbox); %cross sectional area [pixels^2]
Avoid3=Abub3/area*100; %ave possible area void fraction
SAtot=sum(SAt); %surface area of voids [pixels^2]
SAtot=SAtot/Vvoid3; %surface area to volume ratio [1/pixels]
end

Function 15. outputbub.m:
%calculate output from bubbly/slug flow calculations
function
[voidf3,Avoid,SAtot]=outputbub(Vtot3,Abub,ss,dpixels,SAt,wratio,WBbox)
Vbox=(ss(1)-2*WBbox)*(ss(2)-2*WBbox)*dpixels; %volume of channel
[pixels^3]
%trapezoid rule output
Vvoid3=sum(Vtot3); %volume of all voids [pixels^3], [trapezoid]
voidf3=Vvoid3/Vbox*100; %void fraction, [trapezoid]
%area void fraction output
Atot=sum(Abub); %total void at cross section [pixels^2]
area=dpixels*(ss(1)-2*WBbox); %cross sectional area [pixels^2]
Avoid=Atot/area*100; %area void fraction
SAtot=sum(SAt); %surface area of all voids [pixels^2]
SAtot=SAtot/Vbox; %surface area to volume ratio [1/pixels]
end

191

Function 16. plotdataann.m:
%plot output data for annular flow
function []=plotdataann(Avoid1,voidf,SAtot)
figure
plot(Avoid1,'-ob');
xlabel('Frame Number','fontsize',16);
ylabel('Area void fraction [max] (%)','fontsize',16);
figure
plot(voidf,'-ob');
xlabel('Frame Number','fontsize',16);
ylabel('Volume void fraction [max] (%)','fontsize',16);
figure
plot(SAtot,'-ob');
xlabel('Frame Number','fontsize',16);
ylabel('Surface area concentration [1/pixels]','fontsize',16);
end

Function 17. plotdatabub.m:
%plot output data for bubbly flow
function []=plotdatabub(Avoid,voidf3,SAtot)
figure
plot(Avoid,'-ob');
xlabel('Frame Number','fontsize',16);
ylabel('Area void fraction (%)','fontsize',16);
figure
plot(voidf3,'-ob');
xlabel('Frame Number','fontsize',16);
ylabel('Volume void fraction [trapezoid] (%)','fontsize',16);
figure
plot(SAtot,'-ob');
xlabel('Frame Number','fontsize',16);
ylabel('Surface area concentration [1/pixels]','fontsize',16);
end

192

Function 18. points.m:
%obtain points above line of symmetry
function [xs,ys]=points(bound2,m,b)
k=1;
xs=[];
ys=[];
s=size(bound2); %determines number of edge points for bubble
for j=1:s(1)
 temp=m*bound2(j,2)+b; %determine if edge point is above line of
symmetry
 if bound2(j,1)>temp
 xs(k)=bound2(j,2); %x value if point is above line of symmetry
 ys(k)=bound2(j,1); %y value if point is above line of symmetry
 k=k+1;
 end
end
a=unique([xs' ys'],'rows');
if isempty(a)
 xs=0;
 ys=0;
else
 xs=a(:,1)';
 ys=a(:,2)';
end
end

Function 19. readrotate.m:
%read frames of movie and rotate images
function
[frames2,movs,movcolor]=readrotate(filename,StartFrame,EndFrame,AngleRo
tate,CropUpRow,CropDnRow,CropLCol,CropRCol)
%mov=aviread(filename,StartFrame:EndFrame); %read in avi file
%movs=size(mov); %number of frames
movs=[1 (EndFrame-StartFrame+1)];
frames=cell(1,movs(2));
frames2=cell(1,movs(2));
for i=1:movs(2)
 fprintf('...');
 if mod(i,20)==0
 a=100*i/movs(2);
 fprintf('%4.1f%% complete\n',a);
 end
 mov=aviread(filename,(StartFrame-1+i));
 frames{i}(:,:,:)=mov.cdata; %pull out frame image from movie
 framesr=imrotate(frames{i},AngleRotate); %rotate frame image

frames2{i}=framesr(CropUpRow:CropDnRow,CropLCol:CropRCol,:); %crop
frame image
end
fprintf('100%% complete\n');
mov=aviread(filename,StartFrame);
movcolor=mov.colormap; %obtain movie colormap
end

193

Function 20. rotatebub.m:
%rotate points in bubble
function [xn2,yn3]=rotatebub(xs,ys,m,b)
s=length(xs); %determine number of edge points above line of symmetry
xb=zeros(1,s);
yb=zeros(1,s);
xb=(m*ys+xs-m*b)/(m^2+1); %rotation calculations
yb=(m^2*ys+m*xs+b)/(m^2+1);
xs1=min(xb);
ys1=min(yb);
if ((yb(2)-yb(1))/(xb(2)-xb(1)))<0
 ys1=max(yb);
end
xn=sqrt((ys1-yb).^2+(xs1-xb).^2); %rotated x values
yn=sqrt((ys-yb).^2+(xs-xb).^2); %rotated y values
a=[xn' yn'];
s=size(a);
anew=zeros(s(1),2);
for j=1:s(1)
 a1=find(a(:,1)==a(j,1),s(1));
 anew(j,1)=a(j,1); %for x values with multiple y values
 anew(j,2)=max(a(a1,2)); %use only the maximum y value
end
anew=unique(anew,'rows'); %delete repeated pairs of points
xn2=anew(:,1)'; %unique x values
yn3=anew(:,2)'; %unique y values
end

194

Function 21. slugvoid.m:
%calculate various void fraction data for annular flow
function [Vtot3,Abub3,SAt]=slugvoid(aa,ss,xline)
s2=max(size(aa{1}),size(aa{2})); %number of unique points
Vtot3=zeros(1,ss(2));
SAt=zeros(1,ss(2));
k=0;
for i=1:ss(2) %sweep across x axis
 %a1 is top points
 %a2 is bottom points
 a1=find(aa{1}(:,1)==i,s2(1)); %find top x values equal to i
 a2=find(aa{2}(:,1)==i,s2(1)); %find bottom x values equal to i
 if isempty(a1) || isempty(a2)
 continue %if no points found, move to next set
 end
 Vtot3(i)=(i-k)*pi/4*(max(aa{1}(a1,2))-min(aa{2}(a2,2)))^2; %ave
void fraction
 SAt(i)=(i-k)*pi*(max(aa{1}(a1,2))-min(aa{2}(a2,2))); %surface
area of void
 k=i;
end
a1=find(aa{1}(:,1)==xline); %top x value bubble points on xline
a2=find(aa{2}(:,1)==xline); %bottom x value bubble points on xline
Abub3=0;
if isempty(a1)==0 && isempty(a2)==0
 d=max(aa{1}(a1,2))-min(aa{2}(a2,2)); %calculate ave width of
bubble on xline
 Abub3=pi/4*d^2; %calculate the ave area of the bubble on xline
end
end

195

Function 22. symmetry.m:
%find best line of symmetry for object
function [Abub,m,b,empty]=symmetry(bound2,xline,ss)
%determine best line of symmetry for bubble
bound2=unique(bound2,'rows'); %delete repeated pairs of points
x=bound2(:,2); %x values for bubble
y=bound2(:,1); %y values for bubble
ellipse_t=fit_ellipse(x,y); %use best fit ellipse program to determine
 %best line of symmetry
a=find(bound2(:,2)==xline); %find bubble points on xline to use for
area void fraction
Abub=0;
if ~isempty(a)
 d=max(bound2(a,1))-min(bound2(a,1));%calculate diameter of bubble
on xline
 Abub=pi/4*d^2; %calculate the area of the bubble on xline
end
empty=0;
if isempty(ellipse_t.phi)
 disp('skip 1');
 empty=1;
 Abub=0;
 m=0;
 b=0;
 return
end
x0=ellipse_t.X0_in; %x coordinate of center of ellipse
y0=ellipse_t.Y0_in; %y coordinate of center of ellipse
alpha=ellipse_t.phi; %orientation angle of ellipse
if abs(x0)>2*ss(2) || abs(y0)>2*ss(1)
 empty=2;
 Abub=0;
 m=0;
 b=0;
 return
end
m=-tan(alpha); %slope of line of symmetry
b=y0+tan(alpha)*x0; %y intercept of best line of symmetry
end

196

Function 23. trap.m:
%volume rotation using trapezoid rule
function [Vtot,SAt,cylinder]=trap(x,y,dpixels)
s=length(x);
V=zeros(1,s-1);
SA=zeros(1,s-1);
ff=max(y);
cylinder=false;
if 2*ff>dpixels %determine if bubble should be calculated
 cylinder=true; %as a cylinder
end

if ~cylinder; %bubble height smaller than channel depth, spheroid
 for j=1:(s-1)%trapezoid rule and pappus theorem for volume and area
 V(j)=pi/3*abs(x(j+1)-x(j))*((y(j))^2+y(j)*y(j+1)+(y(j+1))^2);
 SA(j)=pi*(y(j)+y(j+1))*sqrt((y(j)-y(j+1))^2+(x(j+1)-x(j))^2);
 end
else %bubble height larger than channel depth, cylinder
 for j=1:(s-1) %trapezoid rule times height
 V(j)=abs(x(j+1)-x(j))*(y(j)+y(j+1))*dpixels;
 SA(j)=2*abs(x(j+1)-x(j))*(y(j)+y(j+1))+2*dpixels*sqrt((y(j)-
y(j+1))^2+(x(j+1)-x(j))^2);
 end
end
Vtot=sum(V); %bubble volume [trapezoid rule] [pixels^3]
SAt=sum(SA); %bubble surface area [pixels^2]
end

197

Appendix B MATLAB Script for Numerical Simulation of Electrical Impedance

A MATLAB script was developed to simulate the response of a miniature

impedance-based void fraction meter as discussed in Section 4.1.2. The following script

generates a 3D domain based on high-speed videos and solves for the impedance across

two electrodes. It is split up into several functions; Table B.1 displays the function

number, name, a description, and the page number where it is found. Several functions

are omitted due to their repetitive nature and length. These are run using the data

generated from the image processing scripts.

Table B.1. A list of all of the functions for numerical simulations.
Function
Number Function Name Description Page

Number

24 gambitjou.m Generates a 3D mesh from images for bubbly
flow 197

25 gambitjou2.m Generates a 3D mesh from images for slug
flow 201

26 gambitjou3.m Generates a 3D mesh from images for annular
flow 204

27 lap3dsolver.m 3D Laplace solver to find the resistance 207

28 lap3dsolver2.m 3D Laplace solver to find the capacitance 212

29 tdma.m TDMA solver 217

30 tdmaline.m Line-by-line TDMA solver 218

Function 24. gambitjou.m:
%use for bubbly flow
%run using data generated from voidfrac.m
k=logical(false((ss(1)-2*WBbox),(ss(2)-2*WBbox),dpixels));
siz=size(xsall{frame}); %number of bubbles, use siz(1)
for j=1:siz(1) %loop for each bubble
 m=mall{frame}{j}; %slope of line of symmetry
 b=ball{frame}{j}; %y intercept of line of symmetry
 x=xsall{frame}{j}; %x coordinates of bubble

198

 y=ysall{frame}{j}; %y coordinates of bubble
 xb=(m*y+x-m*b)/(m^2+1); %x coordinate of rotation
 yb=(m^2*y+m*x+b)/(m^2+1); %y coordinate of rotation
 yn3=sqrt((y-yb).^2+(x-xb).^2); %magnitude of point from line of
symmetry
 si=size(x); %number of points, use si(2)
 minx=min(x); %leftmost point
 maxx=max(x); %rightmost point
 p1=[0 minx-1 m*(minx-1)+b]; %point on line of rotation
 p2=[0 maxx+1 m*(maxx+1)+b]; %point on line of rotation
 p=rand(1,3); %random point in 3D
 r=cross(p-p1,p2-p1); %line perpendicular to line of rotation
 s=cross(r,p2-p1); %line perpendicular to line of rotation
 r=r/sqrt(dot(r,r)); %normalize vector
 s=s/sqrt(dot(s,s)); %normalize vector
 tempx=zeros(si(2),1);
 tempy=zeros(si(2),1);
 tempz=zeros(si(2),1);
 for i=1:si(2)
 theta=0:(2*pi/180):(2*pi); %angles of rotation
 for n=1:180
 %calculate point in 3D space

tempz=yn3(i)*cos(theta(n))*r(1)+yn3(i)*sin(theta(n))*s(1);
%z coordinate

tempx=xb(i)+yn3(i)*cos(theta(n))*r(2)+yn3(i)*sin(theta(n))*
s(2); %x coordinate

tempy=yb(i)+yn3(i)*cos(theta(n))*r(3)+yn3(i)*sin(theta(n))*
s(3); %y coordinate
 %translate into cell coordinates
 tempy=(ss(1)-WBbox)-round(tempy); %nearest cell in y
direction
 tempz=round(tempz+dpixels/2); %nearest cell in z direction
 tempx=round(tempx); %nearest cell in x direction
 if tempx<1
 tempx=1;
 end
 if tempx>(ss(2)-2*WBbox)
 tempx=ss(2)-2*WBbox;
 end
 if tempy<1
 tempy=1;
 end
 if tempy>(ss(1)-2*WBbox)
 tempy=ss(1)-2*WBbox;
 end
 k(tempy,tempx,tempz)=true;
 end
 end
end
%close boundaries and fill holes
se=ones(5);
se([1 1 end end],[1 end 1 end])=0; %create morphological structuring
element
k4=logical(false((ss(1)-2*WBbox),(ss(2)-
2*WBbox),dpixels)); %preallocate

199

for i=1:dpixels %loop over each z plane
 k2=imdilate(k(:,:,i),se); %dilate image to form closed object
 k3=imfill(k2,'holes'); %fill objects
 k4(:,:,i)=imerode(k3,se);%erode image so boundary is back to normal
end
clear k2 k3 k
%k4 is 3D logical matrix describing bubble areas
%1 indicates part of bubble, 0 is background
%downsample to make calculations faster
%transform cube of 8 voxels into one new voxel
N=size(k4);
ax1=mod(N(1),2);
ax2=mod(N(2),2);
ax3=mod(N(3),2);
k5=logical(false(floor(N(1)/2)+ax1,floor(N(2)/2)+ax2,floor(N(3)/2)+ax3)
);
for i=1:2:(N(1)-ax1)
 for j=1:2:(N(2)-ax2)
 for k=1:2:(N(3)-ax3)
 k5(round(i/2),round(j/2),round(k/2))=round(mean([k4(i,j,k)
k4(i+1,j,k) k4(i,j+1,k) k4(i+1,j+1,k) k4(i,j,k+1) k4(i+1,j,k+1)
k4(i+1,j+1,k+1) k4(i,j+1,k+1)]));
 end
 end
end
if ax1
 i=N(1);
 for j=1:2:(N(2)-ax2)
 for k=1:2:(N(3)-ax3)

k5(floor(N(1)/2)+ax1,round(j/2),round(k/2))=round(mean([k4(
i,j,k) k4(i,j+1,k) k4(i,j,k+1) k4(i,j+1,k+1)]));
 end
 end
end
if ax2
 j=N(2);
 for i=1:2:(N(1)-ax1)
 for k=1:2:(N(3)-ax3)

k5(round(i/2),floor(N(2)/2)+ax2,round(k/2))=round(mean([k4(
i,j,k) k4(i+1,j,k) k4(i,j,k+1) k4(i+1,j,k+1)]));
 end
 end
end
if ax3
 k=N(3);
 for i=1:2:(N(1)-ax1)
 for j=1:2:(N(2)-ax2)

k5(round(i/2),round(j/2),floor(N(3)/2)+ax3)=round(mean([k4(
i,j,k) k4(i+1,j,k) k4(i,j+1,k) k4(i+1,j+1,k)]));
 end
 end
end
if ax1 && ax2
 i=N(1);
 j=N(2);

200

 for k=1:2:(N(3)-ax3)
k5(floor(N(1)/2)+ax1,floor(N(2)/2)+ax2,round(k/2))=round(mean([

k4(i,j,k) k4(i,j,k+1)]));
 end
end
if ax1 && ax3
 i=N(1);
 k=N(3);
 for j=1:2:(N(2)-ax2)

k5(floor(N(1)/2)+ax1,round(j/2),floor(N(3)/2)+ax3)=round(mean([
k4(i,j,k) k4(i,j+1,k)]));
 end
end
if ax2 && ax3
 j=N(2);
 k=N(3);
 for i=1:2:(N(1)-ax1)

k5(round(i/2),floor(N(2)/2)+ax2,floor(N(3)/2)+ax3)=round(mean([
k4(i,j,k) k4(i+1,j,k)]));
 end
end
if ax1 && ax2 && ax3

k5(floor(N(1)/2)+ax1,floor(N(2)/2)+ax2,floor(N(3)/2)+ax3)=k4(N(1),N
(2),N(3));
end

201

Function 25. gambitjou2.m:
%use for slug flow
%run using data generated from voidfrac.m
k=logical(false((ss(1)-2*WBbox),(ss(2)-2*WBbox),dpixels));
siz=size(coords{frame});
temp=[];
for i=1:siz(1)
 temp=[temp;coords{frame}{i}]; %put all points into one matrix
end
x=temp(:,2); %x coordinates of bubble
y=temp(:,1); %y coordinates of bubble
si=size(x);
minx=min(x); %leftmost point
maxx=max(x); %rightmost point
for j=0:(ss(2)-2*WBbox)+1 %loop for each x point
 a1=find(x==j);
 if isempty(a1)
 continue
 end
 ymin=min(y(a1));
 ymax=max(y(a1));
 xb=j;
 yb=(ymin+ymax)/2;
 p1=[0 minx-1 yb]; %point on line of rotation
 p2=[0 maxx+1 yb]; %point on line of rotation
 p=rand(1,3); %random point in 3D
 r=cross(p-p1,p2-p1); %line perpendicular to line of rotation
 s=cross(r,p2-p1); %line perpendicular to line of rotation
 r=r/sqrt(dot(r,r)); %normalize vector
 s=s/sqrt(dot(s,s)); %normalize vector
 yn3=abs(y(a1)-yb);
 si=size(yn3);
 tempx=zeros(si(1),1);
 tempy=zeros(si(1),1);
 tempz=zeros(si(1),1);
 for i=1:si(1)
 theta=0:(2*pi/500):(2*pi); %angles of rotation
 for n=1:500
 %calculate point in 3D space

tempz=yn3(i)*cos(theta(n))*r(1)+yn3(i)*sin(theta(n))*s(1);
%z coordinate
 tempx=xb; %x coordinate

tempy=yb+yn3(i)*cos(theta(n))*r(3)+yn3(i)*sin(theta(n))*s(3
); %y coordinate
 %translate into cell coordinates
 tempy=(ss(1)-WBbox)-round(tempy); %nearest cell in y
direction
 tempz=round(tempz+dpixels/2); %nearest cell in z direction
 tempx=round(tempx); %nearest cell in x direction
 if tempx<1
 tempx=1;
 end
 if tempx>(ss(2)-2*WBbox)
 tempx=ss(2)-2*WBbox;

202

 end
 if tempy<1
 tempy=1;
 end
 if tempy>(ss(1)-2*WBbox)
 tempy=ss(1)-2*WBbox;
 end
 if tempz<1
 tempz=1;
 end
 if tempz>dpixels
 tempz=dpixels;
 end
 k(tempy,tempx,tempz)=true;
 end
 end
end
%close boundaries and fill holes
se=ones(5);
se([1 1 end end],[1 end 1 end])=0; %create morphological structuring
element
k4=logical(false((ss(1)-2*WBbox),(ss(2)-
2*WBbox),dpixels)); %preallocate
for i=1:dpixels %loop over each z plane
 k2=imdilate(k(:,:,i),se); %dilate image to form closed object
 k3=imfill(k2,'holes'); %fill objects
 k4(:,:,i)=imerode(k3,se);%erode image so boundary is back to normal
end
clear k2 k3 k
%k4 is 3D logical matrix describing bubble areas
%1 indicates part of bubble, 0 is background
%downsample to make calculations faster
%transform cube of 8 voxels into one new voxel
N=size(k4);
ax1=mod(N(1),2);
ax2=mod(N(2),2);
ax3=mod(N(3),2);
k5=logical(false(floor(N(1)/2)+ax1,floor(N(2)/2)+ax2,floor(N(3)/2)+ax3)
);
for i=1:2:(N(1)-ax1)
 for j=1:2:(N(2)-ax2)
 for k=1:2:(N(3)-ax3)
 k5(round(i/2),round(j/2),round(k/2))=round(mean([k4(i,j,k)
k4(i+1,j,k) k4(i,j+1,k) k4(i+1,j+1,k) k4(i,j,k+1) k4(i+1,j,k+1)
k4(i+1,j+1,k+1) k4(i,j+1,k+1)]));
 end
 end
end
if ax1
 i=N(1);
 for j=1:2:(N(2)-ax2)
 for k=1:2:(N(3)-ax3)

k5(floor(N(1)/2)+ax1,round(j/2),round(k/2))=round(mean([k4(
i,j,k) k4(i,j+1,k) k4(i,j,k+1) k4(i,j+1,k+1)]));
 end

203

 end
end
if ax2
 j=N(2);
 for i=1:2:(N(1)-ax1)
 for k=1:2:(N(3)-ax3)

k5(round(i/2),floor(N(2)/2)+ax2,round(k/2))=round(mean([k4(
i,j,k) k4(i+1,j,k) k4(i,j,k+1) k4(i+1,j,k+1)]));
 end
 end
end
if ax3
 k=N(3);
 for i=1:2:(N(1)-ax1)
 for j=1:2:(N(2)-ax2)

k5(round(i/2),round(j/2),floor(N(3)/2)+ax3)=round(mean([k4(
i,j,k) k4(i+1,j,k) k4(i,j+1,k) k4(i+1,j+1,k)]));
 end
 end
end
if ax1 && ax2
 i=N(1);
 j=N(2);
 for k=1:2:(N(3)-ax3)

k5(floor(N(1)/2)+ax1,floor(N(2)/2)+ax2,round(k/2))=round(mean([
k4(i,j,k) k4(i,j,k+1)]));
 end
end
if ax1 && ax3
 i=N(1);
 k=N(3);
 for j=1:2:(N(2)-ax2)

k5(floor(N(1)/2)+ax1,round(j/2),floor(N(3)/2)+ax3)=round(mean([
k4(i,j,k) k4(i,j+1,k)]));
 end
end
if ax2 && ax3
 j=N(2);
 k=N(3);
 for i=1:2:(N(1)-ax1)

k5(round(i/2),floor(N(2)/2)+ax2,floor(N(3)/2)+ax3)=round(mean([
k4(i,j,k) k4(i+1,j,k)]));
 end
end
if ax1 && ax2 && ax3

k5(floor(N(1)/2)+ax1,floor(N(2)/2)+ax2,floor(N(3)/2)+ax3)=k4(N(1),N
(2),N(3));
end

204

Function 26. gambitjou3.m:
%use for annular flow
%run using data generated from voidfrac.m
k=logical(false((ss(1)-2*WBbox),(ss(2)-2*WBbox),dpixels));
siz=size(coords{frame});
temp=[];
for i=1:siz(1)
 temp=[temp;coords{frame}{i}]; %put all points into one matrix
end
x=temp(:,2); %x coordinates of bubble
y=temp(:,1); %y coordinates of bubble
si=size(x);
minx=min(x); %leftmost point
maxx=max(x); %rightmost point
for j=0:(ss(2)-2*WBbox)+1 %loop for each x point
 a1=find(x==j);
 if isempty(a1)
 continue
 end
 ymin=min(y(a1));
 ymax=max(y(a1));
 xb=j;
 yb=(ymin+ymax)/2;
 yhat=(ymax-ymin)/2;
 zhat=(dpixels-(ss(1)-2*WBbox)+ymax-ymin)/2;
 xhat=xb;
 %calculate point in 3D space
 tempx=round(xhat); %nearest cell in x direction
 tempy1=round((ss(1)-2*WBbox)/2-yhat); %upper point
 tempz1=round(dpixels/2-zhat); %front point
 tempy2=round((ss(1)-2*WBbox)/2+yhat); %lower point
 tempz2=round(dpixels/2+zhat); %back point
 %translate into cell coordinates
 if tempx<1
 tempx=1;
 end
 if tempx>(ss(2)-2*WBbox)
 tempx=ss(2)-2*WBbox;
 end
 if tempy1<2
 tempy1=2;
 end
 if tempy2>(ss(1)-2*WBbox-1)
 tempy2=ss(1)-2*WBbox-1;
 end
 if tempz2>(dpixels-1)
 tempz2=dpixels-1;
 end
 if tempz1<2
 tempz1=2;
 end
 k(tempy1:tempy2,tempx,tempz1:tempz2)=true;
end
k4=k;

205

clear k2 k3 k
%k4 is 3D logical matrix describing bubble areas
%1 indicates part of bubble, 0 is background
%downsample to make calculations faster
%transform cube of 8 voxels into one new voxel
N=size(k4);
ax1=mod(N(1),2);
ax2=mod(N(2),2);
ax3=mod(N(3),2);
k5=logical(false(floor(N(1)/2)+ax1,floor(N(2)/2)+ax2,floor(N(3)/2)+ax3)
);
for i=1:2:(N(1)-ax1)
 for j=1:2:(N(2)-ax2)
 for k=1:2:(N(3)-ax3)
 k5(round(i/2),round(j/2),round(k/2))=round(mean([k4(i,j,k)
k4(i+1,j,k) k4(i,j+1,k) k4(i+1,j+1,k) k4(i,j,k+1) k4(i+1,j,k+1)
k4(i+1,j+1,k+1) k4(i,j+1,k+1)]));
 end
 end
end
if ax1
 i=N(1);
 for j=1:2:(N(2)-ax2)
 for k=1:2:(N(3)-ax3)

k5(floor(N(1)/2)+ax1,round(j/2),round(k/2))=round(mean([k4(
i,j,k) k4(i,j+1,k) k4(i,j,k+1) k4(i,j+1,k+1)]));
 end
 end
end
if ax2
 j=N(2);
 for i=1:2:(N(1)-ax1)
 for k=1:2:(N(3)-ax3)

k5(round(i/2),floor(N(2)/2)+ax2,round(k/2))=round(mean([k4(
i,j,k) k4(i+1,j,k) k4(i,j,k+1) k4(i+1,j,k+1)]));
 end
 end
end
if ax3
 k=N(3);
 for i=1:2:(N(1)-ax1)
 for j=1:2:(N(2)-ax2)

k5(round(i/2),round(j/2),floor(N(3)/2)+ax3)=round(mean([k4(
i,j,k) k4(i+1,j,k) k4(i,j+1,k) k4(i+1,j+1,k)]));
 end
 end
end
if ax1 && ax2
 i=N(1);
 j=N(2);
 for k=1:2:(N(3)-ax3)

k5(floor(N(1)/2)+ax1,floor(N(2)/2)+ax2,round(k/2))=round(mean([
k4(i,j,k) k4(i,j,k+1)]));
 end
end

206

if ax1 && ax3
 i=N(1);
 k=N(3);
 for j=1:2:(N(2)-ax2)

k5(floor(N(1)/2)+ax1,round(j/2),floor(N(3)/2)+ax3)=round(mean([
k4(i,j,k) k4(i,j+1,k)]));
 end
end
if ax2 && ax3
 j=N(2);
 k=N(3);
 for i=1:2:(N(1)-ax1)

k5(round(i/2),floor(N(2)/2)+ax2,floor(N(3)/2)+ax3)=round(mean([
k4(i,j,k) k4(i+1,j,k)]));
 end
end
if ax1 && ax2 && ax3

k5(floor(N(1)/2)+ax1,floor(N(2)/2)+ax2,floor(N(3)/2)+ax3)=k4(N(1),N
(2),N(3));
end

207

Function 27. lap3dsolver.m:
%solve 3D laplace equation for two phase flow in a microchannel
%run after gambitjou.m
%________===Ve1===________
%| |
%| bb bb |
%| bb bb |
%|_______ _______|
% ===Ve2===
%== are electrodes
%bb are bubbles
%3D logical matrix k5 contains bubble cell locations
%a is coefficient of ith jth kth term, Vp, current point
%b is coefficient of i+1 jth kth term, Vr, right point
%c is coefficient of i-1 jth kth term, Vl, left point
%d is coefficient of ith j+1 kth term, Vm, bottom point
%e is coefficient of ith j-1 kth term, Vt, top point
%f is coefficient of ith jth k+1 term, Vb, back point
%g is coefficient of ith jth k-1 term, Vf, front point
%h is source term
%V is voltage for every cell
%all voltage outputs have units
len=(ss(2)-2*WBbox)/wratio/1000; %calculate channel length [mm]
dx=2*len/(ss(2)-2*WBbox); %delta x in left and right regions [mm]
dx2=dx;
dy=dx; %delta y in top and bottom regions [mm]
dy2=dy;
dz=dx; %delta z in front and back regions [mm]
dz2=dz;
if ax1
 dx2=dx/2;
end
if ax2
 dy2=dy/2;
end
if ax3
 dz2=dz/2;
end
k1=.01; %electrical conductivity of water region [1/ohm m]
k2=2.5e-14; %electrical conductivity of bubble region [1/ohm m]
Ve1=5; %voltage of electrode 1
Ve2=1; %voltage of electrode 2
N=size(k5); %dimensions of mesh
 %N(1) is number of rows (y)
 %N(2) is number of columns (x)
 %N(3) is number of planes (z)
tic;
[a,b,c,d,e,f,g,h]=initmat(dx,dx2,dy,dy2,dz,dz2,k1,k2,Ve1,Ve2,N,k5,ax1,a
x2,ax3);
disp('matrices initialized');
toc;
tic;
counter=0; %set counter to zeros
err=0.9; %error from one iteration to the next

208

V=abs((Ve2-Ve1)/2+Ve1)*ones(N(1),N(2),N(3)); %initial guess
while err>0.00001
 one=V;
 for k=1:N(3) %planes first
 a1=reshape(a(:,:,k),N(1),N(2));
 b1=reshape(b(:,:,k),N(1),N(2));
 c1=reshape(c(:,:,k),N(1),N(2));
 d1=reshape(d(:,:,k),N(1),N(2));
 e1=reshape(e(:,:,k),N(1),N(2));
 f1=reshape(f(:,:,k),N(1),N(2));
 g1=reshape(g(:,:,k),N(1),N(2));
 if k==1
 h1=reshape(h(:,:,k),N(1),N(2))+f1.*reshape(V(:,:,k+1),N(1),N(2));
 elseif k==N(3)
 h1=reshape(h(:,:,k),N(1),N(2))+g1.*reshape(V(:,:,k-
1),N(1),N(2));
 else

h1=reshape(h(:,:,k),N(1),N(2))+f1.*reshape(V(:,:,k+1),N(1),
N(2))+g1.*reshape(V(:,:,k-1),N(1),N(2));
 end
 V1=reshape(V(:,:,k),N(1),N(2));
 V(:,:,k)=tdmaline(a1,b1,c1,d1,e1,h1,V1);
 end
 for j=1:N(2) %columns second
 a1=reshape(a(:,j,:),N(1),N(3));
 b1=reshape(b(:,j,:),N(1),N(3));
 c1=reshape(c(:,j,:),N(1),N(3));
 d1=reshape(d(:,j,:),N(1),N(3));
 e1=reshape(e(:,j,:),N(1),N(3));
 f1=reshape(f(:,j,:),N(1),N(3));
 g1=reshape(g(:,j,:),N(1),N(3));
 if j==1
 h1=reshape(h(:,j,:),N(1),N(3))+b1.*reshape(V(:,j+1,:),N(1),N(3));
 elseif j==N(2)
 h1=reshape(h(:,j,:),N(1),N(3))+c1.*reshape(V(:,j-
1,:),N(1),N(3));
 else

h1=reshape(h(:,j,:),N(1),N(3))+b1.*reshape(V(:,j+1,:),N(1),
N(3))+c1.*reshape(V(:,j-1,:),N(1),N(3));
 end
 V1=reshape(V(:,j,:),N(1),N(3));
 V(:,j,:)=tdmaline(a1,f1,g1,d1,e1,h1,V1);
 end
 for i=1:N(1) %rows third
 a1=reshape(a(i,:,:),N(2),N(3));
 b1=reshape(b(i,:,:),N(2),N(3));
 c1=reshape(c(i,:,:),N(2),N(3));
 d1=reshape(d(i,:,:),N(2),N(3));
 e1=reshape(e(i,:,:),N(2),N(3));
 f1=reshape(f(i,:,:),N(2),N(3));
 g1=reshape(g(i,:,:),N(2),N(3));
 if i==1
 h1=reshape(h(i,:,:),N(2),N(3))+d1.*reshape(V(i+1,:,:),N(2),N(3));
 elseif i==N(1)

209

 h1=reshape(h(i,:,:),N(2),N(3))+e1.*reshape(V(i-
1,:,:),N(2),N(3));
 else

h1=reshape(h(i,:,:),N(2),N(3))+d1.*reshape(V(i+1,:,:),N(2),
N(3))+e1.*reshape(V(i-1,:,:),N(2),N(3));
 end
 V1=reshape(V(i,:,:),N(2),N(3));
 V(i,:,:)=tdmaline(a1,f1,g1,b1,c1,h1,V1);
 end
 for k=N(3):-1:1 %backwards planes fourth
 a1=reshape(a(:,:,k),N(1),N(2));
 b1=reshape(b(:,:,k),N(1),N(2));
 c1=reshape(c(:,:,k),N(1),N(2));
 d1=reshape(d(:,:,k),N(1),N(2));
 e1=reshape(e(:,:,k),N(1),N(2));
 f1=reshape(f(:,:,k),N(1),N(2));
 g1=reshape(g(:,:,k),N(1),N(2));
 if k==1
 h1=reshape(h(:,:,k),N(1),N(2))+f1.*reshape(V(:,:,k+1),N(1),N(2));
 elseif k==N(3)
 h1=reshape(h(:,:,k),N(1),N(2))+g1.*reshape(V(:,:,k-
1),N(1),N(2));
 else

h1=reshape(h(:,:,k),N(1),N(2))+f1.*reshape(V(:,:,k+1),N(1),
N(2))+g1.*reshape(V(:,:,k-1),N(1),N(2));
 end
 V1=reshape(V(:,:,k),N(1),N(2));
 V(:,:,k)=tdmaline(a1,b1,c1,d1,e1,h1,V1);
 end
 for j=N(2):-1:1 %backwards columns fifth
 a1=reshape(a(:,j,:),N(1),N(3));
 b1=reshape(b(:,j,:),N(1),N(3));
 c1=reshape(c(:,j,:),N(1),N(3));
 d1=reshape(d(:,j,:),N(1),N(3));
 e1=reshape(e(:,j,:),N(1),N(3));
 f1=reshape(f(:,j,:),N(1),N(3));
 g1=reshape(g(:,j,:),N(1),N(3));
 if j==1
 h1=reshape(h(:,j,:),N(1),N(3))+b1.*reshape(V(:,j+1,:),N(1),N(3));
 elseif j==N(2)
 h1=reshape(h(:,j,:),N(1),N(3))+c1.*reshape(V(:,j-
1,:),N(1),N(3));
 else

h1=reshape(h(:,j,:),N(1),N(3))+b1.*reshape(V(:,j+1,:),N(1),
N(3))+c1.*reshape(V(:,j-1,:),N(1),N(3));
 end
 V1=reshape(V(:,j,:),N(1),N(3));
 V(:,j,:)=tdmaline(a1,f1,g1,d1,e1,h1,V1);
 end
 for i=N(1):-1:1 %backwards rows sixth
 a1=reshape(a(i,:,:),N(2),N(3));
 b1=reshape(b(i,:,:),N(2),N(3));
 c1=reshape(c(i,:,:),N(2),N(3));
 d1=reshape(d(i,:,:),N(2),N(3));
 e1=reshape(e(i,:,:),N(2),N(3));

210

 f1=reshape(f(i,:,:),N(2),N(3));
 g1=reshape(g(i,:,:),N(2),N(3));
 if i==1
 h1=reshape(h(i,:,:),N(2),N(3))+d1.*reshape(V(i+1,:,:),N(2),N(3));
 elseif i==N(1)
 h1=reshape(h(i,:,:),N(2),N(3))+e1.*reshape(V(i-
1,:,:),N(2),N(3));
 else

h1=reshape(h(i,:,:),N(2),N(3))+d1.*reshape(V(i+1,:,:),N(2),
N(3))+e1.*reshape(V(i-1,:,:),N(2),N(3));
 end
 V1=reshape(V(i,:,:),N(2),N(3));
 V(i,:,:)=tdmaline(a1,f1,g1,b1,c1,h1,V1);
 end
 two=V;
 err=max(max(max(abs((one-two)./one))));
 counter=counter+1;
 if ~mod(counter,10)
 disp(sprintf('still going... iteration: %i ave V: %2.3f
err: %1.5f',counter,mean(mean(mean(V))),err));
 end
 if counter>=1000
 disp(sprintf('over 1000 outer iterations, error is %1.5f',err));
 err=0;
 end
 if err>5
 disp(sprintf('diverging, error is %1.5f',err));
 err=0;
 end
 one=mean(mean(mean(V)));
 if one>2*Ve1
 disp(sprintf('V values too high, error is %1.5f',err));
 err=0;
 end
end
toc;
clear one two a b c d e f g h a1 b1 c1 d1 e1 f1 g1 h1
xx=ones(N(1),N(2));
for i=1:N(1)
 xx(i,:)=1:N(2);
end
yy=ones(N(1),N(2));
for j=1:N(2)
 yy(:,j)=1:N(1);
end
figure
contour(xx,yy,V(:,:,floor(N(3)/2))); %plot contour of voltages
title('Voltage contour map','fontsize',16);
figure
surf(xx,yy,V(:,:,floor(N(3)/2))); %plot surface of voltages
title('Voltage profile','fontsize',16);
%voltage to resistance calculation
elec1=round(N(2)/3); %cell number for left side of electrode
elec2=round(2*N(2)/3); %cell number for right side of electrode
I=zeros((elec2-elec1+1),N(3));

211

for j=elec1:elec2
 for k=1:(N(3)-1)
 i=1;
 I((j-elec1+1),k)=(Ve1-V(i,j,k))/dy*dx*dz*(k5(i,j,k)*k2+(1-
k5(i,j,k))*k1)*2;
 end
 I((j-elec1+1),N(3))=(Ve1-
V(1,elec2,N(3)))/dy*dx*dz2*(k5(1,elec2,N(3))*k2+(1-
k5(1,elec2,N(3)))*k1)*2;
end
current=sum(sum(I))/1000;
resistance(frame)=(Ve1-Ve2)/current;
save(OutFileName)

212

Function 28. lap3dsolver2.m:
%solve 3D laplace equation for two phase flow in a microchannel
%run after gambitjou.m
%________===Ve1===________
%| |
%| bb bb |
%| bb bb |
%|_______ _______|
% ===Ve2===
%== are electrodes
%bb are bubbles
%3D logical matrix k4 contains bubble cell locations
%a is coefficient of ith jth kth term, Vp, current point
%b is coefficient of i+1 jth kth term, Vr, right point
%c is coefficient of i-1 jth kth term, Vl, left point
%d is coefficient of ith j+1 kth term, Vm, bottom point
%e is coefficient of ith j-1 kth term, Vt, top point
%f is coefficient of ith jth k+1 term, Vb, back point
%g is coefficient of ith jth k-1 term, Vf, front point
%h is source term
%V is voltage for every cell
%all voltage outputs have units
len=(ss(2)-2*WBbox)/wratio/1000; %calculate channel length [mm]
dx=2*len/(ss(2)-2*WBbox); %delta x in left and right regions [mm]
dx2=dx;
dy=dx; %delta y in top and bottom regions [mm]
dy2=dy;
dz=dx; %delta z in front and back regions [mm]
dz2=dz;
if ax1
 dx2=dx/2;
end
if ax2
 dy2=dy/2;
end
if ax3
 dz2=dz/2;
end
k1=80; %dielectric constant of water region [-]
k2=1; %dielectric constant of bubble region [-]
Ve1=5; %voltage of electrode 1
Ve2=1; %voltage of electrode 2
N=size(k5); %dimensions of mesh
 %N(1) is number of rows (y)
 %N(2) is number of columns (x)
 %N(3) is number of planes (z)
tic;
[a,b,c,d,e,f,g,h]=initmat(dx,dx2,dy,dy2,dz,dz2,k1,k2,Ve1,Ve2,N,k5,ax1,a
x2,ax3);
disp('matrices initialized');
toc;
tic;
counter=0; %set counter to zeros
err=0.9; %error from one iteration to the next

213

V=abs((Ve2-Ve1)/2+Ve1)*ones(N(1),N(2),N(3)); %initial guess
while err>0.00001
 one=V;
 for k=1:N(3) %planes first
 a1=reshape(a(:,:,k),N(1),N(2));
 b1=reshape(b(:,:,k),N(1),N(2));
 c1=reshape(c(:,:,k),N(1),N(2));
 d1=reshape(d(:,:,k),N(1),N(2));
 e1=reshape(e(:,:,k),N(1),N(2));
 f1=reshape(f(:,:,k),N(1),N(2));
 g1=reshape(g(:,:,k),N(1),N(2));
 if k==1
 h1=reshape(h(:,:,k),N(1),N(2))+f1.*reshape(V(:,:,k+1),N(1),N(2));
 elseif k==N(3)
 h1=reshape(h(:,:,k),N(1),N(2))+g1.*reshape(V(:,:,k-
1),N(1),N(2));
 else

h1=reshape(h(:,:,k),N(1),N(2))+f1.*reshape(V(:,:,k+1),N(1),
N(2))+g1.*reshape(V(:,:,k-1),N(1),N(2));
 end
 V1=reshape(V(:,:,k),N(1),N(2));
 V(:,:,k)=tdmaline(a1,b1,c1,d1,e1,h1,V1);
 end
 for j=1:N(2) %columns second
 a1=reshape(a(:,j,:),N(1),N(3));
 b1=reshape(b(:,j,:),N(1),N(3));
 c1=reshape(c(:,j,:),N(1),N(3));
 d1=reshape(d(:,j,:),N(1),N(3));
 e1=reshape(e(:,j,:),N(1),N(3));
 f1=reshape(f(:,j,:),N(1),N(3));
 g1=reshape(g(:,j,:),N(1),N(3));
 if j==1
 h1=reshape(h(:,j,:),N(1),N(3))+b1.*reshape(V(:,j+1,:),N(1),N(3));
 elseif j==N(2)
 h1=reshape(h(:,j,:),N(1),N(3))+c1.*reshape(V(:,j-
1,:),N(1),N(3));
 else

h1=reshape(h(:,j,:),N(1),N(3))+b1.*reshape(V(:,j+1,:),N(1),
N(3))+c1.*reshape(V(:,j-1,:),N(1),N(3));
 end
 V1=reshape(V(:,j,:),N(1),N(3));
 V(:,j,:)=tdmaline(a1,f1,g1,d1,e1,h1,V1);
 end
 for i=1:N(1) %rows third
 a1=reshape(a(i,:,:),N(2),N(3));
 b1=reshape(b(i,:,:),N(2),N(3));
 c1=reshape(c(i,:,:),N(2),N(3));
 d1=reshape(d(i,:,:),N(2),N(3));
 e1=reshape(e(i,:,:),N(2),N(3));
 f1=reshape(f(i,:,:),N(2),N(3));
 g1=reshape(g(i,:,:),N(2),N(3));
 if i==1
 h1=reshape(h(i,:,:),N(2),N(3))+d1.*reshape(V(i+1,:,:),N(2),N(3));
 elseif i==N(1)

214

 h1=reshape(h(i,:,:),N(2),N(3))+e1.*reshape(V(i-
1,:,:),N(2),N(3));
 else

h1=reshape(h(i,:,:),N(2),N(3))+d1.*reshape(V(i+1,:,:),N(2),
N(3))+e1.*reshape(V(i-1,:,:),N(2),N(3));
 end
 V1=reshape(V(i,:,:),N(2),N(3));
 V(i,:,:)=tdmaline(a1,f1,g1,b1,c1,h1,V1);
 end
 for k=N(3):-1:1 %backwards planes fourth
 a1=reshape(a(:,:,k),N(1),N(2));
 b1=reshape(b(:,:,k),N(1),N(2));
 c1=reshape(c(:,:,k),N(1),N(2));
 d1=reshape(d(:,:,k),N(1),N(2));
 e1=reshape(e(:,:,k),N(1),N(2));
 f1=reshape(f(:,:,k),N(1),N(2));
 g1=reshape(g(:,:,k),N(1),N(2));
 if k==1
 h1=reshape(h(:,:,k),N(1),N(2))+f1.*reshape(V(:,:,k+1),N(1),N(2));
 elseif k==N(3)
 h1=reshape(h(:,:,k),N(1),N(2))+g1.*reshape(V(:,:,k-
1),N(1),N(2));
 else

h1=reshape(h(:,:,k),N(1),N(2))+f1.*reshape(V(:,:,k+1),N(1),
N(2))+g1.*reshape(V(:,:,k-1),N(1),N(2));
 end
 V1=reshape(V(:,:,k),N(1),N(2));
 V(:,:,k)=tdmaline(a1,b1,c1,d1,e1,h1,V1);
 end
 for j=N(2):-1:1 %backwards columns fifth
 a1=reshape(a(:,j,:),N(1),N(3));
 b1=reshape(b(:,j,:),N(1),N(3));
 c1=reshape(c(:,j,:),N(1),N(3));
 d1=reshape(d(:,j,:),N(1),N(3));
 e1=reshape(e(:,j,:),N(1),N(3));
 f1=reshape(f(:,j,:),N(1),N(3));
 g1=reshape(g(:,j,:),N(1),N(3));
 if j==1
 h1=reshape(h(:,j,:),N(1),N(3))+b1.*reshape(V(:,j+1,:),N(1),N(3));
 elseif j==N(2)
 h1=reshape(h(:,j,:),N(1),N(3))+c1.*reshape(V(:,j-
1,:),N(1),N(3));
 else

h1=reshape(h(:,j,:),N(1),N(3))+b1.*reshape(V(:,j+1,:),N(1),
N(3))+c1.*reshape(V(:,j-1,:),N(1),N(3));
 end
 V1=reshape(V(:,j,:),N(1),N(3));
 V(:,j,:)=tdmaline(a1,f1,g1,d1,e1,h1,V1);
 end
 for i=N(1):-1:1 %backwards rows sixth
 a1=reshape(a(i,:,:),N(2),N(3));
 b1=reshape(b(i,:,:),N(2),N(3));
 c1=reshape(c(i,:,:),N(2),N(3));
 d1=reshape(d(i,:,:),N(2),N(3));
 e1=reshape(e(i,:,:),N(2),N(3));

215

 f1=reshape(f(i,:,:),N(2),N(3));
 g1=reshape(g(i,:,:),N(2),N(3));
 if i==1
 h1=reshape(h(i,:,:),N(2),N(3))+d1.*reshape(V(i+1,:,:),N(2),N(3));
 elseif i==N(1)
 h1=reshape(h(i,:,:),N(2),N(3))+e1.*reshape(V(i-
1,:,:),N(2),N(3));
 else

h1=reshape(h(i,:,:),N(2),N(3))+d1.*reshape(V(i+1,:,:),N(2),
N(3))+e1.*reshape(V(i-1,:,:),N(2),N(3));
 end
 V1=reshape(V(i,:,:),N(2),N(3));
 V(i,:,:)=tdmaline(a1,f1,g1,b1,c1,h1,V1);
 end
 two=V;
 err=max(max(max(abs((one-two)./one))));
 counter=counter+1;
 if ~mod(counter,10)
 disp(sprintf('still going... iteration: %i ave V: %2.3f
err: %1.5f',counter,mean(mean(mean(V))),err));
 end
 if counter>=1000
 disp(sprintf('over 1000 outer iterations, error is %1.5f',err));
 err=0;
 end
 if err>5
 disp(sprintf('diverging, error is %1.5f',err));
 err=0;
 end
 one=mean(mean(mean(V)));
 if one>2*Ve1
 disp(sprintf('V values too high, error is %1.5f',err));
 err=0;
 end
end
toc;
clear one two a b c d e f g h a1 b1 c1 d1 e1 f1 g1 h1
xx=ones(N(1),N(2));
for i=1:N(1)
 xx(i,:)=1:N(2);
end
yy=ones(N(1),N(2));
for j=1:N(2)
 yy(:,j)=1:N(1);
end
figure
contour(xx,yy,V(:,:,floor(N(3)/2))); %plot contour of voltages
title('Voltage contour map','fontsize',16);
figure
surf(xx,yy,V(:,:,floor(N(3)/2))); %plot surface of voltages
title('Voltage profile','fontsize',16);
%voltage to capacitance calculation
elec1=round(N(2)/3); %cell number for left side of electrode
elec2=round(2*N(2)/3); %cell number for right side of electrode
Q=zeros((elec2-elec1+1),N(3));

216

for j=elec1:elec2
 for k=1:(N(3)-1)
 i=1;
 Q((j-elec1+1),k)=(Ve1-V(i,j,k))/dy*dx*dz*(k5(i,j,k)*k2+(1-
k5(i,j,k))*k1)*2;
 end
 Q((j-elec1+1),N(3))=(Ve1-
V(1,elec2,N(3)))/dy*dx*dz2*(k5(1,elec2,N(3))*k2+(1-
k5(1,elec2,N(3)))*k1)*2;
end
charge=sum(sum(Q))*8.854e-12/1000;
capacitance(frame)=charge/(Ve1-Ve2);
save(OutFileName)

217

Function 29. tdma.m:
%TDMA solver
%equation at ith grid point:
% a_i * phi_i = b_i * phi_i+1 + c_i * phi_i-1 + d_i
%tridiagonal matrix formed from all grid points:
% [a -b 0 0] [d]
% [-c a -b 0] phi = [d]
% [0 -c a -b] [d]
% [0 0 -c a] [d]
%a is coefficient of ith term
%b is coefficient of i+1 term
%c is coefficient of i-1 term
%d is source term
%function outputs phi
function [phi] = tdma(a,b,c,d)
N=length(a); %number of grid points
P=zeros(1,N);
Q=zeros(1,N);
P(1)=b(1)/a(1);
Q(1)=d(1)/a(1);
for i=2:N
 P(i)=b(i)/(a(i)-c(i)*P(i-1));
 Q(i)=(d(i)+c(i)*Q(i-1))/(a(i)-c(i)*P(i-1));
end
phi(N)=Q(N);
for i=N-1:-1:1
 phi(i)=P(i)*phi(i+1)+Q(i);
end
end

218

Function 30. tdmaline.m:
%line by line TDMA solver
%equation at ith grid point:
% a_i,j * phi_i,j = b_i,j * phi_i+1,j + c_i,j * phi_i-1,j + d_i,j *
% phi_i,j+1 + e_i,j * phi_i,j-1 + f
%tridiagonal matrix formed from all grid points:
% [a -b 0 0] [d]
% [-c a -b 0] phi = [d]
% [0 -c a -b] [d]
% [0 0 -c a] [d]
%a is coefficient of ith jth term
%b is coefficient of i+1 jth term
%c is coefficient of i-1 jth term
%d is coefficient of ith j+1 term
%e is coefficient of ith j-1 term
%f is source term
%g is initial guesses for phi
%function outputs phi
function [phi] = tdmaline(a,b,c,d,e,f,g)
N=size(a); %number of grid points
 %N(1) is number of rows
 %N(2) is number of columns
 for i=1:N(1) %rows first
 a1=a(i,:);
 b1=b(i,:);
 c1=c(i,:);
 if i==1
 d1=f(i,:)+d(i,:).*g(i+1,:);
 elseif i==N(1)
 d1=f(i,:)+e(i,:).*g(i-1,:);
 else
 d1=f(i,:)+d(i,:).*g(i+1,:)+e(i,:).*g(i-1,:);
 end
 g(i,:)=tdma(a1,b1,c1,d1); %pass to tdma solver
 end
 for j=1:N(2) %columns second
 a1=a(:,j);
 b1=d(:,j);
 c1=e(:,j);
 if j==1
 d1=f(:,j)+b(:,j).*g(:,j+1);
 elseif j==N(2)
 d1=f(:,j)+c(:,j).*g(:,j-1);
 else
 d1=f(:,j)+b(:,j).*g(:,j+1)+c(:,j).*g(:,j-1);
 end
 g(:,j)=tdma(a1,b1,c1,d1); %pass to tdma solver
 end
 for i=N(1):-1:1 %backward rows third
 a1=a(i,:);
 b1=b(i,:);
 c1=c(i,:);
 if i==1
 d1=f(i,:)+d(i,:).*g(i+1,:);

219

 elseif i==N(1)
 d1=f(i,:)+e(i,:).*g(i-1,:);
 else
 d1=f(i,:)+d(i,:).*g(i+1,:)+e(i,:).*g(i-1,:);
 end
 g(i,:)=tdma(a1,b1,c1,d1); %pass to tdma solver
 end
 for j=N(2):-1:1 %backward columns fourth
 a1=a(:,j);
 b1=d(:,j);
 c1=e(:,j);
 if j==1
 d1=f(:,j)+b(:,j).*g(:,j+1);
 elseif j==N(2)
 d1=f(:,j)+c(:,j).*g(:,j-1);
 else
 d1=f(:,j)+b(:,j).*g(:,j+1)+c(:,j).*g(:,j-1);
 end
 g(:,j)=tdma(a1,b1,c1,d1); %pass to tdma solver
 end
phi=g;
end

220

Appendix C MATLAB Script for Non-Uniform Data Analysis

A MATLAB script was developed to analyze the data obtained in the non-

uniform heating experiments as discussed in Section 6.2. This script is a modified version

of the one used by Harirchian [89] to accommodate non-uniform heating profiles. The

script first reads in the data obtained during experiments. It then applies a set of

correlations to find the diode temperature, heat generation, and heat loss at every node. It

then calculates the pressure drop across the test section and the local saturation

temperature. Next it calculates the net heat transfer between each node and the local fluid

temperatures. It then calculates the local heat transfer coefficients and records all of the

data in a spreadsheet.

CalculatorUpdatedConduction2.m:
clc
clear
Boiling = xlsread('CalibrationData', 'Boiling', 'B3:B27');
Dimensions = xlsread('CalibrationData', 'Dimensions', 'B1:B7');
Heaters = xlsread('TestData','Heaters','B2:B26'); %which heaters are
turned on
wf = Dimensions(1); %fin width m
w = Dimensions(2); %channel width m
d = Dimensions(3); %channel depth m
N = Dimensions(4); %number of channels
Width = Dimensions(5); %chip width m
Length = Dimensions(6); %chip length m
t = Dimensions(7); %total chip thickness m
tbase = t - d; %chip base thickness m
Aw = N*(w+2*d)*Length; %wetted area m^2
Af = 2*Length*d; %fin area m^2
SiliconK = 140;
hfg = 89000; %Heat of vaporization
cpf = 1100; %Specific Heat, fluid J/kg*K
Position =
[.9 .9 .9 .9 .9 .7 .7 .7 .7 .7 .5 .5 .5 .5 .5 .3 .3 .3 .3 .3 .1 .1 .1 .
1 .1];
sigma = .0062; %Fluid surface tension N/m .0062
rhof = 1600; %Fluid Density kg/m3 1600

221

rhog = 15.84; %Vapor Density kg/m3 15.84
uf = .00052; %Fluid viscosity .00052
ug = .00002; %Gas Viscosity .00002
A1 = 0.01465*0.0228; %Inlet manifold area m^2
A2 = 0.00165*0.01267; %Plenum Area m^2
A3 = w*d*N; %Total Channel Area m^2
A4 = 0.01465*0.00835; %Exit Manifold Area m^2
%Calibration
%Diode Calibration
DiodeV = xlsread('CalibrationData', 'DiodeCalibration', 'A3:Y8');
SizeD = size(DiodeV);
DiodeT = xlsread('CalibrationData', 'DiodeCalibration', 'A11:A16');
DiodeVAvg=zeros(1,SizeD(1));
for i1 = 1:SizeD(1)
 DiodeVAvg(i1) = sum(DiodeV(i1,:))/SizeD(2);
end
DiodeModel = polyfit(DiodeVAvg', DiodeT, 1);
%Resistor Calibration
Resistance = xlsread('CalibrationData', 'ResistorCalibration', 'A3:Y7');
SizeR = size(Resistance);
ResistanceT = xlsread('CalibrationData', 'ResistorCalibration',
'A11:A15');
ResistorModel=zeros(3,SizeR(2));
for i1 = 1:SizeR(2)
 [ResistorModel(:,i1)]=polyfit(ResistanceT,Resistance(:,i1),2);
end
%Heat Loss
Voltage = xlsread('CalibrationData', 'HeatLossCalibration', 'A10:A14');
Current = xlsread('CalibrationData', 'HeatLossCalibration', 'B10:B14');
DiodeLossVoltage = xlsread('CalibrationData', 'HeatLossCalibration',
'A3:Y7');
LossTemperature = DiodeModel(1).*DiodeLossVoltage +
ones(size(DiodeLossVoltage))*DiodeModel(2);
SizeT = size(LossTemperature);
SizeV = size(Voltage);
TotalLoss = Voltage.*Current;
AvgLossTemp=zeros(1,SizeT(1));
for i1 = 1:SizeT(1)
 AvgLossTemp(i1) = sum(LossTemperature(i1,:))/SizeT(2);
end
LossResistance=repmat(ResistorModel(1,:),5,1).*LossTemperature.^2+repma
t(ResistorModel(2,:),5,1).*LossTemperature+repmat(ResistorModel(3,:),5,
1);
LocalHeatLoss=repmat(Voltage,1,25).^2./LossResistance;
LocalLossModel=zeros(2,SizeT(2));
for i1 = 1:SizeT(2)
 ModelTemperatureTemp=LossTemperature(:,i1);
 ModelLossTemp=LocalHeatLoss(:,i1);
 [LocalLossModel(:,i1)]=polyfit(ModelTemperatureTemp,ModelLossTemp,1);
end
TotalLossModel = polyfit(AvgLossTemp', TotalLoss, 1);
%Data Processing
TestData = xlsread('TestData', 'ExperimentalData'); %Read in
experimental data
SampleSize = size(TestData);

222

%Diode Temperature at each node
TestTemp=DiodeModel(1)*TestData(:,1:25)+DiodeModel(2);
%Heater resistance in each node
TestResistance=repmat(ResistorModel(1,:),SampleSize(1),1).*TestTemp.^2+
repmat(ResistorModel(2,:),SampleSize(1),1).*TestTemp+repmat(ResistorMod
el(3,:),SampleSize(1),1);
%Heat generation at each node
LocalHeatGeneration=repmat(TestData(:,26),1,25).^2./TestResistance.*(re
pmat(Heaters',SampleSize(1),1)==1) +
repmat(TestData(:,32),1,25).^2./TestResistance.*(repmat(Heaters',Sample
Size(1),1)==2);
%Heat loss at each node
TestLocalHeatLoss=repmat(LocalLossModel(1,:),SampleSize(1),1).*TestTemp
+repmat(LocalLossModel(2,:),SampleSize(1),1);
%Inlet pressure for each voltage level tested [Pa]
InletPressure=(14.697+TestData(:,27))/.00014504;
%Pressure drop for each voltage [Pa]
DP=(TestData(:,28))/.00014504;
%Exit fluid temperature [C]
ExitTemp=TestData(:,30);
%Inlet fluid temp [C]
Tin=TestData(:,29);
%Mass flow rate [mL/min]
Mdot=TestData(:,31);
%Mass flux (kg/m^2s)
G = Mdot/60*(.01)^3*rhof/A3;
%%%%Pressure drop calculations%%%%%
%Inlet manifold to plenum [Pa]
alpha2 = 0.00165/0.01267;
G2=G*A3/A2;
Kc2 = .0088*alpha2^2-.1785*alpha2+1.6027;
DP12 = (1-(A2/A1)^2+Kc2)*0.5*G2.^2/rhof;
%Plenum to Microchannel [Pa]
alpha3 = max(w/d, d/w);
Kc3 = .0088*alpha3^2-.1785*alpha3+1.6027;
DP23 = (1-(A3/A2)^2+Kc3)*0.5*G.^2/rhof;
qdotnet = sum((LocalHeatGeneration-TestLocalHeatLoss), 2);
%Microchannel to exit manifold
TsatExit=1928./(10.216-log10(InletPressure-DP))-273.15;
xe=1/hfg*(qdotnet./(G*d*w*N)-cpf*(TsatExit-Tin)); %Exit vapor quality
(overall)
for i1 = 1:(SampleSize(1))
 if(xe(i1)>1)
 xe(i1) = .999999999;
 end
 if(xe(i1)<0)
 xe(i1) = .0001;
 end
end
Xvv=(uf/ug)^.5*((1-xe)./xe).^.5*(rhog/rhof)^.5;
DP34=G.^2/rhof*(A3/A4*(A3/A4-1)).*(1-xe).^2.*(1+5./Xvv+1./Xvv.^2);
%Pressure drop across channels alone
DP3=DP-DP12-DP23-DP34;
%Local pressure at each node

223

LocalPressure=repmat(InletPressure,1,25)-repmat(DP12,1,25)-
repmat(DP23,1,25)-DP3*Position;
%Local saturation temperature
Tsat=1928./(10.216-log10(LocalPressure))-273.15;
TsatAve = mean(Tsat,2);
%Establish a local fluid temperature matrix with temperature at each
node for each voltage tested, taking into account single and two-phase
flow regions
Ac1= Width*(t-d)/5;
Ac2= Length*(t-d)/5;
NetConductionOut=zeros(SampleSize(1),25);
C1=Ac1*SiliconK/(Length/5);
C2=Ac2*SiliconK/(Width/5);
NetConductionOut(:,1)=C2*(TestTemp(:,1)-
TestTemp(:,2))+C1*(TestTemp(:,1)-TestTemp(:,6));
NetConductionOut(:,2:4)=C2*(2*TestTemp(:,2:4)-TestTemp(:,3:5)-
TestTemp(:,1:3))+C1*(TestTemp(:,2:4)-TestTemp(:,7:9));
NetConductionOut(:,5)=C2*(TestTemp(:,5)-
TestTemp(:,4))+C1*(TestTemp(:,5)-TestTemp(:,10));
NetConductionOut(:,6)=C2*(TestTemp(:,6)-
TestTemp(:,7))+C1*(2*TestTemp(:,6)-TestTemp(:,1)-TestTemp(:,11));
NetConductionOut(:,7:9)=C2*(2*TestTemp(:,7:9)-TestTemp(:,8:10)-
TestTemp(:,6:8))+C1*(2*TestTemp(:,7:9)-TestTemp(:,2:4)-
TestTemp(:,12:14));
NetConductionOut(:,10)=C2*(TestTemp(:,10)-
TestTemp(:,9))+C1*(2*TestTemp(:,10)-TestTemp(:,5)-TestTemp(:,15));
NetConductionOut(:,11)=C2*(TestTemp(:,11)-
TestTemp(:,12))+C1*(2*TestTemp(:,11)-TestTemp(:,6)-TestTemp(:,16));
NetConductionOut(:,12:14)=C2*(2*TestTemp(:,12:14)-TestTemp(:,13:15)-
TestTemp(:,11:13))+C1*(2*TestTemp(:,12:14)-TestTemp(:,7:9)-
TestTemp(:,17:19));
NetConductionOut(:,15)=C2*(TestTemp(:,15)-
TestTemp(:,14))+C1*(2*TestTemp(:,15)-TestTemp(:,10)-TestTemp(:,20));
NetConductionOut(:,16)=C2*(TestTemp(:,16)-
TestTemp(:,17))+C1*(2*TestTemp(:,16)-TestTemp(:,11)-TestTemp(:,21));
NetConductionOut(:,17:19)=C2*(2*TestTemp(:,17:19)-TestTemp(:,18:20)-
TestTemp(:,16:18))+C1*(2*TestTemp(:,17:19)-TestTemp(:,12:14)-
TestTemp(:,22:24));
NetConductionOut(:,20)=C2*(TestTemp(:,20)-
TestTemp(:,19))+C1*(2*TestTemp(:,20)-TestTemp(:,15)-TestTemp(:,25));
NetConductionOut(:,21)=C2*(TestTemp(:,21)-
TestTemp(:,22))+C1*(TestTemp(:,21)-TestTemp(:,16));
NetConductionOut(:,22:24)=C2*(2*TestTemp(:,22:24)-TestTemp(:,23:25)-
TestTemp(:,21:23))+C1*(TestTemp(:,22:24)-TestTemp(:,17:19));
NetConductionOut(:,25)=C2*(TestTemp(:,25)-
TestTemp(:,24))+C1*(TestTemp(:,25)-TestTemp(:,20));
NetHeatTransfer=LocalHeatGeneration-TestLocalHeatLoss-NetConductionOut;
Tf = zeros(SampleSize(1), 25);
for i1 = 1:(SampleSize(1))
 for i2 = 25:-1:1
 if i2>=21

Tf(i1,i2)=.5*NetHeatTransfer(i1,i2)/((G(i1)*w*d*N)/5*cpf)+T
in(i1);
 else

224

Tf(i1,i2)=(.5*NetHeatTransfer(i1,i2)+.5*NetHeatTransfer(i1,
i2+5))/((G(i1)*w*d*N)/5*cpf)+Tf(i1,(i2+5));
 end
 if Tf(i1,i2)>Tsat(i1,i2)
 Tf(i1,i2) = Tsat(i1,i2);
 end
 end
end
%Q" on channel walls
NetHeatFlux = NetHeatTransfer./(Aw/25);
%Iterative h calculation
h = NetHeatFlux./(TestTemp - Tf);
htest = h;
test = 1;
while(test>.01)
 m = ((2*abs(h))/(SiliconK*wf)).^.5;
 nf = tanh(m*d)./(m*d);
 no = 1.-N*Af/Aw*(1-nf);
 h = NetHeatFlux./(no.*(TestTemp - Tf));
 test = max(max(abs(h-htest)));
 htest = h;
end
BaseHeatFlux = (sum(NetHeatTransfer,2))/(Width*Length);
Re = G*(A3/N)^.5/(uf); %Reynolds Number
Bo = 9.81*(rhof-rhog)*(A3/N)/sigma; %Bond Number
Bl=NetHeatFlux./(repmat(G,1,25)*hfg); %Boiling number
%Phase change number
Npch=NetHeatFlux*(w+2*d)/(A3/N*hfg)*(rhof-
rhog)/(rhof*rhog).*repmat(Position,SampleSize(1),1)*Length./(repmat(G,1
,25)/rhof);
xLocal=zeros(SampleSize(1),25);
xLocal(:,21:25)=1/hfg*(.5*NetHeatTransfer(:,21:25)./(repmat(G,1,5)*d*w*
N/5)-cpf*(Tf(:,21:25)-repmat(Tin,1,5)));
xLocal(:,16:20)=1/hfg*(.5*NetHeatTransfer(:,16:20)./(repmat(G,1,5)*d*w*
N/5)-cpf*(Tf(:,16:20)-Tf(:,21:25)));
xLocal(:,11:15)=1/hfg*(.5*NetHeatTransfer(:,11:15)./(repmat(G,1,5)*d*w*
N/5)-cpf*(Tf(:,11:15)-Tf(:,16:20)));
xLocal(:,6:10)=1/hfg*(.5*NetHeatTransfer(:,6:10)./(repmat(G,1,5)*d*w*N/
5)-cpf*(Tf(:,6:10)-Tf(:,11:15)));
xLocal(:,1:5)=1/hfg*(.5*NetHeatTransfer(:,1:5)./(repmat(G,1,5)*d*w*N/5)
-cpf*(Tf(:,1:5)-Tf(:,6:10)));
for i1 = 1:SampleSize(1)
 for i2 = 1:25
 if(xLocal(i1,i2)>1)
 xLocal(i1,i2) = 1;
 elseif(xLocal(i1,i2)<0)
 xLocal(i1,i2)=0;
 end
 end
end
xlswrite('Results', NetHeatFlux, 'LocalNetHeatFlux')
xlswrite('Results', NetHeatTransfer, 'LocalNetHeatTransfer')
xlswrite('Results', BaseHeatFlux, 'BaseHeatFlux')
xlswrite('Results', h, 'LocalHeatTransferCoeff')
xlswrite('Results',TestTemp,'Td')

225

xlswrite('Results',Tf,'Tf')
xlswrite('Results', G, 'G')
xlswrite('Results', nf, 'LocalFinEfficiency')
xlswrite('Results', no, 'LocalOverallEfficiency')
xlswrite('Results', {'xe', 'Lsp'}, 'ExitQuality, Lsp', 'A1:B1')
xlswrite('Results', xe, 'ExitQuality, Lsp', 'A2')
xlswrite('Results', {'Total Drop', 'Microchannel Drop', 'DP12', 'DP23',
'DP34'}, 'Pressure', 'A1:E1')
xlswrite('Results', DP, 'Pressure', 'A2')
xlswrite('Results', DP3, 'Pressure', 'B2')
xlswrite('Results', DP12, 'Pressure', 'C2')
xlswrite('Results', DP23, 'Pressure', 'D2')
xlswrite('Results', DP34, 'Pressure', 'E2')
xlswrite('Results', {'Diode Model'; 'T=aV+b'; 'a'; 'b'}, 'Models',
'A1:A4')
xlswrite('Results', DiodeModel', 'Models', 'B3:B4')
xlswrite('Results', {'Resistor Model'; 'R=aT^2+bT+c';'a';'b';'c'},
'Models', 'A5:A9')
xlswrite('Results', ResistorModel, 'Models', 'B7')
xlswrite('Results', {'Heat Loss Model'; 'q=a*T+b'; 'a'; 'b'}, 'Models',
'A11:A14')
xlswrite('Results', LocalLossModel, 'Models', 'B13')
xlswrite('Results', {'Reynolds Number', 'Bond Number'}, 'Bo_Re',
'A1:B1')
xlswrite('Results', Re, 'Bo_Re', 'A2');
xlswrite('Results', Bo', 'Bo_Re', 'B2');
xlswrite('Results', Bl, 'Boiling Number');
xlswrite('Results', Npch, 'Phase Change Number');

226

Appendix D Non-Uniform Heating Plots

This section contains the set of graphs describing the data collected under hotspot

and non-uniform peak heating conditions as described in Section 6.3. The graphs are

grouped by case and contain all of the data recorded.

Case 1a: Central Transverse Hotspot

Figure D.1. (a) Local heat flux transferred to the fluid, (b) fluid temperature along the
flow length, (c) wall temperature along the flow length, and (d) wall heat flux plotted

against the wall excess temperature at increasing power input levels for a central
transverse hotspot.

Increasing Q

Increasing Q

(a)

(c)

(b)

(d)

227

Case 1b: Central Streamwise Hotspot

Figure D.2. (a) Local heat flux transferred to the fluid, (b) fluid temperature along the
flow length, (c) wall temperature along the flow length, and (d) wall heat flux plotted

against the wall excess temperature at increasing power input levels for a central
streamwise hotspot.

Increasing Q

(a) (b)

(c) (d)

228

Case 1c: Inlet Transverse Hotspot

Figure D.3. (a) Local heat flux transferred to the fluid, (b) fluid temperature along the
flow length, (c) wall temperature along the flow length, and (d) wall heat flux plotted

against the wall excess temperature at increasing power input levels for an inlet
transverse hotspot.

Increasing Q

Increasing Q

(a) (b)

(c) (d)

229

Case 1d: Double Transverse Hotspot

The fourth hotspot heating profile tested was Case 1d, dual transverse hotspots.

Power was supplied to 5 transverse heater elements located at both the inlet and outlet of

the flow stream while the remaining 15 resistors were unpowered. As the power input

increases, two local heat flux maxima occur at the inlet and outlet active heater elements;

the heat flux to the fluid is slightly higher at the inlet as seen along the central streamwise

sensors in Figure D.4a at increasing power input levels.

As the power level increases, the wall temperature becomes highest at the hotspot

locations. The outlet hotspot has a slightly higher wall temperature than the inlet hotspot

due to the fluid temperature increase along the flow length. At a power input of 65 W, the

inlet hotspot wall temperature is 133.3 °C and the outlet hotspot wall temperature is

133.7 °C. The minimum wall temperature occurred at the middle of the heat sink between

the two hotspots (104.1 °C). This temperature is on the same order as the outlet wall

temperature of Case 1a (102.5 °C), but larger than the Case 1a inlet wall temperature

(94.6 °C). The wall temperatures measured across the central streamwise sensors at

increasing input power levels are shown in Figure D.4c.

Boiling curves are shown in Figure D.4d for sensors 3, 13, and 23. Boiling begins

at the outlet (inlet) hotspot at a total input power of 27.5 W (30.6 W) and a local heat flux

of 11.3 W/cm2 (14.4 W/cm2) with a wall excess temperature of 30.2 °C (32.3 °C).

Boiling is suppressed up to a comparatively higher heat flux at the inlet due to the larger

developing-flow single-phase heat transfer coefficient that mitigates surface superheat.

Images extracted from high-speed videos (Supplementary Video 4) for the dual

transverse hotspots at different power levels of 21.9 W, 33.7 W, 48.2 W, and 65.0 W are

230

shown in Figure D.5. In this case, boiling incipience occurs at both the inlet and outlet

hotspots for power levels above 21.9 W; however this boiling does not occur across all

channels until the power input is increased further. At high power levels vigorous boiling

occurs at the outlet hotspot, and partial dryout is observed in some channels. Vapor

bubbles formed at the inlet hotspot affect the downstream flow regime and boiling

incipience at the outlet hotspot. These bubbles coalesce with those formed at the

downstream hotspot to form large vapor regions and partial dryout. For similar power

levels and heat fluxes, this phenomenon is not seen in the other hotspot cases, and is

unique to dual hot spots. Additionally, the fluid reaches the saturation temperature earlier

along the flow length, causing partial dryout to occur in several channels prior to

reaching the outlet hotspot at high power levels.

231

Figure D.4. (a) Local heat flux transferred to the fluid, (b) fluid temperature along the
flow length, (c) wall temperature along the flow length, and (d) wall heat flux plotted

against the wall excess temperature at increasing power input levels for a double
transverse hotspot.

Increasing Q

Increasing Q

(a) (b)

(c) (d)

232

Figure D.5. Images at increasing power levels for dual transverse hotspots extracted from
high-speed video. Red lines indicate the locations of the heated sensors.

21.9 W 33.7 W

48.2 W 65.0 W

233

Case 2a: Non-Uniform Transverse Peak

Figure D.6. (a) Local heat flux transferred to the fluid, (b) fluid temperature along the
flow length, (c) wall temperature along the flow length, and (d) heat transfer coefficient
along the flow length at increasing degrees of nonuniformity between the heat flux at the

peak and the background heater locations for Case 2a.

(a) (b)

(c) (d)

234

Case 2b: Non-Uniform Streamwise Peak

Figure D.7. (a) Local heat flux transferred to the fluid, (b) fluid temperature along the
flow length, (c) wall temperature along the flow length, and (d) heat transfer coefficient
along the flow length at increasing degrees of nonuniformity between the heat flux at the

peak and the background heater locations for Case 2b.

(a) (b)

(c) (d)

235

Appendix E Non-Uniform Heating in a Copper Heat Sink

A second set of experiments were conducted using non-uniform heating profiles

imposed on an attached copper microchannel heat sink2. The channels are the same

dimensions as the test piece described in Section 6.1.1, but the heat sink has a thicker

base. Additionally, the heat sink itself it attached to a smooth silicon thermal test chip

adding a contact resistance that does not exist in the previous work.

E.1 Test Section

The microchannel test section used in this study consists of a microchannel heat

sink provided by Wolverine Tube, Inc. and a thermal test chip provided by IBM, and it is

shown in Figure E.1. A transparent, polycarbonate manifold cover plate seals and routes

the working fluid through the microchannel heat sink. The heat sink is made of copper

110 and has a base area of 12.7 mm × 12.7 mm. The channels have a width of 259 m

and a depth of 342 m. The heat sink is placed on top of a smooth silicon thermal test

chip; no thermal interface material (TIM) is used. The thermal test chip has a base area of

21.3 mm × 21.3 mm and has a thickness of approximately 0.81 mm. A 5 × 5 array of

resistance heaters and resistance temperature detectors (RTDs) is fabricated on the

underside of the thermal test chip.

Since the microchannel heat sink has a smaller base area than the silicon thermal

test chip, the heat sink was carefully placed in the center so that it only covered the

2 The author would like to thank Peter Beucher of Wolverine Tube, Inc. and Katie Rivera of IBM for
providing the copper microchannel heat sink and silicon thermal test chip.

236

middle 3 × 3 array of heater elements, as shown in Figure E.2. Silicone rubber sheets

were placed on the sides of the heat sink to force fluid to flow through the channels and

prevent it from bypassing the heat sink. In this configuration, fluid flows over a portion

of the thermal test chip, through the microchannels, and over another portion of the

thermal test chip. In this way, it is possible for the fluid to increase in temperature before

entering and after exiting the channels. Since no TIM was used, the heat sink is held in

place by pressure from the cover plate; the interfacial contact resistance was estimated to

be 0.5 x 10-4 m2K/W [100]. With the addition of an attached copper heat sink combined

with a lack of a TIM, it is estimated that there is significantly more lateral conduction and

heat spreading through the substrate as compared to in the test chip presented in Section

6.3.

E.2 Calibration

A calibration of the RTDs, the resistance heaters, and the heat loss to the test

section was performed. The calibration performed for the RTDs was done in an oven at

six temperatures ranging from 30 to 100 ˚C and the data is plotted is Figure E.3. A linear

least squares regression of voltage to temperature was fit to each of the RTDs The

calibration performed for the heaters was done in an oven at five temperatures ranging

from 40 to 100 ˚C and the data is plotted in Figure E.4. A quadratic regression line was fit

to each of the heaters to relate the measured temperature to the resistance. After the RTDs

and resistance heaters were calibrated, the test section was assembled. In order to

calibrate the heat loss from the test section, seven power levels ranging from 0 to 0.55 W

were applied while there was no flow through the test section. The heat loss via natural

237

convection and radiation on the outer surfaces of the test section is measured as the

amount of power supplied to the heaters and the temperatures are measured. The heat loss

data as a function of temperature is plotted in Figure E.5 with a linear fit to the data.

E.3 Experimental Procedures

The flow loop is the same as that described in Section 8.1.2. The working fluid,

HFE-7100, was chosen for its relatively low boiling point (61 ˚C at atmospheric pressure).

Experiments are conducted at a single mass flux of 770 kg/m2s. The fluid is heated to

approximately 51 ˚C at the inlet to the test chip. Both the flow rate and the inlet

temperature were at maintained at a constant value throughout the test.

E.4 Data Reduction

Modifications were made to the data reduction analysis described in Section 6.2

and shown in Appendix C to account for the extra heat spreading in the test section. An

additional contact resistance between the silicon thermal test chip and copper

microchannel heat sink was added, as well as a separate calculation for the regions

upstream and downstream of the heat sink where the fluid is in direct contact with the

silicon test chip. A schematic diagram of the energy flow in the test section is shown in

Figure E.6. Finally, fluid properties were updated to account for the change in fluid from

FC-77 to HFE-7100.

238

E.5 Results and Discussion

Two cases were tested: (1) a uniform heating case where all nine heaters under the

microchannel heat sink were activated and (2) a single hotspot case where only the

central heater was activated. Wall temperatures, heat transfer coefficients, and wall heat

fluxes along the flow direction for the uniform heating case are shown in Figure E.7. In

this case, significant lateral conduction within the silicon thermal test chip was observed,

as expected. The unheated regions upstream and downstream of the heat sink showed a

considerable rise in the wall temperature, with a relatively small peak in the center of the

heated region. The heat transfer coefficients and wall heat fluxes above the heated

regions are significantly larger than those above the unheated regions, as expected.

The wall temperatures, heat transfer coefficients, and wall heat fluxes along the

flow direction for a single hotspot case are shown in Figure E.8. Like the uniform case, a

single hotspot case displays significant heat spreading in both the silicon thermal test chip

and the copper microchannel heat sink. The highest local wall temperature was measured

above the active heater element, as expected; however, a significant rise in the wall

temperatures at the outer parts of the chip was still observed. The highest wall

temperature recorded was 97.5 ˚C for a single hotspot above the central heater for a

power input level of 38.1 W; the uniform heating case produced a maximum wall

temperature of 85.5 ˚C despite a total power input level of 88.7 W, more than twice that

of the hotspot case.

In the uniform heating case, boiling incipience was observed at a power input

level of 33.0 W. Boiling was observed in all of the channels in the heat sink. In the single

hotspot case, boiling incipience was observed at a power input level of 34.6 W and a

239

maximum wall temperature drop of approximately 3 ˚C was observed due to boiling

incipience. Boiling was only observed in the region above the hotspot as seen in Figure

E.9. In both heating cases, boiling begins at about the same total power input despite the

large difference in the base heated area. This is due to the large amount of heat spreading

within the thermal test chip and heat sink that effectively smoothed out the hotspot.

E.6 Conclusions

In this work, a copper microchannel heat sink was attached to a silicon thermal

test chip and both a uniform and a single hotspot heating case were tested. The thicker

heat sink base combined with a lack of a TIM between the test chip and heat sink

increased the lateral conduction within the test section. This led to an increased thermal

resistance between the heaters and the fluid, causing more heat to flow in the lateral

direction as compared to the results seen in Section 6.3. The addition of a TIM between

the silicon and copper would likely decrease heat spreading to the non-heated regions.

At higher power input levels, the fluid entering the test section is preheated via

lateral conduction prior to entering the heat sink. If enough heat is supplied to this region,

the fluid may boil prior to entering the channels and cause flow instabilities in the test

section and trap vapor in the inlet manifold. It is recommended that a microchannel heat

sink be placed as close to the inlet of the test section as possible to avoid this situation.

240

Figure E.1. (a) The assembled test section, (b) the silicon thermal test chip, and (c) the
copper microchannel heat sink.

(a)

(b) (c)

241

Figure E.2. A diagram of the microchannel heat sink in relation to the heater locations on
the thermal test chip.

Exposed
silicon

Copper
microchannels

242

Figure E.3. Calibration lines for each RTD in the thermal test chip.

30

40

50

60

70

80

90

100

110

270 320 370 420

Te
m

pe
ra

tu
re

 (˚
C)

RTD measurement (Ω)

A1
A2
A3
A4
A5
B1
B2
B3
B4
B5
C1
C2
C3
C4
C5
D1
D2
D3
D4
D5
E1
E2
E3
E4
E5

243

Figure E.4. Calibration lines for each heater element in the thermal test chip.

8

8.5

9

9.5

10

10.5

11

40 50 60 70 80 90 100 110

Re
si

st
an

ce
 M

ea
su

re
m

en
t (
Ω

)

Temperature (˚C)

A1
A2
A3
A4
A5
B1
B2
B3
B4
B5
C1
C2
C3
C4
C5
D1
D2
D3
D4
D5
E1
E2
E3
E4
E5

244

Figure E.5. Calibration lines for the heat loss in the assembled test section.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

20 40 60 80 100 120

q l
os

s
(W

)

Temperature (˚C)

A1
A2
A3
A4
A5
B1
B2
B3
B4
B5
C1
C2
C3
C4
C5
D1
D2
D3
D4
D5
E1
E2
E3
E4
E5

245

Figure E.6. A diagram of the flow of heat through a cross section of the test section.

246

Figure E.7. (a) The local wall temperature, (b) heat transfer coefficient, and (c) heat flux
transferred to the fluid over the flow length for a uniform heating case.

Flow
Direction

(a)

(b)

(c)

247

Figure E.8. (a) The local wall temperature, (b) heat transfer coefficient, and (c) heat flux
transferred to the fluid over the flow length for a single hotspot case.

Flow
Direction

(a)

(b)

(c)

248

Figure E.9. Image taken at 38.1 W for a single hotspot. The red dashed lines indicate the
location of the hotspot.

249

Appendix F Critical Heat Flux Plots

This section contains a set of graphs describing the critical heat flux data collected

using various hotspot heating conditions as described in Section 8.2. The graphs contain

all of the data recorded for each case.

Uniform Heating

Figure F.1. Heat flux transferred to the fluid plotted against the wall excess temperature
for a uniform heating profile. “X” indicates the location of CHF.

1 6 11 16 21

2 7 12 17 22

3 8 13 18 23

4 9 14 19 24

5 10 15 20 25

Flow direction

Heater Power

250

Inlet Transverse Hotspot

Figure F.2. Heat flux transferred to the fluid plotted against the wall excess temperature
for an inlet transverse hotspot. “X” indicates the location of CHF.

1 6 11 16 21

2 7 12 17 22

3 8 13 18 23

4 9 14 19 24

5 10 15 20 25

Flow direction

Heater Power

251

Central Transverse Hotspot

Figure F.3. Heat flux transferred to the fluid plotted against the wall excess temperature
for a central transverse hotspot. “X” indicates the location of CHF.

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

Twall-Tf [C]

q" w
[W

/c
m

2]

11
12
13
14
15

1 6 11 16 21

2 7 12 17 22

3 8 13 18 23

4 9 14 19 24

5 10 15 20 25

Flow direction

Heater Power

252

Outlet Transverse Hotspot

Figure F.4. Heat flux transferred to the fluid plotted against the wall excess temperature
for an outlet transverse hotspot. “X” indicates the location of CHF.

1 6 11 16 21

2 7 12 17 22

3 8 13 18 23

4 9 14 19 24

5 10 15 20 25

Flow direction

Heater Power

253

Central Streamwise Hotspot

Figure F.5. Heat flux transferred to the fluid plotted against the wall excess temperature
for a central streamwise hotspot. “X” indicates the location of CHF.

0 10 20 30 40 50 60 70 80

0

10

20

30

40

50

60

Twall-Tf [C]

q" w
[W

/c
m

2]

3 8 13 18 23

1 6 11 16 21

2 7 12 17 22

3 8 13 18 23

4 9 14 19 24

5 10 15 20 25

Flow direction

Heater Power

254

Dual Transverse Hotspot

Figure F.6. Heat flux transferred to the fluid plotted against the wall excess temperature
for a dual transverse hotspot. “X” indicates the location of CHF.

1 6 11 16 21

2 7 12 17 22

3 8 13 18 23

4 9 14 19 24

5 10 15 20 25

Flow direction

Heater Power

255

Appendix G MATLAB Script of the Microchannel Heat Sink Computational Model

A MATLAB script was developed to model two-phase heat transfer in a

microchannel heat sink as discussed in Section 7.1. The following script takes a set of

user defined inputs and calculates the local temperatures within the base of the heat sink,

as well as local heat transfer coefficients and wall heat fluxes. It is split into several

functions; Table G.1 displays the function number, name, description, and page number

where it can be found. The author would like to thank Professor Tine Baelmans of KU

Leuven for providing some of the logic for the code.

Table G.1. A list of all of the functions for the computational model.
Function
Number Function Name Description Page

Number
31 compmodel.m The main program 256

32 condbasemat.m Generates coefficient matrices for conduction
analysis 258

33 conduction.m Plane-by-plane TDMA solver for conduction in
the heat sink base 265

34 convection2.m Convection analysis 268
35 discretize.m Discretize the heat sink base 270
36 genmesh.m Generates identification matrices for the domain 271
37 gui_input2.m GUI to read inputs from user 272
38 gui_output.m GUI to display the results 281
39 heattranscoeff.m Calculates the heat transfer coefficient 284
40 inputs.m Contains fluid properties and heating profiles 285
41 pressuredrop.m Calculates the pressure drop 287
42 singlephasedp.m Calculates the single-phase pressure drop 288

43 singlephaseh.m Calculates the single-phase heat transfer
coefficient 289

44 tdma.m TDMA solver 289
45 tdmaline.m Line-by-line TDMA solver 290

46 twophaseh.m Calculates the two-phase heat transfer
coefficient 292

47 vaporphaseh.m Calculates the heat transfer coefficient for vapor
flow 293

256

Function 31. compmodel.m

clear all
clc
[dims,matp,flow,getdata,filename]=inputs();
if getdata
 load(filename)
else
 [mesh]=discretize(dims);
 [mesh]=genmesh(dims,mesh);
 Nx=mesh.Nx_c+mesh.Nx_f+mesh.Nx_ef;
 Ny=mesh.Ny;
 Nz=mesh.Nz;
 T=ones(Nx,Ny,Nz)*flow.T_in; %initialize T everywhere
 Tf=ones(dims.N,Ny)*flow.T_in; %initialize Tf everywhere
 h=ones(dims.N,Ny)*5000; %initialize h everywhere
 xe=zeros(dims.N,Ny)-1; %initialize xe everywhere
 q_in=zeros(Nx,Ny); %calculate input heat transfer
 q_w=zeros(dims.N,Ny);
 dx=[mesh.dx_c mesh.dx_f mesh.dx_ef];
 for i=1:Nx
 for j=1:Ny
 dx_val=dx(mesh.id.label(i));
q_in(i,j)=flow.Q_in(mod(floor(i*5/Ny),5)+1,mod(floor(j*5/Ny),5)+1)*mesh
.dy*dx_val;
 q_w(mesh.id.num(i),j)=q_w(mesh.id.num(i),j)+q_in(i,j);
 end
 end
 q_w=q_w/mesh.dy/(dims.w+2*dims.d);
end
%iterate between conduction in base and heat transfer in fins
tic;
counter=0;
err=1;
while err>0.000001
 Told=T;
 [T]=conduction(dims,matp,mesh,T,Tf,h,q_in);
 [DP,DPsp,DPtp]=pressuredrop(dims,matp,mesh,flow,xe,Tf);
 ws=zeros(dims.N,2);
 ws(:,1)=(max(q_w,[],2)-min(q_w,[],2))./mean(q_w,2);
 for i=1:dims.N
 ws(i,1)=(max(q_w(i,:))-min(q_w(i,:)))/mean(q_w(i,:));
 if isnan(ws(i,1))
 ws(i,1)=0;
 end
 x1=find(mesh.id.num==i);
 ws(i,2)=(max(max(T(x1,:,Nz)))-
min(min(T(x1,:,Nz))))/mean(mean(T(x1,:,Nz)));
 end
 [Tf,h,q_w,xe]=convection2(dims,matp,mesh,flow,T,Tf,q_w,DP,xe,ws);
 err=max(max(max(abs((Told-T)./Told))));
 counter=counter+1;
 if counter==5
 fprintf('still going...\n');
 end

257

 if ~mod(counter,10)
 fprintf('iteration: %i ave T: %2.3f
err: %1.6f\n',counter,mean(mean(mean(T))),err);
 end
 if counter>=1000
 fprintf('over 1000 iterations, error is %1.7f\n',err);
 err=0;
 end
 if err>15
 fprintf('diverging, %i iterations, error
is %1.7f\n',counter,err);
 err=0;
 end
end
toc;
clear Told counter i j dx dx_val x1
gui_output;

258

Function 32. condbasemat.m

function [a,b,c,d,e,f,g,ho]=condbasemat(mesh,dims,matp,h,q_in,Tf)
Nx=mesh.Nx_c+mesh.Nx_f+mesh.Nx_ef;
Ny=mesh.Ny;
Nz=mesh.Nz;
N=dims.N;
dc=dims.d;
id=mesh.id;
ks=matp.k_Si;
dy=mesh.dy;
dx_c=mesh.dx_c;
dx_f=mesh.dx_f;
dx_ef=mesh.dx_ef;
dx=[dx_c dx_f dx_ef];
dz=mesh.dz;
a_loss=0.003213171*25/Ny/Nx; %constants from experiment to find q_loss
b_loss=-0.085901548*25/Ny/Nx; %q_loss=a_loss*T(Nx,Ny,1)+b_loss; %[W],
25 total
b=zeros(Nx,Ny,Nz);
c=zeros(Nx,Ny,Nz);
d=zeros(Nx,Ny,Nz);
e=zeros(Nx,Ny,Nz);
f=zeros(Nx,Ny,Nz);
g=zeros(Nx,Ny,Nz);
ho=zeros(Nx,Ny,Nz);
%interior cells
for i=2:Nx-1
 dx_val=(dx(id.label(i))+dx(id.label(i+1)))/2;
 b(i,2:Ny-1,2:Nz-1)=ks*dy*dz/dx_val;
 dx_val=(dx(id.label(i))+dx(id.label(i-1)))/2;
 c(i,2:Ny-1,2:Nz-1)=ks*dy*dz/dx_val;
 dx_val=dx(id.label(i));
 d(i,2:Ny-1,2:Nz-1)=ks*dx_val*dz/dy;
 e(i,2:Ny-1,2:Nz-1)=d(i,2:Ny-1,2:Nz-1);
 f(i,2:Ny-1,2:Nz-1)=ks*dx_val*dy/dz;
 g(i,2:Ny-1,2:Nz-1)=f(i,2:Ny-1,2:Nz-1);
end
a=b+c+d+e+f+g;
%top and bottom faces
for i=2:Nx-1
 dx_val=(dx(id.label(i))+dx(id.label(i+1)))/2;
 b(i,2:Ny-1,1)=ks*dy*dz/dx_val;
 dx_val=(dx(id.label(i))+dx(id.label(i-1)))/2;
 c(i,2:Ny-1,1)=ks*dy*dz/dx_val;
 dx_val=dx(id.label(i));
 d(i,2:Ny-1,1)=ks*dx_val*dz/dy;
 e(i,2:Ny-1,1)=d(i,2:Ny-1,1);
 f(i,2:Ny-1,1)=ks*dx_val*dy/dz;
 a(i,2:Ny-1,1)=b(i,2:Ny-1,1)+c(i,2:Ny-1,1)+2*d(i,2:Ny-1,1)+f(i,2:Ny-
1,1)+a_loss;
 ho(i,2:Ny-1,1)=q_in(i,2:Ny-1)-b_loss;
 switch id.label(i)
 case 1
 dx_val=(dx(id.label(i))+dx(id.label(i+1)))/2;

259

 b(i,2:Ny-1,Nz)=ks*dy*dz/dx_val;
 dx_val=(dx(id.label(i))+dx(id.label(i-1)))/2;
 c(i,2:Ny-1,Nz)=ks*dy*dz/dx_val;
 dx_val=dx(id.label(i));
 d(i,2:Ny-1,Nz)=ks*dx_val*dz/dy;
 e(i,2:Ny-1,Nz)=d(i,2:Ny-1,Nz);
 g(i,2:Ny-1,Nz)=ks*dx_val*dy/dz;
 Nc=id.num(i);
 a(i,2:Ny-1,Nz)=b(i,2:Ny-1,Nz)+c(i,2:Ny-1,Nz)+2*d(i,2:Ny-
1,Nz)+g(i,2:Ny-1,Nz)+h(Nc,2:Ny-1)*dx_val*dy;
 ho(i,2:Ny-1,Nz)=h(Nc,2:Ny-1)*dx_val*dy.*Tf(Nc,2:Ny-1);
 case 2
 dx_val=(dx(id.label(i))+dx(id.label(i+1)))/2;
 b(i,2:Ny-1,Nz)=ks*dy*dz/dx_val;
 dx_val=(dx(id.label(i))+dx(id.label(i-1)))/2;
 c(i,2:Ny-1,Nz)=ks*dy*dz/dx_val;
 dx_val=dx(id.label(i));
 d(i,2:Ny-1,Nz)=ks*dx_val*dz/dy;
 e(i,2:Ny-1,Nz)=d(i,2:Ny-1,Nz);
 g(i,2:Ny-1,Nz)=ks*dx_val*dy/dz;
 Nf=id.num(i);
 m1=sqrt(h(Nf,2:Ny-1)*2/ks/dx_val);
 m2=sqrt(h(Nf+1,2:Ny-1)*2/ks/dx_val);
 a(i,2:Ny-1,Nz)=b(i,2:Ny-1,Nz)+c(i,2:Ny-1,Nz)+2*d(i,2:Ny-
1,Nz)+g(i,2:Ny-1,Nz)+sqrt(h(Nf,2:Ny-
1)*2*dy^2*ks*dx_val).*tanh(m1*dc)/2+sqrt(h(Nf+1,2:Ny-
1)*2*dy^2*ks*dx_val).*tanh(m2*dc)/2;
 ho(i,2:Ny-1,Nz)=sqrt(h(Nf,2:Ny-
1)*2*dy^2*ks*dx_val).*tanh(m1*dc)/2.*Tf(Nf,2:Ny-1)+sqrt(h(Nf+1,2:Ny-
1)*2*dy^2*ks*dx_val).*tanh(m2*dc)/2.*Tf(Nf+1,2:Ny-1);
 case 3
 dx_val=(dx(id.label(i))+dx(id.label(i+1)))/2;
 b(i,2:Ny-1,Nz)=ks*dy*dz/dx_val;
 dx_val=(dx(id.label(i))+dx(id.label(i-1)))/2;
 c(i,2:Ny-1,Nz)=ks*dy*dz/dx_val;
 dx_val=dx(id.label(i));
 d(i,2:Ny-1,Nz)=ks*dx_val*dz/dy;
 e(i,2:Ny-1,Nz)=d(i,2:Ny-1,Nz);
 g(i,2:Ny-1,Nz)=ks*dx_val*dy/dz;
 Nef=id.num(i);
 m1=sqrt(h(Nef,2:Ny-1)*2/ks/dx_val/mesh.Nx_ef);
 a(i,2:Ny-1,Nz)=b(i,2:Ny-1,Nz)+c(i,2:Ny-1,Nz)+2*d(i,2:Ny-
1,Nz)+g(i,2:Ny-1,Nz)+sqrt(h(Nef,2:Ny-
1)*4*dy^2*ks*dx_val).*tanh(m1*dc)/2/mesh.Nx_ef;
 ho(i,2:Ny-1,Nz)=sqrt(h(Nef,2:Ny-
1)*4*dy^2*ks*dx_val).*tanh(m1*dc)/2/mesh.Nx_ef.*Tf(Nef,2:Ny-1);
 end
end
%left face
b(1,2:Ny-1,2:Nz-1)=ks*dy*dz/dx_ef;
d(1,2:Ny-1,2:Nz-1)=ks*dx_ef*dz/dy;
e(1,2:Ny-1,2:Nz-1)=d(1,2:Ny-1,2:Nz-1);
f(1,2:Ny-1,2:Nz-1)=ks*dx_ef*dy/dz;
g(1,2:Ny-1,2:Nz-1)=f(1,2:Ny-1,2:Nz-1);

260

a(1,2:Ny-1,2:Nz-1)=b(1,2:Ny-1,2:Nz-1)+2*d(1,2:Ny-1,2:Nz-1)+2*f(1,2:Ny-
1,2:Nz-1);
%right face
c(Nx,2:Ny-1,2:Nz-1)=ks*dy*dz/dx_ef;
d(Nx,2:Ny-1,2:Nz-1)=ks*dx_ef*dz/dy;
e(Nx,2:Ny-1,2:Nz-1)=d(Nx,2:Ny-1,2:Nz-1);
f(Nx,2:Ny-1,2:Nz-1)=ks*dx_ef*dy/dz;
g(Nx,2:Ny-1,2:Nz-1)=f(Nx,2:Ny-1,2:Nz-1);
a(Nx,2:Ny-1,2:Nz-1)=c(Nx,2:Ny-1,2:Nz-1)+2*d(Nx,2:Ny-1,2:Nz-
1)+2*f(Nx,2:Ny-1,2:Nz-1);
%front and back faces
for i=2:Nx-1
 dx_val=(dx(id.label(i))+dx(id.label(i+1)))/2;
 b(i,1,2:Nz-1)=ks*dy*dz/dx_val;
 b(i,Ny,2:Nz-1)=ks*dy*dz/dx_val;
 dx_val=(dx(id.label(i))+dx(id.label(i-1)))/2;
 c(i,1,2:Nz-1)=ks*dy*dz/dx_val;
 c(i,Ny,2:Nz-1)=ks*dy*dz/dx_val;
 dx_val=dx(id.label(i));
 d(i,1,2:Nz-1)=ks*dx_val*dz/dy;
 f(i,1,2:Nz-1)=ks*dx_val*dy/dz;
 g(i,1,2:Nz-1)=f(i,1,2:Nz-1);
 a(i,1,2:Nz-1)=b(i,1,2:Nz-1)+c(i,1,2:Nz-1)+d(i,1,2:Nz-
1)+2*f(i,1,2:Nz-1);
 e(i,Ny,2:Nz-1)=ks*dx_val*dz/dy;
 f(i,Ny,2:Nz-1)=ks*dx_val*dy/dz;
 g(i,Ny,2:Nz-1)=f(i,Ny,2:Nz-1);
 a(i,Ny,2:Nz-1)=b(i,Ny,2:Nz-1)+c(i,Ny,2:Nz-1)+e(i,Ny,2:Nz-
1)+2*f(i,Ny,2:Nz-1);
end
%front left edge
b(1,1,2:Nz-1)=ks*dy*dz/dx_ef;
d(1,1,2:Nz-1)=ks*dx_ef*dz/dy;
f(1,1,2:Nz-1)=ks*dx_ef*dy/dz;
g(1,1,2:Nz-1)=f(1,1,2:Nz-1);
a(1,1,2:Nz-1)=b(1,1,2:Nz-1)+d(1,1,2:Nz-1)+2*f(1,1,2:Nz-1);
%front right edge
c(Nx,1,2:Nz-1)=ks*dy*dz/dx_ef;
d(Nx,1,2:Nz-1)=ks*dx_ef*dz/dy;
f(Nx,1,2:Nz-1)=ks*dx_ef*dy/dz;
g(Nx,1,2:Nz-1)=f(Nx,1,2:Nz-1);
a(Nx,1,2:Nz-1)=c(Nx,1,2:Nz-1)+d(Nx,1,2:Nz-1)+2*f(Nx,1,2:Nz-1);
%back left edge
b(1,Ny,2:Nz-1)=ks*dy*dz/dx_ef;
e(1,Ny,2:Nz-1)=ks*dx_ef*dz/dy;
f(1,Ny,2:Nz-1)=ks*dx_ef*dy/dz;
g(1,Ny,2:Nz-1)=f(1,Ny,2:Nz-1);
a(1,Ny,2:Nz-1)=b(1,Ny,2:Nz-1)+e(1,Ny,2:Nz-1)+2*f(1,Ny,2:Nz-1);
%back right edge
c(Nx,Ny,2:Nz-1)=ks*dy*dz/dx_ef;
e(Nx,Ny,2:Nz-1)=ks*dx_ef*dz/dy;
f(Nx,Ny,2:Nz-1)=ks*dx_ef*dy/dz;
g(Nx,Ny,2:Nz-1)=f(Nx,Ny,2:Nz-1);
a(Nx,Ny,2:Nz-1)=c(Nx,Ny,2:Nz-1)+e(Nx,Ny,2:Nz-1)+2*f(Nx,Ny,2:Nz-1);
%bottom left edge

261

b(1,2:Ny-1,1)=ks*dy*dz/dx_ef;
d(1,2:Ny-1,1)=ks*dx_ef*dz/dy;
e(1,2:Ny-1,1)=d(1,2:Ny-1,1);
f(1,2:Ny-1,1)=ks*dx_ef*dy/dz;
a(1,2:Ny-1,1)=b(1,2:Ny-1,1)+2*d(1,2:Ny-1,1)+f(1,2:Ny-1,1)+a_loss;
ho(1,2:Ny-1,1)=q_in(1,2:Ny-1)-b_loss;
%bottom right edge
c(Nx,2:Ny-1,1)=ks*dy*dz/dx_ef;
d(Nx,2:Ny-1,1)=ks*dx_ef*dz/dy;
e(Nx,2:Ny-1,1)=d(Nx,2:Ny-1,1);
f(Nx,2:Ny-1,1)=ks*dx_ef*dy/dz;
a(Nx,2:Ny-1,1)=c(Nx,2:Ny-1,1)+2*d(Nx,2:Ny-1,1)+f(Nx,2:Ny-1,1)+a_loss;
ho(Nx,2:Ny-1,1)=q_in(Nx,2:Ny-1)-b_loss;
%top left edge
b(1,2:Ny-1,Nz)=ks*dy*dz/dx_ef;
d(1,2:Ny-1,Nz)=ks*dx_ef*dz/dy;
e(1,2:Ny-1,Nz)=d(1,2:Ny-1,Nz);
g(1,2:Ny-1,Nz)=ks*dx_ef*dy/dz;
m1=sqrt(h(1,2:Ny-1)*2/ks/dx_ef/mesh.Nx_ef);
a(1,2:Ny-1,Nz)=b(1,2:Ny-1,Nz)+2*d(1,2:Ny-1,Nz)+g(1,2:Ny-
1,Nz)+sqrt(h(1,2:Ny-1)*4*dy^2*ks*dx_ef).*tanh(m1*dc)/2/mesh.Nx_ef;
ho(1,2:Ny-1,Nz)=sqrt(h(1,2:Ny-
1)*4*dy^2*ks*dx_ef).*tanh(m1*dc)/2/mesh.Nx_ef.*Tf(1,2:Ny-1);
%top right edge
c(Nx,2:Ny-1,Nz)=ks*dy*dz/dx_ef;
d(Nx,2:Ny-1,Nz)=ks*dx_ef*dz/dy;
e(Nx,2:Ny-1,Nz)=d(Nx,2:Ny-1,Nz);
g(Nx,2:Ny-1,Nz)=ks*dx_ef*dy/dz;
m1=sqrt(h(N,2:Ny-1)*2/ks/dx_ef/mesh.Nx_ef);
a(Nx,2:Ny-1,Nz)=c(Nx,2:Ny-1,Nz)+2*d(Nx,2:Ny-1,Nz)+g(Nx,2:Ny-
1,Nz)+sqrt(h(N,2:Ny-1)*4*dy^2*ks*dx_ef).*tanh(m1*dc)/2/mesh.Nx_ef;
ho(Nx,2:Ny-1,Nz)=sqrt(h(N,2:Ny-
1)*4*dy^2*ks*dx_ef).*tanh(m1*dc)/2/mesh.Nx_ef.*Tf(N,2:Ny-1);
%front/back top/bottom edges
for i=2:Nx-1
 dx_val=(dx(id.label(i))+dx(id.label(i+1)))/2;
 b(i,1,1)=ks*dy*dz/dx_val;
 b(i,Ny,1)=ks*dy*dz/dx_val;
 dx_val=(dx(id.label(i))+dx(id.label(i-1)))/2;
 c(i,1,1)=ks*dy*dz/dx_val;
 c(i,Ny,1)=ks*dy*dz/dx_val;
 dx_val=dx(id.label(i));
 d(i,1,1)=ks*dx_val*dz/dy;
 f(i,1,1)=ks*dx_val*dy/dz;
 a(i,1,1)=b(i,1,1)+c(i,1,1)+d(i,1,1)+f(i,1,1)+a_loss;
 ho(i,1,1)=q_in(i,1)-b_loss;
 e(i,Ny,1)=ks*dx_val*dz/dy;
 f(i,Ny,1)=ks*dx_val*dy/dz;
 a(i,Ny,1)=b(i,Ny,1)+c(i,Ny,1)+e(i,Ny,1)+f(i,Ny,1)+a_loss;
 ho(i,Ny,1)=q_in(i,Ny)-b_loss;
 switch id.label(i)
 case 1
 dx_val=(dx(id.label(i))+dx(id.label(i+1)))/2;
 b(i,1,Nz)=ks*dy*dz/dx_val;
 dx_val=(dx(id.label(i))+dx(id.label(i-1)))/2;

262

 c(i,1,Nz)=ks*dy*dz/dx_val;
 dx_val=dx(id.label(i));
 d(i,1,Nz)=ks*dx_val*dz/dy;
 g(i,1,Nz)=ks*dx_val*dy/dz;
 Nc=id.num(i);
a(i,1,Nz)=b(i,1,Nz)+c(i,1,Nz)+d(i,1,Nz)+g(i,1,Nz)+h(Nc,1)*dx_val*dy;
 ho(i,1,Nz)=h(Nc,1)*dx_val*dy.*Tf(Nc,1);
 dx_val=(dx(id.label(i))+dx(id.label(i+1)))/2;
 b(i,Ny,Nz)=ks*dy*dz/dx_val;
 dx_val=(dx(id.label(i))+dx(id.label(i-1)))/2;
 c(i,Ny,Nz)=ks*dy*dz/dx_val;
 dx_val=dx(id.label(i));
 e(i,Ny,Nz)=ks*dx_val*dz/dy;
 g(i,Ny,Nz)=ks*dx_val*dy/dz;
 Nc=id.num(i);
a(i,Ny,Nz)=b(i,Ny,Nz)+c(i,Ny,Nz)+e(i,Ny,Nz)+g(i,Ny,Nz)+h(Nc,Ny)*dx_val*
dy;
 ho(i,Ny,Nz)=h(Nc,Ny)*dx_val*dy.*Tf(Nc,Ny);
 case 2
 dx_val=(dx(id.label(i))+dx(id.label(i+1)))/2;
 b(i,1,Nz)=ks*dy*dz/dx_val;
 dx_val=(dx(id.label(i))+dx(id.label(i-1)))/2;
 c(i,1,Nz)=ks*dy*dz/dx_val;
 dx_val=dx(id.label(i));
 d(i,1,Nz)=ks*dx_val*dz/dy;
 g(i,1,Nz)=ks*dx_val*dy/dz;
 Nf=id.num(i);
 m1=sqrt(h(Nf,1)*2/ks/dx_val);
 m2=sqrt(h(Nf+1,1)*2/ks/dx_val);
a(i,1,Nz)=b(i,1,Nz)+c(i,1,Nz)+d(i,1,Nz)+g(i,1,Nz)+sqrt(h(Nf,1)*2*dy^2*k
s*dx_val).*tanh(m1*dc)/2+sqrt(h(Nf+1,1)*2*dy^2*ks*dx_val).*tanh(m2*dc)/
2;
ho(i,1,Nz)=sqrt(h(Nf,1)*2*dy^2*ks*dx_val).*tanh(m1*dc)/2.*Tf(Nf,1)+sqrt
(h(Nf+1,1)*2*dy^2*ks*dx_val).*tanh(m2*dc)/2.*Tf(Nf+1,1);
 dx_val=(dx(id.label(i))+dx(id.label(i+1)))/2;
 b(i,Ny,Nz)=ks*dy*dz/dx_val;
 dx_val=(dx(id.label(i))+dx(id.label(i-1)))/2;
 c(i,Ny,Nz)=ks*dy*dz/dx_val;
 dx_val=dx(id.label(i));
 e(i,Ny,Nz)=ks*dx_val*dz/dy;
 g(i,Ny,Nz)=ks*dx_val*dy/dz;
 Nf=id.num(i);
 m1=sqrt(h(Nf,Ny)*2/ks/dx_val);
 m2=sqrt(h(Nf+1,Ny)*2/ks/dx_val);
a(i,Ny,Nz)=b(i,Ny,Nz)+c(i,Ny,Nz)+e(i,Ny,Nz)+g(i,Ny,Nz)+sqrt(h(Nf,Ny)*2*
dy^2*ks*dx_val).*tanh(m1*dc)/2+sqrt(h(Nf+1,Ny)*2*dy^2*ks*dx_val).*tanh(
m2*dc)/2;
ho(i,Ny,Nz)=sqrt(h(Nf,Ny)*2*dy^2*ks*dx_val).*tanh(m1*dc)/2.*Tf(Nf,Ny)+s
qrt(h(Nf+1,Ny)*2*dy^2*ks*dx_val).*tanh(m2*dc)/2.*Tf(Nf+1,Ny);
 case 3
 dx_val=(dx(id.label(i))+dx(id.label(i+1)))/2;
 b(i,1,Nz)=ks*dy*dz/dx_val;
 dx_val=(dx(id.label(i))+dx(id.label(i-1)))/2;
 c(i,1,Nz)=ks*dy*dz/dx_val;
 dx_val=dx(id.label(i));

263

 d(i,1,Nz)=ks*dx_val*dz/dy;
 g(i,1,Nz)=ks*dx_val*dy/dz;
 Nef=id.num(i);
 m1=sqrt(h(Nef,1)*2/ks/dx_val/mesh.Nx_ef);
a(i,1,Nz)=b(i,1,Nz)+c(i,1,Nz)+d(i,1,Nz)+g(i,1,Nz)+sqrt(h(Nef,1)*4*dy^2*
ks*dx_val).*tanh(m1*dc)/2/mesh.Nx_ef;
ho(i,1,Nz)=sqrt(h(Nef,1)*4*dy^2*ks*dx_val).*tanh(m1*dc)/2/mesh.Nx_ef.*T
f(Nef,1);
 dx_val=(dx(id.label(i))+dx(id.label(i+1)))/2;
 b(i,Ny,Nz)=ks*dy*dz/dx_val;
 dx_val=(dx(id.label(i))+dx(id.label(i-1)))/2;
 c(i,Ny,Nz)=ks*dy*dz/dx_val;
 dx_val=dx(id.label(i));
 e(i,Ny,Nz)=ks*dx_val*dz/dy;
 g(i,Ny,Nz)=ks*dx_val*dy/dz;
 Nef=id.num(i);
 m1=sqrt(h(Nef,Ny)*2/ks/dx_val/mesh.Nx_ef);
a(i,Ny,Nz)=b(i,Ny,Nz)+c(i,Ny,Nz)+e(i,Ny,Nz)+g(i,Ny,Nz)+sqrt(h(Nef,Ny)*4
*dy^2*ks*dx_val).*tanh(m1*dc)/2/mesh.Nx_ef;
ho(i,Ny,Nz)=sqrt(h(Nef,Ny)*4*dy^2*ks*dx_val).*tanh(m1*dc)/2/mesh.Nx_ef.
*Tf(Nef,Ny);
 end
end
%front top left corner
b(1,1,Nz)=ks*dy*dz/dx_ef;
d(1,1,Nz)=ks*dx_ef*dz/dy;
g(1,1,Nz)=ks*dx_ef*dy/dz;
m1=sqrt(h(1,1)*2/ks/dx_ef/mesh.Nx_ef);
a(1,1,Nz)=b(1,1,Nz)+d(1,1,Nz)+g(1,1,Nz)+sqrt(h(1,1)*4*dy^2*ks*dx_ef)*ta
nh(m1*dc)/2/mesh.Nx_ef;
ho(1,1,Nz)=sqrt(h(1,1)*4*dy^2*ks*dx_ef)*tanh(m1*dc)/2/mesh.Nx_ef*Tf(1,1
);
%front bottom left corner
b(1,1,1)=ks*dy*dz/dx_ef;
d(1,1,1)=ks*dx_ef*dz/dy;
f(1,1,1)=ks*dx_ef*dy/dz;
a(1,1,1)=b(1,1,1)+d(1,1,1)+f(1,1,1)+a_loss;
ho(1,1,1)=q_in(1,1)-b_loss;
%front top right corner
c(Nx,1,Nz)=ks*dy*dz/dx_ef;
d(Nx,1,Nz)=ks*dx_ef*dz/dy;
g(Nx,1,Nz)=ks*dx_ef*dy/dz;
m1=sqrt(h(N,1)*2/ks/dx_ef/mesh.Nx_ef);
a(Nx,1,Nz)=c(Nx,1,Nz)+d(Nx,1,Nz)+g(Nx,1,Nz)+sqrt(h(N,1)*4*dy^2*ks*dx_ef
)*tanh(m1*dc)/2/mesh.Nx_ef;
ho(Nx,1,Nz)=sqrt(h(N,1)*4*dy^2*ks*dx_ef)*tanh(m1*dc)/2/mesh.Nx_ef*Tf(N,
1);
%front bottom right corner
c(Nx,1,1)=ks*dy*dz/dx_ef;
d(Nx,1,1)=ks*dx_ef*dz/dy;
f(Nx,1,1)=ks*dx_ef*dy/dz;
a(Nx,1,1)=c(Nx,1,1)+d(Nx,1,1)+f(Nx,1,1)+a_loss;
ho(Nx,1,1)=q_in(Nx,1)-b_loss;
%back top left corner
b(1,Ny,Nz)=ks*dy*dz/dx_ef;

264

e(1,Ny,Nz)=ks*dx_ef*dz/dy;
g(1,Ny,Nz)=ks*dx_ef*dy/dz;
m1=sqrt(h(1,Ny)*2/ks/dx_ef/mesh.Nx_ef);
a(1,Ny,Nz)=b(1,Ny,Nz)+e(1,Ny,Nz)+g(1,Ny,Nz)+sqrt(h(1,Ny)*4*dy^2*ks*dx_e
f)*tanh(m1*dc)/2/mesh.Nx_ef;
ho(1,Ny,Nz)=sqrt(h(1,Ny)*4*dy^2*ks*dx_ef)*tanh(m1*dc)/2/mesh.Nx_ef*Tf(1
,Ny);
%back bottom left corner
b(1,Ny,1)=ks*dy*dz/dx_ef;
e(1,Ny,1)=ks*dx_ef*dz/dy;
f(1,Ny,1)=ks*dx_ef*dy/dz;
a(1,Ny,1)=b(1,Ny,1)+e(1,Ny,1)+f(1,Ny,1)+a_loss;
ho(1,Ny,1)=q_in(1,Ny)-b_loss;
%back top right corner
c(Nx,Ny,Nz)=ks*dy*dz/dx_ef;
e(Nx,Ny,Nz)=ks*dx_ef*dz/dy;
g(Nx,Ny,Nz)=ks*dx_ef*dy/dz;
m1=sqrt(h(N,Ny)*2/ks/dx_ef/mesh.Nx_ef);
a(Nx,Ny,Nz)=c(Nx,Ny,Nz)+e(Nx,Ny,Nz)+g(Nx,Ny,Nz)+sqrt(h(N,Ny)*4*dy^2*ks*
dx_ef)*tanh(m1*dc)/2/mesh.Nx_ef;
ho(Nx,Ny,Nz)=sqrt(h(N,Ny)*4*dy^2*ks*dx_ef)*tanh(m1*dc)/2/mesh.Nx_ef*Tf(
N,Ny);
%back bottom right corner
c(Nx,Ny,1)=ks*dy*dz/dx_ef;
e(Nx,Ny,1)=ks*dx_ef*dz/dy;
f(Nx,Ny,1)=ks*dx_ef*dy/dz;
a(Nx,Ny,1)=c(Nx,Ny,1)+e(Nx,Ny,1)+f(Nx,Ny,1)+a_loss;
ho(Nx,Ny,1)=q_in(Nx,Ny)-b_loss;
end

265

Function 33. conduction.m

function [T]=conduction(dims,matp,mesh,T,Tf,h,q_in)
Nx=mesh.Nx_c+mesh.Nx_f+mesh.Nx_ef;
Ny=mesh.Ny;
Nz=mesh.Nz;
[a,b,c,d,e,f,g,ho]=condbasemat(mesh,dims,matp,h,q_in,Tf);
for n=1:10
 for i=Nx:-1:1
 a1=reshape(a(i,:,:),Ny,Nz);
 b1=reshape(b(i,:,:),Ny,Nz);
 c1=reshape(c(i,:,:),Ny,Nz);
 d1=reshape(d(i,:,:),Ny,Nz);
 e1=reshape(e(i,:,:),Ny,Nz);
 f1=reshape(f(i,:,:),Ny,Nz);
 g1=reshape(g(i,:,:),Ny,Nz);
 if i==1
h1=reshape(ho(i,:,:),Ny,Nz)+b1.*reshape(T(i+1,:,1:Nz),Ny,Nz);
 elseif i==Nx
 h1=reshape(ho(i,:,:),Ny,Nz)+c1.*reshape(T(i-
1,:,1:Nz),Ny,Nz);
 else
h1=reshape(ho(i,:,:),Ny,Nz)+b1.*reshape(T(i+1,:,1:Nz),Ny,Nz)+c1.*reshap
e(T(i-1,:,1:Nz),Ny,Nz);
 end
 T1=reshape(T(i,:,1:Nz),Ny,Nz);
 T(i,:,1:Nz)=tdmaline(a1,f1,g1,d1,e1,h1,T1);
 end
 for j=Ny:-1:1
 a1=reshape(a(:,j,:),Nx,Nz);
 b1=reshape(b(:,j,:),Nx,Nz);
 c1=reshape(c(:,j,:),Nx,Nz);
 d1=reshape(d(:,j,:),Nx,Nz);
 e1=reshape(e(:,j,:),Nx,Nz);
 f1=reshape(f(:,j,:),Nx,Nz);
 g1=reshape(g(:,j,:),Nx,Nz);
 if j==1
h1=reshape(ho(:,j,:),Nx,Nz)+d1.*reshape(T(:,j+1,1:Nz),Nx,Nz);
 elseif j==Ny
 h1=reshape(ho(:,j,:),Nx,Nz)+e1.*reshape(T(:,j-
1,1:Nz),Nx,Nz);
 else
h1=reshape(ho(:,j,:),Nx,Nz)+d1.*reshape(T(:,j+1,1:Nz),Nx,Nz)+e1.*reshap
e(T(:,j-1,1:Nz),Nx,Nz);
 end
 T1=reshape(T(:,j,1:Nz),Nx,Nz);
 T(:,j,1:Nz)=tdmaline(a1,f1,g1,b1,c1,h1,T1);
 end
 for k=Nz:-1:1
 a1=reshape(a(:,:,k),Nx,Ny);
 b1=reshape(b(:,:,k),Nx,Ny);
 c1=reshape(c(:,:,k),Nx,Ny);
 d1=reshape(d(:,:,k),Nx,Ny);
 e1=reshape(e(:,:,k),Nx,Ny);
 f1=reshape(f(:,:,k),Nx,Ny);

266

 g1=reshape(g(:,:,k),Nx,Ny);
 if k==1
 h1=reshape(ho(:,:,k),Nx,Ny)+f1.*reshape(T(:,:,k+1),Nx,Ny);
 elseif k==Nz
 h1=reshape(ho(:,:,k),Nx,Ny)+g1.*reshape(T(:,:,k-1),Nx,Ny);
 else
h1=reshape(ho(:,:,k),Nx,Ny)+f1.*reshape(T(:,:,k+1),Nx,Ny)+g1.*reshape(T
(:,:,k-1),Nx,Ny);
 end
 T1=reshape(T(:,:,k),Nx,Ny);
 T(:,:,k)=tdmaline(a1,d1,e1,b1,c1,h1,T1);
 end
 for i=1:Nx
 a1=reshape(a(i,:,:),Ny,Nz);
 b1=reshape(b(i,:,:),Ny,Nz);
 c1=reshape(c(i,:,:),Ny,Nz);
 d1=reshape(d(i,:,:),Ny,Nz);
 e1=reshape(e(i,:,:),Ny,Nz);
 f1=reshape(f(i,:,:),Ny,Nz);
 g1=reshape(g(i,:,:),Ny,Nz);
 if i==1
h1=reshape(ho(i,:,:),Ny,Nz)+b1.*reshape(T(i+1,:,1:Nz),Ny,Nz);
 elseif i==Nx
 h1=reshape(ho(i,:,:),Ny,Nz)+c1.*reshape(T(i-
1,:,1:Nz),Ny,Nz);
 else
h1=reshape(ho(i,:,:),Ny,Nz)+b1.*reshape(T(i+1,:,1:Nz),Ny,Nz)+c1.*reshap
e(T(i-1,:,1:Nz),Ny,Nz);
 end
 T1=reshape(T(i,:,1:Nz),Ny,Nz);
 T(i,:,1:Nz)=tdmaline(a1,f1,g1,d1,e1,h1,T1);
 end
 for j=1:Ny
 a1=reshape(a(:,j,:),Nx,Nz);
 b1=reshape(b(:,j,:),Nx,Nz);
 c1=reshape(c(:,j,:),Nx,Nz);
 d1=reshape(d(:,j,:),Nx,Nz);
 e1=reshape(e(:,j,:),Nx,Nz);
 f1=reshape(f(:,j,:),Nx,Nz);
 g1=reshape(g(:,j,:),Nx,Nz);
 if j==1
h1=reshape(ho(:,j,:),Nx,Nz)+d1.*reshape(T(:,j+1,1:Nz),Nx,Nz);
 elseif j==Ny
 h1=reshape(ho(:,j,:),Nx,Nz)+e1.*reshape(T(:,j-
1,1:Nz),Nx,Nz);
 else
h1=reshape(ho(:,j,:),Nx,Nz)+d1.*reshape(T(:,j+1,1:Nz),Nx,Nz)+e1.*reshap
e(T(:,j-1,1:Nz),Nx,Nz);
 end
 T1=reshape(T(:,j,1:Nz),Nx,Nz);
 T(:,j,1:Nz)=tdmaline(a1,f1,g1,b1,c1,h1,T1);
 end
 for k=1:Nz
 a1=reshape(a(:,:,k),Nx,Ny);
 b1=reshape(b(:,:,k),Nx,Ny);

267

 c1=reshape(c(:,:,k),Nx,Ny);
 d1=reshape(d(:,:,k),Nx,Ny);
 e1=reshape(e(:,:,k),Nx,Ny);
 f1=reshape(f(:,:,k),Nx,Ny);
 g1=reshape(g(:,:,k),Nx,Ny);
 if k==1
 h1=reshape(ho(:,:,k),Nx,Ny)+f1.*reshape(T(:,:,k+1),Nx,Ny);
 elseif k==Nz
 h1=reshape(ho(:,:,k),Nx,Ny)+g1.*reshape(T(:,:,k-1),Nx,Ny);
 else
h1=reshape(ho(:,:,k),Nx,Ny)+f1.*reshape(T(:,:,k+1),Nx,Ny)+g1.*reshape(T
(:,:,k-1),Nx,Ny);
 end
 T1=reshape(T(:,:,k),Nx,Ny);
 T(:,:,k)=tdmaline(a1,d1,e1,b1,c1,h1,T1);
 end

end
end

268

Function 34. convection2.m

function
[Tf,h,q_w,xe]=convection2(dims,matp,mesh,flow,T,Tf,q_w,DP,xe,ws)
Nxef=mesh.Nx_ef;
Nxf=mesh.Nx_f/(dims.N-1);
Nx=mesh.Nx_c+mesh.Nx_f+mesh.Nx_ef;
Ny=mesh.Ny;
Nz=mesh.Nz;
N=dims.N;
dx=mesh.dx_c;
dxf=mesh.dx_f;
dxef=mesh.dx_ef;
dy=mesh.dy;
ks=matp.k_Si;
d=dims.d;
w=dims.w;
L=dims.L;
%find Tf everywhere
% fmald=ones(N,1);
fmald=ones(N,1)+.0625;
fmald(15:21)=.75;
Tsat=matp.Tsata./(matp.Tsatb-matp.Tsatc*log10(flow.P_in-DP))-273;
for i=1:N
 for j=1:Ny
Tf(i,j)=flow.T_in+sum(q_w(i,1:j))*(2*d+w)*dy/(flow.m_dot*fmald(i)*densi
ty(matp,Tf(i,j))/N/60/1e6)/specheat(matp,Tf(i,j));
 if Tf(i,j)>Tsat(i,j)
 Tf(i,j)=Tsat(i,j);
 end
 end
end
%find h everywhere
[h]=heattranscoeff(dims,matp,mesh,flow,T,Tf,Tsat,q_w,xe,fmald,ws);
%find q_w [W] everywhere
wq=zeros(N-1,Ny)+0.5;
assignin('base','wq',wq);
q_w=zeros(N,Ny);
Af=2*d*L;
Aw=N*(2*d+w)*L;
for j=1:Ny
 m1=sqrt(2*h(1,j)/ks/dxef/Nxef);
 etaf=tanh(m1*d)/m1/d;
 eta=1-N*Af/Aw*(1-etaf);
 q_w(1,j)=q_w(1,j)+eta*d*dy*h(1,j)*(mean(T(1:Nxef/2,j,Nz))-Tf(1,j));

 for i=1:(N-1)
q_w(i,j)=q_w(i,j)+h(i,j)*dx*dy*sum(T(mesh.id.num==i&mesh.id.label==1,j,
Nz)-Tf(i,j));
 m1=sqrt((h(i,j)+h(i+1,j))/ks/dxf/Nxf);
 etaf=tanh(m1*d)/m1/d;
 eta=1-N*Af/Aw*(1-etaf);
q_w(i,j)=q_w(i,j)+eta*2*d*dy*h(i,j)*wq(i,j)*(T(mesh.id.num==i&mesh.id.l
abel==2,j,Nz)-Tf(i,j));

269

 q_w(i+1,j)=q_w(i+1,j)+eta*2*d*dy*h(i+1,j)*(1-
wq(i,j))*(T(mesh.id.num==i&mesh.id.label==2,j,Nz)-Tf(i+1,j));
 end
q_w(N,j)=q_w(N,j)+h(N,j)*dx*dy*sum(T(mesh.id.num==N&mesh.id.label==1,j,
Nz)-Tf(N,j));
 m1=sqrt(2*h(N,j)/ks/dxef/Nxef);
 etaf=tanh(m1*d)/m1/d;
 eta=1-N*Af/Aw*(1-etaf);
 q_w(N,j)=q_w(N,j)+eta*d*dy*h(N,j)*(mean(T(Nx-Nxef/2+1:Nx,j,Nz))-
Tf(N,j));
end
%find xe everywhere
for i=1:N
 for j=1:Ny
xe(i,j)=1/matp.h_fg*(sum(q_w(i,1:j))/(flow.m_dot*fmald(i)/N*density(mat
p,Tf(i,j))/1e6/60)-specheat(matp,Tf(i,j))*(Tsat(i,j)-flow.T_in));
 end
end
%get q_w [W/m2]
q_w=q_w/dy/(w+2*d);
end
function rho=density(matp,Tf)
rho=matp.rho_fa+matp.rho_fb*Tf;
end
function cp=specheat(matp,Tf)
cp=matp.c_pfa+matp.c_pfb*Tf;
end

270

Function 35. discretize.m

function [mesh]=discretize(dims)
n1=6;
mesh.Nz=round(n1*(dims.t-dims.d)/dims.t);
mesh.dz=(dims.t-dims.d)/mesh.Nz;
Nx=round(dims.W/dims.t*0.95*n1);
mesh.Nx_c=round(dims.N*dims.w/dims.W*Nx);
mesh.Nx_f=round((dims.N-1)*dims.w_f/dims.W*Nx);
mesh.Nx_ef=Nx-mesh.Nx_c-mesh.Nx_f;
while mod(mesh.Nx_c+mesh.Nx_f+mesh.Nx_ef,5)
 mesh.Nx_ef=mesh.Nx_ef+1;
 while mod(mesh.Nx_c,dims.N)
 mesh.Nx_c=mesh.Nx_c+1;
 end
 while mod(mesh.Nx_f,dims.N-1)
 mesh.Nx_f=mesh.Nx_f+1;
 end
 while mod(mesh.Nx_ef,2)
 mesh.Nx_ef=mesh.Nx_ef+1;
 end
end
mesh.dx_c=dims.N*dims.w/mesh.Nx_c;
mesh.dx_f=(dims.W-dims.N*dims.w-2*dims.w_ef)/(mesh.Nx_f);
mesh.dx_ef=2*dims.w_ef/mesh.Nx_ef;
mesh.Ny=mesh.Nx_c+mesh.Nx_f+mesh.Nx_ef;
mesh.dy=dims.L/mesh.Ny;
end

271

Function 36. genmesh.m

function [mesh]=genmesh(dims,mesh)
Nx_f=mesh.Nx_f;
Nx_ef=mesh.Nx_ef;
Nx_c=mesh.Nx_c;
Nx=Nx_f+Nx_ef+Nx_c;
N=dims.N;
id.num=zeros(Nx,1,'uint8');
id.num(1:Nx_ef/2)=1;
id.num(Nx-Nx_ef/2:end)=N;
id.label=zeros(Nx,1,'uint8');
id.label(1:Nx_ef/2)=3;
id.label(Nx-Nx_ef/2:end)=3;
for i=1:dims.N
 x1=Nx_ef/2+1+(i-1)*(Nx_c/N+Nx_f/(N-1));
 x2=Nx_ef/2+i*Nx_c/N+(i-1)*Nx_f/(N-1);
 id.num(x1:x2)=i;
 id.label(x1:x2)=1;
end
for i=1:dims.N-1
 x1=Nx_ef/2+1+i*Nx_c/N+(i-1)*Nx_f/(N-1);
 x2=Nx_ef/2+i*(Nx_c/N+Nx_f/(N-1));
 id.num(x1:x2)=i;
 id.label(x1:x2)=2;
end
mesh.id=id;
end

272

Function 37. gui_input2.m

function [out]=gui_input2
f=figure('visible','off','position',[360,400,450,385],'name','Input
GUI');
%initialize variables in case user doesn't select them
out.dims.L=0.01267;
out.dims.W=0.012668;
out.dims.t=0.000648;
out.dims.w=0.000239114;
out.dims.w_f=0.0001108;
out.dims.d=0.00037144;
out.dims.N=35;
out.flow.P_in=101000;
out.flow.T_in=90.5;
out.flow.m_dot=104;
out.power=33;
out.Phi=1;
out.heatsink='Silicon';
out.fluid='FC-77';
out.heating_case='Case 1a';
out.getdata=0;
out.filename=' ';
out.heaters=zeros(5,5);
ah1=axes('parent',f,'units','pixels','position',[10 200 150 150]);
imshow('microchannel1.tif')
ah2=axes('parent',f,'units','pixels','position',[240 295 150 50]);
imshow('microchannel3.png')
Ltag=uicontrol(f,'style','text','string','L
[mm]','units','pixels','position',[60 365 50 15]);
Lh=uicontrol(f,'style','edit','string','12.67','units','pixels','positi
on',[60 345 50 20],'callback',@Lh_callback);
Wtag=uicontrol(f,'style','text','string','W
[mm]','units','pixels','position',[160 280 50 15]);
Wh=uicontrol(f,'style','edit','string','12.668','units','pixels','posit
ion',[160 260 50 20],'callback',@Wh_callback);
ttag=uicontrol(f,'style','text','string','t
[um]','units','pixels','position',[195 325 50 15]);
th=uicontrol(f,'style','edit','string','648','units','pixels','position
',[195 305 50 20],'callback',@th_callback);
wtag=uicontrol(f,'style','text','string','w
[um]','units','pixels','position',[240 365 50 15]);
wh=uicontrol(f,'style','edit','string','239.114','units','pixels','posi
tion',[240 345 50 20],'callback',@wh_callback);
wftag=uicontrol(f,'style','text','string','wf
[um]','units','pixels','position',[290 365 50 15]);
wfh=uicontrol(f,'style','edit','string','110.8','units','pixels','posit
ion',[290 345 50 20],'callback',@wfh_callback);
dtag=uicontrol(f,'style','text','string','d
[um]','units','pixels','position',[385 330 50 15]);
dh=uicontrol(f,'style','edit','string','371.44','units','pixels','posit
ion',[385 310 50 20],'callback',@dh_callback);
Ntag=uicontrol(f,'style','text','string','# of
channels','units','pixels','position',[250 262 100 15]);

273

Nh=uicontrol(f,'style','edit','string','35','units','pixels','position'
,[350 260 50 20],'callback',@Nh_callback);
Ptag=uicontrol(f,'style','text','string','P in
[kPa]','units','pixels','position',[250 242 100 15]);
Ph=uicontrol(f,'style','edit','string','101','units','pixels','position
',[350 240 50 20],'callback',@Ph_callback);
Ttag=uicontrol(f,'style','text','string','T in
[C]','units','pixels','position',[250 222 100 15]);
Th=uicontrol(f,'style','edit','string','90.5','units','pixels','positio
n',[350 220 50 20],'callback',@Th_callback);
Vtag=uicontrol(f,'style','text','string','V in
[mL/min]','units','pixels','position',[250 202 100 15]);
Vh=uicontrol(f,'style','edit','string','104','units','pixels','position
',[350 200 50 20],'callback',@Vh_callback);
hspmh=uicontrol(f,'style','popupmenu','string',{'Silicon','Copper'},'va
lue',1,'position',[20 180 60 20],'callback',@hspmh_callback);
fpmh=uicontrol(f,'style','popupmenu','string',{'FC-77','HFE
7100'},'value',1,'position',[80 180 60 20],'callback',@fpmh_callback);
heattag=uicontrol(f,'style','text','string','Heating
Diagram','units','pixels','position',[20 140 120 15]);
ah3=axes('parent',f,'units','pixels','position',[20 20 120 115]);
imshow('heaters.png');
h01=uicontrol(f,'style','checkbox','string','','value',0,'position',[35
110 15 15],'callback',@h01_callback);
h02=uicontrol(f,'style','checkbox','string','','value',0,'position',[35
90 15 15],'callback',@h02_callback);
h03=uicontrol(f,'style','checkbox','string','','value',0,'position',[35
70 15 15],'callback',@h03_callback);
h04=uicontrol(f,'style','checkbox','string','','value',0,'position',[35
50 15 15],'callback',@h04_callback);
h05=uicontrol(f,'style','checkbox','string','','value',0,'position',[35
30 15 15],'callback',@h05_callback);
h06=uicontrol(f,'style','checkbox','string','','value',0,'position',[55
110 15 15],'callback',@h06_callback);
h07=uicontrol(f,'style','checkbox','string','','value',0,'position',[55
90 15 15],'callback',@h07_callback);
h08=uicontrol(f,'style','checkbox','string','','value',0,'position',[55
70 15 15],'callback',@h08_callback);
h09=uicontrol(f,'style','checkbox','string','','value',0,'position',[55
50 15 15],'callback',@h09_callback);
h10=uicontrol(f,'style','checkbox','string','','value',0,'position',[55
30 15 15],'callback',@h10_callback);
h11=uicontrol(f,'style','checkbox','string','','value',1,'position',[75
110 15 15],'callback',@h11_callback);
h12=uicontrol(f,'style','checkbox','string','','value',1,'position',[75
90 15 15],'callback',@h12_callback);
h13=uicontrol(f,'style','checkbox','string','','value',1,'position',[75
70 15 15],'callback',@h13_callback);
h14=uicontrol(f,'style','checkbox','string','','value',1,'position',[75
50 15 15],'callback',@h14_callback);
h15=uicontrol(f,'style','checkbox','string','','value',1,'position',[75
30 15 15],'callback',@h15_callback);
h16=uicontrol(f,'style','checkbox','string','','value',0,'position',[95
110 15 15],'callback',@h16_callback);

274

h17=uicontrol(f,'style','checkbox','string','','value',0,'position',[95
90 15 15],'callback',@h17_callback);
h18=uicontrol(f,'style','checkbox','string','','value',0,'position',[95
70 15 15],'callback',@h18_callback);
h19=uicontrol(f,'style','checkbox','string','','value',0,'position',[95
50 15 15],'callback',@h19_callback);
h20=uicontrol(f,'style','checkbox','string','','value',0,'position',[95
30 15 15],'callback',@h20_callback);
h21=uicontrol(f,'style','checkbox','string','','value',0,'position',[11
5 110 15 15],'callback',@h21_callback);
h22=uicontrol(f,'style','checkbox','string','','value',0,'position',[11
5 90 15 15],'callback',@h22_callback);
h23=uicontrol(f,'style','checkbox','string','','value',0,'position',[11
5 70 15 15],'callback',@h23_callback);
h24=uicontrol(f,'style','checkbox','string','','value',0,'position',[11
5 50 15 15],'callback',@h24_callback);
h25=uicontrol(f,'style','checkbox','string','','value',0,'position',[11
5 30 15 15],'callback',@h25_callback);
heatpmh=uicontrol(f,'style','popupmenu','string',{'Case 1a','Case
1b','Case 1c','Case 1d','Case 2a','Case
2b','custom'},'value',1,'position',[250 140 120
20],'callback',@heatpmh_callback);
powtag=uicontrol(f,'style','text','string','Q in
[W]','units','pixels','position',[250 122 60 15]);
powh=uicontrol(f,'style','edit','string','33','units','pixels','positio
n',[310 120 60 20],'callback',@powh_callback);
phitag=uicontrol(f,'style','text','string','Phi','units','pixels','posi
tion',[250 102 60 15]);
phih=uicontrol(f,'style','edit','string','1','units','pixels','position
',[310 100 60 20],'callback',@phih_callback);
datah=uicontrol(f,'style','checkbox','string','Use saved
data?','value',0,'position',[250 75 150 15],'callback',@datah_callback);
datatx=uicontrol(f,'style','edit','string','results.mat','horizontalali
gnment','left','position',[250 55 150 20],'callback',@datatx_callback);
goh=uicontrol(f,'style','pushbutton','string','GO!','position',[285 5
60 40],'callback',@goh_callback);
myhandles=guihandles(f);
set(f,'visible','on');
uiwait(f);
 function Lh_callback(hObject,~,~)
 out.dims.L=str2double(get(hObject,'string'))/1000;
 guidata(hObject,myhandles);
 end
 function Wh_callback(hObject,~,~)
 out.dims.W=str2double(get(hObject,'string'))/1000;
 guidata(hObject,myhandles);
 end
 function th_callback(hObject,~,~)
 out.dims.t=str2double(get(hObject,'string'))/1e6;
 guidata(hObject,myhandles);
 end
 function wh_callback(hObject,~,~)
 out.dims.w=str2double(get(hObject,'string'))/1e6;
 guidata(hObject,myhandles);
 end

275

 function wfh_callback(hObject,~,~)
 out.dims.w_f=str2double(get(hObject,'string'))/1e6;
 guidata(hObject,myhandles);
 end
 function dh_callback(hObject,~,~)
 out.dims.d=str2double(get(hObject,'string'))/1e6;
 guidata(hObject,myhandles);
 end
 function Nh_callback(hObject,~,~)
 out.dims.N=str2double(get(hObject,'string'));
 guidata(hObject,myhandles);
 end
 function Ph_callback(hObject,~,~)
 out.flow.P_in=str2double(get(hObject,'string'))*1000;
 guidata(hObject,myhandles);
 end
 function Th_callback(hObject,~,~)
 out.flow.T_in=str2double(get(hObject,'string'));
 guidata(hObject,myhandles);
 end
 function Vh_callback(hObject,~,~)
 out.flow.m_dot=str2double(get(hObject,'string'));
 guidata(hObject,myhandles);
 end
 function powh_callback(hObject,~,~)
 out.power=str2double(get(hObject,'string'));
 guidata(hObject,myhandles);
 end
 function phih_callback(hObject,~,~)
 out.Phi=str2double(get(hObject,'string'));
 guidata(hObject,myhandles);
 end
 function hspmh_callback(hObject,~,~)
 val=get(hObject,'value');
 strlist=get(hObject,'string');
 out.heatsink=strlist{val};
 guidata(hObject,myhandles);
 end
 function fpmh_callback(hObject,~,~)
 val=get(hObject,'value');
 strlist=get(hObject,'string');
 out.fluid=strlist{val};
 guidata(hObject,myhandles);
 end
 function heatpmh_callback(hObject,~,~)
 val=get(hObject,'value');
 strlist=get(hObject,'string');
 out.heating_case=strlist{val};
 guidata(hObject,myhandles);
 reseth();
 switch strlist{val}
 case 'Case 1a'
 set(h11,'value',1);
 set(h12,'value',1);
 set(h13,'value',1);

276

 set(h14,'value',1);
 set(h15,'value',1);
 case 'Case 1b'
 set(h03,'value',1);
 set(h08,'value',1);
 set(h13,'value',1);
 set(h18,'value',1);
 set(h23,'value',1);
 case 'Case 1c'
 set(h01,'value',1);
 set(h02,'value',1);
 set(h03,'value',1);
 set(h04,'value',1);
 set(h05,'value',1);
 case 'Case 1d'
 set(h01,'value',1);
 set(h02,'value',1);
 set(h03,'value',1);
 set(h04,'value',1);
 set(h05,'value',1);
 set(h21,'value',1);
 set(h22,'value',1);
 set(h23,'value',1);
 set(h24,'value',1);
 set(h25,'value',1);
 case 'Case 2a'
 set(h11,'value',1);
 set(h12,'value',1);
 set(h13,'value',1);
 set(h14,'value',1);
 set(h15,'value',1);
 case 'Case 2b'
 set(h03,'value',1);
 set(h08,'value',1);
 set(h13,'value',1);
 set(h18,'value',1);
 set(h23,'value',1);
 otherwise
 end
 end
 function datah_callback(hObject,~,~)
 if get(hObject,'value')==1
 out.getdata=1;
 else
 out.getdata=0;
 end
 end
 function datatx_callback(hObject,~,~)
 out.filename=get(hObject,'string');
 end
 function h01_callback(hObject,~,~)
 if get(hObject,'value')==1
 out.heaters(1,1)=1;
 else
 out.heaters(1,1)=0;

277

 end
 end
 function h02_callback(hObject,~,~)
 if get(hObject,'value')==1
 out.heaters(2,1)=1;
 else
 out.heaters(2,1)=0;
 end
 end
 function h03_callback(hObject,~,~)
 if get(hObject,'value')==1
 out.heaters(3,1)=1;
 else
 out.heaters(3,1)=0;
 end
 end
 function h04_callback(hObject,~,~)
 if get(hObject,'value')==1
 out.heaters(4,1)=1;
 else
 out.heaters(4,1)=0;
 end
 end
 function h05_callback(hObject,~,~)
 if get(hObject,'value')==1
 out.heaters(5,1)=1;
 else
 out.heaters(5,1)=0;
 end
 end
 function h06_callback(hObject,~,~)
 if get(hObject,'value')==1
 out.heaters(1,2)=1;
 else
 out.heaters(1,2)=0;
 end
 end
 function h07_callback(hObject,~,~)
 if get(hObject,'value')==1
 out.heaters(2,2)=1;
 else
 out.heaters(2,2)=0;
 end
 end
 function h08_callback(hObject,~,~)
 if get(hObject,'value')==1
 out.heaters(3,2)=1;
 else
 out.heaters(3,2)=0;
 end
 end
 function h09_callback(hObject,~,~)
 if get(hObject,'value')==1
 out.heaters(4,2)=1;
 else

278

 out.heaters(4,2)=0;
 end
 end
 function h10_callback(hObject,~,~)
 if get(hObject,'value')==1
 out.heaters(5,2)=1;
 else
 out.heaters(5,2)=0;
 end
 end
 function h11_callback(hObject,~,~)
 if get(hObject,'value')==1
 out.heaters(1,3)=1;
 else
 out.heaters(1,3)=0;
 end
 end
 function h12_callback(hObject,~,~)
 if get(hObject,'value')==1
 out.heaters(2,3)=1;
 else
 out.heaters(2,3)=0;
 end
 end
 function h13_callback(hObject,~,~)
 if get(hObject,'value')==1
 out.heaters(3,3)=1;
 else
 out.heaters(3,3)=0;
 end
 end
 function h14_callback(hObject,~,~)
 if get(hObject,'value')==1
 out.heaters(4,3)=1;
 else
 out.heaters(4,3)=0;
 end
 end
 function h15_callback(hObject,~,~)
 if get(hObject,'value')==1
 out.heaters(5,3)=1;
 else
 out.heaters(5,3)=0;
 end
 end
 function h16_callback(hObject,~,~)
 if get(hObject,'value')==1
 out.heaters(1,4)=1;
 else
 out.heaters(1,4)=0;
 end
 end
 function h17_callback(hObject,~,~)
 if get(hObject,'value')==1
 out.heaters(2,4)=1;

279

 else
 out.heaters(2,4)=0;
 end
 end
 function h18_callback(hObject,~,~)
 if get(hObject,'value')==1
 out.heaters(3,4)=1;
 else
 out.heaters(3,4)=0;
 end
 end
 function h19_callback(hObject,~,~)
 if get(hObject,'value')==1
 out.heaters(4,4)=1;
 else
 out.heaters(4,4)=0;
 end
 end
 function h20_callback(hObject,~,~)
 if get(hObject,'value')==1
 out.heaters(5,4)=1;
 else
 out.heaters(5,4)=0;
 end
 end
 function h21_callback(hObject,~,~)
 if get(hObject,'value')==1
 out.heaters(1,5)=1;
 else
 out.heaters(1,5)=0;
 end
 end
 function h22_callback(hObject,~,~)
 if get(hObject,'value')==1
 out.heaters(2,5)=1;
 else
 out.heaters(2,5)=0;
 end
 end
 function h23_callback(hObject,~,~)
 if get(hObject,'value')==1
 out.heaters(3,5)=1;
 else
 out.heaters(3,5)=0;
 end
 end
 function h24_callback(hObject,~,~)
 if get(hObject,'value')==1
 out.heaters(4,5)=1;
 else
 out.heaters(4,5)=0;
 end
 end
 function h25_callback(hObject,~,~)
 if get(hObject,'value')==1

280

 out.heaters(5,5)=1;
 else
 out.heaters(5,5)=0;
 end
 end
 function reseth()
 set(h01,'value',0);
 set(h02,'value',0);
 set(h03,'value',0);
 set(h04,'value',0);
 set(h05,'value',0);
 set(h06,'value',0);
 set(h07,'value',0);
 set(h08,'value',0);
 set(h09,'value',0);
 set(h10,'value',0);
 set(h11,'value',0);
 set(h12,'value',0);
 set(h13,'value',0);
 set(h14,'value',0);
 set(h15,'value',0);
 set(h16,'value',0);
 set(h17,'value',0);
 set(h18,'value',0);
 set(h19,'value',0);
 set(h20,'value',0);
 set(h21,'value',0);
 set(h22,'value',0);
 set(h23,'value',0);
 set(h24,'value',0);
 set(h25,'value',0);
 end
 function goh_callback(~,~,~)
 uiresume(f);
 display Calculating
 close(f)
 end
end

281

Function 38. gui_output.m

function gui_output
f=figure('visible','off','position',[360,300,600,500],'name','Output
GUI');
filename=' ';
flow=evalin('base','flow');
heating_case=flow.heating_case;
quantity='T [C]';
position='bottom';
T=evalin('base','T');
Tf=evalin('base','Tf');
h=evalin('base','h');
q_w=evalin('base','q_w');
xe=evalin('base','xe');
DP=evalin('base','DP');
DPsp=evalin('base','DPsp');
DPtp=evalin('base','DPtp');
mesh=evalin('base','mesh');
id=mesh.id;
ah=axes('parent',f,'units','pixels','position',[100 150 370 320]);
quanttag=uicontrol(f,'style','text','string','Quantity:','position',[50
0 450 75 15]);
quanth=uicontrol(f,'style','popupmenu','string',{'T [C]','h
[W/m2K]','q_wall [W/cm2]','x_e [-]','DP
[Pa]'},'value',1,'position',[500 430 75
20],'callback',@quanth_callback);
postag=uicontrol(f,'style','text','string','Location:','position',[500
410 75 15]);
posh=uicontrol(f,'style','popupmenu','string',{'bottom','fluid','fins',
'x section fn','x section ch'},'value',1,'position',[500 390 75
20],'callback',@posh_callback);
plotb=uicontrol(f,'style','pushbutton','string','Plot','position',[510
340 55 30],'callback',@plotb_callback);
savetag=uicontrol(f,'style','text','string','Save results
to:','horizontalalignment','left','units','pixels','position',[20 40
100 15]);
saveh=uicontrol(f,'style','edit','string','results.mat','horizontalalig
nment','left','units','pixels','position',[20 20 300
20],'callback',@saveh_callback);
saveb=uicontrol(f,'style','pushbutton','string','Save','position',[320
20 50 20],'callback',@saveb_callback);
set(f,'toolbar','figure','visible','on');
 function quanth_callback(hObject,~,~)
 val=get(hObject,'value');
 strlist=get(hObject,'string');
 quantity=strlist{val};
 end
 function posh_callback(hObject,~,~)
 val=get(hObject,'value');
 strlist=get(hObject,'string');
 position=strlist{val};
 end
 function plotb_callback(~,~,~)
 switch quantity

282

 case 'T [C]'
 switch position
 case 'bottom'
 s=size(T);
 x=0:1/(s(1)-1):1;
 surf(x,x,T(:,:,1),'edgecolor','none')
 xlabel('Normalized Flow Length')
 ylabel('Normalized Width')
 zlabel('T_b [C]')
 title(heating_case)
 case 'fluid'
 s=size(Tf);
 x=0:1/(s(2)-1):1;
 y=0:1/(s(1)-1):1;
 surf(x,y,Tf,'edgecolor','none')
 xlabel('Normalized Flow Length')
 ylabel('Normalized Width')
 zlabel('T_f [C]')
 title(heating_case)
 case 'fins'
 s=size(T);
 x=0:1/(s(1)-1):1;
 surf(x,x,T(:,:,mesh.Nz),'edgecolor','none')
 xlabel('Normalized Flow Length')
 ylabel('Normalized Width')
 zlabel('T_{fin} [C]')
 title(heating_case)
 case 'x section fn'
 [row,~]=find(id.label==2);
 row2=unique(row);
 s=size(T);
 Tfin=T(row2,floor(s(2)/2),:);
 s=size(Tfin);
 x=0:1/(s(1)-1):1;
 z=0:1/(s(3)-1):1;
surf(z,x,reshape(Tfin,s(1),s(3)),'edgecolor','none')
 xlabel('Normalized Height')
 ylabel('Normalized Width')
 zlabel('T [C]')
 title(heating_case)
 case 'x section ch'
 [row,~]=find(id.label==1);
 row2=unique(row);
 s=size(T);
 Tch=T(row2,floor(s(2)/2),:);
 s=size(Tch);
 x=0:1/(s(1)-1):1;
 z=0:1/(s(3)-1):1;
surf(z,x,reshape(Tch,s(1),s(3)),'edgecolor','none')
 xlabel('Normalized Height')
 ylabel('Normalized Width')
 zlabel('T [C]')
 title(heating_case)
 end
 case 'h [W/m2K]'

283

 s=size(h);
 x=1:1:s(1);
 y=0:1/(s(2)-1):1;
 surf(y,x,h,'edgecolor','none')
 xlabel('Normalized Flow Length')
 ylabel('Channel')
 zlabel('h [W/m^2K]')
 title(heating_case)
 case 'q_wall [W/cm2]'
 s=size(q_w);
 x=1:1:s(1);
 y=0:1/(s(2)-1):1;
 surf(y,x,q_w/10000,'edgecolor','none')
 xlabel('Normalized Flow Length')
 ylabel('Channel')
 zlabel('q_w [W/cm^2]')
 title(heating_case)
 case 'x_e [-]'
 s=size(xe);
 x=1:1:s(1);
 y=0:1/(s(2)-1):1;
 surf(y,x,xe,'edgecolor','none')
 xlabel('Normalized Flow Length')
 ylabel('Channel')
 zlabel('x_e [-]')
 title(heating_case)
 case 'DP [Pa]'
 s=size(DP);
 x=1:1:s(1);
 y=0:1/(s(2)-1):1;
 surf(y,x,DP,'edgecolor','none')
 xlabel('Normalized Flow Length')
 ylabel('Channel')
 zlabel('DP [Pa]')
 title(heating_case)
 end
 end
 function saveh_callback(hObject,~,~)
 filename=get(hObject,'string');
 end
 function saveb_callback(~,~,~)
 evalin('base',['save(''', filename ''')']);
 end
end

284

Function 39. heattranscoeff.m

function
[h]=heattranscoeff(dims,matp,mesh,flow,T,Tf,Tsat,q_w,xe,fmald,ws)
N=dims.N;
Ny=mesh.Ny;
Nz=mesh.Nz;
dy=mesh.dy;
xonb=zeros(N,1)+Ny+1;
xsat=xonb;
for i=1:N
 for j=Ny:-1:1
 if xe(i,j)>=0
 xsat(i)=j;
 elseif (sqrt(mean(T(mesh.id.num==i,j,Nz)))-
sqrt(Tsat(i,j)))>=sqrt(2*matp.sigma*q_w(i,j)/densityg(matp,Tf(i,j))/mat
p.h_fg/thermcond(matp,Tf(i,j)))
 xonb(i)=j;
 end
 end
end
h=zeros(N,Ny);
for i=1:N
 for j=1:Ny
 Ltf=dy*j;
 if xe(i,j)>0 && xe(i,j)<1
h(i,j)=twophaseh(dims,matp,flow,Tf(i,j),q_w(i,j),xe(i,j),fmald(i),ws,Lt
f);
 elseif xe(i,j)<=0
 if j<xonb(i)
h(i,j)=singlephaseh(dims,matp,flow,Tf(i,j),fmald(i),ws(i,:),Ltf);
 else
h1=singlephaseh(dims,matp,flow,Tf(i,j),fmald(i),ws(i,:),Ltf);
h2=twophaseh(dims,matp,flow,Tf(i,j),q_w(i,j),xe(i,j),fmald(i),ws,Ltf);
 xstar=(j-xonb(i))/(xsat(i)-xonb(i));
 h(i,j)=(1-xstar)*h1+xstar*h2;
 end
 else
h(i,j)=vaporphaseh(dims,matp,flow,Tf(i,j),fmald(i),ws(i,:),Ltf);
 end
 end
end
assignin('base','xonb',xonb);
assignin('base','xsat',xsat);
end
function rho=densityg(matp,Tf)
rho=matp.rho_ga*Tf^3+matp.rho_gb*Tf^2+matp.rho_gc*Tf+matp.rho_gd;
end
function k=thermcond(matp,Tf)
k=matp.kfa-matp.kfb*Tf;
end

285

Function 40. inputs.m

function [dims,matp,flow,getdata,filename]=inputs()
[out]=gui_input2;
dims=out.dims;
flow=out.flow;
flow.heating_case=out.heating_case;
power=out.power;
Phi=out.Phi;
flow.Phi=Phi;
getdata=out.getdata;
filename=out.filename;
heaters=out.heaters;
if getdata
 matp=0;
 return
end
dims.w_ef=(dims.W-dims.N*dims.w-(dims.N-1)*dims.w_f)/2;
switch out.heatsink
 case 'Silicon'
 matp.k_Si=140;
 case 'Copper'
 matp.k_Si=388;
end
switch out.fluid
 case 'FC-77'
 matp.h_fg=89000;
 matp.c_pfa=1014; %cpf=1014+1.554*T[C]
 matp.c_pfb=1.554;
 matp.c_pga=0.0019; %cpg=0.0019*T[K]+0.3031
 matp.c_pgb=0.822085;
 matp.sigma=0.013; %at STP, sigma=0.0062 used by Tannaz
 matp.rho_fa=1838; %rhof=1838-2.45*T[C]
 matp.rho_fb=-2.45;
 matp.rho_ga=2.9064e-5; %15.84 used by Tannaz, rhog=2.9064e-
5*T[C]^3-2.9053e-3*T[C]^2+0.17218*T[C]-2.6758
 matp.rho_gb=-2.9053e-3;
 matp.rho_gc=0.17218;
 matp.rho_gd=-2.6758;
 matp.mu_f=0.0004655; %0.00052 used by Tannaz, muf=0.0013 at STP
 %at 95C nuf=0.29 cSt, rhof=1605.25 kg/m3 => muf=0.0004655
 matp.mu_g=0.00002; %mug[cP]=2.953e-9*T[C]^3-1.045e-
6*T[C]^2+1.528e-4*T[C]+3.76e-3
 matp.kfa=0.065; %kf=a-bT, kf=0.065-0.00008*T[C]
 matp.kfb=0.00008;
 matp.k_ga=0.0000569; %kg=(0.0569*T[C]+5.4799)/1000
 matp.k_gb=0.0054799;
 matp.p_c=1.58e6;
 matp.M=416;
 matp.Tsat=97;
 matp.Tsata=1928;
 matp.Tsatb=10.216;
 matp.Tsatc=1;
 case 'HFE 7100'
 matp.h_fg=112000;

286

 matp.c_pf=1233; %at 50 C, 1183 at 25 C
 matp.c_pg=898.682;
 matp.sigma=.0136;
 matp.rho_f=1429; %at 55 C, 1510 at 25 C
 matp.rho_g=9.87;
 matp.mu_f=0.00039; %at 55 C, 0.00058 at 25 C
 matp.mu_g=0.00001113;
 matp.kfa=0.073714; %kf=a-bT
 matp.kfb=0.00019548;
 matp.k_g=0.01586;
 matp.p_c=2.23e6;
 matp.M=250;
 matp.Tsat=61;
 matp.Tsata=3641.9;
 matp.Tsatb=22.415;
 matp.Tsatc=1/log10(e);
end
matp.e_rb=0.82;
matp.e_rs=0.1;
Q_in=zeros(5,5);
switch out.heating_case
 case 'Case 1a'
 Q_in(:,3)=power/5/dims.L/dims.W*25;
 case 'Case 1b'
 Q_in(3,:)=power/5/dims.L/dims.W*25;
 case 'Case 1c'
 Q_in(:,1)=power/5/dims.L/dims.W*25;
 case 'Case 1d'
 Q_in(:,1)=power/10/dims.L/dims.W*25;
 Q_in(:,5)=power/10/dims.L/dims.W*25;
 case 'Case 2a'
 Q_in(:,:)=power*(1-Phi)*4/100/dims.L/dims.W*25;
 Q_in(:,3)=power*(1/5+4/5*Phi)/5/dims.L/dims.W*25;
 case 'Case 2b'
 Q_in(:,:)=power*(1-Phi)*4/100/dims.L/dims.W*25;
 Q_in(3,:)=power*(1/5+4/5*Phi)/5/dims.L/dims.W*25;
 case 'custom'
 Nh=sum(sum(heaters));
 Q_in(heaters==0)=power*(1-Phi)/dims.L/dims.W;
 Q_in(heaters==1)=power*(Phi*(25-Nh)+Nh)/dims.L/dims.W/Nh;
end
flow.Q_in=Q_in;
end

287

Function 41. pressuredrop.m

function [DP,DPsp,DPtp]=pressuredrop(dims,matp,mesh,flow,xe,Tf)
N=dims.N;
Ny=mesh.Ny;
dy=mesh.dy;
DP=zeros(N,Ny);
DPsp=DP;
DPtp=DP;
for i=1:N
 for j=1:Ny
 if xe(i,j)>0 && xe(i,j)<1
 %two phase
 Ltf=j*dy;
 mutp=xe(i,j)*matp.mu_g+(1-xe(i,j))*matp.mu_f;
 rhotp=1/((1-
xe(i,j))/density(matp,Tf(i,j))+xe(i,j)/densityg(matp,Tf(i,j)));
 DPtp=singlephasedp(dims,mutp,rhotp,mesh,flow,Ltf);
 else
 %single phase
 Ltf=j*dy;
 mu=matp.mu_f;
 rho=density(matp,Tf(i,j));
 DPsp(i,j)=singlephasedp(dims,mu,rho,mesh,flow,Ltf);
 end
 end
end
DP=DPsp+DPtp;
end
function rho=density(matp,Tf)
rho=matp.rho_fa+matp.rho_fb*Tf;
end
function rhog=densityg(matp,Tf)
rhog=matp.rho_ga*Tf^3+matp.rho_gb*Tf^2+matp.rho_gc*Tf+matp.rho_gd;
end

288

Function 42. singlephasedp.m

function DPsp=singlephasedp(dims,mu,rho,mesh,flow,Ltf)
Dh=4*dims.d*dims.w/(2*dims.d+dims.w);
AR=min(dims.d/dims.w,dims.w/dims.d); %always greater than 1
sqA=sqrt((AR+1)^2*Dh^2/(4*AR));
G=flow.m_dot*rho/dims.N/60/1e6/dims.w/dims.d;
Resq=abs(G*sqA/mu);
Re=abs(G*Dh/mu);
if Re<=2300
 zcross=Ltf/sqA/Resq;
 fre=((3.44/sqrt(zcross))^2+(12/(sqrt(AR)*(1+AR)*(1-
192*AR/pi^5*tanh(pi/(2*AR)))))^2)^(1/2);
 f=4*fre/Resq;
 ftot=1/2*f*mesh.dy/Dh/rho;
elseif Re>4000
 f=((0.79*log(Re)-1.64)^(-2))*(1+4/5*(Dh/Ltf)^(3/4));
 ftot=1/2*f*mesh.dy/Dh/rho;
else
 zcp=Ltf/(sqA*2300/2*(AR+1)/sqrt(AR));
 frep=((3.44/sqrt(zcp))^2+(12/(sqrt(AR)*(1+AR)*(1-
192*AR/pi^5*tanh(pi/(2*AR)))))^2)^(1/2);
 frp=4*frep/(2300/2*(AR+1)/sqrt(AR));
 Afac=Ltf/(sqA/2*(AR+1)/sqrt(AR));
 Cfac=(12/(sqrt(AR)*(1+AR)*(1-192*AR/pi^5*tanh(pi/(2*AR)))))^2;
 Efac=8/((AR+1)/sqrt(AR));
 dfr=-
Efac*(2*Afac*Cfac+3.44^2*2300)/(2*Afac*2300^2*sqrt(3.44^2*2300/Afac+Cfa
c));
 Ret=4000+1i*1e-20;
 ff=((0.79*log(Ret)-1.64)^(-2))*(1+4/5*(Dh/Ltf)^(3/4));
 ft=real(ff);
 dft=imag(ff)/1e-20;
 fft=spline([2300,4000],[dfr,frp,ft,dft]);
 f=ppval(fft,Re);
 ftot=1/2*f/rho*mesh.dy/Dh;
end
DPsp=ftot*abs(G)*G;
end

289

Function 43. singlephaseh.m

function [h]=singlephaseh(dims,matp,flow,Tf,fmald,~,Ltf)
Dh=4*dims.d*dims.w/(2*dims.d+dims.w);
AR=max(dims.d/dims.w,dims.w/dims.d);
G=flow.m_dot*fmald*density(matp,Tf)/dims.N/60/1e6/dims.w/dims.d;
ReD=abs(G*Dh/matp.mu_f);
Pr=matp.mu_f*specheat(matp,Tf)/thermcond(matp,Tf);
zstar=Ltf/ReD/Dh/Pr;
RHS=-1.275e-6*AR^6+4.709e-5*AR^5-6.902e-4*AR^4+5.014e-3*AR^3-
0.01769*AR^2+0.01845*AR+0.05691;
if zstar<RHS
 h=(1.766*(ReD*Pr*Dh/Ltf)^0.378*AR^0.1224)*thermcond(matp,Tf)/Dh;
else
 h=thermcond(matp,Tf)/Dh*8.235*(1-2.0421/AR+3.0853/AR^2-
2.4765/AR^3+1.0578/AR^4-0.1861/AR^5);
end
end
function rho=density(matp,Tf)
rho=matp.rho_fa+matp.rho_fb*Tf;
end
function cp=specheat(matp,Tf)
cp=matp.c_pfa+matp.c_pfb*Tf;
end
function k=thermcond(matp,Tf)
k=matp.kfa-matp.kfb*Tf;
end

Function 44. tdma.m

function [phi] = tdma(a,b,c,d)
N=length(a); %number of grid points
P=zeros(1,N);
Q=zeros(1,N);
P(1)=b(1)/a(1);
Q(1)=d(1)/a(1);
for i=2:N
 P(i)=b(i)/(a(i)-c(i)*P(i-1));
 Q(i)=(d(i)+c(i)*Q(i-1))/(a(i)-c(i)*P(i-1));
end
phi(N)=Q(N);
for i=N-1:-1:1
 phi(i)=P(i)*phi(i+1)+Q(i);
end
end

290

Function 45. tdmaline.m

function [phi] = tdmaline(a,b,c,d,e,f,g)
N=size(a); %number of grid points
 %N(1) is number of rows
 %N(2) is number of columns
 for i=1:N(1) %rows first
 a1=a(i,:);
 b1=b(i,:);
 c1=c(i,:);
 if i==1
 d1=f(i,:)+d(i,:).*g(i+1,:);
 elseif i==N(1)
 d1=f(i,:)+e(i,:).*g(i-1,:);
 else
 d1=f(i,:)+d(i,:).*g(i+1,:)+e(i,:).*g(i-1,:);
 end
 g(i,:)=tdma(a1,b1,c1,d1); %pass to tdma solver
 end
 for j=1:N(2) %columns second
 a1=a(:,j);
 b1=d(:,j);
 c1=e(:,j);
 if j==1
 d1=f(:,j)+b(:,j).*g(:,j+1);
 elseif j==N(2)
 d1=f(:,j)+c(:,j).*g(:,j-1);
 else
 d1=f(:,j)+b(:,j).*g(:,j+1)+c(:,j).*g(:,j-1);
 end
 g(:,j)=tdma(a1,b1,c1,d1); %pass to tdma solver
 end
 for i=N(1):-1:1 %backward rows third
 a1=a(i,:);
 b1=b(i,:);
 c1=c(i,:);
 if i==1
 d1=f(i,:)+d(i,:).*g(i+1,:);
 elseif i==N(1)
 d1=f(i,:)+e(i,:).*g(i-1,:);
 else
 d1=f(i,:)+d(i,:).*g(i+1,:)+e(i,:).*g(i-1,:);
 end
 g(i,:)=tdma(a1,b1,c1,d1); %pass to tdma solver
 end
 for j=N(2):-1:1 %backward columns fourth
 a1=a(:,j);
 b1=d(:,j);
 c1=e(:,j);
 if j==1
 d1=f(:,j)+b(:,j).*g(:,j+1);
 elseif j==N(2)
 d1=f(:,j)+c(:,j).*g(:,j-1);
 else
 d1=f(:,j)+b(:,j).*g(:,j+1)+c(:,j).*g(:,j-1);

291

 end
 g(:,j)=tdma(a1,b1,c1,d1); %pass to tdma solver
 end
phi=g;
end

292

Function 46. twophaseh.m

function [h]=twophaseh(dims,matp,flow,Tf,q_w,xe,fmald,~,Ltf)
Dh=4*dims.d*dims.w/(2*dims.d+dims.w);
G=flow.m_dot*fmald*density(matp,Tf)/dims.N/60/1e6/dims.w/dims.d;
ReD=abs(G*Dh/matp.mu_f);
Pr=matp.mu_f*specheat(matp,Tf)/thermcond(matp,Tf);
hcl=(3.66+(0.0668*Dh/Ltf*ReD*Pr)/(1+0.04*(Dh/Ltf*ReD*Pr)^(2/3)))*thermc
ond(matp,Tf)/Dh;
Gv=flow.m_dot*fmald*densityg(matp,Tf)/dims.N/60/1e6/dims.w/dims.d;
ReDv=abs(Gv*Dh/matp.mu_g);
Prv=matp.mu_g*specheatg(matp,Tf)/thermcondg(matp,Tf);
hcv=(3.66+(0.0668*Dh/Ltf*ReDv*Prv)/(1+0.04*(Dh/Ltf*ReDv*Prv)^(2/3)))*th
ermcondg(matp,Tf)/Dh;
Co=(matp.sigma/(9.81*(density(matp,Tf)-densityg(matp,Tf))*Dh^2))^(1/2);
Pred=flow.P_in/matp.p_c;
hnb=55*Pred^(0.12-0.2*log(matp.e_rb)/log(10))*(-log(Pred)/log(10))^(-
0.55)*matp.M^(-0.5)*abs(q_w)^0.67;
hconv=hcl*(1-xe)+hcv*xe;
h=hnb*(1-xe)+hconv*(1+80*(xe^2-xe^6)*exp(-0.6*Co));
end
function rho=density(matp,Tf)
rho=matp.rho_fa+matp.rho_fb*Tf;
end
function cp=specheat(matp,Tf)
cp=matp.c_pfa+matp.c_pfb*Tf;
end
function k=thermcond(matp,Tf)
k=matp.kfa-matp.kfb*Tf;
end
function rhog=densityg(matp,Tf)
rhog=matp.rho_ga*Tf^3+matp.rho_gb*Tf^2+matp.rho_gc*Tf+matp.rho_gd;
end
function cp=specheatg(matp,Tf)
cp=matp.c_pga*Tf+matp.c_pgb;
end
function k=thermcondg(matp,Tf)
k=matp.k_ga*Tf+matp.k_gb;
end

293

Function 47. vaporphaseh.m

function [h]=vaporphaseh(dims,matp,flow,Tf,fmald,~,Ltf)
Dh=4*dims.d*dims.w/(2*dims.d+dims.w);
AR=max(dims.d/dims.w,dims.w/dims.d);
G=flow.m_dot*fmald*densityg(matp,Tf)/dims.N/60/1e6/dims.w/dims.d;
ReD=abs(G*Dh/matp.mu_g);
Pr=matp.mu_g*specheatg(matp,Tf)/thermcondg(matp,Tf);
zstar=Ltf/ReD/Dh/Pr;
RHS=-1.275e-6*AR^6+4.709e-5*AR^5-6.902e-4*AR^4+5.014e-3*AR^3-
0.01769*AR^2+0.01845*AR+0.05691;
if zstar<RHS
 h=(1.766*(ReD*Pr*Dh/Ltf)^0.378*AR^0.1224)*thermcondg(matp,Tf)/Dh;
else
 h=thermcondg(matp,Tf)/Dh*8.235*(1-2.0421/AR+3.0853/AR^2-
2.4765/AR^3+1.0578/AR^4-0.1861/AR^5);
end
end
function rho=densityg(matp,Tf)
rho=matp.rho_ga*Tf^3+matp.rho_gb*Tf^2+matp.rho_gc*Tf+matp.rho_gd;
end
function cp=specheatg(matp,Tf)
cp=matp.c_pga*Tf+matp.c_pgb;
end
function k=thermcondg(matp,Tf)
k=matp.k_ga*Tf+matp.k_gb;
end

294

Appendix H List of Experimental Facility Equipment

This section contains a list of equipment used in the experimental facilities

described in this thesis. Table H.1 contains the equipment used in the impedance-based

void fraction sensor facility. Table H.2 contains the equipment used in the non-uniform

heating facility.

Table H.1. Equipment used in the impedance-based void fraction sensor facility.

Part Name Vendor /
Manufacturer Part Number Description

Microchannel test
section

ME Research
Machine Shop Custom Crosswise electrode

configuration

Microchannel test
section

Thermophysical
Properties Research

Laboratory, Inc.
Custom

Streamwise
electrode

configuration

Deionized Water
Birck

Nanotechnology
Center

- Liquid

Morpholine Sigma-Aldrich CAS 1132-61-2 Chemical added to
liquid

Ammonium
hydroxide

Mallinckrodt
Chemicals CAS 1336-21-6 Chemical added to

liquid
Water pump Micropump 415A 500-6000 rpm

Micro-turbine flow
meter McMillan Flo-106 10-100 mL/min

Micro-turbine flow
meter McMillan Flo-106 20-200 mL/min

Air cylinder Purdue University
Stores - Gas

Mass flow sensor Omega FMA6704 0-100 mL/min
Mass flow sensor Omega FMA6705 0-200 mL/min
Mass flow sensor Omega FMA6706 0-500 mL/min

Pressure transmitter WIKA 8642885 0-10 psig

Thermocouple Omega T type, sheathed Temperature
measurement

Impedance-based
void fraction sensor

ME Electronics
Shop Custom

Electrical
impedance

measurement

295

Table H.1. Continued.

Part Name Vendor /
Manufacturer Part Number Description

High-speed camera Photron Fastcam Ultima
APX

1024 × 1024 pixel
CMOS sensor, 2000
fps at full resolution

Lens Keyence VH-Z50L 50-500 X
Light source Henke-Sass Wolf Light source
Light source Cole Parmer 41720 Light source
Light source Luminar Ace LA-150UE Light source

Camera mount Velmex, Inc. A6009C-S6-TL-BK Translation stage
Camera mount Velmex, Inc. A6012C-S6-TL-BK Translation stage
Camera mount Velmex, Inc. B6012C-S6-TL-BK Translation stage

Data acquisition
system

National
Instruments USB-6225 Acquisition system

Table H.2. Equipment used in the non-uniform heating facility.

Part Name Vendor /
Manufacturer Part Number Description

Microchannel heat
sink

Delphi Electronics
and Safety Custom Heat sinks

Cover plate
Thermophysical

Properties Research
Laboratory, Inc.

Custom Microchannel cover
plate

Pyrex sheet - Microchannel cover
plate

FC-77 3M - Liquid
Liquid pump Micropump 415A 500-6000 rpm

Preheater Omegalux AHPF Inline heater

Heat exchanger Comair Rotron PT2B3 Liquid to air heat
exchanger

Expandable
reservoir Made in house Custom Fluid reservoir

Vacuum pump Thomas 2688VE44 B Vacuum pump
Micro-turbine flow

meter McMillan Flo-114 20-200 mL/min

Thermocouple Omega T type, sheathed Temperature
measurement

Pressure transducer Gems Sensors 2200 series 0-30 psia
Differential pressure

transducer Omega PX2300 series +/- 10 psid

296

Table H.2. Continued.

Part Name Vendor /
Manufacturer Part Number Description

High-speed camera Photron Fastcam PCI 1024
1024 × 1024 pixel

CMOS sensor, 1000
fps at full resolution

Lens Keyence VH-Z50L 50-500 X
Lens Nikon AF Micro-Nikkor 200 mm IF ED lens

Light source Cole Parmer 41720 Light source
Camera mount Velmex, Inc. A6009C-S6-TL-BK Translation stage
Camera mount Velmex, Inc. A6012C-S6-TL-BK Translation stage
Camera mount Velmex, Inc. B6012C-S6-TL-BK Translation stage
Power supply Sorensen DCS33-33E 0-33 V, 0-33 A
Power supply Sorensen DCS20-50E 0-20 V, 0-50 A
Power supply Sorensen DCS40-25E 0-40 V, 0-25 A

Data acquisition
system Agilent 34970A Acquisition system

297

VITA

297

VITA

Susan Nicole Ritchey received her Bachelor of Science in Nuclear Engineering

and Bachelor of Science in Radiological Health Engineering from Texas A&M

University in 2007. She received her Master of Science in Nuclear Engineering from

Texas A&M University in 2009 under the advisement of Prof. Karen Vierow. She is

currently pursuing her PhD in Mechanical Engineering at Purdue University under the

advisement of Prof. Suresh V. Garimella. She was the recipient of the Ingersoll-Rand

Fellowship for graduate studies in Mechanical Engineering at Purdue University and the

Ward A. Lambert Graduate Teaching Fellowship. She also received the Purdue

University Graduate School’s Excellence in Teaching Award.

PUBLICATIONS

298

PUBLICATIONS

S.N. Williams and D.E. Mueller, 2006, Survey of operating parameters for use in burnup
credit calculations, Transactions of the American Nuclear Society 95, Albuquerque,
NM, November 14.

K. Vierow, I. Choutapalli, K. Hogan, Y. Liao, M. Solmos, S.N. Williams, 2008,
Countercurrent flow limitation experiments and modeling for improved reactor
safety, NEER Technical Report DE-FG07-05ID14696, US DOE.

S.N. Williams, 2009, Flooding experiments with steam and water in a large diameter
vertical tube, M.S. thesis, Texas A&M University.

S.N. Williams, M. Solom, O. Draznin, I. Choutapalli, K. Vierow, 2009, Flooding
experiments with steam and water in a large diameter vertical tube, 13th
International Topical meeting on Nuclear Reactor Thermal Hydraulics (NURETH-
13), Kanazawa, Japan, September-October.

O. Draznin, S.N. Ritchey, K. Vierow, 2010, Experimental study of water subcooling
effect on steam-water flooding in a large diameter vertical tube, International
Congress on Advances in Nuclear Power Plants (ICAPP), San Diego, CA, June 13-
17.

S. Paranjape, S.N. Ritchey, S.V. Garimella, 2011, Impedance-based void fraction
measurement and flow regime identification in microchannel flows, Pacific Rim
Technical Conference & Exposition on Packaging and Integration of Electronic and
Photonic Systems (InterPACK), Portland, OR, July 6-8.

S.N. Ritchey, M. Solom, O. Draznin, I. Choutapalli, K. Vierow, 2011, Flooding
experiments with steam and water in a large diameter vertical tube, Journal of
Nuclear Technology 175, pp. 529-537.

S. Paranjape, S.N. Ritchey, S.V. Garimella, 2012, Electrical impedance-based void
fraction measurement and flow regime identification in microchannel flows under
adiabatic conditions, International Journal of Multiphase Flow 42, pp. 175-183.

299

S.N. Ritchey, J.A. Weibel, S.V. Garimella, 2013, Effects of Non-Uniform Heating on
Two-Phase Flow through Microchannels, Pacific Rim Technical Conference &
Exposition on Packaging and Integration of Electronic and Photonic Systems
(InterPACK), Burlingame, CA, July 16-18, Paper No. InterPACK2013-73058.

S.N. Ritchey, J.A. Weibel, S.V. Garimella, 2014, Local Measurement of Flow Boiling
Heat Transfer in an Array of Non-Uniformly Heated Microchannels, International
Journal of Heat and Mass Transfer 71, pp 206-216.

P. Valiorgue, S.N. Ritchey, J.A. Weibel, S.V. Garimella, 2014, Design of a Non-Intrusive
Electrical Impedance-Based Void Fraction Sensor for Microchannel Two-Phase
Flows, Measurement Science and Technology 25, 095301.

S.N. Ritchey, J.A. Weibel, S.V. Garimella, Effects of Non-Uniform Heating on the
Location and Magnitude of Critical Heat Flux in a Microchannel Heat Sink,
International Journal of Micro-Nano Scale Transport, in preparation.

	Purdue University
	Purdue e-Pubs
	Fall 2014

	Non-intrusive two-phase flow regime identification and transport characterization in microchannels subject to uniform and non-uniform heat input
	Susan N. Ritchey
	Recommended Citation

	3688557.pdf

