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ABSTRACT 

Liu, Zhiwei. Ph.D., Purdue University, December 2014. Ultrasound Assisted Low-

Temperature Synthesis of TiB2 and Al3Ti Particulates in Molten Al. Major Professor: 

Qingyou Han. 

 

 

In situ formed TiB2 and Al3Ti are two typical representatives of ceramic and intermetallic 

reinforcements in the in situ particulate reinforced Al composites. TiB2 particulates can 

be synthesized in molten Al via the mixed-salts reaction by adding mixed K2TiF6 and 

KBF4 salts into the Al melt at high temperatures. Al3Ti particulates can be produced by 

the direct-melt reaction between solid Ti powders and liquid Al at high temperatures. 

Generally, a high reaction temperature is always needed to obtain both reinforcements. 

Some issues, however, such as high cost and burning loss of alloying elements in Al 

alloys, are usually associated with high manufacturing temperatures. Specifically, a 

higher temperature can lead to the formation of larger-sized particulates, which severely 

degrades the mechanical properties of composite materials. Therefore, exploring the low-

temperature synthesis of TiB2 and Al3Ti particulates is meaningful for practical 

productions. Also, the formation mechanisms for both particulates are still unclear, 

especially at lower synthesizing temperatures.  

This research is developed the following studies based on the above topics. The 

influences of reaction temperature and time on the mixed-salts reaction were studied. An 

ultrasound assisted technique was applied to the reaction at 700 °C. Results show that a 
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higher temperature can lead to a higher yield of TiB2 with a shorter reaction time, but the 

size of TiB2 produced becomes larger. With a 10-min reaction time, the yield of TiB2 can 

reach 89.50 % and the size of most of TiB2 is in the range of 300-800 nm at 900 °C; Most 

TiB2 synthesized at 700 °C are smaller than 300 nm, but the yield is just 28.10 %. By 

using ultrasound, a high yield (90.40 %) of TiB2 particulates with smaller size (smaller 

than 300 nm) can be obtained at 700 °C. The formation mechanism of TiB2 was studied 

through a static experiment. At a higher temperature (900 °C), the synthesis of TiB2 

mainly follows the precipitation-growth process at the reaction interface. At a lower 

temperature (700 °C), the precipitation-growth process and dissolution reaction between 

AlB2 and Al3Ti both contribute to the formation of TiB2. As the reaction time is 

prolonged, TiB2 particulates with a smaller size can be formed. Ultrasound has 

remarkable effects on the formation of TiB2 particulates, which can lead to accelerated 

mass transfers of [Ti] and [B] from salts to reaction interface and a high nucleation rate of 

TiB2. These two effects contribute to the low-temperature synthesis of TiB2. 

For the direct-melt reaction, a reaction-peeling model is proposed to explain the 

formation of small blocky Al3Ti particulates. Ultrasound is able to effectively accelerate 

the reaction-peeling process. The reaction time for a completed synthesis of Al3Ti can be 

shortened significantly. Most importantly, the formation of inclusions containing solid Ti 

powders can be avoided in the ultrasonic fields, allowing for the realization of a lower-

temperature synthesis of Al3Ti at 700 °C. 
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CHAPTER 1. INTRODUCTION 

1.1 Research Background 

Through several decades of development, in situ particulate reinforced Al 

composites have been attracting more and more attentions in the aerospace and 

automobile industries due to their excellent properties, such as low density, high specific 

strength and modulus, good corrosion resistance, high thermal and electrical conductivity, 

and high damping capacity (Tjong & Ma, 2000).  

Generally speaking, ceramic particulate and intermetallic particulate are two of the 

most important reinforcements in the Al matrix, in which TiB2 and Al3Ti are the typical 

representatives respectively due to their excellent properties. Numerous researchers have 

done lots of work on synthesizing both reinforcements in the Al matrix.  

In practical productions, mixed-salts reaction has been extensively used for 

synthesizing in situ TiB2/Al (alloys) composites, which involves adding mixed K2TiF6 

and KBF4 salts with a molar ratio of Ti/B=1/2 into molten Al (alloys) at high 

temperatures, leading to the formation of TiB2 particulates (Feng & Froyen, 2000). For 

producing in situ Al3Ti/Al (alloys) composites, a simple direct-metal reaction between 

solid Ti powders and liquid Al has becoming a promising approach for producing Al3Ti 

particulates in the Al melt (Yu, Chen, Sun, & Min, 2006a). 
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In essence, the above two reactions both belong to chemical reactions. The 

temperature of molten Al, i.e. the reaction temperature is one of the most crucial factors, 

which significantly influences the formation of TiB2 and Al3Ti in each reaction. In 

general, a high temperature is beneficial for the synthesis of TiB2 and Al3Ti. As reported, 

the temperatures of liquid Al used in the mixed-salts reaction are always higher than 

800 °C (Anandkumar, Almeida, & Vilar, 2011; Xue, Wang, Han, Chen, & Sun, 2012); 

and the temperatures used in the direct-metal reaction are greater than 900 °C (Jie, 

Kandalova, Zhang, & Nikitin, 2000; Yu, Chen, Sun, & Min, 2006a). 

Some issues, however, are usually associated with the high temperatures. One is the 

high manufacturing cost, because higher temperature demands more energy. The other 

one is the burning loss of some alloying elements, such as Mg and Zn in Al alloys. 

Particularly, a higher temperature can result in the formation of larger-sized TiB2 and 

Al3Ti particulates. The existence of large-sized particulates in the matrix can lead to the 

reduction of tensile properties of materials, especially for the ductility and yield strength 

(Doel & Bowen, 1996). Thereby, decreasing the formation of large-sized particulates in 

the matrix is desired in most cases. 

 Based on the above introduction, it is found that a contradiction exists in both 

reactions for synthesizing particulates, which is a higher reaction temperature is good for 

the formation of particulates in molten Al, but easily leads to some negative impacts, 

such as high cost, burning loss of alloying elements and making particulates larger. 

Therefore, exploring an approach to synthesize TiB2 and Al3Ti particulates at lower 

temperatures is greatly meaningful for industrial productions. 
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So far, the understanding of the formation mechanism of TiB2 and Al3Ti in each 

reaction is not enough. For the mixed-salts reaction of K2TiF6-KBF4-Al system, the 

formation mechanism of TiB2 particulates is still under dispute. Two main viewpoints 

regarding the formation process of TiB2 phase have been proposed. One refers that TiB2 

particulates are formed by a dissolution-precipitation mechanism when the concentrations 

of Ti and B reach saturation in molten Al (alloys) (Fan, Yang, & Zhang, 2005). The other 

one refers that TiB2 particulates are synthesized resulting from the reaction between 

Al3Ti and AlB2, which are formed firstly due to the reactions of K2TiF6-Al and KBF4-Al 

(Feng & Froyen, 2000). In nature, both mechanisms are based on the equilibrium 

thermodynamics of the Al-Ti-B system. However, the practical mixed-salts reaction of 

K2TiF6-KBF4-Al is a typical non-equilibrium thermodynamic reaction. The conventional 

analysis is not able to reflect the actual formation process of TiB2. In contrast, a kinetic 

study is more suitable to describe the formation process of TiB2 particulates in the mixed-

salts reaction. 

For the direct-melt reaction between solid Ti powders and liquid Al, to our 

knowledge, the synthesis of Al3Ti particulates at the temperatures below 800 °C has 

never been reported by other researchers. The evolution of solid Ti powders in liquid Al 

at low temperatures has never been explored. Since the reaction between solid Ti 

powders and liquid Al is also a non-equilibrium thermodynamic reaction, the study of the 

formation mechanism of Al3Ti particulates can be conducted from a kinetic prospective. 

More work can be done in this field.  

As mentioned above, decreasing the temperatures of molten Al can limit the 

formation of TiB2 and Al3Ti particulates in each reaction. In order to realize the low-
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temperature synthesis of TiB2 and Al3Ti, some effective efforts should be applied to each 

reaction. The research about the chemical effects of ultrasound in a liquid has been 

lasting almost 90 years since the pioneering work of Richards and Loomis (1927). In 

their research, they recognized that intense sound waves travelling through a liquid could 

produce certain chemical effects, leading to accelerated chemical reactions. Since then, 

ultrasound assisted in situ technique has been widely used in organic synthesis, materials 

and organometallic chemistry, and other chemistry related fields (Mason & Lorimer, 

2002; Suslick, 1988; Xu, Zeiger, & Suslick, 2013), for the intensification of 

chemical/physical processing applications can be promoted significantly in ultrasonic 

fields. Suslick (1990) has reported that ultrasonic irradiation could increase reactivities by 

nearly a millionfold in chemical reactions.  

The effects of ultrasound arise from acoustic cavitation: the formation, growth, 

and implosive collapse of bubbles coupled to the ultrasonic fields (Zeiger & Suslick, 

2011). The above process can occur simultaneously at millions of locations in a reactor 

within a few microseconds (Li, Li, Xiao, & Wang, 2014), which can achieve 

temperatures above 5000 K, pressures exceeding 10
5
 kPa, and heating and cooling rates 

in excess of 10
10

 K/s (McNamara, Didenko, & Suslick, 1999; Merouani, Hamdaoui, 

Rezgui, & Guemini, 2014; Prasad, Sonawane, Zhou, & Ashokkumar, 2013; Suslick & 

Price, 1999). These extreme, transient conditions produced during acoustic cavitation can 

promote the reactions which need high temperature, high pressures, or long reaction 

times. Moreover, acoustic cavitation can generate some unique effects, such as shock 

waves, micro-jets and acoustic streaming, which can increase mass transfer to accelerate 

chemical reactions (Ma, Zhao, Yan, & Li, 2011).  
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 Until now, the related report about using ultrasound in both reactions is rather 

limited. The mixed-salts reaction and direct-metal reaction are chemical reactions. More 

importantly, liquid Al exists in both reactions, which provides the environment for 

generating acoustic cavitation. Thereby, introducing high-intensity ultrasound in the 

mixed-salts reaction and direct-metal reaction can provide an opportunity for 

synthesizing TiB2 and Al3Ti particulates at lower temperatures.  

 

1.2 Significance of This Research 

As mentioned in the first section, the knowledge of mixed-salts reaction of K2TiF6-

KBF4-Al system and direct-melt reaction between solid Ti powders and liquid Al at low 

temperatures (as low as 700 °C) is rather limited. This research analyzes the formation 

mechanism of TiB2 and Al3Ti particulates in each reaction from a kinetic perspective by 

considering the reaction temperature, reaction time and external field (ultrasound), which 

can display more clearly the relationships between products and experimental parameters. 

A better understanding of the two reactions can be achieved.  

Decreasing the temperature of molten Al is always desired in the fabrication of in 

situ particulate reinforced Al (alloys) composites. This research explores the possibilities 

of synthesizing TiB2 and Al3Ti in molten Al at 700 °C by using high-intensity ultrasound, 

in which the effects of ultrasound on the two reactions are investigated. A relationship 

between the formation of TiB2 (Al3Ti) and ultrasound also can be created. Accordingly, a 

novel technique referred as ultrasound assisted low-temperature synthesis of TiB2 and 

Al3Ti particulates is proposed in this research. 
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Through this research, some meaningful guidelines might be provided in the 

practical productions of in situ particulate reinforced Al (alloys) composites. 

 

1.3 Purpose of the Research 

To sum up, this research aims to understand the mixed-salts reaction of K2TiF6-

KBF4-Al system and the direct-metal reaction between solid Ti powders and liquid Al 

more deeply. The effects of experimental parameters, such as reaction temperature, 

reaction time and external filed (ultrasound) on the formation of TiB2 and Al3Ti 

particulates are investigated. The final purpose of this research is to synthesize TiB2 and 

Al3Ti particulates in molten Al at low temperatures by using ultrasound.  

Especially, each reaction also has its own practical research purpose.  

(1) Mixed-salts reaction: studying the relationships between the yields of TiB2 

particulates and their size distributions and reaction temperatures (900, 800, and 700 °C) 

with different reaction times (10 and 30 min); on the other hand, investigating the effects 

of ultrasound (700 °C, 10 min) on the yield and size distribution of TiB2 particulates. 

(2) Direct-metal reaction: exploring the evolutions of solid Ti powders in molten Al 

at two different temperatures (730 and 700 °C) with and without ultrasound.  

 

1.4 Research Questions 

Based on the above sections, the following research questions naturally arise:  

1. How Al melt temperature and reaction time influence the synthesis of TiB2 

particulates in the mixed-salts reaction of K2TiF6-KBF4-Al system? This research 
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question mainly studies the yields of TiB2 particulates and their size distributions under 

different experimental parameters. 

2. What is the formation mechanism of TiB2 particulates in the mixed-salts reaction? 

3. What are the effects of ultrasound on the formation of TiB2 at a lower 

temperature (700 °C)? 

4. What is the formation mechanism of Al3Ti particulates in the direct-metal 

reaction between solid Ti powders and liquid Al? 

5. How ultrasound influences the evolution of solid Ti powders in liquid Al at low 

temperatures? 

 

1.5 Assumptions 

This study is on the basis of experiments in the lab. The detailed assumptions of this 

research are given below. 

1. The influences of exterior factors, such as the temperature and humidity of the 

environment, on the experiments are excluded. 

2. There is no any difference in the raw materials which are used in this research. 

3. All equipments used in this research have the same working conditions in each 

group of experiment.  

4. Ultrasonic equipment used in this research has a steady output power. 

  

1.6 Limitations 

Due to the limitations of experimental equipments used in this research, the biggest 

challenge for this research is that the initial temperatures of molten Al are hard to set at 
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the exact temperatures designed in the experiments. Three different temperatures, 900, 

800 and 700 °C are involved in the mixed-salts reaction; two temperatures, 730 and 

700 °C are used in the direct-melt reaction. In each experiment, the temperature of molten 

Al is limited in the range of plus and minus 3 °C. Since the lowest temperature is set as 

700 °C, this small temperature difference has little effect on both reactions.  

In addition, the time for taking sample out from the graphite crucible is hard to 

control exactly in the direct-melt reaction. An error of a few of seconds exists when 

taking samples. This relative short period of time does not influence the analysis of the 

experimental results.  

 

1.7 Delimitations 

All the assumptions and limitations mentioned above can be combined in 

delimitations. Some of the main delimitations are as follows: 

1. For the mixed-salts reaction, only three temperatures (700, 800 and 900 °C) of 

molten Al are considered. These three different temperatures are defined as low, 

moderate and high melting temperatures, respectively. 

2. For the direct-melt reaction, only two temperatures (730 and 700 °C) of molten Al 

are considered.  

3. The ultrasound parameters are the same in this research: the power of ultrasonic 

generator is 1.5 kW, and the frequency is 20 kHz. 

4. Just pure Al is used in the two reactions. No any alloying element participates in 

the reactions. 
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5. This research mainly discusses the effects of Al melt temperature and ultrasound 

on the two reactions. Only products, viz. in situ formed particulates in the Al matrix are 

concerned. Others, such as the evolution of Al matrix exposed to ultrasound, are not 

involved in this research. 
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CHAPTER 2.  LITERATURE REVIEW 

2.1 Outline 

According to the research focuses of this dissertation, three main topics are covered 

in this chapter. Firstly, the basics about in situ TiB2/Al (alloys) composites, such as the 

characteristics of the TiB2 phase as reinforcement in the Al matrix and the methods for 

synthesizing TiB2 particulates in molten Al, are introduced. In this part, the mixed-salts 

reaction of K2TiF6-KBF4-Al system for producing TiB2 is discussed. Secondly, an 

introduction about the direct-melt reaction for synthesizing Al3Ti is presented. In this part, 

the methods for obtaining Al3Ti in molten Al, as well as the merits of the Al3Ti phase as 

reinforcement in the Al matrix are both described. Finally, the backgrounds of high-

intensity ultrasound, such as acoustic cavitation generated in ultrasonic field, as well as 

some chemical effects on the liquid-solid system associated with acoustic cavitation, are 

also introduced. 

 

2.2 Review of TiB2 Particulates Synthesized in Molten Al 

2.2.1 Characteristics of TiB2 

TiB2 possesses the hexagonal AlB2 structure (Spoor, Maynard, Pan, Green, 

Hellmann, & Tanaka, 1997). The Ti and B atoms in TiB2 form a hexagonal close packed 

(HCP) structure.  
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The hexagonal unit cell of single crystal TiB2, having space group P6/mmm (a=b=3.029 

A, c=3.229 A; α=β=90°, γ=120°), is shown in Figure 2.1. Ti atoms are located at (0, 0, 0) 

and B atoms at (1/3, 2/3, 1/2) and (2/3, 1/3, 1/2) lattice sites (Basu, Raju, & Suri, 2006). 

TiB2 is a refractory compound with many attractive properties, including exceptional 

hardness (approximately 25-35 GPa at room temperature, more than three times harder 

than fully hardened structural steel), high elastic modulus (560 GPa), high melting point 

(>3000 °C), good creep resistance, good thermal conductivity (~65 W m
-1

K
-1

), and 

considerable chemical stability. The above properties are all attributed to the inherent 

crystal structure of TiB2.  

 
 

Figure 2.1 A hexagonal unit cell of single crystal of TiB2. 
 

Due to its unique characteristics, TiB2 has been attracting more attentions as 

reinforcement in the fabrication of particulate reinforced Al (alloys) composites. Its 

chemical inertness in the Al matrix at elevated temperatures can guarantee a good high-

temperature service performance, which is one of the most important advantages for TiB2 

compared with other reinforcements (Anandkumar, Almeida, & Vilar, 2011).  
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2.2.2 Synthesis of TiB2 in Molten Al 

In order to synthesize TiB2 particulates in molten Al, a chemical reaction is 

needed to develop the reinforcement. To put it simply, the reactants added into molten Al 

should contain Ti and B elements, which can form the TiB2 phase in the chemical 

reaction. 

Tee et al. (2001; 1999) added a mixture of elemental Ti and B powders in molten 

Al at a high temperature (1060-1080 °C) to produce in situ TiB2/Al composites through 

the traditional stir-casting technique. In their research, the in situ formed TiB2 had a size 

ranging from 1 to 3 µm. However, a few large-sized Al3Ti flakes with a length of 30-350 

μm were also formed in the reaction, which led to a low ductility of the composites. The 

addition of a mixture of Ti and B simultaneously into molten Al leads to the following 

reaction: 

TiAlTiBAlBTi 32222        Eq. 2.1 

Chen et al. (2000) added the blended powders of TiO2, H3BO3, and Na3AlF6 into 

molten Al-4.5Cu alloy at 950 °C to synthesize TiB2 particulates. In their research, the in 

situ formed TiB2 particulates were spherical in shape and had an average diameter of 

about 0.93 μm. The chemical reactions that occurred during fabrication were given below: 

32233 32 OBOHBOH         Eq. 2.2 

23323

32263322

2

72832

AlBTiAlAlFTiFAlF

NaFOAlONaAlAlFNaOBTiO




  Eq. 2.3 

The products Al3Ti and AlB2 were dissolved in the Al melt simultaneously, 

forming solutes [Ti] and [B]. Then, [Ti] was combined with [B] to form TiB2 particulates: 

2][2][ TiBBTi          Eq. 2.4 
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Davies et al. (1992) proposed a promising method termed as flux assisted 

synthesis (FAS) for synthesizing TiB2 in their patent. Since then, this process has become 

one of the most important methods for producing in situ TiB2/Al (alloys) composites 

(especially for mass production) due to its advantages, such as low cost and simplicity. 

In this method, a mixture salts of potassium hexafluorotitanate (K2TiF6) and 

potassium tetrafluororate (KBF4) with a molar ratio of Ti/B=1/2 is added into a stirred Al 

melt at high temperatures, and then TiB2 particulates can be formed in molten Al. The 

melting points of K2TiF6 and KBF4 are given as 780 °C and 530 °C (Dragut, Moldovan, 

& Butu, 2012), and the lowest reaction temperature used in the conventional methods is 

at least 800 °C. The related schematic diagram of the typical mixed-salts reaction process 

is shown in Figure 2.2. Since a mixed K2TiF6-KBF4 system is used in the fabricating 

process, FAS is also named as a mixed-salts reaction. Detailed information about this 

method will be provided in the following sections. 

 

 
 

Figure 2.2 Schematic of the fabrication of in situ TiB2/Al (alloys) composites by 

using the mixed-salts reaction. 
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2.2.3 Introduction to Mixed-salts Reaction 

2.2.3.1 Formation of TiB2 in Mixed-salts Reaction 

According to Fjellstedt et al.(2005), the mixed-salts reaction of K2TiF6-KBF4-Al 

system is complex, in which the processes, such as diffusion processes through the 

boundary layer between salts and molten Al, reactions in the melt, reactions inside the 

salt and formation of gases, have not been fully understood.  

Feng et al.(2000) melted K2TiF6 and KBF4 mixed salts at 810 °C and held for 35 

min, but no TiB2 phase was obtained in their experiment. They also used Ag to replace Al 

in the mixed-salts reaction, and no TiB2 was obtained either. The above two experiments 

indicated that TiB2 could not be formed without the existence of Al phase, suggesting 

that Al as the medium participated in the formation of TiB2 phase in the mixed-salts 

reaction. Based on which, Feng et al.(2000) suggested that the formation of TiB2 

followed the reactions below: 

634362 33133 AlFKKAlFTiAlAlTiFK      Eq. 2.5 

424 232 KAlFAlBAlKBF        Eq. 2.6 

AlTiBAlBTiAl 4223         Eq. 2.7 

In the above chemical reactions, once Al3Ti and AlB2 are formed through the 

reduction reactions according to Eqs. 2.5 and 2.6, both of which immediately react to 

form TiB2 phase in molten Al. Mahallawy et al. (1999) also proposed similar chemical 

reactions in their research to describe the reaction process for synthesizing TiB2. 

An overall reaction (Eq. 2.8) for synthesizing TiB2 can be given as follows:  

6342462 931063 AlFKKAlFTiBAlKBFTiFK     Eq. 2.8 
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In addition, Lakshmi et al.(1998b), Fang et al. (2005) and Moldovan et al. (2010) 

all proposed a possible mechanism named as a dissolution-precipitation mechanism to 

describe the formation process of TiB2 particulates in the mixed-salts reaction. The 

detailed mechanism can be summarized as follows. 

First, K2TiF6 and KBF4 are melted on the Al surface, both of which are separately 

decomposed to KF (liquid), TiF4 (gas), and BF3 (gas), which are expressed as Eqs. 2.9 

and 2.10:  

)()(2)( 462 gTiFlKFlTiFK        Eq. 2.9 

)()()( 34 gBFlKFlKBF         Eq. 2.10 

Then, Ti and B atoms are released and diffuse into liquid Al through the 

aluminothermic reduction of TiF4 and BF3 gases at the salts-melt interface, which are 

expressed as Eqs. 2.11 and 2.12: 

)(][][)( 34 lAlFTiAlgTiF Al        Eq. 2.11 

)(][][)( 33 lAlFBAlgBF Al        Eq. 2.12 

When the solutes [Ti] and [B] in liquid Al reach saturation, they might be 

separated out as compounds Al3Ti, AlB2 and TiB2, according to the following reactions: 

TiAlAlTi Al 3][3][         Eq. 2.13 

2][][2 AlBAlB Al          Eq. 2.14 

2][2][ TiBBTi AlAl         Eq. 2.15 

Among these three compounds, TiB2 is the most thermodynamically stable phase 

due to its lowest free energy of formation. The overall reaction showing the formation of 

TiB2 can be written as: 
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32462 101231063 AlFKFTiBAlKBFTiFK     Eq. 2.16 

After the mixed-salts reaction finishes, TiB2 phase is the only product which can 

be kept in molten Al; whereas the molten byproduct salt consisted in a mixture of K3AlF6 

and KAlF4 or KF and AlF3 can float on the melt surface due to its low density. 

Based on the above two formation mechanisms, it is clear that three elements Al, 

Ti, B are all involoved in the formation of TiB2 phase. A thermodynamic study about the 

mixed-salts reaction can help to understand the formation of TiB2 more deeply. The 

related content will be introduced in the following section. 

 

2.2.3.2 Thermodynamic Calculations on Mixed-salts Reaction 

After adding K2TiF6-KBF4 mixed salts into the Al melt, Ti and B elements can 

enter the Al melt; whereas K and F elements isolate with the Al matrix, both of which 

exist in the byproducts. Thereby, a ternary system of Al-Ti-B can be formed in the Al 

melt. For this system, thermodynamic calculation has consistently shown that the 

compound phases of AlB2, Al3Ti, and TiB2 might be present in the Al melt (Hayes & 

Lukas, 1991; Yue, Lu, & Lai, 1999). 

In general, excess fress energy, G has been used to determine the possibility of a 

reaction. If G  is negative, it means the reacton can take place, otherwise the reaction 

can not occur. At a certain temperature of T , G  of a reaction system can be calculated 

by the following equation:  

STHG          Eq. 2.17 
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where H and S are respectively the changes in enthalpy and entropy of two states 

before and after reaction. It can be seen from Eq. 2.17 that G  is only a function of 

temperature. However, G is also dependent on the concentration of the reactants for a 

solution system; therefore, the influence of composition on the reaction must be taken 

into account. Consider the following reaction which occurs in a liquid solution: 

44332211 AnAnAnAn         Eq. 2.18  

where in  is the stoichiometric coefficient of composition iA . For the reactant, in is 

negative; while for the product, positive. In this reaction, G can be expressed as: 

 
i

ii

i

iiPT

i

iiPTPT RTnRTnGRTnGG  lnlnln 0

,

0

,,  Eq. 2.19 

where 
0

,PTG is the standard Gibbs free energy of formation, which is just influenced by 

temperature, i the activity of component i , i the molar concentration of component i  in 

the solution, and i the activity coefficient of component i . It is clear that iii   . 

Hence, the excess free energy of reaction through can be expressed as follows: 

TiAlTiAlTiAl RTRTGG  lnln30

33
      Eq. 2.20 

BAlAlBAlB RTRTGG  ln2ln0

22
      Eq. 2.21 

TiBTiBTiB RTRTGG  lnln20

22
      Eq. 2.22 

Two steps need to be conducted before evaluating Gs of Al3Ti, AlB2 and TiB2. 

First of all, the standard Gibbs free energy of formation (
0G ) of three compounds 

should be calculated.  
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Liang et al. (2008) studied the 
0G values of the formation to AlB2, Al3Ti and 

TiB2, and proposed the related equations, as shown in Table 2.1. 

 

Table 2.1 
0G Values of the Formation to AlB2, Al3Ti and TiB2. 

 

Reactions Expressions of 
0G /(J/mol) 

2][][2 AlBAlB   )(5.182237812 KT  

TiAlAlTi 3][3][ 
 

)(3.175335920 KT  

2][2][ TiBBTi 
 

)(3.924615411 KT  

 

According to the above equations for calculating 
0G values, the calculated 

results are plotted in Figure. 2.3.  

 

 
 

Figure 2.3 G values for the formation of AlB2, Al3Ti and TiB2 with temperature. 
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It can be observed that 
2TiBG is far more negative than 

2AlBG and TiAlG
3

 at the 

temperature range of 700-1300 K, indicating that TiB2 is the most thermodynamically 

stable phase among the three compounds, and which can be much easier to form than 

AlB2 and Al3Ti phases. In addition, as the temperature increases, the changes of in Gibbs 

free energies of AlB2 and Al3Ti phases become larger, suggesting these two phases 

become unstable at higher temperatures. This trend is more obvious for AlB2 phase.  

As mentioned above, in the reaction including liquid-state reactants and solid 

products, G is not only a function of temperature, but also depends on the concentration 

of reactants. In order to calculate
0

,PTG of reaction in Eq. 2.19, the value of i , or iln  

should be known firstly. Yue et al. (1999) and Fan et al.(2005) used different methods to 

calculate i , respectively.  

Based on Lupis method (1983), Yue et al. (1999) introduced the concepts of first 

order interaction coefficient   and second order interaction coefficient   to interpret 

how concentration affects the excess free energy as well as activity by using the central 

atom model (Lupis & Elliott, 1967) of a metallic solution which is limited to qualitative 

interpretation of the results. Further, the Taylor Series equation (Lupis & Elliott, 1966) 

was referred to calculate i : 

)(lnln 3

22

2

2

0  O
N

j

N

jk

kj

jk

i

N

j

j

j

i

N

j

j

iii  
 

   Eq. 2.23 

where 0

i is the activity coefficient of component i  under standard state, j

i  is the first 

order interaction coefficient among the components, and j

i , kj

i

, are the second order 

interaction coefficients among components units and can be expressed below: 
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        Eq. 2.26 

For an Al-Ti-B system having low contents of Ti and B elements, the system can 

be approximated to be a dilute solution composed of Al as the solvent, and Ti and B as 

the solutes. According to Eq. 2.23, the contributions of Ti and B to the i  can be 

expressed by: 

B

B

TiTi

Ti

TiTiTi   0lnln       Eq. 2.27 

B

B

BTi

Ti

BBB   0lnln        Eq. 2.28 

In the above equations, the second interaction coefficient   can be neglected 

since 2

i  is rather close to zero. The values of iln  can be approximately evaluated. 

However, the further work was not carried out in their research.  

Fan et al (2005) referred to the Wilson equation (Wilson, 1964) to evaluate the 

value of i , the activity coefficient of component i  is determined as: 


























j

K

jkk

jij

j

ijji
Ax

Ax
Ax

/

/

/
1

)1(
1)1ln(ln  ,     Eq. 2.29 

where jx  is the molar fraction of component j , and jiA / , ijA /  are adjustable parameters 

( ijji AA //  ) 
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Especially, for a ternary system kji  ,  

Eq. 2.29 can be expressed in detail as: 

kjjkii

kik

jkkjii

jij

ikkijj

i

ikkijji

AxAx

Ax

AxAx

Ax

AxAx

x
AxAx

//

/

//
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1

)1(

1
)1ln(1ln














   Eq. 2.30 

Furthermore, an extended Miedema model was used in the calculation of iln . 

Some necessary physical parameters in the Al-Ti-B ternary system were listed in their 

research. Based on the solubility limits of Ti and B in liquid Al, they calculated the 

excess free energy of Al-Ti-B system at 1000 K, in which the solubility of Ti in liquid Al 

was assumed less than 0.5 at. % and the concentration ratio between Ti and B atoms in 

the melt was 1:2. The excess free energies of AlB2, Al3Ti and TiB2 were calculated as a 

function of the concentration of Ti dissolved in liquid Al at 1000 K. The related result 

was plotted in their research, as shown in Figure 2.4.  

According to Fan et al. (2005), it is clear that the excess free energy for formation 

of AlB2, Al3Ti and TiB2 generally follows the order of
232 AlBTiAlTiB GGG  , 

indicating that TiB2 phase is much easier to form than Al3Ti and AlB2 in liquid Al. 

However, at the beginning of the mixed-salts reaction, Al3Ti and AlB2 are easier to form 

than TiB2 due to the extremely low concentrations of Ti and B in the Al melt.  

In addition, Jones and Pearson (1976) have offered an unconventional but 

practical phase diagram in the rich-Al corner at 1000 K, as shown in Figure 2.5. It is clear 

that there is no region including AlB2 and Al3Ti in the phase diagram, meaning that these 

two phases cannot stably coexist in the Al melt, which can react to form TiB2 phase.  
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Figure 2.4 Excess free energy varied with the concentration of Ti dissolved in 

liquid Al at 1000 K. 

 

 
 

Figure 2.5 Phase diagram for Al-Ti-B system (Al corner), x represents the molar 

fraction, which is reproduced according to Jones and Pearson (1976). 

 

It should be mentioned that the above thermodynamic study about the mixed-salts 

reaction is based on an equlibrium condition. The mixed-salts reaction, however, is a 
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typical non-equilibrium reaction. The formation of products is influenced not only by the 

thermodynamic factors, but also by the kinetic factors. The analysis of the formation of 

TiB2 from a kinetic perspective is rather limited in the literatures. In order to clear display 

the formation process, more work should be done from the kinetic perspective.  

Since this research aims to synthesize TiB2 particulates in molten Al at low 

temperatures, the following section will discuss the influence of reaction temperature on 

the mixed-salts reaction. 

 

2.2.3.3 Influence of Temperature on the Formation of TiB2 

The mixed-salts reaction of K2TiF6-KBF4-Al system for synthesizing TiB2 phase 

is a high-temperature reaction. As reported in the literatures, the temperatures of the Al 

melt used in the reaction are always higher than 800 °C. Generally, a lower temperature 

can lead to the formation of Al3Ti phase, which decreases the yield of TiB2 phase in the 

Al matrix (Christy, Murugan, & Kumar, 2010; Mandal, Maiti, Chakraborty, & Murty, 

2004). 

Kumar et al. (2008) synthesized TiB2 particles by adding the mixed salts of 

K2TiF6 and KBF4 into molten A356 alloy at 800 °C, and the size of in situ formed TiB2 

particulates was in the range of 0.5-1.5 μm. Han et al. (2002) also obtained in situ TiB2 

particles in Al-Si alloy at 800 °C, and the size of particulates was smaller than 1 μm. Xue 

et al. (2012) fabricated in situ TiB2/2014 Al alloy composites at 870 °C by using mixed 

salts as the main reactants, and the size of TiB2 particulates was below 2 μm.  
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Based on the above researchers’ work, it is clear that a higher temperature can 

result in the formation of some TiB2 particles with the size exceeding 1 μm. The 

existence of large-sized particles in the matrix, however, can result in the reduction of 

tensile properties of materials, especially for the ductility and yield strength (Doel & 

Bowen, 1996). Thereby, decreasing the formation of large-sized TiB2 particulates is 

desired in most cases.  

Till now, the study of synthesis of TiB2 particulates via the mixed-salts reaction 

by using K2TiF6 and KBF4 as the reagents at low temperatures (as low as 700 °C) has 

never been reported. It is believed that exploring a method of synthesizing TiB2 

particulates at much lower temperatures is attractive and more work should be done in 

this field. 

 

2.3 Review of Al3Ti Particulates Synthesized in Molten Al 

2.3.1 Characteristics of Al3Ti 

Al3Ti crystal has a tetragonal structure with a=b=0.385 nm and c=0.861 nm (Li, 

Wang, Zhao, Chen, Chen, & Cheng, 2010). Each unit cell contains two Ti atoms and six 

Al atoms. The related crystal structure of Al3Ti is shown in Figure 2.6 (Wang, Jha, & 

Brydson, 2004). Due to its structure, Al3Ti has its own particular characteristics, such as 

low density (3.4 g cm
-3

), high Young’s modulus (220 GPa), good wetability with Al and 

excellent mechanical properties at both ambient and elevated temperatures (Wright, 

Rabin, & McFerran, 1992; Wu, Zheng, & Li, 2000; Zhang, Xiao, Wang, & Ma, 2012). 

Particularly, Al3Ti also has an excellent resistance to oxidation and corrosion in the 

fluoride atmosphere above the melting point of Al (Arnberg, Bäckerud, & Klang, 1982b). 
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Based on the above reasons, Al3Ti, one promising particulate-reinforcement in the Al 

matrix, has been obtaining more and more attractions.  

Furthermore, Zhang et al. (2005) have reported that Al3Ti is a more powerful 

nucleating substrate for Al alloys than other reinforcements, meaning that Al3Ti can 

decrease the Al grain size effectively. For reinforcing a material in terms of the 

heterogeneous nucleation, the interfacial energy between the nucleation substrate and the 

solid matrix is critical to the potency of the substrate. In the heterogeneous nucleation, the 

energy on the newly formed interface should be lower than that of the same area of the 

interface which formed directly in the liquid metal. To obtain the low interfacial energy, 

the substrate and the solid have to be coherent or partially coherent. The lattice matching 

between two solids can be evaluated by the following equation (Li & Wu, 2005): 

matrix

substratematrix

a

aa 
         Eq. 2.31 

where δ is the value of lattice misfit between the matrix and the substrate, matrixa  and 

substratea  are the lattice constants of the matrix and the substrate, respectively. Generally, 

when δ≤0.05, the interface between the substrate and the matrix is coherent; when 0.05< 

δ<0.25, the interface between the substrate and the matrix is partially coherent. 
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Figure 2.6 The crystal structure of Al3Ti reproduced from Wang et al. (2004).  

 

α-Al crystal has a fcc structure with a=b=c=0.404 nm (Sigworth, 1984). Thereby, 

the values of the lattice misfit between the Al and Al3Ti in both a and c directions are 

0.049 and 0.065, respectively. Obviously, in situ formed Al3Ti phase has a good lattice 

matching with Al, and Al3Ti particulates can work as the effective heterogeneous 

nucleation sites for primary Al in the solidification. Zhang et al. (2005) used the edge-to-

edge matching model based on the excellent atomic matching between Al3Ti and Al 

matrix to identify that Al3Ti is the best grain refiner for Al alloys compared with TiC, 

TiB2, and AlB2. 

 In addition, according to Al-Ti phase diagram (as shown in Figure 2.7) (Sigworth, 

1984), when the temperature cools down to 665 °C, the following peritectic reaction will 

take place: 

AlTiAlL C   665

3        Eq. 2.32 
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Figure 2.7 Aluminum-rich corner of the Al-Ti phase diagram reproduced 

according to Sigworth (1984). 

 

In general, the solid phase in the peritectic reaction always has a strong nucleating 

effect, because the newly formed phase precipitates and grows more easily on the solid 

phase.  

Based on the above introduction, Al3Ti phase can work as the reinforcement, but 

also can serve as an effective nucleating agent in the Al alloys, which is one of the most 

important advantages for using Al3Ti as the reinforcement in the Al composites. It has 

been reported that in situ formed Al3Ti particulates could optimize the microstructures of 

Al alloys. α-Al crystals changed from dendritic to equiaxed morphology, and the grain 

size decreased as well, leading to improved mechanical properties (Liu, Rakita, Wang, 

Xu, & Han, 2014; Liu, Wang, Han, & Li, 2014).  
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2.3.2 Synthesis of Al3Ti in Molten Al 

In general, Al3Ti particulates can be synthesized by adding the Ti bearing salt, 

such as K2TiF6 or the solid Ti powders (sometimes mixed with Al powders) into molten 

Al at high temperatures.  

Chen et al. (2009) fabricated in situ Al3Ti/Al composites by adding K2TiF6 into 

molten Al at 1100 °C. The related chemical formula regarding the formation of Al3Ti 

phase in the reaction is given in Eq. 2.5. The Al3Ti phase produced in their research was 

needle-like in morphology with the length exceeding 200 μm and width of 10 μm. Kori et 

al. (2014) synthesized Al3Ti at a lower temperature (800 °C) using K2TiF6 as the additive. 

In their research, the in situ formed Al3Ti particulates were block-like in shape with the 

size from 20 to 40 μm.  

Yu et al.(2006b) directly added Ti and Al mixed powders into the Al melt with 

the temperature in the range of 900-1000 °C. The Al3Ti particles were in situ formed 

according to the following chemical reaction: 

TiAlTiAl C

l 3

1000900

)(3   
       Eq. 2.33 

An interesting phenomenon was found in their research that the morphology and 

size of the in situ formed Al3Ti particles were changed apparently with the increase of 

Al3Ti content. Fine particle and a few of needle-like Al3Ti (5-20 µm) were formed when 

the Al3Ti content was lower; larger block Al3Ti (30-150 µm) was formed at a higher 

Al3Ti content. 

Liu et al. (2013) added solid Ti powders into molten Al at 780 °C, and in situ 

formed Al3Ti particulates were blocky in morphology with an average size of 5 μm.
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It is evident that the temperature of molten Al can influence the morphology and 

size of Al3Ti particulates significantly in the direct-melt reaction. The related content will 

be discussed in the following section. 

 

2.3.3 Influence of Temperature on the Formation of Al3Ti 

Higher reaction temperatures can easily lead to the formation of needle-like Al3Ti 

particulates, whereas blocky Al3Ti particulates can be formed at lower reaction 

temperatures. The reason can be explained according to the Al-Ti phase diagram (Kwak, 

Mohney, Lin, & Kern, 2000), as shown in Figure 2.8. The solubility of Ti in molten Al 

increases as the temperature increases. For example, the solubility of Ti in molten Al at 

1100 °C is much higher than that at 800 °C. At a higher temperature, more Ti element 

exists in molten Al as solute. Since the direct-melt reaction is an exothermic reaction, the 

actual temperature is higher than the original reaction temperature. Thereby, Al3Ti phase 

produced in the reaction can easily dissolve into molten Al. When the temperature 

decreases, the solubility of Ti decreases, and Al3Ti phase starts to nucleate and growth. 

As reported by John et al.(1979b), the Al3Ti prefers the growth along <110> direction 

during the growth process. As a result, Al3Ti particulates in needle-like shape were 

obtained. Direct-melt reaction between solid Ti powders and liquid Al at low 

temperatures (lower than 800 °C) can produce much smaller-sized blocky Al3Ti 

particulates, indicating that the formation of Al3Ti at the lower temperatures might be 

different from the higher temperatures. The detailed work will be discussed in the later 

part of the dissertation.  
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Figure 2.8 Al-Ti phase diagram reproduced according to Mohney et al. (2000). 

 

 

2.4  Review about High-intensity Ultrasound 

In this section the basics of high-intensity ultrasound, including its definition, 

main effects in a liquid phase, as well as its chemical effects, are introduced in detail.  

 

2.4.1 Background of High-Intensity Ultrasound 

Ultrasound is an oscillating sound, which spans the frequencies of roughly 15 

kHz-10 MHz, with associated acoustic wavelengths in liquids roughly 100-0.1 mm 

(Suslick, Eddingsaas, Flannigan, Hopkins, & Xu, 2011). Generally, high-intensity 

ultrasound requires its intensity ≥ 10 Wcm
-2 

(Eskin, 1997). Abramov (1986) reported that 

propagation of high-intensity ultrasound in a liquid medium mainly causes acoustic 

cavitation and acoustic streaming. These non-liner effects lead to liquid agitation and 

homogenization, raise the rate of convective diffusion processes, and have an influence 

on the temperature distribution in the liquid medium. In addition, Suslick (1989) 
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mentioned that intense ultrasonic waves travelling through liquids generate small cavities 

that enlarge and implode, creating tremendous heat. These extreme conditions provide an 

unusual chemical environment.  

 

2.4.2 High-Intensity Ultrasound in Liquids 

2.4.2.1 Acoustic Cavitation  

As described by Neppiras (1984), cavitation might occur “whenever a new 

surface, or cavity, is created within a liquid, a cavity being defined as any bounded 

volume, whether empty or containing gas or vapor, with at least part of the boundary 

being liquid”. This general definition would cover such phenomena as boiling and 

effervescence, which involve only underwater expansion (or explosion) of the gas phase 

(Leighton, 1994). In the presence of a sound field not only expansion, but also 

contraction, of existing cavities will generally occur. According to Neppiras (1980), the 

term “acoustic cavitation” is therefore usually restricted to cases involving both 

expansion and contraction of cavities or bubble nuclei. 

Suslick (1990) indicated that acoustic cavitation can be considered to involve at 

least three discrete stages: nucleation, bubble growth, and implosive collapse of bubble 

under proper conditions. More detailed description is that acoustic cavitation, indeed, is 

the production of cavities inside a liquid irradiated by ultrasound, due to the presence of 

microbubbles in the liquid (can be regarded as cavitation nuclei), filled with the liquid 

vapor and/or air, which can concentrate the acoustic energy in a small volume 
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(corresponding to the bubble growth) and give rise to macroscopic and visible effects 

(corresponding to the bubble collapse).   

Formation of cavities in liquids is a nucleated process. A cavity can nucleate in 

the pure liquid, or more favorably, grow at weak points in the liquid, such as gas-filled 

crevices in suspended particulate matter or from transient microbubbles. Similar with 

solidification process, the former case can be termed as homogeneous nucleation and the 

latter one as heterogeneous nucleation.  

The tensile strength of a liquid refers to the tension which a liquid can support 

without breaking (cavitating). As regards to acoustic phenomena, to a first approximation 

a liquid is put into tension when the acoustic pressure amplitude exceeds the static 

ambient pressure, such that the pressure in the liquid becomes negative, as shown in 

Figure 2.9. Due to the generation of negative pressure in liquid, the liquid can be tore 

apart, and then the cavity can be formed filling with liquid vapor and/or gases that are 

dissolved within the liquid. Accordingly, the initial homogeneous cavitation nuclei are 

formed. Actually, the theoretical tensile strength of a pure, homogeneous liquid is great, 

and the pressures of the order of several hundreds of bars are needed in order to disrupt a 

liquid (Alippi, Galbato, & Cataldo, 1992),which precludes cavity formation easily from 

the negative pressure of an acoustic expansion wave. 
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Figure 2.9 When an acoustic wave passes through a liquid, the pressure in a liquid is the 

sum of static and oscillating terms. If the acoustic pressure amplitude is greater than the 

static pressure, the pressure in the liquid will be negative for part of each acoustic cycle, 

and at this moment the liquid is in tension. 

 

In most practical situations the liquid involved is a complex system, containing 

many impurities (such as small gas bubbles and solid contaminations on which gas 

bubbles can adhere, etc.). These impurities can act as weakness which can decrease the 

tensile strength of liquid significantly. Numerous researchers have verified this 

phenomenon by experiments and obtained an important conclusion: that is not the 

properties of the liquid determine the maximum tension a liquid can sustain, but often the 

other bodies present within the liquid sample (Leighton, 1994) These preexisting gas 

microbubbles can work as the cavitation nuclei, which are termed as heterogeneous 

cavitation nuclei. Indeed, similar to solidification, heterogeneous nuclei are dominated in 

the acoustic cavitation inception.  

Pressure fluctuations in the liquid, induced by flow, or by the passage of an 

acoustic wave (such as ultrasound) through the liquid etc., might cause the generation of 

free-floating bubbles from the cavitation nuclei, which can be either microbubbles 

adhered to the impurities, or gas-pockets trapped within crevices in motes or the 

container walls (Leighton, 1994).   
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In order to recognize the bubble growth in a liquid irradiated with ultrasound well, 

the response of a bubble to a static pressure should be clarified. Blake (1949) made a 

pioneering work on this issue. In his work, a spherical microbubble of radius R  in static 

equilibrium in a liquid is considered, as shown in Figure 2.10. The microbubble contains 

gas and vapor, and the pressures of which are gp and Vp , respectively. If the liquid is 

initially in a static equilibrium, the pressure throughout the liquid, including the pressure 

at very large distance from the bubble ( p ) and that immediately outside the bubble 

( Lp ), equals the hydrostatic pressure 0p . If the tensile strength of liquid is , then the 

equilibrium of the interface requires the following condition to be satisfied:  

 

 
 

Figure 2.10 A spherical microbubble in static equilibrium in a liquid. 

 

gvL pp
R

p 
2

         Eq. 2.34 

When the Eq. 2.34 is initially applied at the equilibrium position, 0RR  , 0ppL  , and 

egg pp , . Since the vapor pressure is always Vp , Eq. 2.34 can be expressed as: 
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         Eq. 2.35 

0

0,

2

R
ppp veg


         Eq. 2.36 

Image that the pressure in the liquid changes from 0p  in a quasi-static manner, 

and such that the pressure outside the bubble is Lp . Since the change is quasi-static, the 

pressure throughout the liquid is spatially uniform and also equals to Lp . The bubble 

radius will change from 0R  to R  in response to the change in liquid pressure. As the gas 

pressure is inversely proportional to the volume in an isothermal transformation, the gp

can be given as: 

30
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pp
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      Eq. 2.37 

Substitute Eq. 2.37 into Eq. 2.34, giving the pressure in the liquid immediately beyond 

the bubble wall is: 

R
p

R

R

R
ppp vvL

 2
))(

2
( 30

0

0        Eq. 2.38 

As stated, the process of bubble from initial stage to new stage undergoes a quasi-

static change. Accordingly, the pressure in the liquid remote from the bubble equals the 

liquid pressure at the ball wall, i.e. Lpp  . 

Eq. 2.38 determines the position of the new equilibrium after the liquid pressure 

has changed uniformly and quasi-statically from 0p  to Lp . It can be imaged simply that, 

when the Lp  increases, the liquid pressure will be positive and greater than before 
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( 0ppL  ), and then the bubble in liquid will contracted. This position of equilibrium is 

stable, since the positive pressure will assisted the surface tension pressure in confining 

the gas. When Lp  decreases, but its value is still positive ( 00 ppL  ), the bubble in 

liquid will expend and still be stable.  

In contrast, when Lp  becomes negative ( 0Lp ), it can begin to counteract the 

confining effect of surface tension pressure of the bubble wall. After the bubble is larger 

than some critical radius, the pressure balance across the bubble wall cannot be 

maintained longer, and the bubble will grow explosively until to collapse. It is clear that 

after the bubble grows exceeding the critical radius, the system will become unstable. 

After the start of such instability, it is not reasonable to predict the bubble behavior by 

using the above equilibrium.  

One important thing should be mentioned is that the Blake model just accounts 

for surface tension effects in the quasi-static case, but the inertial and viscous effects of 

the liquid are not considered in this model. Thereby, it can never describe the explosive 

growth. However, in some special situations that are quasi-static and where surface 

tension dominates inertial and viscous effects, it might be valid to predict the explosive 

growth of the bubbles. 

In addition, one important parameter “the critical radius” ( critR ) which a nucleus 

must exceed if it is to become unstable with respect to further expansion, can be 

calculated in the Blake mode by differentiating Eq. 2.38 with respect to R : 

24
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      Eq. 2.39 
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when ∂pL/∂R=0, the critical radius is given by: 
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        Eq. 2.40 

Similarly, there is a minimum in Lp by substituting critR into Eq. 2.38, and then the 

critical liquid pressure is: 
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    Eq. 2.41 

If Lp  is less than )(critLp  (i.e. more negative than it), there will be rapid 

uncontrolled bubble growth. In most cases, a term known as the Blake threshold pressure 

( Bp ) is used to define the critical value of the liquid pressure. Bp  represents the 

difference between the critical value and the original hydrostatic pressure in liquid, as 

shown in Eq. 2.42: 
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    Eq. 2.42 

If the surface tension dominates (i.e. 00/2 pR  , making sure Blake threshold is valid), 

and vapor pressure is neglected, the Eq. 2.42 can be simplified as: 

0

0 77.0
R

ppB


         Eq. 2.43 

As mentioned above, Blake mode is not suitable to describe the bubble growth 

and collapse in the practical situations, and the related issues can be studied through the   

bubble dynamic. The first pioneering study about bubble dynamic was made by Rayleigh 
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(1917), who solved the problem of the collapse of an empty spherical cavity in an 

incompressible liquid. In his study, the cavity is assumed to have a radius mR when the 

bubble wall velocity is zero. Under the hydrostatic pressure p  the cavity is contracted to 

a radius R  with the bubble wall velocity 'R . During this process, the work done simply 

equals the kinetic energy of the liquid, which can be obtained by integrating the energy 

over spherical shells of liquid, of thickness r , mass rr 24 , and the liquid velocity 'r at 

a certain distance r (greater than R ). 

322233
'24'

2

1
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3

4
RRdrrrRRp

R
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     Eq. 2.44 

where   is the liquid density. Since the fluid is incompressible, the whole motion is 

determined by that of the inner boundary, then: 

2

2
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r
          Eq. 2.45 

By substituting Eq. 2.45 into Eq.2.44: 
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        Eq. 2.46 

Integration of Eq. 2.46 with respect to time gives the collapse time t of the cavity: 





  p
R

R

dR
t m

R

Rm


915.0

'

0

       Eq. 2.47 

In addition, with neglect of surface tension and liquid viscosity and with the 

assumption of liquid incompressibility, Rayleigh (1917) also showed the motion of the 

bubble wall as follows: 
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       Eq. 2.48 

where ''R is the derivative of 'R . Since 1917, many researchers have contributed a lot on 

this research (Lohse, 2003; Neppiras & Noltingk, 1951; Noltingk & Neppiras, 1950; 

Plesset, 1949; Plesset & Prosperetti, 1977; Poritsky, 1951). The radial motion of an 

acoustically driven bubble can be described any of a family of equations related to the 

Rayleigh-Plesset equation (RPE). RPEs can vary in complexity, and the following is one 

example of them (Suslick, Eddingsaas, Flannigan, Hopkins, & Xu, 2011): 
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   Eq. 2.49 

where  is the shear viscosity of liquid. The left side of Eq. 2.49 describes the inertial 

characteristics of the bubble interface. The first term on the right side represents the intra-

cavity gas pressure as the bubble radius varies from 0R to R . The RPE can be used to 

solve for the time-varying bubble radius. According to Suslick et al. (2011), the bubble 

growth and collapse process at 20 kHz is shown qualitatively in Figure 2.11. It clearly 

shows that bubble subjected to oscillatory pressure at 20 kHz undergoes expansion and 

then collapses. Bubble collapse during cavitation generates transient hot spots responsible 

for high-energy chemistry. The cycle of single acoustic cavitation is rather short, which is 

shorter than 40 μs, indicating that high-intensity ultrasound is able to effectively activate 

the chemical reaction in a liquid in a very short time.  
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Figure 2.11 Bubble growth and collapse during single cavitation at 20 KHz. The 

origin of sonochemistry occurs (as indicated by the arrows) at the point of 

maximum bubble compression. 

 

2.4.2.2 Acoustic Streaming 

Acoustic streaming is a macroscopic movement of fluid induced by acoustic wave 

(Sakharov, Hekkenberg, & Rijken, 2000). As the acoustic wave travels the liquid medium, 

it may be absorbed (attenuation phenomenon). The momentum absorbed from the 

acoustic field manifests itself as a flow of the liquid in the direction of the sound field, 

termed as acoustic streaming (Hyun, Lee, & Loh, 2005; Leighton, 1994).  

When ultrasound propagates through a liquid, absorption of energy from the 

acoustic beam results in an energy density gradient becoming established in the direction 

of propagation. A gradient in energy corresponds to a force, and liquid flow can occur 

when adding the energy gradient in the liquid. The relationship can be expressed by the 

following equation (Starritt, Duck, & Humphrey, 1991): 
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        Eq. 2.50 

where p


 is the gradient in pressure, 
V

F
 represents the force per unit volume, I  is the 

intensity,   the absorption, and c  the speed of sound in liquid. It is clear that if both 

intensity and attenuation can vary spatially throughout a sound beam in a liquid, then so 

will the streaming forces and flows. An increase in either parameter will increase the 

acoustic streaming.  

 In addition, there is a second type of acoustic streaming, i.e. acoustic streaming 

occurs near small obstacles placed within a sound field, or vibrating membrane or 

bounding walls (Nyborg, 1958). It arises from the frictional forces between a boundary 

and a medium carrying vibrations with a frequency of . This time-independent 

circulation occurs only in a small region within liquid, leading to form an acoustic 

microstreaming boundary layer. The thickness of the layer can be estimated by:  

2L          Eq. 2.51 

where   and   are the shear viscosity and density of liquid, respectively (Leighton, 

1994; Nyborg, 1958). Due to the restricted scale of the circulation, it is commonly termed 

as microstreaming.  

 Acoustic streaming in a liquid can generate the liquid flow, which can accelerate 

the mass and thermal transfers in the liquid, making the liquid more homogeneous. 

Furthermore, microstreaming can bring about some important effects resulting from the 

shear forces generated in the liquid. Thereby, it can be used to disrupt particle clusters in 

the Al melt for fabricating particulate reinforced Al composites (Liu, Han, Li, & Huang, 
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2012; Liu, Rakita, Han, & Li, 2011; Liu, Han, & Li, 2011), disrupt DNA and 

disaggregate bacteria, etc. (Williams, 1974; Williams & Slade, 1971).  

 

2.4.3  Chemical Effects of Ultrasound 

Many researchers have proposed that the chemical effects of ultrasound do not 

derive from a direct interaction of the ultrasonic field with chemical species on a 

molecular level (Mason & Lorimer, 2002; Suslick, 1988; Suslick, 1990; Suslick, 

Eddingsaas, Flannigan, Hopkins, & Xu, 2011). In his research, Suslick (1990) mentioned 

that the acoustic wavelengths in liquids irradiated with ultrasound are roughly in the 

range of 0.1-100 mm, which is not on the scale of molecular dimensions. Further Suslick 

indicated that ultrasound is able to cause high-energy chemistry through the process of 

acoustic cavitation in a liquid. 

 

2.4.3.1 Ultrasonic Cavitation in Liquids 

Cavitation serves as a mean of concentrating the diffuse energy of ultrasound in 

liquids. The implosion of cavities establishes an unusual environment for chemical 

reactions. It can produce intense local heating (local hot spot) and high pressure due to 

the compression of the gases and vapors inside the cavity in a very short time (a few 

microseconds) (Suslick, Hammerton, & Cline, 1986). The temperatures and pressures of 

hot sports can reach to approximate 5000 °C and 500 atmospheres, respectively (Suslick, 

1989, 1990). Even though the temperature of this region is extreme high, the reign is so 

small that the heat can dissipate quickly. Thereby, the extreme rapid heating and cooling 



43 

 

4
3
 

rates (greater than 10
9
, or 10

10
 K/s) surrounding the cavity can be obtained. An extreme 

chemical condition can be created in the liquids irradiated with high-intensity ultrasound, 

which can affect chemical reactions deeply comparing with the conventional methods.  

In addition to extreme temperatures and pressures, cavity implosion in the form of 

spherical collapse also produces shock waves in the surrounding liquid. It has remarkable 

effects on the liquid-solid interfaces (such as solid particles and extended solid surfaces) 

in the liquids. The shock wave and acoustic streaming both can promote the mass 

transfers in the chemical reactions, leading to accelerated reactions.  

 

2.4.3.2  Ultrasound in Liquid-Solid Systems 

Of course the above extreme high temperature, pressure and rapid heating and 

cooling rates can also be generated in liquid-solid systems. There are two main proposed 

mechanisms for the effects of cavitation on the liquid-solid interfaces: shock wave and 

micro-jet.  

On the one hand, shock waves created by cavity collapse in a liquid can induce 

surface damage and the fragmentation of brittle materials. On the other hand, due to the 

existence of shock waves, the ultrasonic irradiation of liquid-solid (powder) suspensions 

produces a very important effect: high velocity interparticle collisions. The shock waves 

can cause small particles to collide into one another with great force and the impact 

velocities ranging from 100-500 m/s for particles ~ 10 µm. The interparticle collisions 

can introduce remarkable changes in surface morphology, composition and reactivity 

(Doktycz & Suslick, 1990; Suslick, 1990; Suslick & Price, 1999).   
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Cavitation near an extended surface is very different from the shock waves 

mentioned above. Near an extended solid surface, cavity collapse is nonspherical, driving 

high-speed jets of liquid (termed as micro-jets can reach velocities of hundreds of meters 

per second) into the surface and creating damage to the surface (Suslick & Price, 1999). 

This process can produce newly exposed, highly heated surfaces (Suslick, 1990). Since it 

was reported by Kornfeld & Suvorov (1944) that liquid micro-jets is a dominant factor in 

cavitation damage, the jet behavior has been studied by numerous researchers (Blake & 

Gibson, 1987; Lauterborn & Bolle, 1975; Nyborg, 1958; Plesset & Chapman, 1971; 

Tomita & Shima, 1986). Figure 2.12 shows a comparison between the reentrant jet 

development in a bubble collapsing near a solid wall as observed by Lauterborn & Bolle 

(1975) and as computed by Plesset & Chapman (1971). 

Actually, the impingements of micro-jets and shock waves on the surface both 

can induce the damage to the surface. The existence of both mechanisms has been 

established, but their relative importance is still a matter of debate and probably depends 

on the method by which cavitaion is generated (Suslick, 1990).  
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Figure 2.12 The collapse of a cavitation bubble close to a solid boundary in a liquid to 

generate the micro-jet, the graph is reproduced based on the work from Plesset & 

Chapman (1971), Lauterborn & Bolle (1975), and Brennen (2013). 

 

Suslick et al. (1999) proposed that micro-jet distortions of bubble collapse depend 

on a surface several times larger than the resonant bubble size. For example, for solid 

particles smaller than ~ 200 µm, micro-jet formation cannot occur with ultrasonic 

frequency of 20 kHz.  In these cases, the shock waves created by cavitational collapse 

can create high velocity interparticle collisions. 

It is well known that ultrasound has strong effects on the solid phase in the liquid. 

Therefore, the chemical reactions of liquid-solid systems in ultrasonic fields should 

become more active.  
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CHAPTER 3. METHODOLOGY 

The goal of this dissertation is to explore low-temperature synthesis of TiB2 and 

Al3Ti particulates in molten Al by using high-intensity ultrasound. Two typical 

synthesizing methods are studied: the mixed-salts reaction of K2TiF6-KBF4-Al for 

fabricating TiB2 and the direct-melt reaction between solid Ti powders and liquid Al for 

producing Al3Ti.  

The formation mechanisms of TiB2 and Al3Ti in molten Al and the effects of 

ultrasound on their formations at low temperatures are both investigated in this research. 

In order to clearly introduce the research methodology, the detailed experimental 

preparations and analyses about the two reactions are given below individually. 

 

3.1 Mixed-salts Reaction for Synthesizing TiB2 

3.1.1 Raw Materials and Preparation 

Potassium hexafluorotitanate (K2TiF6, 98% purity) and potassium 

tetrafluoroboride (KBF4, 98% purity) were used as the reagents. Pure Al ingot was used 

as the matrix in order to avoid the possible influences of alloying elements on the 

reaction. The K2TiF6 and KBF4 salts with a molar ratio of Ti/B=1/2 were mixed 

sufficiently by using a glass mortar. The amount of mixed salt powders added  
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corresponded to the composition of Al-5 wt. %TiB2. The amounts of K2TiF6 and KBF4 

added into the Al melt were calculated according to the chemical formula (Eq. 2.8). 

Assuming the weight of initial Al is AlM (g), and considering the loss of Al during the 

reaction, the quantities of K2TiF6 and KBF4 could be obtained by: 

 AlTiFK MM  06398.067.2
62

      Eq. 3.1 

AlKBF MM  06398.08.2
4

       Eq. 3.2 

 

3.1.2 Samples Fabricated with Different Temperature and Time  

In order to investigate the influences of reaction temperature and time on the 

formation of TiB2 particulates in molten Al regarding the yields and size distributions of 

TiB2 particulates, three reaction temperatures (900, 800 and 700 °C) with two reaction 

times (10 and 30 min) were studied, as shown in Table 3.1. Thereby, 6 samples were 

fabricated in total. For simplicity, the 6 samples were referred as S900-10, S900-30, 

S800-10, S800-30, S700-10, and S700-30, respectively (the first and second numbers 

stands for the reaction temperature and time in each sample). Taking S900-10 as an 

example, the detailed preparation process is given below.  

A 300 g pure Al ingot was melted in a graphite crucible in an electrical resistant 

furnace. After the temperature of the Al melt reached and kept stable at 900 °C, the 

mixed K2TiF6-KBF4 powders were added into the Al melt. And then the melt was stirred 

manually for a few seconds by using a niobium bar. After 10 min, the Al melt containing 

reaction products was stirred again, for the newly formed products might deposit during 

the reaction due to the higher density than pure Al, and then the slag on the melt surface 
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was removed before pouring the melt into a steel mold to form an ingot. For the samples 

fabricated in 30 min, the melt was stirred in 10 min intervals.  

 

Table 3.1 Samples fabricated under different experimental parameters. 

 

 Composition Sample Name Reaction Temperature 

(°C) 

Reaction Time 

(min) 

 

 

Al-5 wt. % TiB2 

S900-10 900 10 

S900-30 900 30 

S800-10 800 10 

S800-30 800 30 

S700-10 700 10 

S700-30 700 30 

 

 

3.1.3 Ultrasound Assisted Mixed-salts Reaction  

A 300 g pure Al ingot was melted in a graphite crucible in an electrical resistance 

furnace. An ultrasonic Nb probe with a cross sectional area of about 5.06 cm
2
 was 

immersed into the melt and the temperature of the melt was remained stable at around 

700 °C. The mixed salt powders were added into the melt. In the meantime, high-

intensity ultrasound was introduced the melt. The experimental setup is illustrated in 

Figure. 3.1. In the fabricating process, the Nb probe tip was immersed into molten mixed 

salts by less than 1 cm. The melt was treated by ultrasound for 10 min, and the slag 

floating on the top of the melt was removed before pouring the melt into a steel mold to 

form an ingot. This sample was referred to as an ultrasonically treated sample (UTS700-
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10 sample). The power of the ultrasonic generator was 1.5 kW and the frequency was 20 

kHz.  

 

 
 

Figure 3.1 Schematic diagram of ultrasound assisted the mixed-salts reaction for 

synthesizing TiB2 particles. 

 

3.1.4 Extraction Experiment for Obtaining TiB2 Particles 

In this research, some TiB2 particles were extracted from the samples for 

calculating the yield of TiB2 particulates in each sample, as well as measuring the size 

distribution of TiB2 particulates. The detailed extraction procedure for obtaining TiB2 

particles is given below.  

1. A small ingot was cut from the sample, and the surface of which was cleaned 

by sand paper.  

2. The small ingot was dissolved in a 15 vol. % aqueous HCl solution in a beaker 

at room temperature. After dissolution, a layer of particles were deposited at the bottom 

of the beaker, and then the HCl solution was decanted.  

3. TiB2 particles were washed with water for several times until the supernatant 

displayed neutral pH.  
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4. These TiB2 particles were washed with ethanol, and then dried by using an 

electric hair dryer.  

Since this research mainly concerned the synthesis of TiB2 particles, aqueous HCl 

solution was used as the etchant based on the following considerations. TiB2 can exist 

stably in HCl solution, whereas other compounds, such as Al3Ti and AlB2 can be 

dissolved. By which, the interference of other phases can be eliminated in the following 

calculation of the yields of TiB2 particulates and measurement of their size distributions. 

 

3.1.5 Samples Analysis 

3.1.5.1 Grinding and Polishing Processes 

The sample was ground using SiC sand papers successively following the order of 

180, 240, 400 and 600 mesh. Then the ground sample was polished using micro-sized 

diamond compound, following the order of 3 and 1μm. After that the polished sample 

was cleaned in the ultrasonic cleaner for a few minutes to clean the polished surface. 

3.1.5.2 XRD Analysis 

The products of the mixed-salts reactions, including the slags and the samples, 

were examined by x-ray diffraction (XRD, Bruker D8) using Cu Kα radiation at 40 kV 

and 40 mA and a scan rate of 0.10 °/s. The extracted particles from each sample were 

also analyzed by XRD to examine the purity of TiB2 particles.  

3.1.5.3 Microstructure Analysis 

The microstructures of samples were analyzed by scanning electron microscopy 

(SEM, s4800) equipped with an energy dispersive spectroscope (EDS) device for 
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identifying the components in the samples. Some samples were also examined by using 

optical microscopy (OM).  

 

3.1.6  Calculating the Yields of TiB2 Particulates 

In order to evaluate the degree of the mixed-salts reaction and the efficiency of 

ultrasound on the formation of TiB2 particulates, the yield of TiB2 in each sample was 

calculated. Two small ingots with a weight of about 8 grams cut from each sample were 

treated by a completed extraction process, respectively. Two groups of extracted powders 

were weighted by using an electric balance. And then the actual weight percentage of 

TiB2 phase in the Al matrix could be calculated. Since the sample was fabricated 

corresponding to the composition of Al-5 wt.% TiB2, the yield of TiB2 could be further 

obtained. In the end, an average value of the yield was computed in order to decrease the 

experimental error.  

 

3.1.7 Measuring the Size Distributions of TiB2 Particulates 

Zetasizer Nano ZS (Malvern) was used to measure the size distributions of TiB2 

particulates extracted from each sample. This device was able to measure the particles 

with the size ranging from 3 nm to 5 μm. Before the test, a small amount of TiB2 powders 

were diluted with DI water. 10 measurements were conducted for each sample, and 

statistical analyses regarding the results were also provided. 
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3.2 Static Experiment for the Mixed-salts Reaction 

3.2.1 Experimental Process 

A 10 g pure Al ingot was melted in a small graphite crucible in an electrical 

resistant furnace. After the temperature reached 800 °C, the Al melt was kept 30 min in 

the furnace to guarantee a stable temperature. And then the mixed K2TiF6-KBF4 salts 

were added into the Al melt. After 10 s, the crucible was taken out from the furnace 

stably, which was naturally cooled down in the air. After solidification, a small sample 

containing reaction products was obtained. 

 

3.2.2 Preparation and Analysis of the Static Sample  

1. The static sample was cut in half along its longitudinal axis, and then the 

longitudinal section of sample was ground and polished. 

2. The microstructure of sample, especially the region containing products was 

observed by optical microscopy (OM) and scanning electron microscopy (SEM) for 

detailed information about the products.  

 

3.3 Direct-metal Reaction between Solid Ti Powders and Liquid Al 

In this research, the direct-melt reactions between solid Ti powders and liquid Al at 

low temperatures (730 and 700 °C) without and with ultrasound were investigated. The 

two synthesizing temperatures were much lower than those used in the conventional 

methods by at least 200 °C. In order to study the evolution of solid Ti powders in the Al 

melt, some samples with different reaction times were taken out during the fabricating 

process. The detailed experimental plan is given in Table 3.2.  
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Table 3.2 Experimental design for synthesizing Al3Ti particulates. 

 

Composition Temperature 

(°C) 

With/Without 

Ultrasound 
Reaction Time (min) 

 730 

730 

Without 1 3 5 10 

 

Al-3 wt.% Ti 
With 1 3 5 10 

700 

700 

Without 

With 

- 

- 

- 

- 

- 

5 

10 

10 
 

 

 

3.3.1 Raw Materials and Experimental Process  

Pure Al ingot (99.5 % commercial purity) and solid Ti powders (99.7 % 

commercial purity, average size of 20 µm) were used as the reactants. A 300 g Al ingot 

was melted in a graphite crucible in an electrical resistant furnace. When the temperature 

of molten Al was stable at 730 °C, solid Ti powders were added into the Al melt. In the 

meantime, high-intensity ultrasound was introduced in the melt by immersing a Nb 

radiator (or probe), as shown in Figure 3.2. The amount of solid Ti powders added into 

the Al melt corresponded to the composition of Al-3 wt.% Ti. During the reaction process, 

four ultrasonically treated samples were taken out from the melt after 1, 3, 5 and 10 min. 

For simplicity, the four samples were referred as UTS730-1, UTS730-3, UTS730-5 and 

UTS730-10, respectively. The power of ultrasonic generator was 1.5 kW, with the 

frequency of 20 kHz. The other four control samples without ultrasonic treatment were 

taken out from the melt after the same time intervals for making a comparison, which 

were referred as S730-1, S730-3, S730-5 and S730-10, respectively. Similarly, the 

samples fabricated at 700 °C were referred as UTS700-5 and UTS700-10 samples (with 

ultrasound), and S700-10 sample (without ultrasound). 
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Figure 3.2 Schematic diagram of ultrasonic vibration assisted the direct-melt 

reaction between solid Ti powders and liquid Al. 

 

3.3.2 Samples Analysis 

3.3.2.1 Grinding and Polishing Processes 

The samples obtained from the experiments were ground using SiC sand papers 

successively following the order of 180, 240, 400 and 600 mesh. And then the ground 

samples were polished using micro-sized (3 μm) diamond compound. After that the 

polished samples were cleaned in the ultrasonic cleaner for a few minutes to clean the 

polished surfaces. 

3.3.2.2 XRD Analysis 

The phases in the samples were examined by X-ray diffraction (XRD, Bruker D8, 

Germany) by using Cu Kα radiation at 40 kV and 40 mA and a scan rate of 0.10 °/s.  

3.3.2.3 Microstructure Analysis 

The microstructures of the samples were observed by scanning electron 

microscopy (SEM, s4800) equipped with an energy dispersive spectroscopy (EDS) 

device.  
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CHAPTER 4. EXPERIMENTAL RESULTS 

The experimental results obtained from the mixed-salts reaction of K2TiF6-KBF4-

Al system and the direct-melt reaction between solid Ti powders and liquid Al are 

presented in this chapter, respectively.  

 Firstly, the results of the mixed-salts reactions at three different reaction 

temperatures (900, 800 and 700 °C) with two different reaction times (10 and 30 min) are 

summarized, including the phase compositions and microstructures of the samples, as 

well as the yields and size distributions of TiB2 particulates. The results of ultrasound 

assisted mixed-salts reaction at 700 °C are also presented. 

Secondly, the results of the static experiment for mixed-salts reaction are also 

provided in this chapter. 

In addition, the results of the direct-melt reaction at different reaction 

temperatures (730 and 700 °C) with different reaction times (1, 3, 5, and 10 min) without 

and with ultrasound are provided, in which the phase compositions and microstructures 

of samples are examined. 
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4.1 Results of the Mixed-salts Reaction  

4.1.1 Results of the Mixed-salts Reaction at 900 °C 

4.1.1.1 S900-10 Sample 

1) XRD Analysis of the Products 

 

Figure 4.1 shows the XRD patterns of the slag and sample produced at 900 °C 

with a 10-min reaction time. It is obvious that KAlF4 and K3AlF6 were the two main 

phases in the slag, as shown in Figure 4.1a, indicating that Ti and B elements were both 

transferred from the molten mixed salts to molten Al. In the S900-10 sample, TiB2 was 

the only newly formed phase during the mixed-salts reaction, the diffraction peaks of 

which could be observed clearly, as shown in Figure 4.2.b. The results of the two XRD 

patterns indicate that the chemical formula shown in Eq. 2.8 is more suitable to describe 

the process of the mixed-salts reaction of K2TiF6-KBF4-Al system. 

 

 

Figure 4.1 XRD patterns of the slag (a), and S900-10 sample (b) produced at 

900 °C with a 10-min reaction time. 
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2) Microstructure Analysis of S900-10 Sample 

Figure 4.2 shows the typical microstructure of the S900-10 sample. Only one type 

of newly formed phase existed in the Al matrix, which was identified as TiB2 by EDS. 

These small-sized TiB2 particulates aggregated to form clusters at α-Al grain boundaries, 

as shown in Figure 4.2a. Figure 4.2b clearly shows that these TiB2 particulates 

synthesized via the mixed-salts reaction had different sizes, and most of them were much 

smaller than 1 μm. In Figure 4.3c, it can be found that some TiB2 particulates had a larger 

size exceeding 1 μm.  

 

 
 

Figure 4.2 (a) Typical microstructure of the S900-10 sample, (b) higher magnification of 

the area marked in image (a), and (c) higher magnification of the area marked in image 

(b). 
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3) Examination of the Purity of Extracted TiB2 Particles 

Phase composition of the extracted particles from the S900-10 sample was 

examined by XRD. The result is shown in Figure 4.3. Only TiB2 phase was detected, 

indicating that a completed extraction process was obtained, in which the Al matrix and 

some other possibly existed phases had dissolved into the HCl solution completely. 

Thereby, no other phases influenced the calculation of the yield of TiB2 particulates and 

the measurement of their size distribution.  

 

 
 

Figure 4.3 XRD pattern of the extracted TiB2 particles from the S900-10 sample. 

 

4) Yield of TiB2 Particulates in S900-10 Sample 

The yield of TiB2 particulates in each extracting experiment is given in Table 4.1. 

Based on the calculation results, the average actual weight percentage of TiB2 in the 

sample was about 4.475 %. Accordingly, the yield of TiB2 particulates could reach 

89.50 %.  
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Table 4.1 Calculation of the yield of TiB2 particulates in the S900-10 sample.  

 

Group Quantity of the ingot 

for extracting 

experiment 

(g) 

Quantity of 

extracted TiB2 

particles 

(g) 

 

 

 

Actual weight 

percent 

(wt. %) 

Yield of TiB2 

(%) 

1 

2 

Average 

8.193 

8.697 

0.371 

0.385 

 

 

4.52 

4.43 

4.475 

90.40 

88.60 

89.50 - -  

 

 

5) Size Distribution of TiB2 Particulates in S900-10 Sample 

The size distribution of the TiB2 particles extracted from the S900-10 sample is 

shown in Figure 4.4. The detailed statistical result is also included in Figure 4.4. It is 

clear that most TiB2 particulates in the S900-10 sample were less than 1 μm in size, in 

which about 79.1 % of the TiB2 particles ranged in size from 400 to 800 nm. Also, a very 

small amount of TiB2 ranged in size from 1 to 2 μm. The above statistical result about the 

size distribution of TiB2 is in good agreement with the SEM analysis (Figure 4.2). The 

size distribution of TiB2 particulates in the S900-10 sample followed a normal 

distribution as well.  
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Figure 4.4 Size distribution of TiB2 particulates in the S900-10 sample. 

 

4.1.1.2 S900-30 Sample 

1) Phases Analysis of Products 

Figure 4.5 shows the XRD patterns of the slag and sample (S900-30) produced at 

900 °C with a 30-min reaction time. Similar to the products produced at 900 °C with a 

10-min reaction time, KAlF4 and K3AlF6 were the two main phases in the slag, and TiB2 

was the only newly formed phase in the sample.  

 

 

Figure 4.5 XRD patterns of the slag (a), and S900-30 sample (b) produced at 

900 °C with a 30-min reaction time. 
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2) Microstructure Analysis of S900-30 Sample 

The typical microstructure of the S900-30 sample is presented in Figure 4.6. 

Overall, it had similar microstructural features with the S900-10 sample. Only TiB2 

particulates were in situ formed, which existed in the Al matrix as clusters located at the 

grain boundaries (Figure 4.6a). Most TiB2 particulates were smaller than 1 μm in size 

(Figure 4.5b); whereas a very small amount of TiB2 particulates were greater than 1 μm, 

as shown in Figure 4.6c.  

 
 

Figure 4.6 (a) Typical microstructure of the S900-10 sample, (b) higher magnification of 

the area marked in image (a), and (c) higher magnification of the area marked in image 

(b). 

 

3) XRD Analysis of Extracted Particles 

Figure 4.7 shows the phase composition of the extracted particles from the S900-

30 sample. TiB2 was the only phase in the particles, indicating that no interference from 
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other phases influenced the calculation of the yield of TiB2 and the measurement of size 

distribution of TiB2. 

 

 
 

Figure 4.7 XRD pattern of the extracted TiB2 particles from the S900-30 sample. 

 

4) Yield of TiB2 Particulates 

Table 4.2shows the yield of TiB2 particulates in the S900-30 sample. The actual 

weight percentage of TiB2 particulates in the Al matrix was about 4.515 %, and the yield 

of which could reach about 90.30%.  

 

Table 4.2 Calculation of the yield of TiB2 particulates in the S900-30 sample. 

 

Group Quantity of the ingot 

for extracting 

experiment 

(g) 

Quantity of 

extracted TiB2 

particles 

(g) 

Actual weight 

percent of TiB2 

(wt. %) 

Yield of TiB2 

(%) 

1 

2 

7.667 

8.012 

0.344 

0.364 

4.49 

4.54 

89.80 

90.80 

Average - - 4.515 90.30 
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5) Size Distribution of TiB2 Particulates 

Figure 4.8 shows the size distributions of TiB2 particulates synthesized in the 

S900-30 sample. Overall, most TiB2 particulates were smaller than 1 μm in size, in which 

about 83.1 % of the TiB2 ranged in size from 400 to 800 nm; a rather small amount of 

TiB2 particles had the size in the range of 1-2 μm, which is in good agreement with the 

SEM analysis (Figure 4.6). The size distribution of TiB2 particulates followed a normal 

distribution as well.  

 

 

Figure 4.8 Size distributions of TiB2 particulates in the S900-30 sample. 

 

4.1.2 Results of the Mixed-salts Reaction at 800 °C 

4.1.2.1 S800-10 Sample 

1) Phase Analysis of the Products 

Figure 4.9 presents the phase compositions of the slag and S800-10 sample, both 

of which were obtained in the mixed-salts reaction at 800 °C with a 10-min reaction time. 

KAlF4 and K3AlF6 were the two main phases in the slag, indicating that Ti and B 

elements were transferred from the molten mixed salts to molten Al, as shown in Figure 



64 

 

6
4
 

4.9a. TiB2 was the only newly formed phase in the Al matrix, which was shown in Figure 

4.9b. It is clear that the mixed-salts reaction of K2TiF6-KBF4-Al took place according to 

the chemical reaction shown in Eq. 2.8 at 800 °C. 

 

 
 

Figure 4.9 XRD patterns of the slag (a), and S800-10 sample (b) produced at 

800 °C with a 10-min reaction time. 

 

 

2) SEM Analysis of S800-10 Sample 

Figure 4.10 shows the typical microstructure of the S800-10 sample which was 

fabricated at 800 °C with a 10-min reaction time. Two types of reinforcements with 

different morphology were found in the Al matrix. One was chain-like reinforcement, and 

the other was particulates which aggregated together, as shown in Figure 4.10a. After the 

EDS examination, the main phase of the chain-like reinforcement was Al3Ti. However, a 

very small amount of TiB2 phase also might exist in this reinforcement, as shown in 

Figure 4.10b. The in situ formed particulates were TiB2 which were identified by EDS, 

and these particulates had different sizes, some of which were larger than 1 μm, as shown 

in Figure 4.10c.  
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Figure 4.10 (a) Typical microstructure of the S800-10 sample, (b) higher magnification 

of the area marked in image (a), and (c) higher magnification of the area marked in image 

(a). 

 

 

3) XRD Analysis of Extracted TiB2 particles  

According to the XRD result (Figure 4.11), only TiB2 phase was found in the 

extracted particles from the S800-10 sample, indicating that no other phase influenced 

both the calculation of the yields of TiB2 and the measurement of the size distribution of 

TiB2 particulates.   
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Figure 4.11 XRD pattern of the extracted TiB2 particles from the S800-10 sample. 

 

4) Yield of TiB2 Particulates in S800-10 Sample 

After calculation (as shown in Table 4.3), the actual weight percentage of TiB2 in 

the mixed-salts reaction at 800 °C with a 10-min reaction time could reach around 3.515 

wt. %. Accordingly, the yield of TiB2 was about 70.30 %.  

 

Table 4.3 Calculation of the yield of TiB2 particulates in the S800-10 sample. 

 

Group Quantity of the ingot 

for extracting 

experiment 

(g) 

Quantity of 

extracted TiB2 

particles 

(g) 

Actual weight 

percent of TiB2 

(wt. %) 

Yield of TiB2 

(%) 

1 

2 

7.601 

7.669 

0.263 

0.274 

3.46 

3.57 

69.20 

71.40 

Average - - 3.515 70.30 
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5) Size Distribution of TiB2 Particulates in S800-10 Sample 

Figure 4.12 shows the size distribution of TiB2 particulates synthesized in the 

S800-10 sample. It is obvious that most of TiB2 particulates were less than 1μm in size, 

in which about 95 % of the TiB2 had the size smaller than 300 nm according to the 

statistic result. In addition, a rather small amount of in situ formed TiB2 particulates 

larger than 1 μm were detected by Zetasizer Nano ZS device. The existence of larger-

sized TiB2 particulates (larger than 1 μm) in the Al matrix was also found by SEM test (as 

shown in Figure. 4.10c). Generally, the size distribution of TiB2 particulates in the S800-

10 sample followed a normal distribution as well.  

 

 
 

Figure 4.12 Size distribution of TiB2 particulates in the S800-10 sample. 

 

4.1.2.2 S800-30 Sample 

1) Phases Analysis of Products 

Figure 4.13 presents the XRD results of the slag and S800-30 sample produced in 

the mixed-salts reaction at 800 °C with a 30-min reaction time. KAlF4 and K3AlF6 were 
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the main phases in the slag, as shown in Figure 4.13a. TiB2 was detected as the only 

newly formed phase in the sample, as shown in Figure 4.13b. 

 

 
 

Figure 4.13 XRD patterns of the slag (a), and S800-30 sample (b) produced at 

800 °C with a 30-min reaction time. 

 

2) Microstructure Analysis of S800-30 Sample 

The microstructure of the S800-30 sample is given in Figure 4.14. Two main 

types of reinforcements were found in the Al matrix. One was TiB2 particulates which 

formed clusters at the grain boundaries, as shown in Figure 4.14a. The other one was the 

chain-like reinforcements with a large size, in which Al and Ti elements were identified 

by EDS, indicating that the main phase contained in the chain-like reinforcements was 

Al3Ti, as shown in Figure 4.14b. Due to its low content, Al3Ti phase was not detected in 

the XRD analysis. Furthermore, some large TiB2 particulates with the size greater than 1 

μm were also found in this sample, as shown in Figure 4.14c. It also should be mentioned 

that some AlB2 phase might exist in the matrix, but it is hard to be examined out by SEM 

due to its low content and blocky morphology.  
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Figure 4.14 (a) Typical microstructure of the S800-30 sample, (b) higher magnification 

of the area marked in image (a), and (c) higher magnification of the area marked in image 

(a). 

 

 

3) XRD Analysis of Extracted TiB2 Particles from S800-30 Sample 

Figure 4.14 shows the XRD pattern of the extracted TiB2 particles from the S800-

30 sample. Only TiB2 phase was found in the particles, which indicated that the 

extraction experiment was conducted completely. 
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Figure 4.15 XRD pattern of the extracted TiB2 particles from the S800-30 sample. 

 

4) Yield of TiB2 Particulates in S800-30 Sample 

The actual weight percentage of TiB2 obtained in the S800-30 sample was about 

3.80 wt. %, and its yield reached 76 %. Compared with S800-10 sample, it is found that 

more TiB2 was formed as the reaction time was increased. 

 

Table 4.4 Calculation of the yield of TiB2 particulates in the S800-30 sample. 

 

Group Quantity of the ingot 

for extracting 

experiment 

(g) 

Quantity of 

extracted TiB2 

particles 

(g) 

Actual weight 

percent of TiB2 

(wt. %) 

Yield of TiB2 

(%) 

1 

2 

8.004 

7.735 

0.309 

0.289 

3.86 

3.74 

77.20 

74.80 

Average - - 3.80 76.00 

 

 

 



71 

 

7
1
 

5) Size Distribution of TiB2 Particulates in S800-30 Sample 

Figure 4.16 shows the size distribution of TiB2 particulates in the S800-30 sample. 

Overall, most TiB2 particulates in S800-30 sample were smaller than 1 μm, in which 

about 95 % of the TiB2 had the size less than 300nm. Some TiB2 particulates larger than 

1 μm were also detected. An interesting finding observed in the statistic result is that the 

ratio of smaller-sized TiB2 was increased, indicating that the newly formed TiB2 phase 

had a smaller size. It is clear that the size distribution of TiB2 particulates in S800-30 

sample followed a normal distribution as well.  

 

 

Figure 4.16 Size distribution of TiB2 particulates in the S800-30 sample. 

 

4.1.3 Results of the Mixed-salts Reaction at 700 °C 

4.1.3.1 S700-10 Sample 

1) Phases Analysis of Products 

Figure 4.17 shows the XRD patterns of the slag and S700-10 obtained in the 

mixed-salts reaction at 700 °C with a 10-min reaction time. KAlF4 and K3AlF6 detected 

by XRD were the main phases in the slag. No any phase containing Ti or B was found in 
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the slag, suggesting that Ti and B elements were both transferred to molten Al from salts. 

Some rather weak diffraction peaks of TiB2 phase were found in the S700-10 sample, 

indicating that the mixed-salts reaction proceeded according to the chemical formula 

shown in Eq. 2.8 at the low temperature of 700 °C. 

 

 

Figure 4.17 XRD patterns of the slag (a), and S700-10 sample (b) produced in the 

mixed-salts reaction at 700 °C with a 10-min reaction time. 

 

2) Microstructure Analysis of S700-10 Sample 

Figure 4.18 shows the typical microstructure of the S700-10 sample. Three types 

of reinforcements existed in the Al matrix. Some blocky particles ranged in size from 1 to 

3μm were detected as Al3Ti by EDS. Some rather small-sized TiB2 particulates were also 

found in the matrix, most of which existed along the chain-like reinforcement. After 

examined by EDS, the main phase of chain-like reinforcement was identified as Al3Ti, 

and also some separately tiny TiB2 particles were located in Al3Ti, as shown in Figure 

4.18b. In addition, a little amount of AlB2 phase might exist in the Al matrix, but it is 

hard to examine them out in the present research due to the limitation of device. 
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Figure 4.18 (a) Typical microstructure of the S700-10 sample, and (b) higher 

magnification of the area marked in image (a). 

 

 

Figure 4.19 SEM images of the deep-etched S700-10 sample. 

 

In order to clarify the morphologies of the reinforcements in the Al matrix, a 

deep-etched sample was observed by SEM, the results are shown in Figure. 4.19. 

Actually, the chain-like Al3Ti was flakey in morphology, with a thickness of a few 
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micrometers. Also, some in situ formed TiB2 particles existed in the Al matrix in the 

form of cluster, and the size of these TiB2 particles was less than 1μm obviously. Since 

some TiB2 particulates aggregated together, it is hard to make a clear observation.  

 

3) XRD Analysis of Extracted TiB2 Particles from S700-10 Sample 

Based on the XRD result as shown in Figure 4.20, only TiB2 phase was detected 

in the extracted particles, indicating that some other phases (such as Al3Ti) had 

completely dissolved into the HCl solution.  

 

 
 

Figure 4.20 XRD pattern of the extracted TiB2 particles from the S700-10 sample. 

 

4) Yield of TiB2 Particulates in S700-10 Sample 

The yield of TiB2 in the S700-10 sample is calculated in the Table 4.5. The 

measured actual weight percentage of TiB2 synthesized in the S700-10 sample was rather 

low, the value of which was about 1.405 wt. %. And the corresponding yield of TiB2 was 
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28.10 %. This result clearly showed that the synthesis of TiB2 in the mixed-salts reaction 

was hindered significantly at 700 °C.  

 

Table 4.5 Calculation of the yield of TiB2 particulates in the S700-10 sample. 

 

Group Quantity of the ingot 

for extracting 

experiment 

(g) 

Quantity of 

extracted TiB2 

particles 

(g) 

Actual weight 

percent of TiB2 

(wt. %) 

Yield of TiB2 

(%) 

1 

2 

6.989 

7.086 

0.098 

0.10 

1.40 

1.41 

28.00 

28.20 

Average - - 1.405 28.10 

 

5) Size Distribution of TiB2 Particulates in S700-10 Sample 

Overall, in situ formed TiB2 particulates in the S700-10 sample were smaller than 

700 nm, in which approximate 95 % of the TiB2 particles were smaller than 300 nm, and 

size distribution of TiB2 particulates followed a normal distribution as well, as shown in 

Figure 4.21. The result clearly shows that a lower reaction temperature can decrease the 

size of TiB2 remarkably. The yield of TiB2, however, is rather low at a lower temperature. 

 

 
 

Figure 4.21 Size distribution of TiB2 particulates in the S700-10 sample. 
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4.1.3.2 S700-30 Sample 

1) Phases Analysis of Products 

Figure 4.22 shows the XRD patterns of the slag and S700-30 sample obtained in 

the mixed-salts reaction at 700 °C with a 30-min reaction time. As shown in Figure 4.22a, 

the slag was consisted of KAlF4 and K3AlF6 phases. Weak TiB2 peaks were also found in 

the sample, showing that the content of TiB2 phase was still low (Figure. 4.22b) in the Al 

matrix by a 30-min reaction. 

 

 

Figure 4.22 XRD patterns of the slag (a), and S700-30 sample (b) produced in the 

mixed-salts reaction at 700 °C with a 30-min reaction time. 

 

2) Microstructure Analysis of S700-30 Sample 

Figure 4.23 shows the microstructure of the S700-30 sample. Long chain-like 

reinforcements and cluster-like reinforcements were both found in the Al matrix, as 

shown in Figure 4.23a. It is found that the chain-like reinforcement was composed of by 

Al3Ti and some small-sized TiB2 particulates which were located in the Al3Ti phase, as 

shown in Figure 4.23b. The cluster-like reinforcement was consisted of some large-sized 
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blocky Al3Ti particles and some nanometer-sized TiB2 particles, as shown in Figure 

4.23c. One more thing should be mentioned is that the size of long chain-like 

reinforcement in S700-30 sampler was smaller than that in the S700-10 sample, which 

indicated that part of it might dissolve or react as the reaction time was increased. AlB2 

phase also might exist in the sample, which was hard to examine out clearly in this 

research. 

 

 
 

Figure 4.23 (a) Typical microstructure of the S700-30 sample, and (b), (c) higher 

magnification of the areas marked in image (a). 
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3) XRD Analysis of Extracted TiB2 Particles from S700-30 Sample 

As shown in Figure 4.24, only TiB2 was detected by XRD in the extracted 

particles, which meant a completed extraction process was carried out. Thereby, the 

measurement results of yield and the size distribution of TiB2 particulates were believable, 

since other phases such as Al3Ti and AlB2 were dissolved into HCl solution completely.   

 

 
 

Figure 4.24 XRD pattern of the extracted TiB2 particles from the S700-30 sample. 

 

4) Yield of TiB2 Particulates in S700-30 Sample 

The actual weight percentage of TiB2 in the S700-30 sample was about 1.775 

wt. %, and the related yield of TiB2 was about 35.50 %, as shown in Table 4.6. The result 

shows that the yield of TiB2 phase in the S700-30 sample was still low, but a certain 

amount of TiB2 phase was formed as the reaction time was prolonged from 10 to 30 min. 
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Table 4.6 Calculation of the yield of TiB2 particulates in the S700-30 sample. 

 

Group Quantity of the ingot 

for extracting 

experiment 

(g) 

Quantity of 

extracted TiB2 

particles 

(g) 

Actual weight 

percent of TiB2 

(wt. %) 

Yield of TiB2 

(%) 

1 

2 

7.657 

7.698 

0.135 

0.138 

1.76 

1.79 

35.20 

35.80 

Average - - 1.775 35.50 

 

 

5) Size Distribution of TiB2 Particulates in S700-30 Sample 

According to the measurement result shown in Figure 4.25, the size of TiB2 

particulates synthesized in the S700-30 sample was smaller than 1 μm. More than 95% of 

the TiB2 had the size less than 300 nm. Furthermore, the content of TiB2 with a smaller 

size was increased, and the ratio of TiB2 smaller than 100 nm was about 30 %, indicating 

that a certain amount of TiB2 particulates with a smaller size were formed as the reaction 

time was prolonged from 10 to 30 min. 

 

 

 

Figure 4.25 Size distribution of TiB2 particulates in the S700-30 sample. 
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4.1.4 Ultrasound Assisted Mixed-salts Reaction at 700 °C 

1) XRD Analysis of Products 

Figure 4.26 shows the XRD patterns of the slag and UTS700-10 sample produced 

by the ultrasound assisted mixed-salt reaction with a 10-min reaction time. KAlF4 and 

K3AlF6 were also the two main phases in the slag; and TiB2 was the only newly formed 

phase in the UTS700-10 sample, indicating that the mixed-salts reaction in ultrasonic 

fields was also conducted according to the chemical formula shown in Eq. 2.8. 

Furthermore, it is clear that the diffraction peaks of TiB2 phase in the UTS700-10 sample 

were much stronger than those in the S700-10 sample, indicating that ultrasound can 

significantly improve the synthesis of TiB2 in the mixed-salts reaction. 

 

 

Figure 4.26 XRD patterns of the slag (a), and UT sample (b) produced with a 10-

min reaction time. 

 

2) SEM Analysis of UTS700-10 Sample 

Figure 4.27 shows the microstructural features of the deep-etched UTS700-10 

sample. The newly formed phase was located at the boundaries of α-Al grains with a 
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network structure, as shown in Figure. 4.27a. After magnification, it is found that the 

reticular phase was composed of by plenty of tiny in situ formed TiB2 particulates which 

were identified by EDS, and these TiB2 particles had different sizes, as shown in Figure. 

4.28b and c. Due to the effect of particle pushing, the in situ formed TiB2 particles were 

pushed by α-Al dendrites to the grain boundaries during the solidification process. 

 

 

 

Figure 4.27 SEM images of the deep-etched UTS700-10 sample. 

 

3) XRD Analysis of Extracted TiB2 Particles from UTS700-10 Sample 

Only TiB2 phase was detected in the extracted particles from the UTS700-10 

sample, as shown in Figure 4.29. Based on the XRD results, it is clear that no any other 

phases influenced the analyses about the yields and size distribution of TiB2 particulates. 
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Figure 4.28 XRD pattern of the extracted TiB2 particles from the UTS700-10 

sample. 

 

4) Yield of TiB2 Particulates in UTS700-10 Sample 

Table 4.7 shows the actual weight percentage of in situ formed TiB2 particulates 

in the UTS700-10 sample was about 4.52 wt. %, and the corresponding yield of TiB2 was 

90.4 %. The result showed that applying ultrasound to the mixed-salts reaction at 700 °C 

improved the formation of TiB2 phase significantly. The effects of ultrasound on the 

reaction will be discussed in the following chapter. 

 

Table 4.7 Calculation of the yield of TiB2 particulates in the UTS700-10 sample. 

 

Group Quantity of the ingot 

for extracting 

experiment 

(g) 

Quantity of 

extracted TiB2 

particles 

(g) 

Actual weight 

percent of TiB2 

(wt. %) 

Yield of TiB2 

(%) 

1 

2 

7.156 

7.766 

0.316 

0.358 

4.42 

4.61 

88.40 

92.20 

Average - - 4.52 90.40 
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5) Size Distribution of TiB2 Particulates in UTS700-10 Sample 

The size distribution of in situ formed TiB2 particulates in the UTS700-10 sample 

is shown in Figure 4.29. Almost all TiB2 particles were smaller than 700 nm in size, and 

around 95 % of the TiB2 particles were smaller than 300 nm. It is obvious that the use of 

ultrasound in the mixed-salts reaction at a lower temperature have its unique advantages. 

On the one hand, a high yield of TiB2 can be obtained. On the other hand, the size of 

most of in situ formed TiB2 particulates can be controlled under 300 nm. 

 

 
Figure 4.29 Size distribution of TiB2 particulates in the UTS700-10 sample. 

 

Overall, the results of the mixed-salts reactions under different experimental 

parameters clearly are summarized in Table 4.7 with the aim of displaying the results 

clearly.  
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Table 4.8 The summary of the mixed-salt reaction results under different experimental 

parameters.  

 

Sample Yield of TiB2 (%) Size distribution of TiB2 (nm) 

S900-10 89.50 400-800nm (79.10 %), some are larger than 1 μm 

S900-30 90.30 400-800nm (83.10 %), some are larger than 1 μm 

S800-10 70.30 < 300nm (95 %), some are larger than 1 μm 

S800-30 76.00 < 300nm (95 %), some are larger than 1 μm 

S700-10 28.10 < 300nm (95 %) 

S700-30 35.50 < 300nm (95 %) 

UTS700-10 90.40 < 300nm (95 %) 

 

 

4.2 Results of the Static Experiment 

4.2.1 Static Sample 

Figure 4.30a shows the static sample fabricated via the mixed-salts reaction at 

800 °C with a 10-second reaction time. A product-region could be observed clearly with 

naked eye in the sample. The thickness of layer in the sample was about 7 mm. Figure 

4.30b presents the microstructure of region of the product-layer by using optical 

microscopy. A layered microstructure of products formed in the reaction was found, in 

which chain-like reinforcements and cluster-like reinforcements both existed in the Al 

matrix. According to the morphology of the product-region, it is clear that the mixed-salts 

reaction of K2TiF6-KBF4-Al system took place at the interface between molten salts and 

Al. As the reaction proceeded, the products generated at the interface would deposit into 

the Al melt due to their heavier density than Al. Four typical areas chosen from the 
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product-region were further examined. These four areas contained the products which 

were synthesized at different reaction stages. Area 1 represented the reaction occurred at 

the starting stage, and Area 4 represented the reaction at the last stage.   

In Area 1, some blocky Al3Ti particulates smaller than 5 μm were found in the Al 

matrix, as shown in Figure 4.31. These Al3Ti were generated due to the reaction between 

K2TiF6 and Al. It has been reported that the reaction between K2TiF6 and Al could take 

place at much higher rate than that between KBF4 and Al (Mayes, McCartney, & Tatlock, 

1993), especially at low temperatures. Arnberg et al. (1982a) also reported that the blocky 

Al3Ti could be formed when the K2TiF6 salt was added to molten Al at a temperature of 

about 750-800 °C. 
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Figure 4.30 Static sample fabricated at 800 °C with a 10-second reaction time (a), and 

microstructure of the region containing products (b). 
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Figure 4.31 Al3Ti particulates found in Area 1. 

 

Figure 4.32 shows the microstructure of Area 2 in the sample. In this area, some 

blocky Al3Ti particulates in clusters, as well as some tiny TiB2 particulates were both 

found.  

 

 

Figure 4.32 SEM image of Area 2. 

 

Figure 4.33 shows the microstructure of Area 3 in the sample. Two types of 

reinforcements existed in the Al matrix. One was chain-like reinforcement with different 
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sizes. Some large-sized chain-like reinforcements had the width of about 10 µm and 

length exceeding 100 µm, and others were much thinner and shorter. The other one was 

cluster-like reinforcement. Based on the EDS mapping analysis, two types of 

reinforcements were both consisted of Al, Ti and B elements, as shown in Figure 4.33b, c 

and d. It is obvious that the cluster-like reinforcement contained more Al element than 

the chain-like reinforcement. According to the results, TiB2 and Al3Ti were dominated in 

the chain-like and cluster-like reinforcements respectively. More detailed analyses about 

the two reinforcements were conducted based on the SEM images with higher 

magnification (Figure 4.34 and 4.35). 

More detailed information about the chain-like reinforcement is provided in 

Figure 4.34. A fragment of the chain-like reinforcement (Figure 4.33a (1)) was picked up 

for analyzing, as shown in Figure 4.34a. Some tiny TiB2 particulates with the size of 

about 200 nm were found around the chain-like reinforcement. Figure 4.34b shows a 

higher magnification of the area marked in Figure 4.34a. It is clear that some rather 

small-sized particles which were smaller than 200 nm in size existed in the reinforcement. 

According to the EDS mapping analysis, these small particles were TiB2. It is also should 

be mentioned that in some small areas of the reinforcement, the content of TiB2 particles 

was rather low and no obvious TiB2 particulates were found, as shown in Figure 4.34a. 
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Figure 4.33 SEM image and EDS mapping (Al, Ti, B) of Area 3. 

 

Combining the EDS analysis and the SEM result, it is inferred that these areas 

might be Al3Ti phase. So the chain-like reinforcements in the Al matrix were consisted of 

by plenty of TiB2 particles and Al3Ti phase. These TiB2 particles were located separately 

in the Al3Ti phase. Actually, the amounts of the two phases in the chain-like 

reinforcement can be changed under different experimental conditions, such as the 

reaction temperature and the motivation of external fields (ultrasonic fields). These 

factors are able to influence the chemical reaction directly. Increasing the reaction 

temperature, for example, can accelerate the reaction rate because higher temperature can 

increase the reaction activity of the reactants. More thermodynamically stable phase can 
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be synthesized. The further analysis about the influence of reaction temperature and 

ultrasound will be conducted in detail later in the following chapter. 

 

 
 

Figure 4.34 (a) SEM image of the area marked in Figure 4.33a (1), (b) a higher 

magnification of the area marked in (a), and EDS mapping (Al (c), Ti (d), and B (e)) of 

(b). 

 

 

 
 

Figure 4.35 SEM image of the area marked in Figure 4.33a (2). 



91 

 

9
1
 

Figure 4.35 shows the microstructure of the cluster-like reinforcements (as shown 

in Figure 4.33a (2)), in which two typical phases existed together. According to the EDS 

analysis, the large-sized particles were Al3Ti, and the rather small-sized particles were 

TiB2.  

Figure 4.36a presents the microstructure of Area 4 marked in Figure 4.30. A 

specific area of the reinforcement was zoomed in step by step in order to display the 

features clearly, as shown in Figure 4.36b, c and d, respectively. On the one hand, plenty 

of small-sized TiB2 particles with the size less than 200 nm existed around the chain-like 

reinforcement. On the other hand, it is found that the chain-like reinforcement was 

consisted of lots of TiB2 particulates, which were also smaller than 200 nm in size, as 

shown in Figure 4.36d.  

Overall, in the static sample, TiB2 and Al3Ti were both synthesized in the mixed-

salts reaction. For TiB2 particulates, some of which existed in Al matrix, some existed in 

the chain-like reinforcements, and some existed together with blocky Al3Ti particulates. 

For Al3Ti, some of which existed separately in Al matrix, some existed in clusters, and 

some existed in the chain-like reinforcement.  
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Figure 4.36 SEM images of Area 4 in the static sample. 

 

4.3 Results of the Direct-melt Reaction 

4.3.1 Direct-melt Reaction at 730 °C 

4.3.1.1 S730 Samples Fabricated without Ultrasound 

1) XRD Analysis of Samples Fabricated with Different Reaction Times 

Figure 4.37 shows the XRD patterns of the S730 samples fabricated at 730 °C 

with different reaction times. Al3Ti was the only newly formed phase in the reaction. The 

amount of in situ formed Al3Ti phase was increased as the reaction time was prolonged 

according to the diffraction intensity of Al3Ti peaks. The XRD results indicated that the 
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reaction for synthesizing Al3Ti phase was successive from 1 min to 10 min. The 

evolution of solid Ti powders in liquid Al can be observed directly through the following 

SEM analysis. 

 

2) SEM Analysis of S730 Samples Fabricated with Different Reaction Times 

Figure 4.38 shows the typical microstructures of the S730 samples produced via 

the direct-melt reaction at 730 °C with different reaction times. The evolution of solid Ti 

powders in liquid Al was shown clearly by observing samples from S730-1 to S730-10. It 

is obvious that the solid Ti powders were unable to react with liquid Al completely in 10 

min, for some Ti particles covered with reaction layers which were identified as Al3Ti 

phase by EDS were found in the matrix after solidification. Also, the thickness of Al3Ti 

reaction layers was increased as the reaction time was prolonged, which could reach 

around 5, 10, 15 and 25 µm in S730-1, S730-3, S730-5 and S730-10 samples, 

respectively. In addition, in situ formed Al3Ti particles aggregated together around these 

Ti powders. The amount of Al3Ti particles was increased with increasing the reaction 

time, as shown in Figure 4.38b, c and d. This trend is in good agreement with the XRD 

results in Figure 4.37.  

Furthermore, based on the results of SEM, some important features about the 

Al3Ti reaction layers were also found in the S730 samples. One was that the outside part 

of reaction layer was composed of by some loose Al3Ti particles with weak bonds. 

Second one was that the size of Al3Ti particles in the reaction layer became larger from 

inside to outside of the layer. Third one was that some inter-Al3Ti particle spacings 

existed in the reaction layer. The above three features about reaction layers were shown 
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clearly in Figure 4.38b, c and d, respectively. Also, the in situ formed Al3Ti particulates 

located in the matrix were blocky in morphology and were smaller than 5 µm in size in 

the four S730 samples.  

The results clearly showed that a lower Al melt temperature can lead to the 

formation of small blocky Al3Ti particulates. The formation mechanism of small blocky 

Al3Ti particulates via the direct-melt reaction will be discussed later in this dissertation.  

 

 
 

Figure 4.37 XRD patterns of the S730 samples fabricated at 730 °C with different 

reaction times. 
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Figure 4.38 Typical microstructures of the control samples (S730) with different reaction 

times and higher magnification of areas marked in images: (a) 1 min, (b) 3 min, (c) 5min, 

and (d) 10 min. 
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4.3.1.2 S730 Samples Fabricated with Ultrasound 

1) XRD Analysis of UTS730 Samples Fabricated with Different Times 

Figure 4.39 shows the XRD patterns of the ultrasonically treated samples 

fabricated at 730 °C with different reaction times. Similar to the S730 samples (control 

samples), Al3Ti was the only newly formed phase detected by XRD in the UTS730 

samples, and the amount of Al3Ti phase was increased with increasing the reaction time. 

It was found that there was no significant difference in the diffraction intensity of Al3Ti 

phase between the US730-5 and the US730-10 samples, indicating that the Al3Ti contents 

in both samples were similar. In addition, it is also found the amount of Al3Ti phase in 

the UTS730 sample was obviously higher than that in the S730 sample with the same 

reaction time, which indicated that high-intensity ultrasound promoted the formation rate 

of Al3Ti phase in the direct-melt reaction.  

 

2) SEM Analysis of US730 Samples Fabricated with Different Times 

Similarly, Figure 4.40 shows the typical microstructures of the ultrasonically 

treated samples (UTS730) with different reaction times. After 1 min of ultrasonic 

treatment, a few of solid Ti powders covered by Al3Ti layers existed in the matrix, and 

the thickness of the reactive layer was around 5 µm, as shown in Figure 4.33a. As the 

reaction time was increased to 3 min, most of the solid Ti powders reacted with liquid Al 

completely, a very few of unreacted large-sized Ti powders covered with Al3Ti layers 

were found in the Al matrix, and the thickness of reaction layer was around 5 µm, as 

shown in Figure 4.33b. Moreover, Al3Ti layers in the ultrasonically treated samples were 

gear-like in morphology (as shown in Figure 4.40a and b), suggesting that some outside 
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Al3Ti particles in reaction layer were peeled off from the reaction layer in the ultrasonic 

fields. After 5 min, all solid Ti powders reacted completely with liquid Al (Figure 4.40c), 

since no unreacted Ti particles were found in the Al matrix, indicating the reaction 

between solid Ti powders and liquid Al was promoted greatly in the ultrasonic fields. 

After 10 min, only the in situ formed Al3Ti particulates existed in the UTS10 sample 

(Figure 4.40d). This trend of the amount of in situ formed Al3Ti phase in the 

ultrasonically treated samples was also in good accordance with the XRD results in 

Figure 4.39. In addition, the distributions of in situ formed Al3Ti particulates became 

more homogeneous in the matrix as the ultrasonic processing time was increased. The 

Al3Ti particulates synthesized in the four ultrasonically treated samples were blocky in 

shape, having the size smaller than 5 µm. 

 

 
 

Figure 4.39 XRD patterns of the UTS730 samples with different reaction times. 
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Figure 4.40 Typical microstructures of the ultrasonically treated samples (UTS730) with 

different reaction times and higher magnification of the areas marked in images: (a) 1 

min, (b) 3 min, (c) 5min, and (d) 10 min. 
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4.3.2 Direct-melt Reaction at 700 °C 

4.3.2.1 S700 Sample Fabricated without Ultrasound 

After adding solid Ti powders into molten Al at 700 °C, it was found that the Ti 

powders wrapped in an Al foil were hard to disperse. In contrast, some inclusions 

including Ti powders were easily formed in molten Al. After 10 min, the molten Al was 

poured into a steel mold to form an ingot. Plenty of unreacted Ti powders were found at 

the bottom of the crucible, as shown in Figure 4.41. Four groups of experiments at 

700 °C were repeated in this research, but the similar issue occurred in each group, even 

though a mechanical stirring was applied. The results showed that once these inclusions 

were formed, the reaction between solid Ti and liquid Al was severely hindered, and the 

commonly used mechanical stirring was unable to effectively break up these inclusions. 

Based on this research, the direct-melt reaction between solid Ti powders and liquid Al is 

hard to take place at 700 °C. 

 

 

Figure 4.41 An inclusion including solid Ti powders. 
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(1) XRD Analysis of S700-10 Sample  

Figure 4.42 shows the XRD pattern of the S700-10 sample. No any other phases 

were detected besides Al phase in the sample, indicating that the direct-metal reaction for 

synthesizing Al3Ti is hard to take place at 700 °C. 

 

 
 

Figure 4.42 XRD pattern of the S700-10 sample fabricated at 700 °C with a 10-

min reaction time. 

 

(2) SEM Analysis of S700-10 Sample 

The microstructure of the S700-10 sample was observed by SEM, as shown in 

Figure 4.43. Only individual Ti particle with Al3Ti phase occasionally existed in the 

matrix, as shown in Figure 4.43a. The reaction layer on Ti particle was consisted of some 

blocky Al3Ti particles, and the thickness of reaction layer could reach about 20 μm, as 

shown in Figure 4.43b. The result showed that most Ti powders did not react with liquid 

Al at 700 °C. For the solid Ti powder reacted with Al at 700 °C, it had a similar evolution 

as the solid Ti powders in molten Al at 730 °C. 
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Figure 4.43 Microstructure of the S700-10 sample (a), and Ti particle with Al3Ti phase at  

higher magnification (b). 

 

4.3.2.2 UTS700 Samples  

(1) XRD analysis of UTS700 Samples 

Figure 4.44 presents the XRD patterns of the UTS700 samples fabricated at 

700 °C with different reaction times (5 min and 10 min). Newly formed Al3Ti phase were 

detected clearly in both samples, indicating that the direct-metal reaction for synthesizing 

Al3Ti occurred at 700 °C in ultrasonic fields. Also, the Al3Ti peaks in the UTS700-10 

sample (Figure 4.44b) were stronger than those in the UTS700-5 sample (Figure 4.44a), 

which indicated that more Al3Ti phase was obtained as the reaction time was prolonged 

from 5 to 10 min.  
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Figure 4.44 XRD patterns of the UTS700 samples: (a) 5 min, and (b) 10 min. 

 

(2) SEM Analysis of UTS700 Samples 

The microstructures of the UTS700-5 and UTS-10 samples are shown in Figure 

4.45a and Figure 4.45b. Some blocky Al3Ti particulates were synthesized in both sample, 

and most of these particulates were smaller than 5 μm in size. In the UTS700-5 sample, 

some Ti particles wrapped by reaction layers were found, indicating that a 5-min reaction 

time was not enough for a completed reaction. The reaction layer was composed of by 

some blocky Al3Ti particles, the thickness of which was about 5 μm, as shown in Figure 

4.45a. No unreacted Ti particles were found in the UTS700-10 sample, indicating that the 

direct-melt reaction between solid Ti powders and liquid Al can be conducted completely 

with a 10-min reaction time in ultrasonic fields. The size of most block-like Al3Ti 

particulates synthesized in both samples was smaller than 5 μm.  

The results clearly showed that ultrasound was able to make the direct-melt 

reaction take place at a lower reaction temperature (700 °C). The effects of ultrasound on 

the direct-metal reaction became more obvious at a lower reaction temperature. The 
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effects of ultrasound on the direct-melt reaction will be discussed in detail in the 

following chapter. 

 

 
 

Figure 4.45 Microstructures of the UTS700-5 sample (a) and the UTS700-10 sample (b). 
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CHAPTER 5. DISCUSSION, CONCLUSIONS AND FUTURE WORK 

The mixed-salts reaction of K2TiF6-KBF4-Al system for synthesizing TiB2 

particulates and the direct-melt reaction between solid Ti powders and liquid Al for 

producing Al3Ti particulates were both studied in this research. The discussion of the 

experimental results presented in the previous chapter is divided into two parts regarding 

each reaction. The conclusions of this dissertation and future work are drawn in the end 

of this chapter. 

 

5.1 Discussion of the Mixed-salts Reaction 

The results clearly show that the experimental parameters, such as the reaction 

temperature and reaction time both influence the synthesis of TiB2 particulates via the 

mixed-salts reaction. The reaction temperature is a more crucial factor, which decides the 

yield and size distribution of TiB2 particulates produced in the reaction. In addition, the 

use of high-intensity ultrasound remarkably improves the yield of smaller-sized TiB2 

synthesized at 700 °C. The formation mechanism of TiB2 regarding the Al melt 

temperature is clarified firstly in this section. And then the effects of ultrasound on the 

reaction at a lower temperature (700 °C) are discussed.  
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5.1.1 Formation Mechanism of TiB2 Particulates  

The static experiment provides the crucial route for studying the formation 

mechanism of TiB2 in the mixed-salts reaction. The results in this research displayed the 

differences in the formation of TiB2 at different temperatures (700 and 900 °C), such as 

the yields of TiB2 particulates and their size distributions. It is noted that the reaction 

temperature plays a critical role in the mixed-salts reaction of K2TiF6-KBF4-Al system. 

Accordingly, the related formation mechanism of TiB2 might be different at different 

temperatures. The following discussion about the formation process of TiB2 will be 

conducted considering the Al melt temperature. 

It is obvious that the mixed-salts reaction of K2TiF6-KBF4-Al system is an 

interface reaction based on the following reasons. 

Firstly, according to the microstructure of the static sample shown in Figure 4.30, 

a layer structure of products was obtained in the static sample with a 10-sec reaction time. 

The layer was distributed along the direction from the top to the bottom of the crucible.  

Secondly, the SEM analyses (Figure 4.36) showed that the in situ formed TiB2 

particulates aggregated in a lamellar morphology. When a longitudinal profile was made 

to observe the reaction area, a chain-like structure of reinforcement was found in the 

sample. Since the lamellar reinforcement has a greater density than Al, which can deposit 

during the reaction process. Plenty of similar lamellar reinforcements which were parallel 

to the salts/Al interface were found in the static sample, which clearly proved that the 

mixed-salts reaction is an interface reaction. 

It should be noted that the above interface reaction just realizes the transfers of Ti 

and B from salts to molten Al. Since TiB2, Al3Ti and AlB2 were all existed in the samples 
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produced in the mixed-salts reactions at 800 and 700 °C, the formation process of TiB2 in 

the reaction is not simple.  

Based on the results of static experiment and the series of S900, S800 and S700 

samples obtained in Chapter 4, the possible formation process of TiB2 phase in the 

mixed-salts reaction is discussed below. In order to clearly describe the process, two 

critical steps in the reaction are listed respectively.  

5.1.1.1 Transfers of Ti and B from Salts to Al Melt 

First all of, no obvious KF and AlF3 phases were found in the slags produced in 

the mixed-salts reaction at different temperatures. Thereby, the Ti and B in Al are not 

from the reactions of TiF4 (gas)-Al and BF3 (gas)-Al, in which the TiF4 and BF3 gases are 

from the decomposition of K2TiF6 and KBF4. Accordingly, the formation processes 

described in Eqs 2.9, 2.10, 2.11 and 2.12 are not suitable to explain the formation of TiB2 

phase. At least, the formation of most TiB2 phase in the mixed-salts reaction does not 

follow the chemical reaction shown in Eq. 2.16.  

Actually, it has been reported by Birol (2009) that even though K2TiF6 has a 

higher melting point than KBF4, K2TiF6 can be reduced by Al, releasing Ti at 

approximately 220 °C; KBF4 starts to be reduced by Al a while later at round 525 °C, 

possibly after its polymorphic transformation from orthorhombic to cubic structure is 

over. In this research, after the mixed salts are added on the surface of molten Al, Ti 

released from K2TiF6 and B released from KBF4 both react with Al at the interface 

between salts and Al to form Al3Ti and AlB2 (AlB12 might be formed at higher reaction 

temperatures) by reduction reactions (as shown in Eqs.2.5 and 2.6). According to Al-Ti 
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and Al-B phase diagrams (Sigworth, 1984), as shown in Figure 5.1, Al3Ti and AlB2 are 

both soluble in molten Al. The newly formed Al3Ti and AlB2 phases can dissolve in 

molten Al immediately. And then a thin layer of liquid Al containing Ti and B adjacent to 

the interface can be formed. The processes can be expressed as follows: 

AlTiTiAl Al

dissolving 3][3          Eq. 5.1 

AlBAlB Al

dissolving   ][22        Eq. 5.2 

Actually, the above processes are significantly influenced by the temperature of 

molten Al. Higher contents of [Ti] and [B] in the thin layer are obtained easily at higher 

reaction temperatures. On the one hand, the reduction reactions between salts and Al 

become more active, and more Al3Ti and AlB2 phases can be obtained at a higher 

temperature. On the other hand, according to the phase diagrams in Figure 5.1, the 

solubilities of Al3Ti and AlB2 phases in molten Al become larger as the temperature is 

increased. Thereby, increasing the temperature can accelerate the transfer speed of Ti and 

B to molten Al effectively. In contrast, at lower temperatures, more Ti and B might exist 

as Al3Ti and AlB2 respectively at the reaction interface, because of the limited solubilities 

of the two phases.  

It has been proved that the reaction between K2TiF6 and Al occurs at a much 

higher rate than that between KBF4 and Al. Thereby, the ratio of Ti/B in the thinner layer 

located at the reaction interface is easy to be greater than ½, and this ratio will become 

greater as the temperature of molten Al is decreased. This means that at the early stage of 

the mixed-salts reaction, the reaction to form TiB2 is less complete and the intermediate 

Al3Ti exists in a larger quantity than is required to form TiB2 with AlB2 (Lakshmi, Lu, & 
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Gupta, 1998a). In the static sample, some blocky Al3Ti particulates were found in the Al 

matrix at the early stage of the reaction (Figure 4.31).  

 

 
 

Figure 5.1 The aluminum-rich side of the Al-Ti phase diagram (a), and the aluminum-

rich side of the Al-B phase diagram (b). Both of which were reproduced according to 

Sigworth (1984). 

 

5.1.1.2 Formation of TiB2 Phase  

By comparison, it is found that the yield and size of TiB2 formed at 900 °C were 

both much greater than those of TiB2 synthesized at 700 °C. It is clear that the reaction 

temperature plays a crucial role in the mixed-salts reaction. 

As mentioned above, Ti and B can be easily obtained in the thin layer of Al at the 

reaction interface. When the solutes [Ti] and [B] in liquid Al reaches saturation, they 

might be separated out as the compounds Al3Ti, AlB2 and TiB2 in the ternary system of 

Al-Ti-B. Based on the thermodynamic calculations in the Chapter 2, TiB2 is the most 
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thermodynamically stable phase due to its lowest free energy of formation among the 

three compounds. In addition, according to the phase diagram of Al-Ti-B shown in 

Chapter 2 (Figure 2.5), rather low contents of Ti and B can lead to the formation of TiB2 

phase. At a certain temperature, after the concentrations of [Ti] and [B] reach saturation 

in the Al melt, TiB2 nuclei are formed, and then TiB2 particles start to grow up due to the 

deposition of more Ti and B. In this research, in situ formed TiB2 particles had a rather 

small size. It is suggest that the precipitation-growth mechanism might be more suitable 

to explain the formation of TiB2 particles during the mixed-salts reaction. 

It is well known that the formation of TiB2 is influenced not only by the 

thermodynamic factor, but also by the kinetic factor at a certain temperature. Thereby the 

final formation of TiB2 phase is controlled by the transfers of Ti and B from molten salts 

to liquid Al. 

A higher Al melt temperate can result in a higher concentration of solutes in 

liquid Al, because the mass transfers of Ti and B from salts to the reaction interface 

become faster, and the dissolutions of Al3Ti and AlB2 into molten Al become faster as 

well. On the one hand, the Ti/B ratio in the reaction layer is much closer to 1/2, so plenty 

of TiB2 phase can be formed. In the meantime, the formation of Al3Ti phase can be 

limited effectively. On the other hand, the size of TiB2 particulates can become larger, 

since more Ti and B can be provided in the growth process of TiB2 particulates in a short 

time. The mixed-slats reaction for synthesizing TiB2 phase can be completed in a short 

reaction time. In this research, when the reaction temperature was 900 °C and the reaction 

time was 10 min, no Al3Ti phase was found in the Al matrix, the yield of TiB2 reached 

89.50 %, and the size of most of in situ formed TiB2 particulates was in the range of 400-
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800 nm. As the reaction time was increased to 30 min, no obvious change occurred in the 

S900-30 sample, in which the yield of TiB2 was about 90.30 % and the size of most TiB2 

particulates was in the range of 400-800 nm, as shown in Figure 5.2a. It is clear that the 

S900-30 sample was similar with the S900-10 sample regarding the yield and size 

distribution of TiB2 particulates.  

Figure 5.2b shows the yields and size distributions of TiB2 particulates in the 

S700 samples. When the mixed-salts reaction proceeded at 700 °C with a 10-min reaction 

time, some Al3Ti (AlB2 also should exist) phase existed in the Al matrix, the yield of 

TiB2 was just about 28.10 %, and most of TiB2 particulates were smaller than 300 nm in 

size. The yield of TiB2 fabricated at 700 °C with a 30-min reaction time was 36.40 %, 

which was higher than that of TiB2 in the S700-10 sample by about 29.50 %. 

Furthermore, the ratio of TiB2 particulates with a smaller size was increased, which 

indicated that a certain amount of smaller-sized TiB2 particulates were synthesized as the 

reaction time was prolonged from 10 to 30 min.  

 



111 

 

1
1
1
 

 

Figure 5.2 Comparison of the mixed-salts reactions at 900 °C (a) and 700 °C (b) 

regarding the size distribution and yield of TiB2 particulates. 

 

According to the SEM analysis (Figures 4.18 and 4.23), the products in the S700 

samples were more complicated, in which blocky Al3Ti particulates, tiny TiB2 

particulates and chain-like Al3Ti reinforcement containing TiB2 phase were all formed. 

Actually, when the Al melt temperature is low, the ratio of Ti/B is always higher than ½. 

Part of Ti reacts with B to form TiB2 phase, and the rest of Ti will react with Al to form 

Al3Ti phase. As reported by Mohanty et al. (1995), the growth of Al3Ti could engulf the 

entire TiB2 particulate. Alternatively, the Al3Ti might also nucleate as individual 

particulates (Guzowski, Sigworth, & Sentner, 1987).  
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At a lower temperature, the transfer speed of B to molten Al is much lower than 

that of Ti, thereby the ratio of T/B is much higher than ½. Some TiB2 particulates can 

form following the precipitation-growth process. Since the content of B is rather low in 

the reaction interface, the growth of TiB2 will be limited. As a result, the size of TiB2 in 

the S700-10 sample was much smaller than that of TiB2 produced in the S900-10 sample.  

In the S700-30 sample, the newly formed TiB2 particulates had a smaller size. It is 

reasonable that the newly formed TiB2 particulates in the S700-30 sample were obtained 

according to Eq. 2.7, by which Al3Ti reacted with AlB2 to form TiB2. The detailed 

formation process has been studied by Emamy et al. (2006) and Michael Rajan et al. 

(2013), respectively. The basic sequence of TiB2 formation can be proposed as follows: 

1. The B from AlB2 moves toward Al3Ti phase; 

2. Reaction takes place between Ti and B in a gap from Al3Ti surface to formTiB2; 

3. Dissolution of Al3Ti phase due to natural cracking and fragmentation of Al3Ti 

which lead to increased rate of TiB2 formation. 

 These steps involve the dissolutions of AlB2 and Al3Ti phases and the reaction for 

synthesizing TiB2. Thereby, the related formation process of TiB2 is a dissolution-

reaction process.  

Al3Ti phase in the S700-10 sample mainly exists in the chain-like reinforcements. 

The area surrounding Al3Ti phase is a [Ti]-rich region. AlB2 phase also exists in molten 

Al, which can dissolve in Al to generate B atoms. When B atoms contact with the Al3Ti 

phase, Ti and B can react to form TiB2. The concentrations of [Ti] and [B] are rather low 

due to the low temperature of molten Al; thereby the TiB2 particulates synthesized in this 

period are not able to grow large, and more TiB2 particulates with smaller size were 
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formed. As a result, the percentage of TiB2 particulates with smaller size in the S700-30 

sample was increased compared with the S700-10 sample, as shown in Figure 5.2b. As 

the reaction time was increased, the quantities of Al3Ti and AlB2 were both decreased, 

and more TiB2 could be formed. A comparison about the chain-like reinforcements 

between the S700-10 sample and the S700-30 sample is given in Figure 5.3. It is clear 

that the size of long chain-like reinforcements became small due to the dissolution of 

Al3Ti phase in the formation of TiB2 particulates. In this research, because the 

temperature was rather low, a complete formation of TiB2 was hard to achieve in a short 

holding time.  

 

 
 

Figure 5.3 Microstructures of the S700-10 sample (a) and S700-30 sample (b). 

 

 One more thing should be mentioned is about the AlB2 phase. In this research, the 

phases in the slags produced in the fabrications of the S700-10 and S700-30 samples 

were similar; on the other hand, the content of TiB2 was increased in the S700-30 sample, 

it is reasonable to think some AlB2 should exist in the S700-10 sample. Due to the rather 

small amount of AlB2, it is hard to be detected by XRD. As reported by Wang et al. 
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(2011), blocky AlB2 could be formed in the Al-B master alloy at 750 °C with a 10-min 

reaction time. Wang et al. (2012) continued proving that the similar AlB2 particles still 

existed in the Al-B master alloy at 750 °C with a 30-min reaction time. So it is hard to 

distinguish AlB2 phase in the S700-10 and S700-30 samples in this research.  

This research clearly showed that a lower temperature could decrease the size of 

TiB2 particulates obviously. However, the synthesis speed of TiB2 in the mixed-salts 

reaction at a lower temperature became rather slow, leading to a lower yield of TiB2. In 

order to obtain more TiB2 phase, longer reaction time is needed. Chen et al. (2014) 

reported that a completed reaction for synthesizing TiB2 could not be achieved with a 60-

min holding time after salt addition at 750 °C, and large areas of AlB2 and Al3Ti were 

observed along the grain boundary of the composites.  

 Overall, at a higher reaction temperature (900 °C), the mixed-slats reaction for 

synthesizing TiB2 phase mainly follows the precipitation-growth process at the reaction 

interface between salts and liquid Al. At a lower reaction temperature (700 °C), two types 

of TiB2 particulates are formed: one is formed following the precipitation-growth process 

at the reaction interface, and the other one some is produced due to the dissolution 

reaction between AlB2 and Al3Ti. The latter one has a smaller size compared with the 

former one.  

 

5.1.2 Effects of Ultrasound on the Synthesis of TiB2 at 700 °C 

In this research, a much higher yield of TiB2 particulates was obtained via the 

ultrasound assisted mixed-salts reaction at 700 °C with a 10-min reaction compared with 

the experiment without ultrasound. The yields of TiB2 phase synthesized in the two 
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samples are shown in Figure 5.4. The yield of TiB2 phase in the UTS700-10 sample 

could reach 90.40 %, whereas value was just 28.10 % in the S700-10 sample.  

 

 

 

Figure 5.4 Yields of TiB2 synthesized in the UTS700-10 and S700-10 samples. 

 

After adding the mixed K2TiF6 and KBF4 powders into the pure Al melt irradiated 

with high-intensity ultrasound, the solid powders were dissolved into the melt 

immediately. Shortly, the melt surface turned red, indicating that plenty of heat was 

generated during the mixed-salts reaction; whereas, the dissolution rate of which became 

slower in the Al melt without ultrasound, suggesting that ultrasound was able to 

accelerate the dissolution of salts into the melt effectively. The temperature changes of 

the Al melt in both experiments were measured in one minute intervals for 10 min with a 

thermocouple which was immersed into the melt with a depth of about 3 cm, as shown in 

Figure 5.5. The temperature of the melt could increase about 90 °C in one minute, and 

then the temperature started to decrease. As the reaction proceeded, the amount of 

reactants became less, and the heat was transferred to deeper melt, leading to the fall of 
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temperature. In the ultrasound assisted mixed-salts reaction, in the first 6 min, the 

temperature of melt irradiated with ultrasound was higher than that without using 

ultrasound, indicating that the mixed-salts reaction was promoted effectively in the 

ultrasonic fields.  

 

 
 

Figure 5.5 Temperature changes of the Al melt during the reaction with time. 

 

In the present research, it is demonstrated that high-intensity ultrasound was able 

to promote the synthesis of TiB2 phase effectively via the mixed-salts reaction at a lower 

temperature. It is well known that ultrasonic fields in a liquid can give rise to nonlinear 

effects, such as acoustic caviation and acoustic streaming. A developed cavitation 

generated by ultrasonic vibration in the melt can be evaluated by two ultrasonic 

parameters: one is the frequency and the other is the acoustic intensity. Generally, the 

frequency of high-intensity ultrasound might be influenced by the temperature of the melt. 

A high temperature can result in the decrease of the ultrasonic frequency. In this research, 
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the frequency change of ultrasound in the Al melt was measured in one minute intervals 

for 10 min with a frequency meter. The related results were shown in Figure 5.6. Before 

immersing the Nb probe into the melt, the ultrasonic frequency was 20.01 kHz. After 10 

min, the value of frequency was around 19.84 kHz. It is clear that the ultrasonic 

frequency decreased a little bit, but its attenuation was rather limited. Thereby, the actual 

working frequency of introduced into the melt in this research was able to arouse 

ultrasound. 

The acoustic intensity kp in the melt can be expressed by the following expression: 

2

1

)
2

(
S

CP
p LL

k




        Eq. 5.3 

where P is the output power of ultrasonic generator, L the density of melt, LC the speed 

of ultrasound in the melt, S the cross sectional area of the probe tip. In our research, 

kWP 5.1 , 392.1  gcmL (Chrenkova, Danek, & Silny, 2001), and 206.5 cmS  . The 

speed of ultrasound in the mixed molten K2TiF6-KBF4 salt has never been reported. 

According to the work by Cantor (1972), the value of LC  could be approximately 

regarded as 
13105.2  ms , thereby Papk

61069.1  , which is much higher than the 

threshold value for generating acoustic cavitation. Based on this calculation, it is 

reasonable to believe that the cavitation was able to reach the developed stage in molten 

salts. 
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Figure 5.6 The working frequency of ultrasound in the mixed-salts reaction. 

 

The synthesis of TiB2 particles undergoes the processes of nucleation and growth, 

in which the saturabilities of Ti and B atoms and their diffusion rates from the molten 

mixed salts to Al melt both influence the formation of TiB2 particles. Thereby, the effects 

of ultrasound on promoting the formation of TiB2 particles can be investigated in terms of 

the above aspects. In order to explain the synthesis of TiB2 in ultrasonic field, a 

schematic illustration about ultrasound assisted the mixed-salts reaction at lower reaction 

temperature is shown in Figure 5.7. 
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Figure 5.7 Schematic illustration showing the synthesis mechanism of small-sized 

TiB2 particulates in ultrasonic field (t: the holding time, and t1< t2 < t3). 

 

As mentioned above, a rapid dissolution of solid mixed salts in Al melt was 

obtained in this research, which was attributed to the effects of ultrasonic cavitation. For 

Al-K2TiF6-KBF4 system, ultrasound can generate micro-jet impact and shock wave 

damage in front of the surfaces of solid salts. These two physical effects result in the 

localized erosion which can greatly promote the dissolution rate of solid salts. The time 

when ultrasound is introduced to the Al melt is denoted as t1. Within the molten salts Ti 

and B atoms start to diffuse into the Al melt across the interface of salts and Al melt. The 

Ti and B atoms can react with Al to form Al3Ti and AlB2 by reduction reactions firstly. In 

ultrasonic fields, the bubble collapses produces extreme local temperature which can 

reach 5000 K; thereby the Al3Ti and AlB2 can be more easily dissolved into the Al melt 

to form [Ti] and [B]. 

As the time increases, the concentrations of [Ti] and [B] adjacent to the interface 

increase due to the further diffusions. It should be mentioned that due to the application 

of ultrasound, more energy is provided to the molten mixed salts. As reported in Chapter 
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2, the cycle of single acoustic cavitation is rather short, and the ultrasound is able to 

activate the chemical reaction effectively in a short time. As a result, the activities of Ti 

and B atoms are enhanced greatly, resulting in much faster and easier transfers from salts 

to molten Al. Consequently, a saturation of [Ti] and [B] can be reached rapidly by using 

ultrasound compared to the treatment without ultrasonic. 

When the concentrations of [Ti] and [B] research saturation, TiB2 nuclei 

precipitate from the saturation region in the Al melt, and the time of this stage is denoted 

as t2. Shock waves generated in the ultrasonic fields can induce several physical and 

chemical effects, including the enhanced mass transfers due to strong turbulent mixing 

and acoustic streaming. Thereby, the Ti and B in the Al melt irradiated with ultrasound 

have better contact, leading to the formation of more effective TiB2 nuclei. It has been 

reported that the sonication can effectively enhance the nucleation rate. (Gracin, Uusi-

Penttilä, & Rasmuson, 2005). In addition, previous research (Luque de Castro & Priego-

Capote, 2007) has shown that ultrasound can induce primary nucleation in nominally 

particle-free solutions at much lower supersaturation levels, and can shorten the induction 

time between the moment when supersaturation is established and the onset of nucleation 

and crystallization.  

As the time increases from t2 to t3, more Ti and B deposit to the surfaces of the 

growing TiB2 crystals. Consequently, the size of TiB2 particulates becomes larger. In this 

research, the size of TiB2 particulates was much smaller compared with the S900 samples. 

The possible reason might be explained as follows. On the one hand, more effective TiB2 

nuclei can be produced in ultrasonic field; thereby the size of single TiB2 particle can be 

limited. On the other hand, the growth of TiB2 crystals is also influenced by the solute 
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concentration around them. Solute-rich region can provide more Ti and B for the growth 

of TiB2 in a certain amount of time. Due to the strong turbulent mixing and acoustic 

streaming, TiB2 particulates are pushed far away from the solute-rich region, and the 

growth of TiB2 particulates can be hindered effectively. Thereby, the size of most of in 

situ formed TiB2 particulates was smaller than 300 nm in this research.   

The mechanical disturbances created by both cavitaion and ultrasonic streaming 

alter the fluid dynamics and increase bulk-phase mass transfer. On the one hand, 

supersatutration of Ti and B in the Al melt could be obtained easily, and Ti and B had 

more chance to contact in ultrasonic fields, leading to the formation of more effective 

TiB2 nuclei in the Al melt. On the other hand, rapid mass transfer of the solute could 

provide more Ti and B on the surface of the growing TiB2 particles.  

In addition, extremely high temperature and pressure created by bubble collapse in 

the ultrasonic fields can give rise to the following effects (Ruecroft, Hipkiss, Ly, Maxted, 

& Cains, 2005): 1) subsequent rapid local cooling rates, calculated at 10
7
-10

10
 K/s, play a 

significant role in increasing supersaturation; 2) localized pressure increases reduce the 

crystallization temperature, and 3) the cavitation events allow the excitation energy 

barriers associated with nucleation to be surmounted. The above effects can accelerate 

the nucleation and growth rates of TiB2 particulates obviously. 
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5.2 Discussion of the Direct-metal Reaction 

5.2.1 Formation Mechanism of Blocky Al3Ti Particulates  

In this research, small blocky Al3Ti particulates were synthesized successfully via 

the direct-melt reaction between solid Ti powders and liquid Al at low temperature of 

730 °C. Based on the morphology of reaction layer on the unreacted Ti particles and the 

EDS results, it is obvious that the reaction layer was composed of by some Al3Ti particles, 

which became looser and larger from inside to outside of the layer. Some separated Al3Ti 

particulates were distributed around the reaction layer as well. Accordingly, a reaction-

peeling model was proposed to explain the formation of small blocky Al3Ti particulates 

at low temperatures.  

A reactive diffusion can occur at the Ti/Al interface as soon as the solid Ti 

particle contacts the liquid Al. In reactive diffusion, the reaction rate for the formation of 

new phase can be evaluated by diffusion coefficients for the species. It is well known that 

the impurity diffusion coefficient in solids is usually described by the Arrhenius equation: 

)/exp(0 RTEDD A        Eq. 5.4 

where D0 is a temperature-independent pre-exponential (m
2
/s), EA the activation energy 

for diffusion (J/mol), R the gas constant, and its value 8.31 J/mol●K; T the absolute 

temperature (K). Based on this empirical equation, the diffusion rates for Ti atoms to Al 

and Al atoms to Ti in the Ti (solid)-Al (liquid) system can be approximately evaluated, 

and then the main diffusion phase can be defined. In the temperature range of 700-850 °C, 

the Arrhenius equation for the diffusion coefficients for Al in solid Ti (DAl/Ti) (Thuillard, 

Tran, & Nicolet, 1988) and for Ti in liquid Al(DTi/Al) (Du, Chang, Huang, Gong, Jin, Xu, 

Yuan, Liu, He, & Xie, 2003) can be expressed as the following equations, respectively: 
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TmolKJ

molJ
smD TiAl

/31.8

/114600
exp/1058.9 29

/
    Eq. 5.5 













 

TmolKJ

molJ
smD AlTi

/31.8

/36300
exp/1029.4 27

/
    Eq. 5.6 

Since some heat was released in the reaction, the temperature of the Al melt 

containing solid Ti powders was in the range of 730-750 °C, and the values of DAl/Ti and 

DTi/Al are in the range of 1.0×10
-14

 to 1.35×10
-14

 m
2
/s and 5.5×10

-9
 to 6.0×10

-9
 m

2
/s, 

respectively, as shown in Figure 5.8. This result illustrates that solid Ti is the main 

diffusing species in the Al(l)-Ti(s) system, for the values of DTi/Al are much greater than 

those of DAl/Ti by around five orders of magnitude.  

 

 
 

Figure 5.8(a) Diffusion coefficients for Al in Ti and (b) diffusion coefficients for Ti in Al 

in the temperature range of 973-1123 K. 

 

 

In order to illuminate the formation mechanism of the small-sized blocky Al3Ti 

particulates, a schematic illustration about the evolution of Ti powders in molten Al is 

shown in Figure. 5.9. A single Ti particle is regarded as a Ti sphere. In the initial stage of 

diffusion of Al(l)-Ti(s) system, solid Ti powders totally exposure to liquid Al, and plenty 

of Ti atoms can cross Ti/Al interface into liquid Al in a very short time. According to the 
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Al-Ti phase diagram (Sigworth, 1984) (as shown in Figure.2.7), It is clear that the 

solubility of Ti in liquid Al is rather low at 730 °C, which is less than 0.15 wt. %. As a 

result, the initial diffusion of Ti atoms across the Ti/Al interface into the liquid Al can 

produce a saturated solution adjacent to the interface. After that, the nucleation of Al3Ti 

phase occurs, and these Al3Ti nuclei attach to the surface of solid Ti particle. The time for 

the formation of the Al3Ti nuclei is referred as t1, as shown in Figure 5.9a. 

As the reaction time increases from t1 to t2, further diffusion of Ti atoms results in 

the growth of Al3Ti particles on the solid Ti surface. Due to the spherical morphology of 

Ti particle, Al3Ti particles grow along the radical direction rather than the planar 

direction. For Al3Ti phase, it usually has the priority growth at <110> direction. John et 

al.(1979a) indicated that for the growth of Al3Ti particles, the growth rate anisotropy can 

be adequately accounted for by a marked difference in the rate of atomic attachment to 

the major crystallographic planes. The analysis of atomic attachment kinetics by Jackson 

(1969) suggested that, for a given crystallographic direction related to the planar density 

normal to that direction, a nucleation of new atomic layers is easier on the lower density 

planes. Al3Ti phase has the lowest density on (110) direction, thereby the growth of Al3Ti 

favors <110> direction. As a result, the Al3Ti reaction layer on the surface of Ti particle 

is not a compact layer and some inter-Al3Ti particle spacings exist in the reaction layer 

due to the above growth characteristics of in situ Al3Ti particles, as shown in Figure 5.9b.  

As the reaction time further prolongs to t3, more Ti atoms are consumed to form 

Al3Ti phase, and Al3Ti particles grow larger. Thereby, for the reactive diffusion between 

solid Ti and liquid Al, it is a process of the decrease of solid Ti volume, but also a 

process of the increase of Al3Ti volume. Figure 5.10 shows the evolution of thickness of 
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the reaction layer on the solid Ti particles at 730 °C with different reaction times (1, 3, 5 

and 10 min). The thickness of S730-1, S730-3, S730-5 and S730-10 were 5, 10, 15 and 

25μm, respectively. These reaction layers were composed of by a few of Al3Ti particles 

with inter-spacings.  

One important feature is that the volume of the Al3Ti phase formed in the Al-Ti 

interface is greater than the consumption volume of Ti, which can be easily understood 

due to the lower density of Al3Ti comparing with Ti. Also, Machowiak et al. (1959) 

reported the same finding in their research. This volume change easily gives rise to 

stresses in the reaction layer. During the growth of Al3Ti phase, tensile stresses in the 

reaction layer develop parallel to the Ti surface. An easy rupture of Al3Ti particles from 

reaction layer takes place when the tensile stresses become large enough. The existence 

of spacings between each Al3Ti particles and the brittleness of Al3Ti are attributed to the 

peeling process. Furthermore, the rupture of the Al3Ti phase is also attributed the shear 

stress produced by the liquid Al flow. In addition, some works reported that the fracture 

strength of a metal can be reduced in a liquid metal, because the liquid metal affects the 

fracture behavior at the tip of the crack, reducing the critical stress intensity for fracture 

and altering the micromechanism of fractures at the crack tip, which is named as liquid 

metal induced embrittlement (Clegg, 2001; Lynch, 1984). Liquid Al may give rise to a 

similar effect on the fracture of the Al3Ti phase. Based on the preceding analysis, the 

Al3Ti phase can be easily peeled from the reaction layer during the direct-melt reaction, 

as shown in Figure 5.9c. 

After the Al3Ti particles peel from the reaction layer, the remaining Al3Ti phase 

starts to grow following the above steps. The latter peeling particles push the earlier 
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peeling particles away to outside. Thereby, a loose reaction layer composed of loose 

Al3Ti particles can be formed. 

 

 
 

Figure 5.9 Schematic illustration showing the formation mechanism of small-

sized blocky Al3Ti particulates (t: the reaction time, t1<t2<t3): (a) nucleation of 

Al3Ti, (b) growth of Al3Ti, and (c) rupture of Al3Ti particulates. 
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Figure 5.10 Thickness of the reaction layers on Ti particles in the S730 and 

UTS730 samples with different reaction times. 

 

It is easy to understand that the temperature of molten Al has a significant effect 

on the direct-melt reaction for synthesizing Al3Ti phase. A higher temperature can lead to 

a faster direct-melt reaction, because the diffusion coefficients increase as temperature 

increases. Most importantly, a higher temperature can shorten the delay time of the 

direct-melt reaction. Once the reaction occurs, the solid Ti powders are hard to be 

wrapped by Al2O3 films and the direct-melt reaction between solid Ti powders and liquid 

Al can proceed.  

In this research, when solid Ti powders were added into molten Al at 700 °C, the 

temperature of molten Al around the addition would be decreased, because some heat 

was absorbed by the solid Ti powders. The reactive diffusion between solid Ti powders 

and liquid Al was delayed. The solid Ti powders were easily wrapped by Al2O3 films to 

form inclusions, and then the reactive diffusion between solid Ti and liquid Al was 

limited severely. In the end, the direct-melt reaction was not able to occur at 700 °C. 
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5.2.2 Effects of Ultrasound on the Direct-melt Reaction 

According to the results of direct-melt reaction conducted at 730 and 700 °C, it is 

obvious that high-intensity ultrasound promoted significantly the synthesis of Al3Ti 

particulates via the direct-melt reaction between solid Ti powders and liquid Al. Based on 

the preceding analysis, the formation mechanism of Al3Ti particulates at low 

temperatures was explained through the reaction-peeling model. The effects of ultrasound 

on the reaction are analyzed in terms of this formation mechanism. 

Results in Chapter 4 showed that the reaction time for a completed direct reaction 

at 730 °C in ultrasonic fields was about 3-5 min; whereas the reaction time exceeded 10 

min at 730 °C without ultrasound. It is clear that the reaction time was shortened 

remarkably by using ultrasound. The advantage of ultrasound in the direct-melt reaction 

at a lower temperature was highlighted in this research. At 700 °C, the direct-melt 

reaction between solid Ti powders and liquid Al was hard to be conducted without 

ultrasound; whereas in situ Al3Ti particulates could be formed successfully in ultrasonic 

fields.  

When high-intensity ultrasound was introduced in molten Al at 730 °C (or 

700 °C), the generation of a developed acoustic cavitation in the Al melt was also 

evaluated by Eq. 5.3. In this experiment, the density of molten Al, 335.2  gcmAl , 

131065.4  msCL ; thereby PaPk

61055.2  , which is much larger than the threshold 

value for arising acoustic cavitation in molten Al, indicating that acoustic cavitation 

played crucial effects on the direct-melt reaction for synthesizing Al3Ti particulates.  
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As introduced in Chapter 2, when high-intensity ultrasound is introduced into the 

liquid-solid (powders) system which can be regarded as a suspension system, some 

unique effects are generated in the suspension. One is the instantaneously high pressure 

in the Al melt, the value of which can reach around 500 atmospheres. Once the high 

pressure is add on the Ti particle, the Al3Ti particles on its surface will be peeled away 

more easily. On the other hand, due to the existence of shock waves, the ultrasonic 

irradiation of liquid-solid (powder) suspensions produces a very important effect: high 

velocity interparticle collisions. As reported by Suslick (1990), the shock waves can 

cause small particles to collide into one another with great force and the impact velocities 

range from 100-500 m/s for particles ~10 µm. The interparticle collisions are able to 

introduce remarkable changes in surface morphology, composition and reactivity. In this 

research, a solid particle can collide with the other solid particle with high speed due to 

effect of ultrasound. Based on the momentum theorem, since the collision time is rather 

short, the force generated between the two particles will be extremely large. Thereby, the 

Al3Ti reaction layer on the Ti surface can be destroyed effectively, leading to a thinner 

Al3Ti reaction layer on the Ti surface. In addition, due to the viscosity of the Al melt, the 

high speed movement of Ti particles wrapped with Al3Ti particles in the Al melt can 

produce shear force between the solid particles and liquid Al, which also contributed to 

the peeling of Al3Ti particles. The accelerated peeling of Al3Ti from the reaction layer in 

ultrasonic field can decrease the thickness of reaction layer, by which the contact of Ti 

atoms and Al atoms became much easier, and the reaction time was shortened remarkably.  

By comparing the S730 samples with the UTS730 samples, it is clear that the 

thickness of the reaction layer in the UTS730 samples were much thinner than those in 
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the S730 samples, as shown in Figure 5. 10. The thickness of the reaction layers in 

UTS730-1 and UTS730-3 samples were just around 5 μm, which was similar to the size 

of Al3Ti particulates, suggesting that the reaction layer was composed of by a single layer 

of Al3Ti particles.  The results clearly show that the outside Al3Ti particles of the reaction 

layers were easily peeled away in the ultrasonic fields. In the meantime a thinner reaction 

layer can result in a faster reaction between solid Ti and liquid Al, as the diffusion 

distance becomes shorter.  

In addition, the diffusion coefficient of solid Ti in liquid Al is a key parameter for 

the direct-metal reaction. The diffusion coefficient might be increased because of the 

instantaneously high temperature generated in the ultrasonic fields, leading to a faster 

diffusion reaction, which is also a positive factor for synthesizing Al3Ti particulates in 

molten Al.  

Also, as mentioned in Chapter 2, there are two main proposed mechanisms for the 

effects of acoustic cavitation on the liquid-solid interface: shock wave damage and micro-

jet impact. Both of which can induce the damage to the solid surface.  

In this research, large sized inclusions containing solid Ti powders were easily 

formed in molten Al at 700 °C. The asymmetry of the environment near these inclusions 

induces a deformation of the cavity during the collapse of bubbles. As reported by 

Suslick (1990), this deformation is self-reinforcing, and it sends a fast-moving stream of 

liquid through the cavity at the surface with velocities greater than 100 m/s.  

The second mechanism of cavitation-induced surface damage invokes shock 

waves created by cavity collapse in molten Al. High frequency nonlinear shear stress 
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resulting from shock waves in the ultrasonic fields can lead to the erosion of solid 

inclusion containing Ti powders. 

The impingement of micro-jets and shock waves on the inclusions results in the 

localized erosion which can tear the inclusions and the solid Ti powders can be released 

into molten Al. Thereby Al3Ti particulates can be formed in the ultrasonic fields at 

700 °C.  

In addition, the acoustic streaming generated in ultrasound fields is also attributed 

to the disruption of the inclusions in molten Al, because it can induce the microstreming. 

The shear force resulting from the microstreaming might be an active mechanism of the 

disruption of inclusions.  

 

5.3 Conclusions 

Low-temperature synthesis of particulates in molten Al was concerned in this 

research, in which the mixed-salts reaction of K2TiF6-KBF4-Al system for synthesizing 

TiB2 particulates and the direct-melt reaction between solid Ti powders and liquid Al for 

producing Al3Ti particulates were both studied. By applying high-intensity ultrasound to 

the two reactions, TiB2 and Al3Ti particulates can be synthesized at much lower 

temperatures. The following conclusions are drawn: 

1. Reaction temperature has an important influence on the synthesis of TiB2 in 

molten Al via the mixed-salts reaction. A high temperature (900 °C) is beneficial for the 

formation of TiB2. A higher temperature can lead to a higher yield of TiB2 particulates 

with a larger size. In contrast, smaller-sized TiB2 particulates can be obtained at a lower 

temperature (700 °C), but the formation of TiB2 can be limited significantly. In the 
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meantime, some intermediate products such as Al3Ti and AlB2 phases exist in the Al 

matrix. 

2. At a higher reaction temperature (900 °C), the formation of TiB2 particulates 

mainly follows a precipitation-growth process, in which the nucleation and growth of 

TiB2 phase proceed at the reaction interface between the salts and Al. At a lower 

temperature (700 °C), the precipitation-growth process and dissolution reaction between 

AlB2 and Al3Ti both contribute to the formation of TiB2. As the reaction time is 

prolonged, TiB2 particulates with a smaller size can be formed. 

3. High-intensity ultrasound has remarkable effects on the formation of TiB2 

particulates at a lower temperature. A high yield of TiB2 particulates with smaller size is 

obtained via the ultrasound assisted mixed-salts reaction. Ultrasound can lead to 

accelerated mass transfers of Ti and B from the molten salts to the reaction interface, and 

a high nucleation rate of TiB2 can be accelerated significantly in ultrasonic fields. These 

two effects contribute to the low-temperature synthesis of TiB2.  

4. For the direct-melt reaction between solid Ti powders and liquid Al at low 

temperatures, a reaction-peeling model is created to explain the formation of small 

blocky Al3Ti particulates in molten Al.  

5. Ultrasound is able to effectively accelerate the reaction-peeling process. The 

reaction time for a completed synthesis of Al3Ti can be shortened significantly. Most 

importantly, the formation of inclusions containing solid Ti powders can be avoided in 

the ultrasonic fields, allowing for the realization of a lower-temperature synthesis of 

Al3Ti at 700 °C.  



133 

 

1
3
3
 

5.4 Future Work 

Due to the limitation of the research time, more important work is worth doing in 

the future based on this research.   

For the mixed-salts reaction, only 10-min and 30-min reaction times were studied 

in the present research. Actually, in order to clarify the reaction clearly, more reaction 

times are needed, such as 5 min, 20 min and 60 min; especially for the ultrasound assisted 

mixed-salts reaction, some shorter reaction times, such as 1min, 3 min and 5 min might 

be useful to recognize the effects of ultrasound on the mixed-salts reaction.  

For the ultrasound assisted direct-melt reaction, the temperature of molten Al was 

decreased as low as 700 °C. Since the melting point of pure Al is about 660 °C, the 

temperatures lower than 700 °C can be tried in the future work. The Al alloys always 

have much lower melting temperatures than pure Al. It is reasonable to think that the 

ultrasound assisted direct-melt reaction has more advantages in the fabrication of in situ 

Al3Ti/Al alloys composites. Also, some alloying elements in the Al alloys might 

influence the direct-melt reaction for producing Al3Ti phase. Thereby, more interesting 

results might be obtained using the Al alloys to replace the pure Al in the direct-melt 

reaction.  

 The final aim of fabricating in situ particulate reinforced Al (alloys) composites is 

to improve the mechanical properties of materials. The mechanical properties of Al 

composites should be examined in the future work. 
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