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ABSTRACT 

 
 
 
London, Jeremi S. Ph.D., Purdue University, December 2014. The Impact of National 
Science Foundation Investments in Undergraduate Engineering Education Research: A 
Comparative, Mixed Methods Study. Major Professor: Monica F. Cox. 
 
 
 

The U.S. invests billions of taxpayers’ dollars in research tied to the national 

priorities that contribute to its competitiveness in a global economy. As the federal funding 

agency with an explicit focus on engineering education, the National Science Foundation 

(NSF) contains a portfolio of projects focused on improving the quantity of engineering 

graduates and the quality of engineering programs. Within the agency, the Division of 

Undergraduate Education invests approximately $190 million (FY 2012) annually on science, 

technology, engineering and mathematics (STEM) education projects. Although the DUE 

portfolio includes a suite a projects with different foci supporting national initiatives and 

Principal Investigators (PIs) report their results in annual reports and conferences, there is 

little consistency on how impact is defined, evaluated, and measured.   

While many agree on the importance of investing in research, the stiff economic 

climate necessitates that the research that demonstrates impact is what will continue to be 

supported. However, the dearth of scholarship on impact contributes to the lack of 

understanding around this topic.  This study links the fragmented literature on impact to 

form a unified starting point for continuing the conversation. While existing literature 
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includes three dimensions of research impact (i.e., scientific, societal, and domain-specific 

impact), this study focuses on the domain-specific impacts of engineering education research 

using two guiding frameworks, namely, Toulmin’s Model (1958) and the Common 

Guidelines for Education Research and Development (Earle et al., 2013), and a multiphase 

mixed methods research design (Creswell & Plano Clark, 2011).  

The qualitative phase of this study explores how researchers on NSF-funded STEM 

education R&D projects talk about the impact of their work; the findings reveal eight themes 

that are commonly discussed when PIs articulate the impact of their research, and two 

themes related to how they support their claims. The findings also indicate that the STEM 

discipline associated with the study and the project focus have more to do with the types of 

impact PIs claim than the amount of funding awarded to the project. As a result of 

identifying the points of alignment between PIs’ perspectives on impact and existing 

literature, a preliminary description of what impact looks like in this context is proposed—

using the three dimensions of research impact as an organizing framework. Although this 

study puts forth a preliminary description of the impact of STEM education research, 

extensions of this work are necessary before providing practitioners and policymakers with a 

valid, comprehensive framework characterizing what impact means in this context. 

Ideas supporting the types of claims PIs make when discussing the impact of their 

work were used to develop a survey that was distributed to a small sample of current and 

former NSF Program Officers (POs) in the second phase of this study.  The survey results 

provide preliminary evidence on how PIs and NSF PO’ perspectives on research impact 

compare, and affirm that additional studies are needed. Consequently, implications for policy 

and practice and potential research directions are also discussed.



 

       1 

 

1 

CHAPTER 1: INTRODUCTION 
 
 
 

In 2013, the U.S. government invested $140 billion in basic and applied research 

(Sargent Jr, 2013). Federal investments in research support national security, public health, 

technological innovation, global economic competitiveness, and workforce development 

(National Academies Press, 2011). The most targeted investments in workforce development 

are in federal programs designed to increase knowledge in the science, technology, 

engineering and mathematics (STEM) fields and the attainment of STEM undergraduate and 

graduate degrees (Government Accountability Office, 2012). In 2010, thirteen government 

agencies administered over $3 billion to support more than 200 STEM education programs 

across educational levels and in informal learning environments (GAO, 2010). Of the 

thirteen agencies, the National Science Foundation (NSF) received the most funding, $1.1 

billion, and administered 37 programs, the second largest number of STEM education 

programs within a single agency (GAO, 2010, p. 10).  

NSF is an independent federal agency created by Congress in 1950 whose 

overarching mission is “to promote the progress of science” in the U.S. (NSF). Apart from 

the Department of Education, NSF is the only federal agency which --as part of its mission-- 

supports science and engineering education projects from kindergarten to graduate 

education and beyond (GAO, 2012; NSF). Although NSF has a relatively small budget in 

comparison to other federal funding agencies, it is the funding source for approximately 
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24% of all federally supported research projects conducted in America’s colleges and 

universities (NSF). 

To understand the significance of this study, it is necessary to describe the general 

process associated with supporting a NSF-funded research project. See Figure 1. 

 

Figure 1: General Process for Supporting a NSF-Funded Research Project 

 

This process formally begins when NSF program officers (POs) draft a Request for 

Proposals (RFP), which is a description of a program that could potentially address an issue 

of national importance. The RFP includes program goals and objectives, a logic model 

(indicating inputs, activities, outputs and expected outcomes) and a budget request. The 

program description is sent to government officials who review all requests for federal funds 

from all federal agencies. Based on national-level priorities, government officials make 
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decisions about what should or should not be funded. This is an important step in the 

process since these programs are supported by taxpayers’ contributions.  

Assuming the proposed NSF program is funded, NSF publicizes the RFP as an 

invitation for researchers across the country to submit grant proposals in response to the 

elements of the program description. Once proposals have been received, NSF organizes 

panels of reviewers who evaluate the content and quality of the research proposal based on 

two general NSF criteria (i.e., intellectual merit and broader impacts) and alignment with 

programmatic goals. POs then use the panel evaluations as apart of the decision making 

process to determine whether or not to fund the proposed research. If a researcher is 

granted funding, the proposed study may begin on the date approved by the PO.  

Each year, researchers conducting NSF-funded projects (also known as Principal 

Investigators or PIs) submit an annual report summarizing the progress and the outcomes of 

their study. At the end of the grant cycle, PIs submit a final report; this is the final step in 

this process. Under ideal circumstances, the next step would include an evaluation to 

determine if the aggregate project outcomes align with the expected outputs and outcomes 

in the program description. This is a vital step for determining the impact of federal 

investments in research; however, this is missing from the current process. This gap is the 

motivation for this study.  

The NSF-funded projects of interest in this study are undergraduate engineering 

education projects, which are primarily funded by NSF’s Division of Undergraduate 

Education (DUE). DUE has an annual budget of approximately $190 million (FY 2012) 

(Education and Human Resources Directorate, 2013) to fund projects that advance its 

mission: “to promote excellence in undergraduate STEM education for all students” (NSF). 
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DUE’s programmatic activities represent a comprehensive approach to “strengthening 

STEM education at two- and four-year colleges and universities by improving curricula, 

instruction, laboratories, infrastructure, assessment, diversity of students and faculty, and 

collaborations” (NSF). DUE funds nine general areas of STEM research: biological sciences, 

chemistry, computer science, engineering, geological sciences, interdisciplinary, research and 

assessment, and social/behavioral sciences. Based on FY2011 – FY2013 data for one of 

DUE’s largest core research and development (R&D) programs (i.e. “Transforming 

Undergraduate Education in STEM” or “TUES”), engineering received 25% of the awards 

and 18.4% of the funding (NSF, 2013b). In both cases, this represents the largest allocation 

across all disciplinary areas. This is one reason for focusing on engineering education 

research in this study; additional reasons are provided in the rest of this chapter. The 

remaining sections of this chapter elaborate on each step of the process depicted in Figure 1 

in light of the focus on federal investments in undergraduate engineering education. 

 

Engineering Education: A National Priority 

With the increase in global challenges surrounding renewable energy, resilient 

infrastructure, and reliable healthcare, an engineer’s role in society cannot be overstated 

(National Academy of Engineering, 2008b). Given that these problems are not confined to 

any single geographic region or population, finding solutions to them will have local, 

national, and global implications. The United Nation’s UNESCO Engineering Initiative 

(2012) is one indicator of the interest among leaders worldwide in the training and success of 

the next generation of engineers who can tackle these issues. U.S. leaders concerned about 

the nation’s global competitiveness are particularly interested in the education of engineers in 
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the U.S. since “engineering impacts the health and vitality of a nation as no other profession 

does” (NAE, 2004, p. 37).  

The surge of recent publications produced by the National Academy of Engineering 

(2004, 2005a, 2008a, 2010), the National Research Council (1999b, 2003, 2012), and the 

President’s Council of Advisors on Science and Technology (2010, 2012) speak to the 

increasing interest in engineering education among U.S. policy makers at the highest levels of 

government. The bachelor’s degree in engineering is the first professional degree for 

practicing engineers (NAE, 2004) unlike in other professions –such as medicine and law– 

where the first professional degree is oftentimes earned after completing a non-specialist 

(liberal arts or science) degree. According to the NSF/National Center for Science and 

Engineering Statistics (2008), nearly half of all scientists and engineers (49%) employed in 

industry, government, nonprofit sectors or are self-employed have a bachelor’s degree as 

their highest degree. Therefore, for most practicing engineers the undergraduate engineering 

degree is the only one they will pursue. In light of this, it is important to ensure that 

undergraduate engineering programs are equipping graduates with the competencies they 

will need to effectively respond to and influence society’s greatest technological and social 

needs. 

The quality of engineering education in the U.S. is a national priority. It is difficult to 

articulate all of the quality issues, but Froyd, Wankat, and Smith (2012) discuss five major 

shifts in engineering education that have occurred over the last 100 years. These shifts not 

only highlight the major trends in this field, but also underscore many of the most pressing 

issues facing engineering educators and engineering education researchers. The five shifts 

relate to: 1) what and how engineering content should be taught; 2) changes in accreditation 
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processes that emphasize outcomes-based assessments; 3) an emphasis on the engineering 

design process as a critical part of engineering education; 4) applications of learning science 

and social-behavioral research to educate engineers; and 5) use of the latest technology in 

engineering education. Collectively, important issues such as these affect the overall quality 

of undergraduate engineering education. 

For the past decade, however, the focus has not only been on improving the quality 

of engineering education, but increasing the number of engineering graduates as well 

(Jackson, 2002; NAE, 2002; 2004, 2005a, 2010; NRC, 2007; NSTC, 2013; PCAST, 2010; 

2012). NSF (2013c) national data reports that less than 5% of all bachelor’s degrees awarded 

in the U.S. between 2001 and 2010 were in engineering disciplines. Some concerns about a 

shortage of engineers are motivated by the aging engineering workforce and fear that the 

statistics depicting the engineering pipeline suggest that there will not be a sufficient number 

of engineers to satisfy impending workforce demands (IBM, 2003; NRC, 2007). For many, 

the shortage of engineers poses a threat to the U.S.’ global competiveness, especially as the 

number of engineers in competing countries –particularly China and India– continues to 

rapidly increase (Wadhwa, Gereffi, Rissing, & Ong, 2007). Many reports conclude that this 

shortage of engineers could have serious ramifications for the U.S. if the trend is not 

reversed (NAE, 2010; NRC, 2007; The National Commission on Mathematics and Science 

Teaching for the 21st Century, 2000). 

On the other hand, there is an opposing view surrounding the “shortage” of 

engineers in the nation’s workforce (Butz et al., 2003; Charette, 2013; Guess, 2008; Kennedy, 

Taylor, Urquhart, & Austin, 2004; Lowell & Salzman, 2008; Teitelbaum, 2004, 2007). 

Researchers that oppose the argument of a shortage of engineers in the U.S. recommend a 
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shift from a focus on the perceived shortage to either: (1) improving our understanding of 

engineering workforce demands (Butz et al., 2003; Teitelbaum, 2007; Wadhwa, 2007), (2) 

increasing engagement in global collaborations to address technological needs (Lynn & 

Salzman, 2006, 2009); (3) conducting deeper analysis of the data to evaluate shortages in the 

context of discipline-specific needs or underrepresented groups (Lowell & Salzman, 2008; 

Salzman & Lowell, 2008; Wadhwa, 2011); or (4) improving the type of engineering graduate 

(Salzman & Lynn, 2010). More recently, however, the cry for more engineers and 

conversations about “shortages” has begun to resound beyond U.S. borders (Blau, 2011; 

Fackler, 2008; Richardson, 2012; Silverman, 2010; Srinivas, 2013; UK Parliament, 2012). 

Thus, even in other nations that are perceived as having engineering prominence, policy 

makers have come to a similar conclusion that there is a need for more engineers.  

 

Research, the Path to Achieving National Priorities 

There have been calls for more and better engineers for decades. However, 

“[b]usiness, academic, and government leaders across the engineering enterprise have 

repeatedly remarked that systematic research of how we educate engineers must be the path by 

which we transition from episodic cycles of educational reforms and move to continuous, 

long-lasting improvements in our education system” ("The Research Agenda for the New 

Discipline of Engineering Education," 2006, pp. 259, ephasis added).  

Two articles published in consecutive years of the premier scholarly journal for the 

field of engineering education (Haghighi, 2005; "The Research Agenda for the New 

Discipline of Engineering Education," 2006) indicate that the turn of the 21st century was a 

pivotal time for this area of research. In the first of the two publications, “Quiet No Longer: 
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Birth of a New Discipline”, Haghighi (2005) writes a short, galvanizing piece about what the 

academic discipline of engineering education needs in light of the national calls for more and 

better engineers. A coherent research agenda is first and foremost among the short list of 

needs. The second of the two publications builds directly on the first by providing that 

research agenda; it includes five focal areas for engineering education research ("The 

Research Agenda for the New Discipline of Engineering Education," 2006, pp. 259-261): 

Area 1–Engineering Epistemologies: Research on what constitutes 

engineering thinking and knowledge within social contexts now and into the future. 

Area 2—Engineering Learning Mechanisms: Research on engineering 

learners’ developing knowledge and competencies in contexts. 

Area 3—Engineering Learning Systems: Research on the institutional 

culture, institutional infrastructure, and epistemology of engineering educators.  

Areas 4—Engineering Diversity and Inclusiveness: Research on how 

diverse human talents contribute to solutions to the social and global challenges and 

relevance of our profession.  

Areas 5—Engineering Assessment: Research on, and the development of, 

assessment methods, instruments, and metrics to inform engineering education practice 

and learning. 

Because there are many points of overlap between the five research areas and the two 

overarching national priorities surrounding engineering education (i.e., to increase the 

number of engineering graduates and improve the quality of their education), this research 

agenda represents how the engineering education research community conceptualizes one 

path from the status quo to addressing these national priorities (Haghighi, 2005). Thus, the 



9 

       9 

 

research agenda also hints at how engineering education researchers might utilize federal 

investments in this area of study. Because of the size of federal investments in engineering 

education research and what is at stake, taxpayers and stakeholders at the various levels want 

to know the extent to which federal investments are leading to desired outcomes; they are 

interested in understanding the impact of these investments (National Science and 

Technology Council, 2008a, 2008b). 

 

National Interest in Understanding Research Impact 

Recently, it has become imperative for federal agencies to prioritize initiatives that 

lead to insights about the promise of proposed research and the impact of research that has 

been conducted. This has not always been the case, however. Science, the Endless Frontier 

(Bush, 1945), a report given to President Franklin D. Roosevelt by his science advisor, put 

forth the rationale that research should be viewed as inherently valuable because of the 

importance of the knowledge that results from it-- even if the advances in knowledge could 

not be applied immediately. But this perspective is not widely shared among policymakers 

and the public today (Bornmann, 2012; Doz, Santos, & Williamson, 2001; NSTC, 2008a; 

2008b).  

There are two main reasons for this new focus. One reason is the push around the 

world for better infrastructure that supports better practices in: decision-making, 

management of R&D portfolios, documentation of the impact of investments in research, 

and the grounding of future research programming plans in compelling evidence (Bornmann 

& Marx, 2014; Fealing, Lane, Marburger III, & Shipp, 2011; NSTC, 2008b). In the U.S., this 

push starts at the White House. In correspondence sent to leaders of federal agencies 
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preparing FY2011 budgets, they were asked to: “develop ‘science of science policy’ tools that 

can improve management of their research and development portfolios and better assess the 

impact of their science and technology investments” ("Memorandum for the Heads and 

Executive Departments and Agencies" as cited by Fealing, Lane, Marbuger III, & Shipp, 

2011, p. 2). This further reinforces the shift in perspectives that prioritize activities that lead 

to insights on impact. 

 There is another reason why there is a shift in focus to the impact of research. Given 

the current economic climate, there is an even greater need to allocate federal resources 

more wisely. Moreover, there are conflicting funding priorities among those who have a 

stake in publicly supported research: on one hand, there are a number of social and 

technological problems that require the expertise of researchers (Bush, 1945; FIRST Act of 

2014 2014; National Academy of Engineering, 2005b), but as Bornmann (2012) says, “…the 

growth of scientific research during the past decade has outpaced the public resources 

available to fund it” (p. 637).  This makes for a very competitive environment for agencies 

and researchers requesting funds. As a result, those making request for funds will need to 

make strong cases that defend the link between federal investments in R&D and national 

priorities. The research that will continue to be federally supported is research that 

demonstrates impact.  

Although all researchers are being asked to demonstrate impact, education 

researchers face unique pressures to demonstrate the impact of federal investments in 

research. The National Research Council report (2002), Scientific Research in Education, cites 

four key problems that underlie the lack of public support for education research: problems 

associated with research quality, fragmentation of research efforts, oversimplification of the 
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role of research in education reform, and the longstanding disconnect between education 

scholarship and practice  (Lagerman, 2000; Kaestle, 1993; Sroufe, 1997; Levin and 

O’Donnell, 1999; NRC, 1992; NRC, 2001d as cited by NRC, 2002). (The latter stems from a 

long history of education researchers and practitioners operating in different spheres, and 

rarely exchanging insights to inform one another’s work (Lagerman, 2000, Mitchell and 

Haro, 1999, as cited by NRC, 2002)). In addition to these external pressures, STEM 

education researchers expect their colleagues to demonstrate the impact of their work so that 

the findings can inform decisions to pursue activities that promote undergraduate STEM 

education and abstain from those that do not (Miller & Pasley, 2012; National Science and 

Technology Council, 2008a).  

 

Overseeing NSF’s Research Portfolio 

Because NSF is the federal funding agency with an explicit focus on supporting 

engineering education and makes the largest allocations in their area, the agency’s practices 

for overseeing its research portfolio will be discussed in this section. NSF programs are held 

accountable for the program-level outcomes of their investments and hold PIs accountable 

for the outcomes of their funded projects. DUE (and NSF, in general) uses various 

processes to facilitate this- (1) review criteria, (2) annual reports, (3) PIs conferences, and (4) 

program evaluations. The basis of proposal evaluations primarily rests on two general NSF 

criteria (i.e., intellectual merit and broader impact) (National Science Board, 2011) and the 

alignment of the proposed study with programmatic goals. If awarded the funding, PIs must 

submit annual and final reports that provide updates on the status of completion and 

outcomes of the proposed activities. The reports are submitted to a repository and are only 
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viewable by NSF employees, and thus not available to the public for review or critique. 

Grantees on active grants are expected to participate in periodic (e.g., bi-annual) PI 

conferences where they interact with other PIs and share updates on their work. Abstracts of 

the funded works are later compiled into a report and sometimes made publicly available 

online (e.g., NSF (2013a)).  These three reporting mechanisms are useful for accountability 

and for allowing researchers to document individual project outcomes.  

Although NSF has well-established criteria for selecting which proposals to fund and 

standard processes for sharing project-related updates during the grant lifecycle, a consistent 

way to determine the extent to which federally funded projects are making a difference is 

lacking (Allen et al., 2008; National Science and Technology Council, 2008a, 2008b; U.S. 

Department of Education, 2007). The current reporting mechanisms capture individual 

project outcomes but do not facilitate comparisons of impact across projects or over time. 

Given the vast amount of information contained in the project reports, it is also difficult to 

quickly aggregate projects results, determine program-level impacts, and make funding 

decisions based on past results. Oftentimes, these insights are garnered via the fourth 

accountability measure mentioned above, program evaluations (e.g., (Eiseman, Fairweather, 

Rosenblum, & Britton, 1996). However, such program evaluations necessitate extensive 

time, resources, and expertise (Rossi, Lipsey, & Freeman, 2004) and lead to reports that are 

oftentimes not circulated broadly enough for the wider research community to make use of 

the findings.  

Lane and Bertuzzi (2011) sum up the problem this way: “The current scientific data 

infrastructure is based on identifying, funding, and managing high-quality science, not on 

understanding its impact” (p. 678). Without a way to characterize and ultimately evaluate the 
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impact of NSF-funded research and education projects, it will continue to be difficult to 

determine the extent to which NSF’s investments in undergraduate engineering education 

are affecting the quality of engineering education or the quantity of engineering graduates in 

the U.S. This problem is the motivation for this study. 

 

Statement of Research Motivation & Significance 

In short, the U.S. invests millions of taxpayers’ funds in undergraduate engineering 

education research via the National Science Foundation, hoping that these investments will 

lead to improvements in the quality of engineering education and an increase in the number 

of engineers. NSF uses various mechanisms to oversee its research portfolio, but the current 

documentation processes are not sufficient for providing the meaningfully insights about the 

impact of NSF investments in research, particularly to those outside of the agency. The need 

for better decision-making in this stiff economic climate necessitates that the research that 

demonstrates impact is what will continue to be federally supported. Thus, exploring what 

impact looks like in this context would be valuable to policymakers, researchers, and 

practitioners alike.  

In a paper on frameworks and review articles Schwarz, Mehta, Johnson, and Chin 

(2007) define a framework as the “exposition of a set of assumptions, concepts, values, and 

practices that constitutes a way of understanding the research within a body of knowledge” 

(p. 41). Over the last decade, frameworks have been developed to characterize the impact of 

research in domains such as health science research (Donovan & Hanney, 2011; Kuruvilla, 

Mays, Pleasant, & Walt, 2006) and arts & humanities research (Levitt et al., 2010). These 

frameworks help provide a shared language and understanding of impact as researchers 
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communicate among themselves and share impact insights with those outside the 

community. However, within the context of engineering education, there is no shared 

vocabulary for discussing the impact of research, or a framework that characterizes the 

impact of federal investments in undergraduate engineering education research. This study 

seeks to begin to fill this gap in the literature. More specifically, this study begins to add to 

the body of knowledge by exploring how researchers on NSF-funded undergraduate STEM 

education R&D projects talk about the impact of their work, and how this compares with 

Program Officers’ perspectives on impact. An understanding of how these two stakeholders 

think about impact is an appropriate first step toward the development of a conceptual 

framework that characterizes the impact of NSF investments in undergraduate engineering 

education R&D projects.  

 

Organization of this Dissertation 

Chapter 1 of this dissertation included the background of this study. Chapter 2 

provides a synthesis of the bodies of literature that support this work. Chapter 3 includes the 

description of the frameworks guiding the data collection and analysis. Chapter 4 describes 

an overview of the methodology associated with this two-phased mixed methods study. 

Chapters 5 and 6 include the methods and results corresponding to the first phase of this 

study, respectively. The next two chapters include the methods and results corresponding to 

the second phase of this study, respectively. The last two chapters, Chapters 9 and 10, 

include a discussion about the results and their implications, and the conclusion. 
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CHAPTER 2: REVIEW OF RELEVANT LITERATURE 
 

 
 

This chapter includes a review of the literature that supports this study on the impact 

of federal investments in undergraduate engineering education research. It is important to 

acknowledge that there have been other reviews of the literature on the topic of research 

impact (Bornmann, 2013; Jonathan Grant, Brutscher, Kirk, Butler, & Wooding, 2010; Salter 

& Martin, 2001; Walter, Nutley, & Davies, 2003), and there are areas of overlap in this 

chapter. Although good contributions to an area that is sorely lacking, these reviews have 

some deficiencies. For example, the definitions of research impact mentioned in existing 

literature do not capture the emerging dimension of impact that corresponds to 

characterizing research in a particular domain; and the recent U.S.-based initiatives to study 

this topic more aggressively are absent from the existing reviews. Additionally, the series of 

difficulties associated with studying the impact of research and the limited number of 

existing research impact frameworks are sprinkled across co-existing, disconnected bodies of 

literature, and the connections between them have not been articulated. The most significant 

advances in this field of study on impact will result from weaving the disconnected bodies of 

work together into a more comprehensive review of the literature on this topic. 

 This chapter has four main sections. The first section, “Describing Research 

Impact”, includes a brief discussion of research and impact, in general, and concludes with a 

definition of research impact. The second, “Difficulties with Studying Research Impact”, 
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summarizes all of the difficulties in the literature into three major categories. The third 

section, “Existing Studies on Research Impact”, is a synthesis of the collections of literature 

that are most relevant to studying the impact of federal investments in undergraduate 

engineering education research. The last section is a brief acknowledgement of some of the 

STEM education research that is tangentially related to the topic of impact. 

 

Defining “Research Impact” 

“At its core, scientific inquiry is the same in all fields. Scientific research, whether in 

education, physics, anthropology, molecular biology, or economics, is a continual process of 

rigorous reasoning supported by a dynamic interplay among methods, theories, and 

findings” (National Research Council, 2002, p. 2). Six guiding principles that undergird all 

scientific inquiry are: 1) pose significant questions that can be investigated empirically; 2) link 

research to relevant theory; 3) use methods that permit direct investigation of the question; 

4) provide a coherent and explicit chain of reasoning; 5) replicate and generalize across 

studies; and 6) disclose research to encourage professional scrutiny and critique (National 

Research Council, 2002). The disclosure of research is what allows researchers to formally 

join a conversation with other scholars who care about related topics, and is a prerequisite 

for “improv[ing] if not the whole world, at least [their] corner of it” (Booth, Colomb, & 

Williams, 2008, p. 11). An improvement in a corner of the world as a result of research is 

one way of conceptualizing research impact. 

One problem with studying impact –in a research context or otherwise— is that 

there is no definitive meaning of the term and is oftentimes used interchangeably with other 

terms (e.g., outputs, third steam activities) (Brewer, 2011; Martin, 2007).  One of the 
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broadest definitions of impact in the literature is proposed by Halse and Mowbray (2011) 

who intended to capture a more “conventional meaning” of impact by defining it as “an 

affect that is a consequence or result of a particular process, event, action or phenomenon” 

(p. 51). However, Brewer (2011) describes impact as a proverbial terrain traversed by three 

groups of people: (1) those in the policy evaluation tradition (who often use impact to 

denote the involvement of ‘users’ as a critical part of the evaluation process); (2) those who 

are part of the audit culture in higher education (who use it as a mechanism for responding 

to questions surrounding accountability to the public); and (3) those who are part of the 

philosophy and sociology of knowledge tradition (who are concerned with the social 

production of knowledge). Each group’s definitions of impact are often influenced by the 

motivations and priorities of key factions, which is why impact varies according to these 

three principal groups.  

Although Brewer (2011) states that “there is no common ground between these 

extremes and no shared vocabulary to facilitate a universal conversation” (p. 255), STEM 

education researchers Lande, Adams, Chen, Currano, and Leifer (2007) coined the term 

“Scholarship of Impact” and developed a framework that may begin to constitute a 

connection across the impact terrain. In it, they define impact as “the measurement or 

evidence of change” (Lande et al., 2007, p. 2) while elaborating on the need for “impact 

studies”, research which seeks to have greater synergy by essentially closing the gap between 

research and practical problems” (Lande et al., 2007, p. 2). According to this framework, one 

of the features of a good impact study is that researchers (in their case, engineering 

education researchers) are intentional about meeting the needs of the intended ‘users’ (e.g., 

educators) by including them in the early stages of the study, and not simply at the end when 
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it is time to share the research findings. The idea of involving users in the process of 

conducting research not only aligns with those in the policy evaluation tradition, but also 

those interested in the social production of knowledge.  While the motivation for this study 

(See Chapter 1) is related to perspectives of those in the policy evaluation tradition and the 

audit culture of higher education, the focus is on characterizing research impact in a 

particular domain and, as a result, most closely aligns with the philosophy and sociology of 

knowledge tradition. 

Within this community of scholars, there are two competing definitions of what 

constitutes research impact (Donovan, 2011). For the purposes of this study, these two 

facets of research impact will be referred to as “scientific impact” and “societal impact”. 

Scientific impact refers to advances in reliable knowledge (theories, methodologies, models, and 

facts) that primarily influence academic communities (Bornmann, 2013; Bornmann & Marx, 

2014; Donovan, 2011; Godin   Dore , 2005). Societal impact, on the other hand, is broadly 

conceived as research results that influence social, cultural, environmental/natural, or 

economic capital of a nation (Bornmann, 2013; Bornmann & Marx, 2014; Donovan, 2011). 

Examples of this might include: stimulating new approaches to social issues; informing 

policy; improving our understanding of how we relate to one another’s society and culture; 

reducing waste and pollution; and increasing productivity (Bornmann, 2013).    

There is a general consensus around various aspects of scientific impact (i.e., what it 

is, how it is measured, who benefits, etc.) (Spaapen & van Drooge, 2011), and this 

understanding is fairly consistent across research domains. The ways in which it is measured 

is oftentimes related to the publications resulting from a study; such measurements are 

general practice across disciplines, and relate to standards of scientific rigor.  Existing 
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literature on the scientific impact of research is advanced—as indicated by scholarly journals, 

annual research conferences, and even some specialists (e.g., bibliometricians) (Bornmann, 

2013). This is not the case for the societal impact dimension of research impact. Societal 

impact is less clear, harder to measure, and looks different across domains (Bornmann, 2013; 

Holbrook & Frodeman, 2011; Lane, 2009). For example, the way a set of engineering 

research results ultimately influence the environment will differ from how the results of a 

biological sciences study may– but both types of research results align with the 

environmental-facet of societal impact.  There are no scholarly journals or research 

conferences dedicated to societal impact, and insights on this topic are in disconnected 

bodies of literature associated with various disciplines.  

Bornmann states that there is “no direct link between the scientific quality of a 

research project and its societal value” (Bornmann, 2012, p. 673); said differently, there is 

not direct connection between the scientific and societal impact of a research project. Part of 

the reason for this may be because these two facets of research impact, though relatively 

comprehensive, do not capture the type of impact that is emerging in the literature. More 

recently, there has been an increase in the number of frameworks developed to characterize 

what this study calls domain-specific impact. Unlike scientific impact, which has little regard for 

the content of the research itself, and societal impact, which is too abstract to give the finest 

resolution to impact that occurs before it is realized at the societal level, the domain-specific 

dimension of research impact primarily focuses on what impact looks like in context.  

Domain specific-impact is the influence of the methods or results of a R&D project on 

the people, priorities, and/or processes in the context of interest. Research impact 

frameworks have been developed for characterizing the impact of research in fields such as 
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medicine (Donovan & Hanney, 2011; Kuruvilla et al., 2006) and arts & humanities research 

(Levitt et al., 2010).  Some of the impact descriptors in the frameworks are not unique to the 

context of interest and align with scientific and societal impact (e.g., research impacts: 

publications and papers in Kuruvilla et al. (2006) and “impacts on policy” in Levitt et al. 

(2010)). However, impact descriptors like “health literacy” and “quality of care” are unique 

to health science research (Kuruvilla et al., 2006), just as “preservation of heritage” and 

“leisure and entertainment” (Levitt et al., 2010) are forms of impact that are more likely to 

be found among arts & humanities research and not in research, in general. (The literature 

review section entitled Disciplinary Perspectives on Research Impact provides the constructs of the 

frameworks that have been developed to explore research impact in specific disciplines.) 

In short, research impact has three dimensions: scientific impact, societal, and 

domain-specific; Figure 2 presents the definition corresponding to each dimension for ease 

of reference.

 

Figure 2. Defining the Three Dimensions of Research Impact 

Scientific Impact:  

Advances in reliable knowledge (theories, methods, facts, models) 
that primarily influence academic communities 

Domain-specific Impact:  

Influence of  the methods or results of  an R&D project on the 
people, priorities, and/or processes in the context of  interest 

Societal Impact:  

Research results that influence social, cultural, 
environmental/natural, or economic capital of  a nation 



 

       21 

 

21 

Although defined as three distinct dimensions, they do overlap: in many ways, one 

dimension enables another. Furthermore, the three dimensions can be understood together 

in terms of their order of impact. Societal impact –advances in reliable knowledge— is an 

example of a first order impact because the extent of the results is limited to conversations 

taking place among scholars with similar interests. Once the execution of the methods or the 

outcomes of a study begin to influence the context of interest –domain-specific impact—, 

the impact of the study is extending beyond conversations among scholars; this is an 

example of a second order impact. Finally, the aggregate influence of a particular line of 

research on national priorities –societal impact— is a third-order impact.  

All three dimensions of research impact are important for studying federally funded 

studies, and are included in what is meant by the use of the term “impact” and “research 

impact” in this study. While the results of this study may include some insights on the 

scientific aspect of research impact in the context of interests (the area that has been studied 

the most extensively), its primary focus is on the societal and domain-specific impact of 

undergraduate engineering education research. 

 

Difficulties with Studying Research Impact 

Existing literature on research impact includes a myriad of difficulties associated with 

studying the impact of research. However, a synthesis of this literature has resulted in three 

categorizations across three headings: difficulties associated with connecting impact with 

research or the researcher; difficulties associated with assessment and evaluation; and 

difficulties associated with interpretations of impact. The following sections explore each of 

these headings in more detail. 
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Difficulties Associated with Connecting Impact with Research or the Researcher 

The attribution problem is one of the most commonly cited reasons why studying 

impact is so difficult (Bornmann, 2013; Godin   Dore  , 2005; Jonathan Grant et al., 2010; 

Martin, 2007; Rymer, 2011; J. E. Scott, Blasinsky, Dufour, Mandai, & Philogene, 2011; 

Spaapen & van Drooge, 2011). This is the difficulty with attributing impact to particular 

research projects or other inputs; this problem is also referred to as impact accretion. The 

reasons it is so difficult to make attributions is because impact diffuses through time and 

space, and all research builds on earlier research. Moreover, as research and development 

becomes more global, it is nearly impossible to make attributions to a particular research 

project or researcher; this is called the internationality problem (Bornmann, 2013; Martin, 2007). 

A similar challenge is referred to as the causality problem: the difficulty with tying impacts to 

causes (Bornmann, 2013; Martin, 2007).  Additionally, the impact of research oftentimes 

depends on people outside of the research system (e.g., others who make intellectual and 

financial investments) (Rymer, 2011). Together, these issues make it difficult to connect the 

impact of research with a particular research project or researcher. 

 

Difficulties Associated with Assessment and Evaluation of Impact 

The difficulties associated with the assessment and evaluation of the societal and 

domain-specific impact of research relates to what should be assessed and how; when the 

evaluation should take place and who is qualified to conduct it; and unintended 

consequences of assessment and evaluation. One of the major issues with assessing impact 

starts with data. Unlike the data available for measuring the scientific impact of research, 

there is a lack of data on the societal impact of research (Spaapen & van Drooge, 2011); this 
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is also true for domain-specific impact. The place for collecting data on impact is somewhat 

illusive—where one looks to observe it is not always apparent. Furthermore, the data this is 

available in dispersed across federal agencies and research institutions, and is not formatted 

consistently (Lane & Bertuzzi, 2011). Additionally, the current data infrastructure does not 

allow one to easily track connections between research and societal outcomes and are 

inadequate for decision-making (Fealing, Lane, Marburger III, et al., 2011; Lane & Bertuzzi, 

2011; NSTC, 2008b). As it relates to how impact should be assessed, there are limits on the 

extent to which the impact of research can be quantified, and quantifying the research 

outcomes is not easy (Lane, 2009). Linear assessment models assume that the outputs of 

research are always a codified form of new scientific knowledge; however, this approach 

ignores knowledge that cannot be codified –for example, tacit knowledge that exists among 

trained people— but is just as important (Martin, 2007).  Martin (2007) justifiably argues that 

there are “no perfect measures [of impact], only partial and imperfect indicators” (p. 10).   

There are two difficulties associated with the timing of the assessment of impact. 

The evaluation timescale problem states that the timing of the evaluation will affect the impacts 

that are observed (Bornmann, 2013; Martin, 2007). This issue is particularly important in this 

context given that stakeholders plan to use the insights from impact research to inform 

decision-making— decisions will be made based on the information available at the time, 

not on what may happen in the future. Another time-related issue is the temporality problem.   

This is the time span between research and its embodiment in products, processes or social 

practices (Lane & Bertuzzi, 2011; J. E. Scott et al., 2011; Spaapen & van Drooge, 2011).  

“The time between the performance of research and when its benefits become apparent can 

be significant, unpredictable, and differ for different kinds of research” (Rymer, 2011, p. 3). 
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Some postulate that “it may take years, or even decades, until a particular body of knowledge 

yields new products or services that affect society” (Bornmann, 2012, p. 673). Rymer (2011) 

recommends assessing the impact of research in terms of what it aimed to achieve and 

capable of producing, not based on all the impacts that are possible. 

Yet another problem associated with assessing societal impact of research is 

determining who should conduct the assessments. One logical recommendation is for 

researchers to conduct assessments of research impact. Researchers, however, tend to have 

one of two responses to such requests: feelings of disinterest or feelings of inadequacy 

(Bornmann, 2013; Holbrook & Frodeman, 2011; Spaapen, Dijstelbloem, & Wamelink, 

2007). “Scientists generally dislike impact considerations, which they often see as challenging 

their authority and undermining the autonomy of the scientific enterprise” (Holbrook & 

Frodeman, 2011, p. 244).  On the other hand, some researchers feel they do not have 

adequate expertise to evaluate the societal impact of research since such requests are beyond 

their disciplinary expertise (Holbrook & Frodeman, 2011).  Because identifying the 

appropriate people to conduct assessments of research impact is an important part of 

studying it, researchers’ feelings of disinterest or inadequacy add to the challenges associated 

with studying this topic. 

While there is value in generating ways to assess and measure impact in ways that 

take the aforementioned difficulties into consideration, there could also be a danger 

associated with conducting such assessments and evaluations.  One potentially negative 

consequence of measuring the impact of research is that it can distort behavior (Rymer, 

2011). Instead of using an improved understanding of impact to inform research decisions, 

researchers may begin to use it to drive their research. Researchers may begin to strive for the 
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impact that gets measured, as opposed to conducting research based on guidelines of 

scientific inquiry (National Research Council, 2002). 

 

Difficulties Associated with Interpretations of Impact 

If all stakeholders viewed impact the same way, it would be easier to study the 

dimensions of research impact. This is not the case, however.  There are three difficulties 

associated with interpretations of impact. The societal impact and domain-specific impact of 

research will vary based on the scientific work, since the research results will affect different 

aspects of society and the contexts of interest. As a result, there is no one model for 

assessing research impacts that will fit all research types, disciplines and institutions around 

the world (Bornmann, 2013; Martin, 2011; Molas-Gallart, Salter, Patel, Scott, & Duran, 2002; 

Rymer, 2011). Thus, any existing research impact assessments developed for one purpose 

will need to be modified to be relevant and applicable to another context of interest. In 

addition to the fact that impact looks different in different contexts, impact can come in 

different magnitudes: sometimes impact is very large but oftentimes it is very modest 

(Rymer, 2011). Rarely will all stakeholders agree on the worth of the impact (Rymer, 2011).  

There is one final point related to the difficulties associated with studying the societal 

impact of research. It is easy to assume that impact implies a benefit or advancements. 

However, it is important to remember that impact may not always be desirable or positive 

(Bornmann, 2013; Martin, 2011). Moreover, there may be instances where the same research 

impact can be interpreted as positive, negative, or neutral—depending on the stakeholder’s 

perspective (Bornmann, 2013; Martin, 2011; Rymer, 2011). Despite all the difficulties 
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associated with studying societal and domain-specific impact, there are studies that have 

begun to address this topic. 

 
Existing Studies on Research Impact 

The literature on characterizing and evaluating the societal and discipline-specific 

impact of research is fragmented. There are four collections of studies that provide a 

foundation for this current study; linking research impact to hierarchies based on 

organizational and disciplinary structures is one way to weave the four collections of 

literature together. This proverbial hierarchical structure of these four bodies of literature 

would include four levels: a global, national, organizational, and disciplinary level.  At the top 

of this hierarchy of literature are studies related to global initiatives focused on research 

impact. Because the current literature on research evaluation initiatives taking place outside 

of the U.S. do not include U.S.-based efforts, the second level includes studies centered on 

U.S.-specific attempts to describe and measure research impact. Level three includes the 

activities of federal funding agencies, specifically NSF, to understand the impact of their 

investments. The lowest level of studies on research impact includes discipline-specific 

studies focused on impact.    

Governments around the world, federal organizations, and disciplines are institutions 

–whether physical or conceptual— that have something in common: they exist to engage in 

activities that promote a mission and set of priorities. Conducting evaluations is the way 

such institutions determine the extent to which the mission and priorities are achieved. 

Impact, to a large extent, is organizationally driven because the impact that is observed is 

usually with reference to an institution’s mission and priorities and how impact is defined 

and evaluated in that context. As a result of this, any studies on impact that occurs at the 
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highest levels of the hierarchy cannot give the highest level of resolution about the impact 

that will be realized at lower levels. The remainder of this section summarizes the work on 

research impact from a global perspective, national perspective, NSF perspective, and 

disciplinary perspective. The consistencies between these bodies of work will also be 

discussed. This chapter concludes by articulating the gap in the literature that this study seeks 

to fill. 

 

Level 1: Global Perspectives on Research Impact 

Research evaluation systems at the highest levels of government around the world 

are the first collection of work that provides a basis for this study on the use of public funds 

to support undergraduate engineering education research. Bozeman and Sarewitz (2011) 

define research evaluation as “any systematic, data based (including qualitative) analysis that 

seeks as its objective to determine or forecast the social or economic impacts of research and 

attendant technical activity” (p. 8). Thus, societal impact is the dimension of research impact 

that is of most interest in the research evaluations conducted at the national level around the 

world. A 2010 study conducted by the RAND corporation, a global policy think tank, 

provides an international review of how research agencies around the world are assessing 

research impact (Jonathan Grant et al., 2010). (The literature review section entitled Linking 

the Global and U.S.-based Perspectives on Research Impact provides more specific information on 

how impact is conceptualized and measured at this level.) 
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Level 2: U.S.-based Perspectives on Research Impact 

One set of activities that were not captured in the RAND report and other literature 

on national evaluation systems around the world, but align with the other assessments 

therein, is the recent U.S.-based efforts to understand and measure research impact. What 

links the Global Perspectives on Research Impact and the U.S.-based Perspectives on Research Impact is 

the national-level focus on societal impact. In 2008, the National Science and Technology 

Council (NSTC) produced a document entitled, The Science of Science Policy: A Federal Research 

Roadmap. “The science of science policy (SoSP) is an emerging field of interdisciplinary 

research, the goal of which is to provide a scientifically rigorous, quantitative basis from 

which policy makers and researchers can assess the impacts of the Nation’s scientific and 

engineering enterprise, improving their understanding of its dynamics, and assess the likely 

outcomes” (NSTC, 2008b, p. 1). NSF’s Science of Science and Innovation Policy (SciSP) 

program is responsible for supporting and managing this portfolio of research awards 

(OSTP, 2010). The first SciSP awards were funded in 2007 and by 2013, 145 awards had 

been made (NRC, 2014a). PIs conducting this research include economists, sociologists, 

political scientists, psychologists and domain scientists. While the SoSP research is still a 

developing field, the NRC report of the PIs’ conference organized the most recent SciSP 

awards by the following categories: adoption and diffusion of knowledge, understanding the 

impact of structures/process on science, advancing understanding of entrepreneurship and 

innovation, new approaches to studying science and innovation, implementing science 

policy, measuring and tracking science and innovation (NRC, 2014a). In light of this 

synopsis, it is reasonable to suggest that although SoSP work is focused on societal impact, 

the collection of studies in this emerging field of research may sometimes include insights on 
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scientific impact and domain-specific impact as well. Although the SoSP work is still 

unfolding, a SoSP handbook (Fealing, Lane, Marburger III, et al., 2011) has been written to 

capture highlights of the U.S.-based work thus far.  

In the U.S., the development of the STAR METRICS (Science and Technology for 

America’s Reinvestment: Measuring the EffecT of Research on Innovation, 

Competitiveness, and Science) is arguably the most notable of the SoSP activities focused on 

measuring the impact of federally-supported research in the U.S. (Lane, 2009, 2010; Lane & 

Bertuzzi, 2011). STAR METRICS is a recently established partnership between a set of 

federal agencies and universities established to identify and/or develop mechanisms to 

document and/or measure the outcomes of federal investments in research.  When the 

project was envisioned, it included two phases. Phase I focused on the “development of 

uniform, auditable, and standardized measures of the initial impact of ARRA [American 

Recovery and Reinvestment Act] and science spending on job creation” (National Academy 

of Sciences, 2014). On the other hand, Phase II focuses on the “collaborative development 

of measures of the impact of federal science investments in four broad categories: economic 

growth (through patents, firms start ups and other measures), workforce outcomes (through 

student mobility and employment), scientific knowledge (such as publications and citations), 

and later, social outcomes (such as health and environment)” (National Academy of 

Sciences, 2014). The next section, entitled Linking Global and U.S.-based Perspectives on Research 

Impact, provides more specific information on how impact is conceptualized and measured at 

the global and national level. 
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Linking Global & U.S.-based Perspectives on Research Impact  

Although there are fragments in the literature on research impact, there are 

consistencies – in the dimensions of impact that are of interest and approaches used to 

explore it. What national research evaluation systems have in common is their primary focus 

on the scientific impact (i.e., advances in knowledge) and social impact (i.e., economic, social, 

cultural, and environmental effects) of research. A myriad of approaches are used to 

understand research impact; and they can operate at the level of projects, programs, 

organizations, or nations. Each method has its own characteristics, along with advantages 

and disadvantages. The approaches used to study impact are indicators of the mission and 

priorities of the institution conducting the assessment. The differences in methods, data and 

tools used in the approach will be a driving influence for the differences in impacts that are 

observed across assessments. 

While the RAND study on the international review of research assessment systems 

around the world (Jonathan Grant et al., 2010) did not include the U.S.-based SoSP studies 

(NRC, 2014b), there is a connection between the approaches researchers around the world 

use to evaluate research impact. Table 1 includes a list of most commonly cited approaches 

for evaluating research impact and brief descriptions about them. It is a compilation of the 

methods mentioned in the RAND study (Jonathan Grant et al., 2010), SoSP handbook and 

PIs conference report (Fealing, Lane, Marburger III, et al., 2011; NRC, 2014a), and other 

literature on methods of studying research impact (Rymer, 2011; Salter & Martin, 2001; 

Wooding, Hanney, Buxton, & Grant, 2004).   
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As Table 1 indicates, approaches to studying research impact range from qualitative, 

to quantitative, and may include a mixture of both types of methods. Computational 

methods are also used to study impact.  

Table 1. Approaches to Studying Impact 

 

Description

Logic Modeling

A series of "if… then" statements which provides a picture of
how a research program works; it includes a graphical 
representation of connections between inputs, outputs, and 
outcomes.

Interview A meeting of people to discuss the research project of interest

Case Studies
An in‐depth qualitative analysis of research projects that usually
results in narratives of the research process and outcomes.

Anecdotes
A brief qualitative description of an incident related to the
research.

Peer or Expert Review
An evaluation of a research project conducted by peers/other
scholars in the field; similar to process used for reviewing 
scholarly publications.

Decision Analysis
A problem‐solving approach to making informed and objective
decisions when encountering complex situations.

Portfolio
A purposeful collection of work that reflects various aspects of
research project.

Program Evaluation
A use of qualitative and quantitative methods to assess the
process and outcomes of a research program.

Survey or Questionnaire
A series of closed‐ and/or open‐ended questions that lends itself
to statistical and/or qualitative analysis.

Retrospective Analysis A historical assessments of research processes and outcomes.

Self‐assessment
An analysis of one's actions or performance in relation to a
standard.

Benchmarking or Input Measures A comparisons across programs, organizations, and countries.

Cost‐benefit Analysis
A quantitative assessment for determining the net gain (or loss)
that will result from pursuing a set of actions.

Bibliometric Analysis
A quantitative assessment of research publications, including its
quantity, quality, and collaboration.

Economic Modeling or Analysis
A quantitative assessment of the rate of the return on research
investments.

Productivity Analysis
A statistical analysis of the extent to which a project has
produced outcomes of interest (e.g., publications, research 
collaborations).

Risk Models
A quantitative description of the relationships between the risks
and net gain associated with pursuing a set of actions.

Agent‐based Models A computational approach to simulate the actions and 
interactions of the key agents in a system.

Visual Analytics
A computational approach to developing tools that aid in
understanding and decision‐making as a result of visually 
representing complex information in meaningful ways.Co
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Various types of data are used to conduct these analyses, and the timing of when the 

evaluations occur with respect to when the research itself occurs varies as well. Moreover, 

just as the approaches to studying impact vary, so do the types of results that come from 

these approaches. This difference in methods and corresponding results is what leads to the 

differences in how institutions perceive their impact, and is oftentimes the lens through 

which they view the impact of others.  

Table 2 presents which evaluation systems around the world use each of these 

approaches.  As the table indicates, research evaluation systems around the world employ a 

breadth of approaches to studying impact—quantitative, qualitative, and computational 

approaches. The most commonly used methods are peer/expert review, and survey/ 

questionnaire.  On the other hand, computational tools (i.e., agent-based models, visual 

analytics) are used the least often. The names of the assessment frameworks hint at another 

consistency in research evaluations systems used around the world. While it is reasonable to 

assume that there is interest in all four of the main aspects of societal impact (i.e., social, 

cultural, environmental, and cultural), social seems to be prioritized. More specifically, the 

impact of health science research (e.g., see Canada, the Netherlands, and U.S.) and 

evaluations of universities (e.g., see Japan and the UK) are the two specific types of impact 

that seem to be of special interest to policymakers at the highest levels of government 

around the world.  
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Table 2. Approaches Used to Study Impact in Research Evaluation Systems Around the World 
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Level 3: NSF’s Efforts Focused on Research Impact 

The third collection of work that informs this study on the impact of NSF’s 

investments in undergraduate education research is NSF’s efforts to understand impact. The 

Foundation’s interest in the impact of a project begins with its two primary criteria used to 

review all research proposals: Intellectual Merit and Broader Impacts.  

“The Intellectual Merit criterion encompasses the potential to advance 
knowledge; and [t]he Broader Impacts criterion encompasses the 
potential to benefit society and contribute to the achievement of 
specific, desired social outcomes” (NSB, 2011, p. 2).  

 

These two NSF review criteria also align with these two facets of research impact 

most commonly found in existing literature (scientific and societal impact); and to some 

extent, both concurrently address forms of impact that may be unique to a STEM domain 

(i.e., domain-specific impact). Consequently, one distinguishing characteristic of this body of 

work is that it has the potential to effortlessly link to all three dimensions research impact 

(scientific, domain-specific, and societal) if both Intellectual Merit & Broader Impacts are 

adequately addressed in the proposal and realized in the results of the proposed study. NSF 

was one of the first federal funding agencies around the world to emphasize both scientific 

and societal impact in their review process (Bornmann, 2013).  Over the years, NSF has put 

a lot of attention on the Broader Impact criterion and the following quote tries to capture 

some evidence of progress: “NSF’s attention to Criterion 2 has produced improvements in 

terms of the quantity of proposers and reviewers who address Criterion 2; yet the quality of 

the responses to Criterion 2 remains a persistent problem” (Holbrook, 2005, p. 445). Despite 

the agency’s longstanding emphasis on broader impact, only a few recent scholarly studies 

have been focused on the NSF review criteria (NSB, Holbrook, 2005, 2012; Holbrook & 
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Frodeman, 2011; Kamenetzky, 2013; 2011; Roberts, 2009), with particular emphasis on the 

“Broader Impact” criteria. Some focus on the philosophical issues associated with it and the 

history of its changes in an attempt to add clarity (Holbrook, 2005). Others are related to 

peer reviewers’ largely negative reactions to the second criteria (NAPA, 2001 as cited by 

Holbrook, 2005) and their difficulty with applying it to review proposals (Holbrook & 

Frodeman, 2011).  

To date, only two studies have explored the contents of broader impacts narratives 

in NSF awards (Kamenetzky, 2013; Roberts, 2009). Key findings from Kamenetzky (2013) 

indicate that engineering proposals show a statistically significant difference in their 

likelihood to propose potential societal benefits and partner with potential users unlike 

proposers in biological or mathematical/physical sciences. Roberts (2009) states that “it 

appears that the potential societal benefits are probably overstated” (p. 212). The study goes 

on to explain that although some researchers may propose Broader Impacts in their grant 

proposals, the absence of dissemination plans suggests that they were no more likely to 

disseminate findings beyond the scientific community than those who only address the 

Intellectual Merit criterion in their proposal. This finding suggests an embedded assumption 

that Broader Impacts is accomplished by having a dissemination plan. Plans to disseminate 

findings may be an important step in realizing the “potential to benefit society and 

contribute to the achievement of specific, desired social outcomes” (NSB, 2011, p. 2).; 

however, outcomes of the dissemination plans in terms of its realized impact were not 

included in the purpose of this study, and a result, were not discussed. 

Another set of work related to the impact of NSF investments in research relates to 

the development of data mining and visualization tools that allow policymakers to quickly 
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understand their portfolio of awards and to use this understand to make informed decisions 

(Raghavan et al., 2011). One computational tool that was developed for this purpose is 

DIA2 (Deep Insights Anytime, Anywhere). It is a portfolio mining tool focused on NSF 

investments and is being designed for the STEM education community (Madhavan et al., 

2012). In its mature state, DIA2 will enable “four broad classes of analytics capabilities: 

search and visualization, community and collaboration analysis, temporal modeling, and 

investment analysis” (Madhavan et al., 2012, p. 74).  Using interactive computational tools 

such as DIA2 (www.dia2.org), users can quickly synthesize large amounts of text-based and 

quantitative data to understand how funding decisions have led to the current STEM 

education research landscape. Provided are two screenshots of DIA2 when using the “NSF 

Org Structure” and “Topic Explorer” widget (screenshots taken on September 19, 2014).   

 
Figure 3. DIA2 Screenshot Using “NSF Org Structure” Widget 

http://www.dia2.org/
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Figure 4. DIA2 Screenshot Using “Topic Explorer” Widget 

 

Level 4: Disciplinary Studies on Research Impact 

 The fourth and final collection of studies that informs this current work were alluded 

to during the discussion on defining the domain-specific facet of research impact. Over the last 

decade, a number of studies focused on developing frameworks that specify the influence of 

methods or results of an R&D project on the people, priorities, and/or processes in the 

context of interest. Disciplinary Studies on Research Impact includes the most insights about 
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scientific & domain-specific impact, although findings about a collection of research’s 

societal impact is not uncommon.  

In a paper on frameworks and review articles Schwarz et al. (2007) define a 

framework as the “exposition of a set of assumptions, concepts, values, and practices that 

constitutes a way of understanding the research within a body of knowledge” (p. 41). This is 

what is meant by the use of the term “framework” is this study. As part of their work, 

Schwarz, Mehta, Johnson, and Chin (2007) identify ten purposes for a  frameowork. The 

two most relevant in this context are that frameworks “provide a new focus within a 

research stream”, and “synthesize previous research in an actionable way for practioners” 

(Schwarz et al., 2007, pp. 32-33).  

One framework was developed with the focus on NSF-funded informal STEM 

education and outreach research projects (Allen et al., 2008). Others focus on arts and 

humanities research at the University of Cambridge (Levitt et al., 2010), health sciences 

research (Donovan & Hanney, 2011; Kuruvilla et al., 2006), and science, in general (Godin   

Dore  , 2005). Publications, especially literature reviews on the topic of research impact, 

sometimes include a short list of the ways in which research and/or science, in general, may 

make a societal impact (Rymer, 2011; Salter & Martin, 2001; Walter et al., 2003). Apart from 

the common goal to characterize what impact looks from the perspective of a particular 

discipline, what links these frameworks together are the parallels between the approaches 

used to develop them, and the areas of overlap between the resulting constructs that make 

up the frameworks. See Table 3 for the purposes, methods overview, and summary of 

outcomes of the studies that led to these frameworks.  
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Table 3. Research Overview of Studies Resulting in a Research Impact Framework for a Specific Research Domain 
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There are many consistencies in the approaches used to develop the frameworks for 

characterizing impact in a specific research domain. As Table 3 indicate, qualitative data 

collection and analysis methods –namely document analysis, interviews, and case study 

analysis— were used as part of the framework development (Allen et al., 2008; Donovan & 

Hanney, 2011; Godin   Dore  , 2005; Kuruvilla et al., 2006; Levitt et al., 2010). Three 

different approaches have been used to validate the resulting framework: integrating 

feedback from content experts (Kuruvilla et al., 2006), administering a survey to a large 

sample of researchers within the domain (Levitt et al., 2010), and applying the framework to 

a set of research projects (case study analysis) to evaluate its feasibility and applicability 

(Donovan & Hanney, 2011; Levitt et al., 2010).  

As it was previously stated, the consistencies in the impact dimensions mentioned in 

the current literature reviews on this topic, and the disparate research impact frameworks are 

what link them. Table 4 lists the impact categories mentioned in three publications on 

research impact for research, in general (Molas-Gallart et al., 2002; Rymer, 2011; Walter et 

al., 2003). Tables 5 and 6 include the impact dimensions associated with the five frameworks 

for looking at research in a specific research domain (Allen et al., 2008; Donovan & Hanney, 

2011; Godin   Dore  , 2005; Kuruvilla et al., 2006; Levitt et al., 2010). Every impact category 

in the frameworks maps to at least one of the three dimensions of research impact: scientific 

impact, societal impact, and domain-specific impact. The mapping is based on the alignment 

of definition of research impact (See Figure 2) and the description of the impact dimension 

in the article describing the framework. Where applicable, only the main categories were 

mapped; sub-categories were not individually mapped.   
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In the frameworks on research in general (Molas-Gallart et al., 2002; Rymer, 2011; 

Walter et al., 2003) scientific impact is the most prominent. Domain-specific impact is well 

reflected in all of the frameworks as well. Societal impact rarely maps to the dimensions. In 

the frameworks on the impact of research in general (Molas-Gallart et al., 2002; Rymer, 

2011; Walter et al., 2003), or in specific research domains (Allen et al., 2008; Donovan & 

Hanney, 2011; Godin   Dore  , 2005; Kuruvilla et al., 2006; Levitt et al., 2010), all three facets 

of research impact were widely represented in each framework except Allen et al. (2008). 

Table 4.  Research Impact Dimensions Listed in Related Literature Reviews 
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Table 5. Impact Dimensions in Research Impacts Frameworks in Specific Domains 
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Table 6. Impact Dimensions in Research Impact Frameworks for Specific Domains 
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Acknowledging Related Literature 

Before concluding this review of the literature, it is important to acknowledge 

another body of tangentially related research. Among STEM education research, there is a 

fast growing collection of studies on how transformational change happens in undergraduate 

STEM education – the need for it, what it looks like, what enables it, what impedes it, what 

processes and factors might lead to a particular type of change, etc. (Beach, Henderson, & 

Finkelstein, 2012; Besterfield-Sacre, Cox, Borrego, Beddoes, & Zhu, 2014; Boyer 

Commission on Educating Undergraduates in the Research University, 1998; Boyer, 1990; 

Burkhardt & Schoenfeld, 2003; Dancy & Henderson, 2008; Fairweather, 2010; Finelli, Daly, 

& Richardson, 2014; Gillespie, McKenna, & Pimmel, 2011; Henderson & Dancy, 2010; 

McKenna, Froyd, King, Litzinger, & Seymour, 2011; McKenna, Froyd, & Litzinger, 2014; 

NRC, 1999a; 2003; Seymore; Seymour, 2001; Seymour & DeWelde; Siddiqui & Adams, 

2013). The April 2014 Special Issue of the Journal of Engineering Education, the premiere 

journal for engineering education research, represents a critical junction in the evolution of 

research on this topic because it provides a “constructive starting point for future 

conversations” on systemic transformation in engineering education (McKenna et al., 2014, 

p. 189). The authors present “perspectives on the breadth and complexity of systemic 

transformation in engineering education” and examples of “mechanisms that include the 

capacity for transformation” (McKenna et al., 2014, p. 189) Much of this work is focused on 

the need to change STEM education policies at various levels and employ more evidenced-

based pedagogical practices. While it is anticipated that research impact will influence policy 

and pedagogy, existing research impact frameworks hint at the possibility that impact may 

extend beyond these facets of undergraduate education.  The use of the means vs. ends idiom 



45 

 

is useful for depicting the connection between this literature and the existing research that 

was reviewed in this chapter. While this literature on change and transformation is focused 

on the means to a particular end, this study on impact is focused on the ends itself. 

Together, the two bodies of work complement and reinforce one another. 

 

Summary of Literature Review & Gap in the Literature  

Impact is a term that has different meanings among different groups. Some of these 

differences stem from differences in philosophical perspectives on impact. Those in the 

group interested in the philosophy and sociology of knowledge tradition are interested in the 

impact of research. Although most literature on research impact usually talks about this in 

terms of two dimensions –scientific impact and societal impact—the recent development of 

frameworks that capture impacts in particular discipline add evidence to support that 

research impact has another dimension: domain-specific impacts. There are three major 

difficulties associated with studying the non-scientific facets of research impact: difficulties 

associated with connecting impact and research or researcher, difficulties associated with 

assessment and evaluation of research impact, and difficulties associated with interpretations 

of impact. Despite these difficulties, however, there have been a number of studies 

conducted to explore impact at national, institutional, and disciplinary levels. The few NSF-

specific studies have been centered on Broader Impacts review criteria, and insights on the 

proposed impact of a study. Because the impact statements analyzed in these two studies 

were included in the proposal, these narratives capture the intended or anticipated impact of 

the study— at most. Until now, no study has looked at the research impact that is actually 

realized after a NSF-funded undergraduate STEM education study commences or is 
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completed.  It is reasonable to suggest that the research impact frameworks developed to 

characterize the impact in research in specific domains are an exposition on how a research 

community is beginning to conceptualize impact.  While researchers in different 

communities that rarely connect conducted the existing studies on research impact, there are 

consistencies in the approaches used to characterize and/or measure impact, and in the 

dimensions of impact observed. In multiple instances, the process for developing a 

framework of research impact in a specific domain begins with an exploratory approach, 

then is validated using quantitative and/or qualitative methods. But in spite of these 

elements of continuity, there is a gap that still exists. Within the context of engineering 

education, there is no shared vocabulary for discussing the impact of research, or a 

framework that characterizes the impact of federal investments in undergraduate engineering 

education research. This study seeks to begin to fill this gap in the literature by exploring the 

perspectives of two key stakeholders (i.e., Principal Investigators and NSF Program Officers) 

on what it means for a federally funded STEM education project to have impact. An 

understanding of how these key stakeholders talk about impact is an important step toward 

the development of a conceptual framework that characterizes the impact of NSF 

investments in undergraduate engineering education R&D projects.
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CHAPTER 3: GUIDING FRAMEWORKS 

 
 
 

Toulmin’s Model (1958) and the Common Guidelines for Education Research and Development 

(Earle et al., 2013) are the two frameworks that will guide the data collection and analysis in 

this study. The rationale for using both frameworks is that the strengths of one offset the 

limitations of the other, and vice versa. While Toulmin’s Model provides a strong theoretical 

framing for this study, the Common Guidelines for Education Research and Development serve as a 

conceptual framework.  In the next two sections of this chapter, both frameworks will be 

described independently. This chapter will conclude with a description of how Toulmin’s 

model is being extended to include the Common Guidelines for Education Research and 

Development; together they provide a theoretical and conceptual lens for this study. 

 

Theoretical Framework: Toulmin’s Model 

Toulmin developed a model (1958) in response to a need for a method that “would 

blend logic and epistemology into ‘applied logic’” (Hitchcock & Verheij, 2006, p. 1) for the 

purpose of being more applicable for assessing the arguments made in everyday life. 

Toulmin focused on a particular use of arguments: to defend a claim made by asserting 

something (Hitchcock   Verheij, 2006b). Toulmin’s model is normally used in the context 

of formal logic, debate, and argumentation. However, this is one of the first studies that use 

it to understand the arguments made by STEM education researchers about their work.  
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The Toulmin Model (also referred to as the Toulmin Scheme) (1958) describes the 

process of defending a claim against a challenger and is a pattern that is largely independent 

of a particular field. Hitchcock and Verheij (2006) succinctly describe Toulmin’s Model in the 

introductory chapter of Arguing on the Toulmin Model: New Essays in Argument Analysis and 

Evaluation. The first step in the process is the assertion of a claim (C). In response to this 

claim, a questioner may ask, “What do you have to go on to make this claim?” The defender 

then appeals to data (D), relevant facts that are available to the defender. The challenger may 

then ask about how the data relates to the claim that is being made. To this, the defender 

may respond with a proposition, or warrant (W), that may take the form of: “Data such as D 

entitle one to draw conclusions, or make claims, such as C” (Toulmin, 1958, p. 98).  

Booth et al. (2008), authors of the The Craft of Research, concur with Toulmin that 

warrants are “statements that connect reasons to claims” (p. 152), but clarify “academic 

warrants” as “specific principles of reasoning that particular communities of researchers 

develop over centuries of thinking and writing, and they are countless” (p. 154). Warrants are 

rarely stated because they are deeply embedded in tacit knowledge; however, three instances 

in which writers should explicitly state academic warrants are when: 1) readers are outside of 

the writer’s field; 2) the principle of reasoning is new or controversial; and 3) readers will 

likely resist the claim because they simply do not want it to be true (Booth et al., 2008). 

These additional insights on warrants will be useful during data analysis. 

To indicate the degree of force that a warrant confers on the conclusion being 

justified, a defender may qualify the conclusions with a qualifier (Q). Additionally, there may 

be a need for the defender to present conditions of rebuttal (R) “indicating the 

circumstances in which the authority of the warrant would have to be set aside” (Toulmin, 
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1958, p. 101). Lastly, the questioner may ask about the general applicability of the warrant; 

the defender’s response to this question is called backing (B). The differences in the backing 

of an argument vary from one field to another. Toulmin proposed the following diagram 

(See Figure 5) to illustrate the contributions of each component: 

 
Figure 5: Diagram of Toulmin's Model (Toulmin, 1958, p. 104) 

 

Toulmin’s model, first published in his Uses of Argument book (1958), is a commonly-

used reference in the context of rhetoric, logic, debate, and argumentation. However, 

Toulmin’s Model not only applies to standards of arguments, but to verbal reasoning in 

general (Hitchcock, 2006). It provides a theoretical basis for this study because it offers an 

explanation on the construction of arguments and generalizes beyond its original context to 

one in which the goal is to understand arguments researchers make surrounding aspects of 

their research. This model is applicable to this study since the primary data source that will 

be used in this study includes research project abstracts, narratives that include claims 

researchers are making about the impact of their studies. 

 Although Toulmin’s Model makes a strong theoretical contribution to the body of 

knowledge, rhetoric scholars have noted the difficulty with applying it to the evaluation of an 

actual argument (Klumpp, 2006; Tans, 2006; Voss, 2006). One of the reasons why Toulmin’s 
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model is difficult to apply is because not all arguments are structured the same. For example, 

some arguments may include multiple data or multiple warrants. Another challenge comes 

with appropriately identifying the constituents of the model in actual argument. 

Distinguishing between warrants and data, and data and backing are among the most 

commonly cited difficulties. Being able to apply Toulmin’s model to identify claims about 

impact is a critical part of this study. The second framework used in this study makes up for 

this limitation.  

 
Conceptual Framework: Common Guidelines for Education Research and Development 

The second framework used in this study is the Common Guidelines for Education 

Research and Development (Earle et al., 2013) (referred to hereafter as the “Common 

Guidelines”). A Joint Committee of representatives from the U.S. Department of Education 

(DOE) and NSF first met in January 2011 to start the development. The guidelines were a 

response to a need to “establish cross-agency guidelines for improving the quality, 

coherence, and pace of knowledge development in science, technology, engineering, and 

mathematics (STEM) education“ (p. 4). These guidelines articulate the “role of various types 

or ‘genres’ of research in generating evidence about strategies and interventions for 

increasing student learning” (p. 7). Figure 6 shows the “pipeline” of STEM education 

research types, while Table 7 lists each research type and a brief description of them.  

 
Figure 6: Pipeline of STEM Education Research Types, from the Common Guidelines 

 

Foundational Research & 
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Research 

Design and 
Development 
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Scale-up Research 
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Table 4: Description of Research Genres & Types Adopted from the Common Guidelines 
(Earle et al., 2013, p. 9) 

Foundational Research and Early Stage or Exploratory Research  
(Research Types 1 & 2) 

Foundational Research and Early Stage or Exploratory Research contributes to basic understandings 
of teaching and learning. Examples of this may include research focused on cognition, or 
processes involved in learning and instruction. 

Design and Development Research  
(Research Type 3) 

Design and Development Research builds on existing theory and evidence to develop solutions to 
achieve a goal related to education or learning. Examples of goals may include improved 
student engagement or skill mastery.  

Impact Studies  
(Research Types 4-6) 

Efficacy, Effectiveness, and Scale-Up Research contributes to evidence of impact by generating 
reliable estimates of the ability of a fully developed solution to achieve its goals.  

 
 Earle et al. (2013) provide guidelines for each of the six types of research. Each set 

of guidelines provides a basic description of the research purpose, justification (i.e. empirical, 

theoretical, practical, or policy) guidelines, and the type of evidence produced by a particular 

research type.  

 Although the six study types follow a logical sequence from the development of 

basic knowledge, design, testing, and scaling up, the developers of these guidelines 

acknowledge that the reality of research is much more complex (Earle et al., 2013). More 

specifically, Earle et al. (2013) explicitly state the following assumptions: knowledge 

development is not linear; investigation can sometimes move directly from development of 

core knowledge to scale-up research; and individual studies may incorporate elements that 

cut across research types (p. 10). Nevertheless, these guidelines describe –in broad strokes– 

the major types of federally funded STEM education research and development, and are 

fitting for the context of this study.  
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 Lastly, the Common Guidelines refers to the last three of the six research types as 

“Impact Studies”. Since the focus of this study is on the “research impact” of NSF’s 

investments in undergraduate STEM education, it is necessary to highlight the differences in 

the use of the term “impact”. For the Common Guidelines, the term “impact” implies a 

particular methodology that will lead to “reliable estimates” on the extent to which an 

intervention or strategy can achieve its intended outcome. In this study, the term “research 

impact” is used to denote the scientific, societal, and domain-specific impacts of research 

and development projects. Scientific impact of research includes advances in reliable 

knowledge, while societal impact is research outputs or products that benefit a dimension of 

society (e.g., social, cultural, environmental, economic, business or education practice) 

(Bornmann, 2013; Donovan, 2011). Domain-specific impacts are those that are unique to a 

particular research field, and result from the influence of methods or results of an R&D 

project on the people, priorities, and/or processes in the context of interest. All three types 

of research impact are deemed important for federally funded research, and are what is 

meant when the term “research impact” is used in this document.  

The Common Guidelines (Earle et al., 2013) were developed to be used for 

organizational and clarification purposes by decision makers in federal agencies and grantees 

seeking federal funding (Earle et al., 2013).  Again, the Common Guidelines describe the 

methodologies STEM education researchers typically use, the types of evidence that comes 

from particular methodologies, and justifications (i.e. empirical, theoretical, practical, or 

policy) associated with each type of research. Thus, the Common Guidelines are very practical 

(and easy to apply), but the authors do not claim these guidelines were developed from 

theory. As a result, they do not have the guiding or explanatory power that theory typically 
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provides in research. Again, the strengths and limitations of both frameworks work together 

to provide a basis for this study that is grounded in theory, yet practical. In short, Toulmin’s 

model explains the structure of arguments, in general, and the Common Guidelines inform how 

Toulmin’s Model is applied to look for arguments about research impact. 

 

Extending Toulmin’s Model to Include the Common Guidelines 

 When integrating the elements of Toulmin’s Model (1958) and the Common Guidelines 

(Earle et al., 2013), what results is an adapted model that fits the context of studying the 

arguments surrounding federally-funded STEM education R&D projects. More specifically, 

the Common Guidelines state that a particular Research Type (RT) affords certain types of Evidence 

(E). Simply put, evidence is some form of information presented in response to an inquiry. 

In light of this, Evidence (E) in the Common Guidelines is comparable to the Data (D) in 

Toulmin’s Model. The Warrant (W) in Toulmin’s Model that allows someone to make a claim 

based on D is comparable to the Justification (J) in the Common Guidelines, since the justification 

is a researchers’ rationale (or basis) for various aspects of the research (e.g., purpose, 

methodology, outcomes). All of the other elements of Toulmin’s model (i.e. Claims, 

Qualifiers, Backing, and Rebuttal) remain as they were originally. Figure 7 illustrates a way to 

extend Toulmin’s Model to include the Common Guidelines; the subscripts (TM & CG) denote 

the original framework. The use of this integrated model as an analytical tool is described in 

the Data Analysis section of the Phase One Methods chapter. 
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Figure 7: Extending Toulmin's Model to Include the Common Guidelines 
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CHAPTER 4: PURPOSE, RESEARCH QUESTIONS, AND RESEARCH DESIGN 
 

 

   
This chapter begins by presenting the purpose of this study, and the research 

questions corresponding to it. A Multiphase Mixed Methods research design was used to answer 

the proposed research questions. The research design and epistemological assumptions 

associated with this mixed methods study will be presented after the research questions. The 

proceeding chapters will include full details of the data collection and analysis corresponding 

to the research questions proposed in each phase of the study. 

 
 

Purpose 

The purpose of this two-phased study is to: 1) explore how Principal Investigators on NSF-

funded undergraduate STEM education R&D projects talk about impact; and 2) compare 

PIs’ perspectives on impact with the perspectives of Program Officers who oversee NSF’s 

STEM education R&D programs. 

 

Research Questions 

Research Question Guiding Phase I: What is a meaningful description of the impact of 

NSF investments in undergraduate STEM education R&D projects, based on Principal 

Investigators’ (PIs)’ perspectives? 
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a) What claims do PIs make about the impact of their NSF-funded projects? How do 

PIs support their claims about the impact of their work? (Qualitative) 

b) How do PIs’ perspectives of impact align with existing impact frameworks found in 

the literature to form a preliminary description of the impact of NSF investments in 

undergraduate STEM education projects? (Interpretation) 

 

Research Question Guiding Phase II: In what ways do NSF Program Officers’ (POs) 

perspectives on the impact of NSF investments in undergraduate engineering education 

R&D projects align with or differ from PIs’ perspectives on impact? 

a) To what extent do POs agree with PIs’ perspectives on impact? (Quantitative) 

b) How do POs talk about the impact of a NSF-funded R&D projects? (Qualitative) 

c) Are there consistencies in how PIs on NSF-funded R&D projects and POs 

overseeing NSF’s R D programs talk about the impact of NSF-funded R&D 

projects? (Interpretation) 

 

Research Design & Epistemological Assumptions 

 “Mixed method research is a research design with philosophical assumptions as well 

as methods of inquiry. As a methodology, it involves philosophical assumptions that guide 

the direction of the collection and analysis and the mixture of qualitative and quantitative 

approaches in many phases of the research process. As a method, it focuses on collecting, 

analyzing, and mixing both quantitative and qualitative data in a single study or series of 

studies. Its central premise is that the use of quantitative and qualitative approaches, in 
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combination, provides a better understanding of research problems than either approach 

alone” (J. W. Creswell & Plano Clark, 2007, p. 5).  

When discussed in the context of conducting research, worldviews are a set of ideas 

that influence various philosophical elements of a study (i.e., perspectives on the nature of 

reality, the relationship between the researcher and what is being researched, the role of 

values, the process of research, and the language used in the writing).  A pragmatism 

paradigm aligns with mixed methods research (J. Creswell & Plano Clark, 2011; Tashakkori 

& Teddlie, 2003). This worldview draws on ideas like using “what works”, using diverse 

approaches, and valuing both objective and subjective knowledge (J. Creswell & Plano Clark, 

2011). Tashakkori and Teddlie (2003) formally argue the following points that link 

pragmatism and mixed methods research: 

 A single study may include both quantitative and qualitative and methods. 

 The research questions should be of primary importance, not the methods or 

philosophical paradigms that underlie them. 

 The “forced-choice dichotomy” between constructivism and postpositivism should 

be abandoned. 

 Metaphysical terms such as “truth” and “reality” should not be used. 

 Methodological choices should be informed from a practical and applied research 

philosophy.  

A multiphase mixed methods research design was used in this study.  Multiphase 

mixed methods research designs provide an overarching methodological framework that 

includes sequentially aligned qualitative and quantitative studies to address a central research 

objective (J. Creswell & Plano Clark, 2011). In this study, this design consists of two distinct, 
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sequential phases. The first phase is an exploratory phase where qualitative (text-based) data 

was collected and analyzed. The two phases are connected in the intermediate stage of the 

study: the results from the first phase informed the development of the questionnaire that 

will be used to collect data in the second phase. The second phase employed a questionnaire 

with open- and close-ended questions; thus the analysis and results includes quantitative and 

qualitative findings. The initial qualitative phase was prioritized in this study. The reason for 

mixing qualitative and quantitative methods was for the purpose of triangulation—to explore 

two groups’ (PIs’ and POs’) perspectives on impact using different approaches, and to 

determine if there is corroboration between PIs and POs’ perspectives on the impact of 

NSF-funded research (A. Bryman, 2006; Alan Bryman, 2006; J. Creswell & Plano Clark, 

2011; Greene, Caracelli, & Graham, 1989).  

The use of mixed methods in engineering education research has increased in 

prominence over recent years and engineering education researchers, Borrego, Douglas, and 

Amelink (2009), maintain that it is a research design approach that will be “essential” to 

advancing scholarship in this discipline. Since there is little literature on research impact, in 

general, and this topic has not been explored in the context of undergraduate engineering or 

STEM education research, an exploratory, qualitative study approach was an appropriate 

strategy for the first phase (Miles & Huberman, 1994). The survey research associated with 

the second phase is used to garner the perspectives of a select sample of NSF Program 

Officers for the purpose of determining the degree of consistency in PIs’ and POs’ opinions 

on research impact.  

 The six main data collection and analysis steps corresponding to this study’s research 

design are (adapted from J. Creswell & Plano Clark, 2011, pp. 218-219): 
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1. Collect the qualitative data. 

2. Analyze the qualitative data qualitatively using analytic approaches best suited for the 

qualitative research questions. 

3. Develop and pilot test the questionnaire for the phase II study using the qualitative 

results.  

4. Collect the questionnaire data. 

5. Analyze the questionnaire data using analytic approaches best suited for the research 

questions. 

6. Interpret how the connected results answer the research questions. 

Figure 8 depicts these steps in relation to this study. The next chapter, Chapter 5, includes an 

elaboration on the methods associated with Phase I while Chapter 7 elaborates on the Phase 

II methods. 
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Figure 8. Diagram of This Study’s Multiphase Mixed Methods Research Design

Phase I Study:  
QUALITATIVE data collection & analysis 

Phase II Study:  
SURVEY data collection & analysis 

Interpretation Interpretation 
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CHAPTER 5: PHASE ONE METHODS  
 

 
 

The overarching research question addressed in the qualitative phase of this study 

was: What is a meaningful description of the research impact of NSF investments in undergraduate STEM 

education R&D projects, based on Principal Investigators’ (PIs’) perspectives? Qualitative research is 

often referred to as interpretivist research (Stake, 2010a). According to Stake, “[I]nterpretivist 

research is investigation that relies heavily on observers defining and redefining the meanings 

of what they see and hear” (p. 36). Qualitative researchers often use social science theories 

and triangulate their data to minimize flaws in observations and assertions (J. W. Creswell, 

2007; Stake, 2010a). Toulmin’s Model (1958) and the Common Guidelines for Education Research and 

Development (Earle et al., 2013) are the two frameworks that guided the data collection, 

sampling, and analysis in this phase of the study.  

The important criterion for identifying what constitutes data in a content analysis 

study are: the text provide useful evidence for answering the research questions, and that 

they communicate a message from a sender to a receiver (White & Marsh, 2006). Abstracts 

about NSF-funded undergraduate STEM education projects are the data that were used in 

this study. Mixed purposeful sampling (Patton, 1987 as cited by Johnson & Christensen, 2012, p. 

237)  was used to select which abstracts were analyzed. Qualitative content analysis (Elo & 

Kyngas, 2007; Krippendorff, 2004b; White & Marsh, 2006) is the analytic technique that was 

used to conduct the analysis in this study. The remaining sections of this chapter provide 
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additional details about the data collection and analysis associated with this phase of the 

study.  

Data Collection 

One of the largest DUE programs was entitled “Transforming Undergraduate 

Education in STEM” (TUES). Its predecessor program was called “Curriculum, Course, and 

Laboratory Improvement” (CCLI). The CCLI/TUES program supported research and 

development projects focused on improving the quality of undergraduate STEM education 

for all students, with particular interest in projects that have the potential to transform 

undergraduate STEM education. (TUES was discontinued in 2013 and is now the 

predecessor of another DUE program called “Improving Undergraduate STEM Education” 

(IUSE)).  

Periodically, DUE hosts a conference that all PIs on the program’s active grants are 

encouraged to attend. The purpose of the PIs’ conference is to provide PIs an opportunity 

to share updates on their projects and to exchange ideas with colleagues. In some cases, one 

of the outputs of the event is a conference report. The CCLI/TUES PIs conference reports 

from the most recent three consecutive PI conferences are publicly available online (NSF, 

2008, 2011, 2013d) and were downloaded in Fall 2013. The project abstracts in these three 

reports are the population of data from which this study’s sample data was selected to 

address the overarching research question proposed in this phase of the study.   

 

Overview of TUES PI Conference Report Abstracts 

Each report includes the abstracts of R&D projects presented at the conference. 

With little variations across reports, each abstract includes two major sections. One section 
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includes basic project information: PI(s) name, Institution, Project Title, Project Number, 

Project Type, Target Discipline, and Focus. In addition to basic PI and project information, 

the abstract template provides space for PIs to add content corresponding to six topics: 

goals/goals & intended outcomes, methods/methods & strategies, evaluation/evaluation 

methods & results, dissemination, impact, and challenges. (The (/) denotes the little 

variations in labels across conference year reports.)  While most of these labels are intuitive, 

some need additional explanation.  

 

BASIC PROJECT INFORMATION- PROJECT TYPE: The CCLI/TUES program 

primarily funded four types of R&D projects. Project types vary by funding level and scope. 

The four main project types are: (1) Type 1 – Exploratory, (2) Type 2 – Expansion, (3) Type 

3 – Comprehensive, and (4) Central Resource Project. (See Section C of the 2010 TUES 

program solicitation online for detailed descriptions of the project types.) Basic information 

about the CCLI/TUES projects by PI conference year is captured in Table 8. (The values in 

Table 8 are based on the tally provided by searching the project abstracts database provided 

on the CCLI/TUES PIs’ conference website.) 

 

Table 5. Number of CCLI/TUES Projects Included in PI Conference Reports, by Project 
Type 

Project Type Conference Year 

2008 2011 2013 
CCLI/TUES Type 1 - Exploratory 179 262 244 
CCLI/TUES Type 2 - Expansion 78 102 114 

CCLI/TUES Type 3 - Comprehensive 14 13 18 

TUES Central Resource Project 0 2 3 

Total Project Abstracts 271 379 379 
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BASIC PROJECT INFORMATION- TARGET DISCIPLINE: PIs on all 

CCLI/TUES projects must specify a target discipline. The eight STEM disciplines funded by 

DUE are: Biological Sciences, Chemistry, Computer Science, Engineering, Geological 

Sciences, Mathematics, Physics/Astronomy, and Social Science. Sub-disciplines within each 

of these disciplines (i.e., Industrial Engineering, Mechanical Engineering) is not uniquely 

specified; however, reading other contents of the abstract (e.g., title, goals) usually provide 

insights on which, if any- sub-discipline is of most interest. In light of this, engineering 

education projects are usually classified as “Engineering”. When PIs perceive that their 

projects do not fit within either of these disciplines, they have the option to specify the 

discipline as: Interdisciplinary, Research/Assessment of Research, or Other.  

Figure 9 displays the number of projects included in the three reports; the bars are 

organized by STEM discipline, project type, and conference year. One of the most salient 

insights that emerges from this visual representation of the data is Engineering awards 

account for the largest number of awards funded by the TUES program. This is more than 

twice as many as the second highest number of awards—Interdisciplinary awards.  An equal 

number of projects have a specified discipline of Biological Sciences or Computer Science. 

The four disciplinary specifications with the fewest number of awards are: Geological 

Sciences, Social Science, Research/Assessment of Research, and Other.  
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Figure 9. Project Abstracts in Conference Reports by Discipline, Year, Project Type 
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BASIC PROJECT INFORMATION- PROJECT FOCUS: PIs on all CCLI/TUES 

projects must specify a focus, an area of emphasis within STEM education. The five project 

foci specified in the CCLI/TUES solicitation are: Creating Learning Materials and Strategies, 

Implementing New Instructional Strategies, Developing Faculty Expertise, Assessing and 

Evaluating Student Achievement, and or Conducting Research on Undergraduate STEM 

Education. (Visit http://www.nsf.gov/pubs/2010/nsf10544/nsf10544.htm for 2010 TUES 

program solicitation, which includes detailed project foci descriptions.) 

 

DETAILED PROJECT INFORMATION: In addition to basic PI and project 

information, the abstract template provides space for PIs to add content corresponding to 

six headings: goals/goals & intended outcomes, methods/methods & strategies, 

evaluation/evaluation methods & results, dissemination, impact, and challenges. (The (/) 

denotes the little variations in labels across conference year reports.) Figure 10 provides an 

example of an abstract randomly selected from the 2013 TUES PIs’ Conference report 

(NSF, 2013a). (See Appendix A for a sample abstract from each of the three conference 

reports.) 

 

 

 

http://www.nsf.gov/pubs/2010/nsf10544/nsf10544.htm
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Figure 10. Abstract Example from 2013 TUES PIs’ Conference Report
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Aligning Abstract Sections and Guiding Frameworks 

Tables 9 and 10 show how I (the researcher) conceptualized the alignment between 

the project abstract components and the integrated Toulmin’s Model/Common Guidelines 

framework depicted in Figure 7.  The scope of the four Project Types loosely aligns with the 

three research types in the Common Guidelines (Earle et al., 2013); this alignment is shown in 

Table 9. More specifically, the description of the scope of TUES Type 1, 2, and 3 projects 

align with the description of the three research types in the Common Guidelines (Earle et al., 

2013), respectively; and the scope of a TUES Central Resource project aligns with the third 

research type in the Common Guidelines (Earle et al., 2013).  

 

Table 6. Alignment of Common Guidelines Framework and CCLI/TUES Project Type 

Common Guidelines (Earle et al., 2013) CCLI/TUES Program 

Research Type(s) Project Type 

1-2: Foundational Research and Early Stage or 
Exploratory Research CCLI/TUES Type 1 – Exploratory 

3: Design and Development Research 
CCLI/TUES Type 2 – Expansion 

4-6: Efficacy, Effectiveness, and Scale-Up Research 
CCLI/TUES Type 3– Comprehensive 

 
TUES Central Resource Project 

 

 Since Toulmin’s Model (Toulmin, 1958) is useful for understanding verbal reasoning, in 

general, and the Common Guidelines (Earle et al., 2013) provides additional details on the 

contents of the verbal reasoning found in project abstracts, an integration of the two is 

useful for understanding claims about research impact in the context of interest. Table 10 

shows how I conceptualized the alignment between the elements of the abstracts and the 

two guiding frameworks; Figure 11 shows the alignment using an abstract example. 
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Table 7. Anticipated Alignment of Project Abstract and Guiding Frameworks 

 
 

The “Challenges” section of the abstract is a place for PIs to discuss any practical difficulties 

they have faced while trying to complete the study (e.g., delays in getting access to a student 

population). These ideas are not related to reasoning surrounding the research itself, and as a 

result, do no map to the theoretical and conceptual frameworks guiding this study. (The Data 

Analysis section provides details on how this alignment informed the analysis.)  
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Figure 11. Conceptual Alignment Between the Integrated Guiding Framework & Abstract Sections 
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Rationale for Data Source 

 There were many reasons for using the abstracts in the CCLI/TUES PI conference 

reports as data—many of which are pragmatic, but some are more meaningful. Since the 

reports include abstracts of over 1,000 STEM education R&D projects funded by DUE, 

they provided a generous amount of data from which to sample, both from a qualitative and 

quantitative methods perspective. Additionally, the reports correspond to all of the 

CCLI/TUES PI conferences that have occurred over the last five years; this presents a 

longitudinal perspective on the central topic of research impact. The last pragmatic reason is 

because this data is conveniently available online; this translated to no delay in collecting 

data. While the annual and final project reports would have been a more comprehensive 

source of information about the impact of NSF-funded projects, this information is stored 

in a repository that is only viewable by NSF employees, and thus not available to the public 

for review, critique, or research use. 

Apart from pragmatism, there were more meaningful reasons for using this data.  

This is appropriate data source given that this study focuses on engineering education 

research, and the CCLI/TUES program was the largest funder of this research. Moreover, 

projects funded by the CCLI/TUES program focused on a wide range of needs and 

challenges that exist across undergraduate STEM education; as a result, insights about 

impact that result from this study have the potential to be just as broad in their applicability. 

Furthermore, there is an alignment between the project types, abstract elements and the 

frameworks guiding this study. This alignment helped with data analysis and interpretation. 

Also, the abstracts are written by the PIs on CCLI/TUES projects, and as a result, provides 

the data will answer the overarching research question (on how PIs talk about the impact of 
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their research.) Moreover, the “Impact” section of the abstract includes PIs’ perceptions of 

the realized impact of their project, not the proposed impact described in grant proposals. 

This is one distinction between this study and the previous NSF-focused studies mentioned 

in the literature review (Kamenetzky, 2013; Roberts, 2009). Another rationale for this data 

source is related to one of the difficulties with studying impact: illusive data. Impact 

narratives in PI conference reports are one of the few instances where the impact of a 

project is explicitly documented, and thus available for study. Finally, and possibly most 

importantly, project abstracts are the primary source of public information about NSF-

awards (especially those funded before www.research.gov, a resource that provides the 

research community with information on federal grants, was launched in 2013). The 

audience of NSF abstracts includes Program Officers, the PI community, Congress, the 

media, and the public at large. As a result, project abstracts are key to advancing 

transparency about NSF’s investments in undergraduate STEM education. Conducting a 

study on the claims about impact being made in this primary source of information is an 

appropriate first step toward improving understanding of the impact of federal investments 

in undergraduate engineering education. 

 

Sampling 

Mixed purposeful sampling (Johnson & Christensen, 2012; Patton, 2002) was used to 

select the abstracts analyzed in this study. Mixed purposeful sampling is the mixing of more 

than one sampling strategy, in this case, two sampling strategies. The two sampling strategies 

used are maximum variation sampling and homogeneous sampling (Johnson & Christensen, 

2012; Miles & Huberman, 1994; Patton, 2002).  

http://www.research.gov/
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Maximum variation sampling is purposefully selecting a wide range of cases. It is 

useful for identifying “a central theme or pattern that exists across cases” (Johnson & 

Christensen, 2012, p. 236). For the purposes of this study, this meant selecting abstracts 

across conference years, project types, project foci, and STEM disciplines. The reason for 

sampling across STEM disciplines was because engineering is rarely discussed in isolation. 

The field, as it is currently conceived, is part of the larger set of disciplines of national 

interest, commonly referred to as STEM. The focus of this study is engineering education 

research, with the expectation that the results can be easily translated to other STEM 

disciplines. In light of this, the majority of the abstracts specified a target discipline across 

STEM fields. Additionally, there is no evidence to suggest that the claims PIs make about 

impact and information used to support it would vary significantly across STEM disciplines. 

On the other hand, since the focus of this study is engineering education, homogeneous 

sampling was also used to select a smaller set of abstracts where Engineering was the target 

discipline.  

Sample size is just as important as the sampling strategy. In total, the sample 

included approximately fifteen percent of the total abstracts (155 of the 1029 abstracts). Ten 

percent of the abstracts were selected using maximum variation sampling. An additional five 

percent of the total abstracts were selected based on the homogeneous sampling strategy. 

Although the objective was the review 15% of the total abstracts, the ultimate number of 

abstracts was determined by the point of saturation, the point at which no new or relevant 

information emerged as a result of analyzing more data (J. W. Creswell, 2007). (See 

Appendix B for a table that indicates which abstracts were included in the analysis.) Figures 



74 

 

12-14 present the proportion of abstracts analyzed in this study based on project type, 

project focus, and STEM discipline, respectively.  

 
Figure 12. Abstracts Reviewed by Project Type 

 

 
Figure 13. Abstracts Reviewed by Project Focus 
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Figure 14. Abstracts Reviewed by Discipline 

 

Data Analysis 

The two sub-questions corresponding to an overarching research question proposed 

in this phase are: 

a) What claims do PIs make about the impact of their NSF-funded projects? How do 

PIs support their claims about the impact of their work? (Qualitative) 

b) How do PIs’ perspectives of impact align with the three dimensions of research 

impact found in the literature (i.e., scientific, societal, and domain-specific impact) to 

form a preliminary description of the impact of NSF investments in undergraduate 

STEM education projects? (Interpretation) 
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The first sub-question was answered using content analysis, while the second was addressed 

by comparing the results of the first question with the definitions of research impact in the 

literature (See Figure 2). 

Content analysis is a “research technique for making replicable and valid inferences 

from texts (or other meaningful matter) to the contexts of their use” (Krippendorff, 2004b, 

p. 18). According to Elo and Kyngas (2007), content analysis can be used as an inductive or 

deductive research strategy, depending on the purpose of your research. Inductive content 

analysis is typically used if there is little former knowledge about the phenomenon of interest 

or if the knowledge is fragmented (Lauri & Kyngas, 2005 as cited by Elo & Kyngas, 2007). 

In light of this, inductive content analysis was used in this study to understand the claims 

(assertions) PIs make about the impact of their work and how they support those claims.  

 There are three main phases in the data analysis: preparation, organizing and 

reporting. Atlas.ti, qualitative data analysis software, was used to perform the majority of the 

analysis. In the preparation phase, the sample of abstracts were copied from the individual 

PI conference reports and pasted into a single document. Although I read the entire abstract 

when conducing the analysis, the unit of analysis were the two sections that are most likely 

to contain claims about research impact: the Dissemination section and the Impact section.  

(Figure 11 above shows the alignment between abstract components and the guiding 

frameworks.)  Abstract sections that include research “results” were not analyzed because 

although the contents could potentially be related to the project’s impact, the outcomes of 

this analysis would have been a duplication of efforts currently being conducted by 

engineering education researchers developing a taxonomy of engineering education research 

(Finelli & Borrego, 2014).  
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Ideas mentioned in the literature review –namely the three dimensions of research 

impact, and the 76 impact categories in other research impact frameworks-- served as 

sensitizing concepts (Bowen, 2006) and provisional codes (Saldaña, 2009). Sensitizing concepts are 

“interpretive devices” that provide “a starting point for a qualitative study” (Glaser, 1978; 

Padgett, 2004; Patton, 2002, 2004 as cited by Bowen, 2006, p. 2). They are “ideas in the 

background that inform the overall research problem” and offer ways of organizing and 

understanding the text (Bowen, 2006). In qualitative research, “codes” are labels used to 

describe a segment of text. Provisional codes are those that were established before the 

analysis began, and were possible categories that might have been reflected in the text (Dey, 

1993; Miles & Huberman, 1994 as cited by Saldaña, 2009). See Table 11 for the list of initial 

codes. These codes were put into the Atlas.ti codebook before the analysis began. However, 

these categories were not imposed on the text as a priori codes (as it would be in a deductive 

content analysis); I used open and axial coding to allow concepts and patterns discussed in 

the research findings to emerge from the data. 
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Table 8. Starting List of Codes Used in Atlas.ti	 

 

Research Impact Dimensions Impact Dimensions from Existing Frameworks 
(Continued)

Impact Dimensions from Existing Frameworks
(Continued)

Research Impact‐ Scientific Impact through teaching Service Impacts: health and intersectoral: Health status

Research Impact‐ Domain‐specific Cross‐cutting findings
Service Impacts: health and intersectoral: Equity and human
rights

Research Impact‐Societal Knowledge
Service Impacts: health and intersectoral:
Macroeconomic/related to the economy

Impact Dimensions from Existing Frameworks Benefits of future research and research use
Service Impacts: health and intersectoral: Social capital and
empowerment

Awareness, knowledge or understanding (of) STEM
concepts, processes, or careers

Benefits from informing policy and product development Service Impacts: health and intersectoral: Culture and art

Engagement or interest (in) STEM concepts, processes, or
careers

Broader economic benefits
Service Impacts: health and intersectoral: Sustainable
development outcomes

Attitudes (towards) STEM‐related topics or capabilities Health and health sector benefits Increasing the stock of useful knowledge
Behavior (related to) STEM concepts, processes, or careers Research‐related impacts: Type of problem/knowledge Creating new scientific instrumentation and methodologies
Skills (based on) STEM concepts, processes or careers Research‐related impacts: Research methods Creating new firms
Science: knowledge, research activities, training Research‐related impacts: Publications and papers Training skilled graduates

Technology: products and processes, services, know‐how
Research‐related impacts: Products, patents, and
translatability potential

Forming networks and stimulating social interactions

Economy: production, financing, investments,
commercialization, budget

Research‐related impacts: Research networks
Increasing the capacity for scientific and technological
problem solving

Culture: Knowledge, know‐how, attitudes, values Research‐related impacts: Leadership and Awards Changes in knowledge and understanding
Society: welfare, discourses and actions of groups Research‐related impacts: Communication Changes in access to research
Policy: policy‐makers, citizens, public programs, national
security

Policy impacts: Level of policy‐making
Changes in the extent to which research is considered,
referred to, or read

Organization: planning, work organization, administration,
human resources

Policy impacts:  Type of policy Citations in documents

Health: public health, health systems Policy impacts: Nature of policy impact Changes in attitudes and beliefs
Environment: management of natural resources and the
environment, climate & meteorology

Policy impacts: Policy networks Changes in behavior

Training: curricula, pedagogical tools, qualifications,
graduates, insertion into the job market, fitness of 
training/work, career, use of acquired knowledge

Policy impacts: Political capital Advances in knowledge

Symbolic: legitimacy/credibility/visibility, notoriety Societal Impacts: Types of service: health/intersectoral Additional investment
Academic impact Societal Impacts: Evidence‐based practice Financial return
Impact on public knowledge creation Societal Impacts: Quality of care Economic impact
Impact on policy Societal Impacts: Information systems Social impact
Impact on the preservation of heritage Societal Impacts: Services management Environmental impact
Economic impact on the wider society Societal Impacts: Cost‐containment and cost‐effectiveness More effective teaching

Impact on leisure and entertainment
Service Impacts: health and intersectoral: Knowledge, 
attitudes, and behavior Intangible impacts

Direct economic impact Service Impacts: health and intersectoral: Health literacy
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The second step in inductive content analysis is the organizing phase (Elo & Kyngas, 

2007), or what is commonly referred to as the coding process (J. W. Creswell, 2008; Miles & 

Huberman, 1994). The coding process is “a qualitative research process in which the 

researcher makes sense out of text data, divides it into text or image segments, labels the 

segments, examines codes for overlap and redundancy, and collapses these codes into broad 

themes” (J. W. Creswell, 2008, p. 251). Coding is an iterative process, and one the first 

outputs of it is a codebook. A codebook includes an organized list of the codes resulting 

from the analysis, along with descriptions of the codes, examples corresponding to the 

codes, and coding instructions on how to apply the codes to text segments to ensure that the 

coding process is structured and applied consistently across abstracts. In this study, the 

process of coding the abstracts (in Atlas.ti) and developing the codebook (in Microsoft 

Word) happened in parallel; this process is depicted in Figure 15. 
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Figure 15. Overview of the Coding & Codebook Development Process
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The initial coding was an exploratory analysis to get a general sense of the data (J. W. 

Creswell, 2008; Miles & Huberman, 1994) about one-third of the abstracts.  After reading 

the abstract, two types of coding occurred: Attribute coding, and Provisional or Descriptive 

coding (Saldaña, 2009). Attribute coding is the way to denote basic information about the 

text (Bazeley, 2003; DeWalt & DeWalt, 2002; Gibbs, 2002; Lofland et al., 2006 as cited by 

Saldaña, 2009). In this study, the following attribute codes were assigned to the abstract:  

project type, project focus, and STEM discipline.  Next, either provisional or descriptive 

codes were assigned to the ideas in the “Dissemination” and “Impact” sections of the 

abstract. While coding, I asked myself questions like: What claims (assertions) are PIs making 

about impact of their research? What types of things are PIs referencing? How are they supporting or 

discussing those claims? Are there consistencies in the ideas they use to articulate impact?  Elements of the 

two guiding frameworks also served as sensitizing concepts when looking for answers to 

these questions. To the extent that the ideas in these sections aligned with the existing 

categories of impact, a provisional code was assigned (see Table 8). For instances where new 

ideas emerged that do not align with those reflected in the literature or could benefit from 

additional clarification, the segment was open coded using descriptive codes— short 

statements that summarize the topic of the text (Miles & Huberman, 1994; Saldaña, 2003; 

Wolcott, 1994 as cited by Saldaña, 2009). The Notes feature in Atlas.ti and handwritten 

notes in a research journal were used to keep track of memos (i.e. reflective remarks) during 

the coding process (Miles & Huberman, 1994).  Figure 16 shows an example of how an 

abstract was coded at this stage in the coding process, where “PC” indicates the provisional 

codes assigned to the text segments, and “OC” indicates the open codes assigned to the 

segment.
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Figure 16. Coding Example using Codebook, Version 1

  

PT: TUES Type 1 

PF: Creating Learning Materials & Teaching Strategies 

STEM Discipline: Engineering  

PC: Research Impact: Scientific Impact 
PC: Science: knowledge, research activities, training 
PC: Academic impact 
PC: Impact on public knowledge creation 
PC: Research-related impacts: publications and papers 
PC: Research-related impacts: Communication 
PC: Increasing the useful stock of knowledge 
PC: Changes in knowledge or understanding 
PC: Advances in knowledge 
OC: Host a Workshop 
OC: Participate in a Conference  
OC Share Resources via a Partnership  
Memo: “Dissemination will be accomplished” denotes future tense 

PC: Research Impact: Domain-specific impact 
PC: Training: curricula, pedagogical tools… 
PC: Academic impact 
PC: Impact on policy 
PC: Benefits from informing policy and product development 
PC: Policy impact: level of policy-making 
PC: Policy impact: nature of policy-making 
PC: Changes in behaviors 
OC: Widespread use of research outputs by a specified group (x2) 
OC: Adoption of research outputs at similar institutions 
 
Memo: “We anticipate” and “We expected” does not denote realized impact 
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Miles and Huberman (1994) have commented on the importance of having a quality 

codebook. During the exploratory phase, I used Microsoft Word to create a duplicate 

codebook as codes are assigned to segments of text in Atlas.ti. This is the time during the 

coding process when the provisional and open codes were added to the document, sample 

segments of text were supplied, and coding guidelines were drafted to promote consistency 

in the application of codes across abstracts. Once the coding of this set of abstracts was 

complete in Atlas.ti, the MS word version of the codebook (CB_v1:Open Codes) was used 

to code the second set of STEM abstracts. When necessary, new codes, examples, and 

guidelines were added to the codebook.  

Once the coding for all of the abstracts identified in the maximum variation 

sampling was complete (i.e., from projects across STEM), the MS Word version of the 

codebook will be refined and preliminary categories were described. This act of going from 

codes to categories (to abstractions) is more iterative than linear.  Using an analytic technique 

commonly referred to among grounded theory researchers as a “constant comparative” 

approach (J. W. Creswell, 2007; Strauss & Corbin, 1998), I collapsed together codes that 

conveyed redundant ideas, and began to identify a category/label for the group of codes that 

remained. Memos documented during the coding process were used to facilitate the 

refinement of the codebook. One of the most critical decisions that was made in revising the 

codebook was the created a category and cluster of codes for impacts that were discussed in 

the impact narratives, but had not been realized. In an attempt to present an accurate 

description of how PIs talk about impact, it seemed imperative to distinguish between the 

types of impact that actually occurred, but what the PIs hoped would happen at some point 

in the future. These changes resulted in the second version of the codebook (CB_v2: 
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Refined Codes). Table 9 is an example of how the list of codes used in the coding example 

was reduced at this point of refining the codebook. There were a total of 114 codes in the 

codebook: 19 attribute codes, and 95 descriptive and provisional codes.  There were seven 

themes corresponding to the first sub-questions (about the types of claims PIs make), and 

three corresponding to second sub-question (about how PIs support claims about impact). 

 

Table 9. Sample of Original vs. Refined Codes Across First Two Versions of the Codebook 

 

 

An interrater reliability (IRR) check was performed before coding the engineering-only set of 

abstracts; the timing is consistent with Miles and Huberman (1994) recommendation to 

conduct the IRR testing when approximately two-thirds of the coding is complete.  

 

CB_v1: Open Codes CB_v2: Refined Codes
Research Impact‐ Scientific Research Impact‐ Scientific
Science: knowledge, research activities, training Highlights of research findings (new data, methods, insights)
Academic impact Plans for future dissemination ‐ written communications
Impact on public knowledge creation Plans for future dissemination ‐ oral communications
Research‐related impacts: Publications and papers
Research‐related impacts: Communication
Increasing the stock of useful knowledge
Changes in knowledge and understanding
Advances in knowledge
Host a workshop
Participate in a conference
Share resources via a Partnership
Research Impact‐ Domain‐specific Research Impact‐ Domain‐specific
Training: curricula, pedagogical tools… Adoption of research outputs (curricula, pedagogy)
Impact on policy Changes in policy
Benefits from informing policy and product development Expected/Anticipated Impact
Policy impacts: Level of policy‐making
Policy impacts: Nature of policy impact
Changes in behavior
Widespread use of research outputs by a specific group
Adoption of research outputs at similar institutions
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Interrater Reliability Check 

Interrater reliability is “near the heart of content analysis; if the coding is not reliable, 

the analysis cannot be trusted” (Singletary, 1993, p. 294). Interrater reliability (also referred to 

as intercoder reliability) is a term that is commonly used to describe “the extent to which the 

different judges tend to assign exactly the same rating to each object” (Tinsley & Weiss, 

2000, p. 98). Despite its importance, there are few standards or “rules of thumb” on how to 

properly calculate and report IRR, and it is difficult to find information on the few IRR 

software tools that are available (Lombard, Snyder-Duch, & Bracken, 2002). Some of the 

most commonly used methods to calculate IRR are: percent agreement, Holsti’s Method 

(Holsti, 1969), Scott’s Pi (π) (W. Scott, 1955), Cohen’s Kappa (κ) (J. A. Cohen, 1960; J.A. 

Cohen, 1968), Fliess’ Kappa (κ) (Fleiss, 1971),  and Krippendorff’s Alpha (α) (Krippendorff, 

1970, 2004a). When summarizing the literature on how IRR approaches compare to one 

another, Lombard et al. (2002) states “there is a general agreement that indices which do not 

account for chance agreement are too liberal while those that do are too conservative” 

(Lombard et al., 2002, p. 593).  

While these traditional methods address issues of chance and what to do if there are 

multiple raters, they are only useful for texts that belong to mutually exclusive categories. 

They do not account for instances when multiple codes may be assign to the same text– 

which is the case in this study because one project abstract almost always includes more than 

one form of research impact. Typically, the F1 score (Devore, 2012) is used in contexts 

where categories are not mutually exclusive. A F1 score is the harmonic mean between two 

data sets.  
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Two coders agreed to participate in the IRR process. The harmonic mean was 

calculated to determine the extent of agreement between the researcher and each of the two 

independent coders, and between the two independent coders. More specifically, the IRR 

calculation is as follows: assume there are a total of N abstracts coded as part of the IRR 

analysis. For the i-th abstract: x1i  represents the number of codes assigned to the abstract by 

the coder A; x2i denotes the number of codes assigned to the abstracts by coder B; and si 

represents the number of codes that are agreed upon between researchers A and B. Let p1i = 

si/x1i, and p2i = si/x2i, then 

 

Thus, the F1 score is 1 when the code assignments between the two coders’ data sets are 

exactly the same, and a F1 score of 0 indicates no agreement. In this context, this measure 

represents the closeness of two sets of codes assigned to the same set of N abstracts by 

different researchers.  

 To prepare for the IRR testing, I invited the coders to participate, identified abstracts 

to be included in the testing, and prepared notes for discussion that would proceed the 

coding. The two independent coders were fellow-PhD students in the Engineering 

Education program, who have academic backgrounds in engineering disciplines, and have 

been involved in the coding of at least three qualitative research projects in the past.  I 

randomly selected seven project abstracts (based on project type, project focus, and STEM 

discipline) that would be coded during the IRR session. 

The IRR session lasted 2.5 hours and was comprised of three main parts: training and 

practice session; individual coding; and a brief discussion on how to improve the codebook. 
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During the training and discussion, I described the guidelines for coding abstracts and 

definitions of codes. Next, I modeled the process for analyzing an abstract by assigning 

codes to sections of texts and discussing the rationale for the code assignments.  Then, the 

two independent coders were given instructions on how to complete the IRR analysis, and 

given an abstract to code independently as a practice coding session. Once the practice 

coding was complete, we discussed the codes that were assigned to texts and the rationale 

for the assignments, reconciled discrepancies in coding assignments along with any 

outstanding questions related to the codebook or IRR-related task ahead. Next, each coder 

analyzed the remaining five abstracts independently, and submitted the documents including 

their analysis to me. Once all of the documents were turned in, the session concluded with a 

discussion on how to improve the codebook.   The IRR analysis yielded positive results. 

There were a total of 161 codes assigned across all three coders and five abstracts that were 

analyzed independently after the training session.  Table 10 presents the F1 scores associated 

with the IRR check.  

Table 10. Harmonic Mean Among Interrater Reliability Raters 

  Coder 1 Coder 2 

Researcher 0.894 0.879 

Between Coders 0.804 

 

Again, an F1-score of 1 denotes perfect agreement among the coders, while an F1-score of 0 

indicates no agreement. As the values indicate, there is a 12-22% difference between the F1-

scores calculated and the ideal F1-score.   

As a result of the IRR analysis, modifications were made to the clarity of the 

descriptions in the codebook based on the feedback from the IRR session. Additionally, 
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codes representing examples of a larger code were simply adding to the description 

associated with the code, and demoted from being a separate code. Lastly, Atlas.ti was used 

to identify the provisional codes that had not been used as part of coding the first two-third 

of the abstracts in the sample. All provisional codes that had not been used were deleted 

from the codebook. These modifications led to the third version of the codebook (CB_v3: 

Collapsed Codes), which included 19 Attribute Codes and 50 Provisional/Descriptive 

Codes. Once the modifications to the Microsoft Word version of the codebook were 

complete, the Atlas.ti codebook was updated to match.  

 

Final Round of Coding 

The final round of coding included two parts. In the first part, the code assignments 

associated with the 100 abstracts analyzed before the IRR analysis were checked, and re-

coded when the code assignment did not align with the codes and/or guidelines in the 

current version of the codebook. Next, the refined codebook (CB_v3: Collapsed Codes) was 

used to code the abstracts in the homogeneous sample (i.e., the engineering-only abstracts) 

using the same approach described above.  

Once all of the coding was complete, the constant comparative method was used to 

refine the codes one last time (J. W. Creswell, 2007; Strauss & Corbin, 1998). After aligning 

the Microsoft Word and Atlas.ti versions of the codebook, I performed a spot check on 20 

randomly selected abstracts to ensure that the segments associated with each revised code 

were still appropriately assigned. Figures 17 and 18 provide examples of how two abstracts 

were coded, according to the codes in the final version of the codebook (CB_v4: Finalized 

Codes and Themes). 
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Figure 17. Coding Example 1 Using Codebook, Final Version 

  

PT: TUES Type 1 

PF: Creating Learning Materials & Teaching Strategies 

STEM Discipline: Engineering  

Future Plans to Conduct Research, Create Developments, or 
Disseminate (x4)  

Indirect and/or Expected Impact (x3)  
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Figure 18. Coding Example 2 Using Codebook, Final Version

 

PT: TUES Type 1 | PF: Developing Faculty Expertise 

STEM Discipline: Biological Sciences 

 

Disseminate Research Findings: Text- and Discussion-based mediums (x5) 
Institutional Scope 
Geographic Scope 

Reference to Evaluations And/or Metrics 
Direct Personal, Professional Benefits to Instructors, Researchers 
Influence of Training on STEM Education Instructors and/or Community of Instructors (x3) 
Parties Involved in Conducting Research 
Indirect and/or Expected Impact 
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After aligning both versions of the codebook and ensuring consistency in the coding, 

the final step in the analysis –articulating abstractions— began. “Abstraction means 

formulating a general description of the research topic through generating categories” 

(Marshall & Rossman, 1995 as cited by Elo & Kyngas, 2007); these are commonly referred 

to as themes by other qualitative research scholars (J. W. Creswell, 2008; Miles & Huberman, 

1994).  Provided are two excerpts from the final codebook in Figure 19, corresponding to 

the guidelines used to guide the coding process, and also one of the themes that resulted 

from this analysis. See Appendix C for the complete version of the final codebook (CB_v4: 

Finalized Codes & Themes).  
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Figure 19. Codebook Section 
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Figure 19 (continued.) Codebook Section
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Generating Descriptive Statistics 

Qualitative research oftentimes uses some form of counting to make judgments 

about patterns/consistencies (Miles & Huberman, 1994). Numbers, when used in qualitative 

data analysis, allow a researcher to quickly make sense of the data (when there is a large 

dataset), verify or disprove an intuition or hypothesis, and helps protect against bias (Miles & 

Huberman, 1994). Atlas.ti’s analysis tools were used to generate a co-occurrence table; this 

data was used to describe how often the themes occur in relation to one another. 

Additionally, Microsoft Excel was used in this study to generate descriptive statistics 

surrounding the themes that resulted from the analysis. This provides insights on the 

patterns of themes based on the project type, focus, and STEM discipline.  

 

Interpreting the Qualitative Results 

 The second sub-question proposed in this phase of the study was: How do PIs’ 

perspectives of impact align with existing impact frameworks found in the literature to form a preliminary 

description of the impact of NSF investments in undergraduate STEM education projects? Essentially, 

this research question is asking for an interpretation of the research findings in light of the 

past literature on research impact. This type of interpretation is commonly done in both 

qualitative and quantitative studies (J. W. Creswell, 2008). In this study, the codes 

corresponding to the themes that emerged from the coding analysis were compared with the 

three definitions of research impact and the dimensions of impact in existing research impact 

frameworks (Allen et al., 2008; Donovan & Hanney, 2011; Godin   Dore , 2005; Kuruvilla et 

al., 2006; Levitt et al., 2010; Rymer, 2011; Salter & Martin, 2001; Walter et al., 2003). The 
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constructs in the existing frameworks are in Tables 4-6. For the sake of convenience, Figure 

2 is repeated below.  

 

Figure 2. Defining the Three Dimensions of Research Impact 

 

This analysis describes the ways in which PIs perspective on impact align, or do not align, 

what research impact means according to the literature.  

 

Acknowledging Bias  

 Qualitative research is sometimes referred to as interpretive research (Miles & 

Huberman, 1994; Stake, 2010b). When conducting qualitative research, the qualitative 

researcher is the primary instrument for collecting data and making meaning of it (Stake, 

2010b). As a result of this, it was important to recognize that “the perceptions we have of 

objects and events and relationships are simultaneously interpretive. They can get continuing 

reinterpretation” (Stake, 2010b, p. 37). While it is hopeful that my experience and 

understanding will benefit the goals of making sense of what research impact means in this 

Scientific Impact:  

Advances in reliable knowledge (theories, methods, facts, models) 
that primarily influence academic communities 

Domain-specific Impact:  

Influence of  the methods or results of  an R&D project on the 
people, priorities, and/or processes in the context of  interest 

Societal Impact:  

Research results that influence social, cultural, 
environmental/natural, or economic capital of  a nation 
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context, it was important to recognize that interpretations can be faulty and that my bias 

could potentially influence the process and outcomes of the study. 

 I (the researcher conducting this study) hold B.S. and M.S. degrees in Industrial 

Engineering, and am currently pursuing a Ph.D. in Engineering Education—all from the 

same institution. My academic background in Industrial Engineering undergird my research 

interests in studying systems-level issues and also facilitates a systems engineering approach 

to solving problems (i.e. understanding the individual components in socio-technical 

systems, how they fit & work together, and pursuing actions to enhance the overall system’s 

efficiency.) Lastly, I have conducted two mixed methods studies during two consecutive 

summers as an intern in NSF’s Division of Undergraduate Education (London, 2012, 2013), 

and am currently leading to a third research project (London & Young, 2014).  

These experiences provide me with rich, experiential understanding of the 

overlapping contexts in which this study is situated—the contexts of undergraduate 

engineering education in the U.S., federal investments in undergraduate engineering 

education research, and stakeholders desiring better information to inform better funding 

decisions. On the other hand, I am also aware of how these experiences can contribute to 

bias, which Scriven summed up well as “the lack of objectivity,... a predisposition to error” 

(Stake, 2010b, pp. 164-165). An example of this might include expecting systems-level 

impact from an individual project where a more modest expectation is more reasonable. I 

monitored these biases and was intentional about engaging in research activities that should 

increase confidence in the results; examples of this includes keeping reflective notes and 

triangulating results using methods that involve other STEM education researchers. 
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CHAPTER 6: PHASE ONE RESULTS 
 
 
 

This chapter includes results corresponding to the qualitative questions posed in the 

first phase of this study: What is a meaningful description of the impact of NSF investments in 

undergraduate STEM education R&D projects, based on PIs’ perspectives?  It includes three sections. 

The first section describes the themes surrounding the claims PIs make when discussing the 

impact of their work in PI conference reports, and how they support them. The second 

section includes statistics about the frequency of the claims, by project type, project focus, 

and STEM discipline. The last section includes an interpretation of how PIs’ perspectives on 

impact align with existing literature on research impact, and concludes with a preliminary 

description of what impact means in this context.  

 

Making & Supporting Claims About Research Impact 

Making Claims About Impact 

 
 This section describes results of the first sub-question: What claims do PIs make about 

the impact of their NSF-funded projects? When discussing impact of a research project, PIs tend 

to make claims about eight thematic ideas. Table 12 provides a summary of the themes. The 

remainder of this section provides additional details on each theme, and quotations 

corresponding to each theme.



 

 
 

98

Table 11. Summary of the Types of Claims PIs Make about Impact 

 

Theme Description

Conducting Research Claims about people involved in conducting the research and the major steps in
the research process.

Research‐ and Education‐focused 
Developments

Claims about the development of artifacts that imply permanence and
sustainability of the research topic beyond the current study, and tangible, 
educational materials informed from the current study.

Disseminating Research Findings and
Propagating Developments

Claims about how research findings and/or educational developments are being
shared with other researchers and/or practitioners.

Influence on Individuals and/or
Communities

Claims about ways in which individual or communities of learners, instructors,
or researchers are being affected by the outcomes of the study.

Influence on Environmental/Structural 
Decisions, Metrics

Claims about how insights from the current study inform administrative
decisions that ultimately influence the actions of others, and how the current 
study contributes to assessments and/or metrics of interest to administrators.

Scope of Influence Claims about the span associated with their project outcomes.

Symbols of Impact Claims about the receipt of public affirmation as a result of connections to the
current study.

Unrealized Impact
Claims about activities, events, and outcomes that have not yet happened, but
are either future plans or anticipated outcomes that will be realized at a later 
time.
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THEME: CONDUCTING RESEARCH 

 When given an opportunity to discuss the impact of their work, PIs make claims 

about people involved in conducting the study, and claims related to the major steps of the 

research process in their impact narratives. References are usually made to collaborators on 

the project, undergraduate student researchers, graduate research assistants, and post-

doctoral research staff. Making claims regarding conducting research also includes connections 

between the current study and existing literature or work that serve as a motivation for the 

study. This may also include connections to prior research and developments that serve as 

the foundation for the current work. Highlights of current research activities are other 

discussion topics associated with this theme. Impact narratives may also include a succinct 

statement on the key research findings, with emphasis on the new contribution to the body 

of literature. Lastly, impact narratives sometimes mention the submission of applications for 

additional funding and/or references to securing funding to continue the study. Provided 

are quotes from three abstracts that provide evidence in support of this theme; the code 

among those assigned that corresponds to this theme is bold. 

 
Project Attributes: Central Resource Project | Engineering | Conducting Research on 
Undergraduates in STEM Education 
 

“The project has already helped and will continue to build a community of 
engineering education scholars by training and mentoring twelve graduate 
and post-doctoral researchers in both qualitative and quantitative data 
collection and analysis. …”  

 
Assigned Codes: Parties Involved in Conducting Research; Influence of 
Research on STEM Education Researchers and/or Research Community 
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Project Attributes: TUES Type I | Computer Science | Assessing Student Achievement 
 

“A goal of many CS education projects is determine the extent to which an 
instructional intervention has impacted student attitudes. A challenge is that 
valid and reliable instruments that measure the necessary constructs are not 
currently available. Instead, each project is left to develop its own, resulting in 
problems. First, most computer scientists are not training in measurement, 
and therefore, are not familiar with psychometric principles. This could result 
in questionable instruments and interpretations. Second, without a common 
set of instruments, valid comparisons cannot be made across project[s]. This 
project seeks to address this need for a valid survey in CS.” 

 
Assigned Codes: Connections between the current study & existing literature; 
References to what motivated the study; Curricular materials, training resources, and 
pedagogy  

 
 
Project Attributes: TUES Type I | Geological Sciences | Creating Learning Materials and 
Teaching Strategies 
 

“…An internal grant was funded to upgrade and modernize the surface 
monitoring station.” 

 
Assigned Codes: Applying for and securing additional funding to continue 
research; Affirmation from within the academic community 

 

THEME: RESEARCH- AND EDUCATION-FOCUSED DEVELOPMENTS 

 Impact narratives may include claims regarding the formation of artifacts that imply 

permanence and sustainability of the research topic beyond the current study, but were 

motivated by the current study. There are three types of research-focused developments: 

text-based entities, discussion-based entities, and facilities or technology developed 

primarily for the purpose of conducting research. Examples of each of these may include: 

the establishment of a new scholarly journal or an annual research symposium focused on a 

niche research area, and the installation of a new research center dedicated to specific 

research areas. For example, for one of the abstracts (Project Attributes: TUES Type I | 
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Interdisciplinary | Creating Learning Materials and Teaching Strategies), they mentioned 

four types of dissemination activities—one of which was “Launching ‘Journal of IT 

Education Discussion Cases’ through Informal Science Institute to publish cases”  

Additionally, impact narratives also include claims about the development of 

tangible, educational materials that were informed from the current study and designed to 

benefit individuals (e.g., learners, instructors) or groups in an educational setting. This 

includes curricular and pedagogical materials, as well as resources for training instructors. 

Technology developments and instruments purchased (e.g. lab equipment) for educational 

purposes are also included among the examples of education-focused developments. 

Consider the following quote from an abstract as an example. 

 

Project Attributes: TUES Type II | Physics/Astronomy | Conducting Research on 
Undergraduates in STEM Education 
 

“The curriculum is in use at our institution and has been tested at a handful of 
pilot sites. As noted above, our materials are available to potential adopters as 
well.”  
 
Assigned Codes: Curricular materials, training resources, and pedagogy; 
Curricular changes  

 

When discussing both the research- and education-focused developments, PIs 

sometimes elaborate on the affordances of the new development. The use of the term 

“affordances” is borrowed from Gibson (1977), who first used it in an ecological context to 

describe properties of the environment), and Conole (2013), who is among the researchers 

who now uses it to discuss the contributions information and communications technology 

can make to the learning process. In this context, this may include discussion on the utility 

of the development, economic value associated with it, and ways in which it provides the 
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capacity to engage in a new set of learning and/or research experiences.  Provided is one 

final quote from the Dissemination section of an abstract that provides evidence to support 

this theme. 

 
Project Attributes: TUES Type III | Interdisciplinary | Assessing Student Achievement 
 

“The project has yielded very effective interdisciplinary tools to assess students’ 
critical thinking and real-world problem solving skills. This tool is useful for 
assessing both program improvement efforts, and for evaluating sponsored 
research project outcomes related to critical thinking. …”  
 
Assigned Codes: Curricular materials, training resources, and pedagogy; 
Affordances of the developments  

 

THEME: DISSEMINATING RESEARCH FINDINGS AND PROPAGATING 

DEVELOPMENTS 

 When PIs discuss the ways in which they are sharing research findings and 

propagating their education- and research-focused developments, they make claims about 

the mediums used to circulate the findings, along with activities and outcomes surrounding 

propagation. The mediums used to disseminate research findings are text-based and/or 

discussion-based mediums. Examples of text-based mediums include conference 

proceedings, journal publications, and research briefs. Discussion-based mediums include 

sharing research findings during a conference presentation or by participating in an expert 

panel discussion. Another form of disseminating research findings includes sharing insights 

informed from research in various venues for teaching and training (e.g., workshop, 

seminar, consulting, demonstrations at a research conference).  Oftentimes, the audience for 

the text- and discussion-based mediums is the same: STEM education researchers and/or 

practitioners. 
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In addition to discussing mediums and venues for disseminating research findings, 

PIs also discuss ideas related to the spread of developments resulting from their study. 

These topics include highlights of current activities they are engaged in to propagate 

developments—such as activities that contribute to the establishment of partnerships, 

marketing and commercialization of materials, and instituting mailing lists to keep track of 

educators and/or vendors who have expressed interest in their developments when they 

become available. Provided are quotes from three abstracts that provide evidence in support 

of this theme; the code among those assigned that corresponded to this theme is bold. 

 

Project Attributes: TUES Type II | Research/Assessment of Research | Assessing Student 
Achievement 

 
“To date, more than 15 peer-reviewed conference presentations; several 
posters; 1 publication; 2 under review; 2 in preparation by team members. 
Several campus visits and workshops.” 

 
Assigned Codes: Text- and/or Discussion-based Mediums; Dissemination via 
Venues for Teaching, Training; Highlights of Current Activities; Quantifying 
Outcomes 

 

Project Attributes: TUES Type I | Physics/Astronomy | Assessing Student Achievement 

“We have published five peer-reviewed conference proceedings, one peer-
reviewed journal paper, and about 20 contributed talks or posters. We are 
presenting a workshop at the National Meeting of the American Association of 
Physics Teachers in August, and plan an additional 2-4 papers to be submitted 
next year.” 

  
Assigned Codes: Text- and/or Discussion-based Mediums; Dissemination via 
Venues for Teaching, Training; Future Plans to Conduct Research, Create 
Developments, or Disseminate; Quantifying Outcomes 

  

Project Attributes: TUES Type III | Social Sciences | Creating Learning Materials and 
Teaching Strategies 
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“Through the efforts of our project, we have authored a workbook, performed 
several webinars and workshops, and created a website in collaboration with 
Carleton College’s Science Education Resource Center to disseminate materials 
developed through the project. We have also made these available through 
NSDL.” 

 
Assigned Codes: Curricular materials, training resources, and pedagogy; Text- and 
Discussion-based mediums; Dissemination via Venues for Teaching, 
Training; Outcome of activities supporting propagation of developments 

 

THEME: INFLUENCE ON INDIVIDUALS, COMMUNITIES 

 When given an opportunity to discuss the impact of their work, PIs make claims 

about ways in which individuals or communities of people are affected by outcomes of the 

current study. The individuals most commonly mentioned are learners, instructors, and 

researchers. As it relates to learners, PIs may make claims about how participation in an 

experience associated with the current study leads to the development and application of 

knowledge, skills, and ways of thinking relevant to STEM concepts and careers. It also 

includes undergraduate students’ changes in interest in pursuing graduate studies, as well as 

improvements in STEM literacy among those who participate in outreach activities 

associated with the current study.  Consider the following examples of this idea. 

 

Project Attributes: TUES Type II | Computer Science | Implementing Educational 
Innovations 
 

“Students who use write their own tests for their own software and are graded 
by Web-CAT produce 28% fewer bugs per thousand lines of code. …” 

 
Assigned Codes: Influence of Teaching on STEM Learners; Quantitative 
Evaluation and/or Metrics 

 
  
 The use of the term “instructors” is intended to encapsulate a cross-section of 

individuals, for example, K-12 teachers, graduate teaching assistants, post-doctoral staff, 
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and/or STEM education faculty in higher education. When making claims about 

instructors, PIs assert that participation in a set of activities contributes to the development 

and application of knowledge, skills, and ways of thinking surrounding improved 

pedagogical practices. The activities include attending a workshop hosted by the PI’s 

research team, or joining a virtual network designed by the PIs’ research team to facilitate 

interactions among instructors and to exchange resources. The latter of these two activities 

(i.e., providing a virtual venue) is an example of how PIs make claims about their influence 

on a community of instructors. Provided is an example of an impact narrative that includes 

this idea. 

 
Project Attributes: TUES Type II | Geological Sciences | Conducting Research on 
Undergraduates in STEM Education 
 

“Participating faculty modified their teaching approach to include active 
strategies involving ConcepTests. Several of these participants have leveraged 
this experience to expand to more sophisticated active learning approaches. …” 

 
Assigned Codes: Influence of Training on STEM Education Instructors 
and/or Community; Curricular Materials, Training Resources, and Pedagogy 

 

 The last category of individuals that are commonly referenced in impact narratives 

are researchers. Researchers may include undergraduate researchers, graduate student 

research assistants, post-doctoral researchers, and faculty in higher education. When 

mentioning these groups, PIs discuss ways in which participation in the current study is 

contributing to the development of new data collection and analysis skills, or influencing the 

quality of the research-related documents (e.g., grant proposals, research publications). PIs 

also make claims about the development or expansion of the research community who 

share interests in their area of expertise. This theme also captures instances where teaching- 
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or learning-related insights resulting from the current study serves as the basis for a new set 

of research-focused activities/projects.  Provided are quotes from two abstracts that include 

influences to at least two groups of interest to this theme (i.e., learners, instructors, or 

researchers); the code among those assigned that corresponded to this theme is bold. 

 
Project Attributes: TUES Type II | Geological Sciences | Implementing Educational 
Innovations 
 

“This project has had a significant impact on our undergraduate female 
students: several students have pursued senior thesis projects stemming from 
grant activities; stating that the field activities were the highlight of their 
semester. Some students love the experience and wan more. Others decide that 
they may want to pursue a different career. All learn how science is conducted 
and have a better foundation to understand concepts like sampling, 
uncertainty and variability, which are important in many fields. …” 

 
Assigned Codes: Influence of Teaching on STEM Learners; Qualifying Claims; 
Scope via Target Populations; Influence of Research on STEM Education 
Researchers and/or Research Community 

 

Project Attributes: TUES Type I | Chemistry | Implementing Education Innovations 

“Even though the course has been offered only once, there has been a 
measured positive impact on student’s laboratory abilities and confidence. 
This has been the first funded CCLI grant in the department in about 5 years 
which has had a positive impact on submission by colleagues. While scheduling 
of the course has been supported, it has been tricky.” 

 

Assigned Codes: Influence of Teaching on STEM Learners; Influence of 
Research on STEM Educations Researchers and/or Research Community; 
Affirmation from within the Academic Community; Curricular Changes 

 

 The last collection of ideas that correspond to claims regarding influence on individuals 

and/or communities are claims about direct personal, professional benefits to instructors 

and/or researchers. This includes, but is not limited to, expansions in the number of 

contacts in the PIs’ professional network as a result of conducting research or hosting a 
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training session for faculty. It also entails claims about how the inclusion of research 

activities in faculty’s promotion and tenure package contributed to positive professional 

outcomes for the individual.  Here’s one example of this idea: 

 
Project Attributes: TUES Type III | Engineering | Implementing Education Innovations 
 

“…Through invited presentations at conferences, workshops, and a variety of 
academic institutions, the PI has established well over 200 contacts from 
dozen of engineering programs across the country.” 

 
Assigned Codes: Dissemination via Venues for Teaching, Training; Affirmation 
from within the Academic Community; Direct Personal, Professional Benefits to 
Instructors, Researchers; Institutional Scope; Geographic Scope;  

 

THEME: INFLUENCE ON ENVIRONMENTAL/STRUCTURAL DECISIONS, 

METRICS 

 The use of the term “environment/structure” is adopted from a framework for 

facilitating instructional change in undergraduate STEM education (Beach et al., 2012). The 

framework is comprised of four types of strategies: Disseminating Curriculum and 

Pedagogy; Developing Reflective Teachers; Enacting Policies; and Developing Shared 

Vision. While the first two strategies focus on individuals (i.e. STEM educators), the last 

two focus on the environment and structural elements of the STEM education system. 

“Environment/structure” is a label for rules and policies that govern an environment, the 

reward system, reporting requirements, and supporting structures.  

Using these definitions, PIs make claims about ways in which their research informs 

administrative decisions, which ultimately influence the actions of others—either at the PIs’ 

home institution or elsewhere. Curricular changes such as modifications to an existing 

course, new course offerings, and changes in the set of courses students are advised to take 



 

 

108 

are examples of influences on the educational environment. Informing or enacting new 

policies by participating in policy-related discussions at local- or national-level gatherings is 

another way that PIs influence the decision making process. This theme also captures claims 

about how adding the PIs’ research project to their promotion and tenure package affects 

administrators’ decisions.  

Furthermore, this theme also includes ways in which the current study influences 

assessments and/or metrics of interest at the level of the undergraduate departments. This 

may include how the current study highlights latent environmental/structural issues that 

need to be addressed. It also includes claims about how the research insights affect 

aggregate student outcomes—such as enrollment, retention, and “Drop, Fail, Withdraw”-

rates within an undergraduate STEM education department. Lastly, the impact narrative 

may reference instances where the inclusion of research data or findings contributed to an 

accreditation evaluation.  

An example of how research may influence insights about the 

environment/structure is a TUES Type II project (Project Type) focused on Assessing 

Student Achievement (Project Focus). The study concluded that after one institution used 

the assessments that were developed to evaluate their program, they “found infrastructural 

weaknesses that led to motivation problems”. As a result of using the assessments, the 

department identified environmental/structural issues that were influencing their students’ 

motivation; such insights were not evident before conducting the assessment.  

Provided are quotes from two abstracts that provide evidence in support of this 

theme; the codes among those assigned that corresponded to this theme are bold. 

 



 

 

109 

Project Attributes: TUES Type II | Computer Science | Creating Learning Materials and 
Teaching Strategies 
 

“CS1 enrollment doubled after integration of course in freshman program. …” 
 

Assigned Codes: Department-level Assessments and/or Outcomes; Curricular 
Materials, Training Resources, and Pedagogy; Quantifying Outcomes 

 

Project Attributes: TUES Type I | Social Sciences | Implementing Educational Innovations 

“ …A substantial CNS learning community is growing on campus and we have 
developed a new CNS minor and are in the process of developing a BS is 
Cognitive Science.”  

 
Assigned Codes: Qualitative Evaluation and/or Metrics; Influence of Teaching on 
STEM Learners; Curricular Changes; Informing or Enacting Policy 

 

THEME: SCOPE OF INFLUENCE 

 In many of the impact narratives reviewed in study, PIs make claims about the span 

associated with their projects outcomes. Span may be geographic, disciplinary, or 

institutional in scope. References to states in the United States, and use of the term 

“international” are words that suggest geographic scope. Highlighting other disciplines 

involved in the study besides the specific target discipline serve as an indicator of 

disciplinary scope. Citing the names of other institutions using the R&D resulting from the 

study is what is meant by institutional scope. Scope of influence may also include span via target 

populations. This might include the use of terms like “at risk” students, underrepresented 

minorities, and women as qualifiers of the types of learners affected by the study. Finally, 

this theme also captures scope in the form of non-academic partnerships—with vendors, 

industry, or professional societies—usually for the purpose of advancing the dissemination 

of research findings or propagation of research developments.  What follows are quotes 

from abstracts that references various dimensions of the scope associated with this theme. 
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Project Attributes: TUES Type III | Interdisciplinary | Developing Faculty Expertise 
 

“To date, more than 350 institutions in 45 states 13 foreign nations have been 
intensively involved. In the last three years, participants estimate their efforts 
have impacted 145,000 students. …” 

 
Assigned Codes: Influence of Training on STEM Education Instructors and/or 
Community of Instructors; Geographic Scope; Institutional Scope; Less Specific; 
Indirect or Expected Outcomes 

 
 
Project Attributes: TUES Type I | Geological Sciences | Conducting Research on 
Undergraduates in STEM Education 
 

“The project has already made a big impact on the instrumental capability of 
the department’s hydrology lab. Many new pieces of equipment have been 
purchased, which triggered research interests among undergraduate as well 
as graduate students. …” 

 
Assigned Codes: Instruments, Technology used for Educational Purposes; Influence 
of Research on STEM Education Researchers and/or Research Community; Scope 
via Target Populations 

 
 
Project Attributes: Type III | Biological Sciences | Developing Faculty Expertise 

“Analysis of the program’s impact from 2002-2007 shows that we have trained 
224 participants who developed 54 teachable units to engage students in 
learning biology and the nature of science. Participants have taught the units 
to over 52,000 undergrads at 50 universities. While the units are developed for 
biology courses, the interdisciplinary topics include microbiology, ecology, cell 
biology, neurobiology, statistics, molecular biology, and imaging. In 200, we 
trained 36 faculty and instructors to lead ST-type workshops at 13 
universities” 
 
Assigned Codes: Quantitative Evaluation and/or Metrics; Quantifying Outcomes; 
Influence of Training on STEM Education Instructors and/or Community of 
Instructors; Curricular Materials, Training Resources, and Pedagogy; Indirect or 
Expected Outcomes; Disciplinary Scope; Dissemination via Venues of Teaching, 
Training 
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THEME: SYMBOLS OF IMPACT 

 At times, PIs make claims about the forms of public affirmation they have received 

as a result of the research they have conducted. Such affirmations vary depending on 

whether it comes from within the academic community or from outside. In most cases, the 

symbol is bestowed on the PI by other experts in the research community because of their 

unique contribution to the body of knowledge or perceptions of the extent to which their 

work advances the discipline. By doing such, those affirming the research bolster its 

credibility and visibility.  

The forms of affirmation that come from within the academic community are often 

in the form of receiving special recognition/awards, being labeled an exemplar, leader, or 

fellow, or being asked to give a keynote address related to the PIs’ area of expertise. These 

are all symbols that carry significance among the members of their research community. 

Examples of the forms of affirmation that come from outside the research community may 

be in the form of press coverage, news media reports, featured stores on television or in 

written publications, or having a project featured in the NSF Highlights. (The NSF Highlights 

are a source of information about NSF investments in R&D projects stored on the NSF 

intranet. NSF Program Officers submit “highlights” to the internal database at will. Each 

highlight is a brief summary of the funded project, along with its transformative results or 

outcomes.) Provided are quotes from two abstracts that provide evidence in support of this 

theme; the code among those assigned that corresponded to this theme is bold. 
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Project Attributes: TUES Type I | Biological Sciences | Implementing Educational 
Innovations 
 

“The impact that this project has had on students has been positive and we 
have been successful in achieving our goals for them based on gains in the 
classroom, from survey results and CAT gains. Each of the classes has 
generated research-quality data for the collaborating research faculty. Some 
of the data have resulted in a research publication with the students as 
authors. The success of our project has been recognized nationally and within 
our department with several faculty members approaching us with ideas for 
future-based classes.” 

 
Assigned Codes: Influence of Teaching on STEM Learners; Quantitative Evaluation 
and/or Metrics; Highlights of Research Findings; Parties Involved in Conducting 
Research; Text- and Discussion-based Mediums; Geographic Scope; Institutional 
Scope; Affirmation from within the Academic Community 
 

 
Project Attributes: Type I | Geological Sciences | Creating Learning Materials and 
Teaching Strategies 
 

“Over 750 undergraduate students enrolled in the introductory Geology 
Laboratory for non-majors have completed two exercises at the GetWET 
measuring surface and groundwater quantity and quality. Over 65 
undergraduate majors have participated in various field exercises and 
experiments through participation in five courses within the Geology 
curriculum. Forty teachers have been trained and 390 K-12 students have 
visited the GetWET on field trips. Press coverage resulted in a major gift from a 
local groundwater equipment manufacturer, allowing student use of cutting 
edge, professional technology. An internal grant was funded to upgrade and 
modernize the surface water monitoring station.” 

 
Assigned Codes: Department-level Assessments and/or Outcomes; Quantifying 
Outcomes; Influence of Teaching on STEM Learners; Scope via Target 
Populations; Instruments, Technology, used for educational purposes; Influence of 
Training on STEM Education Instructors and/or Community of Instructors; 
Affirmation from outside the academic community; Affirmation from within 
the academic community 

 
 
THEME: UNREALIZED IMPACT 
 
 The final type of claim PIs make when discussing the impact of their work is claims 

about unrealized impact. These are claims about activities, events, and outcomes that have not 
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yet happened, but are either future plans or anticipated outcomes the PI expects will happen 

at a later time. More specifically, this includes three types of ideas. One set of ideas is future 

plans to conduct research, create developments, disseminate findings, or propagate 

developments.  

A second set of ideas includes indirect and/or expected outcomes. More 

specifically, these are claims that create links between direct project outcomes and 

secondary, or tertiary outcomes that may or may not have been realized yet. Oftentimes, 

this is discussed in form of a chain of events that ultimately leads to effects on student 

learning. For example, PIs make connections between faculty participation in their 

workshop to changes in their pedagogical practices, which will ultimately influence how 

their students learn. 

Sometimes, claims are made to describe anticipated outcomes in conjunction with 

references to an anticipated geographic span of influence. In some cases, PIs posit that the 

findings of their work have implications for teachers and learners on a national or 

international level. However, this is usually limited to a non-specific use of the term national 

or international, and often does not include a detailed explanation of how and where the 

implications will take effect. In a few instances, PIs also connect their project outcomes to 

societal-level impact constructs of interest—such as workforce development, technological 

literacy of citizens, or the economy.  

The third type of idea associated with this theme are indeterminate outcomes: 

statements of admission that the impact is “unclear”, “hard to determine”, or “yet to be 

determined.” Provided is an impact narrative from a Central Resource Project (Project 

Type) focused on Developing Faculty Expertise (Project Focus): 
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Unfortunately, the actual impact of the project with respect to its overall goals is unclear. That is, 

we have not determined if, as a result of the webinar series, the quality of proposals submitted by the 

workshop participants is higher and the number [of proposal submissions] is greater. We do 

know that we have introduced the TUES Program to a significant number of faculty who had 

never submitted a proposal to the Program. 

This shows an example of how PIs may perceive some aspects of their project’s impact are 

indeterminate while also highlighting impacts about which they are more certain. This 

section of the chapter concludes with one last example of abstracts that include evidence to 

support this theme. 

 
Project Attributes: TUES Type II | Engineering | Creating Learning Materials 
 

Over the past years, several state-of-the-art laboratories and new courses have 
been developed by the NSF grant. Creation of the Internet-based laboratories 
significantly contributes to the development of technologically literate 
students and workforce that could be in great demand not only in the tri-state 
area but also nationwide. Information-based technology has become the new 
realm of manufacturing and mechanical engineering technology graduates. 
The NSF project helps the AET program to prepare faculty and students to: 
apply discipline-specific theory, conduct experiments, and use real world 
experience to interpret, analyze, and solve current and emerging technical 
problems. Annual workshop has been held for faculty development. The 
successful implementation of the NSF project is crowned by the Applied 
Engineering Technology program's successful accreditation by the TAC of 
ABET. The AET program was granted accreditation and the ABET evaluation 
team found no deficiencies, concerns or weaknesses. The NSF project has been 
well-performed by the PIs as planned in the early stage. 

 
Assigned Codes:  Instruments, Technology used for Educational Purposes; 
Influence on STEM Learners; MISC–Reference to Societal Level Impact; 
Geographic Scope; Indirect or Expected Outcomes; Influence of Training on 
STEM Instructors and/or Communities of Instructors; Affirmation from within the 
academic community; Department-level Assessments and/or Outcomes 
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Supporting Claims about Research Impact 
 

This section describes results of the second sub-question: How do PIs support claims 

about the impact of their work?  It elaborates on how PIs qualify and back their claims, 

irrespective of the types of impact being discussed. Two themes describe the mechanisms 

PIs used to support their claims (see Table 12); they are: clarifying claims using degrees of 

specificity; and supporting claims by establishing credibility and/or relevance. The 

remainder of this section is an elaboration on these two themes.  

 
Table 12. Summary of Ways PIs Support Claims About Impact 

 

THEME: CLARIFYING CLAIMS USING DEGREES OF SPECIFICITY 

 When discussing claims, PIs often do so by using more or less specific language. 

When the language is more specific, the impact narrative includes a quantification of project 

outcomes, such as the number of: publications that resulted from the study, workshops 

hosted, participants who attended the workshop, institutions represented among the 

technology- or curriculum-adopters. It can also include references to the duration of time 

associated with how long research- and education-focused developments have been in use. 

Another way in which PIs clarify claims using degrees of specificity is by using qualifying 

terms, such as “possibly”, “likely” or “potentially”. The use of these terms limits the extent 

to which the claim can be considered credible and/or applicable. In some instances, PIs 

Theme Description

Clarifying Claims Using Degrees of 
Specificity

The use of more or less specific language when discussing claims about impact.
Examples of more specific language include quantifying project outcomes, and 
using qualifying term to describe the extent of impact. Examples of less specific 
language are succinct, broad, vague ideas that could easily describe a variety of 
projects. 

Supporting Claims by Establishing 
Credibility and/or Relevance

References to ideas that suggest reasons why the reader should perceive the
study as trustworthy and/ore closely related to the priorities of the STEM 
education discipline associated with the project. 
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begin the impact narrative with sentences that can be perceived as “cautionary disclaimers”. 

The use of language sets parameters around the claim so that readers know that it is not 

relevant in all cases, but can be applied in particular circumstances.  

Provided are two examples of impact narratives that begin with the “cautionary 

disclaimers”: 

“Our project impact is by necessity limited but our results are suggestive. In our pilot study…” 

 

“While it is too early to determine the impact of the workshop series, it is expected to increase the 

number and quality of engineering proposals submitted to the TUES program.” 

The use of the term “suggestive” in the first quote implies information about the extent to 

which the results can be used. On the other hand, “while it is too early to determine the 

impact” sets limits on the timeframe when more conclusive statements about impact can be 

made.  

In some instances, the impact narratives are very short and much less specific. They 

are usually broad, vague claims that arguably, would not be considered unique to the project 

being reported on. The following quotation is the complete impact narrative from a TUES 

Type I project focused on Creating Learning Materials in computer science: 

“ Anticipated impacts are to transform the way intro programming courses are taught and provide 

material for the instructors to use. A new model was created. Significant student learning is being 

demonstrated.” 

In this example, the impact narrative includes little insight about what is meant by the use of 

words like “significant”, “student learning”, and “demonstrated”. As a result, readers are 
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not given enough information to know how the results of the study might be applicable 

beyond the study itself. 

Provided are quotes from three abstracts presented above; consider them in light of 

how PIs use degrees of specificity to support claims about impact. The code among those 

assigned that corresponded to this theme is bold. 

Project Attributes: TUES Type II | Research/Assessment of Research | Assessing Student 
Achievement 

 
“To date, more than 15 peer-reviewed conference presentations; several 
posters; 1 publication; 2 under review; 2 in preparation by team members. 
Several campus visits and workshops.” 

 
Assigned Codes: Text- and/or Discussion-based Mediums; Dissemination via 
Venues for Teaching, Training; Highlights of Current Activities; Quantifying 
Outcomes 

 
 
Project Attributes: TUES Type III | Interdisciplinary | Developing Faculty Expertise 
 

“To date, more than 350 institutions in 45 states 13 foreign nations have been 
intensively involved. In the last three years, participants estimate their efforts 
have impacted 145,000 students. …” 

 
Assigned Codes: Influence of Training on STEM Education Instructors and/or 
Community of Instructors; Geographic Scope; Institutional Scope; Less Specific; 
Indirect or Expected Outcomes 

 
 
Project Attributes: TUES Type II | Engineering | Creating Learning Materials 
 

“All of project outcomes have been presented by talks and posters at 
international and national education conferences in the ASEE, IERC, IEEM, 
IJIE, ASME, IMECE, MSEC, MES, EEET, and annual NSF workshop every year. 
More than 15 articles have been published by journals such as CED, JSysCI, 
JAMS, RCIM, JEE, JCE, and IJAMT. Other activities include lab tour for high 
school students and program advisory board.” 

 
Assigned Codes: Text- and/or Discussion-based Mediums; Geographic Scope; 
Scope via Target Populations; Qualifying Claims; Quantifying Outcomes;  
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THEME: SUPPORTING CLAIMS BY ESTABLISHING CREDIBILITY AND/OR 

RELEVANCE  

 The last theme that will be discussed in this study relates to how PIs support claims 

about impact by establishing credibility and/or relevance. These are ideas that convey 

reasons the reader should perceive the study as trustworthy and/or closely connected to the 

priorities of the STEM education discipline. References to a survey of the literature and any 

gaps in the literature, which the current study seeks to fill, may be an example of 

establishing credibility and/or relevance. Connections between the current study and 

national-level policy reports or discussions surrounding STEM education are yet another 

example. By extension, this also includes references to societal impacts (i.e., social, cultural, 

environmental and economic dimensions of society).  Provided is a quote that was 

mentioned in references to the types of claims PIs make; consider it now in light of how the 

claims is being supported. The code among those assigned that corresponds to this theme is 

bold. 

 

Project Attributes: TUES Type I | Computer Science | Assessing Student Achievement 

 
 “A goal of many CS education projects is determine the extent to which an 
instructional intervention has impacted student attitudes. A challenge is that 
valid and reliable instruments that measure the necessary constructs are not 
currently available. Instead, each project is left to develop its own, resulting in 
problems. First, most computer scientists are not training in measurement, 
and therefore, are not familiar with psychometric principles. This could result 
in questionable instruments and interpretations. Second, without a common 
set of instruments, valid comparisons cannot be made across project[s]. This 
project seeks to address this need for a valid survey in CS.” 

 
Assigned Codes: Connections between the current study & existing literature; 
References to what motivated the study; Curricular materials, training resources, 
and pedagogy  
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Brief references to the type of evaluation conducted as part of the study are another 

way to establish credibility. The evaluations may result in quantitative data (e.g., course 

performance indicators, pre-post tests results, adoption rates); qualitative data (e.g., 

anecdotal remarks from workshop participants, feedback from instructors using the 

curriculum); or a mix of both quantitative and qualitative data (e.g., survey results; course 

evaluation data). Anyone familiar with the type of data resulting from the evaluation would 

be able to make inferences about the types of claims a researcher can make based on it. In 

some cases, PIs make claims that suggest some type of evaluation has occurred, but there is 

no explicit reference to what type of evaluation it was. (Since there are other sections of the 

abstract that focuses on Methods and Evaluation, it is likely that such information can be 

found there.)  Provided are quotes from three abstracts that were presented before when 

discussing the types of claims PIs make; now consider it with this theme in mind. 

 
Project Attributes: TUES Type II | Computer Science | Implementing Educational 
Innovations 
 

“Students who use write their own tests for their own software and are graded 
by Web-CAT produce 28% fewer bugs per thousand lines of code. …” 

 
Assigned Codes: Influence of Teaching on STEM Learners; Quantitative 
Evaluation and/or Metrics 

 

Project Attributes: TUES Type I | Biological Sciences | Implementing Educational 
Innovations 
 

“The impact that this project has had on students has been positive and we 
have been successful in achieving our goals for them based on gains in the 
classroom, from survey results and CAT gains. Each of the classes has 
generated research-quality data for the collaborating research faculty. Some 
of the data have resulted in a research publication with the students as 
authors. The success of our project has been recognized nationally and within 
our department with several faculty members approaching us with ideas for 
future-based classes.” 



 

 

120 

 
Assigned Codes: Influence of Teaching on STEM Learners; Quantitative 
Evaluation and/or Metrics; Highlights of Research Findings; Parties Involved in 
Conducting Research; Text- and Discussion-based Mediums; Geographic Scope; 
Institutional Scope; Affirmation from within the Academic Community 

 

Descriptive Statistics Surrounding Results on Making & Supporting Claims 

 
The last section of this chapter presents descriptive statistics on how often the 

themes appear in the set of abstracts reviewed. A total of 1,454 codes about making and 

supporting claims were assigned to texts in the 155 abstracts reviewed in this study. Each 

code maps to one of the 10 themes about making and supporting claims about impact. (See 

Appendix C for codebook.) Figure 20 shows the proportion of claims discussed in 

abstracts. 
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Figure 20. Proportion of Themes Discussed in Abstracts 

 
The three themes that account for the largest proportion of claims that are made about 

impact are: 1) claims regarding disseminating research findings and propagating developments; 2) claims 

about unrealized impact; and 3) claims about influence on individuals and/or communities. On the other 

hand, there are fewer instances of claims about influence on environmental/structural decisions, 

metrics; and claims about symbols of impact are practically negligible when looking across 

abstracts. With respect to ways PIs support claims about impact, there are fewer instances 

of supporting them by establishing credibility and/or relevance than using degrees of specificity.  

  Table 13 shows the co-occurrence of claims PIs make and how they are supported.  
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Table 13. Co-occurrence of Themes in Abstracts 

 

Frequency Legend 5 instances  1 instance 

 

One of the first observations to note at first glance is that PIs tend to support claims using 

varying degrees of specificity significantly more often than by establishing credibility and/or relevance. 

More specifically, when making claims about dissemination & propagation, scope, and 

influence in individuals, PIs tend to be use (or less) specific language. On the other hand, 

they are least likely to use this form of support when discussing symbols of impact or ideas 

related to conducting research. On the contrary, PIs do not tend to support claims about symbols 

of impact by establishing credibility and/or relevance, and rarely is this form of support used when 
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discussing influence on environmental/structural decision, metric. It is used, however, when 

making claims about the influence of a project on individuals and/or communities. Now that the 

types of claims have been discussed in relation to how they are commonly supported, the 

next set of descriptive statistics will present information on the types of claims made in light 

of the project parameters. 

Figure 21-23 are split-stacked graphs that depict the average number of impact 

claims made based on project type, project focus, and discipline, respectively. In Figure 21, 

the themes are arranged in descending order based on the sum total across project types. 
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Figure 21. Split Stacked Graph Depicting Proportion of Impact Claims by Project Type 
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The data shows that there are instances when the average number of claims does not vary 

much by project type, but there are instances when there are noticeable differences. The two 

themes with the highest total average (i.e., dissemination of research findings and propagation of 

developments; and unrealized impact) are also the two most often mentioned in Type I and Type 

II projects. The same is true for the two types of claims that are mentioned the least often 

(i.e., symbols of impact and influence on environment/structural decisions, metrics). The deviation from 

the highest and lowest overall sum occurs with the Type III and Central Resource Project 

(CRP) projects. For Type III, influence on individuals and communities along with education- and 

research-focused developments are mentioned just as often as unrealized impacts. For CRP projects, 

dissemination of research findings and propagation of developments are not among the claims 

mentioned the most often; conducting research is. Similarly, for the two types of claims 

mentioned the least often across abstracts (i.e., symbols of impact and influence on 

environment/structural decisions, metrics), Type III abstracts have even fewer claims regarding 

conducting research than influences on environmental/structural decisions, metrics. Furthermore, the 

CRP projects did not include any claims regarding symbols of impact.   

When comparing claims made by projects receiving the largest funding (CRP) to 

projects with the smallest funds (Type I), there are a few notable differences. Type I project 

abstracts tend to include five types of claims more often than CRPs: claims regarding 

dissemination of research findings and propagation; unrealized impact; influence on individuals and/or 

communities; scope of influence; and symbols of impact. On the contrary, CRP projects mention 

claims about conducting research more often than Type I projects. The two project types are 

comparable in the average number of claims about research- and education-focused developments, 



 

 

126 

and influence on environmental/structural decisions, metrics. The differences in claims made are less 

apparent when comparing Type II and Type III projects. 

A look at the average number of claims based on project focus reveals another set of 

insights; Figure 22 presents this information. The themes are arranged in descending order 

based on the sum total across project foci. The project foci are stacked in descending order 

as well.
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Figure 22. Split Stacked Graph Depicting Proportion of Impact Claims by Project Type 
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Tables 14 and 15 are an interpretation of the stacked graph in Figure 22. They summarize the most and least commonly mentioned 

themes, respectively, by project focus.  

 

Table 14. Summary of Themes Most Commonly Mentioned in Abstracts, by Project Focus 

 

 
 
 
 
 
 

 

Table 15. Summary of Themes Least Commonly Mentioned in Abstracts, by Project Focus 
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With three exceptions, the three themes most commonly mentioned in the abstracts 

(i.e., disseminating researching findings and propagating developments; unrealized impact; and influence on 

individuals and/or communities) are consistently among the most commonly mentioned across 

project foci. The first exception, claims regarding scope of influence, is second among the most 

commonly mentioned in projects focused on Implementing Educational Innovations. The 

second exception, claims regarding conducting research, is third in the list of the most commonly 

mentioned themes for projects that focus on Assessing Student Achievement. The third 

exception, claims regarding education-and research-focused developments, is among the most 

commonly mentioned in projects focused on Creating Learning Materials.  

Unlike the claims most commonly mentioned from the perspective of project focus, 

there is no variation in the least commonly mentioned impact claim. For all five project foci, 

the two least commonly mentioned claims are: claims regarding influence on 

environmental/structural decisions, metrics and claims regarding symbols of impact. However, projects 

focused on Implementing Educational Innovations tend to include more claims about 

influences on environmental/structural decisions, metrics than any other project focus. 

Finally, analyzing the average number of impact claims based on disciplinary 

differences leads to other patterns in the data as well. See Figure 23 for the split stacked 

graph depicting the average number of claims per abstract, organized by discipline. The 

themes are arranged in descending order based on the sum total across disciplines. The 

disciplines are stacked in descending order as well.  
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Figure 23. Split Stacked Graph Depicting Proportion of Impact Claims by Discipline 
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The order of the stacks provides information on the average number of claims 

mentioned in each abstract based on discipline. Thus, on average, PIs reporting on Social 

Science projects tend to include more claims about impact than PIs reporting on 

Mathematics projects. Additionally, Engineering, Geological Sciences, and Computer Science 

projects tend to include the same number of claims in each abstract, on average. 

Table 16 summarizes one interpretation of the stacked graphs. It summarizes the 

association between the eight themes on making claims about impact and the two disciplines 

that mention it the most, and the discipline that mentions the theme the least. The color 

associated with each discipline is the same in both Table 16 and Figure 23 to facilitate ease of 

referencing. 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

132 

Table 16. Summary of Themes Most & Least Commonly Mentioned in Abstracts, by STEM 
Discipline 

 
 

Provided are some of the most salient insights reflected in the summary table. Social 

science and Interdisciplinary projects include the most number of claims about dissemination 

of research findings and propagation of developments and research- and education-focused developments. 

Although claims regarding dissemination of research findings and propagation of developments represent 

the largest number of impact claims in abstracts on average across disciplines, they are the 
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least commonly mentioned in Mathematics and Biological Sciences project abstracts.  

Computer science projects are the least likely to include claims regarding unrealized impact. The 

two disciplines associated with projects that make the most claims about influence on individuals 

and/or community are Geological Sciences and Biological Sciences. Claims about influence on 

environmental/structural decisions, metrics are mentioned most often in abstracts that specify 

Physics and Interdisciplinary as the discipline. The only discipline that does not appear in 

Table 16 is Engineering. This may imply that the impact narratives focused on engineering 

education have a balance of each of the types of claims, without an overemphasis of one 

over another. While this concludes the presentation of descriptive statistics associated with 

the themes, the last section of this chapter presents the interpretation of the themes in light 

of existing literature on research impact.   

 
Alignment of Themes & Existing Literature on Research Impact 

 The first research question proposed in this study was: What is a meaningful description 

of the impact of NSF investments in undergraduate STEM education R&D projects, based on Principal 

Investigators’ (PIs)’ perspectives? The two questions supporting this overarching question were: 

What claims do PIs make about the impact of their NSF-funded projects? and How do PIs’ perspectives of 

impact align with existing impact frameworks found in the literature to form a preliminary description of the 

impact of NSF investments in undergraduate STEM education projects? Using Toulmin’s Model 

(Toulmin, 1958) and the Common Guidelines (Earle et al., 2013), this question was 

addressed by performing a content analysis of what PIs describe in the Dissemination and 

Impact section of project abstracts included in PIs conference reports. The results of that 

analysis reveal eight types of claims that are usually made and two ways of supporting them. 
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The focus of each theme supports inferences about how some STEM education researchers 

perceive research project outcomes as impact. Some of these findings are consistent with the 

current literature on research impact, many that are not, and others that are unique 

contributions to the scholarly discussion on this topic. Each theme will be briefly discussed 

with reference to the points of continuity and discontinuity with existing literature.      

 One idea related to claims regarding conducting research aligns with the most familiar 

dimension of research impact. When PIs highlight unique contributions to the body of 

literature, this is an expression of the study’s scientific impact. With the exception of the 

framework developed for informal science education projects (Allen et al., 2008) and 

focused primarily on societal impacts (Molas-Gallart et al., 2002), every framework included 

in the literature review includes a construct of related to advances in knowledge (Donovan & 

Hanney, 2011; Godin   Dore  , 2005; Kuruvilla et al., 2006; Levitt et al., 2010; Rymer, 2011; 

Salter & Martin, 2001; Walter et al., 2003).  References to collaborations that developed as 

part of or as a result of the study is similar to what Salter and Martin (2001) refer to as 

“forming networks and stimulating social interaction” in their framework. Although securing 

additional funding to continue research is a specific example of the symbolic impact 

mentioned in the framework characterizing the impact of science research (Godin   Dore  , 

2005), merely applying for additional funding is not mentioned as form of impact in the 

literature on research impact, and does not align with the descriptions associated with any of 

the three dimensions of research impact. Similarly, there are no references in existing 

literature to highlights of current research activities as forms of impact –unless these 

activities involve the creation of new scientific instruments or methodologies (Salter & 

Martin, 2001).  
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 There are many points of continuity between the forms of impact mentioned in 

existing literature and ideas supporting the theme claims regarding education- and research-focused 

developments.  More specifically, most of the existing frameworks reference the creation of 

tangible artifacts, instruments or products meant to be most useful to researchers and 

practitioners in the domain associated with the research that led to the development 

(Donovan & Hanney, 2011; Godin   Dore , 2005; Kuruvilla et al., 2006).  On the other 

hand, the idea of PIs highlighting the affordances of developments is comparable to the use 

of qualifying phrases like “more effective” training in one framework (Rymer, 2011) and 

“increasing the capacity for” scientific and technological problem solving in another (Salter 

& Martin, 2001).  

 As it relates to ideas supporting claims regarding disseminating research findings and 

propagating developments, there are two areas of overlap with studies that have already been 

done. Disseminating research finding through text- and/or discussion-based mediums is part 

of advancing reliable knowledge— scientific impact. Dissemination through venues 

oftentimes used for training researchers, practitioners, or students is usually not mentioned 

in tandem with scientific impact, however. Thus, simply hosting a workshop for instructors 

is not an example of impact. On the other hand, shifts in the attendees’ epistemology or 

pedagogical practice as a result of the workshop seems more consistent with what impact 

means. Furthermore, existing literature on this topic does not reference activities that may 

lead to propagating developments as forms of impact, but outcomes of such activities (e.g., 

established partnerships, commercialized materials) could possibly be perceived as being 

consistent with the formation of networks mentioned in the framework on the impact of 

research, in general, developed by Salter and Martin (2001). 
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Ideas related to claims regarding influence on individuals and/or communities are significant in 

this context because they are directly connected to the mission of the university—the setting 

where learners, instructors, and most STEM education researchers converge. Many of the 

ideas that support this theme also found in the existing literature on impact. For example, 

ideas related to the influence of teaching on STEM learners is consistent with nearly all of 

the frameworks mentioned in the review of the literature (Allen et al., 2008; Godin   Dore  , 

2005; Levitt et al., 2010; Walter et al., 2003). While influence on learners is commonly 

mentioned in the literature (e.g., Allen et al., 2008), there are very fewer references to 

influences on instructors. There may be a variety of reasons for this. For example, this may 

simply be an oversight on the part of the PI documenting the impact of the study, or could 

be a reflection of the priorities of program funding the grant. Ironically, although the focus 

of this study is on research impact, frameworks in the literature rarely mention influence on 

impact on communities of researchers. The two frameworks that do mention research 

networks were related to research, in general (Walter et al., 2003) and the impact of health 

sciences research (Kuruvilla et al., 2006).  

The next two types of claims that will be discussed were briefly referenced in the 

literature. Claims regarding influence on environmental/structural decisions, metrics relates to how 

research may influence administrative decisions or metrics of interest. Although this does 

not capture the focus on metrics, some aspects of this theme connect with the existing 

studies on how research informs policy at various levels (Godin   Dore , 2005; Kuruvilla et 

al., 2006; Levitt et al., 2010). Additionally, ideas supporting claims regarding symbols of impact is 

consistent with the symbolic impact mention in the framework on the impact of science 

(Godin   Dore , 2005). Apart from mentioning the symbol of affirmation itself (i.e., name of 
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the award, special recognition), information on what lead to the affirmation or the criteria 

used to determine why the study (or PI) received the affirmation would add more insights on 

what types of impact is associated with the symbol.  

The last two of the eight types of claims PIs tend to make in impact narratives that 

are not mentioned in the literature are claims regarding scope of impact and claims regarding 

unrealized impact. To the extent that other stakeholders would perceive the span of reach as a 

valid form of impact, this finding would be considered a unique contribution to the body of 

literature on the impact of research. Five dimensions of scope were identified on this study 

(i.e., geographic, disciplinary, institutional, target populations, and non-academic 

partnerships), but additional ways in which a project may have scope could be a topic of a 

future study. On the other hand, a plausible reason by the literature does not include ideas 

consistent with claims regarding unrealized impact is because from a temporal perspective, impact 

is usually focused on what has occurred, not what will occur. Moreover, projections about 

anticipated impact is very different from realized impact.  

In light of these points of alignment with existing literature, Figure 24 presents a 

preliminary description of the impact of undergraduate STEM education R&D.  
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Figure 24. Preliminary Description of Impact of Undergraduate STEM Education R&D 
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In short, this chapter includes results to the overarching question about a description 

of the impact of NSF-funded STEM education R D, according to PIs’ perspectives. As a 

result of this analysis, eight themes emerged to describe the types of claims PIs make in 

impact narratives, and two themes to denote how these claims are supported. Descriptive 

statistics on the frequency of these claims among the sample reviewed indicate that PIs tend 

to support claims about impact using various degrees of specificity more often than by 

including ideas that help establish credibility and/or relevance. The statistics also reveal that 

the types of claims PIs make differ more based on project focus and discipline than project 

type (which corresponds to levels of funding and intended scope). The final section of this 

chapter described the ways in which PIs claims about impact align and do not align with the 

three dimensions of research impact. It included a preliminary description of what impact 

looks like in this context, according to PIs’ perspectives, and shows that the ways in which 

impact is revealed does not always map cleanly to one dimension of research impact. This 

concludes the qualitative results and interpretation that correspond to the research question 

posed in the first phase of this study. The next chapter includes the methods associated with 

the question proposed in the second phase of this study; this will be followed by the 

corresponding results.   
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CHAPTER 7: PHASE TWO METHODS 

 
 
 

The first phase of this study resulted in themes surrounding the types of claims PIs 

make about the impact of their work. In this phase, a survey was used to conduct an 

exploratory study on how the PIs’ perspectives on impact compare to NSF Program 

Officers’. Again, the guiding research question addressed in this phase was: In what ways do 

POs’ perspectives on the impact of NSF investments in undergraduate engineering education R&D projects 

align with or differ from PIs’ perspectives on impact? The results of the survey, including closed- and 

open-ended questions, provided responses to the following sub-questions:  To what extent do 

POs agree with PIs’ perspectives on impact? How do POs talk about the impact of a NSF-funded R&D 

projects? The survey results were compared to the phase I result to address the final sub-

question proposed in this phase: Are there consistencies in how PIs on NSF-funded R&D projects 

and POs overseeing NSF’s R&D programs talk about the impact of NSF-funded R&D projects? 

 There are a few primary reasons why a survey of POs was used in this study. The 

first reason is because it served as a form of triangulation. This is especially important 

because all the data in the abstracts were self-reported, and one researcher worked on data 

analysis in this study. Research methods surrounding questionnaires and other self-report 

inventories come with numerous ways in which this type of data has the potential to be 

inaccurate (Johnson & Christensen, 2012). In this context, for example, a PI may report 

his/her impact in a particular way because of a desire to be perceived favorably by the 

agency funding their research. Additionally, a lack of insight about the impact of their work 
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or how to communicate it can also lead to inaccurate data. Moreover, it is also plausible for 

the researcher conducting the analysis to misinterpret a PI’s responses. One final reason for 

surveying POs is because has not been a study to date that includes insights on impact from 

both the perspective of those conducting the research and those making decisions to fund it. 

In light of this, a survey was used to garner the perspectives of another set of people who 

have the potential to understand and respond to PIs’ insight on the impact of STEM 

education research. 

 

Participants 

People with “general expertise” on impact in STEM education research were invited 

to participate in this study by taking a survey. Since the 1980s, cognitive science and 

cognitive ergonomics researchers continue to study the topic of expertise in light of the 

individual, interpersonal, and social aspects (Bailey, 1996; Ericsson & Smith, 1991; Garrett, 

Caldwell, Harris, & Gonzalez, 2009; Sternberg, 1997). As part of proposing a six-

dimensional expertise framework that accounts for group level performance on complex 

tasks, Garrett et al. (2009) summarized some of the most salient research perspectives on the 

attributes of experts. In short, experts reason differently, process tasks quicker than others 

(because of extensive practice and skill), have a more complete and organized knowledge of 

a domain, are more ‘intelligent’ than others (where intelligence is measured by mental ability 

and/or creativity), and have more experience to help organize knowledge (Hoffman et al., 

1997; Sternberg, 1997 as cited by Garrett et al., 2009).  This understanding of expertise is 

what guided the selection of participants in this study. 
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Before developing the selection criteria, it was important to remember that the 

training and experience of those who would agree to take the survey would influence how 

PIs’ statements on impact would be evaluated (J. Grant & Kinney, 1992; J. S. Grant & Davis, 

1997).  Ideally, experts on both research impact and undergraduate engineering education 

research would have been most suitable. However, it was difficult to identify experts on a 

niche research area in which there is so little existing literature. Researchers who have 

published reviews of literature related to research impact (Bornmann, 2013; Jonathan Grant 

et al., 2010; Salter & Martin, 2001; Walter et al., 2003) and/or developed research impact 

frameworks for other domains (Allen et al., 2008; Donovan & Hanney, 2011; Godin   

Dore  , 2005; Kuruvilla et al., 2006; Levitt et al., 2010) may possess expertise on research 

impact, but have much less understanding of undergraduate STEM education research. Since 

impact looks different in different research disciplines and institutions (Bornmann, 2013; 

Molas-Gallart et al., 2002), the specialized, disciplinary expertise in relations to federal 

investments in STEM education R&D was prioritized over domain knowledge of research 

impact in this study. As this field of research impact becomes more established, future 

studies that call for “experts” should find it easier to identify people with expertise in both 

research impact and undergraduate STEM education research.  

For the purposes of this study, researchers with academic training and professional 

experience in undergraduate engineering education and NSF investments in undergraduate 

STEM education R&D were invited to take the survey. More specifically, the five inclusion 

criteria for those who were invited were:  

(1) Must possess at least one degree in an engineering discipline;  
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(2) Must have a minimum of two years of professional experience as a NSF Program 

Officer, preferably in the Division of Undergraduate Education;  

(3) Must have professional experience as a PI on at least one NSF-funded research 

grant, preferably awarded by the Division of Undergraduate Education; 

(4)  Must have professional experience as a faculty member at a U.S. institution, 

preferably teaching engineering or engineering education courses;  

(5)  Must demonstrate research expertise in engineering education, as evidenced by at 

least one peer-reviewed publications related to engineering education topics 

published within the past two years. 

Starting with a list of 7 people who met the selection criteria, a snowball sampling approach 

(Johnson & Christensen, 2012) was used to identify and invite others to participate in the 

study. In total, 14 people were invited; all started the survey; some dropped out before 

completing it.  

 

Data Collection 

Qualtrics™ survey software was used to develop and disseminate the survey. The 33 

codes corresponding to the themes in phase I were used as statements in the survey. 

Participants were asked to rate 33 topical statements for relevance, clarity, 

comprehensiveness and alignment with the three dimensions of research impact. More 

specifically, the participants used a Likert-scale to address questions of relevance, and to 

provide qualitative comments in response to the questions on clarity and 

comprehensiveness. The labels on the Likert-scale were: (1) This item is not relevant to 

research impact; (2) This items needs major revisions to be relevant to research impact; (3) This 
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items needs minor revisions to be relevant to research impact; and (4) This items is relevant to 

research impact. Space was provided to comments on the style of individual statements and 

comprehensiveness of the collection of statements. To evaluate the alignment of a statement 

with the three dimensions of research impact or “unable to classify”, the participants had the 

option to select at least one response. The format of the survey was modeled after the 

content expert validation survey used to validate an instrument that would be used by 

healthcare professionals to measure the burden on a caregiver (J. S. Grant & Davis, 1997). 

One person who fit the selection criteria piloted the survey, and provided feedback on how 

to improve it. The reason for piloting with one person is because the population of people 

who fit the selection criteria is small and the researcher did not want to reduce the number 

of possible people who would complete the survey when invited. Figure 25 presents a 

snapshot of a Qualtrics™ survey question.  

 

 

 
 

 

 
Figure 25. Sample Survey Items 

 

Apart from the closed-ended questions, participants were asked three general questions to 

solicit their perspectives on impact. The open-ended questions were: 

1) Apart from the items listed above, brainstorm a list of at least three other ways a 

NSF-funded undergraduate engineering education project may have impact. 
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2) Please list any statements that seem unique to undergraduate engineering education 

R&D. 

3) Please list any statements that are not applicable to undergraduate STEM education 

R&D. 

After agreeing to participate, each PO was emailed the following documents: a link 

to a document summarizing the overarching study, survey instructions, and brief 

explanations of the 33 statements; and a link to the Qualtrics™ questionnaire..  

 

Survey Response Rate 

According to Qualtrics™, all fourteen people started the survey and nine completed 

it. The minimum, maximum, and modal number of responses per statement varied based on 

the two types of ratings (i.e. “Relevance and Clarity” vs. “Alignment with Research Impact 

Dimension”). Table 17 summarizes the response data.  

Table 17. Survey Response Data 

 
 

A minimum of five experts rated all of the statements for relevance and clarity and for 

alignment with research impact dimensions. At most, half of the experts rated the statements 

for relevance and clarity. There are instances were all of the experts rated a statements’ 

alignment with the three dimensions of research impact. The inconsistency in the number of 

responses despite having both types of ratings side-by-side (see Figure 25) suggests a 
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potential lack of clarity in the instructions participants were given or misinterpretation of the 

instructions. 

 

Data Analysis 

Three forms of analysis occurred in this phase of the study. Percent agreement was 

used to determine the extent to which POs agreed with PIs’ perspectives on impact. A PO 

was considered to be in agreement with the statement if the item was rated: “This Item IS 

RELEVANT to research impact” or “This item needs MINOR REVISIONS to be relevant 

to research impact”. After calculating percent agreement, the Likert-scale data was used to 

determine the extent to which POs agreed with one another on the relevance of the items. 

The interrater agreement for relevance was evaluated using Krippendorff’s α (Krippendorff, 

1970, 2004a). SPSS statistical software and a SPSS macro for generating this value (described 

elsewhere (Hayes & Krippendorff, 2007)) was used to perform the calculation of the α–

value. The rational for using Krippendorff’s α is because it is a measure of agreement for 

nominal data, it accounts for chance agreements among raters, and can be used regardless of 

the number of raters. Apart from calculating percent agreement and the alpha-value, the 

POs’ qualitative responses were synthesized into preliminary findings on their perspectives 

of impact. These responses were then compared to those of the PIs to determine if there 

were any consistencies. The next chapter presents the results of the survey study conducted 

in this phase. 
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CHAPTER 8: PHASE TWO RESULTS 
 
 
 

This chapter begins with the results corresponding to the research question posed in 

the second phase of this study: In what ways do NSF Program Officers’ (POs) perspectives on the 

impact of NSF investments in undergraduate STEM education R&D projects align with or differ from PIs’ 

perspectives on impact? It includes the percent agreement between PIs and POs on the 

statements related to research impact, along with the statistic on the extent to which the POs 

agreed with one another when answering the survey questions. It closes with the POs’ 

qualitative insights on impact that were included in the survey. 

 

Survey Results 

Table 18 presents the participants’ opinions on each statements’ relevance, and 

clarity, and alignment with the dimensions of research impact. Since the survey responses 

were anonymous, there is no way to know exactly which participant provided which rating. 

However, the symbols in the table correspond to the data Qualtrics provides on the total 

number of responses for each item. The items are arranged in descending order, starting 

with the items all seven experts who rated as: “This Item IS RELEVANT to research 

impact” or “This item needs MINOR REVISIONS to be relevant to research impact”.  
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Table 18. Summary of Survey Responses 

 

1 2 3 4 5 6 7 Sc‐I So‐I DM‐I UTC

 Curricular Changes X X X X X X X 100.0% 17% 33% 50% 0% 12
 Geographic scope X X X X X X X 100.0% 15% 38% 31% 15% 13
 Disciplinary scope X X X X X X X 100.0% 29% 21% 50% 0% 14

 Informing or Enacting Education Policy X X X X X X ‐ 85.7% 20% 20% 50% 10% 10
 Informing Promotion & Tenure Decisions X X X X X X ‐ 85.7% 20% 10% 50% 20% 10

 Institutional scope X X X X X X ‐ 85.7% 17% 33% 42% 8% 12
 Scope via target populations X X X X X X ‐ 85.7% 9% 45% 36% 9% 11
 Non‐academic partnerships X X X X X X ‐ 85.7% 20% 60% 20% 0% 10

X X

Activities Supporting Propagation of
Developments

X X X X

Outcomes of Activities Supporting
Propagation of Developments

X

 Influence of Teaching on STEM Learners
and/or Community of Learners

X X

X X X X X

33%

29%

8%

27%

‐

‐

X  Influence of Research on STEM Education
Researcher and/or Research Community

X X X X X

Statement Expert

X X X XX

X X ‐

X X

50% 0%

60% 10%

Research Impact Dimension

42%

20%
 Department‐level Assessments and/or

Outcomes

 Influence of Training on STEM Education
Instructors and/or Community of 

Instructors
X X X X X X X

X X

8%

10%

100.0%

100.0%

33% 8%

36% 29% 7%

46% 46% 0%

27% 36% 9%

25%

N

‐

12

10

12

14

13

11

% 
Agree

85.7%

85.7%

85.7%

85.7%

Legend Legend
X: Item Rated 3 or 4 on 4‐point Relevance Scale Sc‐I: Scientific Impact
(‐): Item Rated 1 or 2 on a 4‐point Relevance Scale So‐I: Societal Impact
NR: Item Not Rated by the Expert DM‐I: Domain‐specific Impact

UTC: Unable to Classify
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Table 18 (continued). Summary of Survey Responses 

	  

	  
 

 

1 2 3 4 5 6 7 Sc*I So*I DM*I UTC

%3
Agree

NResearch3Impact3DimensionStatement Expert

Highlights(of(Current(Research(Activities X X X X 6 6 6 57.1% 33% 25% 25% 17% 12
Text6based(mediums X X X X 6 6 6 57.1% 46% 23% 31% 0% 13
Text6based(entities X X X X 6 6 6 57.1% 44% 0% 33% 22% 9

Discussion6based(entities X X X X 6 6 6 57.1% 27% 18% 27% 27% 11

Discussion6based(mediums X X X X 6 6 6 57.1% 42% 25% 25% 8% 12
(Indirect(and/or(Expected(Outcomes X X X X 6 6 NR 66.7% 36% 27% 18% 18% 11

Parties(Involved(in(Conducting(Research X X X 6 6 6 6 42.9% 25% 25% 42% 8% 12
(Indeterminate(Outcomes X X X 6 6 6 NR 50.0% 33% 22% 22% 22% 9
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Table 18 (continued). Summary of Survey Responses 
 

 

1 2 3 4 5 6 7 Sc‐I So‐I DM‐I UTC

% 
Agree

NResearch Impact DimensionStatement Expert

 Affordances of the Developments X X ‐ ‐ ‐ ‐ NR 33.3% 20% 20% 20% 40% 10

Highlights of Research Activities X ‐ ‐ ‐ ‐ NR NR 20.0% 0% 20% 0% 80% 5
Legend Legend
X: Item Rated 3 or 4 on 4‐point Relevance Scale Sc‐I: Scientific Impact
(‐): Item Rated 1 or 2 on a 4‐point Relevance Scale So‐I: Societal Impact
NR: Item Not Rated by the Expert DM‐I: Domain‐specific Impact

UTC: Unable to Classify

28.6%

28.6%

33.3%

7

9

6

‐ 14% 14% 29% 43%

11% 11% 44% 33%

33% 17% 17% 33%

Applying for and Securing Additional
Funding to Continue Research

X ‐

 Future plans to conduct research, create
developments, and/or disseminate

X X ‐ ‐ ‐ ‐ NR

X ‐ ‐ ‐ ‐

 Direct, Personal Benefits of Instructors,
Researchers

X X ‐ ‐ ‐ ‐
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 The percent agreement results provide some interesting preliminary findings on PIs’ 

versus POs’ perspectives on the impact of research. Among the five statements that have 

100% agreement that they are relevant to research impact, two are related to the theme 

about the scope of a project (i.e., geographic scope, disciplinary scope). In fact, all of the 

statements corresponding to the theme about scope had at least an 85% agreement. As it 

was previously mentioned in the interpretation of the Phase I results, scope of influence is 

the dimension of research impact that emerged from this study’s qualitative analysis, and was 

not in existing literature on research impact. The survey results presents a preliminary 

finding that suggest there is an agreement between PIs and POs that the scope of influence 

of an R&D project is an indicator of impact – where scope may be geographic, disciplinary, 

include target populations, or reach across institutional types (e.g., academic & non-academic 

partnerships). 

Meanwhile, two other statements out of five with 100% agreements are related to the 

theme about the influence of a project on environmental/structural decisions, metrics. Apart from 

these two themes, the two other things that are the most commonly represented among the 

statements with 85% agreement or better are: influence on individuals and/or communities and 

disseminating research findings and propagating developments.  More POs agreed with PIs that impact 

comes in the form of influence on instructors and/or instructor communities (100% agreement) 

rather than influence on STEM leaners (85% agreement). This finding is somewhat surprising 

because the impact narratives in abstracts include many more claims about the influence of 

research on STEM learners and rather than STEM instructors.   

Among the statements with the lowest percent agreement between POs and PIs, 

those corresponding to the theme about conducting research are the most common (e.g., future 
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plans to conduct research – 33%; applying for and securing additional funding – 28%). The 

POs disagreement with PIs that such ideas count as impact is consistent with the existing 

literature; references to the mundane details associated with conducting research does not 

align with the dimensions of impact. Based on the number of abstracts that included claims 

related to conducting research, this is potentially another point of disconnect between PIs 

and POs perspectives on impact.  Lastly, more than half of those who rated the statement 

on related to unrealized impact (e.g., indirect and/or expected outcomes) agreed with PIs that 

this is relevant to impact; although the two stakeholders agree with one another, this is not 

consistent with existing literature on the topic. This is another area worthy of future study.  

  As it relates to POs perspectives on the alignment of the statements with the three 

dimensions of research impact (i.e., scientific, societal, and domain-specific), other findings 

emerge. What is apparent at first glance of the values is that the responses are spread across 

the dimensions. In some instances, two out of three dimensions are significantly higher than 

the third, but there is no instance where there is a one-to-one-mapping between a statement 

about impact and a dimension of impact. This idea of little to no one-to-one mapping is 

consistent with the interpretation of the Phase I results, which show, for the most part, that 

facets of impact do not map cleanly to one dimension of impact or another.  

There are a few notable mappings that need to be discussed. Among the few most 

notable ratings on the alignment of a statement with an impact dimension, influence on 

instructors and/or instructor communities was almost evenly split between domain-specific impact 

and societal impact. Not surprisingly, two statements that map the most clearly to domain-

specific impacts were department level outcomes and curriculum changes. On the other hand, non-

academic partnerships maps the most cleanly to societal impact—which also is not surprising, 
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since this dimension of research impact includes the influence of research on the economic 

capital of a nation. 

After using percent agreement to determine the extent to which POs agreed with 

PIs’ perspectives on impact, it was interesting to determine the extent to which the POs 

agreed with one another. Using Krippendorff’s alpha (Hayes & Krippendorff, 2007; 

Krippendorff, 1970) to determine the interrater agreement among experts, the analysis 

resulted in analysis an α- value of 0.0166. This dismal value indicates that there was little 

agreement among participants. The lack of consistency in responses is part of the reason for 

such a low alpha-value; other possible reasons are discussed in the next chapter. Before 

going there, however, the last section of this chapter will include a synthesis of this 

participants’ qualitative responses to the open-ended items in the survey. 

 

Synthesis of the Experts’ Qualitative Feedback 

The comments in the survey provide meaningful insights about the survey design 

and a small glimpse of the experts’ perspectives on research impact. Various comments in 

the survey expressed confusion about how to complete the survey.  Apart from comments 

related to the survey design, there were a variety of comments that express discontentment 

with some of the types of impact claims PIs tend to make in abstracts—at least, as they are 

depicted in the survey items. Consider the following comment:  

“Conducting the activity by itself does not equate to impact. The quality and efficacy of the activities 

is important to determine impact.”   

This comment was mentioned in response to the set of statements corresponding to the 

theme, claims regarding disseminating research findings and propagating developments. It seems to 
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express what additional information PIs could provide when discussing dissemination and 

propagation-related activities. This additional information is not necessarily impact either, 

but it would help “to determine impact.”  

In reference to statements corresponding to the theme, claims regarding influences on 

individuals and/or communities, someone said the following:  

“The types of influences need to be described to make these statements more relevant.”  

This statement is consistent with responses from several experts who commented on the 

vagueness of the claims they were evaluating, and the need for more specificity in the PIs 

descriptions of impact. Provided is one other example of an expert commenting on the 

vagueness of the statements corresponding to PIs’ claims, and also sharing guidance on how 

to improve them.   

“I found items 1 and 2 very vague and my ranking is heavily influenced by how I interpret them. 

…These statements need to be more fully developed to include evidence generated to support the 

quality and efficacy of the developments.”   

 

One comment that was, arguably, the most aggressive among the comments was: 

“Do you really think given the power relationship inherent between most PIs and NSF that they 

will report ‘unrealized’ impacts?” 

In this rhetorical question, there is an underlying sentiment of quarrel with the idea of 

including in an impact narrative the ideas associated with the theme unrealized impact. The 

response does not provide any additional information on what PIs should provide instead, 

but it does seem to imply that including ideas like future plans to conduct research and 

anticipated impacts should not be included in the narrative on the impact of a project.  
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In one instance, one participant largely agreed with the statements corresponding to 

a theme. In response to the statements corresponding to claims regarding scope of impact, one 

expert said:  

“These for the most part seem pretty clear. It seems to be useful to define ranges for each of these. The 

target population one is not clear as written.” 

Thus, in addition to affirming that the statements corresponding to this theme seem relevant 

to research impact, they shared feedback on how to make them even clearer. 

In addition to providing comments on the survey design and disagreements with the 

statements reflecting the types of claims PIs make in impact narrative, there were also 

comments reflecting the participants’ conceptual understanding of impact. One person 

stated, “impact is very context-dependent”, while another shared suggestions on what a research 

impact framework might consist of:  

“I might suggest you think about first and second order impacts. I could better use this reductionist 

framework if you clarified the closeness of impacts or interactions.” 

Another began to tease out differences between outcomes, outputs and impact. The 

following comment was written in response to the set of statements corresponding to claims 

regarding research- and education-focused developments: 

“For items 1-8, a key question is on ‘Outputs’ versus ‘Outcomes’ in judging ‘impact’. If the research 

is to determine if I can produce a given type of curricular material, then its creation is a noteworthy 

research outcome. If the question is the effect of that curriculum on student learning, then the 

materials are an intermediate product in a longer study. Similarly, creating a journal does not 

appear to demonstrate substantial impact, UNLESS getting to that stage catalyzes a new 

community the publishes in the journal.” 
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This is specific example of the types of first and second order impacts mentioned in the previous 

comment and is concrete example of how some of the participants conceptualize impact.  

One of the last survey questions asked participants whether they thought the 

statements about impact seemed unique to undergraduate engineering education research 

and could be not extended to undergraduate STEM education research, in general. The 

majority of those who responded said that they did not find the statements to be unique to 

undergraduate engineering education research; but one stated that “the nature of impact on 

educational practices seems unique to me.” This preliminary information is helpful for considering 

the extent to which the findings might be useful to other STEM disciplines besides 

engineering education.  

 The last set of comments was in response to a final survey question inviting the 

experts to brainstorm ways a NSF-funded undergraduate engineering education project may 

have impact. Although there were only a few participants who responded, Table 19 is the list 

of ideas they submitted in response.  

Table 19. List of Examples of Impact Generated by POs 

 



 

 

157 

In short, the closed-ended survey responses help to provide insight on how PIs and POs 

perspectives on impact compare, while the survey participants’ comments on what impact 

means in this context serve as a fortuitous contribution to the overarching goal of this study 

– to investigate what it means for a federal-funded STEM education R&D project to have 

impact.
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CHAPTER 9: DISCUSSION & IMPLICATIONS

 
 
 Although there is a lot of interest among stakeholders at various levels of governance 

in the impact of investments in research, there have been few scholarly studies on this topic. 

The current literature on research impact highlights three dimensions: scientific impact, 

societal impact, and domain-specific impact. There is a substantial body of work on scientific 

impact, while societal impact and domain-specific impact are less understood. Over the last 

decade, a number of frameworks have been developed to characterize research in general 

(Molas-Gallart et al., 2002; Rymer, 2011; Walter et al., 2003) and in specific research domains 

(Allen et al., 2008; Donovan & Hanney, 2011; Godin   Dore  , 2005; Kuruvilla et al., 2006; 

Levitt et al., 2010). This scholarly work is not only the first to weave the existing bodies of 

literature together, it add to the body of knowledge by investigating how researchers on 

NSF-funded undergraduate STEM education R&D projects discuss the impact of their 

work, and exploring POs’ perspectives on the PIs’ perspectives of impact – with hope that 

the field of engineering education will develop a valid, comprehensive framework for 

characterizing impact in this context. While some of the sub-questions associated with the 

two overarching research questions proposed in this study included interpretations of some 

of the research findings, this chapter weaves together additional interpretation of the results 

findings in light of existing literature, study limitations and presents corresponding 
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suggestions for future research directions. It concludes with implications for policy and 

practice. 

 

Discussion 

Discussion on the Research Design 

It is only fitting to start by discussing how the study was framed. The dearth of 

research on how to study impact in a scholarly way translated to little guidance on to frame 

this study.  What is commonly among the few studies seeking to understand and characterize 

what the impact of research looks like for a specific domain (Allen et al., 2008; Donovan & 

Hanney, 2011; Godin   Dore  , 2005; Kuruvilla et al., 2006; Levitt et al., 2010) is the use of 

method designs that start with an exploratory approach, and are oftentimes supplemented 

with quantitative analysis. This study was framed similarly. The ideas in the two frameworks 

that were used to guide the qualitative analysis (Earle et al., 2013; Toulmin, 1958)  served as 

sensitizing concepts—more specifically, they provided ideas on what to expect in terms of 

how researchers may construct arguments about impact and what type of evidence may be 

associated with certain types of research. Although existing literature on the use of 

Toulmin’s model discussed its limitations in terms of using it to evaluate arguments 

(Klumpp, 2006; Tans, 2006; Voss, 2006), it was an useful analytic tool for trying to 

understand PIs’ verbal reasoning surrounding the impact of their work. (Connections 

between the research findings and the frameworks will be discussed next—after completing 

the discussion on how the study was framed.) The second phase of the study included a 

survey of the opinions of a select group of people, people very familiar with both 

engineering education research and federal investments in it. The use of different selection 
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criteria would have lent itself to a larger sample size and an ultimately, an increase in the 

number of responses. On the other hand, the survey results suggest that an exploratory 

approach could have also been an appropriate choice for garnering POs’ perspectives on 

impact. (A discussion on the Phase I research findings and future research directions will be 

presented in the next sections.)  

 There is one final point of discussion related to how the study was framed, and it 

relates to the data that was used in the first phase of this study. The inclusion of “Broader 

Impacts” in NSF’s review criteria sends a clear message that the agency cares about impact. 

Early on in the stages of the grant life cycle process (see Figure 1), PIs are expected to write 

about the potential impact of their project in their grants, and by extension, the panel review 

process is one mechanism for evaluating (potential) impact. While conducting the research, 

PIs submit progress reports (i.e., annual and final reports), which include rich information 

about project-related decisions, rationale, outcomes, and accomplishments. If at all, the 

contents of these reports are rarely assessed in a way that holds PIs accountable for what 

they proposed to do when they requested funding; and, until the recently, no version of this 

information was publicly-available for other stakeholders to review and/or study. This was 

one of the first scholarly studies on the realized impact of a collection of NSF-funded 

projects, and it relied on small sections of project abstracts in the conference report of a 

particular NSF program because it is what was available. To the extent that is it is true that 

one of the best sources of information on the impact of projects in which millions of 

taxpayers’ dollars are invested is buried in small sections of project abstracts in the PI 

conference reports of some NSF programs, this may imply that impact is largely invisible 
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from the current reporting processes, and speaks to the the urgent need for improved 

infrastructure.  

 

Discussion on the Research Findings 

The goal of the research question proposed in the first phase of the study was to 

understand and characterize how PIs talk about the impact of their NSF-funded R&D 

projects. The themes that resulted form the abstract analysis showed what is talked about—

and what is not. What PIs discuss are a breadth of topics ranging from research activities, 

research outputs, and influence on populations. One example of an idea that is not 

discussed, however, is the negative impact of a project. Moreover, in some ways, these 

findings support the idea that impact is commonly used interchangeably with terms like 

outputs and outcomes (Brewer, 2011; Martin, 2007). The lack of focus and coherence in the 

ideas that are discussed may also provide evidence in support of the idea that researchers 

may really struggle with knowing how to communicate the impact of their work or evaluate 

the contents of Broader Impact statements in NSF proposals (Holbrook & Frodeman, 

2011).  

 One of the most surprising themes that emerged from the qualitative analysis 

conducted in the first phase was unrealized impact. Although the ideas supporting this theme 

are not consistent with any of the dimensions of impact mentioned in existing research 

impact frameworks, it does help shed light on how researchers may think about research 

impact. Given how frequently this theme appeared in the sample of abstracts reviewed, it 

seems as if PIs are so certain about what might potentially happen in the future, they see no 

problem with reporting it as impact now; said differently, PIs may perceive that there is no 
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need to distinguish between realized impact and expected/anticipated impact. Furthermore, 

PIs only have the option of writing about the potential and expected impact of a project in 

their NSF grant proposals; however, the prevalence of this practice might suggest many 

perceive an implicit expectation to continue hypothesizing about impact when reporting 

project outcomes and impact. In some ways, this phenomenon is consistent with the biggest 

problem with studying impact—the attribution problem (Bornmann, 2013; Godin   Dore  , 

2005; Jonathan Grant et al., 2010; Martin, 2007; Rymer, 2011; J. E. Scott et al., 2011; 

Spaapen & van Drooge, 2011). As this scholarship on impact continues to grow, it will 

continue to be difficult to make proper attribution if claims about realized and unrealized 

impact are made together and are oftentimes indistinguishable.  

 While the types of claims PIs make about the impact of their work were closely 

related to the dimensions of impact in existing literature, the way they supported their claims 

is connected to elements of Toulmin’s model (Toulmin, 1958). To support their claims 

about impact, PIs often use various degrees of specificity and add information that helps to 

establish credibility and/or relevance. Using Toulmin’s model (Toulmin, 1958) as a tool for 

interpretation, the quantification of claims is a form of data that supports the claims, whereas 

the use of qualifying statements that limit the scope of the claim is similar to the qualifiers 

mentioned in Toulmin’s model. Hints at evaluations used in the study tend to imply certain 

types of evidence is, in some ways, related to the use of warrants in Toulmin’s model since 

warrants are used to make connections between claims and data. There are limits to this 

interpretation of the results, but it is possible to draw similar inferences from what the PIs 

writes when a reader is presented with a warrant and/or evaluation information in an impact 

narrative. 
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The descriptive statistics show how often different types of claims are mentioned 

based on the project type, focus and STEM discipline. It reasonable to assume that impact 

may vary based on the amount of funding awarded to a project. Surprisingly, this data shows 

that there were few notable differences in the types of claims PIs make when comparing 

across projects with different levels of funding, however. Part of the reason for this may be 

because the differences in impact may not occur until many years or decade after the project 

is completed (Bornmann, 2012). Additional studies are needed to explore the extent to 

which this finding is consistent across programs and to trace the impact of projects after the 

grant lifecycle—since a longer horizon will provide more time for the differences impact to 

be evident.  

The research findings also indicate that the project focus and discipline seem to have 

more influence on the types of impacts that are observed than the amount of funding award 

(at least in the early stages of the project). While differences in impact based on the focus of 

the project might seem intuitive, further research explorations into the interesting differences 

in the claims based on disciplines are also needed. Furthermore, this study took the 

perspective that there was no reason to assume that PIs reasoning about the impact of 

engineering education R&D projects would significantly vary from the ways PIs on other 

STEM education R&D projects since engineering is an integrative discipline among the 

STEM disciplines. By doing so, the findings and implications of this study have the potential 

to be applicable to all of the STEM disciplines – although it does not give the finest 

resolution to impact of research in any particular STEM discipline. However, the absence of 

engineering in the table on the most and least commonly mentioned themes (Table 16) 

suggests that this assumption may need to be revisited. It might be valuable to conduct a 
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future study that does not make this assumption, and in turn, focuses solely on the impact of 

federally funded engineering education R&D projects—especially in light of the engineering 

education community’s research agenda ("The Research Agenda for the New Discipline of 

Engineering Education," 2006).   

 Another finding from this study was the connection between the types of claims PIs 

make about the impact of their work and how they support them; the table on the co-

occurrence of themes (Table 13) was one way of representing this connection. One of the 

most salient findings was that PIs tend to support claims by providing additional details 

about the claims they are making more often than providing information that helps bolster 

credibility and/or provide evidence of relevance. Although the purpose of this analysis is not 

to suggest that the ways of support claims about impact needs to be equally represented in 

each abstract, it is reasonable to suggest that PIs could do a better job at the latter of the 

two. Two specific ways to help establish credibility and/or relevance in the minds of the 

readers include: hinting at the evidence that supports their claims (e.g., changes in students’ 

grades, evaluation data) and adding statements which explicitly connect the results of the 

current study to issues of importance in the PIs’ research community or priorities of the 

program funding the study.   

Phase I of this study concluded with a preliminary description of what it means for a 

federally-supported STEM education project to have impact (see Figure 24). This 

interpretation of the themes in light of existing literature revealed that there areas of 

consistency (and inconsistency) in how PIs talk about impact, and the existing literature on 

the topic. Additionally, some of the forms of impact that are also mentioned align with the 

literature on how change happens in education (e.g., via publishing, teaching, policies) (e.g., 



 

 

165 

Beach et al., 2012; Burkhardt & Schoenfeld, 2003). One the unique contributions to the 

literature is the idea that one form of impact is the scope of influence associated with project, 

where scope may have multiple dimensions spanning geography, disciplines, or populations 

of people. The three dimensions of research impact provided a nice framework for not only 

organizing the forms of impact associated with the themes, but also show how impact can 

be “messy” and does not always cleanly map to one dimension of research impact.    

The research questions posed in the second phase of this study focused on how 

POs’ perspectives on impact compared to PIs’. In some ways, this preliminary study suggests 

that there may be points of overlap in how the two groups talk about the impact of research. 

An example of consistency in the perspectives of the two groups is their agreement on the 

scope of influence of a research project as a form of impact. This was an exploratory study 

on how these two groups’ perspectives compare, but a larger scale study is needed to 

provide more evidence of the alignment, differences, and potential mismatches in PIs’ and 

POs’ perspectives on the impact of a federally-funded project. As part of such a follow-up 

study, it would be interesting to investigate the extent to which the differences in immediate 

contexts of PIs (i.e., academic & disciplinary) and POs (i.e., government) might influences 

what might be observed.  

One of the puzzling results of the survey study was the very low interrater agreement 

value. Krippendorff and Hayes (2007; 2011) provide multiple ways to interpret an extremely 

low alpha value. In short, extremely high or extremely low alpha may indicate measurement 

error or floor/ceiling effects. An extremely low alpha value may indicate that the participants 

did not agree on the ratings provided (e.g., “This Item is Relevant to Research Impact”, 

“This Item is Not Relevant to Research Impact”). As a result, it is possible that the rating 
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scale provided may have been unclear and that each participant interpreted the items 

differently. Thus, the survey would induce a level of measurement error, because the scale 

used to collect the data may have flaws that will affect the quality of the data collected. 

Because reliability statistics are affected by sample size and variation, another cause of low 

reliability could be because of too few participants or too few items. Smaller samples will 

tend to have less variation and are more likely to have lower reliability, and vice versa. 

Another way to interpret a low interrater reliability is that it is an indication of floor effects. 

Floor (and/or ceiling) effects occur when all participants select the same answer/rating. 

Floor and ceiling effects reduce the variation in the scale and, as a result, can negatively 

affect its reliability.  

The expertise of the participants and format of the survey items is another point of 

consideration when discussing the low agreement among them. Oftentimes, participants 

with dissimilar academic training and professional experiences that are too dissimilar can lead 

to significant differences in how items are interpreted, and thus rated. In this study, academic 

training in an engineering discipline linked the experts, and oftentimes NSF POs usually 

have at least one advanced degree, but the specific disciplines in which they earned their 

degrees varies greatly. Moreover, all of them shared professional experience as an 

engineering education researcher and NSF program officer at some point in their career 

paths. However, a myriad of other experiences make up the professional background of the 

participants in this study. Moreover, it is possible that the topical statements about impact 

were too decontextualized, and as a result, also led to dissimilar interpretations, and by 

extension, low consistency among them.  
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 Although some of the results of the survey data were puzzling, the results did 

provide insights on how to better construct the survey in the future to get more meaningful 

data, and has also led to more ideas about new approaches to collect data on the impact of 

projects. (Some of these ideas are discussed in the section of this chapter labeled, Study 

Limitation and Future Research Directions.) For example, instead of revising the survey and 

redistributing it more program officers, a follow-up study that involves an exploratory 

approach to understanding various stakeholders’ perspectives on what impact means in the 

context of undergraduate engineering education may be more appropriate. Stakeholders 

might include not only PIs and POs, but also personnel at agencies like the National 

Academy of Engineering (NAE), Office of Science and Technology Policy (OSTP), and the 

Accrediting Board for Engineering and Technology (ABET). Methods that involve 

interviews and/or focus groups would allow participants to provide open-ended responses, 

ask clarifying questions, and elaboration on their initial thoughts. Appendix E includes an 

example of an interview protocol that could be used in a follow-up study. 

This section of the Discussion chapter concludes with some general reflections on 

impact. Writing reflective notes is an important part of the qualitative research process 

(Miles & Huberman, 1994), and two recurring ideas in the memos written while conducting 

this study relate to personal reflections about what impact means, and what the findings of 

this work means for PIs, POs, and others interested in the impact of federal investments in 

STEM education R&D.  The last section of this chapter present implications, but a proposed 

definition of impact is presented here.  
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Currently, there is no consensus in the literature on what impact means (Brewer, 

2011). As a result of completing this study and reflecting on the meaning of the findings, the 

following definition of impact is proposed:   

Impact is a time-sensitive interpretation of the extent to which change 
has occurred in (and/or beyond) the context in which the change 
originated.   

 

The rationale for saying that impact is “time sensitive” for two reasons: 1) the interpretation 

that is articulated is significantly influenced by when the change is observed (Bornmann, 

2013; Martin, 2007); and 2) the length of time it takes to achieve some extent of change 

largely influences how it is interpreted as impact (e.g., large changes that happen in short 

time may be perceived as more “impactful” than small changes over the same amount of 

time.) Descriptions of impact tend to include explicit and implicit links between a set of 

activities, changes resulting from these activities, and an interpretation of what these 

outcomes mean. Thus, impact is being defined as an “interpretation because it is a way 

someone (with a particular perspective) makes sense of something that has happened (or for 

some, what will happen), and is framed in light of abstract constructs of interest in both the 

immediate context and in broader contexts. Examples of such constructs that are relevant to 

this study include: teaching and learning, STEM education communities; institutional and 

national priorities related to STEM education. Defining impact as interpretation may help 

provide an explanation for why impact looks so different in different contexts, and why a set 

of activities can be perceived as having both positive and negative impact—depending on 

who’s reporting it. While the focus of this study is research impact, this definition of impact 

can be extended to other contexts as well, and continue the construction of a meeting place 

on the  proverbial “impact terrain” (Brewer, 2011).  
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Implications for Policy and Practice 

The findings of this study have implications for policy and practice. From both 

perspectives, university stakeholders and funding agencies alike will benefit from an 

improved understanding of the impact of federal investments in STEM education research 

since both parties are interested in positive transformations and outcomes in undergraduate 

engineering education. Researchers on NSF-funded projects may use the research findings to 

more effectively communicate the impact of their work in the document that is viewed by 

program officers, the PI community, congress, the media, and the public at large. This is an 

important skill for researchers to practice because the stiff economic climate necessitates that 

research that demonstrates impact using concrete evidence is the research that will continue 

to be publicly supported.  Additionally, PIs’ ability to provide definitive insights on the 

impact of their projects have the potential to aid STEM education colleagues in better 

selecting and utilizing existing resources, and provide a stronger basis upon which future 

studies can build. 

Provided are guidelines for PIs to consider when writing about the impact of their 

NSF-funded projects: 

1. Discuss the scientific impact of the study by highlighting advances in knowledge, or 

ways in which the current study clarifies existing ways of thinking about a topic. 

Limit generic references to mundane steps in the research process and lists of 

publications resulting from the study.  

2. Discuss the societal impact of the study by making connections between the 

outcomes of the current study and national priorities and/or salient discipline-
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specific issues (e.g., increasing the quantity of engineering graduates and improving 

the quality of undergraduate engineering education).  

3. Apart from mentioning the outcomes of the study, discuss the domain-specific 

impact of the study by mentioning the unique ways people (e.g., learners, instructors, 

administrators, networks of researchers, parents, industry partners), priorities (e.g., 

effective teaching, meaningful learning) and processes (e.g., in classrooms, 

departments, institutions) are affected by the outcomes of the study.  

4. Make concrete statements about the impact of your work and briefly mention 

evidence that supports the claims. 

5. Make clear distinctions between realized and anticipated impacts.   

 

From a policy perspective, this study presents a description of what PIs are saying 

about the impact of their work. There are many instances when the impact narratives are 

very short (i.e., less than 25 words), vague, and sometimes cursory, at best. In light of this 

presentation on what PIs are saying, these results speak to the need for NSF to seek answers 

to questions about whether this is the type of information they wants or not. If it is not, 

there may be a need to provide PIs with guidance on how to construct impact narratives in 

order to get the desired information. Such guidance might be communicated via what is 

presented to PIs when they are submitting electronic progress reports, during training 

workshops, or some other venue.  On the other hand, the preliminary findings of the survey 

study might indicate the need for more conversations among people making funding 

decisions about what impact means in this context since a better understanding of impact 

should promote better alignment between projects, program outcomes and national 
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priorities. Two examples of venues in which such a conversation might take place are: during 

the training associated with hiring a NSF Program Officer or periodically during meetings 

among program officers.  The findings on the types of claims that are made and how they 

are supported also speak to the need for a better process for vetting the claims PIs make in 

research reports. Improvements in existing processes in this regard will not only lead to 

more definitive insights on the impact of project throughout the grant cycle, it will also 

reduce the likelihood of PIs self-plagiarizing the contents of their impact narratives by 

reporting the exact same impacts across years of reporting. Mechanisms that enable this 

should be added to the suite of the current accountability mechanisms (e.g., annual reports, 

final reports). Lastly, this study begs the question: to what extent can policymakers be asked 

to make causal claims about the impact of federal investments in research if the current 

documenting procedures does not permit it?  Thus, one of the notable implications of this 

work is it provides a starting point for NSF to develop a reporting structure that would allow 

program officers and the wider STEM education community to get better data –and 

ultimately, a better understanding—of what it means for a research project to have impact. 

 

Study Limitations and Future Research Directions 

Although the goal is to propose a research methodology that is sound, rigorous and 

valid, there are still limitations to this study. Four of them are as follows. One, the data used 

in this study originally comes from a context where PIs were reporting project outcomes to 

the agency funding their research. It is likely that this context has implications on how they 

report the impact of their work; in survey research, this phenomenon is referred to as 

response bias (i.e. when participant’s responses are overly negative or positive) (John W. 
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Creswell, 2008). Another limitation of this study is associated with the primary data source in 

this study: project abstracts. By nature, abstracts are intended to be a brief overview of the 

main parts of a study, and by extension, are not as comprehensive as conference posters, 

project reports, etc. Because the data, by nature, is brief, this has the potential to limit the 

extent to which project outcomes are described. Third, the data included in this study is only 

from one NSF program, and the goals of this particular program could have implications on 

the research impact that is observed. Thus, the comprehensiveness and generalizability of 

the resulting description of impact will need to be explored beyond this program upon 

completion of this study. Another NSF program to consider for an exploration still focused 

on engineering education might be the Engineering Education Centers program, which is 

funded by the Engineering Directorate within NSF. Lastly, the resulting description of 

research impact may or may not capture the research impact of a project that occurs beyond 

the life of the grant. (The evaluation timescale and temporality problem are among challenges 

commonly cited among scholars interested in studying research impact (Bornmann, 2012, 

2013; Martin, 2007; Rymer, 2011; J. E. Scott et al., 2011; Spaapen & van Drooge, 2011).)  

 Additional studies that involve different forms of data, variations in frameworks, and 

different methodologies are critical to advancing the scholarship of impact. For example, 

future studies using a theoretical lens focused on organizational change (Grusky & Miller, 

1970; Katz & Kahn, 1978) or change and transformation within the context of 

undergraduate STEM education (e.g., Henderson, Beach, & Finkelstein, 2011) will lead to 

different insights. Apart from using project abstracts as data for analyzing research impact, 

other documents that might be useful include: program objectives mentioned in grant 

solicitations; grant proposals, annual reports, and final reports of expired research projects 
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voluntarily shared by PIs; research briefs, executive summaries, and other short synopsis of 

research written for lay audiences; and media reports that highlight research projects. Other 

methods to consider include other qualitative approaches (e.g., grounded theory), 

quantitative methods (e.g., correlational studies), other mixed methods research designs, and 

computational approaches (e.g., data mining) (J. Creswell & Plano Clark, 2011; J. W. 

Creswell, 2008; Hey, Tansley, & Tolle, 2009; Johnson & Christensen, 2012). Another way to 

gauge how impact is defined may be to ask the STEM education research community to 

identify what they think has been the most impactful projects and why. Lastly, future studies 

that trace the impact of research beyond the grant cycle are vital to understand the 

immediate and long-term impact of a project. 
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CHAPTER 10: CONCLUSION
 

 
 

Each year, NSF invests millions of dollars in undergraduate engineering education 

research and development projects. Given the importance of the role of engineers in society 

and the size of these investments, an understanding of the extent to which these investments 

are leading to desired outcomes is necessary for better programming and more informed 

decision making among practitioners and policymakers. A scholarly understanding of what 

impact means, in general, and a comprehensive understanding of what it looks in this 

context would facilitate such insights. This study is the first systematic attempt to explore 

what it means for a federally funded project to have impact, adds clarity to the topic impact, 

and provides recommendations for where to go next.  

This study provides a synthesis of the fragmented scholarship of impact to form a 

unified starting point for the conversation on this topic, and builds on this body of 

knowledge.  The findings from this study provide a strong foundation for future studies on 

the research impact of studies focused on other STEM disciplines and education contexts as 

well. As a result of mixing qualitative and quantitative methods in this study, the findings 

reveal how researchers on NSF-funded projects talk about the impact of their work, and 

how often PIs discuss various types of claims in light of the amount of funding awards, the 

project focus, and STEM discipline. The findings reveal that researchers talk about a vast 

number of topics in this section of project abstracts. While some of the topics discussed 
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align with current scholarly perspectives on research impact, much of them do not. Thus, 

this study reveals many insight on what research impact is not from the perspective of what 

PIs write in abstracts as it provides on what it is. The qualitative finding speaks to the need 

to continue to pursue the goal of figuring out what the multifaceted, complex facets of 

impact are, and to develop a valid conceptual framework that will facilitate a shared 

understanding of what impact means in this context. In the short term, it might be useful for 

funding agencies to provide PIs with more guidance on the types of information to include 

in an impact narrative. Improving the quality of information PIs include in projects abstracts 

is critical to advancing transparency about NSF’s investments in undergraduate STEM 

education and possibly reducing criticisms of publicly-support R&D.  

The descriptive statistics on the type of claims PIs indicate that the project focus and 

discipline have more to do with the type of impact that are realized than the amount of 

funding allocated to a project—at least when exploring the impact of projects within the life 

of the grant cycle. This finding might inform how funding agencies develop programs, 

design logic models, and ultimately write RFPs. More specifically, since RFP describe the 

project foci to which PIs respond with project proposals, federal funding agencies like NSF 

can be more strategic in using grant solicitations as levers for fostering impact.  

Finally, the results of the survey study allude to a clash of perspectives on what 

impact means among stakeholders making funding decisions and researchers conducting the 

studies. The preliminary description of what impact looks like in this context may help 

alleviate some of this miscommunication, but this is an area of study that deserves additional 

exploration and insight. To the extent that this is true that PIs and POs do not know what 

impact means or now to communicate it, the current research findings might uncover a 
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societal issue. Basic disconnects regarding what impact means to people in positions making 

decisions about what research to fund and those receiving the funds to conduct research will 

not be improved by simply modifying the format of the survey used to compare the two 

perspectives. To the extent that this is true, this could be an indication of the huge wall 

between researchers and stakeholders of publicly funded research that needs to be scaled or 

broken down as we attempt to be more efficient in the use of taxpayers’ funds allocated to 

engineering education research. Such a pursuit is necessary as we seek to support studies that 

lead to notable impacts on the number, quality, and diversity of engineers equipped to 

address society’s more pressing social and technological needs.
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Appendix A: Data Sample: Three Abstract from 2008, 2011, 2013 PI Conference Reports 

 
 
 

Example Abstract 1 – Conference Year 2008 (NSF, 2008, p. A95) 
 
Poster 149 
PI: Monica Cox 
Institution: Purdue University 
Title: Development of a Pedagogically Focused Course for Engineering Graduate Teaching 
Assistants 
Project #: 0632879 
Type: Phase I – Exploratory 
Target Discipline: Engineering 
Focus: Implementing Educational Innovations 
 
Goals: This project explores whether engineering graduate teaching assistants (GTAs) 
pedagogical perceptions changed after their enrollment in an engineering education course 
based on elements of the “How People Learn” framework. Course effectiveness will be 
examined via course materials, GTA interviews, and online undergraduate surveys. 
 
Methods: The research group will conduct one semi-structured interview per GTA to 
identify GTAs’ perceptions about their instruction. Interviews will occur face-to-face and 
will be audio-recorded. Researchers will distribute online surveys to undergraduates in 
GTAs’ courses. Researchers will map responses to elements of the “How People Learn” 
framework. 
 
Evaluation: After the interview questions have been asked, researchers will transcribe the 
interviews. A general sense of the results will be obtained by continuous reading and 
rereading of the data and an examination of the reflexive notes. The research group will note 
significant comments, organize the statements into segments, pool the segments together, 
and assign codes. Then researchers will test the codes and categorize the codes based on 
repeated patterns. Differences and similarities in patterns for control and treatment groups 
will be examined. Informal and formal observations of GTA laboratories and results from 
student surveys will be used to triangulate results obtained from GTA interviews. 
 
 
Dissemination: A poster and paper describing the GTA course has been accepted for the 
2007 American Society for Engineering Education conference. Results from the qualitative 
and quantitative studies will be disseminated in peer-reviewed engineering education 
journals.  
 
Impact: Through the creation of a professional development course for GTAs that focuses 
on understanding the science and principles of learning and teaching, we have exposed 
future engineering faculty to the importance of creating learning environments that promote 
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all students’ higher-level learning and retention. Results from this study are being used in the 
redesign of a first-year course at Purdue University and will be used to understand the roles 
that engineering GTAs play in the development of undergraduate engineering students.  
 
Challenges: One of the biggest challenges within this project was the recruiting engineering 
GTAs to participate in the effective teaching seminar. In the future, researchers anticipate 
combining course content with current GTA training content so that all students can be 
exposed to elements of the “How People Learn” framework and to innovative problems 
called Model-Eliciting-Activities. 
  
 

Example Abstract 2 – Conference Year 2011 (NSF, 2011, p. A97) 
 
Poster 156 
PI: Sean Brophy 
Institution: Purdue University 
Project Title: Graphical Representations to Assess System Performance (GRASP) 
Assessments for Engineering Education  
Project #: 0817486 
Type: Phase 2/Type 2 -- Expansion 
Focus: Assessing Student Achievement 
 
Goals & Intended Outcomes: The aim of this project is to construct and research an 
automated dynamic formative assessment environment that develops and measures students' 
ability to represent, identify and explain solutions to complex problems. Specifically, the 
project focuses on representational tools used to facilitate the early stages of design including 
problem comprehension (e.g. system block diagrams, concept maps), evaluation of design 
alternatives (e.g. House of quality, morphological charts) and analysis of systems to inform 
design decisions (e.g. free body diagrams). 
 
Methods & Strategies: The automated assessment system will contain a general set of 
graphical construction tools used to represent systems. The targeted tools are those 
associated with engineering activities of design and analysis of a system's performance. We 
are developing an epistemological framework to characterize problem types to inform the 
design of quality problem sets. These problem sets will lead to students' comprehension of 
the disciplinary knowledge and how to use the tool strategically. In addition this framework 
and research on students approach to the problem will inform the design of effective 
diagnosis and feedback for our system and instructors. 
 
Evaluation Methods & Results: We are using qualitative methods to capture and describe 
students' approach to constructing a representation of complex systems (e.g. cruise control, 
flying craft) they can use to explain how the system works in multiple situations. The results 
from these experiments will inform the diagnostic and feedback mechanisms used to 
support students' learning. Eventually quantitative methods will be used as pre/post 
measures of students' learning gains related to solving problems in multiple situations. To 
date we have conducted interviews with first and second year engineering students as they 
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construct diagrams of complex systems and use the diagrams to answer "what if" questions. 
The context for these challenges relate to either evaluating a design, troubleshooting a 
problem or analyzing a subcomponent or factors associate with the systems' performance. 
 
Dissemination: The project is still in the development phase. The goal will be to make 
these assessment tools publicly available within digital libraries associated with engineering 
content. In addition, we are working talking with a publisher interested in using our program 
as complement to their engineering related text books. Further a dedicated web site will be 
constructed to describe the potential of formative assessment and feedback and provide 
access to a large assortment of problem sets associated with engineering activities from 
multiple disciplines. 
 
Impact: The system currently has two representational formats under development, vector 
analysis, and node link graphs. The vector construction tool has been used with great success 
with engineering students in second year biomechanics and first year engineering students 
learning basic mechanics. Simple paper and pencil mockups are being used to simulate the 
graphical modeling of systems with highly inter-related components. We are investigating the 
conjecture that we need problem sets that co-develop tools knowledge and domain 
knowledge simultaneously. Further we anticipate learners will become more proficient at 
solving novel problem after given sufficient training with our tools. 
 
Challenges: A challenge is identifying problem sets with sufficient complexity to engage 
learners in the content without overwhelming them. This was not an unexpected challenge, 
but identifying a larger range of problems requires more interactions with domain experts. 
This summer we will be working on outlining a larger set of problems based on what we 
have learned about the interaction of content and tools. 

 
Example Abstract 3 – Conference Year 2013 (NSF, 2013d, pp. A120-A121) 

 
Poster 225 
PI: Ruth Streveler 
Institution: Purdue University 
Project Title: Collaborative Research: Expanding and Sustaining Research Capacity in 
Engineering and Technology Education: Building a Successful Program for Faculty and 
Graduate Students 
Project #: 0817461 
Type: Phase 3/Type 3 - Comprehensive 
Focus: Developing Faculty Expertise 
 
Goals and Intended Outcomes: 
Three project goals: 

1. Design and deliver a new generation of programs to educate engineering and 
engineering technology faculty and graduate students to conduct and use educational 
research which are effective, flexible, inclusive, and sustainable after funding ends. 

2. Foster a virtual community of engineering and engineering technology education 
researchers through the use of Purdue HUBzero technology.  
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3. Evaluate the impact of these programs on individuals who participate and on the 
participants’ students and institutions. 

 
Methods & Strategies: 
Goal 1: Creating face-to-face workshops and short courses that help engineering faculty 
learn about educational research methods. We take the approach that faculty already know 
about quality research in their technical area – we ask faculty to compare and contrast 
research in technical areas with research on teaching and learning.  
 
Goal 2: Create online educational materials (mainly video of face-to-face workshops) that is 
useful for a remote audience. 
 
Goal 3: Impact is evaluated through short surveys (for short courses) and through 
observation, focus groups and follow-up interviews for multiple-day workshops. 
 
Evaluation Methods & Results: Evaluation is accomplished through the following 
methods. 

1. Usage statistics – face-to-face attendance [for short courses and workshops] and 
Google Analytics for virtual community 

2. Pre- and post- knowledge surveys for short courses 
3. For multiple-day workshops – observation during the workshops, focus groups, 

interviews, analysis of products. 
 
Dissemination: Dissemination through workshops at ASEE and FIE, online through 
CLEERhub. Publications and conference papers as continued and continuing dissemination. 
Continued dissemination through cyberinfrastructure (CLEERhub.org) which continues 
after funding for this project ends. 
 
Impact: Usage Statistics are our most immediate level of impact. About 200 people have 
participated in face-to-face activities. CLEERhub.org has about 5000 visitors to date. Pre- 
and post- knowledge surveys do show increase in knowledge by participants. Analysis is 
ongoing for longer-term impacts.  
 
Challenges: Creating a cyberinfrastructure (Collaboratory for Engineering Education 
Research or CLEERhub.org) was a new venue for us. Method for dealing with this was 
including collaborators who were experts in online delivery and keeping an open mind. 
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Appendix B: Descriptive Information about Abstracts Reviewed 

This table provides the identifying characteristics of the 155 abstracts that were analyzed in this study.
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Appendix C: Codebook for Content Analysis 

 
 

THE IMPACT OF NSF INVESTMENTS IN UNDERGRADUATE ENGINEERING EDUCATION RESEARCH 

~CODEBOOK~ 

 
Guidelines:   

 This codebook includes codes and corresponding descriptions associated with the first research question, 
and the first two of out three of the corresponding sub-questions. The questions are:  

o What is a meaningful description of the impact of NSF investments in undergraduate STEM 
education R&D projects, based on Principal Investigators’ (PIs)’ perspectives? 

 What claims do PIs make about the impact of their NSF-funded projects?  

 How do PIs support their claims about the impact of their work? 

 Defining Terms: “Research Impact” is comprised of three dimensions: scientific impact, societal impact, 
and domain-specific impacts 

o Scientific impact: advances in reliable knowledge (theories, methodologies, models, and facts) 
that primarily influence academic communities 

o Domain-specific impact: Influence of the methods or results of an R&D project on the people, 
priorities, and/or processes in the context of interest 

o Societal Impact: research outcomes or outputs that influence social, cultural, environmental, or 
economic dimensions of society 

 All abstracts will be coded with two types of codes: Attribute codes, and Provisional/Descriptive Codes 

o Attribute codes include labels to denote basis project information (e.g., project type, STEM 
discipline, etc.) 

o Provisional/Descriptive codes include labels about more meaningful project information (i.e. 
claims PIs make and how the support them). Provisional codes are a priori codes from existing 
research impact frameworks. Descriptive codes are codes developed inductively as a result of 
conducting this analysis. 

 Assign Descriptive Codes to each abstract that address both research questions of 
interest 

 The two sections of the abstract that will be coded are: “Dissemination” and “Impact”. Other portions of 
the abstract are included only for the purpose of giving context to the information described in the two 
sections of interest. 

 Before assigning a code to a segment, skim the first level codes in the codebook for the most appropriate 
code.  

 The coding unit is an “idea” within an abstract (as opposed to a “sentence” or “word”.) Apply the label to 
the whole phase/set of texts that represents the complete idea. If the same idea appears consecutively 
across sentences, then code the two sentences as one unit. If the same idea appears in separate locations, 
then apply the code twice.  

 Codes ideas using first- and second- level codes. The first level codes are themes that describe a set of 
secondary codes. Secondary codes are mostly developed inductively. 

 It is possible that one idea can be assigned multiple codes.  

 Be open to new codes. If a code is not covered in the first level, code it as “Unidentifiable”.  If it is not 
covered at the second level, add it to the existing list underneath a first level code. 
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Overview of Attribute and Descriptive Codes 

Attribute Codes – Basic Project Information 

 Project Type 

 Target STEM Discipline 

 Project Focus 

 

Descriptive Codes – Meaningful Project Information  

What claims do PIs make about the impact of their research?  - Themes 

 Claims Regarding Conducting Research 

 Claims Regarding Research- and Education-focused Developments  

 Claims Regarding Disseminating Research Findings and Developments 

 Claims Regarding Influence on Individuals and/or Communities 

 Claims Regarding Influence on Environmental/ Structural Decisions, Metrics 

 Claims Regarding Scope of Influence 

 Claims Regarding Symbols of Impact 

 Claims Regarding Unrealized Impact 

 

How do PIs support their claims about impact?  - Themes 

 Clarifying Claims Using Degrees of Specificity  

 Supporting Claims by Establishing Credibility and/or Relevance 
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ATTRIBUTE CODES 

All Attribute codes are labels used to indicate basic information about each abstract. 

 

PROJECT TYPE 

A. TUES Type I – Exploratory 

B. TUES Type II – Expansion 

C. TUES Type III – Comprehensive 

D. TUES Central Resource Project 

 

TARGET DISCIPLINE 

A. Biological Sciences 

B. Chemistry 

C. Computer Science 

D. Engineering 

E. Geological Sciences 

F. Interdisciplinary 

G. Mathematics 

H. Physics/Astronomy 

I. Research/Assessment of Research 

J. Social Sciences 

 

PROJECT FOCUS 

A. Assessing Student Achievement 

B. Conducting Research on Undergraduate STEM Education 

C. Creating Learning Materials and Teaching Strategies 

D. Developing Faculty Expertise 

E. Implementing Educational Innovations 
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DESCRIPTIVE CODES 

What claims do PIs make about the impact of their research? 

 

THEME 1A: Claims Regarding Conducting Research 

Theme Description: Claims about people involved in conducting the research and/or the major steps in the research 
projecess.  

a. Parties Involved in Conducting Research 

Examples: working with collaborators on the project; engaging new people in conducting 
research (e.g., undergraduate student researchers) 

b. Connections between the Current Study & Existing Literature 

Examples: Links to existing literature/bodies of work, other research, prior work; references to 
prior tools that may have inspired or been the foundation for the current work. This also includes 
connections to national level policy reports suggesting research priorities for readers to consider.  

c. Highlights of current research activities 

d. Highlights of research findings 

Examples: new insights, unique contributions to the body of literature; data that resulted from 
the study that can be analyzed as part of a future study 

e. Applying for and securing additional funds to continue research 

Examples: submitting a grant proposal that builds on the current work, and/or being awarded 
funding in response to submitting a grant proposal 

 

THEME 2A: Claims Regarding Research- and Education-focused Developments 

Theme Description: Claims about the development of artifacts that imply permanence and sustainability of the 
research topic beyond the current study; and tangible, educational materials informed from the current study.  

f. Research-focused Developments 

i. Text-based entities 

Example: new scholarly journal focused on a niche research area  

ii. Discussion-based entities 

Example: new research symposium; new research conference or new strand of activities within an 
existing conference; interactive website for engaging in discourse with others who share similar 
interest; new journal club focused on a niche research area; venue for people who share similar 
research interests 

iii. Facility Instituted, Technology Developed for Conducting Research 

Example: new research center/facility, or learning center/facility; data mining tool developed to 
benefit a group within the research and/or education community 

g. Education-focused Developments 

iv. Curricular materials, training resources, and pedagogy 

Description: The development of text-based curricular materials, digital resources useful for 
teaching and/or training educators; evidence-based pedagogical practices 

Examples: modules; educational lessons; textbook; assessment tools; static tutorials; workbook; 
how-to guides; training materials on DVD 

v. Instruments, Technology used for educational purposes 



199 

 

               
   

               
 

Examples: media-rich technology; purchasing lab equipment; dynamic tutorials; interactive 
websites; repository for developments 

h. Affordances of the Developments 

Examples: discussion on the utility of the development as part of conducting research, teaching, 
or in promotion & tenure activities/documents; discussion on what the development enables; 
references to economic value/cost saving associated with the development. It also includes the 
capacity to engage in a new set of learning and/or research experiences.  

 

THEME 3A: Claims Regarding Disseminating Research Findings and Propagating Developments 

Theme Description: Claims about how research findings and/or educational developments are being shared with 
other researchers and/or practitioners. 

i. Disseminating Research Findings 

vi. Text- and Discussion-based mediums 

Description: A passive way of informing others about research findings. Examples: conference 
poster or proceeding; journal manuscript or publication; research brief; guidebook/manual; book 
about the research, that is not a textbook; website – if it is static/only used to post content.  

Description: An interactive way of informing others about research findings. Examples: 
presentation about research findings-- at a particular research symposium, conference, or similar 
gathering; participation in a panel discussion. 

Coding guideline: When a statement lists multiple types of texts, code each text-based medium 
individually. 

j. Dissemination Via Venues for Teaching, Training 

Examples: classroom; workshop; webinar; seminar; demonstration at a conference or museum; 
consulting services; one-on-one training/coaching. 

k. Propagation of Developments 

vii. Activities supporting propagation of developments 

Examples: engaging in activities to promote the establishment of partnerships, marketing, 
commercialization; establishing mechanisms (e.g., mailing list) to keep track of interests from 
educators and/or vendors; following up on interest from vendors, industry. 

viii. Outcome of activities supporting propagation of developments 

Examples: established partnerships; marketed materials; commercialized materials; paid 
subscribers 

 

THEME 4A: Claims Regarding Influence on Individuals and/or Communities 

Theme Description: Claims about ways in which individual or communities of learners, instructors, and researchers 
are being affected by the outcomes of the study. 

l. Influence of Teaching on STEM Learners 

Description: participation in experiences that lead to the acquisition and application of knowledge 
and skills, changes in epistemology (ways of knowing), changes in ontology (ways of being) 
(Dall'Alba, 2009).  

This also includes undergraduate students’ interest in pursuing graduate studies. 

This also includes changes in STEM literacy among individuals outside of undergraduate 
education. 
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m. Influence of Training on STEM Education Instructors and/or Community of Instructors 

“Instructors” include Teaching Assistants, Post-doctoral Staff, Faculty, K-12 Teachers 

Description: participation in experiences that lead to the acquisition and application of knowledge 
and skills, changes in epistemology (ways of knowing), changes in ontology (ways of being) 
(Dall'Alba, 2009). This also incudes participation a virtual venue designed for instructors to 
interact with and learn from each other. 

Coding guideline: This may overlap with education-focused developments. 

n. Influence of Research on STEM Education Researchers and/or Research Community 

“Researchers” include, but is not limited to: undergraduate & graduate research assistants; post-
doctoral researchers. 

Examples: The development of new skills associated with conducting STEM/Education research; 
effects on grant writing, such as improved quality of proposals; increased interest among 
colleagues in applying for funding and/or conducting research; significant expansions in the 
research community associated with the PIs’ expertise; development of new community of 
researchers. This also includes instances where teaching- learning-related results that stem from 
the current project lead to new research-focused activities/projects.  

o. Direct Personal, Professional Benefits to Instructors, Researchers 

Examples: expansion of the PIs’ professional network as a result of conducting research, teaching, 
training session; inclusion of research activities in promotion and tenure package that lead to 
positive professional outcomes 

  

THEME 5A: Claims Regarding Influence on Environmental/Structural Decisions, Metrics 

Theme Description: Claims about how insights from the current study inform administrative decisions that 
ultimately influence the actions of others, and how the current study contributes to assessments and/or metrics of 
interest to administrators. 

p. Department-Level Decisions 

ix. Curricular Changes 

Example: Administrative support for … within a department; modifications to a course; new 
course offering; changes in courses students are advised to take.  

x. Informing or Enacting Education Policy 

Description: participation in policy-related discussion taking place at local and national –level 
gatherings that have implications for the local department 

xi. Informing Promotion & Tenure Decisions 

q. Department-Level Insights, Assessments and Metrics 

Example: research findings that lead to insights about structural issues; changes in student 
enrollment, student retention, and other department level/aggregate student outcomes of 
interest (e.g., “Drop, Fail, Withdraw-rates); curricular changes that contributed to department 
accreditation; inclusion of research data or findings in ABET evaluation.   

 

THEME 6A: Claims Regarding Scope of Influence 

Theme Description: Claims about the span associated with their project outcomes. 

r. Geographic scope 
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Examples: use of terms like “international”, “nation” (usually in a broad, vague sense); mention of 
specific states in the U.S.; references to particular types of states (e.g, “EPSCor” state) 

s. Disciplinary scope 

Example: reference to a discipline other than the target discipline associated with the study 

t. Institutional scope 

Description: References to type of institutions making use of or have expressed an interest in 
making use of research developments resulting from the study of interest.  

Example: List of institutional types includes, but is not limited to, Historically Black Colleges & 
University (HBCU); Hispanic-serving institution (HSI); Tribal College or University (TCU); 
Community College. This also includes institutions comprised of formal & informal learning 
environments (e.g., K-12 school, museum), and funding agencies (e.g. NSF). 

u. Scope via Target Populations 

Example: reference to undergraduate students in particular STEM disciplines (e.g., engineering), 
“at risk” students, underrepresented minorities; particular grade levels (e.g., freshman, first-year, 
sophomore, junior, senior, capstone course). This also includes activities that target 
administrators; program officers at funding agencies. 

v. Non-academic Partnerships 

Example: reference to partnerships with vendors, industry, or professional societies to advance 
dissemination. 

 

THEME 7A: Claims Regarding Symbols of Impact 

Theme Description: Claims about the receipt of public affirmation as a result of connections to the current study. 

w. Affirmation from within the academic community 

Example: receiving and award or special recognition; being labeled/recognized as a model or 
exemplar; presenting a keynote address; securing funding to continue research or participated in 
a specialized professional development opportunity. This also includes bestowing an award or 
special recognition; identifying a model or exemplar; appointing a “fellow” (leaders to carry on 
the work) 

x. Affirmation from outside the academic community 

Example: press coverage; media reports/news articles; featured stores on TV or in written 
publications; featured in the NSF Highlights 

 

THEME 8A: Claims Regarding Unrealized Impact 

Theme Description: Claims about activities, events, and outcomes that have not yet happened, but are either future 
plans or anticipated outcomes that will be realized at a later time.  

y. Future Plans to Conduct Research, Create Developments, or Disseminate 

Claims regarding future plans or intentions to collaborate with others, conduct research, 
disseminate research findings, share educational developments, etc. 

Coding guideline: Do not apply secondary codes to indicate exact plans to conduct research. 

z. Indeterminate Impact 

Examples: Statements/admission that impact is “unclear”, “hard to determine”, or “yet to be 
determined”. 

aa. Indirect and/or Expected Impact 
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Description: Links between direct, secondary or tertiary outcomes that may or may not have been 
observed/realized yet. Oftentimes, discussed as a chain reaction that ultimately links to student 
learning. Sometimes used in conjunction with geographic references to span of impact. 
Sometimes this is tied to future work. It’s an indication of how soon outcomes will be realized. 

Example: discussion on what a new tool enables users to do after discussing the development of 
the tool itself; use of terms like “expected”, “anticipated”, or “predicted”. Also includes references 
to societal-level impact constructs (e.g., economy, environment, technological literacy of citizens) 

Coding guideline: Do not apply secondary codes to denote the specifics of the indirect or 
anticipated outcomes.  

 

How do PIs support their claims about impact? 
THEME 2A: Clarifying Claims Using Degrees of Specificity 

Theme Description: Clarifying claims using language that is either more or less specific. 

a. More specific 

xii. Quantifying outcomes 

Example: number of documents (publications, etc.), workshops hosted, workshop 
attendees/participants; adopters/users (if its an online system), institutions represented among 
the participants/users/adopters; references to durations of time 

xiii. Qualifying claims 

Description: A way to clarify and/or limit the extent to which a claim can be taken. 

Examples: use of terms like “possibly”, “likely”, “potentially”. 

b. Less specific 

Description: broad, vague descriptions of “impact”  

 

THEME 2B: Supporting Claims by Establishing Credibility and/or Relevance 

c. References to what motivated the current R&D project 

Examples: References to prior work or gaps in the literature upon which the current study is built; 
connections to national-level priorities or discussions. 

d.  Reference to societal-level impact construct 

Description: influence on social, cultural, environmental, or economic dimensions of society 

e. Reference to evaluations and/or metrics  

i. Quantitative Evaluation and/or Metrics 

Example: Counting number of institutions served, involved; Course performance indicators; 
National data across institutions; Adoption rate and/or Usage statistics; Students’ course 
performance indicators 

ii. Qualitative Evaluation and/or Metrics 

Example: Counting: Anecdotal Remarks; Indicators of Participation at events to gauge interest; 
Misc. indicators of interest; Teaching assistants’ feedback; Online reflection tool; Topics of 
discussion at national meetings and conferences 

iii. Mixed -Quantitative and Qualitative- Evaluation and/or Metrics 

Example: Counting: Survey; Formative and/or summative evaluations from an external evaluator; 
Pre-post test; Course evaluation data; Students’ work 
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iv. Unable to determine  

Description: Judgment statements that suggest that some sort of evaluation has occurred, but no 
explicit reference to the type of evaluation. (Information may be found in other sections of the 
abstract.) This code is oftentimes linked with “Less specific” support for claims about impact 
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Appendix D: Recruitment Email to Survey Participants 

 
 
 
Cover Letter 
 
Dear [Participant’s Name], 
 
My name is Jeremi London. I am Ph.D. Candidate in the School of Engineering Education 
at Purdue University and an intern in the Division of Undergraduate Education at the 
National Science Foundation. With the increasing pressure on federal funding agencies to 
allocate funds more wisely to proposed research that shows great promise and to advance 
studies with compelling results, now is the time to articulate what the impact of research 
looks like. In light of this need, my dissertation will result in the development of a 
conceptual framework that characterizes the impact of NSF-funded undergraduate 
engineering education research and development (R&D) projects. This study is approved by 
IRB #1406014915. 
 
The purpose of this email is to invite you to serve as a content expert on the statements that 
will be included in the framework. You are asked to serve because of your past experience as 
a NSF program officer, principal investigator on at least one NSF-funded project focused on 
engineering education, and academic training in an engineering discipline. Your participation 
in the review process is a valuable step toward future studies on ways to evaluate research 
impact. 
 
The survey consists of items that were developed as a result of qualitatively analyzing the 
claims Principal Investigators (PI) make about the impact of their NSF-funded work in the 
“Dissemination” and “Impact” sections of project abstracts included in PI conference 
reports. If you choose to participate, you will have the opportunity to provide feedback on 
the relevance and clarity of each item in relation to definitions of research impact. You will 
also have an opportunity to evaluate the comprehensiveness of the set of items, and make 
suggestions for the addition or deletion of items.  
 
This invitation is being sent to people who meet the criteria provided above. Thus, you are 
welcome to participate in this study via an online survey that can be found at:  
https://purdue.qualtrics.com/SE/?SID=SV_6Ve1ZCl49kclr81. The survey will take 
approximately 30-60 minutes to complete, and will close Friday, June 27. All survey 
responses are anonymous. Your participation is voluntary, and you can withdraw from this 
study any time before completing the survey. Since it is an anonymous survey, we cannot 
identify how to remove a participant who has completed the survey.  
 
If you are interested in obtaining a copy of the final report that results from this study, the 
last survey question includes the link to another survey that allows you to add submit your 
email address to the researchers on this study. As a result of using two distinct surveys, your 
responses in one will not be linked to responses in the other. 

https://purdue.qualtrics.com/SE/?SID=SV_6Ve1ZCl49kclr81
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If you have questions or concerns, please contact me, Jeremi London 
(jslondon@purdue.edu), or my Ph.D. research advisor, Dr. Monica Cox (mfc@purdue.edu). 
Thank you in advance for your cooperation and input. 
 
Regards, 
 
Jeremi London 
Ph.D. Candidate, School of Engineering Education, Purdue University 
Summer Scholar, Division of Undergraduate Education, National Science Foundation 
 
Monica Cox, Ph.D. 
Associate Professor, School of Engineering Education, Purdue University 
 
 

mailto:jslondon@purdue.edu
mailto:mfc@purdue.edu
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Appendix E: Sample Protocol Questions for a Follow-up Study 

 

One example of a follow-up study might include an exploration of various stakeholders’ 

perspectives on what impact means in the context of undergraduate engineering education. 

Stakeholders might include not only PIs and NSF Program Officers, but also personnel at 

agencies like the National Academy of Engineering (NAE), Office of Science and 

Technology Policy (OSTP), and the Accrediting Board for Engineering and Technology 

(ABET). Methods that involve interviews and/or focus groups would allow participants to 

provide open-ended responses, ask clarifying questions, and elaboration on their initial 

thoughts. Sample interview protocol questions include: 

1. Questions About the Participant’s Work: 

a. Tell me the story of how you started doing engineering education-related 

work.  

b. In what ways is your current work at [NSF, NAE, OSTP, ABET] connected 

to engineering education? 

2. Questions about the Agency’s Work:  

a. What are the overarching mission and primary objectives of [your current 

agency of employment: NSF, NAE, OSTP, ABET]?  

b. How does the work of [NSF, NAE, OSTP, ABET] fit within the larger 

context of engineering education in the U.S.?  

3. Questions Linking the Agency’s Work and Impact: 

a. In ways does [NSF, NAE, OSTP, ABET] impact engineering education in 

the U.S.?  
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b. What factors promote the impact of the work that [NSF, NAE, OSTP, 

ABET] does? What impedes it? 

4. General Questions About Impact:  

a. More broadly, how would you define impact? 

b. What is an example of a project, program, or initiative related to engineering 

education that has been impactful? Why? 



 

                                 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

VITA  
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VITA 
 
Jeremi S. London 
jslondon@purdue.edu 
 

 
ENGINEER AND ENGINEERING EDUCATION SCHOLAR WITH A DYNAMIC BACKGROUND IN POLICY, 

RESEARCH, INDUSTRY, TEACHING AND SERVICE 
 

 

HIGHLIGHTS Keen insight on relationships between government and academic sectors as part of 
educating engineers. 
Makes scholarly contributions to research on STEM education policy, industrial engineering, 
and engineering education. 
Knowledge of various analytic software (e.g., SAS, SPSS, Atlas.ti, Arena Simulation). 
Mixed methods researcher with interests in: STEM education policy, cyberlearning, and 
agent-based simulation modeling. 

 
EDUCATION Purdue University 

Ph.D., Engineering Education                GPA: 3.9 (Winter 2014) 
M.S., Industrial Engineering                          Spring 2013 
B.S., Industrial Engineering                            Spring 2008 

 
HONORS Purdue School of Engineering Education Graduate Student Researcher Award, Honorable 

Mention (2014) 
Purdue College of Engineering Outstanding Service Award (2013) 
Gerald I. Gilbert Memorial Scholarship (2011, 2012, 2013) 

Indiana Space Grant Consortium Graduate Fellowship (2012) 

National Science Foundation Summer Scholar Internship Program Intern (2011, 2012, 2013) 

National Science Foundation S-STEM Fellowship Scholar (2010) 

National Science Foundation REU (Research Experiences for Undergraduates) Student 
(2007 – 2008) 

INROADS Frank C. Carr Community Service Award (2005 & 2006); Leadership Award 
(2005 & 2006) 

 
POLICY  National Science Foundation, Washington, D.C. 

 Summer Scholar, Division of Undergraduate Education  (DUE)      2011, 2012, 2013  
Explored ways cyberlearning tools can provide more equitable learning experiences 
for all learners by: 

 Presented descriptive statistics to summarize 800 awards in the DUE portfolio funded 
between 2001-2011 

 Created a taxonomy of cyberlearning after synthesizing the perspectives of 18 NSF 
Program Officers 

 Proposed 17 recommendations to NSF Program Directors on research directions for 
cyberlearning 
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Provided a snapshot of the current landscape of cyberlearning research; and studied 
16 exemplars by: 

 Reviewed the outcomes of 100 noteworthy cyberlearning projects; organized them 
using a taxonomy 

 Interviewed the leader of 16 exemplars to garner insights on development, 
dissemination & sustainability 

 Summarized highlights of exemplars, recommendations to future developers, and 
untapped opportunities   

 

Contributing to DUE, colleagues within DUE & the engineering education research 
community by: 

 Developing a framework DUE Program Officers can use to evaluate the impact of 
projects 

 Mentored a fellow-intern through the execution of a research idea that led to a poster 
presented at the 2012 Society for the Advancement of Chicanos and Native Americans 
in Science (SACNAS) conference 

 

Developing a NSF research agenda around the role of MOOCs in engineering 
education:  

 Wrote a travel grant to obtain support four workshops taking place at engineering 
conferences; managing a $40,000 budget 

 Bringing together a panel of experts on Massive Open Online Courses (MOOCS), 
learning science, and engineering faculty to discuss the potential for MOOCs, and 
stimulating conversations and research collaborations among engineering faculty 

 Writing a research agenda that will influence NSF’s investments in MOOCs in 
engineering education  

 
 
RESEARCH  Purdue University, West Lafayette, IN 

Ph.D. Dissertation: “The Research Impact of National Science Foundation 
Investments in Undergraduate Engineering Education: An Exploratory Mixed 
Methods Study”. Major Professor: Dr. Monica Cox 
 

Master’s Thesis: “Analysis and Modeling of Learning Outcome Mappings in 
Engineering Education”. Major Professor: Dr. Barrett Caldwell 
 
Graduate Research Assistant, School of Engineering Education             
Fall 2010-current 
Exploring the knowledge, skills & attributes engineering Ph.D.s need for successful 
careers in industry or academia by: 

 Interviewing 40 engineering Ph.D.s, synthesizing responses, and disseminating research 
findings 

 Translating qualitative findings into assessment instruments, and professional 
development opportunities for doctoral engineering students 

 

Assessing and providing feedback on the effectiveness of graduate teaching 
assistants’ pedagogy by: 

 Developing a multi-dimensional, real-time assessment tool based on the How People 
Learn framework 

 Providing graduate teaching assistants with actionable feedback based on profiles 
generated by the tool 

 

Undergraduate Research Assistant, School of Engineering Education         Fall 
2007- Spring 2008 
Carried out research and administrative tasks as part of learning about the research 
process by: 
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 Creating a project plan for a study that included three data collection methods and 
human subjects 

 Preparing an interview protocol and conducting interviews 
 

Graduate Student Researcher on NSF-funded Projects 

 Project Title: “Engineering Education Pioneers and Trajectories of Impact”. Co-PIs: 
Cynthia Atman, KenYashura, Jennifer Turns (Spring 2014) 

 Project Title: “Workshops to Create a Taxonomy for Engineering Education Research 
and Prioritize Areas of Research”. Co-PIs: Cynthia Finelli, Maura Borrego (Summer 
2013) 

 
 
INDUSTRY GE Healthcare, Wauwatosa, WI 
  Quality Assurance Specialist, Invasive Cardiology (ICAR) Division             2008-2009 
 

Reviewed 100% of complaints about ICAR medical devices weekly; 600-900 
complaints by: 

 Responded immediately with corrective action to complaints about patient safety, 
quality or compliance. 

 Prepared weekly trend reports & presentation for FDA audit that resulted in zero 
federal observations. 

 Led an in-depth investigation with nurses and design engineers to examine unusual data 
trends, leading to fact-based discoveries and methodical direction for the management 
team. 

 Initiated training and guidelines for field engineers to improve communication with QA 
Specialists. Resulted in a 50% reduction in the number of complaints requiring follow-
up with field engineers. 

 
Medallion Entry Systems, Indianapolis, IN 
Industrial Engineering Senior Design Student              
Spring 2008 

 Work on a team to design a software application that enabled the company to accurately 
estimate project lead times, inventory levels, and provide precise quotes for their 
customers 

 
Anheuser-Busch, St. Louis, MO 
Logistics Coordinator              
Summer 2006 

 Planned logistics to ensure that wholesalers had at least three days of inventory 

 Created weekly trucking schedules & monitored supply chain to ensure low cost, on-
time deliveries 

 

Corporate Quality Assurance Analyst            
Summer 2005 

 Consolidated vendor relationship by identifying those that could serve as national and 
regional suppliers; thereby saving the company money and strengthening supplier 
relations 

 Streamlined process for vendor order by developing a database to store equipment 
purchasing data and a Standard Operating Procedure  

 

Research Pilot Brewery Lab Technician            
Summer 2004 

 Evaluated brew samples using various lab equipment, and generated trend reports 
weekly 
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 Presented lab observations and peculiar data to team members, and Director of 
Research Pilot Brewery 

 
TEACHING Course: Preparing Future Professionals, Purdue Graduate School               Fall 2012 

Restructured critical elements of course instruction and prepared content for online 
mediums by:  

 Aligning course content, assessment, and pedagogy for 5 lectures on topics relevant to 
graduating students 

 Translating content for five 90 min lectures into a collection of 10-15 minute online 
modules 

 

Facilitator, Purdue Teaching Assistant Orientation                   
Fall 2011 
Facilitated workshops on classroom management and gave personalized feedback 
on pedagogy by: 

 Led interactive sessions on “Managing Learning Environments”, “Academic Integrity” 
and “Managing TA Responsibilities” 

 Provided 9 Teaching Assistants with personalized feedback on the effectiveness of their 
teaching practices after their 7-min Micro Teaching Session 

 

Summer Camp Leader, Purdue School of Biomedical Engineering         
Summer 2007 
Taught 4th & 5th grade students Biomedical Engineering concepts using everyday 
occurrences by: 

 Engaging the students in hands-on learning activities 

 Using materials to simulate the whiplash that can occur during a car accident and the 
impact of riding a bike without a helmet 

 

Tutor, WyzAnt Home Tutoring Services, Inc.             Fall 
2009-Spring 2010 
Tutored high school and undergraduate students in math and science by: 

 Established and maintained rapport with students while sharing study skills necessary 
for academic success 

 Evaluated students academic performance and provided ways to bridge gaps in 
understanding  

 
SERVICE Graduate Student Representative, Program Committee      

Cyberlearning Summit 2014     Fall 2013 –current 
 

Reviewer, Journal of Engineering Education    Spring 2014 
 

Inaugural Chair, Professional Development Committee 
Graduate Engineering Education Consortium for Students (GEECS)            

2011-2012 
 

Reviewer , Education and Research Methods Division      
American Society for Engineering Education                Fall 2013 

 

Junior Member 
Graduate Committee, Purdue School of Engineering Education               2011-2013 
Student Representative for School of Engineering Education 
Purdue Graduate Student Advisory Council              2011 - 2012 
 

Treasurer 
Adventist Collegiate Fellowship at Purdue                     2012 - 2014 
 

Member                   
American Society for Engineering Education            2010-current 
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Human Factors and Ergonomics Society               2010-current 
 

Prior to 2010 Mentor & Mentee, Women in Engineering Program at Purdue 
Mentor, Big Brothers Big Sisters of Lafayette, IN 
Tutor, Chapter Senator, National Society for Black Engineers (Purdue Chapter) 
FUNFest Coordinator, INROADS/St. Louis, MO 

 
PUBLICATIONS 

Thesis 
London, J.S. (2013). Analysis and Modeling of Learning Outcome Mappings in Engineering Education. (Master’s 

thesis). Available from ProQuest Dissertations and Theses database. (UMI No. 1544419). 
 
Journal Publications 
London, J., Cox, M.F., Ahn, B., Branch S., Torres-Ayala, A., Zephirin, T., Zhu, J. (In Review). Motivations 

for Pursuing an Engineering Ph.D. and Perceptions of its Added Value. International Journal of Doctoral 
Studies. 

Ahn, B., Cox, M.F., London, J., Cekic, O. and Zhu, J. (2014). Creating an Instrument to Measure 
Leadership, Change, and Synthesis in Engineering Undergraduates. Journal of Engineering Education, 
103(1), 115-136. 

Zhu, J., Li, Y., Cox, M., London, J., Hahn, J., Ahn, B. (2013). Validation of a Survey for Graduate Teaching 
Assistants: Translating Theory to Practice. Journal of Engineering Education 102(3), 426-443. 

Cox, M.F., London, J., Zhu, J., Ahn, B., Zephirin, T., Taylor, K. (Paper Accepted, 2012). Curriculum Vitae 
Analyses of Engineering Ph.D.s Working in Academia and Industry. International Journal of Engineering 
Education 

Cox, M. F., Hahn, J., McNeill, N., Cekic, O., Zhu, J, & London, J. (2011). Enhancing the Quality of 
Engineering Graduate Teaching Assistants through Multidimensional Feedback. Advances in Engineering 
Education, 2(3), 1-20.  

Cox, M.F., Zhu, J., Cekic, O., Chavela, R., & London , J. (2010). Knowledge or Feelings: First-year 
Students’ Perceptions of Graduate Teaching Assistants in Engineering. Journal of Faculty Development, 
24(1), 27-34. 

 
Book Chapter 
Cox, M.F., Zhu, Jiabin, Z., London, J., Hahn, J., Ahn., B. (2012). Feedback about Graduate Teaching 

Assistants’ Pedagogical Practices: Content Validation of a Survey Informed from Principles of the 
“How People Learn” Framework. In G. Gorsuch (Ed.), Working Theories for Teaching Assistants and 
International Teaching Assistant Development. (pp. 63-82). Stillwater, OK: New Forums Press, Inc. 

 
Conference Proceedings 
London, J., Young, C. (Abstract Accepted, 2014). Developing a Research Agenda Around MOOCs in Engineering 

Education (Work in Progress). Abstract Accepted to the MOOCs in STEM: Exploring New Educational 
Technologies Conference, San Jose, CA.      

Berdanier, C., Cox, M., Ahn, B., London, J. (Paper Accepted, 2013). Survey Analysis of Engineering Graduate 
Students’ Perspectives on the Skills Necessary for Career Success in Industry and Academia. Paper accepted to the 
2014 American Society for Engineering Education Conference, Indianapolis, IN.  

Ahn, B., Cox, M., London, J., Zhu, J. (Paper Accepted, 2013). Investigating the Attributes and Expectations of 
Engineering Ph.D.s Working in Industry. Paper Accepted to the 2013 Frontiers in Education Conference, 
Oklahoma City, OK. 

Zhu, J., Cox, M., Branch, S., Ahn, B., London, J. (Paper Accepted, 2013). Recommendations for Engineering 
Doctoral Education: Design of an Instrument to Evaluate Change. Paper Accepted to the 2013 Frontiers in 
Education Conference, Oklahoma City, OK. 

London, J. (2013). Highlighting Cyberlearning Tools with Compelling Results. Paper presented at the 2013 
American Society for Engineering Education Conference, Atlanta, GA. 

London, J., Caldwell, B.S., Patsavas, K. (2013). Aligning Learning Outcomes and the Engineering Educational 
Accreditation Expectations. Paper presented at the 2013 International Systems Engineering and Research 
Conference, San Juan, Peurto Rico. 

London, J., Caldwell, B.S., Patsavas, K. (2013). Modeling Expertise Development in Undergraduate Engineering 

http://onlinelibrary.wiley.com/doi/10.1002/jee.20036/abstract
http://onlinelibrary.wiley.com/doi/10.1002/jee.20036/abstract
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Education. Paper presented at the 2013 International Systems Engineering and Research Conference, 
San Juan, Peurto Rico. 

Sambamurthy, N., Hahn, J., London, J., Cox, M. (2013). Reliability of the Global Real-time Assessment Tool for 
Teaching Enhancement (G-RATE). Paper presented at the 2013 American Society for Engineering 
Education Conference, Atlanta, GA. 

London, J. (2012). Exploring Cyberlearning through a NSF Lens. Paper presented at the annual American 
Society for Engineering Education Conference, San Antonio, Texas. 

London, J., Ahn, B., Cox, M.F. (2012). LSAMP X: Lessons Learned from a Diversity Program Serving 
Underrepresented Minority Students. Paper presented at the annual American Society for Engineering 
Education Conference, San Antonio, Texas. 

Zhu, J., London, J., Ahn, B., Cox, M.F. (2012). Recommendations for Promoting Desirable Characteristics in 
Engineering Ph.D.s: Perspectives from Industry and Academia. Paper presented at the annual American Society 
for Engineering Education Conference, San Antonio, Texas. 

Coso, A., Louis, R., London, J., Ngambeki, I., Sattler, B. (2012). Exploring the Reasons for Collaboration and 
Cooperation among Graduate Student Researchers.  Paper presented at the annual American Society for 
Engineering Education Conference, San Antonio, Texas. 

Cox, M.F., London, J., Ahn, B., Frazier, S., Zhu, J., Torres-Ayala, A. (2011). Attributes of Success for 
Engineering Ph.D.s: Perspectives from Academia and Industry. Paper presented at the annual American Society 
for Engineering Education Conference, Vancouver, Canada. 

Cox, M.F., Ahn, B., London, J., Frazier, S., Zhu, J., Torres-Ayala, A. (2011). Choices for Ph.D.s in Engineering: 
Analysis of Career Paths in Academia and Industry. Paper presented at the annual American Society for 
Engineering Education Conference, Vancouver, Canada. 

McNeill, N., Cox, M.F., Diefes-Dux, H., London (Hayes), J., & Medley, T. (2008). Development of an 
Instrument to Collect Pedagogical Data from Graduate Teaching Assistants within Engineering Laboratories. Paper 
presented at the annual American Society for Engineering Education Conference, Pittsburg, PA. 

 
Reports 
London, J., Millard, D., Piotrowski, V., Zia, L. (2012). A Snapshot of Cyberlearning: Highlights and Implications. 

NSF Internal Report 
London, J., Millard, D., Piotrowski, V., Zia, L. (2011). Exploring Cyberlearning through a NSF Lens. NSF 

Internal Report  
 

Workshops & Invited Presentations 
London, J., Young, C. (Workshop Request Accepted, 2013). Developing a NSF Research Agenda Around 

MOOCs in Engineering Education. Workshop request accepted to the 2014 ASME International 
Mechanical Engineering Education Leadership Summit, San Juan, PR.   

London, J., Young, C. (Workshop Request Accepted, 2013). Developing a NSF Research Agenda Around 
MOOCs in Engineering Education. Workshop request accepted to the 2014 Electrical and Computer 
Engineering Department Heads Association Annual Meeting, Napa, CA.   

London, J., Young, C. (Workshop Request Accepted, 2013). What is the Role of MOOCs in Engineering 
Education? Workshop request accpeted to the 2014 American Society for Engineering Education 
Conference, Indianapolis, IN.   

London, J., Young, C. (Workshop Request Accepted, 2013). What is the Role of MOOCs in Engineering 
Education?: NSF Research Agenda Development Workshop. Workshop request submitted to the 2014 
Biomedical Engineering Society Annual Conference, San Antonio, TX.   

London, J., Cox, M., Ahn, B. (Workshop Request Accepted, 2013). Convincing the Non-believers: Selling 
Engineering Education Experiences on the Job Market. Workshop request accepted to the 2014 American 
Society for Engineering Education Conference, Indianapolis, IN.   

London, J.,  Herman, G.L., Thomas, L.D. (Special Session Request Submitted, 2013). Benefits of Being in 
GEECS. Workshop request submitted to the 2014 American Society for Engineering Education 
Conference, Indianapolis, IN.   

London, J. (2012). Exploring Cyberlearning Through a NSF Lens. Invited presentation on Jan. 24, 2012 in 
course: “Research, Design, and Evaluation of Learning Experiences and Environments for Discipline-
Based Computational Thinking”  (Instructor: Alejandra Magana, Ph.D.) [Invited Presentation] 

London, J. (2013). Is Graduate School Right for Me? – Part 1. Louis Stokes Alliance for Minority 
Participation in STEM – Purdue University Campus. Live webinar. [Invited Presentation] 



214 

 

                                 
 

London, J., Ahn, B. (2013) Is Graduate School Right for Me? – Part II. Louis Stokes Alliance for Minority 
Participation in STEM – Purdue University Campus. Live webinar. [Invited Presentation] 
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