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ABSTRACT

Nebgen, Benjamin T. Ph.D., Purdue University, December 2014. Excited States of
Chromophores and Vibronic Interactions. Major Professor: Lyudmila V. Slipchenko.

The main focus of my Ph.D. work has been on building a vibronic coupling model

for multichromophores and extending that model to more general systems. This

Dissertation serves as both a summary of this work as well as a manual for the two

vibronic coupling programs I have written. It is my hope that the instructions written

here are complete enough for any who would like to replicate my work on vibronic

coupling on other systems.

Additionally, I have also worked on a few purely computational projects not di-

rectly related to the vibronic coupling work. The status of these projects is recorded

here. Chapter 5 details electronic structure calculations of the α-methylbenzyl radical

and there use in determining the excited state geometry of the methyl rotor next to

a radical center. Chapter 6 discusses ab-initio simulations of the phenylcyanomethyl

molecule and explores the vibrational envelope following the D0 → D1 transition.

Finally, Chapter 7 examines the ultrafast radiationless decay of the photoacid 3-

cyano-6-hydroxycoumarin in relation to the proton transfer to solvent mechanism.
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1. THEORETICAL TREATMENT OF VIBRONIC COUPLING IN

ASYMMETRIC BICHROMOPHORES

1.1 Introduction

The interaction of light and matter is a fundamental phenomenon of which un-

derstanding and control are quintessential for advances in science and technology.

Often, quantum-mechanical treatment of the light-induced processes can be sim-

plified by separating electronic and nuclear degrees of freedom by introducing the

conventional Born-Oppenheimer approximation. [1] Yet, to explain processes such as

conversion of solar to electrical energy as occurs in photosynthetic centers of plants

and bacteria and is mimicked in photovoltaic devices, the electronic and nuclear mo-

tions cannot be uncoupled such that the BO approximation should be abandoned.

A wide variety of classical, semi-classical, and quantum techniques have been sug-

gested to simulate dynamics in such systems. [2] In classical approaches the nuclear

wavepacket is approximated by an ensemble of particles that follow classical tra-

jectories. Semi-classical methods add some missing quantum effects to this picture

by allowing transitions between the electronic states, for example through surface-

hopping [3] or using mean-field approximation [4, 5]. In quantum-dynamics methods

the nuclear wavepacket is described by including quantum effects, such as interference

between different parts of the packet. [6, 7]

Alternatively, one can circumvent complexities associated with modeling dynamics

of vibronic systems and describe their vibronic spectra statically. This can be accom-
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plished by solving the time-independent Schrodinger equation with an electronic-

nuclear Hamiltonian. This work employs the latter (static) approach to a molecular

system composed of two (nearly) identical chromophores. Such bichromophores have

nearly degenerate electronic energy levels with an energy splitting close to the sepa-

ration in vibrational energy levels, resulting in coupling of the electronic and nuclear

degrees of freedom. Pioneering work in this direction was done by Fulton and Gouter-

man. [8, 9] They developed a vibronic theory (FG model) describing bichromophores

possessing a specific symmetry element exchanging the monomer Hamiltonians. [9,10]

Since then, FG model has been applied to a number of molecular dimers [11–16], ex-

tended to include multiple vibrational modes [17–19] and to describe vibronic states

in more complex molecular aggregates [20, 21].

The original FG model is limited to cases where the dimer has a symmetry element

interchanging the Hamiltonians of monomers. The symmetry element simplifies the

dimer Hamiltonian and its numerical solution. However, at the expense of increased

computational complexity, the Hamiltonian can be left in the asymmetric form and,

after expanding the vibrational wave function in a basis, diagonalized numerically us-

ing the iterative Lanczos diagonalization routine, as perviously suggested by Domcke

and co-workers. [22] This approach can handle asymmetries arising from asymmetric

molecular orientations, substituent groups or partial deuteration, or from effects of

environment, as would occur in realistic biological or materials systems. This work

presents an extension of the FG model to asymmetric bichromophores. Additionally,

the Hamiltonian for the inter-chromophore vibrational modes, i.e., vibrations that

occur between the chromophores themselves, is introduced and included in the vi-

bronic model. The inter-monomer Hamiltonian is fundamentally different from the

intra-monomer one because the electronic coupling depends on the distance and ori-

entation between the two monomers and thus upon the inter-monomer vibrations.

To characterize the developed model, a series of model spectra are produced and an-

alyzed. As a stringent test, the extended FG model is applied to vibronic spectra of
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flexible bichromophore diphenylmethane (DPM), which has been the subject of many

spectroscopic studies over the last half century. [23–27]

1.2 Theory

For a bichromophore (also called dimer) composed of two (nearly) identical monomers,

the Hamiltonian can be written as a sum of the monomer Hamiltonians and electronic

coupling VAB(L) and kinetic energy TL terms:

H = HA +HB + VAB(L) + TL (1.1)

The electronic coupling and the kinetic energy terms depend on the vector of six inter-

monomer vibrational modes L. In this treatment, the electronic wavefunction of the

dimer is not antisymmetrized, i.e., the electron exchange between the two monomers

is neglected. This is a reasonable assumption for a large class of molecules, especially

when monomers are spatially separated.

Vibrations considered in this model are divided into intra-monomer and inter-

monomer vibrations. Intra-monomer modes have kinetic and potential energy terms

located within HA and HB and thus can be computed by calculations on either

monomer. The inter-monomer modes are vibrations along the L vector introduced

above. Typically, the inter-monomer modes have much lower frequencies than the

intra-monomer modes. They cannot be obtained from monomer properties but require

(partial) knowledge of the dimer Hessian. Because of these principal differences, the

treatment of the intra- and inter-monomer modes in the model should be different.

Note that only the intra-monomer modes were considered in the original FG model

and most extensions. The current paper provides the first systematic extension of

the FG model to the inter-monomer vibrations.

1.2.1 Intra-monomer Modes
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Main steps of the FG model are repeated here in order to introduce notations and

bring into context our developments. For the intra-monomer modes, the Hamiltonian

of monomer A (and analogously for monomer B) is written as a sum of the vibrational

kinetic energy term TA(QA) and the electronic Hamiltonian hA(qA;QA):

HA = hA(qA;QA) + TA(QA) (1.2)

The electronic Hamiltonian depends explicitly on the electron coordinate (qA) and

parametrically on the nuclear coordinate (QA) of monomer A. Let {ψel
i (qA;QA)}∀i≥0

be the eigenvectors of the electronic Hamiltonian hA with energies Ei(QA); {φj (QA)}∀j≥0
be the eigenvectors of the vibrational Hamiltonian Ei(QA) + TA(QA). Since similar

relationships hold for monomer B, HA +HB will satisfy the eigenvalue problem:

(HA+HB)ψ
el
i (qA;QA)φn (QA)ψ

el
j (qB;QB)φm (QB)

= Ei,j,n,m(QA, QB)ψ
el
i (qA;QA)φn (QA)ψ

el
j (qB;QB)φm (QB) (1.3)

where

Ei,j,n,m(QA, QB) = Ei,n(QA) + Ej,m(QB) (1.4)

i and j represent the level of electronic excitation on monomers A and B respectively.

Similarly, n and m represent the vibrational excitation on either monomer.

Before introducing the electronic coupling, the energies obey the following relation:

Ei,j,n,m = Ej,i,m,n (1.5)

The degeneracy in the electronic states is split by the electronic coupling term VAB(L)

in the electronic Hamiltonian Eq. (1.1).

Consider now a pair of exciton states. The excitation may occur either on monomer

A or monomer B; neither double excitations (both on A and B) or charge-transfer

excitations (electron moves from A to B or vice versa) are considered in this model.

Thus, a two element basis is sufficient for the electronic wavefunction:

{π(1)
A = ψel

1 ψ
el
0 , π

(1)
B = ψel

0 ψ
el
1 } (1.6)
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Though the following derivations are valid for any electronic states in the monomer,

for the sake of simplicity, we use the notations corresponding to the electronic tran-

sition from the ground state ψ0 to the first electronic excited state ψ1.

To find algebraic expressions for the vibrational energies, the Hamiltonian has to

be expanded in the electronic basis, resulting in the following matrix elements:〈
π
(1)
A

∣∣∣H ∣∣∣π(1)
A

〉
= TA + E(1) (QA) + TB + E(0) (QB) +

〈
π
(1)
A

∣∣∣VAB

∣∣∣π(1)
A

〉
(1.7)〈

π
(1)
B

∣∣∣H ∣∣∣π(1)
B

〉
= TA + E(0) (QA) + TB + E1 (QB) +

〈
π
(1)
B

∣∣∣VAB

∣∣∣π(1)
B

〉
(1.8)〈

π
(1)
A

∣∣∣H ∣∣∣π(1)
B

〉
=

〈
π
(1)
B

∣∣∣H ∣∣∣π(1)
A

〉
=

〈
π
(1)
A

∣∣∣VAB

∣∣∣π(1)
B

〉
(1.9)

In case of the intra-monomer modes, VAB(L) is expanded in Taylor series about

the equilibrium position of L = 0 and only the zero-order term is kept:〈
π
(1)
A

∣∣∣VAB(L)
∣∣∣π(1)

B

〉
�

〈
π
(1)
A

∣∣∣VAB(0)
∣∣∣π(1)

B

〉
(1.10)

+
∂

∂L

〈
π
(1)
A

∣∣∣VAB(L)
∣∣∣π(1)

B

〉 ∣∣∣∣
L=0

L+
∂2

∂2L

〈
π
(1)
A

∣∣∣VAB(L)
∣∣∣π(1)

B

〉 ∣∣∣∣
L=0

L2

2

The remaining terms in the Taylor expansion along with the TL term will be con-

sidered in the subsequent section regarding inter-monomer modes. Assuming the

harmonic approximation for the potential energy surface in the vicinity of the min-

imum provides a functional form for E(0)(QA), E
(1)(QA), E

(0)(QB), and E(1)(QB).

For example, for monomer A:

E(0) (QA) =
1

2
Mω2

AQ
2
A (1.11)

E(1) (QA) = Ee + lAQA +
1

2
Mω2

∗AQ
2
A (1.12)

where M is the reduced mass, ω is the characteristic frequency of the normal mode

in the ground state, and ω∗A is the characteristic frequency of the normal mode in

the excited state. The displacement lA is defined as

lA = dQMω2
A (1.13)

dQ is the displacement along the normal mode between geometries of the ground and

excited states (see Fig. (1.1)). For simplicity QA = 0 is defined as the equilibrium
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En
er

gy

Coordinate (Q)

E0
el

(Q)

Ee

E1
el

(Q)

−l
Mω2

Figure 1.1. Potential energy surfaces for the ground (black) and ex-
cited (red) electronic state along vibrational mode Q. Ee is the ver-
tical excitation energy and −l

Mω2 is the displacement between the two
minima.

position for the normal mode in the ground electronic state, such that a linear term

is only present in the expression for the excited state potential energy surface.

While the
〈
π
(1)
A

∣∣∣VAB

∣∣∣π(1)
A

〉
could be evaluated from standard electronic structure

packages by modifications of the electronic structure integral codes, it is not necessary

for bichromophores with symmetric electronic wavefunction since, by symmetry,

〈
π
(1)
A

∣∣∣VAB

∣∣∣π(1)
A

〉
=

〈
π
(1)
B

∣∣∣VAB

∣∣∣π(1)
B

〉
(1.14)

Thus, these terms shift all energy levels by the same quantity and do not affect

energy spacings. The Leutwyler group studied electronic wavefunction asymmetry in

the 2-pyridone·6-methyl-2-pyridone dimer using precisely these constants. [15]

To summarize, the Hamiltonian in the electronic basis can be written as:

H =

(
P2
A

2M
+ EA + lAQA + 1

2
Mω2

∗AQ2
A +

P2
B

2M
+ 1

2
Mω2

BQ2
B VAB

VAB
P2
A

2M
+ 1

2
Mω2

AQ2
A +

P2
B

2M
+ EB + lQB + 1

2
Mω2

∗BQ2
B

)
(1.15)
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The electronic coupling (or resonance integral) VAB term can be evaluated by

a number of perturbative or supermolecular techniques. [28, 29] In this work, the

coupling is calculated as half the splitting between the exciton states of the dimer.

In the original FG model, the Hamiltonian in Eq. (1.15) is transformed to a

symmetric basis:

π
(1)
+ =

1√
2

(
π
(1)
A + π

(1)
B

)
(1.16)

π
(1)
− =

1√
2

(
π
(1)
A − π

(1)
B

)
(1.17)

This unitary transformation does not change the eigenvalues of the Hamiltonian.

In addition to the electronic basis transformation, Fulton and Gouterman used a

vibrational coordinate transformation from QA and QB to:

Q± =
1√
2
(QA ±QB) (1.18)

This step simplifies diagonalization of the Hamiltonian, but only when the dimer has

a symmetry element ensuring lA = lB, ωA = ωB, and ω∗A = ω∗B.

In order to extend the model to asymmetric dimers, the transformation to the

symmetric basis is omitted. By expressing momentum and position operators with

raising and lowering operators and assuming a harmonic basis, the Hamiltonian ma-

trix elements are:

〈
π
(1)
A

∣∣∣H ∣∣∣π(1)
A

〉
= bAh̄ωA

(√
n+ 1δ(n′,n+1) +

√
nδ(n′,n−1)

)
δ(m′,m)+(

h̄ωA

2

((
ω∗A
ωA

)2

+ 1

)(
n+

1

2

)
+ h̄ωB

(
m+

1

2

)
+ EA

)
δ(n′,n)δ(m′,m) (1.19)

〈
π
(1)
B

∣∣∣H ∣∣∣π(1)
B

〉
= bBh̄ωB

(√
m+ 1δ(m′,m+1) +

√
mδ(m′,m−1)

)
δ(n′,n)+(

h̄ωA

(
n+

1

2

)
+

h̄ωB

2

((
ω∗B
ωB

)2

+ 1

)(
m+

1

2

)
+ EB

)
δ(n′,n)δ(m′,m) (1.20)

〈
π
(1)
A

∣∣∣H ∣∣∣π(1)
B

〉
=

〈
π
(1)
B

∣∣∣H ∣∣∣π(1)
A

〉
= VABδ(n′,n)δ(m′,m) (1.21)
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n and n′ (m and m′) represent the excitation quanta of a given normal mode for the

vibration on A (B) monomer. Dimensionless displacement parameters bA and bB are

related to lA and lB as

bAh̄ωA = lA

√
h̄

2MωA

(1.22)

The expressions in Eqs. (1.19)-(1.21) are expanded in the vibrational basis. The

solution generally converges rapidly, requiring around five basis functions in each

vibration for spectroscopically reasonable values of bA and bB. Convergence with

respect to the size of the basis is shown in Section (1.5).

Eqs. (1.19)-(1.21) can be extended in a straightforward manner for multiple vi-

brational modes on each monomer. In this case, each matrix element is a sum over

Hamiltonians for different vibrations and the basis functions are products of the basis

function from each vibration.

As pointed out by Förster and others [13,29] there are different regimes of vibronic

coupling: strong, weak, and intermediate. The quantity that characterizes a mode as

either being strongly coupled or weakly coupled to the electronic excitation is given

as [9, 10]

p =
2
∣∣∣〈π(1)

A

∣∣∣VAB

∣∣∣π(1)
B

〉∣∣∣
Mω2dQ2

(1.23)

Here, p >> 1 corresponds to strongly coupled systems; p << 1 characterizes weakly

coupled systems. p � 1 defines the intermediate coupling regime which exhibits the

most complicated spectra. For a vibration in the strong or weak limit, it is possible

to analytically compute the energies and intensities. [13] Application of perturbation

theory to strong and weak coupling regimes is shown in Section (1.4). However, ana-

lytic solutions break down as the vibration enters the intermediate coupling regime.

Therefore, in the present work, numerical diagonalization of the Hamiltonian using

the Lanczos algorithm is employed for all cases, resulting in what Andrzejak and

Petelenz call the exact numerical solution. [13]
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1.2.2 Zero Point Energy Level Splitting

One of the key effects of asymmetry is that the excitation energies of the two

monomers in symmetric bichromophores are the same (EA = EB), while in asymmet-

ric bichromophores they are different (EA �= EB). An example of a molecular change

that can lead to this effect is when one monomer has certain elements replaced by

different isotopes from the other, as will be examined in Section 1.7. In such a case,

the excitation energies of deuterated and non-deuterated monomers are slightly dif-

ferent due to zero point vibrational energies (ZPVE). Vibrational modes contribute

to ZPVE whether or not they are explicitly included in the vibronic coupling model

Hamiltonian. For modes that are explicitly included in the Hamiltonian, the effect

on ZPVE can be accounted for by using an appropriate value of ω∗, the excited state

frequency of a vibrational mode, in Eq. 1.11.

For vibrational modes that are not directly included in the vibronic coupling

calculation, changes in the ZPVE can be accounted for with a new parameter defined

as:

ΔΔZPV E = EA − EB =
(
Ee + EH

e

)− (
Ee + ED

e

)
=∑

m

(
h̄ωH∗

m

2
− h̄ωH

m

2

)
−

∑(
h̄ωD∗

n

2
− h̄ωD

n

2

)
(1.24)

Where Ee is the electronic excitation energy which is nearly the same for the two

monomers. E
H/D
e are the contributions to the excitation energy due to changes in

vibrational frequencies between the ground and excited states of the non-deuterated

and deuterated monomers, respectively. In Eq. 1.24, n and m range over all modes on

the deuterated and non-deuterated monomers that are not explicitly included in the

vibronic coupling model Hamiltonian (Eq. 1.15). Thus, ΔΔZPV E is the difference

between the change in ZPVEs between the ground and excited states for the deuter-

ated and non-deuterated monomers. This is the only additional parameter needed to

model molecules that have broken vibrational symmetry but retain electronic sym-

metry. Formally, this parameter is identical to the parameter used by Leutwyler et
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al. to simulate broken electronic symmetry. [15] ΔΔZPV E term is added to upper

left hand block of the Hamiltonian in Eq. 1.15.

1.2.3 Inter-monomer Modes

To compute the eigenstates of inter-monomer vibrations, it is necessary to account

for the inter-monomer kinetic energy term, TL from Eq. (1.1), as well as higher or-

der terms from the Taylor expansion of VAB in Eq. (1.10). In order to build a total

Hamiltonian, the inter-monomer Hamiltonian will be constructed in the {π(1)
A , π

(1)
B }

basis and added onto the intra-monomer Hamiltonian. However, because the inter-

monomer modes are inherently dependant on the electronic state geometries of the

dimer, it is convinient to work in the symmetrized basis {π(1)
+ , π

(1)
− } as defined in

Eqs. (1.16) and (1.17) which more closely resembles the actual dimer electronic wave-

functions. So, the Hamiltonian matrix elements of TL and VAB(L) are first evaluated

in the symmetrized basis {π(1)
+ , π

(1)
− } and then transformed to the monomer basis

{π(1)
A , π

(1)
B } and added to the Hamiltonian of the intra-monomer modes.

Since the geometries of both exciton states π
(1)
+ and π

(1)
− are different from the

ground state geometry along the inter-monomer mode L, the excited state surfaces

are described as displaced parabolas. Thus, for geometries near the minima of the

excited states:

〈
π
(1)
+

∣∣∣VAB(L) + TL

∣∣∣π(1)
+

〉
= l+L+

1

2
Mω2

+L
2 +

P 2
+

2M
(1.25)〈

π
(1)
−

∣∣∣VAB(L) + TL

∣∣∣π(1)
−

〉
= l−L+

1

2
Mω2

−L
2 +

P 2
−

2M
(1.26)

where l+ and l− are the displacement parameters analogous to the lA and lB terms in

the intra-monomer mode case. In the dimer basis, each mode has two displacement

parameters (l+ and l−) corresponding to the displacements between the ground and

first and second exciton states. P+ and P− are the kinetic energy terms for the inter-

monomer mode in the exciton states. The off-diagonal terms of the inter-monomer
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Hamiltonian are zero for symmetric electronic wave function due to the hermicity of

VAB and TL:

〈
π
(1)
+

∣∣∣VAB(L) + TL

∣∣∣π(1)
−

〉
=

1

2

(〈
π
(1)
A |VAB(L) + TL| π(1)

A

〉
−

〈
π
(1)
B |VAB(L) + TL| π(1)

B

〉)
= 0 (1.27)

The reverse transformation from dimer symmetrized electronic basis into the monomer

localized basis can be realized by using the following matrix equality:⎡
⎣ π

(1)
A

π
(1)
B

⎤
⎦ =

1√
2

⎡
⎣ 1 1

1 −1

⎤
⎦
⎡
⎣ π

(1)
+

π
(1)
−

⎤
⎦ (1.28)

Applying this matrix transformation to the VAB(L) + TL terms results in the

following form of the inter-monomer mode Hamiltonian:

〈
π
(1)
A

∣∣∣VAB(L) + TL

∣∣∣π(1)
A

〉
=

〈
π
(1)
B

∣∣∣VAB(L) + TL

∣∣∣π(1)
B

〉
=

1

2
(l+ + l−)L+

1

2

(
1

2
Mω2

+ +
1

2
Mω2

−

)
L2 (1.29)〈

π
(1)
A

∣∣∣VAB(L) + TL

∣∣∣π(1)
B

〉
=

〈
π
(1)
B

∣∣∣VAB(L) + TL

∣∣∣π(1)
A

〉
=

1

2
(l+ − l−)L+

1

2

(
1

2
Mω2

+ −
1

2
Mω2

−

)
L2 (1.30)

The Hamiltonian described in Eqs. (1.29) and (1.30) can be added to the intra-

monomer mode Hamiltonian (Eqs. (1.19)–(1.21)), expanded in a vibrational basis of

inter- and intra- monomer modes, and numerically diagonalized.

1.2.4 Intensities

Diagonalizing the Hamiltonian (Eqs. (1.19)–(1.21), (1.29), and (1.30)) results in

the vibrational substructure of the exciton states. Evaluation of the intensities of the

vibronic states in a fluorescence spectrum is discussed in this subsection. Absorption

intensities can be derived analogously. Following Fulton and Gouterman, [9] the
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transition dipoles of a symmetric R+ and antisymmetric R− excited state to the

ground state are:

R+ =

∫ ∫
ψ1(q;Q,L)∗M+ψ0(q;Q,L)dqφ1(Q,L)∗φ0(Q,L)dQdL (1.31)

R− =

∫ ∫
ψ1(q;Q,L)∗M−ψ0(q;Q,L)dqφ1(Q,L)∗φ0(Q,L)dQdL (1.32)

where ψ1(q;Q,L) is the initial (excited state) electronic wavefucntion of the dimer,

φ1(Q,L) is the initial vibrational wavefunction, ψ0(q;Q,L) and φ0(Q,L) are the final

(ground state) electronic and vibrational wavefunctions (the latter is not necessarily

the wavefunction with no vibrational excitations). M+ and M− are the symmetric

and antisymmetric transition dipole operators. The evaluation of R+ shall now be

demonstrated while R− can be obtained analogously. Assuming that the electronic

wave function is not strongly effected by the changes in vibrational coordinates, the

integral over electronic coordinates and transition dipole operator may be factored

out of the integral over nuclear coordinates. Expanding ψ1(q) in the vibrational basis

results in:

ψ1(q) = π
(1)
A

∑
n

∑
m

∑
p

CA
n,m,pφn (QA)φm (QB)φp (L)

+ π
(1)
B

∑
n

∑
m

∑
p

CB
n,m,pφn (QA)φm (QB)φp (L) (1.33)

where {CA
n,m,p, C

B
n,m,p} are the expansion coefficients representing the dimer vibra-

tional wavefunction in the basis of monomer vibrational wavefunctions. Eq. (1.33) can

be transformed into the symmetrized electronic dimer basis by applying Eq. (1.16).

It is easy to see that the evaluation of the symmetric transition dipole moment R+

reduces to calculation of the vibrational overlap integral and the purely electronic

transition dipole moment between the ground and symmetric excited state π
(1)
+ :∫

π
(1)
+ M+ψ0dq (1.34)

To show that the transition dipole moment between the symmetric dipole operator

and antisymmetric wavefunction is zero, the transition dipole operators in the sym-
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metrized basis M+ and M− must be decomposed into localized monomer transition

dipoles Ma and M b:

M+ = Ma +M b (1.35)

M− = Ma −M b (1.36)

While this is mathematically allowed, the values for the monomer transition dipole

momentsMa andM b cannot be easily found from quantum simulation. Therefore, the

intensity calculations are carried out in the symmetrized electronic basis (Eqs. (1.16)

and (1.16)). Since Ma and M b are localized operators on either the A or B monomers,

the integrals of a transition dipole operator on A integrated over the wavefunction of

the B monomer is zero and vice versa:∫
π(1)
a M bπ(0)

a dq = 0 (1.37)

∫
π
(1)
b Maπ

(0)
b dq = 0 (1.38)

Likewise, the magnitude of the electronic transition dipole moments on either monomer

must be the same: ∫
π(1)
a Maπ(0)

a dq =

∫
π
(1)
b M bπ

(0)
b dq (1.39)

Combining Eqs. (1.37) and (1.39), the integral between the antisymmetric wave-

function and the symmetric dipole operator is zero:∫
1√
2

(
π(1)
a − π

(1)
b

) (
Ma +M b

)
π(0)
a π

(0)
b dq (1.40)

=
1√
2

(∫
π(1)
a Maπ(0)

a dq −
∫

π
(1)
b M bπ

(0)
b dq

)
= 0

A similar argument applies for the symmetric wavefunction and the antisymmetric

dipole operator.

Since we now know that the symmetric transition dipole operator will only be non-

zero with the symmetric wavefunction (and likewise for the antisymmetric transition

dipole operator and antisymmetric wavefunction), Eq. (1.31) can be rewritten as:
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R+ =
1√
2

∫
π
(1)
+ M+ψ0(q;Q)dq(∫ ∑

n

∑
m

∑
p

CA
n,m,pφn (QA)φm (QB)φp (L)φ0(Q,L)dQdL

+

∫ ∑
n

∑
m

∑
p

CB
n,m,pφn (QA)φm (QB)φp (L)φ0(Q,L)dQdL

)
(1.41)

Since the final state vibrational wavefunctions are combinations of wavefunctions

corresponding to various vibrational modes, φ0(Q,L) = φi(QA)φj(QB)φk(L) where

i, j, and k represent the excitation level on A, B, and inter-monomer vibrations

respectively. Assuming orthogonality of the vibrational wavefunctions and the parallel

mode approximation [30], the expression Eq. (1.41) reduces to

R+ =
1√
2

∫
π
(1)
+ M+ψ0(q;Q)dq

(
CA

i,j,k + CB
i,j,k

)
(1.42)

The transition dipole corresponding to the transition from the antisymmetric elec-

tronic state is

R− =
1√
2

∫
π
(1)
− M−ψ0(q;Q)dq

(
CA

i,j,k − CB
i,j,k

)
(1.43)

The intensity is proportional to a square of the transition dipole moment. The

total spectrum may be obtained by summing the intensities of the peaks corresponding

to the symmetric and antisymmetric transitions. Note that transitions in asymmetric

bichromophores may have mixed symmetric/antisymmetric character.

1.3 Model Spectra

In this section, general behavior of a model vibronically coupled bichromophore

system is considered. In particular, absorption and emission spectra corresponding to

different coupling regimes (strong, weak, intermediate), spectra in a presence of two

normal modes, spectra of asymmetric chromophores, i.e, chromophores with different

vibrational frequencies or displacements of a normal mode, and spectra of inter-

monomer modes are discussed. In all figures in this section, transitions through the
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Figure 1.2. Simulations of intra-monomer vibrations in different cou-
pling regimes. ωA = ωB = 150 cm−1, bA = bB = 1.0. The first row
is absorption, the second row is S1 emission, and the third row is S2

emission. In frames (a)-(c) the electronic coupling VAB = 400 cm−1

places a vibration in the strong coupling limit. S2 origin is found at
2∗VAB = 800cm−1. In frames (d)-(f) the same vibration is in the weak
coupling limit with VAB = 60. The S2 origin appears at 49.0cm−1 that
is in good agreement with the perturbation theory result of 44.1cm−1.
The discrepancy is because with p = 0.4 the case is approaching the
intermediate coupling regime. Frames (g)-(i) have VAB = 400 cm−1

and an additional vibration with parameters ω2A = ω2B = 5000cm−1,
b2A = b2B = 1.3774. Formally, the low-frequency mode is in the
strong coupling regime, while the high-frequency mode is weakly cou-
pled. However, the high-frequency mode quenches the S2 state, effec-
tively changing the coupling regime of the low-frequency mode from
strong to weak coupling. The displacement parameter b of the high
frequency mode was chosen to quench the coupling constant so that it
would mimic the weak coupling case of one vibration shown in (d)-(f).

antisymmetric TDM are shown in red while transitions through the symmetric TDM

are shown in blue.

Left column (frames (a)-(c)) of Fig. (1.2) show absorption and emission spectra

of a vibration in the strong coupling regime (p >> 1, Eq. (1.23)), where electronic

S1 − S2 coupling is much larger than the frequency of the vibration. In this case the



16

(a)

(b)

(c)

0 250 500 750 1000

(d)

Relative Wavenumbers (cm−1)

In
te

ns
ity

In
te

ns
ity

In
te

ns
ity

In
te

ns
ity

Figure 1.3. Model spectra of one intra-monomer vibrational mode in
intermediate coupling limit. ωA = ωB = 150 cm−1, bA = bB = 1.0,
VAB = 150 cm−1. (a) Absorption, (b) emission from the S1 origin, (c)
emission from the state at 82.1 cm−1, and (d) emission from the state
at 380.2 cm−1. The emission spectrum from the lower state resembles
emission from S2 in weak coupling limit; the emission spectrum from
the higher state resembles emission from S2 in strong coupling limit.
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spectra closely resemble unperturbed spectra with a Frank-Condon (FC) progression

off both the S1 and S2 origins. In the week coupling limit (frames (d)-(f) of Fig. (1.2)),

the vibrational frequency is larger than the coupling between the electronic states.

In this case the S2 state is quenched by a factor of exp(−b/2) for each weakly cou-

pled mode as derived from perturbation theory (see Section (1.4)). Apart from the

decreased (quenched) splitting between S1 and S2, the origin in the S2 emission spec-

trum becomes less intense. This feature will be clearly observed in vibronic spectra of

DPM, discussed in Sec. (1.6). The right column of Fig. (1.2) (frames (g)-(i)) show a

case when two vibrational modes are present simultaneously. The parameters for the

lower-frequency vibration are identical to those used for the strong coupling regime

(frames (a), (b), and (c)). The second vibration with very high frequency is in the

weak coupling limit. This weakly-coupled mode quenches the S2 state and effectively

lowers the electronic coupling for the first vibration, placing it in the weak-coupling

limit as well. Indeed, parameters of the high-frequency mode were chosen such that

the resulting absorption and emission spectra for the low-frequency mode are near

perfect replicas of the spectra provided in (d)-(f). This example shows that for the

normal modes with very different frequencies, the only effect of a high frequency mode

on a low frequency mode is through the quenching of the electronic coupling constant

of the latter.

Fig. (1.3) shows the spectra corresponding to the intermediate coupling regime,

p � 1, i.e., when the electronic coupling and vibrational mode frequency are of similar

values. The S2 state is redistributed over several irregularly spaced peaks with varying

intensity, for example, one could argue that the S2 origin is located at either 82.1cm−1

or 380.2 cm−1. The emission spectra from 82.1 cm−1 band resembles that of a weakly

coupled case while the emission from 380.2 cm−1 looks like the vibration is strongly

coupled. Thus, it is very hard or impossible to unambiguously assign the S2 origin in

the intermediate coupling regime.

Various effects of asymmetry in intra-monomer vibrational modes are illustrated in

Figs. (1.4)-(1.6). The asymmetry of the vibrational mode is controlled by parameter δ,
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Figure 1.4. Model spectra of one intra-monomer vibrational mode in
strong coupling regime with different frequencies on either monomer.
ωA = 150 cm−1, ωB = 150 + δ cm−1, bA = bB = 1.0, VAB = 400 cm−1.
The first row is absorption, the second row is S1 emission, and the
third row is S2 emission. δ = 0 in (a)-(c); δ = 30 cm−1 in (d)-(f);
δ = 75 cm−1 in (g)-(i). As δ is increased, the asymmetry between the
modes becomes more pronounced.
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Figure 1.5. Model spectra of one intra-monomer vibrational mode
in strong coupling regime with different displacements on either
monomer. ωA = ωB = 150 cm−1, bA = 1.0, bB = 1.0 + δ,
VAB = 400 cm−1. The first row is absorption, the second row is S1

emission, and the third row is S2 emission. δ = 0 in (a)-(c); δ = 0.3 in
(d)-(f); δ = 0.6 in (g)-(i). As δ is increased, the asymmetry between
the modes becomes more pronounced.

with δ = 0 corresponding to a symmetric vibration, i.e., vibration that is identical on

monomers A and B. Fig. (1.4) shows a case when vibrational modes on monomers have

different frequencies. The interesting effect arising due to this asymmetry is splitting

of the vibrational peaks in the absorption spectrum. Interestingly, the progression off

the S1 state favors the higher energy vibration while the progression off the S2 state

favors the lower energy one. The picture does not change when the symmetries of S1

and S2 states are switched: the lowest state exhibits the more intense progression in

a high-frequency vibration. Splittings of the vibrational peaks are also observed in

the corresponding emission spectra, but intensities of the split lines are almost equal.

A different case of asymmetry arises when the vibrational modes on the monomers

have different displacements between the ground and excited state. Such asymmetries

are expected to occur in deuterated molecules because deuteration changes the normal

mode vectors, and thus the displacements to the excited state geometry. Model spec-
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Figure 1.6. Model spectra of one intra-monomer vibrational mode in
weak coupling regime with different displacements on either monomer.
ωA = ωB = 300 cm−1, bA = 0.6, bB = 0.6 − δ, VAB = 50 cm−1. The
first row is absorption, the second row is S1 emission, and the third
row is S2 emission. δ = 0 in (a)-(c); δ = 0.2 in (d)-(f); δ = 0.4 in
(g)-(i). As δ is increased, the asymmetry between the modes becomes
more pronounced.

tra corresponding to the mode in strong coupling regime are reported in Fig. (1.5).

Despite the fact that the frequencies of the two vibrations are identical, the absorption

spectrum shows energy splittings in the FC progressions both off S1 and S2 origins.

Similarly to the case of the asymmetric frequencies, the lower-frequency peak has

lower intensity off S1 and higher intensity off S2. However, unlike the case with asym-

metric frequencies, the intensity of the S1 origin and S1 band is depleted suggesting

that the vibration with higher b value is coupled to the S1 state. Differently from

the case of asymmetric vibrational frequencies, no splitting is present in the emission

spectra because the emission levels are governed by the ground state frequencies.

In the previous example (Fig. (1.5)), the vibration is in the strong coupling limit.

In Fig. (1.6), the vibrational mode with asymmetric displacements is placed in the

weak coupling regime. In this case, the asymmetry is manifested in mixing of S1

and S2 progressions, i.e., as the asymmetry is increased, each peak in the absorption
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Figure 1.7. Model spectra of one inter-monomer vibrational mode
with different frequencies in the ground and first and second excited
states of the dimer. VAB = 300 cm−1, bS1 = bS2 = 0.8 in all spectra.
ωS0 = ωS1 = ωS2 = 100 cm−1 in (a)-(c); ωS0 = 100 cm−1, ωS1 =
150cm−1, ωS2 = 100cm−1 in (d)-(f); ωS0 = 100cm−1, ωS1 = 150cm−1,
ωS2 = 80cm−1 in (g)-(i). The first row is absorption, the second row is
S1 emission, and the third row is S2 emission. Changing the frequency
of one state does not change the spacing between frequency levels for
the other state.

spectrum has a mixture of the symmetric and antisymmetric character. The peak

corresponding to the S2 origin gains intensity while the higher vibrational energy

levels in the S2 emission spectrum are reduced in intensity. Another interesting effect

observed in these spectra is the increase of the splitting between the S1 and S2 origins

upon increasing asymmetry between the modes.

Finally, the properties of the inter-monomer vibrations are examined. In the

considered examples, the S1 state is antisymmetric and S2 is symmetric. As discussed

above, the inter-monomer vibrations may have different displacement and frequency

parameters for the first and second excited states of a bichromophore. In the first

series of spectra, shown in Fig. (1.7), the effect of changing an excited state frequency
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Figure 1.8. Model spectra of one inter-monomer vibrational mode
with different displacement parameters for the S1 and S2 states of the
dimer. VAB = 300 cm−1, ωS0 = ωS1 = ωS2 = 100 cm−1 in all spectra.
bS1 = bS2 = 0.8 in (a)-(c); bS1 = 0.4, bS2 = 0.8 in (d)-(f); bS1 = 0.0,
bS2 = 0.8 in (g)-(i). The first row is absorption, the second row is S1

emission, and the third row is S2 emission. Changing the displacement
for one state allows to suppress the Frank-Condon progression on this
state while keeping it on the other.

is investigated. As demonstrated in Fig. (1.7), changing the S1 frequency for an inter-

monomer mode results in corresponding change in the vibrational progression off the

S1 origin, while maintaining the same vibrational pattern for the progression off the

S2 state. Both the S1 and S2 emission spectra retain the same vibrational spacing

because these progressions are dictated by the ground state vibrational states which

are independent of whether the molecule was in the S1 or S2 excited states.

The effect of different displacements between the S1 − S0 and S2 − S0 states (bS1

and bS2 parameters, respectively) is investigated in Fig. (1.8). When the bS1 displace-

ment is decreased, the FC progression off the S1 origin in absorption and emission

is depleted, while the S2 bands remain unaffected. Similar effects are observed in
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the spectra of diphenylmethane, analyzed in Fig. (1.6). In those spectra, the low

frequency inter-monomer vibrations T and T̄ appear in the S1 but not S2 florescence

spectra.

1.4 Perturbation Theory For the Strong and Weak Coupling Limits

As was shown in Fig. (1.2), there is almost no effect on the splitting between the

S1 and S2 energy levels by a strongly coupled mode, yet weakly coupled modes cause

the splitting between the S1 and S2 states to decrease by a factor of exp(−b2/2).
This section applies perturbation theory to illustrate why there is no quenching in

the strongly coupled case and derive the exponential factor in the weakly coupled

case. In the strong coupling limit the linear displacement terms (lA, lB) can be set

to zero. This assumption allows the Hamiltonian (Eq. (1.15)) of the system to be

solved analytically and the linear displacement terms re-introduced as a perturbation.

In the weak coupling limit, the electronic coupling term VAB can be set to zero

allowing for the analytic solution of the system Hamiltonian. By re-introducing VAB

by perturbation theory, it will be demonstrated that the vibronic quenching of the

electronic energy levels originates from vibrational overlap integrals.

1.4.1 Strong Coupling

Starting with the intra-mode molecular Hamiltonian in Eq. (1.15) and setting

displacement terms lA and lB terms to zero causes the upper left and lower right

matrix elements to become:

P 2
A

2M
+

1

2
Mω2

AQ
2
A +

P 2
B

2M
+

1

2
Mω2

BQ
2
B (1.44)

Since the diagonal matrix elements are those of a harmonic oscillator, the station-

ary states of these vibronic Hamiltonians are known:(
P 2
A

2m
+

1

2
mω2

AQ
2
A

)
φ0 (QA) = EAφ0 (QA) (1.45)
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The eigenfunctions of the total Hamiltonian will be the symmetric and anti-

symmetric combinations of the eigenfunctions of Hamiltonian from Eq. (1.45)⎧⎨
⎩
⎛
⎝ φ0 (QA)φ0 (QB)

φ0 (QA)φ0 (QB)

⎞
⎠ ,

⎛
⎝ φ0 (QA)φ0 (QB)

−φ0 (QA)φ0 (QB)

⎞
⎠
⎫⎬
⎭ (1.46)

with eigenvalues of E+ = EA + EB + VAB and E− = EA + EB − VAB, respectively.

The perturbation to this system provided by displacement along the normal modes

is:

H ′ =

⎛
⎝ lAQA 0

0 lBQB

⎞
⎠ (1.47)

The first order corrections to the energies, given in Eq. (1.48), are zero as the

integrands are anti-symmetric:

E+
1 = lA〈φ0(QA) |QA|φ0(QA)〉〈φ0(QB)|φ0(QB)〉 (1.48)

+ lB〈φ0(QA)|φ0(QA)〉〈φ0(QB) |QB|φ0(QB)〉 = 0

E−1 = lA〈φ0(QA) |QA|φ0(QA)〉〈φ0(QB)|φ0(QB)〉
− lB〈φ0(QA)|φ0(QA)〉〈φ0(QB) |QB|φ0(QB)〉 = 0

To compute the second order perturbation energies E+
2 and E−2 , higher order

vibrational wavefunctions should be introduced. The wavefunctions have the same

form as the eigenfunctions for the ground vibrational state:

E+
2 =

|lA〈φ0(QA) |QA|φ1(QA)〉|2
E0 − E1

+
|lB〈φ0(QB) |QB|φ1(QB)〉|2

E0 − E1

(1.49)

=
−l2A
2mωA

+
−l2B
2mωB

= −b2Ah̄ωA − b2Bh̄ωB

E−2 =
|lA〈φ0(QA) |QA|φ1(QA)〉|2

E0 − E1

+
|lB〈φ0(QB) |QB|φ1(QB)〉|2

E0 − E1

=
−l2A
2mωA

+
−l2B
2mωB

= −b2Ah̄ωA − b2Bh̄ωB

Thus, to the second order in perturbation theory, the vibrational excitations in

the strong coupling limit do not affect the splitting between the electronic states

ΔE = E+ − E− and their intensities.
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Figure 1.9. Model spectrum of a intra-monomer mode with the fol-
lowing parameters: VAB = 300 cm−1, ωA = ωB = 10 cm−1, and
bA = bB = 1.0. Numerically obtained S1− S2 splitting of 600.17 cm−1

agrees very well with the second order perturbation theory result of
600 cm−1.
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Let us consider a system with VAB = 300cm−1, ωA = ωB = 10cm−1, and bA = bB =

1.0. This set of parameters puts the system in the strong coupling regime. From the

second order perturbation theory, the expected energy of the S2 state would appear

600 cm−1 above the energy of the S1 state. The simulation returns a spectrum with

S1 − S2 splitting of 600.17 cm−1, in good agreement with the results of perturbation

theory (see Fig. (1.9)).

1.4.2 Weak Coupling

Starting with the system Hamiltonian from (Eq. (1.15)), set the electronic coupling

term, VAB, to zero so the matrix becomes diagonal. Define the eigenfunctions of the

vibrational Hamiltonian as(
P 2
A

2m
+ lAQA +

1

2
mω2

AQ
2
A

)
φ∗0 (QA) = E∗Aφ

∗
0 (QA) (1.50)(

P 2
A

2m
+

1

2
mω2

AQ
2
A

)
φ0 (QA) = EAφ0 (QA)

where φ∗0 is the wavefunction for the ground vibrational state under the potential of the

electronic excited state and φ0 is the wavefunction for the ground vibrational state in

the ground electronic state. Since the electronic excited state Hamiltonian is a shifted

harmonic oscillator potential, the excited state wavefunction can be related to the

ground state wavefunction through Eq. (1.51) (assuming the frequency is unchanged

between ground and excited states):

φ∗0(QA) = φ0

(
QA +

lA
mω2

A

)
(1.51)

The eigenvectors of the system Hamiltonian are the eigenfunctions of the diagonal

matrix elements:⎧⎨
⎩
⎛
⎝ φ∗A (QA)φB (QB)

0

⎞
⎠ ,

⎛
⎝ 0

φA (QA)φ
∗
B (QB)

⎞
⎠
⎫⎬
⎭ (1.52)

with eigenvalues of E∗A + EB and EA + E∗B, respectively.
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Figure 1.10. Model spectrum of a intra-monomer mode with the fol-
lowing parameters: VAB = 10 cm−1, ωA = ωB = 1000 cm−1, and
bA = bB = 1.0. Numerically obtained S1 − S2 splitting of 7.357 cm−1

agrees very well with the perturbation theory result of 7.358 cm−1.

The electronic coupling term can be re-introduced using perturbation theory as

the coupling between the two electronic states

H ′ =

⎛
⎝ 0 VAB

VAB 0

⎞
⎠ (1.53)

In the case of E∗A + EB = EA + E∗B, the two eigenvectors are degenerate before

the application of the perturbation. Applying degenerate perturbation theory, the

following perturbation matrix is obtained:

W =

⎛
⎝ 〈φ∗0(QA)φ0(QB) |0|φ∗0(QA)φ0(QB)〉 〈φ∗0(QA)φ0(QB) |VAB|φ0(QA)φ

∗
0(QB)〉

〈φ0(QA)φ
∗
0(QB) |VAB|φ∗0(QA)φ0(QB)〉 〈φ0(QA)φ

∗
0(QB) |0|φ0(QA)φ

∗
0(QB)〉

⎞
⎠

(1.54)

= VAB

⎛
⎝ 0 〈φ∗0(QA)|φ0(QA)〉〈φ0(QB)|φ∗0(QB)〉
〈φ0(QA)|φ∗0(QA)〉〈φ∗0(QB)|φ0(QB)〉 0

⎞
⎠

(1.55)

The overlap integrals can be calculated using Eq. (1.51) resulting in:

〈φ∗0(QA)|φ0(QA)〉 = e
−l2A

4mω3
A
h̄ = e

−b2A
2 (1.56)

The eigenvalues of the perturbation matrix W are −VABe
−b2A
2 e

−b2B
2 and VABe

−b2A
2 e

−b2B
2 ,

resulting in a S1−S2 splitting of 2VABe
−b2A
2 e

−b2B
2 . Thus, in the weak coupling limit, the
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Figure 1.11. Model spectrum of two intra-monomer modes with the
following parameters: VAB = 10 cm−1, ω1A = ω1B = 1000 cm−1,
ω2A = ω2B = 2000 cm−1, b1A = b1B = 1.0, and b2A = b2B = .75.
Numerically obtained S1 − S2 splitting of 4.192 cm−1 agrees with the
perturbation theory result of 4.192 cm−1.

splitting between the electronic states is decreased (quenched) by vibrational overlap

integrals.

Let us consider a system in the weak coupling regime with VAB = 10 cm−1, ωA =

ωB = 1000 cm−1, and bA = bB = 1.0. A numerical simulation on this system results

in a spectrum shown in Fig. (1.10) and a S1 − S2 splitting of 7.357 cm−1. This is

in excellent agreement with the perturbation theory splitting of 7.358 cm−1. In case

of two vibrational modes, shown in Fig. (1.11), the quenching factor is a product of

the vibrational overlap integrals. The numerically calculated spectrum produces a

splitting of 4.192 cm−1 which is again in excellent agreement with the perturbation

theory result of 4.192 cm−1.

1.5 Convergence With Respect to the Vibrational Basis Set

Before commencing with the modeling of DPM, it is important to demonstraight

convergence of the exact numerical solution with regard to basis set size and displace-

ment parameter b. Since the computation of the electronically excited eigenstates es-

sentially assumes describing a harmonic oscillator wavefunction with a displaced basis,

larger displacement b requires more basis functions for an accurate description of the
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Figure 1.12. Model spectra showing the convergence of the numeri-
cal solution with respect to the number of vibrational basis functions.
Absorption spectra are in the left panel and emission spectra from the
S1 state are in the right panel. The number of vibrational basis func-
tions used is given in the frame label. The frequency of the vibrational
mode is 100 cm−1, b = 0.7, and the coupling constant VAB = 75 cm−1,
setting the vibration in the intermediate regime. This sequence shows
that four basis functions are required to converge the entire absorp-
tion spectra and three basis functions are needed for convergence of
the emission spectra from the first excited state.
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wavefunction. Thus, we intentionally chose a b value bigger than spectroscopically

realistic values to find the minimum number of functions required for convergence.

It is important to note that it is more difficult to converge the absorption spectra

(which requires all the spectroscopically significant eigenstates to be converged) than

the S1 → S0 florescence spectra (which only requires the lowest energy excited state

to be converged). Though to converge other emission spectra more basis functions

will be required. For high frequency intra-monomer vibrations with relatively small

b values, a smaller number of basis functions may be used because only the first vi-

brational excited state will play a significant role in the spectra. For lower frequency

inter-monomer vibrations, enough basis functions must be included to converge the

entire absorption spectra. As shown in Fig. (1.12), for b = .7, four basis functions per

vibrational mode are required to converge the entire absorption spectrum and only

three basis functions to converge the ground state.

1.6 Modeling Vibronic Spectrum of Diphenylmethane

In this section the extended FG model is applied to simulate vibronic spectra of

the bichromophore diphenylmethane (DPM). High-resolution absorption and emission

spectra of the first two singlet excited states of DPM have been measured by Zwier

and co-workers [26] and we will follow the same notations on labeling DPM vibrational

modes.

1.6.1 Computational Details

In order to perform the Fulton-Gouterman simulation, vibrational frequencies and

displacement parameters for each vibration as well as an electronic coupling term and

relative transition dipole moments of S1 and S2 are required as input. The parameters

for intra-monomer modes were obtained from density functional theory (DFT) and

time-dependent density functional theory (TD-DFT) calculations on toluene which

is considered a ”monomer” of diphenylmethane. The ground and first excited state
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Table 1.1.

Intra-monomer vibrational parameters for diphenylmethane found
from B3LYP/cc-pVTZ calculations on toluene.

Assignment expt. ω1(cm−1) calc. ω (cm−1) b p quenching factor2

6a01 554 530 .26 3.4 simulated

6b0
1 622 639 .43 1.1 simulated

1101 749 748 .05 68 1.0

101 822 801 .65 .36 simulated

1201 1006 1023 .73 .23 .81

18a01 1035 1054 .39 .77 .97

9a01 1204 1206 .43 .54 .89

19b0
1 1447 1535 .02 129 1.0

1 DPM experimental frequencies from the Zwier group. [26]

2 Quenching factors used to compute the effective electronic coupling as in

Eq. (1.57) for modes not directly included in the simulation (”simulated”).

The product of all quenching factors
∏N

i=1 e
−b2i is .48.

geometries of toluene were optimized with B3LYP functional [31–33] in the cc-pVTZ

basis set [34] with the Q-Chem electronic structure package. [35] Vibrational fre-

quencies of the ground state of toluene were obtained at the same level of theory.

ezSpectrum software [36] was used to find the displacements between the ground and

first excited state geometries in the basis of the ground state vibrational vectors.

These displacements were converted into b parameters; the normal modes with the

largest b parameters and corresponding p values (Eq. (1.23)) are listed in Table (1.1).

To obtain the parameters for the inter-monomer modes (as pictured in Fig. (1.13),

one needs to perform ab-initio structure calculations on the S0, S1, and S2 states of

the dimer (DPM). The parameters obtained from DFT and TD-DFT B3LYP/cc-

pVTZ computations are summarized in Table (1.2). The experimental spectra of
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(a) (b)

(c) (d) (e)

Figure 1.13. Inter-monomer vibrational modes of DPM: a) anti-
symmetric torsion T̄, b) symmetric torsion T, c) butterfly mode β, d)
anti-symmetric libration R̄, and e) symmetric libration R.
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DPM reveal progressions along five low-frequency inter-monomer modes: symmetric

and antisymmetric torsions T and T̄, symmetric and antisymmetric R and R̄ modes,

and the butterfly mode β. From those, parameters of R and R̄ were computed in

a standard way, i.e., S0, S1, and S2 states of DPM were optimized (the constrained

optimization with fixed values of torsional angle corresponding to the T mode was

employed for S2), then the displacements between the ground and the first and second

excited state geometries were found in the basis of the ground state vibrations.

Due to an anharmonic nature of the other three modes and extreme sensitivity

of their parameters to the level of theory employed, their parameters were obtained

from potential energy surface (PES) calculations. Namely, potential energy slices

were constructed along normal mode vectors of each mode starting from the S1 state

geometry and employing .002 Å
√
amu displacement increments in either direction of

the vibrational vector. TD-DFT B3LYP/cc-pVTZ calculations were performed to

find energies of S1 and S2 states at each of these geometries. For each vibration,

the S1 and S2 energies were fit to parabolas, from which frequency and displacement

parameters were extracted. As an example, plots of the energies and parabolic fits

for the T mode are shown in Fig. (1.14). However, while this procedure improved

agreement between experimental and calculated values of the low-frequency modes

compared to the direct calculation of Hessians of the S1 and S2 states, it still resulted

in overestimated frequencies for all modes and strongly overestimated displacement

for the β mode. It should be noted, however, that the β mode is governed by an

interplay of covalent and non-covalent, in particular dispersion, interactions between

the aromatic rings, and as such is extremely sensitive to the level of theory.

In order to improve the agreement with the experimental spectra, some of the

parameters for inter-monomer modes were adjusted. The butterfly mode β that

reveals very little intensity in the experimental spectra, was excluded from modeling.

The resulting set of inter-monomer parameters is presented in Table (1.3).

Vertical splittings between the first and second electronic excited states of DPM

were computed by a number of electronic structure methods, including TD-DFT with
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Table 1.2.

Inter-monomer vibrational parameters as found from B3LYP/cc-
pVTZ calculations on S0, S1, and S2 states of diphenylmethane.

Assignment ωS0 (cm
−1) ωS1 (cm

−1) ωS2 (cm
−1) bS1 bS2

T̄ 22.5 38.3 —1 -.02 -.06

T 38.5 47.9 35.2 .60 .60

β 68.1 62.0 67.5 -1.0 1.2

R̄ 191 192 105 0.0 0.0

R 225 202 157 -.62 -.08

1 No real-value frequency could be obtained.

Table 1.3.

Adjusted (fitted to experimental spectra) inter-monomer vibrational
parameters. Ab-inito values were kept where appropriate.

Assignment ωS0 (cm
−1) ωS1 (cm

−1) ωS2 (cm
−1) bS1 bS2

T̄ 10.0 23.0 10.0 -.02 -.06

T 20.0 28.3 20.0 1.40 0.0

R̄ 191 275 105 0.0 0.0

R 225 285 188 -.55 -.08
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Figure 1.14. Potential energy surfaces of the symmetric torsion T
mode in (a) the second excited state, (b) the first excited state, and (c)
the ground state. The abscissa is the displacement from the optimized
S1 geometry. Energy scales in frames (a), (b), and (c) are different
because near the S1 minimum, the PES of the S1 state is dominated by
second order effects while PESs of the other two states are dominated
by first order effects.
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Table 1.4.
Vertical S1 − S2 splittings computed at the ground state optimized geometry.

level of theory S1 − S2 splitting (cm−1)

EOM-CCSD/cc-pVDZ 430

ωB97X-D/cc-pVTZ 549

BP86/cc-pVTZ 539

B3LYP/cc-pVTZ 1069

1 MP2/cc-pVTZ ground state geometry was used in

these calculations.

various functionals (B3LYP, BP86 [37, 38], and long-range and dispersion corrected

ωB97X-D [39]), and equation-of-motion coupled cluster with single and double ex-

citations method [40–43] (EOM-CCSD) (see Table (1.4)). Apparently, the value of

splitting is sensitive to the level of theory, with the best estimates provided by EOM-

CCSD and TD-DFT with ωB97X-D. This results in the electronic coupling, taken as

a half of the splitting, in the range of 215−275 cm−1. Including quenching factor due

to high-frequency (weakly-coupled) vibrational modes not explicitly included in the

simulation (see Table (1.1)) results in the effective electronic coupling:

V eff
AB = VAB

N∏
i=1

e
−b2A,i

2 e
−b2B,i

2 = VAB

N∏
i=1

e−b
2
i (1.57)

where bA,i and bB,i are displacements for the i’th mode on monomer A and B, re-

spectively. In the symmetric case, as in DPM, bA,i = bB,i. Using the parameters

in Table (1.1), this results in an effective coupling in the range of 103 − 132 cm−1.

The coupling constant used for modeling DPM spectra was taken as 155.8 cm−1. All

simulated peaks were modeled by gaussians with a standard deviation of 1 cm−1.

1.6.2 DPM Spectra
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Using simulated parameters for intra-monomer vibrational modes (Table (1.1)),

partly fitted parameters for inter-monomer vibrational modes (Table (1.3)), and effec-

tive coupling constant VAB = 155.8cm−1, theoretical spectra for DPM were computed

as shown in Fig. (1.15). Comparison of the experimental and theoretical low-frequency

absorption spectra (Fig. (1.15a)) shows a quantitative agreement both in peak posi-

tions and intensities. In particularly, one can clearly recognize a progression along

the torsional mode T, with peaks at 27, 54, and 81 cm−1. The peak at 43 cm−1 is

the second vibrational state of T̄ (i.e., T̄2), while the first vibrational quanta is not

present. This is because the intensity in the T̄ mode is originated due to a frequency

change rather than a displacement between the electronic states. Therefore, only even

quanta of this mode gain non-zero intensity. As follows from decomposition of the

absorption spectrum into symmetric and antisymmetric components (Fig. (1.15b)),

the origin of the second excited state appears at about 123 cm−1, in agreement with

experimental assignment. The intensity of S2 origin is well reproduced by a S1/S2

TDM ratio of 2.08 : 1, which is in close agreement with the 1.98 : 1 ratio computed

at the ωB97X-D/cc-pVTZ level of theory.

Analysis of the emission spectrum from the S1 origin (Fig. (1.15c)) shows that the

peak at 63 cm−1, missing in the simulated spectrum, is due to the β mode that was

excluded from simulations, as mentioned above. Another inter-monomer vibration,

R, reveals itself in an intense line at 221 cm−1. This peak is well reproduced by the

ab-initio computations, with only a minor correction in the displacement parameter.

All intra-monomer modes, 6a01, 6b
0
1, and 101, are reasonably well described by ab-initio

calculations, with frequency discrepancies not exceeding 30 cm−1. The 1110 vibration

with frequency 748cm−1 was not included in the calculation due to a lack of intensity

in the S2 emission spectrum (Fig. (1.15d)). There is also a nice agreement between

theory and experiment in the high-frequency peaks due to inter-monomer vibrations

in the emission spectrum of the S2 origin (Fig. (1.15d)). It is very encouraging that

the model spectrum accurately predicts the change in intensity of vibronic bands
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in the S1 and S2 emission spectra, even though there is no parameter that directly

controls that intensity ratio.

The obviously missing part of the modeled S2 emission spectrum is the so called

’clump’ emission around 100cm−1. As proposed by Zwier and co-workers, these bands

are not vibronic progressions off the S2 state but emissions from the S1 vibrational

bands that gain their intensity due to the energetic proximity to the S2 origin. [26]

[LVS: check this!] Indeed, the simulation produces two vibronic S1 states (with very

low intensity) within ±5 cm−1 of the S2 origin. We mimicked the ”clump” emission

spectrum by producing emission spectra from these two vibronic states and adding

them in equal proportions, and fitting the intensity of the combined spectra to the

experimental ”clump” emission. The resulting spectrum is provided in Fig. (1.16).

The modeled ”clump” spectrum qualitatively reproduces the experimental emission

in the region 0 − 200 cm−1, with a low-intensity region from 0 − 80 cm−1 followed

by a clump of peaks. Thus, our results are in accord with assignments suggested by

Zwier. [26]

1.7 Modeling Vibronic Spectrum of d5-diphenylmethane

The asymmetric vibronic coupling model developed and applied to DPM-d0 above

is applied to DPM-d5 here. The model spectra are compared to high-resolution ab-

sorption and emission spectra of the first two singlet excited states of DPM-d5 taken

under jet-cooled conditions. [44] The notations for DPM-d5 vibrational modes follow

notations from Zwier and co-workers. [26, 45] The only significant change from the

previously reported DPM-d0 modeling is the increased electronic coupling constant

to compensate for the additional quenching caused by the frequency changes. It is

reassuring, though, that the updated electronic coupling constant is closer to the

coupling obtained from the excited state calculations on the DPM-d0 bichromophore.

For modeling vibronic spectra of DPM-d5, vibrational frequencies and displace-

ment parameters between the ground and first excited states are required for both
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Figure 1.15. DPM spectra produced from parameters in Tables (1.1)
and (1.3) with an electronic coupling constant of 155.8 cm−1. Com-
parison of the calculated (red) and experimental (black) absorption
spectra are shown in (a). Breakdown of the calculated spectrum
by the electronic state, with the red trace representing the S1 (anti-
symmetric) state and the blue trace representing the S2 (symmetric)
state are in (b). (c) and (d) provide comparisons of the calculated
(red) and experimental (black) emission spectra from the S1 and S2

origins, respectively.

0 250 500 750 1000
Relative Wavenumbers (cm−1)

In
te

ns
ity

Figure 1.16. S2 ”clump” emission spectra. The calculated spectrum
(in red) is produced by adding S2 emission spectrum as in Fig. (1.15d)
with emissions from energetically close S1 vibrational states. Experi-
ential spectrum is in black.
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Table 1.5.

Intra-monomer vibrational parameters for DPM-d5 as found from
B3LYP/cc-pVTZ calculations on toluene and toluene-d5. Assignment
of vibrational modes follows Varsanyi notations for modes of benzene.

Assignment Calc. Calc. b P Quenching Basis

ω(cm−1) ω∗(cm−1) Factor Functions

6a01 518 492 0.23 3.8 Simulated 3

1101 558 361 0.03 49 1.0 —

6b0
b 612 606 0.36 1.49 Simulated 3

18a01 749 673 0.35 0.87 Simulated 4

101 758 539 0.08 7.1 Simulated 3

19b0
1 862 841 0.17 4.7 0.99 —

9a01 888 774 0.53 0.28 0.87 —

1201 980 955 0.66 0.26 0.80 —

the deuterated and non-deuterated monomers, i.e., toluene and toluene-d5 molecules.

For consistency with the previously modeled spectra of DPM-d0, we enforced that

vibrations corresponding to the non-deuterated monomer retain the same parame-

ters as were used in the DPM-d0 simulations. The parameters for toluene-d5 and

toluene were obtained using density functional theory (DFT) and time dependent

(TD) DFT calculations at the B3LYP [31–33]/cc-pVTZ [34] level in the Q-Chem

electronic structure package. [35]

EzSpectrum software [36] was used to compute displacements between the ground

and excited state geometries of the monomers in the basis of the ground state normal

mode vectors. These displacements are converted into b parameters as prescribed

in Eq. 1.22. [45] The results from these calculations for the partially deuterated

monomer are listed in Table 1.5 along with results for non-deuterated toluene in

Table 1.1.
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As follows from Table 1.5, calculations show a large number of vibronically active

normal modes, i.e., the modes with b values of 0.2 and higher. Due to steep expo-

nential scaling of the algorithm, the present implementation of the vibronic coupling

model is limited to simultaneous modeling of 10-15 vibrations, depending on the size

of the basis set. Note that vibrations on two monomers are counted as separate

modes. Thus, we limited our modeling to the lowest active vibrations of DPM-d5

as they are distinct in experimental spectra. Additionally, the closer the vibrational

frequency is to the value of the electronic coupling, the worse the quenching factor

approximation will capture the effects of the vibration on the second excited state.

On the other hand, density of vibronic states increases in higher-frequency region,

making the assignment and comparison less ambiguous. Combining these consider-

ations, we opted to include all active vibrations with frequencies below 800 cm−1.

Interestingly, the asymmetric model does not require inclusion of pairs of identical

modes on both monomers. For example, we included mode 18a on toluene-d5 but not

on toluene-d0, as its frequency in toluene-d0 exceeds 800 cm−1 cut-off.

In addition to the monomer vibrational frequencies and displacements, the inter-

monomer vibrational frequencies and displacements are also required for modeling

vibronic spectra of DPM-d5. The inter-monomer parameters for DPM-d5 (shown in

Table 1.6) were obtained analogously to the parameters of DPM-d0. [26] Similarly

to DPM-d0, five important low-frequency inter-monomer vibrations were found for

DPM-d5, namely: symmetric and antisymmetric torsions T and T̄, symmetric and

antisymmetric vibrations R and R̄, and the butterfly mode β. Normal mode vectors

of these vibrations are shown in Fig. 1.17.

Inter-monomer vibrations depend on non-covalent interactions between monomers

such as dispersion forces that are not well reproduced by many electronic structure

methods, including B3LYP functional used in this work. Additional complexity arises

due to anharmonicity of these low-frequency modes. As a result, parameters of inter-

monomer modes obtained from electronic structure calculations resulted in a poor

fit to experiment. Therefore, it was necessary to fit these parameters to experiment
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Table 1.6.

Inter-monomer vibrational parameters as found from B3LYP/cc-
PVTZ calculations on S0, S1, and S2 states of DPM-d5.

Assignment ωS0 (ωg.s.) ωS1 (ω−) ωS2 (ω+) bS1 bS2

(cm−1) (cm−1) (cm−1) b− b+

T̄ 22 37 — -0.12 -0.23

T 37 46 36 0.61 0.62

β 66 60 58 -1.03 0.95

R̄ 184 184 61 -0.12 0.00

R 218 196 151 -0.62 -0.08

Figure 1.17. First five inter-monomer vibrational modes of DPM-
d5: a) anti-symmetric torsion T̄, b) symmetric torsion T, c) butterfly
mode β, d) anti-symmetric libration R̄, and e) symmetric libration R.
These are very similar to the inter-monomer modes observed in DPM.
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Table 1.7.

Adjusted (fitted to experimental spectra) inter-monomer vibrational
parameters for DPM-d5.

Assignment ωS0 (ωg.s.) ωS1 (ω−) ωS2 (ω+) bS1 bS2 Basis

(cm−1) (cm−1) (cm−1) b− b+ Functions

T̄ 18 21 15 0.09 0.00 8

T 23.5 25 28 1.10 0.00 8

R̄ 176 160 100 0.01 0.21 4

R 215 200 193 0.34 0.01 4

(similarly to the approach used for modeling DPM-d0). The fitted parameters of

the inter-monomer modes are shown in Table 1.7. The strongest disagreement is ob-

served for the butterfly β mode. In the experimental spectra, β mode shows very little

activity, while electronic structure calculations indicate a large displacement factor

upon excitation. A failure of electronic structure calculations in describing accu-

rate displacement along this mode in in accord with the observation that the ground

state equilibrium value of the valence angle between two benzene rings (Phe-C-Phe),

related to the butterfly mode, is very sensitive to the level of theory. Specifically,

correlated methods accounting for dispersion interactions such as MP2 and CCSD

provide more compact geometries with smaller values of this angle ( 111◦). On the

other hand, Kohn-Sham functionals, which often underestimate dispersion forces,

show more open structures with larger angle values ( 113◦-114◦) and larger distances

between the two rings. As even the ground state frequency of β mode is not well re-

produced by electronic structure calculations, it is not surprising that subtle changes

in geometry due to electronic excitation are not properly captured. Therefore, param-

eters for β mode had to be fitted to reproduce experimental spectra, which suggest

that this mode is barely active. As such, and taking into account considerations of

computational cost, the butterfly mode was excluded from simulations.
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The method used to calculate the vertical energy splitting between the first and

second excited states is unchanged from that used for DPM-d0. Specifically, equation

of motion coupled cluster (EOM-CC) and TD-DFT calculations of the S1-S2 splitting

in DPM-d0 were performed (see Table 1.4). The quenching factor due to vibrational

modes not included in the simulation is nearly identical between the deuterated and

non-deuterated monomers, changing from .479 for DPM-d0 to .475 to DPM-d5. Thus,

the electronic structure simulations predict a similar range for the effective coupling

parameter of 106 cm−1 to 137 cm−1. An effective coupling constant of 143 cm−1 is

used to model DPM-d0 spectra, while the effective coupling of 110 cm−1 is used in

the simulations of DPM-d5. The decrease in the coupling constant in case of DPM-d5

can be rationalized by change in the ZPVE between the two monomers. Since the

ZPVE-corrected excitation energy of the deuterated monomer is slightly different from

that of the non-deuterated monomer, the two electronic states interact less strongly

resulting in a reduced coupling constant in case of DPM-d5.

The difference in excitation energies between the non-deuterated and deuterated

monomers due to the vibrational modes not included in the simulation can be obtained

from the ground and excited state frequency calculations of the two monomers. After

applying Eq. 1.24 to the ground and excited state frequencies of toluene and toluene-

d5, a ΔΔZPV E splitting of -255 cm−1 was found. Since ZPVE of either toluene

or toluene-d5 is on the order of 25,000 cm−1, this parameter is obtained by taking

sums and differences of large numbers and has large numerical uncertainty. Namely,

since this parameter is the sum of 156 individual frequencies, an average error of only

one wavenumber in each frequency could easily produce a total error of nearly 200

cm−1. Thus, it is hard to accurately obtain this parameter from electronic structure

calculations. It was found that the splitting of -50 cm−1 provides a better agreement

with experimental spectra; thus, the latter value was used in the spectra presented

below.
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Figure 1.18. (a) Absorption spectrum of DPM-d5 compared to exper-
iment. The black trace is experiment; simulated absorbance is broken
down by state, where red is S1 and blue is S2. (b) Experimental (black)
and computed (red) S1 emission spectrum. (c) Experimental (black)
and computed (red) S2 emission spectrum, where the horizontal dash
indicates the height of the computed 215 cm−1 peak.

1.7.1 Absorption and Emission Spectra

Using simulated parameters for intra-monomer modes on the non-deuterated and

deuterated monomers (Tables 1.5 and 1.1), partly fitted parameters for the inter-

monomer modes (Table 1.7), an effective coupling constant VAB = 110 cm−1, and a

ZPVE splitting of δδZPV E = −50 cm−1, vibronic spectra for DPM-d5 were calcu-

lated. Comparisons of theoretical and experimental absorption and emission spectra

are shown in Fig. 1.18. The agreement between the theoretical and experimental

spectra is truly remarkable. In the absorption spectrum, the intensity of nearly every

peak is reproduced to within 20% accuracy. The position, intensity and composi-

tion of the suspected S2 state at 186 cm−1 is replicated nearly exactly. Even the

vibrational band structure off the S2 peak is accurately reproduced.

Agreement for the S1 emission is worse than for the other two spectra, but is still

quite good. While the peak heights are all very well reproduced in the high-frequency

region of the spectra, they are less accurately reproduced for the low-frequency intra-

monomer modes. The theory also does not reproduce doubling the peaks in many

intra-monomer modes. The origin of the doubling is most likely in purely mechanical
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coupling between the normal modes of the two monomers over the methyl bridge.

However, the present vibronic coupling model does not include terms responsible for

vibrational coupling of the monomers.

The most remarkable agreement of the three spectra, though, is the S2 emission

spectra. Just as with the DPM-d0 S2 emission spectra (see Fig. 1.15), a clump emis-

sion is observed. In case of DPM-d0, the clump emission was originated in higher-order

coupling of vibrational levels off the S1 state with the S2 origin. In the original mod-

eling of DPM-d0 above, the clump emission was mimicked (Fig. 1.16) by artificially

increasing the intensity of the vibronic bands off the S1 state near the S2 origin. In

case of DPM-d5, however, fundamental R and R̄ vibrations off S1 are located near the

origin of the S2 state. Coupling between R/R̄ fundamentals and S2 origin produces a

tremendous intensity around 215 cm−1 in the S2 emission spectrum with no contin-

ued Franck-Condon progression. The theory replicates peaks in the clump emission

at 176, 215, 233 and 238 cm−1, only missing the peak at 180 cm−1. The experimental

S2 emission spectrum is also correctly replicated in the 400 to 700 cm−1 region. Past

700 cm−1, the density of states becomes large and the multitude of peaks creates an

elevated baseline (in the region from 750 to 850 cm−1). As no intra-monomer modes

are included in the calculation past 850 cm−1, the spectra cannot be expected to be

accurate past this point.

The model also provides wave function composition (i.e., vibronic mixing) and

transition dipole moment (TDM) directions for specific vibronic peaks, which can

be compared with TDMs obtained from rotational band contour analysis. Table

1.8 summarizes this information for several selected bands. While the S1 origin in

symmetric DPM-d0 is of a:c type (i.e., TDM is oriented along x and z directions)

and the S2 origin is mainly of b type (TDM is along y direction), the S1 and S2

states become mixed in DPM-d5. This is a manifestation of the asymmetry of the

vibronic wave function with respect to the deuterated and undeuterated monomers.

It is very encouraging that both the rotational band contour analysis and the model
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Table 1.8.

Wavefunctions and squared TDM components in percent of various
excited state peaks. S1/S2 refers to the electronic state of the given
product basis function. The remaining characters indicate the number
of vibrational quanta in the given mode. Vibrational basis functions
that are not listed are in the ground vibrational state.

Frequency Wavefunction Exp. Comp.

(cm−1) Composition TDM % TDM %

X Y Z X Y Z

0.0 0.42 |S1〉 − 0.25 |S1T1〉 − 0.30
∣∣S1T̄1

〉
66 03 31 72 04 25

19.6 0.24 |S1〉+ 0.28 |S1T1〉 − 0.29 |S1T2〉 57 07 36 71 05 25

25.2 −0.27 |S1〉 − 0.22
∣∣S1T̄1

〉
+ 0.33

∣∣S1T̄2

〉
63 03 34 70 05 24

184.5 −0.32 |S1R1〉 − 0.36 |S2〉+ 0.17
∣∣S2T̄1

〉
30 50 20 19 74 07

193.0 −0.23 ∣∣S1T̄1R̄1

〉
+ 0.31

∣∣S1T̄3R̄1

〉
— — — 61 18 21

−0.16 ∣∣S1T1T̄3R̄1

〉
203.0 0.24 |S1T1R1〉+ 0.24 |S2〉+ 0.23 |S2T1〉 — — — 36 52 12

207.2 0.28
∣∣S1T̄1R1

〉
+ 0.24 |S2〉 − 0.21 |S2T1〉 — — — 54 28 19

214.3 0.31 |S1R1〉+ 0.28
∣∣S2T̄1

〉− 0.18
∣∣S2T̄2

〉
— — — 73 02 25
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agree on partial delocalization of the S1 and S2 state origins (0.0 cm−1 and 184.5

cm−1, respectively).

The model faithfully reproduces the TDM directions and delocalization of the

S1origin and low-frequency bands off S1. Delocalization of the S2 origin is less ac-

curately described by the model because delocalization of S2 originates both from

mixing with R and R̄ bands off S1 and from higher-order coupling with T and T̄

states off S1. As the higher-order coupling is not accounted for by the model, the

model only partially captures delocalization of the S2 origin. However, even coupling

with R/R̄ bands results in a very mixed nature of the S2 origin with a significant

contribution from the S1-originated bands.

Qualitative explanation of partial delocalization of the S2 state is provided below.

1.7.2 Qualitative Description of S1 State

While in some ways the effects of deuteration of one ring on the spectroscopy and

excited state vibronic mixing in DPM-d5 are rather modest, in other ways they are

strikingly obvious, and a bit puzzling. As already pointed out, the appearance of such

a strong S0-S1 T̄1
0 fundamental in the DPM-d5 excitation spectrum (Fig. 1.18) is in

striking contrast to its forbidden nature in DPM-d0, even more so because the high

resolution UV spectrum has proven that electronic excitation in S1 is still delocalized

over both rings in DPM-d5. Furthermore, the S1 origin DFL spectrum (Fig. 1.18)

has Franck-Condon activity involving three highly localized ring modes (6b, 12, 9a)

that shows a strong asymmetry, in that emission to the ground state vibrational levels

involving motion of the h5-ring is much larger than the corresponding emission to its

d5-ring counterparts. Likewise, the S2 origin DFL spectrum shows emission involving

the same ring modes from the S2 portion of the excited state wave function favoring

the d5 ring modes.

Localization of the vibrational wave functions occurs due to several effects pro-

duced by the asymmetric deuteration of the monomers. The first effect, reproduced
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by the electronic structure calculations, is the localization of the 6b, 12, and 9a vibra-

tions to the individual aromatic rings. Due to the weak kinematic coupling between

the two chromophores in all electronic states, the small mass perturbation causes a

rotation of the nuclear wave functions from symmetric/antisymmetric pairs to vibra-

tions localized on individual monomers.

Once the vibrations are localized, an examination of the electronic Hamiltonian

reveals that the geometry at which the electronic excitation is perfectly delocalized is

no longer the geometry at which both vibrations are displaced from their equilibrium

positions by equal amounts. Working in the diabatic electronic basis, the system

Hamiltonian can be written (considering only one vibration on each monomer):

⎛
⎝ h̄ωH (QH +Q0)

2 + h̄ωD (QD)
2 V

V h̄ωH (QH)
2 + h̄ωD (QD +Q0)

2

⎞
⎠ (1.58)

Here Q is a vibrational coordinate for either the deuterated or non-deuterated ring

(labeled accordingly), ω is the corresponding localized vibrational frequency, Q0 is the

displacement along a normal mode upon electronic excitation of the corresponding

chromophore, and V is an electronic coupling constant. The electronic states become

completely delocalized in this model Hamiltonian when the two diagonal elements

become equal. However, since ωH > ωD due to the isotope effect, the electronic

states become perfectly mixed when QD > QH (assuming Q0 > 0). This effect can

be observed in the S1 state potential energy surface in Fig. 1.21. In this figure the

color of the surface indicates whether the electronic excitation prefers to localize on

the d5-ring (orange) or the h5-ring (blue). In frame (a) of Fig. 1.21 the parameters

are completely symmetric and thus the change from orange to blue happens along

Qa = Qb, while in frame (b) the change happens when QD > QH .

An additional contribution to the localization of the vibrational Franck-Condon

activity of the S1 state on the h5-ring arises due to differences in zero point energies

(ZPEs) of the vibrations not directly included in the vibronic coupling Hamiltonian.

Vibrational frequencies in the excited state are on average smaller than those in
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Figure 1.19. The potential energy surface (solid) and wave function
(transparent) for two localized vibrations with symmetric parame-
ters (frame (a)), and asymmetric parameters representing a partially
deuterated bichromophore (frame (b)). The color of the surface indi-
cates which monomer the excitation prefers to localize on, with blue
representing the a/h5-ring and orange representing the b/d5-ring.
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the ground state due to the reduced bonding character of the excited state. If this

reduction in frequency affects both the h5- and d5-rings by the same multiplicative

factor, the difference in ZPEs between the ground and excited states will cause the

diabatic state in which the h5-ring is excited to be slightly lower in energy than the

state in which the d5-ring is excited. This change in ZPEs can be represented by

adding a small energy (approximately an order of magnitude less than the frequency

values) to the lower right Hamiltonian element. The effect of this parameter can be

observed in frame (b) of Fig. 1.21 by noting that the well with QD < 0 (right side of

PES) is shallower than the well with QH < 0 (left side of PES). This slight asymmetry

in the depth of the two wells causes the S1 state to localize around QH = −Q0 and

QD = 0. However, as noted above, this is precisely where the two electronic states are

completely mixed from the Hamiltonian in Eq. 1.58. As a result, both the localization

of the h5-ring Frank-Condon activity on the S1 state and the delocalization of the S1

electronic state take place.

1.7.3 Qualitative Description of S2 State

Though the unexpected localization of vibrational levels on the S1 state can be

qualitatively explained with a two-mode model, a more sophisticated three-mode sys-

tem is needed for the S2 state, as is discussed in Ref. [46]. Specifically, the model

system includes two intra-monomer ring modes located on the h5- and d5-rings, re-

spectively, and a single inter-monomer mode with parameters from the R mode in

Table 1.7. The only change to the parameters from what was used in the full simu-

lation of DPM-d5 is the reduction of the electronic coupling constant VAB from 110

cm−1 to 100 cm−1 to compensate for the reduced amount of vibronic quenching from

the intra-monomer modes not included in this simplified model. As follows from the

inter-monomer Hamiltonian (Eqs. 1.29 and 1.30), the electronic coupling VAB changes

along inter-monomer modes. Dependence of VAB on displacement along mode R is

shown in Fig. 1.20. As seen from Fig. 1.20, the dependence of the coupling parameter
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Figure 1.20. Magnitude of off-diagonal coupling parameter as a func-
tion of displacement along inter-monomer mode R.

on inter-monomer coordinate is relatively minor, such that harmonic approximation

is well justified.

Analysis of experimental spectra suggests that the S2 state is also mostly delo-

calized with both the excitation and Franck-Condon activity slightly favoring the

d5-ring. The qualitative explanation of this phenomenon relies on the dependence of

the wavefunction on the intra-monomer mode. As shown in Fig. 1.21, while the S1

wavefunction is similar for all values of QR, the S2 wavefunction changes significantly

as a function of QR. Due to the shape of the potential energy surface along QR,

the density localizes near QR = 0. However, a negative displacement along the QR

coordinate tends to correlate with localization on the h5-ring (enhanced blue lobe),

while zero to positive displacements along QR correlate with localization on d5-ring

(enhanced red lobe). The combination of these effects causes a suppression of the

wavefunction when the density is localized on the h5-ring and an increase in wave-

function magnitude when it is localized on the d5-ring. Thus, the S2 state partly

localizes on the d5-ring with most of the Franck-Condon activity occurring on modes

located on the d5-ring side. Yet the small amount of remaining intensity on the h5-

ring side, occurring when QR is negative, results in rotational band contours which

show partly delocalized S2 state character.
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Figure 1.21. Graphical depiction of the wavefunction for the first
and second excited singlet states of DPM-d5. Coordinates are mass
weighted with units

√
AMUÅ. The color of the surface indicates

which monomer the excitation prefers to localize on, with blue rep-
resenting the h5-ring and orange representing the d5-ring. The semi-
transparent blue-red surface represents the wavefunction density. The
blue lobe of the wavefunction corresponds to an excitation on the h5-
ring; the red lobe corresponds to an excitation on the d5-ring.
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1.8 Conclusions and Future Simulations

The Fulton-Gouterman model for vibronic coupling in bichrompohores has been

extended to treat asymmetric molecules and inter-chromophore vibrational modes.

Several vibrational modes can be considered simultaneously by means of Lanczos di-

agonalization of the sparse Hamiltonian matrix. Considered model spectra provide

detailed analysis of the theory, including effects of simultaneous modeling of sev-

eral modes and effects of asymmetries in different kinds in intra- and inter-monomer

vibrations.

Modeling of the vibronic spectra of the DPM bichromophore is a stringent test

for performance of the extended FG model. It was found that obtaining accurate

parameters for the FG model may be challenging, especially parameters for the low-

frequency inter-monomer modes that require computations of optimal geometries and

vibrational frequencies of a bichromophore. However, inclusion of the inter-monomer

modes is essential for modeling spectra of flexible bichromophores. Using the com-

puted parameters for the intra-monomer modes and partly fit parameters for the

inter-monomer modes, the experimental absorption and emission spectra of DPM

were successfully reproduced. Additionally, a qualitative modeling of the clump emis-

sion spectrum was provided, even though a more rigorous theoretical framework may

be needed in order to provide physically meaningful rather than fit representation of

this region.
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2. VIBRONIC COUPLING IN N-CHROMOPHORE SYSTEMS

Here I will give a brief derivation of the Hamiltonian for the Fulton-Gouterman

model extended to N-chromophore systems. This derivation will follow the bichro-

mophore Hamiltonian derivation quite closely, however some complications will arise

when considering the inter-monomer mode Hamiltonian and the computation of peak

intensities. After the derivation, some model systems are proposed.

2.1 Theory

For an N-chrmophore system composed of N nearly identical chromophores, the

system Hamiltonian can be written analogously to Eq. (1.1):

H =
N∑
i=1

(
Hi +

N∑
j �=i

Vi,j(L)

)
+ TL (2.1)

Vi,j(L) is the coupling between chromophores i and j, which is not always the

same depending on the configuration of the monomers. TL is now the momentum

for the collection of 6N − 6 normal modes that result from motions between the

chromophores. Just as in the derivation for the bichromophore case, the vibrations

will be divided into inter and intra-monomer vibrations. While the intra-monomer

vibrations will remain essentially unchanged from the bi-chrmophore case, the inter-

monomer vibrational Hamiltonian will see a significant change in form.
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2.1.1 Multi-chromophore Intra-monomer Modes

To ease the derivation of the system Hamiltonian, we will work in a monomer

localized electronic basis, which will have N functions.{
π
(1)
i = ψel

1 (qi;Qi)
N∏
j �=i

ψel
0 (qj;Qj)

}
i=1,2,...N

(2.2)

This basis reduces to the dimer basis (Eq. (1.6)) in the case where there is only two

chromophores. Just as done in the bichromophore case (Eqs. (1.7) and (1.8)), it is

now necessary to evaluate the Hamiltonian in this electronic basis.

〈
π
(1)
i

∣∣∣H ∣∣∣π(1)
i

〉
= Ti + E(1) (Qi) +

N∑
j �=i

(
Tj + E(0) (Qj) +

〈
π
(1)
i

∣∣∣Vi,j

∣∣∣π(1)
i

〉)
(2.3)

〈
π
(1)
i

∣∣∣H ∣∣∣π(1)
j

〉
=

〈
π
(1)
j

∣∣∣H ∣∣∣π(1)
i

〉
=

〈
π
(1)
i

∣∣∣Vi,j

∣∣∣π(1)
j

〉
(2.4)

By expanding the coupling term in a Taylor expansion and only keeping the constant

term, as done in Eq. (1.10), we are able to simplify Eq. (2.4) to N-choose-2 constants

(instead of just one constant in the dimer case). Eq. (2.3) will have each potential

energy surface term (E(1)(Qi)) approximated as a parabola as in Eq. (1.11). This

results in an N ×N block matrix with the following structure.

H =

⎛
⎜⎜⎜⎜⎜⎜⎝

H1,1 V1,2 · · · V1,N

V1,2 H2,2 · · · V2,N

...
...

. . .
...

V1,N V2,N · · · HN,N

⎞
⎟⎟⎟⎟⎟⎟⎠

(2.5)

Hi,i =
P 2
i

2M
+ Ei + liQi +

1

2
Mω2

iQ
2
i +

N∑
j �=i

P 2
j

2M
+

1

2
Mω2

BQ
2
j (2.6)

It is interesting to note that the magnitudes of the coupling matrix elements will

depend highly on the structural layout of the chromophores. For instance, in linear

trimer stacks as done by Seibt and co-workers [47], V1,2 = V2,3 �= 0 and V1,3 = 0. For a

trimer close to C3 symmetry, the coupling constants will have the form V1,2 � V2,3 �
V1,3 �= 0.
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By representing the position and momentum operators in Eq. (2.6), the matrix

elements of Eq. (2.5) in a vibronic-electronic basis are computable:

〈
π
(1)
i

∣∣∣H ∣∣∣π(1)
i

〉
= bih̄ωi

(√
ni + 1δ(n′

i,ni+1) +
√
niδ(n′

i,ni−1)

) N∏
j �=i

δ(n′
j ,nj)

+

(
Ei +

N∑
j=1

h̄ωj

(
nj +

1

2

))
N∏
j=1

δ(n′
j ,nj) (2.7)

〈
π
(1)
i

∣∣∣H ∣∣∣π(1)
j

〉
= Vi,j

N∏
j=1

δ(n′
j ,nj) (2.8)

Here ni and n′i represent the excitation quanta of a given normal mode on the i’th

chromophore. While it is not written out because the indexing gets very confusing,

Eqs. (2.7) and (2.8) can also be easily extended to the case with multiple vibrations

on each chromophore. Each matrix element becomes a sum over Hamiltonians for

each vibration and the vibrational basis is a product of individual vibrational basis

functions.

2.1.2 Multi-chromophore Inter-monomer Modes

The derivation of the inter-monomer mode Hamiltonian is much more complicated

for the case where there are multiple chromophores. As done for the dimer case, the

derivation will begin in the exciton de-localized basis. This electronic basis will be

notated as
{
π
(±)
i

}
i=1,2,...N

, where the ± is used to emphasize that it serves the same

role at the π
(1)
± basis in the dimer case and can be related to the basis seen in Eq. (2.2)

with a linear transformation.

It is now possible to evaluate the TL and remaining non-constant terms of Vi,j

using the exciton delocalized basis. This is done in the same way as in Eqs. (1.25) and

(1.26), only now there will be N matrix elements to evaluate, one for each delocalized

excited state. Note that the constant term with regard to the Taylor expansion of

Vi,j is not included with the inter-monomer mode Hamiltonian because it is already

included with the intra-monomer mode Hamiltonian.
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〈
π
(±)
k

∣∣∣TL +
N∑
i=1

N∑
j �=i

Vi,j(L)
∣∣∣π(±)

k

〉
� lL,kL+

1

2
Mω2

L,kL
2 +

P 2
L

2M
(2.9)

On first glance, this equation may seem overly simple. After all we have N -

choose-2 Vi,j terms on the left handed side and only three terms on the right hand

side. This comes from the fact that each Vi,j term contributes to the linear and

quadratic constants in the Taylor expansion, but it does not matter how much each

term contributes. In other words, one can write the following expression:

lL,k =
N∑
i=1

N∑
j �=i

∂

∂L

〈
π
(±)
k

∣∣∣Vi,j(L)
∣∣∣π(±)

k

〉
(2.10)

A similar relationship exists for the quadratic term ωL,k.

Now the cross terms of these inter monomer modes must be computed. Fortu-

nately this is actually much simpler than the diagonal terms because the
{
π
(±)
i

}
i=1,2,...N

is, by definition, the basis that diagonalize the coupling matrix. In other words, the

wavefunctions returned by an electronic structure calculation (which is what is meant

by the exciton delocalized basis) are not coupled through the Hamiltonian by the very

nature of the calculation. Therefore, without further analysis it is possible to write:

〈
π
(±)
k

∣∣∣TL +
N∑
i=1

N∑
j �=i

Vi,j(L)
∣∣∣π(±)

l

〉
= 0 (2.11)

(Aside: This is how I pictured things working when I originally started this math.

However, on further thought, this may not be true. In fact, setting the cross term

derivatives to non-zero parameters may allow for localization of the excitation by the

vibration. I will attempt to code these parameters in a completely general way so

that we can play around with these parameters.)

Now all that remains is transforming this coupling matrix back into the exciton

localized basis so that it may be added to the intra-monomer Hamiltonian. However,

because different coupling combinations are possible, the transformation between

these bases is not known as it is in the dimer case (Eq. (1.28)). It can, however,

be computed by diagonalizing the coupling matrix in the exciton localized basis. The
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eigenvectors produced from this digitalization step will be the exciton delocalized

states in the exciton localized basis. Define the basis transformation matrix U in the

following way:⎛
⎜⎜⎜⎜⎜⎜⎝

λ1 0 · · · 0

0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λN

⎞
⎟⎟⎟⎟⎟⎟⎠

= U−1

⎛
⎜⎜⎜⎜⎜⎜⎝

0 V1,2 · · · V1,N

V1,2 0 · · · V2,N

...
...

. . .
...

V1,N V2,N · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎠

U (2.12)

In this calculation, the splittings between the λi values should match the splittings

between the electronic energies of the molecule before applying the vibronic coupling

model. That is to say that the splittings should be the same as those found in a pure

electronic structure calculation. This can be used as a check to verify the accuracy

of the coupling constants.

Once the U matrix is known, the transformation of the inter-monomer mode

Hamiltonian back to the exciton localized basis is simply performed by matrix mul-

tiplication.

U

⎛
⎜⎜⎜⎝

lL,1L+ 1
2
Mω2

L,1L
2 +

P2
L

2M
0 · · · 0

0 lL,2L+ 1
2
Mω2

L,2L
2 +

P2
L

2M
· · · 0

...
...

. . .
...

0 0 · · · lL,2L+ 1
2
Mω2

L,2L
2 +

P2
L

2M

⎞
⎟⎟⎟⎠U−1 (2.13)

2.2 Intensities

After diagonalizing the full Hamiltonian in the vibronic-electronic basis and ob-

taining the energy levels, it becomes necessary to compute the intensity of each tran-

sition through the electronic dipole moment. In much the same manner as done in

Eq. (1.41), it is possible to separate the transition dipole moment from the vibra-

tional integrals. However, in this case there are now N independent transition dipole

moments (TDMs) that a given state can transition through. Since these N TDMs

do not all have to be of the same strength (or polarization), it must be possible to

assign each transition to an individual TDM or some linear combination thereof. As

it turns out, the U matrix becomes necessary for this segment as well.
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Begin by defining the excited state as a linear combination of electronic-vibronic

basis functions as done in Eq. (1.33) for the dimer calculation:

ψ1 =
N∑
i=1

π
(1)
i

∑
m,n1,n2,...nN

C i
m,n1,n2,...nN

φm(L)
N∏
j=1

φnj
(Qj) (2.14)

Here C i
m,n1,n2,...nN

is the coefficient on a specific electronic-vibronic wavefunction,

φnj
(Qj) is the nj vibrational basis function localized on the j’th monomer, and φm(L)

is the m’th vibrational basis function for an inter-monomer mode. By applying the

U matrix, it is possible to transform this wavefunction into the exciton delocalized

electronic basis.

ψ1 =
N∑
i=1

π
(±)
i

∑
m,n1,n2,...nN

(
N∑
k=1

Ui,kC
k
m,n1,n2,...nN

)
φm(L)

N∏
j=1

φnj
(Qj) (2.15)

To find absorption intensities simply integrate over all coordinates the product

of the initial ground state wavefunction, the final excited state wavefunction, and

the transition dipole operator and square the result. Assuming we are starting in

the unexcited vibrational wavefunction, coefficients of the final wavefunction with

m = n1 = n2 = ...nN = 0 will have a vibrational overlap integral of unity while

all other basis function will have a vibrational overlap integral of zero. Since the

electronic integral of the ground electronic state, i’th excited electronic state, and

transistion dipole operator simply returns the i’th TDM, the total intensity for the

transition can be written as:

R =
N∑
i=1

TDM2
i

(
N∑
k=1

Ui,kC
k
0,0,...0

)2

(2.16)

In this expression it is easy to see the contribution from each individual TDM to the

total intensity. Emission intensities can be computed analogously and hot bands may

be computed by using vibrational quantum numbers other than all zeros.
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3. FGMC PROGRAM FOR MODELING VIBRONIC INTERACTIONS

FGMC computes emission and absorption spectra for molecular systems with

multiple chromophores where nearly degenerate excited states cause coupling between

electronic and vibrational degrees of freedom. It is currently written in Matlab [48]

and has a graphical user interface (GUI) for easy use. The theory behind FGMC was

originally proposed by Witkowski and Moffitt [49] and extended upon by Fulton and

Gouterman. [9]

This chapter describes the usage of FGMC and is broken into four sections, the

first of which is this introduction. Section 3.1 will go over the parts of the GUI

and describe it’s functionality. Section 3.2 will cover the execution of a calculation.

Finally, Section 3.3 will examine the output of a calculation.

3.1 Using the GUI

After extracting the zip file, it is necessary to add the directory containing these

programs to the Matlab path. This can be done through the path dialogue box

opened by clicking on ’File’ and then ’Set Path’ or it may be added using the following

command:

path(path,’$Directory’);

where $Directory is the location of the unzipped files.

After modifying Matlab’s path, the GUI can be opened by typing ’FGMC’ into

the command line. This will bring up a window much like that seen in Fig. 3.1. For
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Figure 3.1. Screenshot of the GUI with parameters used to simulate
d5-DPM. Numbers in red label various points referred to in text.
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the remainder of this chapter the numbers in red in Fig. 3.1 will be used to refer to

various sections of the GUI.

3.1.1 Loading and Saving

Using text box (1) in Fig. 3.1 and the ’Load’ button it is possible to read in a

previously written input file. The file name into the text box and press the load

button. The current working directory of Matlab must be the directory containing

the file that is to be read. Matlab’s working directory can be determined by using the

’pwd’ command and changed with the ’cd’ command in the Matlab command line.

Once all of your parameters have been entered into the GUI, it is necessary to

save your input file whether the calculation is to be run locally or on a remote server.

Enter a file name into the text box (2) in Fig. 3.1 and press the save button to save

an input file. It will be written in Matlab’s current working directory.

3.1.2 Entering the Size of the Calculation

Text boxes (3-6) in Fig. 3.1 can be used to adjust the size of a calculation. Boxes

(3) and (4) define the number of intra and inter-monomer modes in the system and

will automatically adjust tables (7) and (10), respectively. Box (5) defines the num-

ber of chromophores (and thus the number of nearly degenerate electronic states)

in your system. Thus changing the number of chromophores alters the size of ta-

bles (9-11). Finally, box (7) details how many eigenstates will be found using the

Lanczos algorithm. This value directly effects computational time as well as memory

requirements. The upper bound on the value of this box is given by:

(Number of Eigenvectors) < (Number of Chromophores)×∏
(Intra-monomer Basis Set Sizes)×∏
(Inter-monomer Basis Set Sizes) (3.1)
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This is simply the product of all the vibrational basis set sizes times the electronic

basis set size and represents the dimensionality of the Hamiltonian.
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3.1.3 Intra-monomer Vibrational Modes

Table (8) contains the parameters for the intra-monomer modes. It will always

have 6 columns, but the number of rows depend on the value in box (3). The first

column is for the ground state frequency of the vibrational mode multiplied by h̄.

Though any units of energy will work in these simulations so long as they are con-

sistently used throughout the parameter set, normally these values are entered in

wavenumbers. The second column is the frequency of the vibrational mode in the

excited state.

The third column is the unit-less displacement, or Frank-Condon, parameter for

the normal mode. These parameters can be obtained from Ez-Spectrum [36] and then

performing a unit conversion on the listed dQ value.

b = dQm

√(
ω′

ω

)3
ω′

2h̄
� dQm

√(
ω′

ω

)3

ω′ × .01483
1

cm AMU Å
2 (3.2)

In this equation ω′ is the excited state frequency of the given normal mode and ω

is the ground state frequency. An example for the necessary constant is given when

using the wavenumber/angstrom/AMU unit system.

The fourth column of the table gives the vertical excitation energy for a given

normal mode. While it is sometimes convenient to ascribe a value for the vertical

excitation energy for each vibration, computationally the only value of importance is

the sum of all vertical excitation energies on each monomer.

The fifth column of the table gives the location of the vibrational mode and has

allowed values of 1 through N , where N is the number of chromophores. It does

not matter how the chromophores are ordered, so long as the same ordering is used

throughout the input.

The sixth column of the table gives the number of basis functions to be used

to simulate the given vibration. 5 basis functions are recommended, though for

vibrations that have small displacement and frequency change parameters as few

as 3 may be used. Likewise, for vibrations with large displacements between the

ground and excited state, more basis functions may be required.
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3.1.4 Inter-monomer Vibrational Modes

Table (10) contains parameters for the inter-monomer modes. The number of

columns in this table is dependant on the number of chromophores in the simulation.

The first N+1 columns contain the ground through N ′th excited state frequencies for

a given vibration. The next N columns contain the displacement parameter for that

vibration for the N excited states, computed using 3.2. The final set of N columns

contain the vertical excitation energies for each electronic excited state. Finally, the

last column contains the number of basis functions that will be used to simulate each

mode. Similar rules should be used for selecting the appropriate number of basis

functions as were used in the intra-monomer vibrational modes.

3.1.5 Transition Dipole Moments

Table (9) contains the transition dipole moment values for the various excited

states of the multi-chromophore. As a general rule, TDM’s in this table should be

given in the order from lowest energy electronic state to highest, though this may not

always be the case for systems in a very weak coupling limit, [10] where bh̄ω is large

compared to V .

3.1.6 Electronic Coupling Matrix Elements

Table (11) contains the electronic inter-monomer coupling constants to be used in

the simulation. This matrix is constrained to be Hermitian because of the following

relation 〈
π
(1)
i

∣∣∣V (L)
∣∣∣π(1)

j

〉
=

〈
π
(1)
j

∣∣∣V (L)
∣∣∣π(1)

i

〉
(3.3)

For systems with more than 2 chromophores, it is necessary that the number labels

for the coupling constants match the location labels given to the intra-monomer

vibrations in table (8).
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3.1.7 States to Print

Table (12) contains the information on which spectra should be saved. The first

column defines whether to save an absorption (a) or emission (e) spectra. The second

column contains integer value that denotes the state from which to emit or absorb. If

an emission spectrum is requested this value is simply the state number printed out

in the first column of the vibrationally unexcited ground state absorption spectrum.

If an absorption spectrum is requested this value can be used to denote a vibra-

tionally excited ground state, resulting in a hot band. A value of ’1’ corresponds to

the zero point vibrational ground state. To compute the value of this box for a given

vibrational state, use the following expression

1 +
V∑
i=1

vi
∏
j<i

sj (3.4)

Here, vi is the number of vibrational quanta in the i’th vibrational mode with zero

representing the ground state, V is the total number of vibrations (inter and intra),

and sj is the total basis set size of the j’th vibration. For i = 1,
∏

j<i sj = 1. It is also

important to note that the order of modes is important, with the order being the same

as they appear in the GUI tables and intra coming before inter-monomer vibrations.

This calculation is easily performed in the Matlab command line interface. Start by

creating a vector of the vibrational basis set sizes for both the intra and inter-monomer

modes in the order in which they appear in the table, with the intra-monomer modes

appearing first. Next, take the cumulative product of this vector, append a ’1’ to

the beginning and delete the last element. Now create a new vector with the same

number of elements as the first vector, where each element represents the number of

vibrational quanta in each vibrational mode. Finally, take a dot product between the

two vectors and add 1.

For example, the fourth absorption spectrum in 3.1 is the absorption from the

vibrational state with one quantum of excitation in the second intra-monomer mode
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and 1 quanta of vibrational excitation in the first inter-monomer mode. The value

4864 is arrived at in the following way:

4864 = 1 ∗ (3) + 1 ∗ (3 ∗ 3 ∗ 3 ∗ 3 ∗ 5 ∗ 4 ∗ 3) + 1 (3.5)

Column three and four give the lowest and highest energy value to be printed in

the spectrum respectively. Column five is the spacing between points in the spectrum.

Finally, column six is the width of a peak. Keep in mind that even though a large

xmax is requested, the program will only find as many states as given in (7). Thus, if

the highest energy computed state is less than xmax, the remainder of the spectrum

will be shown as giving zero peaks even if there are states in that region of the

spectrum.

3.2 Running a Calculation

Due to the size of some FGMC calculations, it is possible to run a calculation

both locally and on a remote server. Generally smaller calculations (those with under

2,000,000 basis functions) can be run locally, though Matlab may end up consuming

a fair amount of memory. Larger calculations can be run remotely, both to increase

available memory and to allow for increased parallelization during the digitalization

step.

3.2.1 Locally

Running calculations locally is straight forward, though it does require use of the

command line. Once you have opened the GUI and entered the necessary parameters,

switch back to the command line window. Move Matlab to a new directory, enter a

name for the calculation into box (2) and press the save button. This will write the

parameter file. Now switch back to the command line and run:

FGMC1server(’$Filename’);

where $Filename is the name entered into box (2). The calculation will run, printing
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out some diagnostic information to the command line window. Note that the ’Esti-

mated completion time’ only applies for the Hamiltonian generation segment of the

program. For smaller calculations, this is the majority of the run time, though for

larger calculations the digitalization algorithm will take much longer.

3.2.2 Submitting to a PBS Queue

Included in the zipped folder is a script called ’FGMCsub.sh’. This script is used

to submit calculations to a Torque queueing system. ’FGMCsub.sh’ operates by

creating two scripts, one run by Matlab and one run by the Linux OS. Some likely

modifications that will need to be made to get the program running on your system

are:

• Line 63: Change the default queue.

• Line 83: Add the directory containing FGMC1server on the local system to the

Matlab path.

• Line 96: Load Matlab system variables into the computer. This may not be

needed depending on the system.

3.3 Interpreting the Results

After the program is complete, the spectra and state information will be saved to

files named $Filename N.mat and $Filename N.txt respectively, where N is the row

number in the spectrum table corresponding to that spectrum. The .txt file contains

a list of transitions that make up the spectrum. If the spectrum is an absorption

spectrum the first line will contain a list representing the initial vibrational state of

the system. If the spectrum is an emission spectrum, the first line will contain a single

number representing the state from which the emission spectrum was simulated. The

’zero’ of energy for these simulations is always set as the excitation energy from the

ground state to the lowest excited state.
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Figure 3.2. Absorption spectrum from DPM-d5 simulation as plotted
by Matlab. The S1 origin is in blue at 0 cm−1 and the S2 peak is in
green at 185 cm−1.

The .mat file can be used to make plots of the spectra according to the plotting pa-

rameters input into the GUI, as seen in Fig. 3.2. With Matlab in the same directory as

the .mat file, type ’load $JOBNAME N.mat’ followed by ’plot(xmin:dx:xmax,yvec)’

to produce a plot of the simulated spectra. The absorption from the vibrationaly

unexcited ground state for the d5-DPM parameters shown in Fig. 3.1 is shown in

Fig. 3.2. Transitions through different TDM’s will be in separate traces, making the

components of each electronic state easy to identify. Finally, different spectra can be

loaded into Matlab and plotted by changing N in the load command, but unless the

original spectra are renamed, the data will be lost.
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4. EV-SPECTRUM FOR ELECTRONIC-VIBRONIC COUPLING

Due to the large number of application of vibronic electronic Hamiltonians in

the literature. As we have found previously, the limiting factor in many of these

calculations is the size of the Hamiltonian. The dimer simulations performed on DPM

pushed the limit of modern computers, frequently requiring 16 or more gigabytes of

memory to run successfully.

Another problem with previous simulations is the constrained form of the Hamil-

tonian. In the previous described model Hamiltonians, all terms were expanded to

second order in a Taylor series. It is, however, possible to imagine many other types

of Hamiltonian elements involved in vibronic coupling. For example, anharmonic or

mechanical interactions can be included in the Hamiltonian with Q3 or Q1Q2 terms

respectively. Further, a more diverse set of electronic coupling terms exists involv-

ing any combination of |i〉Q〈j|, where i and j are any two electronic states being

examined.

With these challenges in mind, a new more general program for diagonalizing

these Hamiltonians was written.

4.1 Design

To accommodate these requirements, a general sparse matrix diagonalization code

was needed. PETSc with the SLEPc extension was chosen for this role. The primary

feature of these codes that was needed here was the matrix shell functionallity. Instead

of writing an algorithm to build the Hamiltonian and store it in memory, as is done
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Figure 4.1. Traditional matrix multiplication, left, requires the entire
Hamiltonian to be constructed to find the red product vector. The
matrix/vector product algorithm in EVspectrum, pictured right, uses
the operator form of the Hamiltonian to compute the matrix vector
product.

in FGMC, an algorithm to compute a single matrix vector product based on the

Hamiltonian’s operator form was written (4.1). Then the Krylov-Schur sparse matrix

diagonalization algorithm is used to determine the first few eigenvectors using only

the matrix-vector product algorithm and the Hamiltonian’s diagonal.

4.2 Installation

To install EVspectrum, the required PETSc [50–52] and SLEPc [53–55] pack-

ages must first be installed. These can be obtained from their respective websites

http://www.grycap.upv.es/slepc/ and http://www.mcs.anl.gov/petsc/.

Once these two packages are installed, download the source code from GitHub [56].

After correctly defining the environment variables ${SLEPC DIR} and ${PETSC DIR},
run simply run make in the source code directory. This should create an executable

file called EVspectrum. This executable can then be moved to a ${PATH} directory
to be called later.

4.3 Running EVspectrum
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To run EVspectrum, place an input file named ”input.inp” in an empty directory

and set that directory to the current working directory. To run EVspectrum in serial,

once the executable is in a ${PATH} directory, simply call EVspectrum from the

command line with no arguments. After execution,

To run EVspectrum in parallel the petsc mpi kicker program, located at

${PETSC DIR}/bin/petscmpiexec

must be used. Simply call

${PETSC DIR}/bin/petscmpiexec -n ${TOTCPU} EVspectrum

from the command line where ${TOTCPU} is the total number of CPUs you would

like to devote to the process.

4.4 Input File Format

The program will now be explained by way of example. Consider the following

system Hamiltonian:

H =⎛
⎝ 550

(
nA + 1

2

)
+ 500

(
nB + 1

2

)
+ 440QA 110

110 560
(
nA + 1

2

)
+ 490

(
nB + 1

2

)
+ 343QB

⎞
⎠

(4.1)

This system can be described as a bichromophore with a single vibrational mode

on each of two chromophores. The ground state vibration on chromophore A is

560 cm−1 while the excited state frequency is 550 cm−1. Similarly, the ground state

vibration on chromophore B is 500cm−1 while the excited state vibration is 490cm−1.

The displacement parameter b as defined in 1.22 for the two vibrations are .8 and

.7 for the vibrations on the A and B monomers, respectively. Finally, the coupling

constant between the two chromophores is 110 cm−1.
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The input to simulate this Hamiltonian can be found in the Appendix. There are

5 section to the input file, 4 of which contain input parsed by the program. Excluding

the $comment section, the next four sections will be explained one by one.

4.4.1 Problem Section

The $problem section of the input outlines the basic parameters of the Hamiltonian

you seek to diagonalize. There are precisely 4 keywords, all of which must be included

but can be included in any order. The nvib keyword which dictates the total number

of vibrational modes in the system. It must be followed by a single integer, which in

this case is 2 since one vibrational mode belongs to each of the two chromophores. The

nelec keyword dictates the number of electronic states in the Hamiltonian. There are

2 low level electronic states in a bichromophore so a Hamiltonian with two electronic

states is considered. The neigen keyword dictates how many states will be computed.

In this simulation, the lowest 30 states are requested. The vbasis keyword indicates

the number of vibrational basis functions for each vibration which must be at least

2. Unlike the other keywords, this is followed by a list of integers with a number of

elements equal to nvib. In this calculation, both vibrations will be simulated with 8

harmonic oscilator basis functions.

4.4.2 Hamiltonian Section

In this section, the individual Hamiltonian operators are listed, one per line. Each

line has three parts which must be in the correct order. The first part is c[#], which

indicates a constant value that must be listed in the next section. As seen in entries 1

and 2 in this section, multiple matrix elements may have the same constant value. The

next section indicates the electronic states that the matrix element will interact with

in bra-ket notation. Each value in the bras and kets must range between 1 and nelec.

If the two values are the same the matrix element will be parameter for a specific

electronic state. If the two values are different, the matrix element will appear in an
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off diagonal block of the Hamiltonian and represent an electronic coupling element.

For instance, in this system, there is an electronic coupling constant (VAB) of 110cm
−1

indicated by entries 11 and 12.

The final entry in a given line is the list of vibrational operators that make up the

Hamiltonian element. There can be as many or as few vibrational operators as desired,

with no operators indicating a constant, on diagonal element. The three possible

operators are the raising operator a∧, the lowering operator a , and the number

operator n. Each of these operators is followed by a number in square brackets that

ranges from 1 to nvib, indicating which vibration the operator belongs to. This free

form method for accepting kinimatic couplings such as a [1]a [2] or anharmonicities

such as a [1]a [1]a [1] terms.

4.4.3 Parameters Section

In this section, the values of the constants used in the $hamiltonian section are

defined. One constant is reported on each line, followed by a space and the value to

which it corresponds. Each constant is read in as a double precision floating point

number, so decimals are allowed. It is important that the value for each constant

used in the $hamiltonian section is defined.

4.4.4 Groundfrequency Section

In this section, the ground state frequencies for each of the vibrational modes are

defined. The number of entries in this section should be equal to the value of nvib in

the $problem section. These values are only used in computing the emission spectra

from various excited states.

4.5 Conclusions
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With this program it is possible to simulate vibronic coupling effects in a wide

variety of systems with a wide variety of effects. The input file format for EVspectrum

has been explained and should be fairly intuitive. In future work on this program,

functionality for initially hot molecules should be added as well as a method to build a

basic input from quantum chemical simulations. Further, there is a desire to interface

the program with a genetic algorithm optimizer that will allow one to optimize a

specific Hamiltonian when compared to an experimental spectrum.
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5. α-METHYLBENZYL RADICAL SIMULATIONS

The goal of this chapter was to determine the geometry of the methyl rotor in the

α-methylbenzyl (α-MeBz) radical in the ground and D1 state. Based on experimental

results [57] it is known that the methyl rotor changes geometry upon this excitation,

but it was not immediately clear which orientation was present in the ground state

and which was present in the excited state. The two possible structures are shown

in Fig. 5.1. Various ab-initio stratagems were imploded to assist in answering this

question.

Figure 5.1. The two possible orientations of the methyl rotor in the
α-MeBz radical. Left: the anti configuration with the in plane C-H
methyl bond opposite the C-Ph bond. Right: the syn configuration
with the C-H methyl bond on the same side as the C-Ph bond.
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5.1 Methods

Excited state calculations on α-MeBz and benzyl radicals were carried out with

a variety of correlated single-reference excited state methods of equation of motion

coupled cluster (EOM-CC) family, [42,58,59] using the Q-Chem [35] electronic struc-

ture package. Vertical excited state properties (vertical excitation energies, transi-

tion dipole moment (TDM) components, oscillator strengths, and the D1−D2 energy

splitting) for the benzyl radical and α-MeBz were determined using EOM-CC for

ionization potentials (EOM-IP-CCSD) [60, 61] in the aug-cc-pVDZ basis. Vertical

excitation energies for the D1 and D2 states were further refined by adding perturba-

tive triple corrections as in the EOM-IP-CCSD(dT) method. EOM-CC method for

excitation energies with single and double excitations (EOM-EE-CCSD) [42, 58, 59]

in the aug’-cc-pVDZ basis (aug-cc-pVDZ without diffuse p functions on hydrogens

and diffuse d functions on carbons) was also employed. EOM-EE-CCSD calculations

used open-shell doublet reference, while all IP calculations used the closed shell anion

state as the reference determinant.

In order to determine the preferred methyl rotor orientation in α-MeBz, the ground

state and the D1 excited state geometries were determined for the (fixed) anti and

syn orientations of the methyl rotor with respect to the aromatic ring (Fig. 5.1.

EOM-EE-CCSD/aug’-cc-pVDZ and the ionization potential configuration interaction

with single and double excitations (IP-CISD) method in aug-cc-pVDZ were used

for the geometry optimizations. Calculations with more accurate EOM-IP-CCSD

and EOM-IP-CC(2,3) (EOM-IP method with single and double excitations for the

reference state and single, double, and triple excitations for the excited state) [62]

were additionally performed at the IP-CISD optimized geometries of the D0 and D1

states.

Additionally, a set of multi-configurational calculations with multi-configurational

self-consistent field (MCSCF) [63] and multi-configurational quasi-degenerate pertur-

bation theory (MCQDPT) [64] were performed in the GAMESS electronic structure

software. [65] Equilibrium geometries of the D0 and D1 states in anti and syn orien-
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tations were optimized at the MCSCF/6-31G* [66, 67] level of theory. Single-point

energy calculations at the optimized geometries were performed at the MCSCF/cc-

pVTZ and MCQDPT/cc-pVTZ levels. Seven active orbitals (six π orbitals at the

benzene ring and a radical π orbital on the CH2 moiety) with seven electrons com-

prised the active space for the benzyl radical. σ and σ∗ CH orbitals on the methyl

rotor were added to the active space of α−MeBz, bringing the active space to nine

orbitals and nine electrons. State averaging of the three lowest states (D0, D1, and

D2) was employed in the MCSCF and MCQDPT energy calculations.

Additionally, geometry optimizations of the α-MeBz cation in anti and syn con-

figurations of the methyl rotor were performed at the B3LYP/6-311+G** [33] level.

Single point energies at these geometries were obtained at the coupled CCSD(T)/cc-

pVTZ [68] level of theory.

The close correspondence between experiment and calculation establishes that the

first transition in the excited state spectra involves transitions to the D1 electronic

state, producing a 53%:47% a:b hybrid band. By comparison, the corresponding

D0−D2 transition would be pure a-type, inconsistent with the experimental data.

5.2 Calculated Results

To calibrate various levels of theory, we have carried out calculations on the excited

states of the benzyl radical. Since the TDM directions and relative oscillator strengths

of the D0−D1 and D0−D2 transitions are known for the benzyl radical, [69, 70] it

provides a benchmark for decisions on the level of theory needed to correctly describe

the excited states of α-MeBz. In the benzyl radical, the D0−D1 transition is known

to be a very weak, pure B-type band, while the vibronically induced transitions are

pure A-type peaks associated with the D0−D2 transition with much greater oscillator

strength. Based on their analysis of this vibronic coupling, Cossart-Magos and Leach

surmised that the D2 state is only 430-485 cm−1 above D1.
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While MCSCF provides a qualitatively correct description of the first two excited

states in benzyl and α-MeBz, it misses dynamic correlation effects which leads to the

wrong order of the two states, as shown in Table 5.1, consistent with the calculations

of Rice et al. [71] Introducing dynamic correlation through configuration interaction

as was done by Negri et al. [72] or using multiconfigurational perturbation theory

recovers the correct order of the excited states (see Table 5.1). Even though the 12A2

state in benzyl is the second excited state at the ground state geometry at the MCSCF

level, it becomes the lowest excited state near its own equilibrium geometry. As a

result, it is possible to find the optimized geometry of this state and its vibrational

frequencies as needed. However, it was not possible to find an optimal geometry of

the corresponding (B-type) state in α-MeBz using MCSCF, due to a destabilizing

steric repulsion of the methyl group with the aromatic ring and stronger mixing of

the two excited states. On the contrary, MCSCF geometry optimizations in α-MeBz

always converge to the equilibrium structure of the other (A-type) state. Since the

MCQDPT analytic gradients are not available, it becomes very challenging to obtain

accurate values of the methyl rotor barrier

The spectral data and analysis just presented have provided experimentally de-

rived shapes, barrier heights, and change in preferred orientations for the methyl

group upon electronic excitation. However, a direct measure of the preferred orien-

tation of the methyl rotor in either state is missing. Thus, we performed a set of ab

initio calculations aiming to predict the preferred methyl orientations in D0 and D1.

We also sought additional insight to the methyl CH stretch region of the infrared,

and the observed changes that accompanied electronic excitation there.

To calibrate various levels of theory, we have carried out calculations on the excited

states of the benzyl radical. Since the TDM directions and relative oscillator strengths

of the D0 →D1 and D0 →D2 transitions are known for the benzyl radical, [70, 73] it

provides a benchmark for decisions on the level of theory needed to correctly describe

the excited states of α-MeBz. In the benzyl radical, the D0 →D1 transition is known

to be a very weak, pure B-type band, while the vibronically-induced transitions are
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Table 5.1.

Comparison of the Vertical Energy Splittings (cm−1) between the D1

and D2 states of benzyl and α-MeBz radicals provided by different
levels of theory. Positive values correspond to the state with TDM
along b axes (2A2 state of the benzyl radical) being the lowest one. All
calculations are performed at the ground state geometries (geometry
of the anti isomer is used for α-MeBz).

level of theory benzyl α-methylbenzyl

EOM-EE-CCSD/aug’-cc-pVDZ1 -239.0 563.8

EOM-IP-CCSD/6-311+G(d,p)2 1197.2 742.8

EOM-IP-CCSD(dT)/6-311+G(d,p)2 592.2 478.6

MCSCF/cc-pVTZ3 -1288.8 -1666.6

MCQPDT/cc-pVTZ3 1209.3 1138.1

1 G.S. geometry optimized at EOM-EECCSD/aug’-cc-pVDZ.

2 G.S. geometry optimized at EOM-IP-CCSD/6-311+G(d,p).

3 G.S. geometry optimized at MCSCF(9,9)/6-31G(d). State aver-

aging for the three lowest states (D0, D1, D2) was employed for

energy calculations.
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pure A-type peaks associated with the D0 →D2 transition with much greater oscillator

strength. Based on their analysis of this vibronic coupling, Cossart-Magos and Leach

surmised that the D2 state is only 430− 485 cm−1 above D1. [73]

Description of the electronic states in the benzyl radical is a challenging task for

the electronic structure theory since both dynamic and non-dynamic correlations are

important. The molecular orbitals involved in forming the three lowest electronic

states of the benzyl radical are shown in Fig. 5.2. The ground state is of the 2B2

character in the C2v symmetry group (i.e., X2B2). The weak B-type band corresponds

to the 12A2 state, while the strong A-type transition results in the 22B2 state. As

follows from the MCSCF calculations, the ground X2B2 state is predominantly single-

configurational with the radical 2b2 orbital being singly occupied. However, both 12A2

and 22B2 are two-configurational, with one excitation promoting electron from 1a2 or

1b2 to singly-occupied 2b2 and with the other excitation of almost the same weight

promoting electron from 2b2 to either 2a2 or 3b2. The molecular orbital diagram

and excitation amplitudes in Fig. 5.2 reflect the electronic structure of the α-MeBz

radical as well, with the only significant difference that the C2v symmetry is lifted to

the Cs symmetry group, and both excited states belong to the A” type.

Not surprisingly, the low-correlated single-reference methods like CIS (see Ref.

[72]) and TDDFT (our own preliminary calculations) also fail to produce a correct

ordering of the excited states in benzyl and yield a D1−D2 energy splitting with

significant error. EOM-EE-CCSD inverts the order of the D1−D2 states for benzyl,

but gives the correct order in α-MeBz. On the other hand, the EOM-IP-CCSD

method matches with the experiment for the benzyl radical, giving D0 →D1 and

D0 →D2 transitions with the correct TDM direction, relative oscillator strength, and

approximate energy splitting (see Table 5.3). While the agreement of EOM-IP-CCSD

with the experiment is very encouraging, a care should be taken in applying single-

reference methods to the benzyl radical and derivatives. For example, while EOM-EE-

CCSD describes both important determinants for 12A2 and 22B2 as single excitations

(see Fig. 5.2), the (open-shell) reference state is strongly spin-contaminated that
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Figure 5.2. Orbitals comprising the D0, D1, and D2 states of α-MeBz.
The D1 and D2 states both have multi-reference character with both
the blue and red determinants pictured contributing significantly to
the state.
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Table 5.2.

The Barrier Heights between the syn and anti conformations of the
α-MeBz radical in the ground and first excited state. A positive value
of the barrier means that the anti conformation is preferred. The ro-
tation column indicates whether the method predicts methyl rotation
between the ground and excited state.

Method Geometry D0 barier D1 barier rotation

(cm−1) (cm−1)

IP-CISD IP-CISD -61 336 yes

aug-cc-pVDZ aug-cc-pVDZ

EOM-IP-CCSD IP-CISD 124 316 no

aug-cc-pVDZ aug-cc-pVDZ

EOM-IP-CC(2,3) IP-CISD 185 294 no

6-31G(d) aug-cc-pVDZ

(EOM-EE-)CCSD (EOM-EE-)CCSD 146 377 yes

aug’-cc-pVDZ aug’-cc-pVDZ

MCSCF MCSCF 179 -123 yes

cc-pVDZ 6-31G(d)

MCQDPT MCSCF 166 -253 yes

cc-pVDZ 6-31G(d)
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Table 5.3.

Calculated properties of the D1 and D2 states of benzyl and α-MeBz
radicals at the EOM-IP-CCSD/6-311+G(d,p) level of theory.

parameter benzyl α-methylbenzyl

D1 (μ
2
a : μ

2
b : μ

2
c) 0:100:0 53:47:0

D2 (μ
2
a : μ

2
b : μ

2
c) 100:0:0 99:1:0

fD1 : fD2 0.0179:0.1218 0.0416:0.1030

might lead to a loss of accuracy in describing the excited states. [62] On the other

hand, EOM-IP-CCSD (and all other ionization-potential methods employed in this

work) may suffer from unbalanced treatment of two main electron transitions in 12A2

and 22B2. This is because when starting from the closed-shell anion reference with

the doubly occupied 2b2 orbital, excitation of the β electron is formally described

as a single ”excitation” (i.e., annihilation of an electron) while excitation in the α

space is a double excitation (annihilation of one electron and promotion of the other

one). Thus, inclusion of triple excitations in EOM-IP is important for achieving

quantitatively accurate results. On a positive note, both EOM-EE-CCSD and EOM-

IP-CCSD, as well as configuration interaction version of the IP method, IP-CISD,

have efficient analytic gradients that allows geometry optimizations of the ground

and excited states.

Additional complexity in describing D1/D2 splittings arises due to non-adiabatic

effects and vibronic interactions between these states. While investigating these top-

ics is beyond a scope of the work described here, it is important to note that the

vibronic couplings in α-MeBz are stronger and the adiabatic states are more mixed

than the states in benzyl. This is because D1 and D2 belong to the same symme-

try representation in α-MeBz and are allowed to mix, and because a presence of the

methyl group rotates the TDM moments of D1 and D2 toward each other.
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It was also found that the orientations and magnitudes of TDMs in α-MeBz are

extremely sensitive to the electronic structure method, basis set, and the geometry

of the molecule. Table 5.3 provides representative set of data comparing calculated

properties of the D1 and D2 states in benzyl and α-MeBz. The EOM-IP-CCSD cal-

culations predict greater oscillator strength (by 2.5 times) for the D0 →D1 transition

in α-MeBz than in benzyl. The D2 state is predicted to be less than 500 cm−1 above

D1 in α-MeBz, and still carries a greater oscillator strength in its transition from D0,

with f02 = 0.103 compared to f01 = 0.042. As a result, it is somewhat surprising that

the effects of vibronic coupling between D1 and D2 are not more readily apparent in

the spectrum.

Taking into account the complexity of the electronic structure of α-MeBz and

intrinsic problems of many computational methods in describing its electronic states,

determining the preferred orientation of the methyl rotor in the ground and first

excited states appears to be a challenging task. Table 5.2 summarizes the rotational

barriers obtained at different levels of theory.

All methods except IP-CISD predict the ground state more stable in the anti

geometry, with the rotation barrier between 120 and 230 cm−1. Observing that the

increase both in the basis set and in the correlation level lower the rotational barrier

in D0, the best computational estimate of the ground state barrier is 140-180 cm−1.

Rather misleadingly, IP-CISD in diffuse basis sets gives lower energy for the syn

configuration. This suggests that even in the ground electronic state, the molecular

structure is very sensitive to the level of theory employed.

All IP methods suggest that the anti conformation is preferred in the first excited

state. However, this would imply that the methyl group is not rotated upon excitation

that contradicts the experimental evidence. Additionally, the calculations with EOM-

EE-CCSD and multi-configurational methods show that the syn conformation is lower

in energy for the experimentally observed B-type state. As discussed above, the

thought is that EOM-EE-CCSD provides a more balanced description of the excited

states in α-MeBz than the IP methods do. Calculations at the ground state geometry
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with MCSCF and MCQDPT also provide a hint that the B-type state prefers the syn

conformation; however, more precise analysis was not possible due to a failure of these

methods to find the optimal geometry of the B-type state.
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6. PHENYLCYANOMETHYL SIMULATIONS

This chapter will summarize simulations performed on the phenylcyanomethyl

(PCN) radical. The purpose of these simulations is to identify the unknown peak

in the experimental absorption spectrum. The specific peak in question is around

200 cm−1 above the D0 →D1 transition, seen in 6.1.

Over the course of this project, many different explanations for this peak have been

analyzed including Duchenski mixing between two out of plane vibrational modes,

vibronic coupling to a near by S2 state, and finally a double-welled potential energy

surface in the S1 state. The current hypothesis is that the excited state is non-planar,

resulting in a double welled potential energy surface. This would allow for a ground

state normal mode to have large overlap with both the ν = 0 and ν = 2 vibrational
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Figure 6.1. Absorption spectrum of the phenylcyanomethyl radical.
The source of the intense peak 200 cm−1 over the origin is unknown.



89

states to a corresponding excited state normal mode. This will be elaborated on

further in 6.2.1.

6.1 Ab-initio Calculations

Due to the complexities involved in simulating excited state radicals, two differ-

ent ab-initio methods have been employed to investigate the nature of the D0 →D1

transition. The first set of calculations use the EOM-IP-CCSD method with the

6-31G* basis set. This method was chosen because it treats the ground state as an

electronically excited state by initially computing the wavefunction of the correspond-

ing anion and then exciting a single electron to infinity. This allows for a more equal

treatment of ground and excited state, and thus resulting in better transition energies

and intensities. These calculations were performed with Q-Chem. [35]

The complete active space multi-configurational self consistent field (CASSCF)

method was also used to explore the excited states of the PCN radical. This was

done using the 6-31G* basis and the 11 electrons in 11 orbitals active space. The

orbitals used in the active space are shown in Fig. 6.2. This method was chosen due

to its accuracy and speed, as well as the fact it was used to study the similar molecule

phenylpropargyl radical. [74] The initial CASSCF(11,11) calculations returned The

results of both sets of calculations are summarized in Tables 6.1 and 6.2.

Since both ground and excited state geometries are required to compute the vi-

brational manifold off of the D0 →D1 transition, both the ground and excited states

of the PCN radical were optimized. Geometries, bond lengths, and the cyano-phenyl

bond angle are reported for EOM-IP-CCSD in Fig. 6.3 and for CASSCF(11,11) in

Fig. 6.4. Further, frequency calculations were performed on all geometries and used

to construct Franck-Condon spectra reported in Section 6.2.

Based on previous calculations with the α-methylbenzyl radical and benzyl radical,

as seen in Chapter 5, it is believed that the D1 state that is observed experimentally

should have a weak b-type transition. Based on the TDM values reported in 6.2, the
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Figure 6.2. Orbitals included in the CASSCF(11,11) calculations.
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Table 6.1.

Calculations performed on PCN radical. Many calculations predict
that the D1 and D2 states are very close in energy. This results in
an ambiguous ordering between the states. IP and OOP in the table
correspond to whether the geometry is planar or non-planar. The
CASPT2(11,11) calculations were performed at the CASSCF(11,11)
geometries.

Method State D0 D1 D2

Optimized Energy Energy Energy

EOM-IP-CCSD D0 IP -362.083357 -361.951136 -361.946854

EOM-IP-CCSD D1 IP -362.018443 -361.907920 -361.884295

EOM-IP-CCSD D1 OOP -361.981249 -361.910110 -361.863170

CASSCF(11,11) D0 IP -361.013674 -360.904781 -360.895801

CASSCF(11,11) D1 IP -361.006970 -360.911730 -360.886697

CASSCF(11,11) D2 IP -361.005747 -360.901473 -360.895144

CASPT2(11,11) D0 IP -362.033393 -361.926475 -361.924000

CASPT2(11,11) D1 IP -362.027659 -361.932295 -361.917350
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Table 6.2.

Both the CASSCF(11,11) calculations agree that the first excited
state primarily has a TDM direction along the a-axis. This is in
disagreement with EOM-IP-CCSD methods which predict a TDM for
D1 along the b-axis. Based on similar molecules, it is believed that
EOM-IP-CCSD obtains the correct state ordering.

Method State D0 → D1 D0 →D1 D0 →D2 D0 →D2

Optimized Direction Strength Direction Strength

EOM-IP-CCSD D0 0.1:99.9:0.0 0.012 99.2:0.7:0.0 .236

EOM-IP-CCSD D1 IP 10.4:89.6:0.0 0.437 99.3:0.6:0.0 1.681

EOM-IP-CCSD D1 OOP 3.7:96.2:0.0 0.004 73.3:26.5:0.1 .139

CASSCF(11,11) D0 93.7:6.2:0.0 0.007 23.0:77.0:0.0 0.001

CASSCF(11,11) D1 94.0:6.0:0.0 0.006 24.7:75.3:0.0 0.001

CASSCF(11,11) D2 71.5:28.5:0.0 0.005 97.4:2.6:0.0 0.006
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Figure 6.3. EOM-IP-CCSD minimum energy geometries for the D0

state (left), in plane D1 state (middle), and the out of plane D1 state
(right).

EOM-IP-CCSD calculations appear to obtain the correct state ordering for both the

D0 and in plane D1 optimized geometry. The out of plane D1 optimized geometry has

an ambiguous state ordering due to the mixing between TDM intensity and direction,

though it could very likely be that this is the D2 state that is partly mixed with the

D1 state after passing through a conical intersection.

In order to compute the vibrational manifold off of the D0 →D1 transition, While

CASSCF calculations predict a planar geometry for each state and EOM-IP-CCSD

predicts a planar geometry for the ground state, EOM-IP-CCSD found a minimum

in energy for the D1 state in both the planar (IP) geometry and an out of plane

geometry (OOP). This is likely due to the fact that EOM-IP-CCSD predicts a state

ordering different that that of the CASSCF methods based on TDM direction 6.2.

The minimum of the correct EOM-IP-CCSD state is at the out of plane geometry, as

depicted in Fig. 6.3.

6.2 Franck-Condon Spectra

Frequency calculations at the geometries listed in Table 6.1 were then used to

construct FC-spectra with the program EZ-Spectrum, [36] which could then be com-
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Figure 6.4. CASSCF(11,11) minimum energy geometries for the D0

(left), D1 (middle), and D2 (right) states.
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Figure 6.5. Franck-Condon absorption spectrum calculated between
the ground state planar geometry and the D1 state out of plane ge-
ometry (red trace).

pared to the experimental lineshape. The predicted spectrum from the out of plane

EOM-IP-CCSD D1 state and the EOM-IP-CCSD D0 state is shown in Fig. 6.5. Due

to the extremely large geometry change depicted in 6.3, the resulting predicted spec-

trum has many vibrational modes showing much to large intensity. The FC spectrum

resulting from the in plane EOM-IP-CCSD D1 geometry, shown in Fig. 6.5shows no

better agreement with experiment, though the peaks are not as anomalously large.

This leads to the conclusion that, although the EOM-IP-CCSD calculations appear

to get the state ordering correct, they fail to produce reasonable geometries for the

PCN radical.

The same FC calculations were performed with CASSCF(11,11) from the D0 state

to the D1 state (Fig. 6.7 and to the D2 state (Fig. 6.8). While the calculation to

the D1 state misses completely the intensity in the low frequency calculations, it is

able to obtain some of the higher frequency peaks. Likely, the peak near 1175 cm−1

is due to the peak at 960 cm−1 convoluting with the unknown 200 cm−1 peak, which

is completely missed. The calculation to the D2 state shows little correspondence to
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Figure 6.6. Franck-Condon absorption spectrum calculated between
the ground state planar geometry and the D1 state geometry con-
strained to be planar.



97

0 200 400 600 800 1000 1200 1400

0

1

2

3

Wavenumbers �cm�1
�

In
te

ns
ity
�A

.U
.�

FC Spectrum from D0�D1 CASSCF�11,11�

Figure 6.7. Absorption D0 → D1 absorption spectrum from
CASSCF(11,11) geometries and frequencies.

0 200 400 600 800 1000 1200 1400

0

1

2

3

Wavenumbers �cm�1
�

In
te

ns
ity
�A

.U
.�

FC Spectrum from D0�D2 CASSCF�11,11�

Figure 6.8. Absorption D0 → D2 absorption spectrum from
CASSCF(11,11) geometries and frequencies.

the observed spectrum. This suggests that the computed D1 state is closer to the

actual excited state geometry.
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6.2.1 Ab-initio Potential Energy Surface with EOM-IP-CCSD Calculations.

In order to test the hypothosis that the out of plane nature of the D1 state causes

the unknown peak at 200 cm−1, the potential energy surface of the D1 state was

constructed between the optimized D0 and out of plane D1 geometries (Fig. 6.9).

After constructing the potential energy surface of the D1 state at a resolution of .1Å,

a fourth order polynomial interpolation algorithm was used to construct a surface at

a resolution of 0.0005Å. After constructing the fine surface, the Schrödinger equation

was numerically integrated over the symmetric D1 potential energy surface along the

out of plane coordinate. By changing the boundary conditions at 0 displacement, it

is possible to find all vibrational states for the given potential energy surface. These

are then plotted in Fig. 6.9.

By finding the overlap between these wavefunctions and the ground state vibra-

tional wavefunction it is possible to determine the Franck-Condon factor for the 0→ 0

and 0→ 2 vibrational transitions. Unfortunatly, because the computed barrier is so

wide, neither transition is predicted to have any applicable intensity. This is due to

the magnitude of the out of plane motion, as can be seen in Fig. 6.3. In order to

conclude with greater certanty that the out of plane vibration is not responsible for

the 200 cm−1 peak, a CASSCF potential energy surface needs to be computed.
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Figure 6.9. EOM-IP-CCSD potential energy surface constructed by
linear displacement from planar D0 geometry to out of plane D1 ge-
ometry (black). The dots are computed points while the line is the
interpolated potential. The red, blue, and green traces are the ground,
first, and second vibrational wavefunctions along this potential.
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7. ULTRAFAST RADIATONLESS DECAY IN THE PHOTOACID

3-CYANO-6-HYDROXYCOUMARIN

In this chapter the ultrafast radiationless decay of the photoacid 3-cyano-6-hydroxycoumarin

is investigated.

7.1 Computational Methods

Calculations to determine an optimal method for large-scale condensed-phase

calculations are performed for CHCM-water cluster with CIS(D), EOM-EE-CCSD

(briefly EOM-CCSD), and TD-DFT with B3LYP and PBE0 functionals on a 6-31+G*

basis. Additionally, the basis set dependence on excitation energies was investigated

at the PBE0 level in 6-31+G*, 6-311++G**, and aug-cc-pVTZ. To facilitate these

comparisons, all calculations were performed at the PBE0/6-31+G* optimized geom-

etry. [35]

Two different solvation models are employed over the course of this work. The

Polarizable Continuum Model (PCM), an implicit solvent model, is used with default

parameters for water solvent. Additionally, an explicit polarizable solvent mode,

the general Effective Fragment Potential method, is employed. For the EFP cal-

culations, parameters for CHCM and COCM− were obtained in GAMESS using

MAKEFPruns. The 6-31+G* basis was used for obtaining electrostatic parame-

ters and 6-311++G(3df,2p) for parameters of all other terms. A standard water

potential from a fragment library was used. CHCM or COCM− was placed in a 22

box with periodic boundary conditions, to which water molecules were added using
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the GROMACS solvate box command. The EFPMD module of libefp open-source

EFP software was used for molecular dynamics simulations. [75] A 1 fs timestep and

switching functions for all EFP terms were used. The following equilibration sequence

was used: (i) geometry optimization with turned-off polarization, (ii) geometry opti-

mization with polarization turned on, (iii) 10 ps run in an NVT ensemble at 300 K

after assigning velocities from a Boltzman distribution. After equilibration, a 10ps

NVTrun was performed, with 8 geometries pulled at 1.25 ps separations. For each

frame, velocities were reassigned from a Boltzman distribution at 300K and each of

the 8 geometries was re-equilibrated using the same scheme as described above. Af-

ter equilibration, NVT production runs of 10 ps were run on each of the 8 systems.

From these runs, 32 frames were selected with a minimum separation of 0.09 ps (90

fs) where hydrogen bonding was observed between a water molecule and either the

hydroxy group of CHCM or exposed oxygen on COCM−. These 64 geometries, 32 for

each of CHCM and COCM−, were used for the calculations exploring proton transfer

pathways and absorption spectra in water solvent.

In order to validate computational methodology, B3LYP and PBE0 TD-DFT and

CIS(D) excited state calculations for CHCM-water complex were compared against

an EOM-CCSD calculation in 6-31+G* basis set. The results are presented in Table

7.1. Electronic states are characterized by a leading transition; involved orbitals are

shown in Fig. 7.5. CIS(D) excitation energies are within 0.2 eV from the EOM-CCSD

benchmark, and the order of first five states is preserved. PBE0 and B3LYP excitation

energies are systematically lower than the EOM-CCSD ones, by 0.3-0.7 eV in case

of PBE0 and 0.4-0.9 eV in case of B3LYP. Additionally, B3LYP calculations reverse

the fourth and fifth excited states, as can be seen from the values of the transition

dipole moments and verified by the orbitals. Even more importantly, the energy

difference between the first and fifth excited states is underestimated by B3LYP

by 0.5 eV with respect to EOM-CCSD. The first and fifth states are the two most

important states for understanding non-adiabatic dynamics of CHCM. Based on these

observations, B3LYP was excluded from further consideration. On the other hand,
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Figure 7.1. Proton transfer to solvent in CHCM (top) and back-
protonation in COCM− (bottom).

both CIS(D) and PBE0 accurately describe energy difference between the first and

fifth states, with corresponding discrepancies of < 0.1 eV and < 0.2 eV with respect to

EOM-CCSD. However, CIS(D) is not currently implemented with PCM polarizable

model in available to us electronic structure software, so it could not be used for

all the modeling necessary for this work. This left PBE0/6-31+G* as the optimal

methodology to investigate excited state proton transfer in CHCM in solvent.

A simple model for transferring a proton between solvent and solute was used.

From the starting geometry, which is an optimized geometry of CHCM-water dimer

in the case of PCM and gas phase calculations, or a geometry of CHCM-water dimer

extracted from a frame of EFP MD in the case of QM/EFP calculations, the hydrogen

atom from CHCM hydroxyl group was linearly displaced along the vector pointing the

water oxygen until the distance between the two becomes .94 Å (Fig. 7.1). The proton

transfer pathway was broken up into 10 increments totaling 9 equidistant intermediate
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Table 7.1.

Excitation energy (in eV) and oscillator strengths (in parenthesis) of
electronic transitions in CHCM hydrogen bonded to a single water
molecule.

Character PBE0 B3LYP CIS(D) EOM-CCSD

State 1 53 ⇒ 1 3.498 (0.119) 3.385 (0.106) 3.835 (0.429) 3.828 (0.149)

State 2 51 ⇒ 1 4.460 (0.000) 4.308 (0.000) 5.075 (0.000) 5.137 (0.000)

State 3 52 ⇒ 1 4.529 (0.479) 4.421 (0.465) 4.693 (0.250) 4.875 (0.336)

State 4 53 ⇒ 2 5.223 (0.017) 5.057 (0.013) 5.790 (0.012) 5.634 (0.112)

State 5 53 ⇒ 3 5.346 (0.000) 4.934 (0.000) 5.918 (0.003) 5.859 (0.000)

positions, a beginning point, and an ending point. Excited state calculations were

performed at these points to construct the excited state proton transfer curves.

The back-protonation mechanism was investigated similarly. In this case, a start-

ing structure was the COCM− anion and H-bonded water molecule; the final structure

was neutral CHCM and HO−.

Dependence of excitation energies on basis set size is shown in 7.2. TD-DFT PBE0

calculations with the 6-31+G*, 6-311++G**, and aug-cc-pVTZ basis sets show that

the excitation energies have little dependence on basis set, changing by less than

.05 eV. This observation allows us to safely use the smaller 6-31+G* basis for all

calculations in this study.

7.2 Absorption Properties

Experimental linear absorption spectra are compared to calculated absorption

spectra of CHCM (Fig. 7.2) and COCM−(Fig. 7.3). All calculations treat the CHCM

or COCM− molecule and a single hydrogen-bonded water quantum-mechanically. As

only a single geometry is used in the PCM and gas phase calculations, the resulting

spectrum has a stick form. Conversely, sampling of solvent configurations is accounted
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Table 7.2.

PBE0 excitation energies(eV) of the first three excited states of
CHCM in 6-31+G*, 6-311++G**, and aug-cc-pVTZ basis sets.

6-31+G* 6-311++G** aug-cc-pVTZ

S1 3.498 3.477 3.462

S2 4.460 4.433 4.420

S3 4.529 4.505 4.489

number of basis functions 299 379 851
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Figure 7.2. Absorption spectra of CHCM.(a) Experimental spectrum
in methanol / water 1/1 v/v at pH 6.5 (black) and calculated with
PBE0/EFP (red), (b) calculated with PBE0/PCM (blue) and a gas
phase PBE0 calculation (green).

for in PBE0/EFP calculations, such that a set of distinct transition energy and in-

tensity data is obtained. These sets of transition data are blurred using Gaussians

with a width of 5 nm and summed to produce the spectra seen in frame (b) of Figs.

7.2 and 7.3.

For the neutral species, the gas phase PBE0 calculations produce a spectrum in

surprisingly good agreement with experiment. All three of the lowest energy absorp-

tion bands are well replicated. Both solvation methods also provide good agreement to

the experimental spectrum, though the EFP spectrum is slightly blue shifted in com-

parison to both the experimental spectrum and the PCM method. Interestingly, the

electrostatic component of the EFP water potential produces a blue solvatochromic

shift, while the polarization component both in EFP and PCM causes a red shift. In

case of EFP, this polarization-induced shift is smaller in magnitude than the shift due
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to electrostatics. As a result, PCM and EFP solvent models predict shifts of different

signs, even though the absolute values of these shifts are small enough to ignore these

peculiar discrepancies.

The calculated gas phase spectra of COCM− are in much worse agreement with

experiment than in the neutral case. This indicates that solvent effects become more

important when the molecule is charged. Both EFP and PCM solvent methods im-

prove the agreement with the experimental spectra. However, by construction, PCM

does not account for inhomogeneous broadening of the spectral lines due to different

solvent configurations. As anions interact more strongly with the polar water solvent,

broadening becomes more pronounced in the anion than in the neutral spectra. Thus,

PCM becomes less reliable in describing solvated anion species. Conversely, the EFP

model nicely describes line-broadening and overall provides a very nice agreement

with experimental absorption spectrum.

7.3 Conical intersections in CHCM

In this section we investigate excited state proton transfer (ESPT) in CHCM using

theoretical methodology justified in the previous sections. As experimental transient

absorption spectra reveal, the excited state of deprotonated chromophore is quenched

quickly. Thus, we consider a well-known mechanism of fluorescence quenching, [76]

in which the bright excited state experiences a conical intersection with a dark state

along a proton transfer pathway. Following the procedure detailed in Computational

Detail section, we obtain electronic excited state energies by linearly displacing the

proton from the CHCM+H2O to the COCM−+H3O
+ geometry. These plots are

shown in Fig. 7.4. Indeed, the gas phase calculations, shown in frame (a), indicate

that a conical intersection between the first bright excited state, corresponding to

380 nm peak in absorption spectrum and state 1 in Table 7.1, and a dark state occurs

around 80% completion of the proton transfer process. This dark state corresponds

to State 5 in Table 7.1. However, when solvent models are used, as shown in frames
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Figure 7.3. Absorption spectra of deprotonated COCM−. (a) Exper-
imental spectrum in methanol / water 1/1 v/v at pH 9.4 (black) and
calculated with PBE0/EFP (red), (b) calculated with PBE0/PCM
(blue) and from a gas phase PBE0 calculation (green).
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(b) and (c) of Fig. 7.4, no conical intersection is observed. Both PCM and EFP

solvation models return the same result, suggesting that this effect is not an anomaly.

A failure to observe a decrease in energy for the ππ∗ state (red state in Fig. 7.4)

along the proton transfer coordinate is slightly troubling, because it indicates that

the excited state proton transfer process is not enthalpically favored even though the

process is known to be spontaneous. Two additional considerations must also be taken

into account however. First, there will also be an entropic contribution to free energy

which will almost certainly favor the COCM−+H3O
+ state. Second, the surfaces were

not relaxed geometrically, which is to say that the end point configuration has not had

the ππ∗ orbital reduced to the lowest energy geometry. This is likely why the PCM

calculation shows a smaller gain in energy for the ππ∗ state along the proton transfer

coordinate, because in these calculations the solvent degrees of freedom were allowed

to relax. The purpose of these calculations was not to determine spontaneity of the

proton transfer process but instead to see if certain states would cross, providing a

possible explanation for the de-excitation of the photoacid.

In order to rationalize disappearance of the conical intersection in solvent, the

dipole moments of the various electronic excited states are shown in Fig. 9d. It

is generally understood that polar solvents stabilize polar electronic states, i.e., the

states that exhibit large static dipole moments. As seen in frame (d) of Fig. 7.4,

the dipole moment of the dark state decreases significantly along the proton transfer

coordinate, while the dipole moments of the ground and bright states grow mono-

tonically. As a result, the water solvent destabilizes the dark state with respect to

the ground and bright states as the proton is transferred further from CHCM to ad-

jacent water. This destabilization of the dark state by solvent makes it too high in

energy to reach the conical intersection with the bright state. A similar effect was

discovered by Sobolewski and Domcke in their simulations of phenol as the number

of (quantum) solvent molecules was increased. Thus, effect of micro-solvation on

conical intersections was discussed in Ref. [77], while here we analyze the effect of

macro-solvation.
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Figure 7.4. Electronic state energy for gas (a), PCM (b),
and EFP (c) calculations as well as gas phase dipole moment
(d) as a function of proton transfer to solvent coordinate for
CHCM+H2O→CHCM−+H3O

+. The black trace (filled circle) is the
ground state, red trace (open circle) first excited (bright) state, blue
trace (filled square) second excited (dark) state. Orbital diagrams for
both the first and last molecular configurations are shown in Fig. 7.1.
While a conical intersection is observed between the first and second
electronic states in the gas phase, no similar conical intersection is
observed for the other states.
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Figure 7.5. Orbitals for neutral CHCM with H2O from the first and
last steps of Fig. 7.4. The colors of the electron configurations corre-
sponds to the state plotted seen in Fig. 7.4. Further, the red electron
configuration is state 1 and the blue electron configuration is state 5
in Table 7.1. State 1 has a non-zero transition dipole moment and
is seen in Fig. 7.2 around 350 nm, while state 5 is spectroscopically
dark.
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A failure to observe a conical intersection in CHCM+H2O complex in solution

over the course of proton transfer necessitates another look at the experimental data.

Indeed, analyzing the excremental data, there appear to be two distinct time scales

involved in the transient absorption spectra. The first occurs in a matter of a few

ps, as the peaks at 510 and 550 nm grow in. Then over a longer 40 ps time scale,

the transient absorption decays to that of the ground state anion. Since the 510

and 550 nm peaks are attributed to the absorption of the excited state anion, this

time dependence can mean that the proton transfer reaction is decoupled from de-

excitation of the chromophore. Thus we consider the possibility of non-radiative

decay of excited state of CHCM after proton transfer is complete.

7.4 Conical Intersections in COCM−

A possible alternative explanation for de-excitation of COCM− in protic solvents

is that an elongated vibration on a water molecule hydrogen-bonded coordinate to

the bare and negatively charged oxygen atom in COCM− could induce a conical

intersection between the bright and dark excited states. This mechanism can be also

referred to as ”back-protonation”. Indeed, this explanation is in accord with the

experimental data because when the deprotonated form of the photoacid is excited,

it still decays with an approximate lifetime of 40 ps, even though there is no proton

to detach. Additionally, this mechanism is consistent with the data, which indicates

that the de-excitation mechanism must be related to the presence of the hydroxyl

group on the coumarin dye.

The hypothesis of de-excitation of COCM− via back-protonation is examined sim-

ilarly to our approach for analysis of proton transfer, by linearly displacing a proton

from a water molecule hydrogen bonded to the bare oxygen atom of the deprotonated

COCM− anion. This model assumes that the proton accepted by a water molecule

during ESPT is diffused into solvent and does not remain near COCM− anion.



112

The dependence of the excitation energies on proton transfer coordinate is shown

in Fig. 7.6. These plots suggest that as the proton moves from the water molecule to

COCM− anion, a conical intersection occurs in the gas phase (frame (a) of Fig. 7.6)

and in 31 of 32 EFP trajectories (frame (c) of Fig. 7.6). The PCM trajectory shows

a conical intersection at the very endpoint (frame (c) of Fig. 7.6). Thus, these data

suggest that a conical intersection is probable in a back-protonation reaction.

The reason a conical intersection appears in the elongated vibration case, while

not in the proton transfer reaction, is due to the character of the involved states. The

low-lying dark state in elongated vibration mechanism is indeed a different state than

the state considered for forward proton transfer. Molecular orbitals characterizing

the former dark state are shown in Fig. 7.7. Importantly, in contrast to the dark

state considered in the direct proton transfer mechanism, the dark state in the back-

protonation mechanism has a large static dipole moment, as shown in frame d of

Fig. 7.6. Thus, solvent stabilizes both the dark and bright states, such that the gas-

phase picture remains valid. These observations suggest that the elongated hydrogen

vibration is a possible explanation for the de-excitation of COCM− anion in protic

solvent.

7.5 Conclusions

The photochemistry of 3-cyano-6-hydroxycoumarin (CHCM) is investigated with

steady-state and time-resolved absorption and emission spectroscopy and electronic

structure calculations. Transient absorption spectra reveal that electronically-excited

CHCM in the presence of the proton accepting solvents deprotonates, with a char-

acteristic times of 0.28 ns in MeOH and 6.5 ps in MeCN/water 1/1 v/v, accounting

for the partial or total quenching of the CHCM emission in these solvents. Thus,

CHCM can be classified as a photoacid. However, the excited anion produced in this

reaction appears totally non fluorescent and has a finite lifetime of about 40 ps in

MeCN/water 1/1 v/v. Decay of the anion excited state is a generally undesirable
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Figure 7.6. Electronic state energy for gas (a), PCM (b),
and EFP (c) calculations as well as gas phase dipole moment
(d) as a function of proton transfer to solvent coordinate for
CHCM−+H2O→CHCM+OH−. The black trace (filled circle) is the
ground state, red trace (open circle) first excited (bright) state, blue
trace (filled square) second excited (dark) state, and green trace (open
square) third excited (dark) state. Here, a conical intersection is ob-
served between the first and dark excited states in the gas phase. In
the PCM calculation only the lower of the two dark states is observed
to cross with the first excited state. Finally, in 31 of 32 EFP calcula-
tions a conical intersection is also observed between the first excited
and lower energy dark states.
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Figure 7.7. Orbitals for COCM−+H2O→CHCM+OH− in the gas
phase from the first and last steps of 7.3. The colors of the electron
configurations corresponds to the state plotted seen in 7.3. The blue
and green states have low transition dipole moments with the ground
state, so would not be spectroscopically visible.
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process for a photoacid, since it limits its potential applications. Indeed, once the de-

protonated photoacid decays back to the ground state, the molecule becomes a strong

conjugate base and re-captures the donated proton. As expected, upon replacement

of the hydroxy group with a methoxy group, the CHCM excited state is long-lived

and strongly fluorescent in all solvents.

In order to understand photo-dynamics of CHCM, specifically the observation that

fluorescence is quenched upon excited-state proton transfer, gas phase and condensed

phase electronic structure calculations are performed. Excited state calculations of

CHCM-water complex reveal that TD-DFT with PBE0 functional in 6-31+G* basis

provides sufficient accuracy in describing five lowest electronic transitions. The proton

transfer reaction is modeled by a linear displacement of proton from hydroxyl group of

CHCM toward hydrogen-bonded water. The gas phase calculations along the proton

transfer coordinate show a conical intersection between the bright excited state and a

higher-lying dark state. However, when solvent effects are introduced either implicitly

with PCM or explicitly with QM/EFP, the conical intersection no longer appears.

This is attributed to the static dipole moment of the dark state being smaller than

that of the bright state, causing solvent to destabilize the dark state, increasing the

energy gap between the two states and preventing the conical intersection between

them. This result predicts that direct proton transfer-induced de-excitation does not

occur, which is in agreement with the experimental evidence that the anion excited

state is efficiently populated.
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mechanik innerhalb der quantenmechanik. Zeitschrift Fur Physik B-Condensed
Matter, 45:455–457, 1927.

[5] H. D. Meyera and W. H. Miller. A classical analog for electronic degrees
of freedom in nonadiabatic collision processes. Journal of Chemical Physics,
70(7):3214–3223, 1979.

[6] U. Manthe, H.-D. Meyer, and L. S. Cederbaum. Wave-packet dynamics within
the multiconfiguration hartree framework: General aspects and application to
noci. Journal of Chemical Physics, 97:3199–3213, 1992.

[7] R. Kosloff. Time-dependent quantum-mechanical methods for molecular dynam-
ics. Journal of Physical Chemistry, 92:2087–2100, 1988.

[8] R. L. Fulton. Vibronic interactions. the adiabatic approximation. Journal of
Chemical Physics, 56(3):1210–1218, 1970.

[9] R. L. Fulton and M. Gouterman. Vibronic coupling i. mathematical treatment
for two electronic states. Journal of Chemical Physics, 35(5):1059, 1961.

[10] A. Witkowski. Coupling of the molecular exciton with the nuclear vibrations.
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A. APPENDIX: SAMPLE INPUT FILE FOR EV-SPECTRUM

This appendix contains an input file for EV-Spectrum.

$comment

Dimer example

2-vibrational modes

$end

$problem

nvib 2

nelec 2

neigen 30

vbasis 8 8

$end

$hamiltonian

c[1]|1><1|n[1]

c[2]|1><1|n[2]

c[3]|1><1|a^[1]

c[3]|1><1|a_[1]

c[4]|1><1|

c[5]|2><2|n[1]

c[6]|2><2|n[2]

c[7]|2><2|a^[2]

c[7]|2><2|a_[2]
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c[8]|2><2|

c[9]|1><2|

c[9]|2><1|

$end

$parameters

c[1] 550.0

c[2] 500.0

c[3] 311.1

c[4] -525.0

c[5] 560

c[6] 490

c[7] 242.5

c[8] 525.0

c[9] 110

$end

$groundfrequency

gs[1] 500.0

gs[2] 560

$end
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The theory for modeling vibronic interactions in bichromophores was introduced in sixties by
Witkowski and Moffitt [J. Chem. Phys. 33, 872 (1960)] and extended by Fulton and Gouterman
[J. Chem. Phys. 35, 1059 (1961)]. The present work describes extension of this vibronic model to
describe bichromophores with broken vibrational symmetry such as partly deuterated molecules.
Additionally, the model is extended to include inter-chromophore vibrational modes. The model can
treat multiple vibrational modes by employing Lanczos diagonalization procedure of sparse matrices.
The developed vibronic model is applied to simulation of vibronic spectra of flexible bichromophore
diphenylmethane and compared to high-resolution experimental spectra [J. A. Stearns, N. R. Pills-
bury, K. O. Douglass, C. W. Müller, T. S. Zwier, and D. F. Plusquellic, J. Chem. Phys. 129, 224305
(2008)]. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4747336]

I. INTRODUCTION

The interaction of light and matter is a fundamental phe-
nomenon whose understanding and control are quintessen-
tial for advances in science and technology. Often, quantum-
mechanical treatment of the light-induced processes can be
simplified by separating electronic and nuclear degrees of
freedom by introducing the conventional Born-Oppenheimer
(BO) approximation.1 Yet, to explain processes such as
conversion of solar to electrical energy as occurs in photo-
synthetic centers of plants and bacteria and is mimicked in
photovoltaic devices, the electronic and nuclear motions can-
not be uncoupled such that the BO approximation should
be abandoned. A wide variety of classical, semi-classical,
and quantum techniques have been suggested to simulate
dynamics in such systems.2 In classical approaches the nu-
clear wavepacket is approximated by an ensemble of parti-
cles that follow classical trajectories. Semi-classical methods
add some missing quantum effects to this picture by allowing
transitions between the electronic states, for example, through
surface hopping3 or using the mean-field approximation.4, 5

In quantum-dynamics methods the nuclear wavepacket is de-
scribed by including quantum effects, such as interference be-
tween different parts of the packet.6, 7

Alternatively, one can circumvent complexities asso-
ciated with modeling dynamics of vibronic systems and
describe their vibronic spectra statically. This can be accom-
plished by solving the time-independent Schrodinger equa-
tion with an electronic-nuclear Hamiltonian. The present
work applies the latter (static) approach to a molecular sys-
tem composed of two (nearly) identical chromophores. Such
bichromophores or molecular dimers have nearly degener-
ate electronic energy levels with an energy splitting close to
the separation in vibrational energy levels, resulting in cou-
pling of the electronic and nuclear degrees of freedom. Pio-
neering work in this direction was done by Witkowski and
Moffitt,8 who derived the Hamiltonian for a dimer with a

specific symmetry element exchanging the monomers. This
vibronic model was expanded on by Fulton and Gouterman
(FG)9, 10 by describing excited state vibrations through a se-
ries of displaced harmonic oscillators.10, 11 Following this
initial work, Siebrand and co-workers extended the theory
to Raman scattering12 and made connections to molecular
aggregates.13 Since then, this model has been applied to a
number of molecular dimers,14–19 extended to include mul-
tiple vibrational modes,20–22 and used to describe vibronic
states in more complex molecular aggregates.23, 24

The original FG vibronic coupling model is limited to
cases where the dimer has a symmetry element interchang-
ing the Hamiltonians of monomers. The symmetry element
simplifies the dimer Hamiltonian and its numerical solution.
However, at the expense of increased computational complex-
ity, the Hamiltonian can be left in the asymmetric form and,
after expanding the vibrational wavefunction in a basis, di-
agonalized numerically using the iterative Lanczos diago-
nalization routine, as previously suggested by Domcke and
co-workers.25 This approach can handle asymmetries in the
vibrational wavefunction arising from partial deuteration. The
present work describes an extension of the vibronic model
to the asymmetric bichromophores of this type. The present
work assumes that the bichromophore retains symmetry of
the electronic wavefunction. However, with evaluation of an
additional electronic integral this model can be generalized to
molecules with asymmetries in electronic wavefunction aris-
ing, for example, from asymmetric molecular orientations,
substituent groups on monomers, or from different interaction
of monomers with environment, as would occur in realistic
biological or materials systems. The present work also intro-
duces the Hamiltonian for the inter-chromophore vibrational
modes, i.e., vibrations that occur between the chromophores
themselves. The inter-monomer Hamiltonian is fundamen-
tally different from the intra-monomer one because the elec-
tronic coupling depends on the distance and orientation
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between the two monomers and thus upon the inter-monomer
vibrations.

Developments described in the present study differenti-
ate from the previously reported extensions of the original
FG vibronic model in several important aspects. For example,
while the FG model was previously extended to simulate sev-
eral vibrational modes,20–22 our implementation utilizes the
iterative Lanczos diagonalization routine that allows simulta-
neous modeling of a larger number of vibrations. The previ-
ous work on asymmetric dimers18 was focused on electronic
asymmetries while maintaining the assumption of vibrational
symmetry. This is in contrast to our model that targets vi-
brational rather than electronic asymmetry. There are also
reports on modeling inter-monomer vibrations,17, 18 which,
however, do not include the explicit modulation of the exci-
ton coupling matrix element along an inter-monomer mode.
Our work presents a general approach for modeling the inter-
monomer vibrations and explicitly includes a change of the
electronic coupling along these modes.

To characterize the developed model, a series of model
spectra are produced and analyzed. As an initial test, the ex-
tended vibronic coupling model is applied to vibronic spectra
of flexible bichromophore diphenylmethane (DPM), which
has been the subject of several spectroscopic studies over the
last half century.26–30 Application to this symmetric molecule
demonstrates the validity of the inter-monomer mode Hamil-
tonian and tests the asymmetric model in the symmetric limit.
Our future work will focus on modeling vibronic spectrum
of partially deuterated DPM (d5-DPM) that will fully utilize
asymmetric aspects of the developed model.

II. THEORY

For a bichromophore (also called dimer) composed of
two (nearly) identical monomers, the Hamiltonian can be
written as a sum of the monomer Hamiltonians and electronic
coupling VAB(L) and kinetic energy TL terms

H = HA + HB + VAB(L) + TL. (1)

The electronic coupling and the kinetic energy terms depend
on the vector of six inter-monomer vibrational modes L. In
this treatment, the electronic wavefunction of the dimer is not
antisymmetrized, i.e., the electron exchange between the two
monomers is neglected. This is a reasonable assumption for a
large class of molecules, especially when monomers are spa-
tially separated. However, the following derivations remain
true even if the electronic wavefunction of the dimer is an-
tisymmetrized, as is the case for bichromophores. Antisym-
metrization of the electronic wavefunction affects the elec-
tronic coupling VAB term that will include not only Coulomb
but also exchange component.

Vibrations considered in this model are divided into
intra-monomer and inter-monomer vibrations. Intra-monomer
modes have kinetic and potential energy terms located within
HA andHB and thus can be computed by calculations on either
monomer. The inter-monomer modes are vibrations along
the L vector introduced above. Typically, the inter-monomer
modes have much lower frequencies than the intra-monomer
modes. They cannot be obtained from monomer properties

but require (partial) knowledge of the dimer Hessian. Because
of these principal differences, the treatment of the intra- and
inter-monomer modes in the model should be different. Note
that only the intra-monomer modes were considered in the
original model and most extensions. The current paper pro-
vides the first systematic extension of the dimer vibronic cou-
pling model to the inter-monomer vibrations.

A. Intra-monomer modes

Main steps of the symmetric dimer vibronic coupling
model are repeated here in order to introduce notations and
bring into context our developments. For the intra-monomer
modes, the Hamiltonian of monomer A (and analogously for
monomer B) is written as a sum of the vibrational kinetic en-
ergy term TA(QA) and the electronic Hamiltonian hA(qA; QA),

HA = hA(qA; QA) + TA(QA). (2)

The electronic Hamiltonian depends explicitly on the electron
coordinate (qA) and parametrically on the nuclear coordinate
(QA) of monomer A. Let {ψel

i (qA; QA)}∀i≥0 be the eigenvec-
tors of the electronic Hamiltonian hA with energies Ei(QA);
{φj(QA)}∀j ≥ 0 be the eigenvectors of the vibrational Hamil-
tonian Ei(QA) + TA(QA). Since similar relationships hold for
monomer B, HA + HB will satisfy the eigenvalue problem

(HA + HB)ψel
i (qA; QA)φn(QA)ψel

j (qB ; QB)φm(QB)

= Ei,j,n,m(QA,QB)ψel
i (qA; QA)φn(QA)

×ψel
j (qB ; QB)φm(QB), (3)

where

Ei,j,n,m(QA,QB) = Ei,n(QA) + Ej,m(QB), (4)

i and j represent the level of electronic excitation on
monomers A and B, respectively. Similarly, n and m repre-
sent the vibrational excitation on either monomer.

Before introducing the electronic coupling, the energies
obey the following relation:

Ei,j,n,m = Ej,i,m,n. (5)

The degeneracy in the electronic states is split by the elec-
tronic coupling term VAB(L) in the electronic Hamiltonian
Eq. (1).

Consider now a pair of exciton states. The excitation may
occur either on monomer A or monomer B; neither double
excitations (both on A and B) nor charge-transfer excitations
(electron moves from A to B or vice versa) are considered
in this model. Thus, a two element basis is sufficient for the
electronic wavefunction

{π (1)
A = ψel

1 (qA; QA)ψel
0 (qB ; QB),

π
(1)
B = ψel

0 (qA; QA)ψel
1 (qB ; QB)}. (6)

Though the following derivations are valid for any elec-
tronic states in the monomer, for the sake of simplicity, we use
the notations corresponding to the electronic transition from
the ground state ψ0 to the first electronic excited state ψ1.
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To find algebraic expressions for the vibrational energies,
the Hamiltonian has to be expanded in the electronic basis,
resulting in the following matrix elements:〈

π
(1)
A

∣∣H ∣∣π (1)
A

〉 = TA + E(1)(QA) + TB

+E(0)(QB) + 〈
π

(1)
A

∣∣VAB

∣∣π (1)
A

〉
, (7)

〈
π

(1)
B

∣∣H ∣∣π (1)
B

〉 = TA + E(0)(QA) + TB

+E1(QB) + 〈
π

(1)
B

∣∣VAB

∣∣π (1)
B

〉
,

〈
π

(1)
A

∣∣H ∣∣π (1)
B

〉 = 〈
π

(1)
B

∣∣H ∣∣π (1)
A

〉 = 〈
π

(1)
A

∣∣VAB

∣∣π (1)
B

〉
. (8)

In case of the intra-monomer modes, VAB(L) is expanded
in Taylor series about the equilibrium position of L = 0 and
only the zero-order term is kept:〈

π
(1)
A

∣∣VAB(L)
∣∣π (1)

B

〉 � 〈
π

(1)
A

∣∣VAB(0)
∣∣π (1)

B

〉

+ ∂

∂L

〈
π

(1)
A

∣∣VAB(L)
∣∣π (1)

B

〉∣∣
L=0L

+ ∂2

∂2L

〈
π

(1)
A

∣∣VAB(L)
∣∣π (1)

B

〉∣∣
L=0

L2

2
.

(9)

The remaining terms in the Taylor expansion along with
the TL term will be considered in Sec. II B regarding inter-
monomer modes, since such vibrations affecting the relative
positioning of the monomers are anticipated to have a large
effect on coupling constant. Assuming the harmonic approx-
imation for the potential energy surface (PES) in the vicin-
ity of the minimum provides a functional form for E(0)(QA),

E(1)(QA), E(0)(QB), and E(1)(QB). For example, for monomer
A,

E(0)(QA) = 1

2
Mω2

AQ2
A, (10)

E(1)(QA) = Ee + lAQA + 1

2
Mω2

AQ2
A, (11)

where M is the reduced mass and ω is the characteristic fre-
quency of the normal mode. The displacement lA is defined as

lA = dQMω2
A, (12)

dQ is the displacement along the normal mode between ge-
ometries of the ground and excited states (see Fig. 1). For
simplicity QA = 0 is defined as the equilibrium position for
the normal mode in the ground electronic state, such that a
linear term is only present in the expression for the excited
state potential energy surface.

The integral 〈π (1)
A |VAB |π (1)

A 〉 in Eq. (7) can be evalu-
ated from standard electronic structure packages by modi-
fications of the electronic structure integral codes. Input of
this integral is one of the requirements to handling electronic
wavefunction asymmetry. However, this term is not necessary
for bichromophores with symmetric electronic wavefunction
since, by symmetry,〈

π
(1)
A

∣∣VAB

∣∣π (1)
A

〉 = 〈
π

(1)
B

∣∣VAB

∣∣π (1)
B

〉
. (13)

Thus, these terms shift all energy levels by the same quan-
tity and do not affect energy spacings. Leutwyler and co-
workers studied electronic wavefunction asymmetry in the 2-
pyridone · 6-methyl-2-pyridone dimer by adding these terms
to the Hamiltonian matrix.18

To summarize, the Hamiltonian in the electronic basis
can be written as

H =
⎛
⎝ P 2

A

2M
+ EA + lAQA + 1

2Mω2
AQ2

A + P 2
B

2M
+ 1

2Mω2
BQ2

B VAB

VAB
P 2

A

2M
+ 1

2Mω2
AQ2

A + P 2
B

2M
+ EB + lQB + 1

2Mω2
BQ2

B

⎞
⎠ . (14)

The electronic coupling (or resonance integral) VAB term can
be evaluated by a number of perturbative or supermolec-
ular techniques.31–36 In this work, the coupling is calcu-
lated as half the splitting between the exciton states of the
dimer.

In the original vibronic coupling model, the Hamiltonian
in Eq. (14) is transformed to a symmetric basis

π
(1)
+ = 1√

2

(
π

(1)
A + π

(1)
B

)
, (15)

π
(1)
− = 1

√
2

(
π

(1)
A − π

(1)
B

)
. (16)

FIG. 1. Potential energy surfaces for the ground (black) and excited (red)
electronic state along vibrational mode Q. Ee is the vertical excitation energy
and −l

Mω2 is the displacement between the two minima.
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This unitary transformation does not change the eigenvalues
of the Hamiltonian. In addition to the electronic basis transfor-
mation, Fulton and Gouterman used a vibrational coordinate
transformation from QA and QB to

Q± = 1√
2

(QA ± QB) . (17)

This step simplifies diagonalization of the Hamiltonian, but
only when the dimer has a symmetry element ensuring
lA = lB and ωA = ωB.

In order to extend the model to asymmetric dimers, the
transformation to the symmetric basis is not performed. By
expressing momentum and position operators with raising
and lowering operators and assuming a harmonic basis, the
Hamiltonian matrix elements are〈

π
(1)
A

∣∣H ∣∣π (1)
A

〉 = bA¯ωA

(√
n + 1δ(n′,n+1)

+√
nδ(n′,n−1)

)
δ(m′,m) +

(
¯ωA

(
n + 1

2

)

+ ¯ωB

(
m + 1

2

)
+ EA

)
δ(n′,n)δ(m′,m),

(18)

〈
π

(1)
B

∣∣H ∣∣π (1)
B

〉 = bB¯ωB

(√
m + 1δ(m′,m+1)

+√
mδ(m′,m−1)

)
δ(n′,n) +

(
¯ωA

(
n + 1

2

)

+ ¯ωB

(
m + 1

2

)
+ EB

)
δ(n′,n)δ(m′,m),

(19)

〈
π

(1)
A

∣∣ H
∣∣π (1)

B

〉 = 〈
π

(1)
B

∣∣H ∣∣π (1)
A

〉 = VABδ(n′,n)δ(m′,m), (20)

where n and n′ (m and m′) represent the excitation quanta of
a given normal mode for the vibration on A (B) monomer.
Dimensionless displacement parameters bA and bB are related
to lA and lB as

bA¯ωA = lA

√
¯

2MωA
. (21)

The expressions in Eqs. (18)–(20) are expanded in the vi-
brational basis. The solution generally converges rapidly, re-
quiring around five basis functions in each vibration for spec-
troscopically reasonable values of bA and bB. Convergence
with respect to the size of the basis is shown in the supple-
mentary material.37

Equations (18)–(20) can be extended in a straightforward
manner for multiple vibrational modes on each monomer. In
this case, each matrix element is a sum over Hamiltonians for
different vibrations and the basis functions are products of the
basis function from each vibration.

As pointed out by Förster and others16, 31, 38 there are
different regimes of vibronic coupling: strong, weak, and in-
termediate. The quantity that characterizes a mode as either
being strongly coupled or weakly coupled to the electronic

excitation is given as10, 11

p = 2
∣∣〈π (1)

A

∣∣VAB

∣∣π (1)
B

〉∣∣
Mω2dQ2

. (22)

Here, p 	 1 corresponds to strongly coupled systems;
p 
 1 characterizes weakly coupled systems. p � 1 de-
fines the intermediate coupling regime which exhibits the
most complicated spectra. For a vibration in the strong or
weak limit, it is possible to analytically compute the energies
and intensities.16 Application of perturbation theory to strong
and weak coupling regimes is shown in the supplementary
material.37 However, analytic solutions break down as the vi-
bration enters the intermediate coupling regime. Therefore, in
the present work, numerical diagonalization of the Hamilto-
nian using the Lanczos algorithm is employed for all cases,
resulting in what Andrzejak and Petelenz call the exact nu-
merical solution.16

B. Inter-monomer modes

To compute the eigenstates of inter-monomer vibrations,
it is necessary to account for the inter-monomer kinetic en-
ergy term, TL from Eq. (1), as well as higher order terms
from the Taylor expansion of VAB in Eq. (9). In order to
build a total Hamiltonian, the inter-monomer Hamiltonian
will be constructed in the {π (1)

A , π
(1)
B } basis and added onto

the intra-monomer Hamiltonian. However, because the inter-
monomer modes are inherently dependant on the electronic
state of the dimer, it is convenient to work in the sym-
metrized basis {π (1)

+ , π
(1)
− } as defined in Eqs. (15) and (16),

which are the eigenvectors of the dimer electronic Hamilto-
nian for molecules with only a vibrational asymmetry. So,
the Hamiltonian matrix elements of TL and VAB(L) are first
evaluated in the symmetrized basis {π (1)

+ , π
(1)
− } and then trans-

formed to the monomer basis {π (1)
A , π

(1)
B } and added to the

Hamiltonian of the intra-monomer modes. In the case of a
molecule that does not have electronic wavefunction symme-
try, a more complicated approach to finding the relationship
between the dimer electronic wavefunctions and the monomer
localized electronic basis will need to be taken, but this is be-
yond the scope of this paper.

Since the geometries of both exciton states π
(1)
+ and π

(1)
−

are different from the ground state geometry along the inter-
monomer mode L, the excited state surfaces are described as
displaced parabolas. Note that the first (constant) term of the
VAB expansion is omitted here since it is already included in
the intra-monomer mode Hamiltonian (14). Thus, for geome-
tries near the minima of the excited states,

〈π (1)
+ |VAB(L) − VAB(0) + TL|π (1)

+ 〉

= l+L + 1

2
Mω2

+L2 + P 2
+

2M
, (23)

〈π (1)
− |VAB(L) − VAB(0) + TL|π (1)

− 〉

= l−L + 1

2
Mω2

−L2 + P 2
−

2M
, (24)

where l+ and l− are the displacement parameters analogous
to the lA and lB terms in the intra-monomer mode case. In
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the dimer basis, each mode has two displacement parameters
(l+ and l−) corresponding to the displacements in the ground
state to first and second electronic excited state transitions. P+
and P− are the kinetic energy terms for the inter-monomer
mode in the exciton states. The off-diagonal terms of the
inter-monomer Hamiltonian are zero for symmetric electronic
wavefunction due to the hermicity of VAB and TL,

〈π (1)
+ |VAB(L) + TL|π (1)

− 〉 = 1

2

(〈
π

(1)
A

∣∣VAB(L) + TL

∣∣π (1)
A

〉
−〈

π
(1)
B

∣∣VAB(L) + TL

∣∣π (1)
B

〉) = 0. (25)

The reverse transformation from dimer symmetrized elec-
tronic basis into the monomer localized basis can be realized
by using the following matrix equality:[

π
(1)
A

π
(1)
B

]
= 1√

2

[
1 1

1 −1

] [
π

(1)
+

π
(1)
−

]
. (26)

Applying this matrix transformation to the VAB(L) + TL

terms results in the following form of the inter-monomer
mode Hamiltonian:〈

π
(1)
A

∣∣VAB(L) + TL

∣∣π (1)
A

〉 = 〈
π

(1)
B

∣∣VAB(L) + TL

∣∣π (1)
B

〉
= 1

2
(l+ + l−) L + 1

2

(
1

2
Mω2

+ + 1

2
Mω2

−

)
L2, (27)

〈
π

(1)
A

∣∣VAB(L) + TL

∣∣π (1)
B

〉 = 〈
π

(1)
B

∣∣VAB(L) + TL

∣∣π (1)
A

〉
= 1

2
(l+ − l−) L + 1

2

(
1

2
Mω2

+ − 1

2
Mω2

−

)
L2. (28)

The Hamiltonian described in Eqs. (27) and (28) can be
added to the intra-monomer mode Hamiltonian (Eqs. (18)–
(20)), expanded in a vibrational basis of inter- and intra-
monomer modes, and numerically diagonalized.

C. Intensities

Diagonalizing the Hamiltonian (Eqs. (18)–(20), (27)
and (28)) results in the vibrational substructure of the exci-
ton states. Evaluation of the intensities of the vibronic states
in a fluorescence spectrum is discussed in this subsection. Ab-
sorption intensities can be derived analogously.

Following Fulton and Gouterman,10 the transition dipoles
of a symmetric R+ and antisymmetric R− excited state to the

ground state are

R+ =
∫ ∫

ψ1(q; Q,L)∗M+ψ0(q; Q,L)dq

φ1(Q,L)∗φ0(Q,L)dQdL, (29)

R− =
∫ ∫

ψ1(q; Q,L)∗M−ψ0(q; Q,L)dq

φ1(Q,L)∗φ0(Q,L)dQdL, (30)

where ψ1(q;Q, L) is the initial (excited state) electronic wave-
fucntion of the dimer, φ1(Q, L) is the initial vibrational wave-
function, ψ0(q; Q, L) and φ0(Q, L) are the final (ground state)
electronic and vibrational wavefunctions (the latter is not nec-
essarily the wavefunction with no vibrational excitations).
M+ and M− are the symmetric and antisymmetric transition
dipole operators. The evaluation of R+ shall now be demon-
strated while R− can be obtained analogously. Assuming that
the electronic wavefunction is not strongly affected by the
changes in vibrational coordinates, the integral over electronic
coordinates and transition dipole operator may be factored out
of the integral over nuclear coordinates. Expanding ψ1(q) in
the vibrational basis results in

ψ1(q) = π
(1)
A

∑
n

∑
m

∑
p

CA
n,m,pφn (QA) φm (QB) φp (L)

+π
(1)
B

∑
n

∑
m

∑
p

CB
n,m,pφn (QA) φm (QB) φp (L) ,

(31)

where {CA
n,m,p, CB

n,m,p} are the expansion coefficients repre-
senting the dimer vibrational wavefunction on the basis of
monomer vibrational wavefunctions. Equation (31) can be
transformed into the symmetrized electronic dimer basis by
applying Eq. (15). It is easy to see that the evaluation of the
symmetric transition dipole moment R+ reduces to calcula-
tion of the vibrational overlap integral and the purely elec-
tronic transition dipole moment (TDM) between the ground
and symmetric excited state π

(1)
+ ,∫

π
(1)
+ M+ψ0dq. (32)

The transition dipole moment between the symmetric dipole
operator and antisymmetric wavefunction is zero by a symme-
try argument. This is explicitly shown in the supplementary
material.37 Thus, Eq. (29) can be rewritten as

R+ = 1√
2

∫
π

(1)
+ M+ψ0(q; Q)dq

(∫ ∑
n

∑
m

∑
p

CA
n,m,pφn (QA) φm (QB) φp (L) φ0(Q,L)dQdL

+
∫ ∑

n

∑
m

∑
p

CB
n,m,pφn (QA) φm (QB) φp (L) φ0(Q,L)dQdL

)
. (33)
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The final state vibrational wavefunctions are combina-
tions of wavefunctions corresponding to various vibrational
modes, φ0(Q, L) = φi(QA)φj(QB)φk(L), where i, j, and k rep-
resent the excitation level on A, B, and inter-monomer vibra-
tions, respectively. Assuming orthogonality of the vibrational
wavefunctions and the parallel mode approximation,39 the ex-
pression in Eq. (33) reduces to

R+ = 1√
2

∫
π

(1)
+ M+ψ0(q; Q)dq

(
CA

i,j,k + CB
i,j,k

)
. (34)

The transition dipole corresponding to the transition from
the antisymmetric electronic state is

R− = 1√
2

∫
π

(1)
− M−ψ0(q; Q)dq

(
CA

i,j,k − CB
i,j,k

)
. (35)

The intensity is proportional to a square of the transi-
tion dipole moment. The total spectrum may be obtained by
summing the intensities of the peaks corresponding to the
symmetric and antisymmetric transitions. Note that transi-
tions in asymmetric bichromophores may have mixed sym-
metric/antisymmetric character.

III. MODEL SPECTRA

In this section, general behavior of a model vibronically
coupled bichromophore system is considered. In particular,
spectra of asymmetric chromophores, i.e., chromophores with
different vibrational frequencies or displacements of a normal
mode, and spectra of inter-monomer modes are discussed.
Model spectra showing the differences between the strong,
weak, and intermediate coupling regimes as well as the inter-
action between multiple vibrations are shown in the supple-
mentary material.37 In all figures in this section and the sup-
plementary material,37 transitions through the antisymmetric
TDM are shown in red while transitions through the symmet-
ric TDM are shown in blue.

Various effects of asymmetry in intra-monomer vibra-
tional modes are illustrated in Figs. 2–4. The asymmetry of
the vibrational mode is controlled by parameter δ, with δ = 0
corresponding to a symmetric vibration, i.e., vibration that is
identical on monomers A and B. Figure 2 shows a case when
vibrational modes on monomers have different frequencies.
The interesting effect arising due to this asymmetry is split-
ting of the vibrational peaks in the absorption spectrum. In-
terestingly, the progression off the S1 state favors the higher
energy vibration while the progression off the S2 state favors
the lower energy one. The picture does not change when the
symmetries of S1 and S2 states are switched: the lowest state
exhibits the more intense progression in a high-frequency vi-
bration. Splittings of the vibrational peaks are also observed
in the corresponding emission spectra, but intensities of the
split lines are almost equal.

A different case of asymmetry arises when the vibrational
modes on the monomers have different displacements be-
tween the ground and excited state. Such asymmetries are ex-
pected to occur in deuterated molecules because deuteration
changes the normal mode vectors, and thus the displacements
to the excited state geometry. Model spectra corresponding
to the mode in strong coupling regime are reported in Fig.
3. Despite the fact that the frequencies of the two vibrations
are identical, the absorption spectrum shows energy splittings
in the Frank-Condon progressions both off S1 and S2 origins.
Similar to the case of the asymmetric frequencies, the lower
frequency peak has lower intensity off S1 and higher intensity
off S2. However, unlike the case with asymmetric frequencies,
the intensity of the S1 origin and S1 band is depleted suggest-
ing that the vibration with higher b value is coupled to the
S1 state. Different from the case of asymmetric vibrational
frequencies, no splitting is present in the emission spectra be-
cause the emission levels are governed by the ground state
frequencies.

In the previous example (Fig. 3), the vibration is in the
strong coupling limit. In Fig. 4, the vibrational mode with
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FIG. 2. Model spectra of one intra-monomer vibrational mode in strong coupling regime with different frequencies on either monomer. ωA = 150 cm−1,
ωB = 150 + δ cm−1, bA = bB = 1.0, VAB = 400 cm−1. The first row is absorption, the second row is S1 emission, and the third row is S2 emission. δ = 0 in
(a)–(c); δ = 30 cm−1 in (d)–(f); δ = 75 cm−1 in (g)–(i).
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FIG. 3. Model spectra of one intra-monomer vibrational mode in strong coupling regime with different displacements on either monomer. ωA = ωB

= 150 cm−1, bA = 1.0, bB = 1.0 + δ, VAB = 400 cm−1. The first row is absorption, the second row is S1 emission, and the third row is S2 emission.
δ = 0 in (a)–(c); δ = 0.3 in (d)–(f); δ = 0.6 in (g)–(i).

asymmetric displacements is placed in the weak coupling
regime. In this case, the asymmetry is manifested in mix-
ing of S1 and S2 progressions, i.e., as the asymmetry is in-
creased, each peak in the absorption spectrum has a mixture
of the symmetric and antisymmetric character. The peak cor-
responding to the S2 origin gains intensity while the higher
vibrational energy levels in the S2 emission spectrum are re-
duced in intensity. Another interesting effect observed in these
spectra is the increase of the splitting between the S1 and S2

origins upon increasing asymmetry between the modes.
Finally, the properties of the inter-monomer vibrations

are examined. In the considered examples, the S1 state is anti-
symmetric and S2 is symmetric. As discussed above, the inter-
monomer vibrations may have different displacement and fre-

quency parameters for the first and second excited states of a
bichromophore. In the first series of spectra, shown in Fig. 5,
the effect of changing an excited state frequency is investi-
gated. As demonstrated in Fig. 5, changing the S1 frequency
for an inter-monomer mode results in corresponding change
in the vibrational progression off the S1 origin, while main-
taining the same vibrational pattern for the progression off the
S2 state. Both the S1 and S2 emission spectra retain the same
vibrational spacing because these progressions are dictated by
the ground state vibrational states which are independent of
whether the molecule was in the S1 or S2 excited states.

The effect of different displacements between the S1

− S0 and S2 − S0 states (bS− and bS+ parameters, respec-
tively) is investigated in Fig. 6. When the bS− displacement is
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FIG. 4. Model spectra of one intra-monomer vibrational mode in weak coupling regime with different displacements on either monomer. ωA = ωB

= 300 cm−1, bA = 0.6, bB = 0.6 − δ, VAB = 50 cm−1. The first row is absorption, the second row is S1 emission, and the third row is S2 emission.
δ = 0 in (a)–(c); δ = 0.2 in (d)–(f); δ = 0.4 in (g)–(i).
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FIG. 5. Model spectra of one inter-monomer vibrational mode with different frequencies in the ground and first and second excited states of the dimer.
VAB = 300 cm−1, b− = b+ = 0.8 in all spectra. ωg·s = ω− = ω+ = 100 cm−1 in (a)–(c); ωg·s = 100 cm−1, ω− = 150 cm−1, ω+ = 100 cm−1 in (d)–(f);
ωg·s = 100 cm−1, ω− = 150 cm−1, ω+ = 80 cm−1 in (g)–(i). The first row is absorption, the second row is S1 (S−) emission, and the third row is S2 (S+)
emission. Changing the frequency of one state does not change the spacing between frequency levels for the other state.

decreased, the Frank-Condon progression off the S1 origin in
absorption and emission is depleted, while the S2 bands re-
main unaffected. Similar effects are observed in the spectra of
diphenylmethane, analyzed in Sec. IV. In those spectra, the
low frequency inter-monomer vibrations T and T̄ appear in
the S1 but not S2 florescence spectra.

IV. MODELING VIBRONIC SPECTRUM
OF DIPHENYLMETHANE

In this section the extended FG model is applied to sim-
ulate vibronic spectra of the bichromophore DPM. Zwier
and co-workers have gathered high-resolution absorption and
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FIG. 6. Model spectra of one inter-monomer vibrational mode with different displacement parameters for the S1 and S2 states of the dimer. VAB = 300 cm−1,
ωg·s = ω− = ω+ = 100 cm−1 in all spectra. b− = b+ = 0.8 in (a)–(c); b− = 0.4, b+ = 0.8 in (d)–(f); b− = 0.0, b+ = 0.8 in (g)–(i). The first row is absorption,
the second row is S1 (S−) emission, and the third row is S2 (S+) emission. Changing the displacement for one state allows to suppress the Frank-Condon
progression on this state while keeping it on the other.

Downloaded 30 Aug 2012 to 128.210.142.153. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions

132



084112-9 Nebgen, Emmert, and Slipchenko J. Chem. Phys. 137, 084112 (2012)

TABLE I. Intra-monomer vibrational parameters for diphenylmethane as
found from B3LYP/cc-pVTZ calculations on toluene.

Expt. ωa Calc. ω Quenching Basis
Assignment (cm−1) (cm−1) b p factorb functionsc

6a0
1 554 530 0.26 3.4 Simulated 2

6b0
1 622 639 0.43 1.1 Simulated 5

110
1 749 748 0.05 68 1.0 ...

10
1 822 801 0.65 0.36 Simulated 7

120
1 1006 1023 0.73 0.23 0.81 ...

18a0
1 1035 1054 0.39 0.77 0.97 ...

9a0
1 1204 1206 0.43 0.54 0.89 ...

19b0
1 1447 1535 0.02 129 1.0 ...

aDPM experimental frequencies from Ref. 29.
bQuenching factors used to compute the effective electronic coupling as in Eq. (36) for
modes not directly included in the simulation (“simulated”). The product of all quench-

ing factors is
∏N

i=1 e
−b2

i = 0.48.
cNumber of vibrational basis functions used in modeling.

emission spectra of the first two singlet excited states of DPM
and we will follow their notations for labeling the DPM vi-
brational modes.29

A. Computational details

Vibrational frequencies and displacement parameters for
each vibration as well as an electronic coupling term and
relative transition dipole moments of S1 and S2 are required
as input for the vibronic model. The parameters for intra-
monomer modes were obtained from density functional the-
ory (DFT) and time-dependent density functional theory (TD-
DFT) calculations on toluene which is considered to be a
“monomer” of diphenylmethane. The ground and first ex-
cited state geometries of toluene were optimized with B3LYP
functional40–42 in the cc-pVTZ basis set43 with the Q-Chem
electronic structure package.44 Vibrational frequencies of the
ground state of toluene were obtained at the same level of
theory. ezSpectrum software45 was used to find the displace-
ments between the ground and first excited state geometries
on the basis of the ground state vibrational vectors. These
displacements were converted into b parameters; the normal
modes with the largest b parameters and corresponding p val-
ues (Eq. (22)) are listed in Table I. The number of vibrational
basis functions needed for convergence for different b values
is determined from extensive testing shown in supplementary
material.37

To obtain the parameters for the inter-monomer modes,
one needs to perform electronic structure calculations on the
S0, S1, and S2 states of the dimer (DPM). The parameters
obtained from DFT and TD-DFT B3LYP/cc-pVTZ compu-
tations are summarized in Table II. The experimental spectra
of DPM reveal progressions along five low-frequency inter-
monomer modes: symmetric and antisymmetric torsions T
and T̄ , symmetric and antisymmetric R and R̄ modes, and the
butterfly mode β (shown in supplementary material37). From
those, parameters of R and R̄ were computed in a standard
way, i.e., S0, S1, and S2 states of DPM were optimized (the
constrained optimization with fixed values of torsional angle
corresponding to the T mode was employed for S2), then the

TABLE II. Inter-monomer vibrational parameters as found from B3LYP/cc-
pVTZ calculations on S0, S1, and S2 states of diphenylmethane.

ωS0 (ωg.s.) ωS1 (ω−) ωS2 (ω+)
Assignment (cm−1) (cm−1) (cm−1) bS1 (b−) bS2 (b+)

T̄ 22.5 38.3 ...a −0.02 −0.06
T 38.5 47.9 35.2 0.60 0.60
β 68.1 62.0 67.5 −1.0 1.2
R̄ 191 192 105 0.0 0.0
R 225 202 157 −0.62 −0.08

aNo real-value frequency could be obtained.

displacements between the ground and the first and second ex-
cited state geometries were found on the basis of the ground
state vibrations.

Due to an anharmonic nature of the other three modes
and extreme sensitivity of parameters to the level of theory
employed, their parameters were obtained from PES calcula-
tions. Namely, potential energy slices were constructed along
normal mode vectors of each mode starting from the S1 state
geometry and employing 0.002 Å

√
amu displacement incre-

ments in either direction of the vibrational vector. TD-DFT
B3LYP/cc-pVTZ calculations were performed to find ener-
gies of S1 and S2 states at each of these geometries. For
each vibration, the S1 and S2 energies were fit to parabolas,
from which frequency and displacement parameters were ex-
tracted. As an example, plots of the energies and parabolic
fits for the T mode are shown in Fig. 7. However, while this
procedure improved agreement between experimental and
calculated values of the low-frequency modes compared to
the direct calculation of Hessians of the S1 and S2 states, it
still resulted in overestimated frequencies for all modes and
strongly overestimated displacement for the β mode. It should
be noted, however, that the β mode is governed by an inter-
play of covalent and non-covalent, in particular dispersion,
interactions between the aromatic rings, and as such is ex-
tremely sensitive to the level of theory.

In order to improve the agreement with the experimen-
tal spectra, some of the parameters for inter-monomer modes
were adjusted. The butterfly mode β that reveals very little
intensity in the experimental spectra was excluded from mod-
eling. The resulting set of inter-monomer parameters is pre-
sented in Table III.

Vertical splittings between the first and second elec-
tronic excited states of DPM were computed by a num-
ber of electronic structure methods, including TD-DFT with
various functionals (B3LYP, BP86,46, 47 and long-range and

TABLE III. Adjusted (fitted to experimental spectra) inter-monomer vibra-
tional parameters. Calculated values were kept where appropriate.

ωS0 (ωg.s.) ωS1 (ω−) ωS2 (ω+) Basis
Assignment (cm−1) (cm−1) (cm−1) bS1 (b−) bS2 (b+) functionsa

T̄ 10.0 23.0 10.0 −0.02 −0.06 8
T 20.0 28.3 20.0 1.40 0.0 12
R̄ 191 275 105 0.0 0.0 3
R 225 285 188 −0.55 −0.08 7

aNumber of vibrational basis functions used in modeling.
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TABLE IV. Vertical S1 − S2 splittings computed at the ground state opti-
mized geometry.a

Level of theory S1 − S2 splitting (cm−1)

EOM-CCSD/cc-pVDZ 430
ωB97X-D/cc-pVTZ 549
BP86/cc-pVTZ 539
B3LYP/cc-pVTZ 1069

aMP2/cc-pVTZ ground state geometry was used in these calculations.

dispersion corrected ωB97X-D (Ref. 48)), and equation-of-
motion coupled cluster with single and double excitations
method49–52 (EOM-CCSD) (see Table IV). Apparently, the
value of splitting is sensitive to the level of theory, with the
best estimates provided by EOM-CCSD and TD-DFT with
ωB97X-D. This results in the electronic coupling, taken as a
half of the splitting, in the range of 215 − 275 cm−1. Includ-
ing quenching factor due to high-frequency (weakly-coupled)
vibrational modes not explicitly included in the simulation
(see Table I) results in the effective electronic coupling

V
eff

AB = VAB

N∏
i=1

e
−b2

A,i
2 e

−b2
B,i
2 = VAB

N∏
i=1

e−b2
i , (36)
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FIG. 7. Potential energy surfaces of the symmetric torsion T mode in (a) the
second excited state, (b) the first excited state, and (c) the ground state. The
abscissa is the displacement from the optimized S1 geometry. Energy scales
in frames (a)–(c) are different because near the S1 minimum, the PES of the
S1 state is dominated by second order effects while PESs of the other two
states are dominated by first order effects.

where bA,i and bB,i are displacements for the ith mode on
monomer A and B, respectively. In the symmetric case, as
in DPM, bA,i = bB,i. Using the parameters in Table I, this re-
sults in an effective coupling in the range of 103 − 132 cm−1.
The coupling constant used for modeling DPM spectra was
taken as 155.8 cm−1. All simulated peaks were modeled by
Gaussians with a standard deviation of 1 cm−1.

B. DPM spectra

Using simulated parameters for intra-monomer vibra-
tional modes (Table I), partly fitted parameters for inter-
monomer vibrational modes (Table III), and effective cou-
pling constant VAB = 155.8 cm−1, theoretical spectra for
DPM were computed as shown in Fig. 8. Comparison of the
experimental and theoretical low-frequency absorption spec-
tra (Fig. 8(a)) shows a quantitative agreement both in peak
positions and intensities. In particularly, one can clearly rec-
ognize a progression along the torsional mode T, with peaks
at 27, 54, and 81 cm−1. The peak at 43 cm−1 is the second vi-
brational state of T̄ (i.e., T̄ 2), while the first vibrational quanta
are not present. This is because the intensity in the T̄ mode
is originated due to a frequency change rather than a dis-
placement between the electronic states. Therefore, only even
quanta of this mode gain non-zero intensity. Small displace-
ment along the T̄ mode ensures that the electronic transition
dipole moment that is formally dependent on this mode stays
constant and the Condon approximation (Eqs. (34) and (35))
is valid.

As follows from decomposition of the absorption
spectrum into symmetric and antisymmetric components
(Fig. 8(b)), the origin of the second excited state appears at
about 123 cm−1, in agreement with experimental assignment.
The intensity of S2 origin is well reproduced by a S1/S2 TDM
ratio of 2.08 : 1, which is in close agreement with the 1.98 : 1
ratio computed at the ωB97X-D/cc-pVTZ level of theory.

Analysis of the emission spectrum from the S1 origin
(Fig. 8(c)) shows that the peak at 63 cm−1, missing in the sim-
ulated spectrum, is due to the β mode that was excluded from
simulations, as mentioned above. Another inter-monomer
vibration, R, reveals itself in an intense line at 221 cm−1. This
peak is well reproduced by the ab inito computations, with
only a minor correction in the displacement parameter. All
intra-monomer modes, 6a0

1 , 6b0
1, and 10

1, are reasonably well
described by ab initio calculations, with frequency discrepan-
cies not exceeding 30 cm−1. The 111

0 vibration with frequency
748 cm−1 was not included in the calculation due to a lack of
intensity in the S2 emission spectrum (Fig. 8(d)). There is also
a nice agreement between theory and experiment in the high-
frequency peaks due to intra-monomer vibrations in the emis-
sion spectrum of the S2 origin (Fig. 8(d)). It is very encourag-
ing that the model spectrum accurately predicts the change in
intensity of vibronic bands in the S1 and S2 emission spectra,
even though there is no parameter that directly controls that
intensity ratio.

The obviously missing part of the modeled S2 emission
spectrum is the so called “clump” emission around 100 cm−1.
As proposed by Zwier and co-workers, these bands are not
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FIG. 8. DPM spectra produced from parameters in Tables I and III with an electronic coupling constant of 155.8 cm−1. Comparison of the calculated (red) and
experimental (black) absorption spectra is shown in (a). Breakdown of the calculated spectrum by the electronic state, with the red trace representing the S1
(anti-symmetric) state and the blue trace representing the S2 (symmetric) state in (b). (c) and (d) Comparisons of the calculated (red) and experimental (black)
emission spectra from the S1 and S2 origins, respectively.

vibronic progressions off the S2 state but emissions from the
S1 vibrational bands that gain their intensity due to the en-
ergetic proximity to the S2 origin.29 Indeed, the simulation
produces two vibronic S1 states (with very low intensity)
within ±10 cm−1 of the S2 origin. One of them is mainly
composed of T 3T̄ 3 hot band, and another one is a mixture
of T 5T̄ and T 6T̄ . We mimicked the “clump” emission spec-
trum by producing emission spectra from these two vibronic
states and adding them in equal proportions, and fitting the in-
tensity of the combined spectra to the experimental “clump”
emission. The resulting spectrum is provided in Fig. 9. The
modeled “clump” spectrum qualitatively reproduces the ex-
perimental emission in the region 0−200 cm−1, with a low-
intensity region from 0−80 cm−1 followed by a clump of
peaks. Thus, our results are in accord with assignments sug-
gested by Zwier.29

V. CONCLUSIONS

The vibronic model has been extended to treat asymmet-
ric molecules and inter-chromophore vibrational modes. Sev-
eral vibrational modes can be considered simultaneously by

0 250 500 750 1000

Relative Wavenumbers (cm−1)

In
te

ns
ity

FIG. 9. S2 “clump” emission spectra. The calculated spectrum (in red) is
produced by adding S2 emission spectrum as in Fig. 8(d) with emissions from
energetically close S1 vibrational states. Experiential spectrum is in black.

means of Lanczos diagonalization of the sparse Hamiltonian
matrix. Considered model spectra provide detailed analysis
of the theory, including effects of simultaneous modeling of
several modes and effects of asymmetries in different kinds in
intra- and inter-monomer vibrations.

Modeling of the vibronic spectra of DPM demonstrates
applicability of the developed model to real-life bichro-
mophores. It is found that obtaining accurate parameters
for the FG model may be challenging, especially parame-
ters for the low-frequency inter-monomer modes that require
computations of optimal geometries and vibrational frequen-
cies of a bichromophore. However, inclusion of the inter-
monomer modes is essential for modeling spectra of flexi-
ble bichromophores. Using the computed parameters for the
intra-monomer modes and partly fit parameters for the inter-
monomer modes, the experimental absorption and emission
spectra of DPM were successfully reproduced. Additionally,
a qualitative modeling of the clump emission spectrum was
provided, even though a more rigorous theoretical framework
may be needed in order to provide physically meaningful
rather than fit representation of this region.

Future work will include applications of the developed
model to asymmetrically deuterated diphenylmethane and
other related asymmetrically substituted bichromophores, as
well as extensions of the vibronic model to electronic asym-
metries and tri- and multi-chromophore complexes.
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