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ABSTRACT

Li, Qian Ph.D., Purdue University, December 2014. High Fidelity Simulations of
Electrokinetic Phenomena in Microfluidic Devices. Major Professor: Steven H.
Frankel.

Electroosmotic flow with electrokinetic effects is the primary method of fluid han-

dling in micro-total analysis systems. Under external applied electric fields, electroki-

netic micro-devices allow for innovative functionality in a wide range of microfluidic

applications including sample injection, separation, rapid micromixing, and miniatur-

ized chemical and biochemical analysis and detection. This dissertation focuses on

simulations of two electrokinetic phenomena, isotachophoresis (ITP) and electroki-

netic instability (EKI). A set of coupled governing equations including the incom-

pressible Naiver-Stokes equations, Nernst-Planck transport equations and a charge

conservation equation are solved in the simulation. A multiblock in-house solver based

on high-order finite difference schemes is developed to solve the system of equations

and thus to numerically capture essential physics of ITP and EKI in microfluidic de-

vices. Validation of the solver is provided for one-dimensional ITP problems in which

sharp gradients present in species concentration and electric fields. It is demonstrated

that the current solver can offer an accurate non-oscillatory solution with reduced nu-

merical diffusion compared to several existing numerical schemes on a given uniform

grid. Two-dimensional ITP and EKI problems are then simulated to acquire a good

understanding of the basic mechanism and behavior of the two electrokinetic phe-

nomena under certain conditions. Finally, a series of three-dimensional simulations

are carried out to predict EKI phenomena in a realistic cross-shaped microchannel.

It is shown that the current solver has the capability to capture the threshold value

of applied electric field for the onset of instabilities and it offers a better prediction



xi

for the critical features of EKI phenomena in the considered cross-shaped microchan-

nel compared to the numerical and experimental results presented in the literature.

Moreover, in the general parametric study the present solver also explores several use-

ful guidelines showing the effect of different parameters, including the electric field

strength, the conductivity ratio, the channel depth as well as the electric field ratio

on EKI in a cross-shaped microchannel.
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1. INTRODUCTION

1.1 Motivation

Electrokinetic flows with conductivity gradients or ion density gradients occur in a

wide range of microfluidic applications [1], [2]. As a result, many integrated electroki-

netic micro-devices have been developed as a key component for micro-total-analysis

systems over the past two decades. The so-called micro-total-analysis systems (µTAS)

refer to those microfluidic systems that integrate multiple laboratory processes and

functions on a single platform. Compared to their macro-scale counterparts, such

systems offer many advantages including a more rapid analysis, a significant im-

provement in performance, and a reduction in reagent consumption and the amount

of chemical waste [3]. When electrokinetic devices are used in these µTAS, electric

fields are typically employed to fulfill novel functionalities, for example, to enable

rapid and miniaturized chemical and biochemical analysis and detection [4]. How-

ever, due to electro-osmotic flow mismatch and electrokinetic instability, complex flow

phenomena may occur and it challenges our fundamental understanding and predic-

tion capability for electrokinetic flows [5]. Thus, relevant knowledge is desired so as to

achieve robust control of the electrokinetic phenomena induced in the electrokinetic

microfluidic devices.

The main motivation for the current work is connected with two electrokinetic

problems, isotachophoresis (ITP) and electrokinetic instability (EKI). Both of these

two problems are challenging while can be widely used in various fields including

genetics, pharmacology, chemistry and biochemistry [6]. For example, as an elec-

trophoresis technique which allows for simultaneous separation and focusing of chem-

ical and biological species, ITP poses difficult design and simulation challenges espe-

cially when high electric fields and ion density gradients are involved in electrophore-
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sis processes. In EKI, despite that the cells observed in the electroconvective motion

may look similar to Rayleigh-Benard convection cells, the EKI phenomena are much

more complicated from both the physical and the mathematical points of view. The

present research focuses on simulating the two important and challenging electroki-

netic phenomena in microfluidic devices as described above. As a strong research

tool like experiments, computational fluid dynamics (CFD) simulations can provide

valuable details and insights of the electrokinetic phenomena. For instance, in ITP

computer simulations give a way to reveal fundamental processes ruling the dynamics

of electrokinetic separation and preconcentration methods. For EKI, the knowledge

acquired from the numerical study can not only provide useful guidelines for design

improvement for electrokinetic micro-devices, but it may also offer a more efficient

way to implement rapid micromixing for low Reynolds number flows.

1.2 Background

The increasing demands for novel and effective mixing technologies as well as

the smooth execution of complex chemical reactions in process industry, pharmacy,

chemical analysis and biochemistry have generated extensive research interest. As a

result, a considerable variety of micro-reaction technologies and microfluidic systems

have been developed during the past twenty years. Nowadays, besides stand-alone

micro-devices the microfluidic systems known as lab-on-a-chip (LOC) or µTAS are

more and more widely used in practice to offer the promise of integrating multiple

laboratory processes onto one single chip, and thereby increasing throughput and de-

creasing assay cost [7]. µTAS devices are generally designed to carry out the functions

such as sample introduction, injection, mixing, reaction, dispensing, separation and

detection through a series of micrometer-scale channels [8].

Since the characteristic length scales of such systems are in the micrometer range,

the properties of flows in µTAS are different from macro-scale flows and they are dom-

inantly controlled by viscous forces rather than inertia [9]. The reduced dimensions
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of µTAS can lead to a large surface-to-volume ratio, which increases heat and mass

transfer efficiencies, for example, the small dimensions allow rapid diffusive mixing

to occur in as little as 100 µs [10]. In addition, due to this large surface-to-volume

ratio property, many interesting interfacial phenomena that are usually neglected in

macro-scale fluid mechanics, namely wetting properties, surface tension, capillary ef-

fects, electrokinetic effects, etc. could be considered as driving forces [5]. In the

above mentioned effects, employing electric fields and taking advantage of electroki-

netic phenomena to manipulate fluids in microchannels has been demonstrated as one

of the most promising approaches [11]. Compared to the traditional micro-devices

like syringe pumps that use mechanical forces to drive fluids, electrokinetic devices re-

quire no external mechanical moving parts and they have the advantages of a simpler

microchannel design, a more straightforward fabrication process, and a rudimentary

voltage control scheme [12].

In the following two subsections, a brief overview of the two electrokinetic prob-

lems in microfluidic devices that would be studied in the present work are provided

respectively, including the relevant major concepts, the applications, and a review of

previous studies. Electrokinetic instability (EKI) is introduced first, and then it is

followed by an introduction to the electrophoretic preconcentration and separation

technique, isotachophoresis (ITP).

1.2.1 Electrokinetic Instability (EKI)

In the applications of electrokinetic micro-devices, one important regime is on-

chip biochemical assays with high conductivity gradients. Conductivity gradients are

prevalent in on-chip electrokinetic processes including multi-dimensional assays [13],

systems with poorly specified sample chemistry, and pre-concentration methods such

as isoelectric focusing [14] and field amplified sample stacking [15]. Electrokinetics

(EK) is a branch of electrohydrodynamics (EHD) that describes the interaction of

ion transport, fluid motion and electric fields and it is distinguished from EHD by the
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relevance of interface charge at solid-liquid interfaces [16]. Microfluidic flows (typically

with Reynolds numbers of order unity or smaller) are characterized by low velocities

(typically in order of 10−3m/s) and extremely small characteristic lengths (typically

between 1µm and 100µm) resulting in laminar flows that are strongly damped by

viscous forces and are very stable for most flow conditions. However, under certain

conditions, owing to electrokinetic instabilities heterogeneous ionic conductivity fields

in the presence of applied electric fields can make the flows become unstable and lead

to propagation of the instability through the flows by maintaining those conditions.

Electrokinetic instability (EKI) is a microscale instability arising from the cou-

pling of the electric field, ion-electromigration as well as fluid motion. The reason why

the terminology ”electrokinetic instability” is chosen is because it is relevant to elec-

trokinetic microfluidic systems and more importantly the convective nature of such

instability is somehow determined by electro-osmotic flow. Since the first reported

observation of EKI in an electrokinetic microsystem by Oddy et al. in 2001 [17],

EK techniques received renewed interests. Extensive research in the development

of more accurate models for predicting threshold conditions for instability onset as

well as other flow features like coherent wave structures and mixing rate were con-

ducted. In 2002, by using experimental research tool Chen and Santiago [18] explored

that conductivity gradient and high electric field strength play a very important role

in inducing the instability. After that, more systematic experimental investigations

on EKI were performed in greater details by various groups. The research covered

different aspects of EKI including electroosmotic convection [19, 20], time-periodic

forcing [12, 21], multiple-species [22], chaotic dynamics [23, 24], and various design

problems for micromixing applications [25–28]. Among these experimental studies,

the work done by Posner and Santiago [20] is of especial importance as this research

completed an extensive parametric study for convective instability in cross-shaped

microchannels. It investigated the stability of a layer of high-conductivity solution

sandwiched between two low-conductivity streams in which the applied field was or-



5

thogonal to the conductivity gradient. This work provided a detailed parametric

database for the design of EK applications with a generic and general configuration.

Besides experimental manners, researchers also took advantage of numerical sim-

ulations as a strong research tool to obtain insights of the EKI mechanism and behav-

ior. In 2004 Lin et al. [29] related the instability physics with earlier works on EHD

instability and developed a set of governing equations based on a modified Ohmic

model to study EKI with a symmetric binary electrolyte. Along with experimental

data, 2D and 3D numerical simulations were presented for the temporal disturbances

that form at the interface of two liquid streams in a long, rectangular cross-section

straight channel using second-order numerical schemes. In the study, it was found

that compared with the 2D linear analysis, the 3D analysis provided much closer

agreement with experimentally measured values. In 2005, by adopting the reduced

form of the equations provided by Lin et al., Storey [30] implemented 2D and 3D

simulations for EHD flows driven by conductivity gradients in a rectangular straight

microchannel and studied the effects of different assumptions in boundary conditions

on nonlinear behavior of EKI using direct numerical simulation. In addition, Storey

pointed out that if the channel is deep such that instability can occur even in the

depth direction, then the depth-averaged equations are no longer applicable and 3D

numerical simulation is the only viable option for flow modeling. In 2006, Kang et

al. [31] performed a numerical analysis for a two-dimensional unsteady DC electro-

osmotic flow using a second-order finite volume method and examined the initial and

later stages of growth of the convective instability in T-shaped microchannels. In

2009, Luo [32] performed a series of numerical and experimental investigations in

the use of EKI effects to achieve species mixing within a cross-shaped microchip, the

same flow geometry as presented in [20]. In the numerical study, only 2D simula-

tions were conducted by employing the backward-Euler time-stepping method and

second-order central difference scheme. More recent research about EKI is focusing

on chaotic dynamics of electrokinetic flows. In 2013, Druzgalski et al. [33] used di-

rect numerical simulations of the coupled Poisson-Nernst-Planck and Navier-Stokes
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equations to study transport processes associated with electro-hydrodynamic chaos

in electrokinetic systems containing an ion-selective surface. In 2013, Demekhin et

al. [34] adopted a finite-difference method with second-order accuracy for the spatial

discretization and a semi-implicit 31
3
-step Runge-Kutta scheme for the integration in

time to numerically study EKI and an unusual transition to chaotic motion near a

charge-selective surface. The numerical investigation gave a qualitative agreement of

the experimental and the theoretical values of the threshold of instability.

1.2.2 Isotachophoresis (ITP)

Isotachophoresis (ITP) is an electrophoretic preconcentration and separation tech-

nique that utilizes a heterogeneous buffer system of disparate electrophoretic mobili-

ties [35]. Due to the features of simultaneous separation and focusing of a wide range

of chemical and biological species, ITP is useful in numerous applications such as drug

discovery, toxin detection, pharmacology, genetics and food analysis [36, 37]. In ITP

it typically requires two zones containing different electrolytes: a trailing electrolyte

(TE) with low ionic mobility and a leading electrolyte (LE) with high ionic mobil-

ity. The sample analytes of interest should have intermediate mobilities. Under the

action of an electric field, the sample ions separate simultaneously and redistribute

themselves in segregated zones in order of decreasing mobility starting from TE to

LE along the channel. At steady state, these focused sample zones migrate at an

identical speed as that of the leading zone, thus it is termed ”iso(same)-tacho(speed)-

phoresis(transport)” which is derived from the ancient Greek [38].

Due to the inherent preconcentration effect of ITP, sharp concentration bound-

aries can be formed between adjacent sample zones. With the increase of the applied

electric field the interfaces of sample zones become even sharper as the width of the

interface is inversely proportional to the applied electric field [39]. As a result, ITP

can be difficult to simulate because of the mathematical stiffness that accompanies

steep concentration gradients, i.e. significant spurious oscillations may occur when
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simulating ITP under high electric fields. In order to accurately resolve the sharp in-

terfaces, numerous numerical schemes were proposed over the past 20 years including

simulation software packages such as the 1D solver GENTRANS [40–42], SIMUL [43],

SPRESSO [44] as well as commercially available multidimensional software such as

CFD-ACE+ (ESI, Huntsville, AL, USA) [45] and COMSOL Multiphysics (COM-

SOL, Inc., Burlington, MA, USA) [46]. Roughly speaking, most of the solvers were

developed to simulate 1D ITP in simple, linear channels and the numerical schemes

basically fall into two categories: non-dissipative schemes and dissipative schemes.

In general, most existing non-dissipative schemes adopt a second-order central dis-

cretization on a uniform grid [47–51]. To reduce numerical oscillations, such schemes

require a large number of grid points. For example, at realistic electric fields and chan-

nel lengths it may need O(103) − O(104) uniform grid points which results in very

long computation cost even on modern computers [49, 50]. In order to improve the

performance of non-dissipative schemes, Bercovici et al. proposed a non-dissipative

sixth-order compact scheme with an adaptive grid algorithm [44, 52]. This solver

named SPRESSO is an open-source simulation tool for 1D electrophoresis available

at [53]. The advantage of the SPRESSO solver over the previous non-dissipative

schemes is not only due to its high order accuracy but also from the high resolu-

tion. In addition, with an adaptive grid mechanism SPRESSO allows grid points to

accumulate in relatively small regions that include high concentration gradients and

thus this solver can give accurate solutions to ITP simulations while using much less

computational resources.

In contrast to non-dissipative schemes, dissipative schemes can offer faster and

non-oscillatory solutions to ITP simulations under high electric fields. However, this

is at the cost of physical accuracy as dissipative schemes would introduce numerical

dissipation so as to stabilize the solutions. Based on the second-order centered spatial

discretization, Ermakov et al. introduced artificial dispersion to the scheme to achieve

higher resolution and thus obtained smooth solutions up to a low current density of

100A/m2 (one order of magnitude lower than current densities used in the labora-
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tory) [54]. Martens et al. implemented first-order upwind discretization and other

higher order dissipative scheme such as third-order QUICK (Quadratic Upstream

Interpolation for Convective Kinematics) scheme [55]. It was found that the first-

order upwind scheme allowed non-oscillatory solutions at current densities of order

1000A/m2 but resulted in overly diffused concentration interfaces, i.e. wider interfaces

than analytical solution. The third-order QUICK scheme was specifically useful for

the decrease of such numerical diffusion. Hence, it was pointed out by [55] that higher-

order algorithms generally offer better results than lower-order algorithms when look-

ing at the zone boundary thickness which is critical in ITP simulations. Sounart and

Baygents proposed a second-order FTC (flux-corrected transport) method to offer

limited numerical dissipation in the scheme and thus made the interface widths much

closer to the expected values compared with the first-order upwind scheme [56]. Sim-

ilarly, Yu et al. used a second-order CESE (the spacetime conservation element and

solution element) method to reduce the numerical dissipation and thereby improved

the accuracy at interfaces compared with upwind schemes [57]. There were few numer-

ical studies on two-dimensional ITP and to our knowledge none on three-dimensional

ITP problems even in recent years. Shim et al. applied different finite-volume schemes

with first- or second-order accuracy to numerically study isotachophoretic separation

in microchannels in which five ionic components were considered [58]. They obtained

qualitative agreement with the existing 1D model and pointed out that the power-law

scheme is superior to the other schemes used in the paper due to its higher accuracy.

Bhattacharyya et al. adopted the finite volume method using a third-order QUICK

scheme to simulate sample dispersion in ITP with pressure-driven or electroosmotic

counterflow [59, 60]. In the study, they only considered one sample species besides

the LE and TE electrolytes.
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1.3 Objectives and Organization

In the previous section, it has been shown that electrokinetic problems are in-

teresting examples of complex, multi-physical flow phenomena on the micro-scales

and they have a wide range of applications in microfluidic systems [61–66]. Due to

non-linear electromigration physics, steep gradients in species concentration and/or

electric fields occur in the electrokinetic phenomena of EKI and ITP. In order to

accurately resolve sharp interfaces and simulate essential physics of EKI and ITP, a

high order solver is required. Therefore, the primary objective is to provide a high

order accurate numerical tool to simulate and study the electrokinetic phenomena of

EKI and ITP in microfluidic devices. The solver is an in-house high-order accurate

finite-difference incompressible Navier-Stokes solver, originally developed for large

eddy simulation of transitional and turbulent flows [67, 68]. Then it is further de-

veloped to incorporate a set of species partial differential equations (PDE) including

Nernst-Planck transport equations and a charge conservation equation. The present

solver is also coupled with a multi-block approach to allow simulations with complex

geometries that fit Cartesian grids. Details on the corresponding mathematical mod-

els, the numerical methods and the implementations are provided in the chapters 2

and 3.

Another objective of the present research is to apply the developed solver to

simulate and gain an insight into ITP and EKI phenomena in microfluidic devices.

To understand the basic behavior and mechanism of the electrokinetic phonomena,

one-/two-dimensional simulations are first conducted for ITP and EKI in simple,

linear microchannels. The relevant results are given and discussed in Chapter 4.

After that, a cross-shaped microchannel with rectangular cross-sections is considered.

This more complex and realistic three-dimensional flow geometry is directly relevant

to electrokinetic injection studies, electrokinetic mixing schemes, and sample pre-

concentration processes that make use of conductivity gradients. Three-dimensional

simulations are carried out for EKI phenomena in such flow geometry under different
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parameters including applied electric field strength, conductivity ratio, channel depth-

to-width ratio, and electric field ratio etc. The obtained simulations are compared to

the numerical and experimental results available in the literature. The corresponding

results and discussions are presented in details in Chapter 5. At the end, Chapter

6 summarizes the current research work and proposes possible further enhancements

to the present solver for future work.
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2. MATHEMATICAL MODEL

2.1 Theoretical Formulation for EKI

2.1.1 Governing Equations

The governing equations adopted in the present work for simulating EKI in a

symmetric binary electrolyte are from the modified Ohmic model of Lin et al. [29].

The Ohmic model, or the so-called leaky dielectric model is frequently used as an

excellent approximation to deal with electrohydrodynamics in which electric and flow

fields are coupled with each other [69]. Instead of individual ions, bulk quantities of

conductivity (σ) and charge density (ρe) are tracked in the Ohmic model.

Since magnetic effects can be completely ignored in the absence of external mag-

netic fields, the electrostatic field E in electrohydrodynamic systems is solenoidal

∇× E = 0 (2.1)

For electrically linear medium, the electric field E which obeys the Gauss’s law sim-

plifies to

∇ · εE = ρe (2.2)

where, ε is the permittivity.

For a monovalent binary electrolyte which is fully dissociated, charge density (ρe)

and electric conductivity (σ) are related to ionic concentrations by [70]

ρe = F (c+ − c−) (2.3)

σ = F 2(c+m+ + c−m−) (2.4)

where, F is the Faraday constant, m± is the ionic mobility (in mol N−1ms−1), and

c± is the cationic/anionic molar concentration.
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Under the assumption of electro-neutrality which is a good approximation for

most electrolyte solutions (typically with σ > 10−4 S/m (Siemens per meter)) with

fast charge relaxation (typically with the charge relaxation time τe = ε/σ < 10µs), the

cationic and anionic molar concentrations are approximately equal to each other [19]

c+ ' c− = c (2.5)

where, c is the reduced ionic concentration.

From Equation (2.4), the conductivity is proportional to this reduced concentra-

tion and can be simplified by

σ = F 2(m+ +m−)c (2.6)

By combining the Nernst-Planck equations for ionic species [71]

∂c+
∂t

+∇ · (c+u) = D+∇2c+ −m+F∇ · (c+E) (2.7)

∂c−
∂t

+∇ · (c−u) = D−∇2c− +m−F∇ · (c−E) (2.8)

and using the electro-neutrality condition (2.5), the electro-diffusion equation, i.e.

the conservation equation of conductivity can be derived as

∂σ

∂t
+∇ · σu = Deff∇2σ (2.9)

where, u is the fluid velocity, and Deff is an effective diffusivity that is defined by

Deff =
2D+D−
D+ +D−

(2.10)

where, ionic diffusivity D± can be related to mobility m±, the universal gas constant

R and the absolute temperature T by Einstein’s relation D± = RTm±.

The conservation equations of charged species, i.e. Equations (2.7) and (2.8) can

be also arranged to yield the charge conservation equation

∂ρe
∂t

+∇ · (ρeu) = ∇ · iD −∇ · (σE) (2.11)

where, iD is diffusive current.
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Since in electrohydrodynamic systems the applied electric field is typically high,

the diffusive current can be safely neglected for most practical cases [72]. This as-

sumption gives iD = 0. In addition, under the electro-neutrality assumption, ρe = 0.

Then Equation (2.11) can be further simplified as

∇ · (σE) = 0 (2.12)

Notice that the quasi-electrostatic field E is related the potential φ by E = −∇φ, as

a result, Equation (2.12) becomes

∇ · (σ∇φ) = 0 (2.13)

Fluid flow in an electrohydrodynamic system can be governed by the incompress-

ible Navier-Stokes equations with electrical body forces included in the conservation

equations of momentum [29]

∇ · u = 0 (2.14)

ρ
∂u

∂t
+ ρu · ∇u = −∇p+ µ∇2u + Fe (2.15)

where, p is the pressure and µ is the dynamic viscosity. The electrical body forces

in the momentum equation (2.15) include both a Coulombic and a polarization com-

ponent Fe = ρeE − 1
2
E2∇ε. However, since a dilute solution of electrolyte does not

significantly alter the permittivity of pure water, permittivity gradient is negligible

and thus the polarization term drops out of Equation (2.15). This yields the simplified

momentum equation as

ρ
∂u

∂t
+ ρu · ∇u = −∇p+ µ∇2u + ρeE (2.16)

It should be pointed out that although the material derivative of charge density ρe

may often be neglected in the charge conservation equation (2.11) with the electro-

neutrality assumption, it is not appropriate to neglect the Coulombic body force term

ρeE in the momentum Equation (2.16) since it is that force drives the electrohydro-

dynamic flow.
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In summary, to model incompressible, electrically linear leaky dielectrics with

rapid charge relaxation and negligible diffusive current for a symmetric binary elec-

trolyte solution, the governing equations can be written as

∂σ

∂t
+ u · ∇σ = Deff∇2σ (2.17a)

∇ · (σ∇φ) = 0 (2.17b)

∇ · (εE) = ρe (2.17c)

∇ · u = 0 (2.17d)

ρ
∂u

∂t
+ ρu · ∇u = −∇p+ µ∇2u + ρeE (2.17e)

To non-dimensionalize equations (2.17), the following scales are introduced: [x, y, z] =

w, [u, v, w] = Uev, [t] = w/Uev, [E] = E0, [φ] = E0w, [ρe] = εE0/w, [σ] = σ0, [ρ] =

ρ0, [p] = µUev/w, [ζ] = ζ0. Here, w is the half-width of the microchannel, Uev is the

so-called electroviscous velocity and is used as the velocity scale. E0 is taken to be

the value of the characteristic electric field. σ0 is the characteristic conductivity of

the electrolyte solution. ζ0 is the reference zeta potential. Details about this zeta

potential will be discussed in the section 2.1.2.

Then the following set of dimensionless governing equations can be obtained

∂σ∗

∂t∗
+ u∗ · ∇σ∗ =

1

Rae
∇2σ∗ (2.18a)

∇ · (σ∗∇φ∗) = 0 (2.18b)

∇ · (∇φ∗) = − ρ∗e (2.18c)

∇ · u∗ = 0 (2.18d)

Re(
∂u∗

∂t∗
+ u∗ · ∇u∗) = −∇p∗ +∇2u∗ − ρ∗e∇φ∗ (2.18e)

where the two non-dimensional parameters, the electric Rayleigh number and the

Reynolds number are respectively defined by

Rae ≡
Uevw

Deff

(2.19)

and

Re ≡ ρ0Uevw

µ
(2.20)
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where the electroviscous velocity scale is derived from the balance of viscous and

electrical body forces in the momentum equation (2.18e)

Uev ≡
εE2

0w

µ
(2.21)

2.1.2 Boundary Conditions

Since the characteristic length of the electrical double layer (EDL), which can be

called the Debye length (λD) is considerably less than the width and height of the

microchannel (λD < 10nm), the physics of the EDL only determine the electroos-

motic velocity in the immediate vicinity of the microchannel walls [73]. The normal

components of velocity, electric field, and conductivity gradient vanish at solid walls.

The liquid flow field at solid walls is bounded by a slip plane which excludes the EDLs

of the system and at which the electroosmotic velocity is directly proportional to the

local electric field [70].

Therefore, the boundary conditions at the walls can be written in the following

dimensionless form

n·∇σ∗ = 0 (2.22a)

n·∇φ∗ = 0 (2.22b)

n · u∗ = 0 (2.22c)

t · u∗ =t ·
(
− 1

Rv

ζ∗∇φ∗
)

(2.22d)

where, t and n denote the wall-tangential and the wall-normal directions, respec-

tively. Equation (2.22a) is consequence of nonconductive walls and Equation (2.22b)

indicates that there is no ion diffusion across the boundaries. Equation 2.22c is the

condition that the wall is impenetrable. In Equation (2.22d), the electroosmotic ve-

locity at the wall is given by the Helmholtz-Smoluchowski equation [74]. ζ∗ is the

zeta-potential of the EDL and its value varies as a function of the ionic concentra-

tion, which in return depends on the ionic conductivity for dilute solutions under

electro-neutrality conditions. And this dependence introduces well-known dispersive
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effects [75]. In modeling the zeta potential, the following empirical correlation can be

adopted:

ζ∗ = (σ∗)−k (2.23)

where, k is an empirical constant and can be chosen as 0.3 which is consistent with

experimental results of both Yao et al. [76] and Sadr et al. [77].

The nondimensional parameterRv in Equation (2.22d) is the ratio of electroviscous

velocity Uev to electroosmotic velocity Ueo defined as [20]

Rv ≡
Uev
Ueo

=
E0w

ζ0
(2.24)

where the electroosmotic velocity is given by the Helmholtz-Smoluchowski formula-

tion

Ueo = −εE0ζ0
µ

(2.25)

The boundary conditions for pressure can be derived and obtained by substituting

Equation (2.22d) into the momentum equation (2.18e).

2.1.3 Solution Procedure

To solve the governing equations given in the previous subsection for EKI simu-

lations, based on proper initial conditions velocity field u∗ and pressure field p∗ are

solved from the incompressible Navier-Stokes equations, i.e. Equations (2.18d) and

(2.18e). Then with the velocity field, conductivity σ∗ can be obtained by solving the

conservation equation of conductivity (2.18a). Using the known conductivity σ∗ the

charge conservation equation (2.18b) can be solved and thus electric potential φ∗ is

determined. Once the electrolytic Ohmic model is obtained, charge density ρ∗e can

be estimated using Gauss’ law, i.e. Equation (2.18c), and thus the electrical body

force term can be found. In addition, the slip velocities at walls can be determined

using Equation (2.22d) with the obtained conductivity σ∗ and electric potential φ∗

at walls. Finally, velocity and pressure field can be solved from the incompressible

Navier-Stokes equations with a determined electrical body force for next time step.

The solution procedure is illustrated as shown in Figure 2.1.
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Fig. 2.1. Solution procedure for EKI simulations.

2.2 Theoretical Formulation for ITP

2.2.1 Governing Equations

In Section 2.1 we introduced the theoretical formulation for EKI problems. From

the mathematical point of view, the EKI model is a special case of ITP model. In the

modeling of ITP, individual speices rather than bulk quantities are computed. The

motion of ionized electrolytes in the presence of an applied electric field is governed

by their rate of convection, electromigration and diffusion, which are included in the

Nersnt-Planck equation [78]

∂ci
∂t

+∇ · (uci + ziµiciE−Di∇ci) = 0 (2.26)

where, u is the fluid velocity field, ci, zi, µi, and Di = µiRT/F is the concentration,

the valence, the mobility, and the ionic diffusivity of the ith species respectively.
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The multiplication of Equation (2.26) by the Faraday constant F and the species

valence zi, and the summation of all charged species allows to arrive at the charge

conservation equation
∂ρe
∂t

+∇ · j = 0 (2.27)

where the free charge density ρe is defined as

ρe = F
∑
i

zici (2.28)

and j is the current density which includes conductive, convective and diffusive com-

ponents

j = F

(
E
∑
i

z2i µici + u
∑
i

zici −
∑
i

ziDi∇ci

)
(2.29)

Since in ITP the characteristic length scale of the conductivity interface is typi-

cally much larger than the electric length scale associated with regions of significant

net charge [39], the contribution of the charge density in Equation (2.27) and the con-

vective term in Equation (2.29) can be neglected. As a result, the electroneutrality

approximation can be obtained from Equation (2.28) as∑
i

zici ≈ 0 (2.30)

and the charge conservation equation simplifies to

∇ ·

(
E
∑
i

z2i µici −
∑
i

ziDi∇ci

)
= 0 (2.31)

Notice the quasi-electrostatic field E is related the electric potential φ by E =

−∇φ, then Equation (2.26) can be rewritten as

∂ci
∂t

+∇ · [(u− ziµi∇φ)ci]−∇ · (Di∇ci) = 0 (2.32)

Note that the multiplication of the term
∑

i z
2
i µici in Equation (2.32) by the

Faraday constant F gives the ionic conductivity of the bulk liquid

σ = F
∑
i

z2i µici (2.33)
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Thus, Equation (2.31) can be expressed as

∇ · (σ∇φ) = −F∇ ·

(∑
i

ziDi∇ci

)
(2.34)

Fluid flow in ITP is still governed by the incompressible Navier-Stokes equations with

electrical body forces, i.e. Equation (2.17e).

In summary, the final form of the dimensional governing equations for ITP can be

written as

∂ci
∂t

+∇ · [(u− ziµi∇φ)ci] −∇ · (Di∇ci) = 0 (2.35a)

∇ · (σ∇φ) = − F∇ ·

(∑
i

ziDi∇ci

)
(2.35b)

ρe = −∇ · (ε∇φ) (2.35c)

∇ · u = 0 (2.35d)

ρ
∂u

∂t
+ ρu · ∇u = −∇p+ η∇2u− ρe∇φ (2.35e)

Notice here we use η to refer to the dynamic viscosity.

The nondimensional governing equations for ITP will be specifically discussed and

given in Section 4.1 when simulating different cases in ITP.

2.2.2 Boundary conditions

In ITP, the boundary conditions at walls are similar to those for EKI. Since the

Debye layer thickness is much smaller than the height of the microchannels, the

slip velocity condition can be assumed on the channel walls in ITP. We denote such

electroosmotic slip velocity along the channel wall for the ith species zone as uEOFi

and it can be determined by the Helmholtz-Smoluchowski’s eqaution as [79]

uEOFi = µEOFi Ei (2.36)

where, Ei and µEOFi are the electric field and the electroosmotic mobility in the

corresponding ith species zone respectively.
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Thus, in ITP the boundary conditions at the walls can be written as

n·∇ci = 0 (2.37a)

n·∇φ = 0 (2.37b)

n · u = 0 (2.37c)

t · u =t ·
(
µEOFi Ei

)
(2.37d)

where, t and n denote the wall-tangential and the wall-normal directions, respectively.

2.2.3 Solution Procedure

Fig. 2.2. Solution procedure for ITP simulations.

The procedure for solving the governing equations for ITP simulations is similar to

that for EKI simulations. The solution procedure for ITP simulations is described as

shown in Figure 2.2. Based on proper initial conditions, velocity field u and pressure
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field p are solved from the incompressible Navier-Stokes equations, i.e. Equations

(2.35d) and (2.35e). Then with the velocity field, ionic concentration for each species

can be obtained by solving a number of Nernst-Planck transport equations like Equa-

tion (2.35a) (for example, if there are n species considered in the system, n Nernst-

Planck equations need to be solved). According to Equation (2.33), conductivity σ

can be evaluated from the ionic concentration of the species. Using the known con-

ductivity σ the charge conservation equation (2.35b) can be solved and thus electric

potential φ is determined. Charge density ρe then can be estimated using Gauss’ law,

i.e. Equation (2.35c), and the electrical body force term can be found. In addition,

the slip velocities at walls can be determined using Equation (2.37d) with the ob-

tained electric potential φ at walls (notice the local electric field Ei is computed using

electric potential φ at walls in the corresponding species zones). Finally, velocity and

pressure field can be solved from the incompressible Navier-Stokes equations with a

determined electrical body force for next time step.
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3. COMPUTATIONAL METHODOLOGY

The present solver is developed based on a high-order accurate LES solver for sim-

ulating transitional and turbulent flows by Shetty et al. [67]. The incompressible

Navier-Stokes equations (2.18d) and (2.18e) are solved in a predictor/corrector man-

ner using a fractional time stepping scheme. The time integration is performed by

adopting a third-order accurate backward difference (BDF) scheme [80]. The con-

vective terms are discretized by a fifth-order Weighted Essentially Non-Oscillatory

(WENO) scheme [81], and the viscous terms are discretized using central finite differ-

ence schemes. Ghost points near the boundaries outside the fluid domain are used to

maintain the order of accuracy of the spatial discretization by following a Stokes flow

boundary condition provided by Morinishi et al. [82]. In a similar way, the species

transport equations (2.18a) or (2.35a) are solved using the WENO scheme for the

convective terms, the central finite difference schemes for the viscous terms and the

fractional time stepping BDF scheme for the time advancement. The elliptic partial

differential equations, i.e. the pressure Poisson equation for correcting velocities and

the charge conservation equation, are solved using MUDPACK libraries in the 2D

version of the solver and using the MPI libraries based hypre solver [83] in the 3D

version of the solver, respectively.

In order to make the computation of the pressure gradient a bit easier in the

correction step of the time advancement, and also to avoid odd-even decoupling issue

between the pressure and velocity which may lead to checkerboard patterns in the

solutions, a staggered grid is adopted for the computational domain in which the

velocity components u, v and w are stored at mid points between the vertices along

x-, y-, and z-axis respectively while the values of pressure are located at the vertices.

A schematic of such staggered grid used in the solver is shown in Figure 3.1.
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Fig. 3.1. Schematic of the staggered grid used in the present solver.

3.1 Time Integration

The incompressible Navier-Stokes equations are integrated through a fractional

time stepping algorithm. In the prediction step, velocity components are predicted

by solving the momentum equations (2.18e) without considering the pressure gra-

dient term. The fully explicit third-order accurate BDF scheme used for the time

integration in this step can be written as

α1u
∗
i − (α2u

n
i + α3u

n−1
i + α4u

n−2
i )

∆t
+NLCTi − V ISCi − EBFi = 0 (3.1)

where, α1 = 11/6, α2 = 3, α3 = −3/2, and α4 = 1/3. u∗ is the predicted velocity

value. NLCTi, V ISCi and EBFi refer to the non-linear convective terms, viscous

terms and electric body force terms respectively which are expressed as

NLCTi = 2

(
uj
∂ui
∂xj

)n
−
(
uj
∂ui
∂xj

)n−1
(3.2a)

V ISCi = 2

(
1

Re

∂2ui
∂xj∂xj

)n
−
(

1

Re

∂2ui
∂xj∂xj

)n−1
(3.2b)

EBFi = 2

[
1

Re

(
∂2φ

∂xj∂xj

)
∂φ

∂xi

]n
−
[

1

Re

(
∂2φ

∂xj∂xj

)
∂φ

∂xi

]n−1
(3.2c)
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During the correction step, the pressure field is then obtained by using the predicted

velocity to solve the following Poisson equation

∂2pn+1

∂xi∂xi
=
α1Re

∆t

∂u∗i
∂xi

(3.3)

In the end, the predicted velocity is corrected by the pressure field to obtain the final

velocity field by

un+1
i = u∗i −

∆t

α1Re

∂pn+1

∂xi
(3.4)

For inertial flows (Re > 1), explicit methods do not impose a too severe restriction

on the time step so that numerical solutions can be obtained in reasonable time.

However, in low Reynolds number flows, for example, when Reynolds numbers are of

order 10−1 or smaller which can be easily found in electrokinetic flows in microfluidic

devices, as the viscosity is high the viscous term become a source of stiffness [84]. As

a result, explicit methods have a stringent stability restriction leading to very small

time steps [85].

In order to improve the efficiency and stability of the present solver, a semi-implicit

third-order BDF is used for the time integration where the viscous term is treated

implicitly while the nonlinear convective terms and the electrical body force term

are still computed explicitly. Then Equation (2.34) for the time integration in the

prediction step would be modified to

α1u
∗
i − (α2u

n
i + α3u

n−1
i + α4u

n−2
i )

∆t
− V ISC∗i = −NLCTi + EBFi (3.5)

where, the non-linear convective terms NLCTi and the electrical body force terms

EBFi are the same as given in Equations (2.35a) and (2.35c) respectively, while the

viscous terms are expressed in terms of the predicted velocity u∗

V ISC∗i =
1

Re

∂2u∗i
∂xj∂xj

(3.6)

At each time step in the prediction stage, the predicted velocity will be obtained

simultaneously throughout the computational domain by solving a system of equa-

tions to eliminate the numerical viscous stability restriction. In the present solver, the

solution of the predicted velocity is obtained by using the hypre library in parallel.
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To validate the semi-implicit method, the present solver is applied for a two-

dimensional straight microfluidic channel since it is a widely used benchmark test case

for microfluidic applications [86]. An analytical solution exists for the fully developed

laminar velocity profile that has to be obtained at the outlet of the micro-channel.

By comparing the computational results obtained by the semi-implicit method and

the explicit method to the analytical solution at a given low Reynolds number of

Re = 0.1 for a size of 100µm × 10µm straight microchannel using 180 × 40 grid

points, it was found that for a sufficient accuracy the time step of the semi-implicit

method can be chosen as about 20 times larger than the explicit method. Notice that

the semi-implicit method is about twice as costly as the explicit method. As a result,

the semi-implicit method is overall about 10 times more efficient than the explicit

method for time integration.

The convection-diffusion transport equations can be solved in a similar way but

with no correction step because there are no gradient terms in the equations. For

such scalar equations, the unknown scalar Q can be directly solved by the third-order

BDF scheme for the time advancement which is

α1Q
n+1 − (α2Q

n + α3Q
n−1 + α4Q

n−2)

∆t
+NLCT − V ISC = 0 (3.7)

For EKI applications, the non-linear convective term NLCT and the viscous term

V ISC in Equation (2.18a) are defined by

NLCT = 2

(
ûj
∂Q

∂xj

)n
−
(
ûj
∂Q

∂xj

)n−1
(3.8a)

V ISC = 2

(
1

Rae

∂2Q

∂xj∂xj

)n
−
(

1

Rae

∂2Q

∂xj∂xj

)n−1
(3.8b)

where, ûj = uj is the velocity of the bulk flow, and Q refers to the electrical conduc-

tivity of the bulk liquid.
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For ITP applications, the non-linear convective term NLCT and the viscous term

V ISC in Equation (2.35a) are defined by

NLCT = 2

(
∂(ûjQ)

∂xj

)n
−
(
∂(ûjQ)

∂xj

)n−1
(3.9a)

V ISC = 2

(
D

∂2Q

∂xj∂xj

)n
−
(
D

∂2Q

∂xj∂xj

)n−1
(3.9b)

where, ûj = uj− zµ ∂φ
∂xj

includes the velocity of the bulk flow and the ion velocity due

to electromigration. z, µ,Q refer to the ionic valence, mobility and concentration of

each individual species, respectively.

3.2 Spatial Discretization

In solving both the incompressible Navier-Stokes equations and the conservation

equation of conductivity, the non-linear convective terms are computed using a fifth-

order WENO scheme to achieve high-order accuracy. The key idea in WENO schemes

is to use a non-linear adaptive procedure to automatically choose the locally smoothest

stencil to avoid crossing discontinuities in the interpolation procedure as much as

possible, and hence to obtain a higher order accurate approximation. By following

the approach by Zhang and Jackson [87], any variable f under consideration can be

reconstructed as

fj+1/2 =
3∑

k=1

ωkf
k
j+1/2 (3.10)

where, fkj+1/2 is a second order polynomial reconstruction of f on the kth set of stencils

and the nonlinear weights ωk are

ωk =
ω̃k
3∑
l=1

ω̃l

(3.11a)

ω̃l =
γl

(ε+ βl)2
(3.11b)
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If uj+1/2 ≥ 0 then γ1 = 0.3, γ2 = 0.6, γ3 = 0.1 and fkj+1/2 is computed by

f 1
j+1/2 =

1

3
fj +

5

6
fj+1 −

1

6
fj+2 (3.12a)

f 2
j+1/2 =− 1

6
fj−1 +

5

6
fj +

1

3
fj+1 (3.12b)

f 3
j+1/2 =

1

3
fj−2 −

7

6
fj−1 +

11

6
fj (3.12c)

with the smoothness indicators βl

β1 =
13

12
(fj − 2fj+1 + fj+2)

2 +
1

4
(3fj − 4fj+1 + fj + 2)2 (3.13a)

β2 =
13

12
(fj−1 − 2fj + fj+1)

2 +
1

4
(fj−1 − fj+1)

2 (3.13b)

β3 =
13

12
(fj−2 − 2fj−1 + fj)

2 +
1

4
(fj−2 − 4fj−1 + 3fj)2 (3.13c)

For uj+1/2 < 0 then γ1 = 0.1, γ2 = 0.6, γ3 = 0.3 and fkj+1/2 is computed by

f 1
j+1/2 =

11

6
fj+1 −

7

6
fj+2 +

1

3
fj+3 (3.14a)

f 2
j+1/2 =

1

3
fj +

5

6
fj+1 −

1

6
fj+2 (3.14b)

f 3
j+1/2 =− 1

6
fj−1 +

5

6
fj +

1

3
fj+1 (3.14c)

with the smoothness indicators βl

β1 =
13

12
(fj+1 − 2fj+2 + fj+3)

2 +
1

4
(3fj+1 − 4fj+2 + fj + 3)2 (3.15a)

β2 =
13

12
(fj − 2fj+1 + fj+2)

2 +
1

4
(fj − fj+2)

2 (3.15b)

β3 =
13

12
(fj−1 − 2fj + fj+1)

2 +
1

4
(fj−1 − 4fj + 3fj + 1)2 (3.15c)

Finally, the gradient of the function f is calculated from the above reconstructed

fluxes by
∂f

∂xi
=
fj+1/2 − fj−1/2

∆xi
(3.16)

The viscous terms in the momentum equations are discretized by a second-order

accurate central difference scheme when using the semi-implicit method. The viscous

terms in the scalar transport equations or the other second-order derivatives in the
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governing equations are computed using the following fourth-order accurate central

difference scheme

∂2fi
∂x2j

=
1

∆x2j

(
− 1

12
(fj−2 + fj+2) +

4

3
(fj−1 + fj+1 −

5

2
fi)

)
(3.17)

In addition, a fourth-order accurate central difference scheme is also adopted for the

first-order derivatives involved in the governing equations

∂fi
∂xj

=
1

∆xj

(
1

12
(fj−2 + fj+2) +

2

3
(fj−1 + fj+1)

)
(3.18)

3.3 Solution of Predicted Velocity

With the semi-implicit scheme, the present solver implicitly solves the predicted

velocity in the prediction stage at each time step by using the hypre library [83] in

parallel. Preconditioned conjugate gradient (PCG) method with geometric multigrid

as the preconditioner is adopted.

The viscous terms in the momentum equations are discretized by a second-order

central difference operator. Thus, if we take the x-momentum equation as an example

for solving the predicted velocity component u∗, the x-component of the viscous term

in Equation (3.6) can be written as

V ISC∗x

∣∣∣∣
i,j,k

=
1

Re

[
∂2u∗

∂x2
+
∂2u∗

∂y2
+
∂2u∗

∂z2

]
i,j,k

(3.19)

with

∂2u∗

∂x2

∣∣∣∣
i,j,k

=
u∗i+1,j,k − 2u∗i,j,k + u∗i−1,j,k

∆x2
(3.20a)

∂2u∗

∂y2

∣∣∣∣
i,j,k

=
u∗i,j+1,k − 2u∗i,j,k + u∗i,j−1,k

∆y2
(3.20b)

∂2u∗

∂z2

∣∣∣∣
i,j,k

=
u∗i,j,k+1 − 2u∗i,j,k + u∗i,j,k−1

∆z2
(3.20c)

where, ∆x, ∆y and ∆z are the grid sizes in x, y and z directions respectively.
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Then the left hand side of Equation (3.5) has the form[
α1u

∗ − (α2u
n + α3u

n−1 + α4u
n−2)

∆t
− 1

Re

(
∂2u∗

∂x2
+
∂2u∗

∂y2
+
∂2u∗

∂z2

)]
i,j,k

=
α1u

∗
i,j,k − (α2u

n
i,j,k + α3u

n−1
i,j,k + α4u

n−2
i,j,k)

∆t
− 1

Re

u∗i+1,j,k − 2u∗i,j,k + u∗i−1,j,k
∆x2

(3.21)

− 1

Re

u∗i+1,j,k − 2u∗i,j,k + u∗i−1,j,k
∆y2

− 1

Re

u∗i+1,j,k − 2u∗i,j,k + u∗i−1,j,k
∆z2

To implicitly solve the predicted velocity component u∗, we rearrange the above

equation such that only the variable u∗ is included in one side of the equation. As a

result, the Equation (3.5) arrives at[
α1 +

2∆t

Re

(
1

∆x2
+

1

∆y2
+

1

∆z2

)]
u∗i,j,k −

∆t

Re∆x2
(
u∗i+1,j,k + u∗i−1,j,k

)
− ∆t

Re∆y2
(
u∗i,j+1,k + u∗i,j−1,k

)
− ∆t

Re∆z2
(
u∗i,j,k+1 + u∗i,j,k−1

)
(3.22)

= α2u
n + α3u

n−1 + α4u
n−2 −NLCTx∆t+ EBFx∆t

where, NLCTx and EBFx are the x-components of the non-linear convective terms

and the electrical body force terms respectively. Notice these two terms are explicitly

evaluated by the fifth-order WENO scheme or the fourth-order central difference

scheme in the computation. In a similar way, the y- and z-components of the predicted

velocity can be implicitly solved as well.

To impose the Dirichlet boundary conditions using a conjugate gradient method,

a symmetric matrix is formed to solve the system. For example, if the grid along

x-direction is i = 0, 1, ..., N − 1, N where i = 0 is the left boundary while i = N is

the right boundary, when a Dirichlet boundary condition needs to be applied at the

right boundary, i.e. i = N , all the entries of the coefficient matrix at the grid node

i = N − 1 that have the coefficients associated with the known Dirichlet value at

i = N need to be transfered to the right hand side vector of the linear system. In

this way, Dirichlet boundary conditions can be guaranteed.
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3.4 Solution of Elliptic PDEs

The pressure Poisson equation (3.3) involved in the fractional time step method

and the charge conservation equation (2.18b) or (2.35b) need to be solved at every

time step of the EKI or ITP simulation. Both of them are elliptic PDEs. In the

present solver, these two equations are solved on a multiblock grid by using the

hypre library [83] in parallel. Again, PCG method with geometric multigrid as the

preconditioner is adopted.

Discretization of these two elliptic PDE is done by a second-order central difference

operator. This results in the left hand side of the pressure Poisson equation (3.3) to

be written as

∇2p
∣∣∣
i,j,k

=

[
∂2p

∂x2
+
∂2p

∂y2
+
∂2p

∂z2

]
i,j,k

(3.23)

where,

∂2p

∂x2

∣∣∣∣
i,j,k

=
pi+1,j,k − 2pi,j,k + pi−1,j,k

∆x2
(3.24a)

∂2p

∂y2

∣∣∣∣
i,j,k

=
pi,j+1,k − 2pi,j,k + pi,j−1,k

∆y2
(3.24b)

∂2p

∂z2

∣∣∣∣
i,j,k

=
pi,j,k+1 − 2pi,j,k + pi,j,k−1

∆z2
(3.24c)

and the right hand side of the equation can be written as

α1Re

∆t
∇ · u

∣∣∣∣
i,j,k

=
α1Re

∆t

[
∂u

∂x
+
∂v

∂y
+
∂w

∂z

]
i,j,k

(3.25)

with

∂u

∂x

∣∣∣∣
i,j,k

=
ui+1/2,j,k − ui−1/2,j,k

∆x
(3.26a)

∂v

∂y

∣∣∣∣
i,j,k

=
vi,j+1/2,k − vi,j−1/2,k

∆y
(3.26b)

∂w

∂z

∣∣∣∣
i,j,k

=
wi,j,k+1/2 − wi,j,k−1/2

∆z
(3.26c)

where, ∆x, ∆y and ∆z are the grid sizes in x, y and z directions respectively. ∆t is

the time step used in the computation.
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In a similar way, the left hand side of the charge conservation equation (2.18b) or

(2.35b) can be discretized by

∇ · (σ∇φ)
∣∣∣
i,j,k

=

[
σ

(
∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2

)
+
∂σ

∂x

∂φ

∂x
+
∂σ

∂y

∂φ

∂y
+
∂σ

∂z

∂φ

∂z

]
i,j,k

(3.27)

where,

σ
∂2φ

∂x2

∣∣∣∣
i,j,k

=σi,j,k
φi+1,j,k − 2φi,j,k + φi−1,j,k

∆x2
(3.28a)

σ
∂2φ

∂y2

∣∣∣∣
i,j,k

=σi,j,k
φi,j+1,k − 2φi,j,k + φi,j−1,k

∆y2
(3.28b)

σ
∂2φ

∂z2

∣∣∣∣
i,j,k

=σi,j,k
φi,j,k+1 − 2φi,j,k + φi,j,k−1

∆x2
(3.28c)

∂σ

∂x

∂φ

∂x
=
∂σ

∂x

∣∣∣∣
i,j,k

φi+1,j,k − φi−1,j,k
2∆x

(3.28d)

∂σ

∂y

∂φ

∂y
=
∂σ

∂y

∣∣∣∣
i,j,k

φi,j+1,k − φi,j−1,k
2∆y

(3.28e)

∂σ

∂z

∂φ

∂z
=
∂σ

∂z

∣∣∣∣
i,j,k

φi,j,k+1 − φi,j,k−1
2∆z

(3.28f)

Notice that in the above equations, σ and its derivatives ∂σ
∂x
, ∂σ
∂y
, ∂σ
∂z

are obtained using

Equation (2.18a) or (2.35a) and their values are known when solving Equation (2.18b)

or (2.35b).

3.5 Multiblock Approach

The present solver has the capability to handle complex geometries that would

fit Cartesian grids by utilizing a multiblock approach. Multiple blocks are arranged

to exactly cover the flow geometry. Equal blocks with uniform mesh size are used

so that the block interfaces are conformal thus no interpolation are required at the

block-interfaces. Each block is assigned to one parallel processor. And for each of

the blocks, the inlet/outlet or wall faces, or the interfaces to communicate with other

adjacent blocks are clearly identified according to the locations of the blocks in the flow

geometry. Accordingly, during the computation the solver then will automatically

impose the boundary conditions or perform the proper communications at the faces.
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(a) A cross-shaped channel geometry

(b) Top view of the channel geometry

Fig. 3.2. Schematic of a cross-shaped channel covered by multiple blocks.

For example, 15 blocks can be used to compose the flow geometry for a cross-

shaped channel with a rectangular cross-section as shown in Figure 3.2 (a). Figure

3.2 (b) indicates the top view of the channel and the block at the bottom location

is picked to show the identified faces on it. Suppose only four sides of the block

are considered from the top view. According to the flow geometry, the bottom side

then is identified as the inlet boundary condition, the left and right sides are the wall

conditions while the the top side is the interface used to communicate with the above
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(a) A snake-like channel geometry (b) Top view of the channel geometry

Fig. 3.3. Schematic of a rectangular serpentine channel covered by multiple blocks.

adjacent block. Another example is a rectangular serpentine microchannel as shown

in Figure 3.3. 70 blocks are arranged to cover this flow geometry. Though it looks

more complicated than the cross-shaped geometry, the solver can still handle it using

the multiblock approach as long as the geometry fits the Cartesian grid.
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4. ONE-/TWO-DIMENSIONAL NUMERICAL STUDY OF

ITP AND EKI IN STRAIGHT MICROCHANNELS

4.1 Simulation of ITP in One-/Two-dimensional Straight Microchannels

Isotachophoresis (ITP) is a common method in the field of analytical chemistry

and it has proven to be a powerful technique for sample concentration, separation,

and for detection of analytes in microfluidic devices [88, 89]. This technique is based

on the difference of migration speed of ionic species under an electric field. In ITP,

sample ions are focused between a high mobility leading electrolyte (LE), and a low

mobility trailing electrolyte (TE) and they are arranged to migrate in the order of

their electrophoretic mobilities when an electric field is applied. Depending on the

amount of the sample present in the system, ITP falls in two modes, plateau mode

and peak mode. In plateau mode ITP, ionic species form distinct and separate zones

with sufficiently high concentrations [90]. In contrast, peak mode ITP arises if one

or more ionic species focus at the sharp electric field gradient between the LE and

TE zones with sufficiently low concentrations such that their effect on the electric

field is negligible [91]. In this section 4.1, we first simulate one-dimensional ideal ITP

without sample analytes to test and validate the present solver. Then we conduct

two-dimensional simulations to investigate how different parameters including channel

height, electrophoretic mobility ratio, and sample amount present in the channel affect

the dispersed plateau/peak mode in ITP with Poiseuille counterflow.

4.1.1 One-dimensional Ideal ITP without Sample Analytes

In order to numerically study isotachophoretic phenomena and also to test the

performance of the present WENO solver for ITP, we start with the simplest 1D ITP
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case in which we ignore the bulk flow (i.e. not solving the Navier-Stokes equations

for pressure and velocity fields), but only solve the charge conservation equation and

the scalar transport equations for the electric field and three species including the

trailing (TE) and leading electrolyte (LE) with respectively higher and lower effective

ion mobility and the counter-ionized species (CI). Under the application of an electric

field, both TE and LE buffers migrate at the same speed UITP , see Figure 4.1.

Fig. 4.1. Schematic of one-dimensional ideal ITP without sample analytes.

For such simplest ITP case, the one-dimensional convection-diffusion scalar trans-

port equations and the charge conservation equation become

∂ci
∂t

= − ∂

∂x

(
−ziµi

∂φ

∂x
ci

)
+Di

∂2ci
∂x2

(4.1a)

σ
∂2φ

∂x2
+
∂σ

∂x

∂φ

∂x
= −F

∑
i

(
ziDi

∂2ci
∂x2

)
(4.1b)

where the subscript i = TE, LE, or CI, refers to the trailing electrolyte, leading

electrolyte and the counter ionized electrolyte respectively.

To simplify the computation, the concentration of the counter ion can be ob-

tained by using the electroneutrality approximation instead of solving the transport

equation. As a result, the system of governing equations for the case can be written

as

∂ci
∂t

= − ∂

∂x

(
−ziµi

∂φ

∂x
ci

)
+Di

∂2ci
∂x2

for i = TE, LE (4.2a)

cCI = −(zTEcTE + zLEcLE)/zCI (4.2b)

σ
∂2φ

∂x2
+
∂σ

∂x

∂φ

∂x
= −F

∑
i

(
ziDi

∂2ci
∂x2

)
for i = TE, LE, CI (4.2c)
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The domain considered in the present simulation is a L = 10mm long, w = 40µm

wide circular microchannel. The lengths of the TE and LE zones are denoted by LTE

and LLE respectively, and L = LTE + LLE. The TE zone is on the left while the LE

zone is on the right, and the LE-TE interface is set at LTE/L = 0.4. The parameters

used in the simulation are listed in Table 4.1.

Table 4.1
Simulation parameters for one-dimensional ideal ITP case.

Symbol Description Value

w Width of the channel 4.0× 10−5[m]

c0LE LE ion total concentration - LE zone 100.0[mM ]

c0TE TE ion total concentration - TE zone 100.0[mM ]

µLE LE effective mobility 68.5× 10−9[m2 · V −1s−1]

µTE TE effective mobility 18.22× 10−9[m2 · V −1s−1]

µCI CI effective mobility 6.60× 10−9[m2 · V −1s−1]

zLE valence of LE −1

zTE valence of TE −1

zCI valence of CI +1

R Gas constant 8.31[J ·mol−1K−1]

T Temperature 298[K]

F Faraday’s constant 9.65× 104[C ·mol−1]

The boundary conditions imposed at the inlet are

φ = 0; cTE = c0TE; cLE = 0; cCI = c0TE (4.3)

At the outlet, a constant current density japplied is applied. From the charge

conservation equation, the current density for a one-dimensional problem can be

expressed as

japplied = F

(
−∂φ
∂x

∑
i

z2i µici −
∑
i

ziDi
∂ci
∂x

)
(4.4)
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Since the outlet is set to be sufficiently far away from the transient interface, all the

species concentrations at the outlet are assumed constant. Then the term
∑

i ziDi
∂ci
∂x

drops out and the gradient of the electric potential at the outlet arrives at

∂φ

∂x
= − japplied

F
∑

i z
2
i µici

= −japplied
σ

(4.5)

In the present simulation, we choose a relatively high current value as Iapplied = 6.0 µA

which results in a current density of japplied = 4775 A/m2. Therefore, at the outlet

the boundary conditions are

∂φ

∂x
= −japplied

σ
; cTE = 0; cLE = c0LE; cCI = c0LE (4.6)

Initial conditions are important in the simulation of ITP. Typically they should be

relatively smooth (not too steep), otherwise it will bring difficulties to solve the equa-

tions. To smoothly initialize the concentrations of electrolytes, a type of exponential

function is adopted

ci =
c0i

1.0 + eλx
(4.7)

where i = TE or LE, c0i is the total concentration of the ith species. λ is a parameter

used to control the initial width of the TE-LE interface.

The counter-ionized species concentration cCI is initialized based on cTE and cLE

by using the electroneutrality approximation. A set of initial profiles of cTE, cLE and

cCI is shown in Figure 4.2.

In order to investigate the performance of the present WENO solver, we compare

our WENO solver to different schemes provided by the latest SPRESSO solver [53]

(an open source, nonlinear electrophoresis solver developed by the Santiago group

at Stanford University) including the second-order central difference, the sixth-order

compact, the first-order upwind, and the second-order SLIP (Symmetric Limited

Positive) [92,93] schemes on the same number of 200 uniform grid points.

Figure 4.3 (a) and (b) show the ionic concentration profiles of cTE and cLE solved

by the second-order central difference and the sixth-order compact schemes on a

mesh of 200 uniform grid points under a current density of japplied = 4775 A/m2,
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Fig. 4.2. Initialization of ionic concentrations (t = 0s).

respectively. It can be seen that only after a short time of t = 1.4s significant

numerical oscillations are observed due to the ”self-sharpening effect” in ITP. The

second-order central difference scheme or even the higher-order compact scheme fail

to solve the problem on the given uniform grid though the sixth-order compact scheme

gives relatively smaller oscillations compared to the second-order central scheme at

the time of t = 1.4s.

In contrast to the second-order central difference and the sixth-order compact

schemes, the first-order upwind, the second-order SLIP and the fifth-order WENO

schemes can eliminate the oscillations and give smooth solutions using the same num-

ber of 200 uniform grid points. Figure 4.4 (a), (b), and (c) show the ionic concen-

tration profiles of cTE and cLE solved by the above mentioned three schemes after

t = 10.0s under the current density of japplied = 4775 A/m2, respectively. No under-

shoots nor overshoots occur at the TE-LE interface in the solutions. However, when

taking a close look at the interface as shown in Figure 4.4 (d), the WENO scheme

can capture a narrower width compared to the upwind and the SLIP schemes. This

may be explained by the fact that for the upwind scheme due to its low-accurate and

dissipative nature, though it allows a smooth solution it introduces much numerical

diffusion and thus causes an overly diffused interface. The SLIP scheme offers a better

solution because of its higher-order accuracy (second-order) compared to the upwind
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(a) Ionic concentrations solved by the second-order central difference scheme built in

the SPRESSO solver [53].

(b) Ionic concentrations solved by the sixth-order compact scheme built in the

SPRESSO solver [53].

Fig. 4.3. Ionic concentrations solved by second-order central difference
and sixth-order compact schemes on 200 uniform grid points after
t = 1.4s under a current density of japplied = 4775 A/m2.

scheme. For the fifth-order WENO scheme, with the adaptive stencils for higher order

approximation it reduces the numerical diffusion, i.e. captures the narrowest TE-LE

interface among the three schemes given in Figure 4.4, and significantly improves the

accuracy of the solution. In conclusion, we clearly see that the fifth-order WENO

scheme can give a smooth solution with reduced numerical diffusion and thus it can

be considered as a good option for simulating ITP problems.
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Fig. 4.4. Ionic concentrations solved by different schemes on 200
uniform grid points after t = 10.0s under a current density of
japplied = 4775 A/m2. (a) Ionic concentrations solved by the first-order
upwind. (b) Ionic concentrations solved by the second-order SLIP
scheme. (c) Ionic concentrations solved by the fifth-order WENO
scheme. (d) Comparison of the ionic concentrations solved by differ-
ent schemes near the TE-LE interface.

Since there is an analytic solution available in the literature [38] for the ideal ITP

case illustrated in Figure 4.1, we use this case to further test and validate the WENO

solver. The following scales are introduced to obtain the non-dimensional governing

equations: [x] = H, [u] = UITP , [t] = H/UITP , [φ] = φ0 = RT/F, [ci] = c∞LE, [E] =

E0 = φ0/H. Here, H is the channel width, UITP is the isotachophoretic velocity. φ0

is the characteristic electric potential. c∞LE is the bulk LE concentration.
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By using the above scales as well as the electroneutrality approximation, the non-

dimensional Nernst-Planck and charge conservation equations are obtained as

∂c∗i
∂t∗

+
∂

∂x∗
[(u∗ − zi

Di

DCI

1

Pe
∇φ∗)c∗i ]−

Di

DCI

1

Pe

∂2c∗i
∂x∗2

= 0 for i = TE, LE (4.8a)(
c∗LE +

DTE +DCI

DLE +DCI

c∗TE

)
∂2φ∗

∂x∗2
+

∂

∂x∗

(
c∗LE +

DTE +DCI

DLE +DCI

c∗TE

)
∂φ∗

∂x∗
(4.8b)

= − ∂2

∂x∗2

(
zLEDLE + zCIDCI

DLE +DCI

c∗LE +
zTEDTE + zCIDCI

DLE +DCI

c∗TE

)
where the non-dimensional parameter Peclet number is defined as

Pe ≡ UITPH

DCI

(4.9)

In the absence of counterflow, the LE-TE interface moves at a constant isota-

chophoretic velocity

UITP = µLEELE = µTEETE (4.10)

where the local electric field strengths in the LE or TE zones are denoted by Ei which

can be expressed as

Ei =
Ea/µi

lLE/µLE + lTE/µTE
(4.11)

where, lLE = LLE/L and lTE = LTE/L. Ea = ∆φ/L is the average electric field due

to the voltage drop ∆φ along the channel. In the ideal ITP case, the LE-TE interface

is assumed to be located in the middle of the channel, i.e. lLE = lTE = 0.5.

Since at the far-field the diffusive flux in the charge conservation equation is

negligible, when evaluating Equation (4.8b) at the both sides of the transition zone

that are sufficiently far away from the transition zone and using Equation (4.10), a

relation between the TE and LE concentrations far away from the interfaces can be

obtained as [94]
c∞TE
c∞LE

=
µLE + µCI
µTE + µCI

µTE
µLE

(4.12)

The boundary conditions imposed at the inlet are

c∗TE =
µLE + µCI
µTE + µCI

µTE
µLE

; c∗LE = 0; φ∗ = −ETEH
φ0

x∗(0) (4.13)
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At the outlet we set

c∗TE = 0; c∗LE = 1.0; φ∗ = −ELEH
φ0

x∗(L) (4.14)

where, ETE and ELE are evaluated according to Equation (4.11). Notice the above

described boundary conditions are all in non-dimensional form.

According to [38], the analytical solution for the TE concentration in a co-moving

frame of reference under no bulk fluid flow can be expressed as

cTE(x) = c∞TE F

[
1,
ETE
∆E

; 1 +
ETE
∆E

;−µLE + µCI
µTE + µCI

e
∆E
φ0

x

]
(4.15)

where, F(a, b; c; z) is the hypergeometric function [95], ∆E = ETE − ELE.

The electric field is

E(x) = ETE
c∞TE

cTE(x)

[
1 +

µLE + µCI
µTE + µCI

e
∆E
φ0

]−1
(4.16)

and at the steady state the LE concentration can be obtained via the relation

cLE(x) = cTEe
∆E
φ0

x
(4.17)

Table 4.2
Parameters used in simulations of one-dimensional ideal ITP validation case.

Symbol Description Value

H Width of the channel 1.0× 10−5[m]

L Length of the channel 8.0× 10−5[m]

c∞LE LE ion total concentration - LE zone 1.0[mM ]

DLE Diffusivity of LE ion - LE zone 7.0× 10−10[m2 · s]

k DLE/DTE 2

φ0 electric potential scale 25.9[mV ]

Ea Average electric field 105[V ·m−1]

Assume DCI = DLE and define k = DLE/DTE = µLE/µTE. The parameters used

in the simulation are listed in Table 4.2.
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(a) Ionic concentrations (b) Electric field

Fig. 4.5. Numerical results solved by Weno scheme versus the analytic
solution given in [38] on different uniform grid meshes.

For the given domain, three different grid sizes, i.e. 320, 400, 540 uniform grid

points corresponding to ∆x∗ = 0.025, 0.02, 0.015 are used in the simulations. As

shown in Figure 4.5, the numerical results agree well with the analytical solution on

a grid of spacing ∆x∗ = 0.02. Thus the present WENO solver successfully resolves

the sharp interface which is only a few micrometers wide for the given ITP problem.

4.1.2 Two-dimensional Sample Dispersion in ITP with Poiseuille Coun-

terflow

As described at the beginning of this chapter, in ITP sample ions with an elec-

trophoretic mobility between the leading (LE) and trailing (TE) ion mobilities are

sandwiched between the two electrolytes and thus form a transient zone. In the

past decades, researchers introduced a pressure-driven counterflow or electroosmotic

counterflow to balance the sample migration in ITP experiments as such counterflow-

balanced ITP can be widely used in the applications of sample preconcentration for
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improving the sensitivity of capillary electrophoresis [96] or to control the elution of

analytes [97].

In this subsection, we use the present WENO solver to numerically study sample

dispersion in which electromigration in ITP is balanced by a Poiseuille counterflow.

We set up the simulation case by following [60]. Two-dimensional simulations are

conducted for the case illustrated in Figure 4.6. Under the action of an external

electric field, a single sample zone is formed between the LE and TE electrolytes.

The sample ions migrate from left to right at velocity U ITP . A pressure driven flow

is introduced in the opposite direction to exactly balance the electromigration and

thus make the sample zone stationary.

Fig. 4.6. Schematic showing the case of two-dimensional sample dis-
persion in ITP with Poiseuille counterflow.

Using the same scales as given in the previous subsection, i.e. [x, y] = H, [u, v] =

UITP , [t] = H/UITP , [φ] = φ0 = RT/F, [ci] = c∞LE, [E] = E0 = φ0/H, and also

the electroneutrality approximation, the non-dimensional coupled Nernst-Planck and

charge conservation equations can be written as

∂c∗i
∂t∗

+∇ · [(u∗ − zi
Di

DS

1

Pe
∇φ∗)c∗i ]−

Di

DS

1

Pe
∇2c∗i = 0 for i = TE, LE, S (4.18a)

∇ ·
[(
c∗LE +

DS +DCI

DLE +DCI

c∗S +
DTE +DS

DLE +DCI

c∗TE

)
∇φ∗

]
(4.18b)

= −∇2

[
zLEDLE + zCIDCI

DLE +DCI

c∗LE +
zSDS + zCIDCI

DLE +DCI

c∗S +
zTEDTE + zCIDCI

DLE +DCI

c∗TE

]
where the non-dimensional parameter Peclet number is defined by

Pe ≡ UITPH

DS

(4.19)
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As what has been assumed in the previous subsection, the local electric field

strengths in the LE, sample or TE zones are denoted by Ei with i = LE, S, TE

respectively, and it can be expressed as

Ei =
Ea/µi∑
k(lk/µk)

(4.20)

where, lk = Lk/L. Lk (with k = LE, S or TE) is the portion of the channel filled

by the respective electrolyte and L is the total length of the channel. Ea = ∆φ/L is

the average electric field due to the voltage drop ∆φ along the channel. Since in ITP

applications, the channel is long compared to the section occupied by sample, then

lS is assumed to be negligible in Equation (4.20). For the sake of convenience, the

sample zone is located in the middle of the channel, thus lLE = lTE ≈ 0.5.

Similar to the relation 4.11, the upper bound of the initial sample concentration in

the plateau mode, i.e. the sample concentration forms a distinct zone with constant

concentration, may be determined by

c0S
c∞LE

=
µLE + µCI
µS + µCI

µS
µLE

(4.21)

By following the condition given in [60] , to include the effect of the Poiseuille

counterflow, instead of solving the Navier-Stokes equations a parabolic velocity profile

with an average speed equal and opposite to ITP migration is imposed throughout

the computational domain by

u(y) = −6UITP
y

H
(1− y

H
) (4.22)

In non-dimensional form it becomes

u∗(y∗) = −6y∗(1− y∗) (4.23)

where, y∗ is from 0 to 1.0.

The boundary conditions imposed in the simulation are summarized as follows

and they are all in non-dimensional form.

At the inlet, the non-dimensional boundary conditions are

c∗TE =
µLE + µCI
µTE + µCI

µTE
µLE

; c∗S = 0; c∗LE = 0; φ∗ = −ETEH
φ0

x∗(0) (4.24)



46

At the outlet, we impose

c∗TE = 0; c∗S = 0; c∗LE = 1.0; φ∗ = −ELEH
φ0

x∗(L) (4.25)

where, ETE and ELE are evaluated according to Equation (4.20).

The channel walls are impermeable for all ions, thus at the walls

n · ∇c∗i = 0; n · ∇φ∗ = 0 (4.26)

where, n denotes the wall-normal direction.

Again, assume DCI = DLE and define k1 = DLE/DTE = µLE/µTE and k2 =

DLE/DS = µLE/µS. Other basic simulation parameters are listed in Table 4.3. For

all the simulations presented afterwards in this subsection, the computational domain

is discretized on a uniform grid with a spacing of ∆x∗ = ∆y∗ = 0.02.

Table 4.3
Simulation parameters used in case of two-dimensional sample disper-
sion in ITP with Poiseuille counterflow.

Symbol Description Value

c∞LE LE ion total concentration - LE zone 1.0[mM ]

DLE Diffusivity of LE ion - LE zone 7.0× 10−10[m2 · s]

zLE valence of LE −1

zS valence of LE −1

zTE valence of TE −1

zCI valence of CI +1

φ0 electric potential scale 25.9[mV ]

Ea Average electric field 105[V ·m−1]

In order to obtain comparable results for the distortion of the sample zone due to

applied Poisuille flow, by following [60] the area-averaged amount of sample is fixed

and defined as

Cs =

∫ ∞
−∞

dxC̄s(x) (4.27)
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where,

C̄s(x) =
1

H

∫ H

0

dyCi(x, y) (4.28)

(a) Cs/c
∞
LE = 40µm. (b) Cs/c

∞
LE = 10µm.

(c) Cs/c
∞
LE = 4µm.

Fig. 4.7. Sample, TE, and LE concentration profiles solved by the
present WENO solver at steady state in a moving frame of reference
at the constant speed UITP for three different sample amounts. Here,
H = 10µm and k1 = 3, k2 = 2.

The initial condition for the current case is obtained from the solution of the

corresponding ITP case without counterflow. In other words, before imposing the
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parabolic velocity profile and starting to simulate sample dispersion in ITP with

Poiseuille counterflow, a steady-state for the TE, sample and LE concentration profiles

without counterflow is achieved first for lLE = lTE ≈ 0.5 in a co-moving frame of

reference at the constant speed U ITP . Figure 4.7 (a)-(c) show such cases for H =

10µm and k1 = 3, k2 = 2 with sample amounts from Cs/c
∞
LE = 40µm, 10µm and

4µm. It can be seen that when Cs/c
∞
LE = 40µm, the sample concentration clearly

develops a plateau. As the sample amount decreases, a Gaussian peak is observed. It

validates that the present WENO solver can resolve the transient zones for plateau-

and peak-mode steady-state ideal ITP.

(a) Sample concentration contour for H = 10µm (Pe = 39).

(b) Sample concentration contour for H = 20µm (Pe = 77).

(c) Sample concentration contour for H = 30µm (Pe = 116).

Fig. 4.8. Sample concentration contours solved by the present WENO
solver for three different channel heights with a sample amount of
Cs/c

∞
LE = 40µm. Here, k1 = 3 and k2 = 2.
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Once the steady state has been reached, the parabolic velocity profile is imposed

throughout the domain to simulate sample dispersion in ITP with Poiseuille counter-

flow. First, we study the effect of channel height on sample dispersion. Figure 4.8

(a)-(c) show the sample concentration contours for three different channel heights, i.e.

H = 10µm, 20µm, 30µm, with a sample amount of Cs/c
∞
LE = 40µm. Here, k1 = 3 and

k2 = 2. The corresponding area-averaged sample concentration profiles are shown in

Figure 4.9.

Fig. 4.9. Area-averaged sample concentration profiles solved by the
present WENO solver for three different channel heights with a sample
amount of Cs/c

∞
LE = 40µm. Here, k1 = 3 and k2 = 2.

From the sample concentration contours it can be seen that as the channel width

increases, a stronger sample dispersion is observed. This may be explained by the fact

that the wider channel results in a larger Peclet number and thus leads to a larger

dispersion. From the area-averaged sample concentration profiles it is apparent that

the sample zone changes from a plateau mode to a peak mode with the increase of the

channel width. In addition, as the the channel width become wider, the maximum

value of the area-averaged sample concentration decreases due to strong dispersion.
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(a) Cs/c
∞
LE = 200µm.

(b) Cs/c
∞
LE = 80µm.

(c) Cs/c
∞
LE = 40µm.

(d) Cs/c
∞
LE = 20µm.

Fig. 4.10. Sample concentration contours solved by the present Weno
solver for four different total amounts of sample present in the channel.
Here, H = 25µm, k1 = 3, and k2 = 2.
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Next, we study the effect of the sample amount on sample dispersion in ITP with

Poiseuille counterflow. As what has been done in [60], four different values of the

total amount of sample present in the channel are considered which are varied as

Cs/c
∞
LE = 200, 80, 40, 20 µm. The channel height is fixed as H = 25µm and k1 = 3,

k2 = 2.

Fig. 4.11. Area-averaged sample concentration profiles solved by
the present WENO solver for four different total amounts of sample
present in the channel. Here, H = 25µm, k1 = 3 and k2 = 2.

Figure 4.10 (a)-(d) show the sample concentration contours solved by the present

WENO solver for H = 25µm with different total amounts of sample present in the

channel. The corresponding area-averaged sample concentration profiles are shown in

Figure 4.11. For the largest amount of sample present in the channel, i.e. Cs/c
∞
LE =

200µm, the sample zone may be considered in a plateau mode. However, as there

is a strong additional dispersion due to convection from the Poiseuille counterflow

a peak can still be observed from the area-averaged sample concentration profile.

In [60], such phenomenon is termed as ”dispersed plateau mode”. As the amount of
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sample present in the channel decreases the sample focuses in the central region of

the channel and a more pronounced peak is observed from the area-averaged sample

concentration profiles.

Finally we study the effect of the ratios of ionic mobilities on sample dispersion

in ITP with Poiseuille counterflow. Here we fix the ratio of the LE to TE mobilities

and set k1 = µLE/µTE = DLE/DTE = 3. The ratio of the LE to sample mobilities

k2 is varied as k2 = µLE/µS = DLE/DS = 1.1, 2.0, and 2.7. Figure 4.12 shows the

sample concentration contours for the three different ratios of the mobilities k2 when

the channel height is H = 25µm and the sample amount is Cs/c
∞
LE = 40µm. The

corresponding area-averaged sample concentration profiles are given in Figure 4.13.

(a) k2 = µLE/µS = DLE/DS = 1.1.

(b) k2 = µLE/µS = DLE/DS = 2.0.

(c) k2 = µLE/µS = DLE/DS = 2.7.

Fig. 4.12. Sample concentration contours solved by the Weno solver
for different ratios of ionic mobilities k2 when the channel height is
H = 25µm, k1 = µLE/µTE = DLE/DTE = 3, and the sample amount
is Cs/c

∞
LE = 40µm.
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Fig. 4.13. Area-averaged sample concentration profiles solved by the
fifth-order Weno solver for different ratios of ionic mobilities k2 when
the channel height is H = 25µm, k1 = µLE/µTE = DLE/DTE = 3,
and the sample amount is Cs/c

∞
LE = 40µm.

From Figures 4.12 and 4.13 it can be seen that when the sample mobility is close

to either the LE mobility (k2 = 1.1) or the TE mobility (k2 = 2.7), a very wide sample

transition zone is formed and the long dispersed tails are towards the electrolyte zone

with a similar mobility. For example, for k2 = 1.1 meaning the sample mobility is

close to the LE mobility, the transition zone is dispersed in the LE (right) zone, see

Figure 4.12(a). While for k2 = 2.7 in which the sample mobility is similar to the

TE mobility, the long tail is towards the TE (left) zone, see Figure 4.12(c). When

the sample is of an evidently different mobility than the LE or TE mobilities, for

example, k2 = 2, an electromigrative sharpening is present and a much narrower

transition zone is formed, see Figure 4.12(b) and Figure 4.13. In conclusion, in order

to have an effective preconcentration (with less dispersion), the net mobilities of TE,

LE and sample should be distinct. On the other hand, ITP cannot be used to separate
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and preconcentrate samples if the mobilities of the TE, LE, and sample electrolytes

are very close to each other.

4.1.3 Summary

In this section 4.1, we first test the performance of the present WENO solver

by simulating the simplest ITP case, i.e. one-dimensional ideal ITP without sample

analytes. For the case where a relatively high current density (about 5000A/m2)

is applied, simulation results obtained by the present WENO solver are compared

to those solved by different numerical schemes including the second-order central

difference, the sixth-order compact, the first-order upwind, and the second-order SLIP

(Symmetric Limited Positive) schemes provided by an open source solver SPRESSO

[53]. On a given mesh of the same grid size, it is found that the WENO solver not only

gives a smooth solution (compared to the oscillatory solution given by the second-

order central difference and the sixth-order compact schemes), but it also captures a

much narrower species interface and thus offers a more accurate solution with reduced

numerical diffusion (compared to the first-order upwind and the second-order SLIP

schemes). For the same 1D ideal ITP case the present WENO solver is also validated

by comparing the obtained numerical result with the analytic solution available in

the literature.

In the second part of the current section, the validated WENO solver is used to

perform a series of two-dimensional simulations for sample dispersion in ITP with

Poiseuille counterflow. Such counterflow-balanced ITP has a wide range of appli-

cations in sample preconcentration in microfluidic devices. The effect of different

parameters on sample dispersion, including channel height, electrophoretic mobility

ratio, and sample amount present in the channel are investigated. For the considered

cases, all the ITP phenomena simulated by the WENO solver are consistent with

those presented in the literature. It indicates that the present WENO solver can
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successfully solve ITP problems and thus can be used as a good numerical tool to

analyze and study ITP phenomena.

4.2 Simulation of EKI in a Two-dimensional Straight Microchannel

In order to understand the basic mechanism and behavior of EKI, numerical sim-

ulations of EKI in a two-dimensional straight microchannel were conducted in this

section. Typically, EKI can occur with two basic types of initial states as shown in

Figure 4.14, where E is electric field while σH (darker) and σL (brighter) denote high-

and low-conductivity regions, respectively [98].

(a) Type I: coaxial gradient case. (b) Type II: orthogonal gradient case.

Fig. 4.14. Schematic of typical initial states for EKI.

For type I, the electric field is parallel to the conductivity gradient and thus this

case can be named as coaxial gradient case. From Equation (2.18c), it can be seen

that net charge density ρe has a non-trivial distribution even in an initial state like

this. In microfluidic applications, flows in this type of initial state often occur in the

stacking/separation phase [99]. For type II, the electric field is perpendicular to the

conductivity gradient and this initial state can be called orthogonal gradient case.

Net charge density in such initial state is simply zero according to Equation (2.18c).

Compared to type I initial state, this type of initial state is relatively more unstable.

Thus, in practice flows in type II initial state are frequently explored for micromixing

applications [29].

In the following subsecitons 4.2.1 and 4.2.2, simulations of EKI for the coaxial

gradient and the orthogonal gradient initial states are performed, respectively.
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4.2.1 Coaxial Gradient Case

In this subsection, the type I initial state for EKI as shown in Figure 4.14(a) is

considered. The conductivity gradient of a symmetric binary electrolyte solution in a

two-dimensional straight microchannel is assumed along the horizontal wall direction.

Different electrical potentials are imposed at the inlet and the outlet such that the

applied electric field is colinear with the conductivity gradient. The velocity field is

initially zero everywhere and the flow in such an electrokinetic microchannel is then

driven by electrical body forces. In general, the velocity of the flow in the channel

depends on the applied electric field, the electro-osmotic mobility (for a symmetric

binary electrolyte solution, it is simply to be conductivity according to the mathe-

matical model derived in Section 2.1), and both imposed and internally-generated

pressure gradients. Although electrokinetic flows with heterogeneous electrolytes or

zeta-potentials may generate internal pressure gradients [100], since here we are highly

interested in the electrokinetic effects on fluid motion, we impose no external pressure

differences, i.e. the pressure imposed at the inlet and the outlet is identical.

Proper boundary conditions described in Section 2.1.2, i.e. Equations (2.22a)-

(2.22d), are imposed at the two horizontal walls. At the inlet (left side of the channel),

the nondimensional boundary conditions can be written as

n · ∇u = 0 (4.29a)

p = pref (4.29b)

σ = σinlet (4.29c)

φ = φinlet (4.29d)

while at the outlet (right side of the channel), the imposed boundary conditions are

n · ∇u = 0 (4.30a)

p = pref (4.30b)

n · ∇σ = 0 (4.30c)

φ = φoutlet (4.30d)
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where, n denotes the inlet/outlet normal direction, and pref is the reference pressure

imposed at both the inlet and the outlet. σinlet is the conductivity value at the

inlet, while φinlet and φoutlet are the electric potentials imposed at the inlet and outlet

respectively.

The 2D straight microchannel considered here is 50µm wide and 500µm long.

Other parameters and fundamental scales are given in Table 4.4. Accordingly, the

important nondimensional parameters in the simulation such as the Reynolds number

and the electrical Rayleigh number etc. are calculated as Re ≈ 1.08, Rae ≈ 541.4

and Rv ≈ −17.9. For convenience, a conductivity ratio is introduced and defined as

γ = σinlet/σoutlet. In all the simulations conducted in this subsection γ is chosen as

2.5 while σinlet is set to 1.0, and thus σoutlet = 0.4.

Table 4.4
Parameters and fundamental scales used in 2D simulations of EKI for
the colinear gradient case.

Symbol Description Value

w Length scale (half width of the channel) 2.5× 10−5[m]

µ Absolute viscosity of fluid 1.0× 10−3[kg ·m−1s−1]

ρ Density of fluid 1.0× 103[kg ·m−3]

ε Permittivity 6.93× 10−10[C · V −1m−1]

Deff Effective diffusivity 2.0× 10−9[m2s−1]

E0 Reference electric field 5.0× 104[V ·m−1]

ζ0 Reference EDL zeta-potential −7.0× 10−2[V ]

For the initial state, the electric field is assumed to be uniform. Thus, the electric

potential field is initialized using a linear function

f(x) = c1x+ c2 (4.31)
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where, the coefficients c1 and c2 in the function are determined by the electric poten-

tials imposed at the inlet/outlet and the locations of the inlet/outlet

c1 =
φinlet − φoutlet
xinlet − xoutlet

(4.32a)

c2 = φinlet − c1xinlet (4.32b)

(a) Initialized by linear function.

(b) Initialized by exponential function.

Fig. 4.15. Initialization of conductivity fields in 2D simulations of
EKI for the colinear gradient case.

To generate conductivity gradient for the initial state, two types of functions are

used in order to study the effect of conductivity gradient on EKI respectively. Besides

the linear function 4.31, the conductivity field is also initialized by an exponential

function

f(x) =
c2

c1 + e−x
(4.33)

where, the coefficients c1 and c2 in the function can be determined by solving a 2× 2

system of equations to fulfill the boundary conditions for conductivity at the inlet

and the outlet

c1 =
σinlete

−xinlet − σoutlete−xoutlet
σoutlet − σinlet

(4.34a)

c2 =
σinletσoutlet(e

−xinlet − e−xoutlet)
σoutlet − σinlet

(4.34b)
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The conductivity fields initialized by the two different functions are visualized

in Figure 4.15. It is clear that the conductivity gradient in the state initialized by

the exponential function as shown in Figure 4.15(b) is higher than that in the state

initialized by the linear function as shown in Figure 4.15(a), though the conductivity

ratio γ is the same. From the simulation results that would be provided in this

subsection later, it can be found that these two different initial conductivity fields will

greatly affect EKI phenomena and conductivity gradient actually plays an important

role in the mechanism of EKI.

In order to study the effects of conductivity gradients as well as electric fields

on EKI, a series of simulations are performed, in which the strength of the applied

electric field starts with E = 1250 V/cm, and then is increased to E = 2500V/cm

and finally to E = 5000 V/cm. For the same applied electric field strength, linear

and exponential initialization strategies for conductivity field are used respectively

and compared. The simulation results for E = 1250V/cm, E = 2500V/cm and

E = 5000V/cm are provided in Figures 4.16, 4.17, and 4.18 respectively. In each

figure, the plots in the left column are the conductivity fields evolved from the linear

function initialized state, while the plots in the right column show the conductivity

fields evolved from the exponential function initialized state.

Figure 4.16 shows the evolving conductivity field for E = 1250V/cm. In the snap-

shots given in the left column, the conductivity field evolves from the state initialized

by the linear function. The electrokinetic flow in this condition is driven by the elec-

trical body force from rest and smoothly moves towards the outlet. No instability is

observed until the flow completely moves out of the channel and the entire domain

is filled with high conductivity. As a contrast, though it is under the same applied

electric field, the flow with a high conductivity gradient that is initialized by the

exponential function becomes unstable, see the snapshots shown in the right column

in Figure 4.16.

Similar phenomena are observed in Figure 4.17 for a higher electric field E = 2500

V/cm. The flow with lower conductivity gradient as shown in the left column still
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t = 12 ms

t = 17 ms

t = 29 ms

t = 35 ms

t = 40 ms

t = 46 ms

t = 58 ms

(a) Linear initialization strategy (b) Exponential initialization strategy

Fig. 4.16. Snapshots of the conductivity field evolved from different
initial conductivity gradients under E = 1250 V/cm.

maintains stable until it completely moves through the channel. Again, in the right

column the flow with higher conductivity gradient undergoes instability. However,

since the strength of the applied electric field is stronger which will result in a larger

electrical body force, the instability is observed more vigorous compared to the pre-
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t = 6 ms

t = 12 ms

t = 17 ms

t = 20 ms

t = 23 ms

t = 26 ms

t = 29 ms

(a) Linear initialization strategy (b) Exponential initialization strategy

Fig. 4.17. Snapshots of the conductivity field evolved from different
initial conductivity gradients under E = 2500 V/cm.

vious case. If an even higher electric field, for example, E = 5000 V/cm, is applied

for the channel, instability phenomena can be found even in the flow with lower con-

ductivity gradient. As shown in the left column of Figure 4.18, the flow with lower

conductivity gradient that would not undergo instability in previous cases becomes
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t = 2.9 ms

t = 3.5 ms

t = 5.7 ms

t = 6.9 ms

t = 8.7 ms

t = 10.4 ms

t = 13.8 ms

(a) Linear initialization strategy (b) Exponential initialization strategy

Fig. 4.18. Snapshots of the conductivity field evolved from different
initial conductivity gradients under E = 5000 V/cm.

unstable before it is about to move out of the channel. This indicates that even for a

flow with low conductivity gradient, EKI could be still invoked if the applied electric

field is sufficient strong. As for the flow with higher conductivity gradient in this case,

the instability is much more severe than the previous cases. In addition, according
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to the simulation results for different cases presented here it can be seen that as the

strength of the applied electric field increases, the velocity of the flow increases as

well and it takes shorter and shorter time for the flow to move through the channel.

4.2.2 Orthogonal Gradient Case

The type II initial state for EKI as shown in Figure 4.14 (b) is considered in this

subsection. Two buffer streams with different electrical conductivity are introduced

into a two-dimensional straight microchannel. One stream with a high conductivity

σH initially occupies the upper half of the channel while the other stream with a

low conductivity σL occupies the lower half of the channel. As a result, an interface

is formed at the horizontal central-line of the channel and a diffuse conductivity

gradient is along width-direction of the channel. When different electrical potentials

are imposed at the inlet and the outlet, the applied electric field is orthogonal to the

conductivity gradient. Here, assume the conductivity ratio is γ = σH/σL = 2.5. The

width and the length of the rectangular channel are 1.0 mm and 3.6 mm respectively.

Other physical parameters and scales are from [29] as listed in Table 4.5. Then

the important nondimensional parameters used in the simulation are calculated as

Re ≈ 108, Rae ≈ 54141 and Rv ≈ −179 which are consistent with [29].

As described in [29], the diffuse conductivity interface was approximately 75 µm

wide compared to the width of the channel which is 1 mm. Then the exponential

function 4.33 is used to define this interface and set up the initial state for conductivity

field. The electrical potential field is still assumed uniform and thus is initialized by

the linear function 4.31. The electrokinetic flow in the channel is initially at rest and

no external pressure differences are imposed at the inlet and the outlet. Boundary

conditions 2.22a-2.22d at the walls, 4.29a-4.29d at the inlet, and 4.30a-4.30d at the

outlet are adopted in the simulations.

A representative set of images from simulations performed at the electric fields

E = 400 V/cm, E = 750 V/cm, and E = 1050 V/cm are shown in Figure 4.19. For
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Table 4.5
Parameters and fundamental scales used in 2D simulations of EKI for
the orthogonal gradient case.

Symbol Description Value

w Length scale (half width of the channel) 5.0× 10−4[m]

µ Absolute viscosity of fluid 1.0× 10−3[kg ·m−1s−1]

ρ Density of fluid 1.0× 103[kg ·m−3]

ε Permittivity 6.93× 10−10[C · V −1m−1]

Deff Effective diffusivity 2.0× 10−9[m2s−1]

E0 Reference electric field 2.5× 104[V ·m−1]

ζ0 Reference EDL zeta-potential −7.0× 10−2[V ]

each case, the successive images show the temporal evolution of the conductivity field

under a constant (DC) electric field. In each column, the top figure gives the initial,

undisturbed interface between the two buffer streams with different conductivity.

In Figure 4.19, the red color represents the high-conductivity stream, and the

blue color refers to the low-conductivity stream. The physical time considered in

the simulation is 5 seconds, and the time of the snapshots is given in each row in

the figure. At the electric field of 400 V/cm, only slight fluctuations are observed at

t = 5.0 s. Then this electric field may be considered as the threshold field for the

time period of interest here. At the two higher applied electric fields, small amplitude

waves observed at the early stage quickly grow. As the fluid motion becomes unstable,

it buckles the conductivity interface and proceeds to stretch and fold material lines.

After t = 4.0 s, at the electric field of 1050 V/cm it results in a well-stirred, nearly

homogeneous conductivity concentration field. All the phenomena captured by the

simulation including a threshold field and scalar features are qualitatively consistent

with the phenomena observed in the experiments provided by [29].
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E=400V/cm E=750V/cm E=1050V/cm

t = 0 s

t = 0.5 s

t = 1.0 s

t = 1.5 s

t = 2.0 s

t = 2.5 s

t = 3.0 s

t = 4.0 s

t = 5.0 s

Fig. 4.19. Representative simulation snapshots of conductivity field
from the simulation for E = 400 V/cm, E = 750 V/cm, and E = 1050
V/cm corresponding to the first, second, and third column.
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4.2.3 Discussion and Summary

In this section 4.2, a series of simulations for two typical initial states for EKI

in a simple two-dimensional straight microchannel are performed to understand the

basic mechanism and behavior of EKI. In general, fluid flows in microchannels with

conductivity gradients subjected to strong external applied electric fields can undergo

violent instability and display turbulent characteristics at low Reynolds number.

From the simulation results of type I initial state for EKI as shown in the subsec-

tion 4.2.1, it can be found that under the same applied electric fields, the higher the

initial conductivity gradients are the more violent instability occurs. On the other

hand, for the same initial conductivity gradients the higher the applied electric fields

are, the quicker the flow is driven to move and the more vigorous instability can

be observed. From the mathematical point of view, this can be explained from the

governing equations (2.18a)-(2.18e). The interaction of conductivity gradients and

electric fields creates charge density in the fluid flow, see Equations (2.18a)-(2.18c).

Then the external applied electric field exerts an electrical body force on this inter-

nally generated charge and drives the fluid to move, see Equation (2.18e). In other

words, it is conductivity gradients interacting with the applied electric fields that

generates fluid motion. Therefore, electric fields and conductivity gradients play an

important role in the onset of EKI.

The simulation results of type II initial state for EKI provided in the subsection

4.2.2 show that there is a threshold electric field for the onset of EKI. This states

that the electrokinetic flow would remain stable under an electric field that is below

the threshold value. However, if the electric field exceeds the threshold value the

electrokinetic flow would become unstable and instability phenomena occur. This

can be, mathematically, explained by the diffusion term in the conservation equa-

tion of conductivity (2.18a). In the work of both Baygents et al. [101] and Lin et

al. [29], they pointed out that viscous diffusion alone does not provide a sufficient

stabilizing mechanism and molecular diffusion has an important stabilizing effect in
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electrokinetic flows. On the one hand, with a time scale of τd = w2/Deff molecular

diffusion relaxes the conductivity gradient that is correlated with charge density and

the electrical body force in a way as shown in Equations (2.18c) and (2.18e). On the

other hand, the instability grows with the electroviscous time scale [102] τev = w/Uev.

Thus, instability occurs only when the perturbations grow fast enough to overcome

molecular diffusive relaxation. The ratio of τd and τev gives the electric Rayleigh

number defined in Equation (2.19) which is the critical parameter for the onset of in-

stability. In conclusion, the diffusive conductivity term included in Equation (2.18a)

is indeed required to capture a threshold instability condition. In addition, similar

phenomena were also found in type II initial state compared to those observed in the

type I initial state for EKI. For the type II initial state, after the onset of EKI the

higher the electric field is applied the more rapidly and severely the instability grows.
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5. HIGH FIDELITY SIMULATION OF EKI IN A

THREE-DIMENSIONAL CROSS-SHAPED

MICROCHANNEL

In this chapter, a series of numerical simulations are performed to study instabilities

that develop in the primary step of a pinched flow electrokinetic injection in a cross-

shaped microchannel. This realistic cross-shape flow geometry is directly relevant

to electrokinetic injection studies, electrokinetic mixing schemes, and sample pre-

concentration processes that make use of conductivity gradients [20].

Fig. 5.1. Schematic of the electrokinetic flow in a cross-shaped microchannel.
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5.1 Problem Description and Simulation Details

Figure 5.1 shows the top view of the cross-shaped microchannel. The channel

lengths of the cross-shaped microchip are denoted by Ln, where the subscript n refers

to the east (E), north (N), west (W) and south (S). In experiments, the channels

typically have the characteristic D-shape cross-sections of isotropic etching with half-

width w and depth d. Since the present solver was developed to handle complex

geometries that fit Cartesian grid, the cross-sections of the channels are assumed to

be rectangular in the current numerical study. Buffered aqueous solutions flow toward

the channel intersection from the north (top), south (bottom) and west (left) wells,

and flow away from the intersection along the positive x-axis (streamwise direction)

towards the east (right) well. The sheath streams flow symmetrically from the north

and south wells if the same electric fields are applied in the two channels. Both of

the two sheath streams have an ionic conductivity σS, i.e. σS = σN . The sample

stream from the west well has a conductivity σW . A conductivity ratio is introduced

to relate the two conductivities by γ = σW/σS. From the experimental phenomena

provided by [20] and [32], the center stream is sandwiched between the sheath streams

forming a double conductivity interface in the east channel. As what will be discussed

in this chapter, when the distortion of the conductivity interfaces due to internally-

generated electroviscous velocities occurs more rapidly than the dispersion of this

interface due to molecular diffusion, electrokinetic flows become unstable. An example

of such instability obtained from the simulation result is shown in Figure 5.1, which is

consistent with the phenomena observed in the experiments presented in the literature

[20]. Electrical potentials φn are applied at the wells at the end of each channel. The

applied potentials in the north and south wells can be maintained the same, i.e.

φN = φS, for a symmetric electric field case, or can be varied differently for a non-

symmetric applied field case. The ratio of the west (sample) well to the north/south

(sheath) well potentials can actually be used to control the width of the center stream

which will be discussed later in this chapter. In addition, as we focus on the study
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of electrockinetic effects, no external pressure gradient is imposed at each well such

that pE = pN = pS = pW .

In the numerical simulation, proper wall boundary conditions 2.22a-2.22d are

imposed at the walls of the channel. Conditions 4.29a-4.29d are applied at all the

three inlets for the east, north, and south channels, respectively. Conditions 4.30a-

4.30d are adopted at the outlet for the west channel.

(a) Conductivity field initialized by linear function

(b) Electric field initialized by linear function

Fig. 5.2. Schematic diagrams of initialization of conductivity and
electric potential fields in the cross-shaped microchannel.

To initialize the conductivity field for the cross-shaped flow geometry, the linear

function 4.31 is used to set conductivity in the west channel while conductivity in the

north, south, and east channels is all set to σS. Then the initialized conductivity field
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for the cross-shaped channel could look like Figure 5.2 (a). For the initialization of

the electric potential field, the potentials at the end of each channel are determined

at first according to the corresponding electrical fields and channel lengths. Then a

proper reference potential is set at the intersection region of the channel. Finally the

linear function 4.31 is used to initialize the electric potentials in each channel. An

example of the initialized electric potential for φW = φN = φS is shown in Figure

5.2(b).

In order to efficiently and clearly present the results, several parameters such as

the conductivity ratio γ, the nominally applied field Ea, and electric field ratios βW

and βN are introduced. The quantities γ, Ea, βW and βN are defined as follows

γ =
σW
σS

(5.1a)

Ea =
φS − φE
LE + LS

(5.1b)

βW =
φW − φE

Ea(LW + LE)
(5.1c)

βN =
φN − φE

Ea(LW + LE)
(5.1d)

The nominal applied field Ea for the flow field is the potentials applied between the

south and east channel reservoirs divided by the appropriate channel lengths. In the

experiments presented in [20], this characteristic field is used as a function of directly

specified experimental parameters. The electric field ratio βW is a ratio between

the west and south nominal fields, while βN is a ratio between the north and south

nominal fields. If the lengths of the north, south, and west channels are identical, i.e.

LN = LS = LW and the outlet of the east channel is grounded, i.e. φE = 0 V , these

two electric field ratios become the ratio of the west to the south electric potentials and

the ratio of the north to the south electric potentials respectively, i.e. βW = φW/φS

and βN = φN/φS.

In the following subsections, numerical simulations are conducted to study the

EKI phenomena observed in the experiments done by Luo [32] and by Posner et

al. [20]. Basically, these two papers investigated very similar flow geometry and EKI
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phenomena. If not stated otherwise, microchannel parameters and fluid properties

used in the simulations presented in this section are from [32] as summarized in

Table 5.1. Then the obtained simulation results will be directly compared with the

numerical and experimental results presented in [32], and qualitatively compared with

the experiments presented in [20] as well.

Table 5.1
Parameters and fundamental scales used in the present three-
dimensional EKI simulations taken from [32].

Symbol Description Value

w Half width of the channel (length scale) 3.0× 10−5[m]

d Depth of the channel 1.0× 10−5[m]

µ Absolute viscosity of fluid 0.9× 10−3[kg ·m−1s−1]

ρ Density of fluid 1.0× 103[kg ·m−3]

ε Permittivity 6.93× 10−10[C · V −1m−1]

Deff Effective diffusivity 1.0× 10−9[m2s−1]

E0 Reference electric field 2.5× 104[V ·m−1]

ζ EDL zeta-potential −7.5× 10−2[V ]

For all the simulation results presented in this chapter, a uniform grid with a spac-

ing of ∆x∗ ×∆y∗ ×∆z∗ = 0.025× 0.025× 0.016 is adopted. Such spatial resolution

was confirmed to be sufficient by comparing with a uniform mesh with a spacing of

∆x∗×∆y∗×∆z∗ = 0.02×0.02×0.012 for the case of steady EK flow through the down-

stream channel of the cross-shaped microchip. Electrical conductivity concentration

profiles were examined at the outlet of the downstream channel when the EK flow

reached the steady state under a relatively low electric field and it was found that the

results obtained with the two computational meshes agree very well with each other.

Thus, the uniform mesh with a spacing of ∆x∗ ×∆y∗ ×∆z∗ = 0.025× 0.025× 0.016

was deemed sufficient. The time step in the simulation is chosen as ∆t∗ = 1×10−3 to
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1× 10−4 depending on the strength of applied electric fields as in the cases in which

the EK flow is under a high electric field it requires a smaller time step to maintain

the numerical stability of the solver.

(a) Conductivity concentration field obtained by the upwind scheme.

(b) Conductivity concentration field obtained by the present WENO solver.

Fig. 5.3. Representative instantaneous conductivity concentration
field for Ea = 350 V/cm, γ = 5.5 and βW = βN = 1.0 in a cross-
shaped microchannel.

Before performing high fidelity EKI simulations, again, we compare the first-

order upwind scheme with the fifth-order WENO scheme to confirm that the present

WENO solver is a better numerical tool to simulate EKI phenomena. We use the

parameters listed in Table 5.1 and consider a cross-shaped microchannel with the fol-

lowing dimensions: the lengths of the north, south, and west channels are identically

150µm long and the length of the east channel is 510µm. 60 blocks are arranged to

exactly compose such flow geometry. Thus, for the uniform mesh with a spacing of

∆x∗×∆y∗×∆z∗ = 0.025×0.025×0.016, the mesh size is 41×41×21×60 ≈ 2.12 million

grid points. Assume that a constant DC voltage, i.e. the same value of electric poten-

tial, is applied at the three inlets while the outlet in the east channel is grounded. This

results in the parameters βW = βN = 1.0 and Ea = φS/(LE +LS) = φW/(LW +LE).
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Two electrolyte solutions, one with a low conductivity σS from the north and south

inlets and one with a high conductivity σW from the west inlet, are introduced into

the microchip. The conductivity ratio is assumed to be γ = σW/σS = 5.5.

Figures 5.3 and 5.4 give the results obtained by the upwind scheme and the present

Weno solver under the applied electric fields of Ea = 350V/cm and Ea = 600V/cm,

respectively. From the figures it can be seen that as the upwind scheme introduces

more numerical diffusion to the solution, at a relatively low electric field of Ea =

350V/cm (but high enough to trigger the EK instability according to the experiments

given in [32]) the upwind scheme fails to capture instable phenomenon, see Figure

5.3(a). While at the higher electric field of Ea = 600V/cm, the upwind scheme offers

less details of EKI phenomena compared to the WENO solver when looking at the

shape of the injection head and disturbed throat in the upstream region and the

pattern of EKI in the downstream region.

(a) Conductivity concentration field obtained by the upwind scheme.

(b) Conductivity concentration field obtained by the present WENO solver.

Fig. 5.4. Representative instantaneous conductivity concentration
field for Ea = 600 V/cm, γ = 5.5 and βW = βN = 1.0 in a cross-
shaped microchannel.

Again, it clearly shows that the performance of the fifth-order WENO scheme is

better than the first-order upwind scheme. Thus, the present WENO solver is a good
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numerical tool to simulate EKI phenomena in microfluidic devices. Detailed EKI

simulation results for different conditions will be given in the following subsections.

5.2 Specific Case Study

In [32], both experimental and two-dimensional numerical investigations were per-

formed for EKI phenomena in a cross-shaped microchannel when the conductivity

ratio γ = 3.5 or 1/3.5 under Ea = 778V/cm. In this subsection, three-dimensional

simulations for the same two specific cases are conducted to validate whether the

present WENO solver can capture critical EKI features. A cross-shaped microchip

with the following dimensions is considered: the lengths of the north, south, and west

channels are identically 150µm and the length of the east channel is 870µm. 84 blocks

are arranged to exactly compose the flow geometry and within each block the mesh

size is 41× 41× 21 which makes a total resolution of about 3.0 million grid points for

the computational domain. For the simulations given in the following two subsections

5.2.1 and 5.2.2, the electric field ratios are assumed to be βW = βN = 1.0 which are

consistent with the study presented in [32].

5.2.1 γ = 3.5 under Ea = 778V/cm

Three-dimensional simulations for the conductivity ratio γ = 3.5 atEa = 778V/cm

are carried out in this subsection using the WENO solver. The obtained numerical

results are compared with the experimental as well as the simulation results given

in [32]. According to the experiments presented in [32], the threshold value of the

applied electric field Ea for the onset of EKI was found to be Ea = 385V/cm. Thus

in the simulation, a lower electric field of Ea = 360V/cm is imposed to achieve the

steady state first. Then a DC voltage with a strength of 778 V/cm which is higher

than the threshold electric field is applied at the three inlets to invoke the EKI effect.

Figure 5.5 shows the temporal evolution of the fluid stream electrical conductivities

(top view of the microchannel) under Ea = 778V/cm for γ = 3.5 and βW = βN = 1.0.
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(a) t = 0 s

(b) t = 5 ms

(c) t = 10 ms

(d) t = 15 ms

(e) t = 20 ms

(f) t = 30 ms

(g) t = 100 ms

Fig. 5.5. Evolution of conductivity concentration for Ea = 778 V/cm,
γ = 3.5 and βW = βN = 1.0 in a cross-shaped microchannel.
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As shown in Figure 5.5 (a), when the electrolyte solutions are smoothly introduced

into the east channel from the three inlet channels under the steady condition, the

sample stream with a high conductivity σW from the west channel is pinched by the

two sheath streams with a low conductivity σS from the north and south channels.

In the channel intersection region, a triangle-shaped injection head is formed and the

two interfaces are clearly defined. From the steady state when the time is counted as

t = 0 s, a high external electric field Ea = 778V/cm is applied to the microchannel.

In a very short time, i.e. at t = 5 ms as shown in Figure 5.5 (b), perturbation

at the two interfaces between the sample stream and the sheath streams near the

triangle-shaped head is observed along the downstream direction. Over the interval

from t = 5 ms to t = 20 ms, the straight interfaces formed in the steady state are

buckled into a wave-like pattern and the perturbation phenomenon becomes more

and more severe. In the entrance region of the east channel, the high-conductivity

sample stream periodically fluctuates up and down between the upper and lower

walls. This results in a series of circulations in the downstream region. As time

elapses, after t = 30 ms the conductivity concentration fluctuations with a periodic

and symmetrical alignment are formed and occupy the full channel width along the

downstream direction.

Figure 5.6 shows the comparison among the experimental and the two-dimensional

simulation results presented in [32] and the three-dimensional simulation results ob-

tained by the present solver at Ea = 778V/cm for γ = 3.5 and βW = βN = 1.0. Figure

5.6(a) are the fluorescent images from the experiments by [32] showing the distribu-

tion of the sample stream with high conductivity in the east channel. From the

experimental visualization, apparent disturbances were found. Coherent structures

caused by the disturbances originated from near the pinched throat at x/w ≈ 1.5 at

the upstream section. At the downstream section, conductivity concentration fluc-

tuations with a periodic alignment occupy the full width of the channel. From the

two-dimensional simulation results as shown in Figure 5.6(b), however, more severe

instabilities were observed. The source of disturbances moved from the throat at
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Upstream section Downstream section

(a) Experimental visualization from [32].

(b) 2D simulation result from [32].

(c) 3D simulation result by the present WENO solver.

Fig. 5.6. Comparison among the experimental result, the 2D sim-
ulation results presented in [32], and the 3D simulation results ob-
tained by the present WENO solver for Ea = 778V/cm, γ = 3.5 and
βW = βN = 1.0.

the upstream section to the triangle-shaped head. This results in the entire injec-

tion head also periodically oscillated along the y-direction in the intersection region.

At the downstream section, no periodic fluctuations were observed though the scalar

concentration was distributed to the full width of the channel. The three-dimensional

simulation results obtained in the present work are provided in Figure 5.6(c). Though

obvious instabilities are found for sure, the triangle-shaped head does keep staying

in the intersection region. Coherent structures are formed after the head near the

location of x/w ≈ 1.5. Then the disturbances convect downstream and grow rapidly.

At the downstream of the throat, the concentration of conductivity periodically fluc-

tuates up and down. High conductivity is thus left near the upper and lower walls

while the concentration of conductivity in the central region between the two walls

is relatively low. From the observation, it is apparent that three-dimensional simula-

tions give a better qualitative agreement with the experimental results compared to

the two-dimensional simulations.
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5.2.2 γ = 1/3.5 under Ea = 778V/cm

In this subsection, the case of the conductivity ratio γ = 1/3.5 is considered.

In contrast with the previous case, an electrolyte stream with a low conductivity

concentration is injected from the west channel, while two high-conductivity solutions

are introduced into the microchip via the north and the south channels. Like what

has been done in the γ = 3.5 case, a steady state was achieved first by imposing

an electric field that is lower than the threshold value. Notice from the experiments

conducted in [32], the threshold value for the nominal electric field was found to be

Ea = 355 V/cm. Thus a lower electric field of Ea = 340 V/cm is imposed to obtain

the equilibrium condition. Then the electric field strength is increased to Ea = 778

V/cm to trigger EKI phenomena.

Figure 5.7 shows the temporal evolution of the conductivity field (top view of the

microchannel) for γ = 1/3.5 and βW = βN = 1.0 at Ea = 778V/cm. At the steady

state from which the time is counted as t = 0 s, the low-conductivity sample stream

from the west channel is sandwiched in the central region of the east channel by the

two high-conductivity electrolyte solutions from the north and south channels. Similar

to what was observed in the γ = 3.5 case, a triangle-shaped injection head is formed

in the channel intersection region and two interfaces that split the three electrolyte

streams are clearly defined, see Figure 5.7 (a). As shown in Figures 5.7 (b)-(e), in the

presence of the strong electric field of Ea = 778 V/cm after about 20 ms , the EK flow

becomes unstable and the original straight interfaces are symmetrically perturbed. As

the EK flow moves toward the outlet in the east channel, the central low-conductivity

stream is squeezed or stretched by the two outer high-conductivity streams due to the

wave-like perturbations. Notice that the perturbations always maintain symmetric

though the two interfaces break off somehow as the perturbations develop in the east

channel, see Figures 5.7 (e) and (f). As time further passed by, a melon-seed-shaped

structure is formed in the upstream region while a string of individual pearl-like

structures is observed in the downstream region, see Figure 5.7(g).
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(a) t = 0 s

(b) t = 20 ms

(c) t = 40 ms

(d) t = 80 ms

(e) t = 120 ms

(f) t = 180 ms

(g) t = 300 ms

Fig. 5.7. Evolution of conductivity concentration for Ea = 778 V/cm,
γ = 1/3.5 and βW = βN = 1.0 in a cross-shaped microchannel.
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Upstream section Downstream section

(a) Experimental visualization from [32].

(b) 2D simulation result from [32].

(c) 3D simulation result by the present WENO solver.

Fig. 5.8. Comparison among the experimental result, the 2D simula-
tion results presented in [32], and the 3D simulation results obtained
by the present WENO solver for Ea = 778V/cm, γ = 1/3.5 and
βW = βN = 1.0.

Again, we compare the the three-dimensional numerical results obtained by the

WENO solver with the experimental and the two-dimensional simulation results pre-

sented in [32] at Ea = 778V/cm for γ = 1/3.5 and βW = βN = 1.0. From the

experimental visualization as given in Figure 5.8 (a), a pearl-like structure is clearly

observed and such structure moderately propagates along the downstream direction.

Both the two-dimensional and the three-dimensional simulations basically capture

such instable electrokinetic phenomena. However, the three-dimensional results ob-

tained by the present WENO solver offers a more similar phenomena compared to the

experiments when looking at the shape of the disturbed interfaces between the central

low-conductivity stream and the outer high-conductivity streams, for example, the

triangular injection head in the channel intersection region, the melon-seed-shaped

structure in the upstream region, and the pearl-like structure in the downstream

region.
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5.2.3 Discussion

From the results presented in the previous two subsections 5.2.1 and 5.2.2, it is

clear to see that the present WENO solver is capable of accurately capturing the

critical features of EKI in the cross-shaped microchannel. In addition, for the corre-

sponding EKI phenomena it can be found that under the application of a relatively

high electric field (Ea = 778 V/cm), instabilities occur in both two cases of γ = 3.5

and γ = 1/3.5. Actually these two cases are representative examples in two types

of injection configurations/modes based on the conductivity ratio γ, i.e. the two in-

jection configurations of γ > 1 and γ < 1 respectively. Suppose both of these two

injection configurations are applied for micromixing (as one of the major applications

of EKI in the considered cross-shaped microchannel is mixing), it is interesting and

useful to find in which injection configuration a more rapid and efficient mixing can

be achieved.

To quantify the degree of mixing within the microfluidic device, the concentration

mixing intensity Im(x) at any cross section along the mixing channel (i.e. x-axis) is

introduced by following [103]

Im(x) =

(
1.0−

∫ d
0

∫ 2w

0
|σ − σ∞|dydz∫ d

0

∫ 2w

0
|σ0 − σ∞|dydz

)
× 100% (5.2)

where, d and w are the depth and the half-width of the mixing channel respectively,

σ is the species concentration across the mixing channel, σ0 and σ∞ are the species

concentrations in the completely unmixed and completely mixed states, respectively.

Figure 5.9 shows the comparison of the conductivity mixing intensities along the

downstream direction for the two injection configurations of γ = 3.5 and γ = 1/3.5

at Ea = 778 V/cm. From the numerical result for the case of γ = 3.5, it can be found

that the mixing intensity starts at the entrance region of the east mixing channel at

about 30%. In the upstream region, the mixing intensity grows rapidly in a wave-like

pattern along the stream-wise direction. Then it increases to over 70% and keeps

increasing slightly like a straight line after a mixing distance of x/w ≈ 12.0. In the

injection configuration of γ = 1/3.5, the mixing intensity, in contrast to that for
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Fig. 5.9. Comparison of conductivity mixing intensities along the
downstream direction for the two injection configurations of γ = 3.5
and γ = 1/3.5 at Ea = 778 V/cm.

the γ = 3.5 case, is lower throughout the east mixing channel. As shown in Figure

5.7(g), since a pearl-like structure is formed in the downstream channel along the

low-conductivity stream, though the mixing intensity grows from the entrance region

it always increases in a sinuous tendency. From a point of mixing, this large variation

may not be acceptable as it may cause the heterogeneous composition of the mixture.

In conclusion, compared to the injection configuration of γ = 1/3.5, the injection

mode of γ = 3.5 offers a more rapid and efficient mixing effect. Thus, the injection

mode with γ > 1.0 can be considered as a more appropriate choice for the application

of micro-mixing in a cross-shaped microchannel. In the following general parametric

study on EKI, we will focus on such injection mode rather than that with γ < 1.0.
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5.3 General Parametric Study

In this section, we perform a general parametric study on EKI phenomena in a

cross-shaped microchannel. Three-dimensional simulations are conducted to investi-

gate the effects of different parameters including the conductivity ratio γ, the electric

field strength Ea, the channel depth d, and the electric field ratios βW and βN on

EKI. The parameters and fluid properties used in the simulations are still, if not

stated otherwise, as listed in Table 5.1. A cross-shaped microchip with the follow-

ing dimensions is considered: the lengths of the north, south, and west channels are

identically 150µm and the length of the east channel is 510µm. 60 blocks are ar-

ranged to exactly cover the flow geometry and the uniform mesh with a spacing of

∆x∗×∆y∗×∆z∗ = 0.025×0.025×0.016 is used for the corresponding computational

domains for different cases. In the present parametric study on EKI, we focus on

the injection mode for γ > 1, i.e. high conductivity in center stream from the west

channel.

5.3.1 Effect of Conductivity Ratio on EKI

To investigate the effect of conductivity ratio γ on EKI, we conduct simulations

for five different values of conductivity ratio γ varying from 1.5 to 10.0 by using

the present WENO solver. The threshold values of the nominal electric field Ea for

the corresponding cases are found numerically and summarized in Figure 5.10 with

the experiment measurements provided by [32]. From the figure it can be seen that

the present solver captures the critical electric fields for the onset of EKI at various

conductivity ratios though for the low conductivity ratios, for example, γ from 1.5 to

5.5, the threshold values found in the simulations are a bit higher compared to the

experiment results.

From the fundamental numerical study of EKI conducted in Section 4.2, we know

that due to the interaction of conductivity gradients and electric fields an electri-

cal body force is exerted on the EK flow and thus generates fluid motion. Under
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Fig. 5.10. The threshold values of the nominal electric field Ea for the
conductivity ratio γ varying from 1.5 to 10.0.

the same applied electric field, when conductivity gradients are high (namely high

conductivity ratio) more vigorous instabilities are expected to occur. The simula-

tion results given in Figure 5.11 confirm such expected phenomenon. At the same

applied field of Ea = 650 V/cm, the conductivity concentration field changes from

the steady state, to periodic oscillation, and then to more vigorous unstable state

(slightly non-periodic perturbation) as the conductivity ratio γ increases from 1.5

to 10.0, see Figures 5.11(a)-(e). For γ = 1.5, as Ea = 650 V/cm is lower than its

threshold value (960 V/cm) according to Figure 5.10, the conductivity concentration

field maintains stable, see Figure 5.11(a). As shown in Figure 5.11(b)-(d) with the

increase of γ from 3.5 to 7.5, since the applied electric field of Ea = 650 V/cm ex-

ceeds the corresponding threshold values for all these cases periodic fluctuations are

clearly observed in the downstream channel. The position of the coherent structures

where the disturbances originate are changed from x/w ≈ 2.5 to x/w ≈ 1.0. For

the highest conductivity ratio γ = 10.0, the concentration field starts to fluctuate

non-periodically along the spanwise direction and the source of disturbances moves

further upstream to x/w < 1.0, see Figure 5.11(e).
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(a) γ = 1.5

(b) γ = 3.5

(c) γ = 5.5

(d) γ = 7.5

(e) γ = 10.0

Fig. 5.11. Representative instantaneous snapshots of conductivity
concentration fields at an applied electric field of Ea = 650 V/cm
for different conductivity ratios.



87

In order to gain insight into the disturbed scalar field, the average and pertur-

bation concentration fields are calculated and presented. The time-averaged mean

concentration field for the variable, conductivity σ(x, y, z, t), can be defined as

σ̄(x, y, z, t) =
1

Tf

∫ t0+Tf

t0

σ(x, y, z, t)dt (5.3)

where, Tf is flow time over which the averaging is accomplished and t0 is the time

after the start of the simulation at which the averaging process is initiated.

In a disturbed EK flow since the concentration field is quickly changing, one can

define a perturbation of the scalar variable σ(x, y, z, t) as the deviation from its time-

averaged value as follows,

σ′(x, y, z, t) = σ(x, y, z, t)− σ̄(x, y, z, t) (5.4)

Then the mean square perturbation is calculated by

σ̄′(x, y, z, t)2 =
1

Tf

∫ t0+Tf

t0

σ′(x, y, z, t)2dt (5.5)

Figure 5.12 shows the average conductivity concentration fields under the applied

electric field of Ea = 650 V/cm for different conductivity ratios varying from 1.5 to

10.0. As described in [20], since typically the disturbances of EKI convect downstream

too fast and the flow structures can hardly be resolved by the human eye, the average

scalar fields can be viewed as and be comparable to what is observed by eyes through

the microscope binoculars when running the experiments. From Figure 5.12, it can be

seen that for a low conductivity ratio of γ = 1.5 the center stream remains in a thin

filament as no disturbances occur in that case. As the conductivity ratio increases,

the center stream is dispersed along the spanwise direction in the east channel and

the source of disturbances moves back towards x/w = 0.
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(a) γ = 1.5

(b) γ = 3.5

(c) γ = 5.5

(d) γ = 7.5

(e) γ = 10.0

Fig. 5.12. Average conductivity concentration fields at an applied
electric field of Ea = 650 V/cm for different conductivity ratios.
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(a) γ = 3.5

(b) γ = 5.5

(c) γ = 7.5

(d) γ = 10.0

Fig. 5.13. Mean square conductivity concentration perturbation fields
at an applied electric field of Ea = 650 V/cm for different conductivity
ratios.

Such phenomena can be illustrated more clearly by the mean square perturbation

fields. Figure 5.13 show the mean square perturbation fields under the applied electric

field of Ea = 650 V/cm for different conductivity ratios varying from 3.5 to 10.0.

Note that since for γ = 1.5 the concentration field stays at its stable state, the

calculated mean square perturbation field has negligible small values (very close to

0) throughout the domain and thus is not included in Figure 5.13. From the mean

square perturbation fields it clearly shows that as the conductivity ratio γ increases
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perturbations grow in strength and the origin point of disturbances changes upstream

from the location of x/w ≈ 2.5 to x/w ≈ 0.8.

5.3.2 Effect of Electric Field Strength on EKI

In this subsection, critical features of EKI phenomena in a cross-shaped mi-

crochannel are qualitatively described by three-dimensional simulation results. The

conductivity ratio γ is considered as γ = 10.0 and the electric field ratios are assumed

to be βW = βN = 1.0. The external electric field Ea is increased from a low value of

250 V/cm for steady state to a high strength of 1350 V/cm under which a chaotic

flow characteristic can be found.

Representative instantaneous snapshots of the conductivity concentration field at

different applied fields from 250 V/cm to 500 V/cm are given in Figure 5.14. Ac-

cording to the experiments done in [32], for the conductivity ratio γ = 10.0 the

threshold value of the nominal electric field Ea for the onset of EKI was found to

be Ea ≈ 260V/cm. Thus, as shown in Figure 5.14 (a) for Ea = 250 V/cm the EK

flow remains in its stable state. However, when the electric field is set to Ea = 280

V/cm which exceeds the critical value of 260 V/cm, small disturbances are observed

from x/w ≈ 8.0. Along the downstream direction, the size and strength of those

disturbances slightly grows but right after a short distance at x/w ≈ 15.0 the dis-

turbance amplitude vanishes, see Figure 5.14 (b). After the applied field is increased

to Ea = 350 V/cm, as shown in Figure 5.14 (c), the original straight interfaces are

buckled into a sinuous-wave pattern from x/w ≈ 5.0 and the amplitude gradually

grows to the full width of the channel as the disturbances convect downstream. At

the higher applied field of Ea = 500 V/cm, disturbances develop rapidly. As shown

in Figure 5.14 (d), coherent structures are formed and the location where the dis-

turbances originate becomes closer to the intersection of the microchannel (i.e. at

x/w ≈ 2.0) compared to the Ea = 350 V/cm case. In the downstream region, the

high-conductivity center stream fluctuates with a periodic alignment between the up-
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per and lower walls (along the y-direction) and the mixed conductivity concentration

occupies the full channel width from x/w ≈ 8.0 along the downstream direction.

(a) Ea = 250 V/cm

(b) Ea = 280 V/cm

(c) Ea = 350 V/cm

(d) Ea = 500 V/cm

Fig. 5.14. Representative instantaneous snapshots of conductivity
concentration fields at different applied fields from 250 V/cm to 500
V/cm for γ = 10.0 and βW = βN = 1.0.

If the nominal electric field Ea is further raised, for example, beyond 700 V/cm,

more chaotic EKI phenomena can be observed as shown in Figures 5.15 (a)-(c). As

the applied field Ea is increased to 700 V/cm, see Figure 5.15 (a), the source of dis-

turbances approaches upstream to the triangle-shaped injection head at x/w ≈ 1.0.

The throat quickly swings between the upper and lower walls. Previously observed
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(a) Ea = 700 V/cm

(b) Ea = 950 V/cm

(c) Ea = 1350 V/cm

Fig. 5.15. Representative instantaneous snapshots of conductivity
concentration fields at different applied fields from 700 V/cm to 1350
V/cm for γ = 10.0 and βW = βN = 1.0.

coherent structures disappear. More complex scalar structures in the downstream

region are formed and they are no longer periodic. Under a higher electric field of

Ea = 950 V/cm as shown in Figure 5.15 (b), the EK flow undergoes more severer in-

stability. The triangle-shaped head becomes thinner and completely moves back into

the intersection region of the microchannel at x/w ≈ 0.5. High-conductivity sample

stream is rapidly injected into the downstream region. At a further increased electric

field of Ea = 1350V/cm, the source of disturbances approaches further upstream, i.e.

at x/w < 0.0. The triangle-shaped head is additionally compressed to a thin filament.

It rapidly oscillates in an aperiodic way along the spanwise direction (y-direction),

and thus strongly injects high-conductivity electrolyte into the downstream region.
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As a result, highly disordered scalar patterns are formed and a well-mixed fluid is

observed downstream in the east channel.

(a) Ea = 250 V/cm

(b) Ea = 280 V/cm

(c) Ea = 350 V/cm

(d) Ea = 500 V/cm

Fig. 5.16. Average conductivity concentration fields at different ap-
plied fields from 250 V/cm to 500 V/cm for γ = 10.0 and βW = βN =
1.0.

Figure 5.16 presents the average conductivity concentration fields at different ap-

plied fields from 250 V/cm to 500 V/cm for γ = 10.0 and βW = βN = 1.0. It can be

seen that as the EK flow stays in the stable state at the electric field Ea = 250 V/cm

which is below the threshold value of Ea = 260 V/cm, the corresponding average

concentration field looks identical to its instantaneous scalar field, see Figure 5.16(a).
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When Ea = 280 V/cm, since only small-amplitude perturbations are observed in a

part of the downstream region, the average concentration field looks very similar to

that for Ea = 250 V/cm case except that the center stream is slightly dispersed from

x/w ≈ 8.0 to the outlet. As the electric fields are increased to Ea = 500 V/cm,

the center stream is gradually widened in the average scalar fields and the source of

perturbations moves from x/w ≈ 5.0 to 2.0, see Figures 5.16 (c) and (d). Figure

5.17 shows the corresponding average scalar fields at higher applied fields from 700

V/cm to 1350 V/cm for γ = 10.0 and βW = βN = 1.0. As the electric field strength

increases, the origin location of disturbances moves further and further into the in-

tersection region of the microchannel and the center stream is highly dispersed due

to large-amplitude disturbances, see Figures 5.17 (a)-(c).

(a) Ea = 700 V/cm

(b) Ea = 950 V/cm

(c) Ea = 1350 V/cm

Fig. 5.17. Average conductivity concentration fields at different ap-
plied fields from 700 V/cm to 1350 V/cm for γ = 10.0 and βW =
βN = 1.0.



95

(a) Ea = 280 V/cm

(b) Ea = 350 V/cm

(c) Ea = 500 V/cm

(d) Ea = 700 V/cm

(e) Ea = 950 V/cm

(f) Ea = 1350 V/cm

Fig. 5.18. Mean square perturbation fields at seven applied fields from
280 V/cm to 1350 V/cm for γ = 10.0 and βW = βN = 1.0.
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Figure 5.18 gives the mean square perturbation fields at six applied fields from

280 V/cm to 1350 V/cm for γ = 10.0 and βW = βN = 1.0. Note that the result

for Ea = 250 V/cm is not included in the figure as at the stable state the calculated

mean square perturbation field has negligible small values (very close to 0) throughout

the domain. Figure 5.18 (a) shows the slightly disturbed EK flow at Ea = 280

V/cm. In the east channel, two thin perturbation bands are observed along the

streamwise direction starting at the downstream position of x/w ≈ 7.5 and vanishing

near x/w ≈ 16.0, which reflects the phenomenon presented in Figure 5.14 (b). At the

higher applied field of Ea = 350 V/cm, perturbations originate at x/w ≈ 5.0. The

disturbance region is gradually widened to the full channel width as perturbations

convect downstream, see Figure 5.16(b). Under Ea = 500 V/cm as shown in Figure

5.18 (c), the source of perturbations is located backward at x/w ≈ 2.0 and the

perturbation region occupies the full width of the channel from x/w ≈ 5.0. The region

of strong disturbances is observed from x/w ≈ 2.0 to 8.0. With the increase of the

electric field, the perturbations grow in strength and the location of the perturbation

origin moves back to the microchannel intersection region, i.e. x/w < 1.0. When the

applied field is above Ea = 700 V/cm, for example, Ea = 950 V/cm as shown in Figure

5.18(e), the source of strong disturbances approaches upstream to x/w ≈ 0.0 and the

triangle-shaped injection head swings periodically along the spanwise direction. At a

further increased electric field of Ea = 1350V/cm, see Figure 5.18 (f), the origin point

of strong fluctuations moves further back to x/w ≈ −0.5. The injection head oscillates

more violently in the vertical direction. A shortened region of strong disturbances is

observed from x/w ≈ 0.0 to 2.5. It can be seen that as the electric field is raised,

more vigorous instabilities occur in the EK flow and they originate further and further

upstream towards x/w = −1.0. In addition, the region of strongly disturbed EK flow

becomes shorter and shorter along the streamwise direction. As a result, the EK flow

reaches a highly disordered status more rapidly at the location closer to the channel

intersection region. For example, at the applied fields beyond Ea = 700V/cm the EK
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flow in the east channel is observed to be well mixed after the downstream point of

x/w ≈ 7.0.

Fig. 5.19. Comparison of conductivity mixing intensities along the
downstream direction for the nominal electric field Ea varying from
350 to 1350 V/cm.

To quantify and compare the degree of mixing occurred in the cross-shaped mi-

crochip at different electric field strengths, the mixing intensities Im in the east chan-

nel under Ea varying from 350 V/cm to 1350 V/cm are given in Figure 5.19. From

the figure, it is clear to see that with the increase of the electric field Ea the degree

of mixing is enhanced. A strong applied field strength results in higher values of

mixing intensity throughout the entire east channel. At Ea = 350 V/cm and 500

V/cm, the sinuous increase patterns in mixing intensities correspond to the periodic

fluctuations are observed. Under Ea = 700 V/cm and higher applied fields, the corre-

sponding mixing intensity fluctuates in a random way but keeps increasing along the

east channel and finally reaches a high value, for example, around 90% at x/w = 17.0.
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Overall, the EKI phenomena at different electric field strengths in a cross-shaped

microchannel described by the three-dimensional simulations in this subsection give a

good qualitative agreement with the experimental results available in the literature,

for example, provided by [20] in which an extensive parametric study of EKI was

performed and detailed EKI phenomena through a wide range of conductivity ratio

(γ) and electric field ratio (βW and βN) were presented. Though the parameters used

in the simulations such as γ and βW , βN are different from [20], as pointed out by [20]

that the values of the conductivity ratio (γ) and the applied field ratios (βW , βN)

only affect the applied field required to reach each flow regime, and the qualitative

nature of the instability does not vary with the parameter γ. Thus, it clearly shows

that the present WENO solver can capture critical features of EKI phenomena in the

considered cross-shaped microchannel.

5.3.3 Effect of Channel Depth on EKI

In this subsection we investigate the effect of channel depth d on EKI in the cross-

shaped microchannel. Again, we consider the injection mode for γ = 10.0 and assume

the same electric field ratios βW = βN = 1.0. With the same channel width of 60µm,

the channel depth will be varied in the simulations.

In order to clearly present and compare the results, a parameter α is introduced

to relate the channel depth d with the half of the channel width w as α = w/d.

Simulations for four different values of the width-to-depth ratio α varying from 2.0

to 3.75 are performed by using the present WENO solver. Figure 5.20 summarizes

the threshold values of the applied electric field Ea found in the simulations for the

corresponding cases. It can be seen that as α increases meaning the channel depth

is decreasing, the threshold value of the nominally applied field Ea increases as well.

In other words, a thicker microchannel requires a lower threshold value of the electric

field for the onset of EKI.
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Fig. 5.20. The threshold values of the nominal electric field Ea for
different width-to-depth ratio α varying from 2.0 to 3.75.

To show the effect of the channel depth on EKI phenomena, representative in-

stantaneous snapshots of conductivity concentration fields at an applied field of

Ea = 650V/cm for different values of the width-to-depth ratio α are presented in

Figure 5.21. When α = 3.75 which refers to a very thin channel depth of 8µm,

high-conductivity center stream is disturbed and periodically fluctuates in the east

channel, see Figure 5.21 (a). As α decreases (i.e. the channel depth increases), more

severe instabilities are observed in the EK flow. Disturbances develop rapidly in more

complex, aperiodic patterns along the downstream direction, see Figure 5.21 (b)-(d).

From Figure 5.22 that gives the mean square perturbation fields for the corre-

sponding different values of depth-to-width ratio at the applied field of Ea = 650

V/cm, it can be found that with the decrease of α (the channel depth is increas-

ing) perturbations grow in strength and their origin location moves from the point of

x/w ≈ 2.5 for α = 3.75 back into the microchannel intersection region at x/w ≈ −0.5

for α = 2.0. The triangle-shaped injection head that originally stays in the microchan-

nel intersection region for α = 3.75 or 3.0 is compressed due to strong disturbances
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(a) α = 3.75

(b) α = 3

(c) α = 2.5

(d) α = 2

Fig. 5.21. Representative instantaneous snapshots of conductivity
concentration field at an applied field of Ea = 650 V/cm for different
width-to-depth ratios with γ = 10.0.

for α = 2.5 and 2.0. When α = 2.0 as shown in Figure 5.22 (d), the injection head

oscillates strongly in the spanwise direction which results in a shortened perturbation

region in the upstream part of the east channel and thus leads to a well mixed EK

flow in the downstream region of the channel.
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(a) α = 3.75

(b) α = 3

(c) α = 2.5

(d) α = 2

Fig. 5.22. Mean square perturbation fields at an applied field of Ea =
650 V/cm for different depth-to-width ratios with γ = 10.0.

According to the above presented simulation results, it seems that at the same

applied electric field instabilities are more likely to develop in the microchannel as

the channel depth increases. This can be confirmed by looking at the cross-sectional

snapshots of conductivity concentration field and the mixing intensity along the east

channel. Figure 5.23 (a) and (b) show the corresponding conductivity concentration
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(a) α = 3.75

(b) α = 2.0

Fig. 5.23. Representative instantaneous cross-sectional snapshots of
conductivity concentration field at an applied field of Ea = 650 V/cm
for the width-to-depth ratio α = 3.75 and 2.0.

fields at the cross-sections of x/w = 3.0, x/w = 9.0 and x/w = 15.0 under the applied

field of Ea = 650 V/cm for the width-to-depth ratio α = 3.75 and 2.0, respectively.

For a thin channel depth of α = 3.75, the distribution of conductivity concentration

is nearly symmetric through the three selected cross-sections. However, when the

channel is thicker as α = 2.0 the EK flow in the east channel undergoes more severe

instability and strongly rolls up in the vertical direction (z-direction) as well which

results in an asymmetric concentration distribution at all of the three cross sections.

As the EK flow approaches towards the outlet, the z-axial fluctuations become more

pronounced and finally leads to a well stirred concentration field throughout the cross

section near the outlet.

Figure 5.24 shows the mixing intensities Im along the east channel for different val-

ues of the width-to-depth ratio α varying from 2.0 to 3.75 at Ea = 650 V/cm. Though

the EK flow is under the same applied field, a higher mixing intensity throughout the

east channel is observed as the ratio α decreases which corresponds to a thicker

channel depth. This indicates the mixing of electrolytes with different conductivity
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concentrations in the east channel is evidently enhanced due to the increase of the

channel depth.

Fig. 5.24. Comparison of conductivity mixing intensities along the
downstream direction for different width-to-depth ratio α varying
from 2.0 to 3.75 at an applied field of Ea = 650 V/cm.

In summary, we can draw a conclusion that a thicker microchannel requires a

lower threshold value of the external applied field for the onset of EKI. Under the

same electric field strength that can trigger EKI, intensive instabilities are more likely

to develop in the EK flow and thus a well-mixed fluid is easier to be achieved as the

channel depth increases.

5.3.4 Effect of Electric Field Ratio on EKI

In the previous numerical study on EKI, we imposed the same electrical potentials

at the three inlets of the cross-shaped microchannel by setting βW = βN = 1.0 for

all the cases. Since the cross-shaped microchannel considered in the present study
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has identical lengths for the north, south, and west channels (i.e. LN = LS = LW ),

and the outlet of the east channel is grounded (i.e. φE = 0), the electrical potentials

imposed at the three inlets can be derived from Equations (5.1b)-(5.1d) as

φS =Ea(LE + LS) (5.6a)

φW = βWφS (5.6b)

φN = βNφS (5.6c)

Thus, when βW = βN = 1.0, the potentials applied at the three inlets arrive at the

same value, i.e. φN = φS = φW .

In this subsection, we vary the values of the electric field ratios βW and βN and

investigate their effect on EKI in the cross-shaped microchannel. The conductivity

ratio is assumed to be γ = 10.0. Basically we consider two general cases. First, we

symmetrically impose the same electrical potentials at the north and south inlets by

setting βN = 1.0 and then change the other electric field ratio βW such that βW > 1.0

or βW < 1.0. We call this case as symmetric electric field case. For the second general

case, we apply different potentials at the north and south inlets as well such that none

of the potentials imposed at the three inlets are identical. Thus we call such case as

non-symmetric electric field case.

Figure 5.25 shows the conductivity concentration fields at the corresponding stable

states for βN = 1.0 and different values of βW = 0.95, 1.0, and 1.05 in the symmetric

electric field case. Since the flow rate in each channel is proportional to the strength of

the electric field applied in the corresponding channel, as βW increases meaning higher

electric fields are applied in the west channel than those applied in the north and south

channels the center-to-sheath flow-rate ratio increases as well. In other words, the

flow from the west channel moves faster and faster compared to the streams from the

north and south channels with the increase of βW . As a result, more high-conductivity

center stream is driven from the west channel to the downstream east channel which

leads to a bigger triangle-shaped injection head and a wider band of high-conductivity

stream in the east channel as the electric ratio βW is raised from 0.95 to 1.05.
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(a) βW = 0.95 and βN = 1.0

(b) βW = 1.0 and βN = 1.0

(c) βW = 1.05 and βN = 1.0

Fig. 5.25. Conductivity concentration fields at stable states for differ-
ent electric field ratios with γ = 10.0.

As shown in Figure 5.25 (a), for a lower value of βW = 0.95 a thin triangular

injection head is formed within the intersection region of the microchannel. The

interfaces of the high- and low-conductivity streams in the intersection region are

concave curves to the center of the head. The undisturbed straight center stream in

the east channel is narrow and only occupies a small portion of the channel width. As

βW is increased to βW = 1.05, the injection head is enlarged outside the microchannel

intersection region and the interfaces of the high- and low-conductivity streams are

changed to convex curves to the center of the head. In addition, a much wider center

stream with higher concentration intensity is formed in the east channel, see Figure

5.25 (c).
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(a) βW = 0.95 and βN = 1.0

(b) βW = 1.0 and βN = 1.0

(c) βW = 1.05 and βN = 1.0

Fig. 5.26. Representative instantaneous snapshots of conductivity
concentration field at an applied field of Ea = 500V/cm for differ-
ent electric field ratios with γ = 10.0.

Figure 5.26 shows the disturbed conductivity concentration fields for βW varying

from 0.95 to 1.05 under the nominal electric field of Ea = 500 V/cm which is higher

than the threshold values for all the considered cases. When βW = 0.95, the throat

of the high-conductivity center stream in the east channel is squeezed to a thin band

by the two symmetrical sheath streams with faster flow rates. As a result, small

perturbations originate far from the microchannel intersection region at x/w ≈ 4.0

and as they convect downstream the disturbance amplitude gradually grows and

occupies the east channel in spanwise direction. As βW is raised to 1.05, a larger

amount of high-conductivity stream is injected into the east channel due to higher
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flow rate from the west channel, see Figure 5.26 (c). A much wider throat with higher

concentration intensity is observed being oscillating right from the entrance of the east

channel at x/w ≈ 1.0. As the throat swings in a relatively lower rate compared to

what has been observed in the βW = 0.95 case, the disturbance amplitude quickly

develops to the full channel width. From the simulation results shown in Figures

5.25 and 5.26, for the symmetrical electric field case (βN = 1.0) the electric field

ratio βW can be used to control the center-to-sheath flow-rate ratio and the width of

high-conductivity center stream in the east channel.

(a) Stable state

(b) Ea = 500 V/cm

(c) Ea = 1250 V/cm

Fig. 5.27. Representative instantaneous snapshots of conductiv-
ity concentration fields at different strengths of electric fields for
βW = 0.98 and βN = 1.08 with γ = 10.0.
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(a) Ea = 500 V/cm

(b) Ea = 1250 V/cm

Fig. 5.28. Average conductivity concentration fields at the applied
fields of Ea = 500 and 1250 V/cm for βW = 0.98 and βN = 1.08 with
γ = 10.0.

Next we simulate the non-symmetric electric field case. When different electrical

potentials are asymmetrically imposed at the three inlets, the center stream in the

east channel could be shifted not to align with the central line of the channel at

the stable state and the perturbation patterns at the disturbed state would be also

changed. Figure 5.27 shows the representative instantaneous snapshots of conductiv-

ity concentration fields at the stable state and two applied fields of Ea = 500 and

1250 V/cm for βW = 0.98 and βN = 1.08. The average concentration fields at the

two disturbed states are given in Figure 5.28. From the figures it can be observed

that at the stable state as shown in Figure 5.27 (a), the high-conductivity stream

from the west channel is straightly injected into the east channel along y/w ≈ 0.3 in

the upper region of the channel instead of along y/w = 0 due to βN = 1.08 meaning

a higher electric field is imposed in the north channel than that applied in the south

channel. At an intermediate electric field of Ea = 500 V/cm which is high enough to

invoke EKI, the disturbed high-conductivity stream convects to the outlet in a peri-
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odic alignment and only occupies the upper region of the channel from y/w ≈ −0.4

to y/w = 1.0 without touching the bottom wall, see Figures 5.27 (b) and 5.28 (a). As

the electric field strength is increased to Ea = 1250 V/cm, a thinner throat is formed.

The injection head is compressed back within the microchannel intersection region.

It periodically swings and strongly injects the high-conductivity stream into the east

channel. As a result, though in the upstream section of the east channel still distur-

bances only occupies the upper region of the channel, as they convect downstream

rapidly in a chaotic way the disturbances expands to the full channel width from the

downstream section of x/w ≈ 13.0, see Figure 5.27 (c) and 5.28 (b).
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6. SUMMARY AND FUTURE WORK

6.1 Conclusions

Isotachphoresis (ITP) and electrokinetic instability (EKI) are complex, multi-

physical flow phenomena on the micro-scales and they are extensively applied in

microfluidic systems. Due to non-linear electromigration physics, sharp gradients in

species concentration and/or applied electric fields occur in ITP and EKI which in

many cases causes difficult design and simulation challenges. In order to accurately

simulate and thus help understand essential physics of ITP and EKI, a useful numeri-

cal tool is desired. In the present research work, a high-order accurate finite difference

solver using WENO schemes was developed to simulate ITP and EKI phenomena in

microfluidic devices. The solver is using a multiblock approach to allow simulations

with complex geometries that fit Cartesian grids. Validation of the solver was per-

formed for one- and two-dimensional ITP and EKI problems. In one-dimensional

ITP problems in which steep gradients present in both electric field and species con-

centration, it was demonstrated that on a given uniform grid the present WENO

solver not only gave a smooth non-oscillatory solution, but it also offered a more

accurate result with reduced numerical diffusion compared to several existing numer-

ical schemes including the first-order upwind, the second-order central difference, the

SLIP, and the sixth-order compact schemes. The present solver was also validated to

be capable of accurately resolving the sharp interfaces of species concentration and

electric field by comparing the numerical result with the available analytical solution.

For two-dimensional ITP and EKI problems, the present solver was used to study

and understand the basic physics and mechanism of the two kinds of electrokinetic

phenomena. The obtained simulation results showed good agreements with the nu-

merical and the experimental results presented in the literature which indicates that
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the solver is a good numerical tool to analyze and study ITP and EKI phenomena in

microfluidic systems.

By using the validated solver, a series of three-dimensional simulations were car-

ried out to study EKI phenomena in a cross-shaped microchannel, a more realistic

flow geometry relevant to a wide range of applications. Simulation results obtained

by the present solver for two specific and other more general cases showed that the

solver had the capability to capture the threshold value of electric field for the onset

of EKI and it offered a better numerical description of the critical features of EKI

phenomena in the considered cross-shaped microchannel compared to the numerical

and experimental results provided in the literature. From the general parametric

study, several useful guidelines showing the effect of different parameters on EKI in

a cross-shaped microchannel for the injection mode of γ > 1.0 were explored by the

present solver and are summarized as follows.

• The higher the conductivity ratio is, the lower the threshold value of the applied

electric field is required to invoke the instability in the EK flow.

• As the strength of the applied electric field is raised, the EK flow transits from

a steady state to a time-dependent periodic state, and then to an aperiodic,

chaotic state. In such process the mixing intensity in the downstream channel

tends to reach higher values. Thus, from a point of mixing, the degree of mixing

can be enhanced with the increase of the applied field.

• For a fixed conductivity ratio, a thicker microchannel requires a lower threshold

value of the applied field for the onset of EKI. Under the same electric field,

intensive instabilities are more likely to develop in the EK flow. Thus a well-

mixed fluid is easier to be achieved as the channel depth increases.

• In general, the ratio between the west and the north/south nominal fields can

be used to control the center-to-sheath flow-rate ratio and the width of high-

conductivity center stream in the downstream channel. In a non-symmetric
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electric field case, the position of the injected center stream in the downstream

channel can be shifted along the spanwise direction by changing the ratio be-

tween the north and south nominal fields. In such case, the disturbed high-

conductivity stream may only occupy a part of the downstream channel along

spanwise direction under a relatively low applied field. However, at higher elec-

tric fields the highly perturbed high-conductivity stream may expand to the full

channel width as it convects downstream.

6.2 Future Work

Research work that could be undertaken in future is proposed in this section. First,

as the present solver can only handle complex geometries that fit Cartesian grid, in

the future an Immersed Boundary Method (IBM) needs to be added to enable the

solver to handle arbitrarily complex geometries. IBM methods have been widely used

in CFD as an attractive methodology because of its capability to efficiently handle

complex moving and rotating geometries on structured grids [104]. In most cases, the

implementation of IBM methods is based on explicit time advancement schemes [105].

Thus, the main challenge for the current case is how to appropriately couple an IBM

with the semi-implicit scheme for time integration in the present solver so as to

successfully implement the IBM. In addition, efforts need to be made to ensure that

the solver can also efficiently handle complex geometries for all the involved scalars,

including species concentration and electrical potential etc. The methods presented

in [106,107] may be useful to deal with the problem.

Another improvement that could be done for the present solver is to implement

Adaptive Mesh Refinement (AMR) rather than only using a uniform grid throughout

the computational domain. The use of AMR will allow the solver to dynamically

concentrate more grid points at regions of high gradients in ITP, for example, without

a need to refine the mesh everywhere. In this way, the solver will accurately resolve
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the sharp interfaces which is of key importance in ITP with a significantly reduced

computational cost.

Finally the newly developed solver can be applied to simulate full three-dimensional

ITP phenomena with multiple species in complex geometries by accurately and effi-

ciently solving a set of governing equations including the incompressible Navier-Stokes

equations with electrical body forces, the charge conservation equation, and a large

number of species transport equations.
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