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ABSTRACT

Li, Jianfu. Ph.D., Purdue University, December 2014. The Tessera D&R Computa-
tional Environment: Designed Experiments for R-Hadoop Performance and Bitcoin
Analysis. Major Professor: William S. Cleveland.

D&R is a statistical framework for the analysis of large complex data that enables

feasible and practical analysis of large complex data. The analyst selects a division

method to divide the data into subsets, applies an analytic method of the analysis to

each subset independently with no communication among subsets, selects a recombi-

nation method that is applied to the outputs across subsets to form a result of the

analytic method for the entire data. The computational tasking of D&R is nearly em-

barrassingly parallel, so D&R can readily exploit distributed, parallel computational

environments, such as our D&R computational environment, Tessera.

In the first part of this dissertation, I present a study of the performance of the

Tessera D&R computational environment through designed experiments.

The base of the D&R computational environment is RHIPE, the R and Hadoop

Integrated Programming Environment. R is a widely used interactive language for

data analysis. Hadoop is a distributed, parallel computational environment consisting

of a distributed file system (HDFS) and distributed compute engine (MapReduce).

RHIPE is a merger of R and Hadoop.

The D&R framework enables a fast embarrassingly parallel computation on a

cluster for large complex data that can lead to a small computational elapsed times

for the applications analytic methods to all of the data. However, the time depends

on many factors. The system we study is very complex and the effects of factors are

complex. There are interactions, but not well understood. So we run a full factorial

experiment with replicates to enable an understanding.
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In the second part of this dissertation, I present an analysis of the Bitcoin trans-

action data utilizing the Tessera D&R computational environment.

Bitcoin is a de-centralized digital currency system. There is no central authority

in the Bitcoin system to issue new money, or validate the transfer of money; both

of these tasks are accomplished through the joint work of participants in the Bitcoin

network. In the past two years, the Bitcoin system has become very popular, mostly

due to its ease of use and embedded anonymity in the system.

The ease of use of Bitcoin is straightforward. The anonymity of the Bitcoin

system, on the other hand, is rather debatable and has drawn much attention in its

user community as well as the research community. We admit that a certain level

of anonymity exists in the Bitcoin system, but it might not be as invulnerable as

one would hope. For one thing, the entire history of Bitcoin transactions is publicly

available, which provides an opportunity for passive analysis of Bitcoin usage such as

ours.

I present here a study of the general statistical properties of the usage of Bitcoin

transactions and the usage of Bitcoin addresses. We have also built profiles for a

few groups of popular addresses among which the addresses share similar behavior.

Furthermore, we provide a passive analysis of the anonymity of Bitcoin system by

proposing a classification model to identify payment and change in majority of the

Bitcoin transactions.



1

1. A MULTI-FACTOR DESIGNED EXPERIMENT FOR

PERFORMANCE OF THE TESSERA D&R COMPUTATIONAL

ENVIRONMENT FOR LARGE COMPLEX DATA

1.1 Divide and Recombine (D&R) for Large Complex Data

1.1.1 D&R Statistical Framework

D&R [1] [2] is a statistical framework for the analysis of large complex data that

enables feasible and practical analysis of large complex data. The analyst selects a

division method to divide the data into subsets, applies an analytic method of the

analysis to each subset independently with no communication among subsets, selects

a recombination method that is applied to the outputs across subsets to form a result

of the analytic method for the entire data.

Analytic methods have two distinct categories, visualization methods whose out-

puts are visual displays, and number-category methods whose outputs are numeric

and categorical values. In D&R, number-category analytic methods are typically

applied to each of the subsets. Visualization methods are typically applied to each

subset in a sample of subsets because often there are too many of them to look at

plots of all [3]. The D&R result for an analytic method is almost always not the same

as the result that would have occurred had it been feasible and practical to apply

the method directly to all of the data. D&R research in statistical theory consists of

developing division methods and recombination methods to maximize the statistical

accuracy of the D&R result. Optimal choices can result in a statistical accuracy that

is close to that of the direct all-data application of the method, were it feasible and

practical. Statistically there are D&R efforts going on under different names, e.g.,

“Consensus” has been used for recombine [4].
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The D&R statistical framework leads to simple, feasible, and practical computa-

tion on a cluster for the analysis of large complex data. The reason is that much

of the computational tasking of D&R is nearly embarrassingly parallel, that is, no

communication between the parallel processing, which is the simplest parallel pro-

cessing. D&R can readily exploit computational environments that run on clusters,

such as Hadoop [5] and Spark [6] [7], which enable distributing subsets across the

cluster, and carrying out the parallel processing across the cluster. This also means

the cluster nodes are both data nodes and compute nodes. Furthermore, for each

analytic method, even iterative ones, the data in the form of subsets are read into

memory only once.

1.1.2 Tessera Computational Environment

Tessera [8] is a computational environment to carry out D&R. The front end of

Tessera, what the data analyst uses to program with the data, is R [9], the widely

used and highly acclaimed interactive language for data analysis. The back end is the

Hadoop distributed, parallel computational environment [5] consisting of a distributed

file system (HDFS) [10] and distributed compute engine (MapReduce) [11]. RHIPE

[12], the R and Hadoop Integrated Programming Environment, is a merger of R and

Hadoop. The analyst carries out all analysis within R, using RHIPE R commands

to communicate with Hadoop. This protects the analyst from having to manage the

details of the Hadoop database management and parallel processing.

The analyst specifies R code for the three D&R tasks:

• divide the into subsets (D[dr] computations)

• apply the analytic method to each subset (A[dr] computations)

• recombine the outputs of the A computations and write results to the HDFS

((R[dr] computations).
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In each case the analyst passes the R code to RHIPE R commands that manage the

communication between R and Hadoop, and Hadoop carries out the R computations

on the cluster nodes. A large part of these computations are embarrassingly paral-

lel, which means no communication between the parallel computations, the simplest

possible parallel processing.

Hadoop computes the subsets by executing the analyst D[dr] R commands, and

distributes the subsets across the servers of the cluster into the Hadoop Distributed

File System (HDFS). Hadoop runs the analyst A[dr] R commands on the subsets

across the server cores using its Map computational procedure. Map is an embarrass-

ingly parallel procedure, not allowing communication among the subset computations.

Hadoop schedules these computations by assigning a core to a data block, or a col-

lection of subsets. There are typically far more subsets than cores. As each subset

computation ends, another collection of subsets is chosen and a core assigned to it.

Hadoop attempts to optimize by assigning a core as close as possible to the subsets

location, for example, on the same node as the subsets if possible. Hadoop runs

the analyst R[dr] R commands on the outputs of the A[dr] computations using the

Reduce computational procedure, which can compute across subsets. Aspects of the

computation can be embarrassingly parallel. The D[dr] R commands can use both

Map and Reduce, and much of this computation can be embarrassingly parallel.

1.1.3 Designed Experiments to Improve Performance of D&R Compu-

tations on a Cluster

The D&R framework enables a fast embarrassingly parallel computation on a

cluster for large complex data that can lead to a small computational executions times

for the applications of analytic methods to all of the data. However, the time depends

on many factors. This presents an opportunity for optimizing the computation even

further by making the best choice of the factors. Our approach to the optimization

is to run statistically designed experiments. We report here on one such experiment.
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The system we study is very complex and the effects of factors are complex. There

are interactions, but not well understood. So we run a full factorial experiment with

replicates to enable an understanding. Hadoop and the hardware architecture factors

are a major part of the experimentation. There have been investigations of perfor-

mance of these factors that are meant to lead to “best practices”, such as [13] [14]

and [15]; there have also been studies of Hadoop performance via simulation ap-

proach [16] [17], as well as through profiling and modelling [18] [19]; some studies

also conducted experiments and benchmarking to explore optimal configuration set-

tings and to seek improvements for Hadoop, such as [20] and [21]. However, we have

not found comprehensive multi-factor experiments with a statistical design that can

convincingly account for the effects of the factors including interactions.

1.2 Experimental Design

In our experiment, the analytic method is logistic regression. It is applied to

each subset by the R function glm.fit. Elapsed time associated with this is the

response. Quantitative results that guide optimization come from building and fitting

a model that relates the response to the factors. In all runs of the experiment there

are N = 230 observations of V variables. One variable is the dependent variable ,

randomly generated 0’s and 1’s in which the probability of a 1 is 0.5. The remaining

are V − 1 explanatory variables, each a randomly generated normal with mean 0 and

variance 1.

The data are generated, and written to the HDFS by a D[dr] computation. How-

ever, this computation is not part of the experiment. Rather, the total execution time

is for the A[dr] and D[dr] computations together. The reason is that in a D&R anal-

ysis, a division resulting from a D&R division persists and is used for many analytic

methods. The D[dr] computational cost is amortized across the analytic methods.

This is a good thing because the D[dr] computation is often quite big. The recombi-

nation method in our experiment is to take the means of the subset estimates of the
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coefficients; they are then written to the HDFS. This R[dr] computation is negligible

compared with A[dr].

1.2.1 Factors, Replication, and Error Term Variability

There are 2 types of execution time that will be described shortly. Their sum is

the total execution time. So this means that there is one computation-type categorical

factor in the experiment with 2 levels. There are 2 statistical factors that measure

characteristics of the dataset and the subsets. These factors also affect the statistical

properties of the D&R estimates of the regression coefficients. One is the number

of observations per subset. There are two HDFS factors that control aspects of the

HDFS. One is the I/O buffer size. There are two Hadoop MapReduce factors. One

is the maximum number of Map tasks allowed. There are two hardware factors,

which are aspects of the cluster hardware architecture. One is the speed of the

network connecting the nodes. Altogether there are 9 factors in the experiment. One

statistical factor has 5 levels, the other statistical factor has 3, and the remaining

factors each have 2.

Knowledge of functioning of the computational environment provides information

that helps greatly in choosing the factors and their levels. However, that knowledge

does not provide strong insight into interactions. We must rely on empirical study

for this. The reason is simply that while there has been some study of Hadoop

performance one factor at time, we have been unable to find results on interactions. So

we must rely on the empirical study of the experimental data to discover interactions,

and a some of our knowledge of the functioning. For this reason the design is a full

factorial. So there are 1920 combinations of the factors. There are 3 replicates for of

each combination, so there are 5760 runs of the experiment.

Each run has full use of the cluster without other users and without other runs.

However, there are known sources of variation that we cannot readily control, and

leave as error variability. One source is from system processes that use a variable
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amount of capacity on the cluster. We do not expect this to be large in magnitude

compared with the effects of the controlled experimental factors of the experiment.

Another source is the iterative fitting of glm.fit for each subset. The number of

iterations is determined by a convergence criterion. The number varies, which means

the execution times of individual fits vary. We could have fixed the number to a

constant, but did not to maintain as much verisimilitude as possible. We do record

the number of iterations. However, as we will see, the error variability is quite small

compared with the effects of the factors. Part of the model building includes careful

study of the variability.

1.2.2 Measurements and the Computation-Type Factor

There are two types of execution-time computation. The subsets are stored on

the HDFS as R objects. The first computation type is O, the execution time to read

the subsets from the HDFS and make them available to glm.fit in memory as an R

objects. So O is a part of the A[dr] computation. The other type, L, starts when O

ends. It consists of glm.fit computations on the subsets using Hadoop Map, plus

gathering the subset estimates and computing the means using Hadoop Reduce. L is

part of the A[dr] computation plus the R[dr] computation.

There are two types of execution-time measurements but they are not (O,L).

The reason is that we cannot measure L directly by just running glm.fit. It needs

data. So for each combination of all other factors, we measure O in one run and

T = O+L in another. We get O by doing just the reading into memory and forming

the R object in memory. That is, we do not run glm.fit. We get T by running

everything, reading and forming the object, applying glm.fit, and carrying out the

recombination. There are 960 combinations of the factors other than computation

type. With 3 replicates for combination, there are 2880 runs of measuring O runs.

Similarly, there are 2880 T runs.
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As part of our initial modeling, we hypothesize that for the measurement T =

O+L, O (abusing notation here somewhat) has the same execution time distribution

as O in the direct measurement. We check this in the model building as well as argue

for it based on how we define O and L. Since we do not measure L directly, it is in

effect a latent variable. To get the properties of L, we carry out a statistical model

building approach that serves as a deconvolution method.

1.2.3 Statistical Factors

The number of observations of the variables, response and explanatory, is held

constant to N = 230, so it is not a factor. There are two statistical factors. One is

V , the number of variables. The second is M , the number of observations per subset,

where N/M = R is an integer, the number of subsets. The experimental values of M

and V are shown in Table 1.1. For each V = V0, we randomly generated one dataset,

Table 1.1.: Statistical factors.

Factor Values Description

V 24, 25, 26 Number of variables

M 216,214,· · · ,28 Number of observations per subset

response and explanatory variables, resulting in NV0 values. This dataset is used in

all runs with V = V0.

There are three other variables derived from the values of N , M , and V that are

important to our analysis. The first, R, is defined above. The next two, S and D, are

sizes in memory, measured in bytes. Each value of the V variables in the experiment

is stored in memory as double precision, which is 8 bytes. S = 8MV bytes is the size

of each subset. It changes across runs with M and V . D = 8NV bytes is the total

size of the dataset. It changes with V across runs. The values of R, S, and D taken

in the experiment are shown in Table 1.2. s varies from 32 kilobytes to 32 megabytes.
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S varies from 128 gigabytes to 0.5 terabytes. R varies from about 16,000 to about

4,000,000.

Table 1.2.: Derived statistical variables used in the analysis.

Factor Values Description

R 214, 215, · · · , 222 Number of subsets.

S 215, 216, · · · , 225 Size of subset in bytes.

D 237, 238, · · · , 239 Size of dataset in bytes.

1.2.4 Hadoop HDFS Factors

Subsets in the experiment are put into blocks by the HDFS and stored as inde-

pendent units. The size of a block, BLK, is a HDFS configuration parameter, and

affects not only the storage of the dataset but also MapReduce scheduling of tasks.

When a dataset is used as input to a MapReduce job, the Hadoop scheduler assigns a

Map task to each block. So there are as many Map tasks as the number of blocks the

dataset spans. Therefore, S, the size of the dataset, and BLK, the size of a block,

determine the number of Map tasks. Given S, the smaller BLK and the larger the

number of blocks, so consequently, the larger the number of Map tasks. Each Map

task works with a lesser amount of data and in general this leads to better paralleliza-

tion. However, more tasks increase the management workload for the NameNode and

the JobTracker.

Another factor that has been shown to affect HDFS I/O performance is the

Hadoop I/O buffer size, or IOB. Technically, IOB affects not only the HDFS, but

also other aspects of Hadoop where I/O operations are present. IOB determines how

much data is buffered in I/O pipes before transferring to other operations during read

and write operations. Its default in our version of Hadoop is 4 kilobytes. This is a

conservative setting. 64 kilobytes has been suggested as a good choice [15].
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Table 1.3.: HDFS Factors.

Factor Values Description

BLK 128, 256 HDFS block size in megabytes.

IOB 4, 64 Hadoop I/O buffer size in kilobytes.

1.2.5 Hadoop MapReduce Factors

The Map task capacity, or MTC, controls the maximum number of Map tasks

that can be run simultaneously on a given node. Of course, this is bounded by the

number of cores on the node. Collectively on the experimental cluster which has the

same number c of cores per node, the maximum that can be run is c times MTC. One

might think a larger MTC should always be preferred over a smaller one. However,

there is a limit on the the node hardware resources: core, memory, disk, and network.

So too many tasks create bottlenecks in any one of a number of node resources. For

Reduce tasks, there is a corresponding factor, RTC. We do not take this as a factor

because the reduce execution time in this experiment is negligible. Table 1.4 gives

the experimental values of MTC.

Map and Reduce tasks are each run on its own Java Virtual Machine (JVM) to

isolate it from other running tasks. The overhead of starting new JVMs for all tasks

can be significant in certain circumstances. However, MapReduce jobs that have a

large number of very short-lived tasks can see performance gains when a JVM is

reused for subsequent tasks. The maximum number of tasks to run for a given job for

each JVM launched, REUSE, is a MapReduce configuration parameter. A values of

1 means JVM reuse is disabled. A value of -1 indicates no limit, so the same JVM

may be used for as many tasks as possible. Table 1.4 shows the values of this factor.
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Table 1.4.: MapReduce Factors.

Factor Values Description

MTC 12, 16 Map task capacity.

REUSE True, False Task JVM reuse.

1.2.6 Hardware Factors

The experiment was run on a cluster configured and maintained by system ad-

ministrators for the Department of Statistics Purdue University. It consists of 6 Dell

R515 nodes interconnected by 10 gigabit Ethernet. Collectively, the cluster has 96

cores, 384 gigabytes of RAM, and 144 terabytes of disk. Each node has dual 3.0

GHz 8-core AMD Opteron(tm) 4284 processors (16 cores); 64 GB RAM; and 12 2TB

7200 RPM nearline SAS (NL-SAS) physical disks. The cluster runs Cloudera Hadoop

0.20.2-cdh3u5; protobuf-2.4.1 protocol buffer software; RHIPE 0.73.1; R 2.15.1; and

Java 1.7.0.07-b10.

There are two hardware factors, the number of physical disks per node and the

speed of the node interactions. Normal operation of the cluster is described above. To

change the 10 gigabit/sec speed to 1 gigabit/sec requires changing Ethernet cards in

the nodes. To change the number of disks per node from 12 to 6 requires disconnects

physical drives and redistributing the test data across the HDFS.

Table 1.5.: Hardware Factors.

Factor Values Description

DISK 12, 6 Number of disks per node.

NETWORK 10, 1 Network bandwidth in gigabits/sec.
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1.3 The Model Building Strategy

Model building is the critical task in the statistical analysis of the experimen-

tal data. Once the model is identified, validated, and fitted, results come readily,

although as we shall see they are complex, and need trellis display to be able to

understand them.

In this section we describe the approach to model building we take to meet certain

challenges in the process. The principal challenge is that we want to model the effects

of factors on O and L, but we measure O and T = O + L. We do not measure L

directly. We need a strategy of model building that includes a deconvolution method

to provide surrogate data for L to guide its modeling.

1.3.1 The Model Core: Dependence on M and V

The two factors M and V have a special role in our investigation. They are

the statistical part. Their values in practice are chosen by the data analyst based

on both statistical considerations and computational considerations. The statistical

accuracy of D&R results depend on them, and so does the computational efficiency.

The analyst has to balance the two considerations in practice. The other 6 factors

in the experiment — BLK, IOB, MTC, REUSE, DISK, and NETWORK — involve

the computational system, hardware factors and Hadoop configuration. We expect

interactions of some of them with M and V . We have a good bit of broad knowledge

about the dependence of O and L on M and V based on Hadoop computational

considerations and the nature of the computational tasking of O and L.

As V increases, the size of the dataset increases proportionally. So for other factors

held fixed, this certainly means monotone increases in O and L with increases in V .

O is mostly the task of reading all of the data into memory. As shown in Section 1.2,

the size is D = 8NV ; the values it takes are shown in Table 1.2 are 128, 256, and 512

gigabytes. We would expect O to increase proportionally with V for other factors
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held fixed, or not be too far off. Because D does not change with M , we expect a

small effect of M for other factors held fixed.

As M increases with other factors held fixed, we expect that L will first decrease

and then increase. This is due to two expected behaviors due to the design of Hadoop.

As M increases from the the smallest values, ongoing Map computations at any given

moment are asking for more memory, which can cause bottlenecks; this tends of make

L increase with as M increases. But as M decreases from the largest values, the num-

ber of subsets R increases, the number of Map tasks goes up, and task management

costs increase. this tends of make L as M decreases. These two phenomena act

against one another, effects can be extreme for both large and small M . So we expect

L to first decrease and then increase with M .

1.3.2 Experimental Values of O and T as Functions of M and V

We denote the experimental values of M and V for a specific one of the 26 com-

binations of the other factors by

Mi, i = 1, . . . , 5 and Vj, j = 1, . . . , 3.

Their logs base 2 are, respectively, mi and vj. Letting k index the replicates, we

denote the execution time response variables by

Tijk Lijk and Oijk, i = 1, . . . 9, j = 1, . . . , 3, k = 1, . . . , 3.

The log base 2 of these variables are, respectively, tijk, ℓijk and oijk. Note we do

not show dependence on the values of the other 6 factors for reasons to be discussed

shortly. For each combination of the 6 factors and for each measurement type, T or

O, there are 5× 3× 3 = 45 measurements.

Each of the coming 4 plots has the following:

• 64 panels, one for each combination of the 6 Hadoop-hardware factors

• 4 pages, 16 panels per page
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• on each panel t, o is plotted against m or v

• when the plot is against m, values of v are shown by plotting character, and a

loess curve is fitted to t or o on m

• when the plot is against v, values of m are shown by plotting character, and

connecting the the means of 3 log execution time replicates with lines

Figure 1.1 plots o against m, with different values of v superposed, conditioning

on Hadoop-hardware factors. The strip labels of the panels describe the level of

the Hadoop-hardware factors, and the factors are varying from fastest to slowest in

the following order: IOB, NETWORK, MTC, DISK, BLK, REUSE. Pairs of panels

when one factor is varying while others are held constant are separated vertically,

horizontally, or by page, to make the comparison more effective. In most of panels,

the loess curve of o on m is close to a flat line, and o does not seem to be varying

much with the increase of m, although there are some panels where a slight increasing

pattern is present for larger value of v. The relationship between o and m appears

to be linear and the dependence is generally quite weak. On the other hand, as

suggested by the clear separation of points and loess curves of different colors, o

varies significantly with v, more specifically, it is monotone increasing with v in all

panels. As we move across panels, the effects of Hadoop-hardware factors on o and

their interactions with m come into play, and the values of o, as well as its relationship

with m, vary from panel to panel to different degrees, depending on which factor(s)

are varied.

Link to figure

Figure 1.1.: o is plotted againstm superpose v, conditioning on Hadoop-hardware

factors.
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Figure 1.2 plots o against v, with different values of m superposed, conditioning

on Hadoop-hardware factors. The relationship between o and v becomes more clear:

o is increasing with v, and the increase is not always linear as the amount of increase

in o from v = 4 to v = 5 can differ from the increase from v = 5 to v = 6 depending

on the combination of Hadoop-hardware factors. Particularly, the increase in o with

a unit increase of v is not exactly 1, meaning it does not take exactly twice as much

time when the data size is doubled. Also there is a fair bit of overlapping for different

values of m in the figure, and this is because of the weak dependence of o on m given

the value of v we have already identified from the above figure.

Link to figure

Figure 1.2.: o is plotted against v superposem, conditioning on Hadoop-hardware

factors.

Figure 1.3 plots t against m, with different values of v superposed, conditioning

on Hadoop-hardware factors. With the aid of the loess curves, it is easy to see that

there is a non-linear relationship between t and m. And besides the difference in the

values of t, the shape of the non-linear relationship between t and m also varies with

the value of v, for example, the minima is achieved at a different value of m for each

value of v. However, the shape of the curves seems to be generally preserved across

panels for each value of v, despite the increase in the values of t with v, this will be

further investigated with other displays.

Link to figure

Figure 1.3.: t is plotted against m superpose v, conditioning on Hadoop-hardware

factors.
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Figure 1.4 plots t against v, with different values of m superposed, conditioning

on Hadoop-hardware factors. Similar to o, t is also increasing with v, and the increase

is generally not linear, with the amount of increase in t from v = 4 to v = 5 being no

larger than the increase from v = 5 to v = 6.

Link to figure

Figure 1.4.: t is plotted against v superpose m, conditioning on Hadoop-hardware

factors.

1.3.3 Interactions and A General Model Specification to Account for

Them

One property of the dependence of o and t on m and v is that there is more com-

plexity in the t patterns than the o. The o patterns are either constant or increasing

with m, and increasing with v. The t patterns decrease and then increase with v or

m; because T = O + L, this suggests o decreases and then increase with v or m.

Another property of the dependence of o and t on m and v that is apparent in

the plots is there is an interaction between m and v, and that the nature of the

interaction changes quite substantially with the 26 combinations of the systems and

hardware factors. This means there are pervasive interactions among all factors. It

is important that we preserve them as much as possible, allowing them to enter in

the modeling. So the modeling will be liberal, allowing for substantial interactions,

then characterizing the statistical accuracy. The chief reason, as emphasized earlier,

is that little is known about interactions.

We specify a general form for the dependence of o and ℓ on m and v, and then fit

it independently for each of the 26 combinations of the systems and hardware factors.

At the end, after the fitting, we will study the interactions, judging them in light of
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both a characterization of the statistical variability, and qualitative knowledge about

factors of the experiment. However, the model form is seen as tentative which, while

quite general, needs validation with model building tools. They are based partly on

the patterns seen in the plots of t and o shown earlier.

The tentative general model equations are

Oijk = 2go(mij ,vij)+ǫo;ijk (1.1)

Tijk = {2go(mij ,vij) + 2gℓ(mij ,vij)}2ǫt;ijk . (1.2)

go and gℓ are bivariate functions. ǫo;ijk and ǫt;ijk are jointly independent normal with

mean 0, and variances σ2
1 and σ2

2 respectively. Note that go and gℓ are linear in

the unknown parameters, but the overall form of the model is nonlinear in those

parameters.

1.3.4 Discussion of Assumptions

In Equation 1.2, the term 2(gℓ(mij ,vij)) is in effect a latent variable. However, the

parameters are identifiable because of the assumption that the dependence of O on

the factors is the same in both equations. We will verify this empirically, but is very

much aided by our definition of O. This will be discussed in more detail below.

We have 3 replicates for each of the 1920 combinations of the factors, including

the measurement type factor, so altogether there are 5760 runs, 2880 yielding O

measurements, and 2880 yielding T measurements. In Section 1.2 we have identified

two sources of error variability: the number of iterations of the logistic regression,

and system processes that use a variable amount of capacity on the cluster. They are

the basis of the error terms ǫo;ijk and ǫt;ijk in the model. We expect both to be small

in magnitude compared with the effects of the factors.
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1.3.5 Deconvolution, A Categorical Model, and Model Building

The lack of direct of observations of L interferes with the model building. So we

take the following approach. The first model is categorical. The values of m and v

are taken to be categorical. go and gℓ each have main effects and full interaction.

The model is very general, allowing for a very wide range of dependencies of L and

O on m and v. Now this is surely an over-specified model allowing far more than

what we would expect and what is seen in the above plots, which suggest substantial

smoothness in go and gℓ. However, we fit the categorical model, and then use the

fitted values of o and ℓ in the model building as if they are the data, to find smooth go

and gℓ that fit these cat-fit data. So this approach provides is a deconvolution method

that yields the cat-fit values of ℓ for model building.

It is vital to emphasize that a resulting smooth modeling is then subjected to

diagnostic checking, not just by how well it fitted the cat-fit data, but on its own,

studying its fit to the data based on study of residuals corresponding to the error terms

ǫo;ijk and ǫt;ijk in the model. Given that the data for each of the 26 combinations have

45 observations, we might question whether there is enough information to support

reliable results. As we will see, the residuals are quite small in magnitude compared

with the magnitude of most of the effects of the factors of the model. Uncertainty of

whether observed effects are valid occurs only for those quite small in magnitude; we

will use the bootstrap to help just these cases.

1.4 Identifying A Tentative Polynomial Model From the Categorical

We fitted the categorical model to the data for each of the 26 combinations of the

systems and hardware factors, and then carried out model diagnostics to detect lack of

fit if it exists by plotting residuals, and check for normally distributed errors, ǫo;ijk and

ǫt;ijk. In the interest of space we do not report details of this, just conclusions, because

the we describe model checking details for the model arising from this categorical

fitting which is the model to be used to characterize the effects of the factors on o
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and ℓ. This is the model checking that determines the adequacy of the assumptions

for the model used to make inferences about the dependence of o and ℓ on the factors.

We found no lack of fit of the categorical model that was more than very minor.

This is not surprising because the number of observations for each combination is 90,

and the number of parameters to fit the data is 30. We checked the assumption of

normality of the errors, ǫo;ijk and ǫt;ijk, by normal quantile plots of the residuals, one

per combination. We found the empirical distributed to be well approximated by the

normal, a very welcome finding.

Figure 1.5 plots the o cat-fit values against m. The general layout is like that of

the plots in Section 1.3 with one panel for each of the 64 combinations of the Hadoop-

hardware factors. Each panel has the values of v encoded by color as shown in the

key. The change in o as a function of m is clearly small compared with that of v, as

expected. The dependence on m does show, in some cases consistent small changes

that also interact with the value of v; that is, there is an interaction of m and v.

Link to figure

Figure 1.5.: o cat-fits are plotted against m.

Figure 1.6 plots the o cat-fit values against v with values of m in each panel

encoded as shown in the key. The patterns are very close to linear, but show in many

cases a slight convex upward pattern, indicating that going from v = 4 to v = 5 has

less increase than from v = 5 to v = 6.

Link to figure

Figure 1.6.: o cat-fit values are plotted against v.
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To describe the dependence seen in the plots, we take as as a tentative model for

the o dependence on m and v to be

go(m, v) = µo + αo1 · v + αo2 · v
2 + βo1 ·m.

This is part of the overall model for O and L in Equations 1.1 and 1.2. In specifying

go(m, v) we provide for all observed patterns across the 26 combinations, which means

some specifications, such as convexity in v, are needed in some cases but not all. We

can of course prune unneeded model features for some the combinations.

Figure 1.7 plots the ℓ cat-fit values against m in the same manner as the o cat-fit

values against m above.

Link to figure

Figure 1.7.: ℓ cat-fit values are plotted against m.

There is a quadratic effect for v = 4 and v = 5 but with a suggestion of a cubic

for v = 6, because the slope drops somewhat for the last two values of v.

Figure 1.8 plots the ℓ cat-fit values against v in the same manner as the o cat-fit

values against v above.

Link to figure

Figure 1.8.: ℓ cat-fit value are are plotted against v.

There is a pronounced quadratic effect, but with a suggestion that the effect

changes with m.

To describe the dependence seen in the plots, we take as as a tentative model for

the ℓ dependence on m and v to be

gℓ(m, v) = µℓ + αℓ1 · v + αℓ2 · v
2 + βℓ1 ·m+ βℓ2 ·m

2 + γℓ · v ·m
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These polynomial models, gℓ(m, v) and go(m, v), are part of the tentative overall

model for O and L in Equations 1.1 and 1.2. So the tentative model for O and L is

Oijk = 2go(mij ,vij)+ǫo;ijk

Tijk = {2go(mij ,vij) + 2gℓ(mij ,vij)}2ǫt;ijk .

We have

go(m, v) = µo + αo1 · v + αo2 · v
2 + βo1 ·m.

and

gℓ(m, v) = µℓ + αℓ1 · v + αℓ2 · v
2 + βℓ1 ·m+ βℓ2 ·m

2 + γℓ · v ·m.

In addition the two sets of mutually independent error terms, ǫo;ijk and ǫt;ijk, are

each taken to be i.i.d normal with variances σ2
o and σ2

t , respectively. This tentative

specification is based on the residuals for the categorical model being well approxi-

mated by the normal. This tentative model applies to each of the 64 combinations of

the Hadoop-hardware factors, has different parameter values across the combinations,

and has independent error terms across the combinations. This is done because we

need to provide empirically as much latitude as possible to see interactions. So each

combination is fitted independently, maximum likelihood.

1.5 Polynomial Model: Diagnostics and Statistical Variability

In this section we describe diagnostics to check the assumptions made in the

tentative polynomial model, and provide information about the statistical variability

of the estimates of the response surface.

1.5.1 Diagnostics

To check for lack of fit of the polynomial model, we compare o and ℓ poly-fits,

the fitted values for o and ℓ from the polynomial model, with the o and ℓ cat-fits,

the fitted values for o and ℓ from the categorical model, emphasizing that the cat-fits
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serve as surrogates for the data. The poly-cat residuals for the polynomial model are

the cat-fits minus the poly-fits. For these residuals, instead of the log base 2 scale we

have been using, we use log base e, to provide much better quantitative interpretation.

Natural logs between about ±0.25 can be interpreted as a fractional change because

log(1 + r) ≈ r. The poly-cat residuals are well within ±0.25.

We also need to check the assumption that the error terms ǫo;ijk and ǫt;ijk are well

approximated by the normal. We do this by studying the two sets of error residuals:

values of o minus the o poly-fits, and values of t minus the o and ℓ poly-fits.

Figure 1.9 plots o poly-cat residuals against m for each of the 26 combinations of

the Hadoop-hardware factors. The layout of the panels of the display is the same as

that for other plots against m for the combinations. Variability is mostly contained

within ±0.05 which is very small compared with effects of the factors. There are a

few values for v = 6 and m = 16 whose departures are larger, but these too remain

small, not much larger than the general variability. We have observed in Section 1.4

that the categorical fits for for v = 6 show a departure from quadratic for m = 16.

We could account for this by adding a cubic term to the model, but because of the

relative small size of the departures, and our need for parsimony in the modeling, we

do not alter the model.

Link to figure

Figure 1.9.: o poly-cat residuals for the polynomial model are plotted against m.

Figure 1.10 is the plot of ℓ poly-cat residuals against m. General variability

is somewhat greater than for o. Again we see outliers, caused by the same issue

discussed above, but occurring now at m = 14. As for o, these larger departures

are not enough larger than the general variability, and are also small compared with

magnitudes of major effects, so we take no action.
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Link to figure

Figure 1.10.: ℓ poly-cat residuals for the polynomial model are plotted against

m.

Figure 1.11 is a normal quantile plot of the o error residuals. The line on the plot

is drawn through the lower and upper quartiles. The magnitudes are overall very

small. The approximation is quite good, certainly justifying lease-squares fitting, and

sufficient for using the parametric bootstrap with a normal assumption to characterize

variability.

Link to figure

Figure 1.11.: Normal quantile plot of o error residuals for the polynomial model.

Figure 1.12 is a normal quantile plot of the t error residuals. The line on the plot is

drawn through the lower and upper quartiles. The magnitudes are overall very small.

Departures from normality are somewhat greater than for the o error residuals, but

are not great enough threaten use of least-squares or ensuing inferences based on the

parametric bootstrap.

Link to figure

Figure 1.12.: Normal quantile plot of t error residuals for the polynomial model,

The polynomial model has survived diagnostic testing. It has a few blemishes that

make it wrong, but not by an amount that will appreciably affect conclusions drawn
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from it. The error terms are quite small. Almost all O errors are contained within

±10% of the O measurements, and the T errors within ±5% of the T measurements.

1.5.2 Statistical Variability of Response Surface Estimates

For each of the 26 combinations of the Hadoop-hardware factors, we used the

bootstrap to characterize the statistical variability of the o and ℓ poly-fits: o and ℓ

fitted values of the polynomial model at the 45 values of m and v of the experiment.

We study the response surface because it carries the informative information of the

experiment, magnitudes of execution times and how they change with the factors.

There were 1000 draws for each combination. Each draw consists of 45 values of

o and 45 values of ℓ. The process begins with 45 i.i.d. draws from each of the fitted

distributions for the error terms ǫo;ijk and ǫt;ijk. The fitted distributions are normal

with mean 0 and a variance equal to the sum of squares of the error residuals of each,

divided by 45. The 45 o draws are then the sum of the o error term draws plus the o

poly-fits at the 45 values of m and v. Similarly, the 45 t draws are the 45 t error term

draws plus the sum of the o poly-fits and the ℓ poly-fits at the 45 values of m and

v. Then the polynomial model was fitted to each bootstrap sample of t and o values,

and the fit evaluated the 45 values of m and v, providing one bootstrap sample for

the 45 o poly-fits and the 45 t poly-fits. To study the variability we subtract the 45

o poly-fits and the 45 t poly-fits from the corresponding 45 values of the bootstrap

sample to get the bootstrap deviations.

Figure 1.13 plots, for each of the 26 combinations of the Hadoop-hardware factors,

the 0.025 and 0.975 quantiles of the 45 o poly-fit bootstrap deviations. The layout

of the panels of the display is the same as that for previous plots against m for the

combinations. For these bootstrap deviations, as they are well within ±0.25, we again

use log base e for better quantitative interpretation. The bootstrap variability of the

o poly-fits is very small. Almost all of the 0.025 and 0.975 quantiles of bootstrap

deviations are contained within ±5% of the original o poly-fits.
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Link to figure

Figure 1.13.: 0.025 and 0.975 quantiles of bootstrap deviations for o poly-fits.

Figure 1.14 plots, for each of the 26 combinations of the Hadoop-hardware factors,

the 0.025 and 0.975 quantiles of the 45 ℓ poly-fit bootstrap deviations. General

variability is great than that for o, but not much greater. The majority of the 0.025

and 0.975 quantiles of the bootstrap deviations are contained within ±10% of the

original ℓ poly-fits.

Link to figure

Figure 1.14.: 0.025 and 0.975 quantiles of bootstrap deviations for ℓ poly-fits.

1.6 Effects and Interactions of Hadoop-hardware Factors

In this section we present our findings of the impact of the Hadoop-hardware

factors on the O computation and the L computation, including the main effects

of these factors and the interactions among these factors we have discovered in the

experiments. The impact of a particular Hadoop-hardware factor on the response

surface of o and ℓ, is quantified by the improvement, or in this case the decrease, in

the fitted values of o or ℓ from the polynomial model when varying this factor from

one level to the other level, while holding all other factors constant. We also rely

on bootstrap to characterize the statistical variability of the impact of the factors on

corresponding estimates of response surface.

We relied very heavily on trellis displays to effectively study the effects and inter-

actions of the Hadoop-hardware factors, however, in the interest of space, we will use
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the factor BLK as a demonstration. Other details are not reported here and instead

a summary of our findings is given.

1.6.1 Effects of BLK and Interactions with Other Factors

BLK is a HDFS configuration parameter that affects the storage of the dataset

on the HDFS and the scheduling of Map tasks. Given all other factors remained the

same, when BLK becomes larger, each Map task reads and computes with a larger

amount of data while the number Map tasks becomes smaller accordingly. Thus,

BLK directly impacts the I/O of the HDFS and thus we would expect it to have an

effect on o; and BLK also affects the parallelization of Map tasks, thus it could also

impact ℓ as well.

Main Effects of BLK on o

In this experiment, we have doubled BLK from 128 MB to 256 MB. Figure 1.15

plots the impact of BLK on o poly-fits against m for each of the remaining 25 com-

binations of the other Hadoop-hardware factors. The impact of BLK is represented

as the change of o poly-fits when BLK is varied from 256 MB to 128 MB, while all

other factors are held constant. A positive value on the vertical scale says the o time

is larger when BLK = 128 MB than that when BLK = 256 MB, i.e., increasing

BLK improves the o time. The layout of the panels of the display is similar to that

for previous plots against m for the combinations, however, due to the collapse of the

two levels of BLK into the representation of the difference, there are only 32 panels

across two pages.

Link to figure

Figure 1.15.: Impact of BLK on o poly-fits is plotted against m.
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To study the variability of the impact, we again used bootstrap and computed the

bootstrap deviations for the impact of BLK on o poly-fits, i.e., the difference between

the impact computed from each bootstrap sample and the impact computed from the

original fit of the polynomial model. Figure 1.16 plots, for each of the remaining 25

combinations of the other Hadoop-hardware factors, the 0.025 and 0.975 quantiles

of the bootstrap deviations of the impact of BLK on o poly-fits. The layout of

the panels of the display is the same as that for the previous plot against m for

the combinations. The bootstrap variability is very small, most of 0.025 and 0.975

quantiles of bootstrap deviations are contained within around ±5% of the impact

computed from the original fit.

Link to figure

Figure 1.16.: 0.025 and 0.975 quantiles of bootstrap deviations for impact of

BLK on o poly-fits.

The main effects of BLK on o are obvious, as shown in the majority of the panels

in Figure 1.15, the connected points lie above zero, meaning that o is larger when

BLK is 128 MB than that when BLK is 256 MB, i.e., when BLK is increased, the

O computations are generally faster. And the amount of improvement, when there is

any, can be up to 40%. There are a few panels where some of the points lie slightly

below 0, however, the deterioration is usually less than 10%, which is comparable to

the bootstrap variability.

The positive effects on o time by increasing BLK agree with our understanding

of how BLK functions. As BLK is doubled from 128MB to 256MB while all other

factors are held constant, the amount of data/subsets in each block/Map task is

doubled and the number of blocks/Map tasks is halved accordingly.
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First of all, with fewer number of Map tasks, there are fewer task overheads, which

are are part of the O computation, so increasing BLK would improve the o timing

in this aspect.

Furthermore, with fewer number of blocks, there are fewer subsets crossing block

boundaries, resulting in smaller amount of extra data reads due to subsets crossing

block boundaries, thus could further improving o time. Notice that the amount of

extra data reads also depends on the size of subsets, so the amount of improvement

made by increasing BLK in this aspect is likely affected by factors that determines

the size of subsets, i.e., m and v in this experiment.

Lastly, BLK affects the level of parallelization, i.e., larger number of smaller tasks

versus smaller number of larger tasks, and the effects on timing could go either way,

while the combined effect of all the above aspects turned out to be positive in this

experiment when BLK is doubled.

Interaction between BLK and m on o

The interaction between BLK and m is reflected on the slopes on the lines con-

necting the points in each panel of Figure 1.15. In some of the panels, the lines have a

slope very close to zero, suggesting that there is no or very weak interaction between

BLK and m in the O computation, and the amount of improvement in o via in-

creasing BLK is about the same across different values of m; however, under certain

combinations of other Hadoop-hardware factors, especially in the top panels on the

second page of Figure 1.15, there is a non-zero slope of the lines. In fact, the lines tend

to go up in the top panels (DISK = 12) on both pages, suggesting that the amount

of improvement via increasing BLK is larger when the subsets are larger; and they

tend to stay flat or go down very slightly in the bottom panels (DISK = 6). So there

could be a weak 2-way interaction between BLK and m, and a 3-way interactions

between BLK, m and DISK.
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The interaction between BLK andm can be attributed to their joint impact on the

extra data reads caused by subsets crossing block boundaries. As m increases while

holding other factors constant, the size of each subset increases, and thus the amount

of extra data reads due to subsets crossing block boundaries would increase. So the

amount of improvement through increasing BLK by having few subsets crossing block

boundaries should be larger when m is larger than that when m is smaller.

As for the 3-way interaction among BLK, m, and DISK, we suspect that when

DISK=6, there is too much congestion in disk reads and this has become the bot-

tleneck for the O computation, and thus suppresses the effects of BLK or m.

Interaction between BLK and v on o

The interaction between BLK and v is reflected on the vertical separation of the

lines in each panel of Figure 1.15. In most of the panels in the top rows (DISK = 12)

on both pages, the lines shift up as v increases, and the amount of improvement

through increasing BLK is larger when v is larger. This again suggests that the im-

provement is larger when the subsets are larger, and the cause of interaction between

BLK and v is similar to that between BLK and m, i.e., extra data reads due to

subsets crossing block boundaries.

In most of the panels in the bottom rows (DISK = 6), on the other hand, there is

little separation among the lines for different values of v. This can also be explained

by a 3-way interaction among BLK, v, and DISK similar to the one above among

BLK, m, and DISK.

Interactions between BLK and Other Hadoop-hardware Factors on o

The interactions between BLK and the other Hadoop-hardware factors can be

visually assessed by comparing pairs of panels in Figure 1.15, either horizontally,

vertically, or across pages.
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For example, by comparing every horizontally adjacent pair of panels in the same

row, we can assess the interaction between BLK and IOB. Except for the top

left pair of panels on the first page of Figure 1.15, there does not seem to be much

visual difference between the pairs of panels when varying IOB, thus suggesting no

interaction between BLK and IOB. In fact, although not shown here, we have

found that IOB does not seem to have any main effects on either O time or L time.

Similarly, there does not appears to be any strong indication of interactions between

BLK and NETWORK or MTC either.

However, when comparing vertically adjacent pairs of panels in Figure 1.15, a

noticeable difference emerges, suggesting an interaction between BLK and DISK.

This is hardly surprising, as we have previously identified possible 3-way interactions

among these two factors along with m or v.

Furthermore, an even more obvious interaction between BLK and REUSE can

be identified by comparing panels across pages. While in general, increasing BLK

from 128 MB to 256 MB improves the O time, REUSE = True clearly decreases

the gain compared with REUSE = False. We shouldn’t be surprised to see their

interaction either. Recall that one reason increasing BLK improves the O time is the

reduced task overhead by having less number of Map tasks, this reduction is partially

offset by turning on REUSE, which already reduces the overhead of each individual

task via reusing JVM.

Effects of BLK on ℓ

Similarly, the main effects of BLK on the ℓ time and its interactions with other

factors can also be assessed via a pair of similar displays as shown in Figure 1.17 and

Figure 1.18. In summary, BLK does not have as strong (positive or negative) impact

on ℓ time as it does on o time, which in in accordance with our intuition as BLK

affects the I/O of HDFS more directly than it does with the actual computations;

and the statistical variability obtained from bootstrap is also larger for the impact of
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BLK on ℓ time, a ±10% range versus a ±5%, similar to the difference of bootstrap

variability between o poly-fits and ℓ poly-fits in Section 1.5.

Link to figure

Figure 1.17.: Impact of BLK on ℓ poly-fits is plotted against m.

Link to figure

Figure 1.18.: 0.025 and 0.975 quantiles of bootstrap deviations for impact of

BLK on ℓ poly-fits.

1.6.2 Summary of Effects and Interactions of Hadoop-hardware Factors

We performed similar analysis and assessment to study the effects of other Hadoop-

hardware factors on o time and ℓ time, as well as their interactions. We will skip the

details but only report a summary of our findings.

For the o time, BLK, REUSE, NETWORK, andDISK appear to have a strong

impact while the other factors do not seem to affect the timing much; and due to the

presence of interactions among these factors along with m and v, the improvement

that can be achieved varies with different combinations of factors, with the largest

improve of around 70%. The superior setting of levels of these factors are BLK = 256

MB, REUSE = True, NETWORK = 10 gigabit/sec, and DISK = 12.

For the ℓ time, on the other hand, fewer factors appears to have a strong im-

pact, namely REUSE, MTC, and DISK, and the impact is also generally smaller

compared with that on the o time, with up to a 30% improvement. Recall that the

improvement is quantified by a percentage/ratio instead of absolute time because
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of the use of log scale, the smaller improvement could be attributed to the relative

larger base value of the ℓ time compared with the o time. As for the superior levels

of factors, while REUSE = True and MTC = 16 improves the ℓ time compared

with the other levels of these factors, setting DISK = 12 actually deteriorates the ℓ

time compared with DISK = 6, which is the superior level of DISK for the o time.

We do not have a convincing explanation to offer for this phenomenon, but simply

to note that the improvement in o time surpasses the loss in ℓ time, thus resulting in

an improvement in the combined t time.
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2. BITCOIN DATA ANALYSIS AND MODELING

2.1 Introduction

Bitcoin is a de-centralized digital currency system that was implemented and

established in January 2009. Unlike fiat money such as U.S. Dollars, there is no

central authority in the Bitcoin system to issue new money, or validate the transfer of

money; both of these tasks are accomplished through the joint work of participants

in the Bitcoin network. In the past two years, especially after the establishment of

various Bitcoin exchange sites, where Bitcoins can be exchanged from or to local

currencies such as U.S. Dollars and Euros, Bitcoin has become very popular, mostly

due to its ease of use and embedded anonymity in the system.

The ease of use of Bitcoin is straightforward. The Bitcoin system is an online

system and runs on various operating systems and devices, and it is also free to use.

To join the Bitcoin network, one could either download one of many implementations

of the Bitcoin client program, or simply make use of one of many online services.

Making payments or accepting payments with Bitcoins are also free and as easy as,

if not easier than, any other existing online payment system.

The anonymity of the Bitcoin system, on the other hand, is rather debatable and

has drawn much attention in its user community as well as the research community.

We admit that a certain level of anonymity exists in the Bitcoin system, but it might

not be as invulnerable as one would hope. For one thing, the entire history of Bitcoin

transactions is publicly available, which provides an opportunity for passive analysis

of Bitcoin usage such as ours.

We downloaded the Bitcoin transaction data for the first time in May 2013 and

we have been continuing the collection and analysis of the transactions. On May 3rd

2014, we concluded our data collection and obtained the complete Bitcoin transaction



33

history data up to that date. We present here a study of the general statistical

properties of the usage of Bitcoin transactions and the usage of Bitcoin addresses.

We have also built profiles for a few groups of popular addresses among which the

addresses share similar behavior. Furthermore, we provide a passive analysis of the

anonymity of Bitcoin system by proposing a classification model to identify payment

and change in majority of the Bitcoin transactions.

2.2 Background

The design of the Bitcoin system was introduced in 2008 by Satoshi Nakamoto [22],

whose true identity remains unknown and it is not even known whether the name

is real or a pseudonym, or whether the name represents one person or a group of

people. On January 3rd 2009, the very first Bitcoins were minted, quickly followed

by the release of the first Bitcoin client program Bitcoin v0.1 [23], which mark the

establishment of the current Bitcoin network. The Bitcoin system is designed to be

de-centralized and the system is powered by its users with no central authority, such

as a bank; and it also provides a level of anonymity that allows its users to transfer

Bitcoins without giving away personal financial information.

In this section, we describe three of the most fundamental and important aspects of

how the Bitcoin system works: how are Bitcoins transferred, how are Bitcoins minted,

and how are the transfer verified. Chronologically, Bitcoins need to be minted before

they are transferred and verified, however, for simplicity, we start with the transfer of

Bitcoins by introducing Bitcoin transactions and Bitcoin addresses, followed by the

minting of Bitcoins and the verification of Bitcoin transactions. We also discuss the

implication of these design aspects on the anonymity of the Bitcoin system.

2.2.1 Bitcoin Transactions and Bitcoin Addresses

The transfer of Bitcoins, or making a payment in the Bitcoin system, between the

sending entity, or the sender, and the receiving entity, or the receiver, are carried out
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via Bitcoin transactions. We will refer to these transactions as payment transactions.

The sender and receiver in a payment transaction are identified by the corresponding

Bitcoin addresses. The Bitcoin address(es) that identifies the sender and serves as

the the source of the transaction are referred to as sending address(es); and the

Bitcoin address(es) that identifies the receiver and serves as the destination of the

transaction are referred to as the receiving address(es). In these payment transactions,

the ownership of some amount of Bitcoins is transferred from the sending address(es)

to the receiving address(es).

A Bitcoin address, also known as a public key, is a string of 27–34 alphanumeric

characters, starting with the number 1 or 3. An example of a Bitcoin address is

1KfqhLeiBSaPteVK4RUKgCxBhysr3qLdm1. To obtain a Bitcoin address, a user can

make use one of many Bitcoin client programs or online wallet services, and generate

a pair of public key and private key. The public key is the Bitcoin address, and it

could be made public if the user would like to this Bitcoin address to accept payments

from others. The matching private key proves the ownership of the Bitcoin address,

and allows the user to spend the Bitcoins received in this Bitcoin address. If somehow

the private key is lost or stolen, the user will no longer be able to spend the Bitcoins

in this Bitcoin address, therefore the private keys are usually kept secret.

Once an address is generated by a user, the user can use it to make transactions,

i.e., receiving and sending Bitcoins. It is often helpful to draw the analogy between a

Bitcoin address and an email address. While an email is sent from the sender’s email

address to the receiver’s email address(es), Bitcoins are transferred from sending

address(es) to receiving address(es); just like one person can possess many email ad-

dresses, a user can generate and own as many Bitcoin addresses as wanted. However,

unlike a new email address can be used to send emails immediately after generation,

a newly generated Bitcoin address can not be used to send Bitcoins unless it has

received some amount of Bitcoins from other address(es). So the life of a Bitcoin

address always begins with a receiving transaction, where it receives some amount

of Bitcoin from other address(es). The same Bitcoin address can be used repeatedly
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to receive in multiple transactions, and consequently it can be used to send multiple

times. However, it is often suggested that one should generate a new address for

every transaction in order to achieve better privacy.

In a payment transaction, a single sending address could be used to provide fund-

ing, or many sending addresses can be pooled together. Each sending address, accom-

panied with its digital signature and the reference to a previous receiving transaction,

in which this address has received some amount of Bitcoins, provides (partially) the

funding for the current transaction. The digital signature is produced by the private

key and proves the sender’s ownership of the sending address; and the reference to

the previous receiving transaction identifies the source of the funding. Notice that

since there is no central authority, such as a bank, to keep track of the account bal-

ance of any sending address, the address alone is not enough to identify the source

of the funding. However, when combined with the reference to a previous receiving

transaction, the source of funding is uniquely identified, because what is being spent

is exactly what has been received previously. Also when there are multiple sending

addresses in a transaction, the addresses might not be unique. This happens when

the same sending address have received Bitcoins in multiple transactions previously

occurred, and these (address, signature, previous receiving transaction) tuples could

be combined as the source in a single transaction.

As for receiving, Bitcoin transactions also support multiple receivers, i.e., there

could be one or many receiving addresses in the same transaction. In fact, as we

shall see in Section 2.4, the majority of transactions have more than one receiving

addresses. In a single transaction, the receiving addresses might not be unique either,

and they can even be the same as the sending addresses, meaning the sender could

be sending Bitcoins to himself/herself.

With the help of Bitcoin client programs and online wallet services, it is fairly easy

to make a Bitcoin transaction. The sender needs to know the address(es), as string(s)

of characters, from the receiver(s), and specify it as the receiving address(es). It is

also possible for the sender to select the source of funding, i.e., the tuple(s) of (send-
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ing address, signature, previous receiving transaction), but usually the program will

automate the selection and complete the transaction for the sender. The transaction

is then broadcasted to the Bitcoin network by the sender’s program, later relayed by

other peers in the network, and eventually received by the receiver(s).

Obviously, a payment transaction needs to be verified before the receiver(s) are

certain that there are sufficient funds, and the sender is not double-spending them.

However, the receiver(s) of the transaction usually do not make the effort to verify the

transaction themselves. Instead, a particular group of entities in the Bitcoin network,

referred to as the miners, would verify the transactions on behalf of the whole Bitcoin

network. This process is called mining.

2.2.2 Mining and Verification of Transactions

The verification of payment transactions is carried out by the miners in the Bitcoin

network through the mining process. Each of the miners verifies a certain number

of payment transactions and shares the verification with the entire Bitcoin network.

Miners also verify the verification produced by other miners so that no miner is able

to trick the whole system. Besides verification of payment transactions, the mining

process also issues/mints new Bitcoins into circulation and it is the only way of

generating new Bitcoins.

During the mining process, each miner works independently and picks up the

payment transactions occurred in the Bitcoin network during the past few minutes’

interval (usually 10 minutes or so), and verifies those transactions by digging into

the history of transactions to ensure sufficient funds and to prevent from double-

spending. Besides the verification of transactions, which can be completed very

quickly with moderate computation power, the miners also need to work on a much

more computation-intensive task named proof-of-work [24]. While working indepen-

dently, the first miner to finish the verification and the proof-of-work task will create

a block of transactions, including those payment transactions that have just been
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verified and a special generation transaction, and inform the whole Bitcoin network

by broadcasting the block into the network. Upon receiving a newly generated block,

other miners will give up the unfinished work, instead verify the block they have just

received, and then start generating the next block by verifying the subsequent trans-

actions occurred in the next few minutes’ interval, as well as working on the next

proof-of-work task. Because the miners verify the previous blocks produced by other

miners, no miner would be able to smuggle invalid transactions in the blocks unless it

can consistently out-computes all other miners, which is very unlikely given the large

number of existing miners in the Bitcoin network.

All the blocks generated by the miners are indexed by a block height, an integer

starting from 0 and incremented by 1 for each subsequent block. The very first block

created in the Bitcoin network is referred to as the genesis block. Because the miners

would verify the previous blocks when generating any new blocks, each subsequent

block generated is said to have confirmed its previous blocks. This chronological

chain of confirmed blocks, or more formally the blockchain, consists of all the verified

Bitcoin transactions, and it is shared in the Bitcoin network to serve as the honest

history of the Bitcoin transactions. In practice, the number of confirmations of a

transaction, i.e., the number of subsequent blocks since the block that included this

particular transaction had been generated, is often used by the receiver(s) of this

transaction as a measure of confidence that this transaction is valid and the sender

can not change the transaction anymore [22].

One might wonder why the miners are making the effort to verify transactions for

the entire Bitcoin network. They are certainly not doing it for free. There are two

incentives provided by the Bitcoin system: (1) the miner who generated each block

will be rewarded a certain amount of Bitcoins, referred to as the block rewards; (2) in

each Bitcoin transaction, the sender has an option to specify a transaction fee, and

the fee is also collected by the miner who generated the block, to provide an incentive

for the miners to give higher priority of verification to this transaction over others

during the same time period.
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When a miner successfully generated a block, the block rewards and combined

transaction fees are sent to the receiving address(es) specified by the miner in a

special transaction named the generation transaction. The generation transactions

differ from payment transactions in that there are no sending addresses and the

source is referred to as the Coinbase. Notice that the block rewards are newly minted

Bitcoins and this is how new Bitcoins are issued in the Bitcoin system. The number

of Bitcoins in the block rewards was 50 BTC at the inception of Bitcoin and is halved

every 4 years or so. To prevent miners, especially those with high computation power,

from generating blocks too fast and causing inflation in the currency, the difficulty of

proof-of-work is automatically adjusted by the Bitcoin system to ensure a projected

growth of Bitcoins in circulation.

With the increasing difficulty of proof-of-work, mining with low computation

power can take a very long time and it becomes very unlikely for those miners to

generate blocks. In order to take advantage of the embarrassingly parallel nature of

proof-of-work and generate blocks in a reasonable amount of time, pooled mining has

become very popular, where multiple individual miners contribute to the generation

of a block, and then split the block rewards according their contributions [25].

2.2.3 Anonymity in the Bitcoin System

One advantage of the Bitcoin system over most of the other digital payment

systems is its anonymity and many users adopt the Bitcoin system because of the

anonymity. The anonymity of the Bitcoin system has also drawn a lot of attention

from the research community, such as [26] [27] [28] and [29]. It is true that there is

a certain level of anonymity imbedded in the Bitcoin system, mostly due to the non-

centrality and the usage of addresses instead of registered account names, however,

as we shall see, using Bitcoins might not be as anonymous as one would have hoped.

First of all, an entity, including both individual users and organizations, does not

need to give away any personal information in order to acquire and use Bitcoin ad-
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dresses through the Bitcoin client programs. Thus, although the complete history of

Bitcoin transactions between addresses is publicly available, the entities behind these

transactions and addresses are anonymous, unless they voluntarily give away iden-

tification information, e.g., when publicly asking for donations to certain addresses.

However, if the entities choose to use one of many online wallet services instead of

the client programs, they usually would have to go through a registration process and

thus give away certain identification information, such as email addresses, to those

services. Furthermore, when entities “cash out” Bitcoins they own into local currency,

they would usually go through the Bitcoin exchange sites, where more identification

information, such as bank information, would have to be exposed to these exchange

sites.

Secondly, one could, or as generally suggested one should, generate a new address

for each transaction, and consequently each entity could potentially own many dif-

ferent addresses and this leads to a many-to-one mapping from addresses to entities.

Furthermore, whether or not two addresses belong the same entity is unknown to

the public. However, due to the design of the Bitcoin system, certain grouping of

addresses into entities is possible. As introduced in [22] and [26], and further studied

in [30] [31] and [28], the sending addresses in the same transaction are owned by

the same entity. For example, if address A1 and A2 are both sending addresses in a

transaction T1, then A1 and A2 are owned by the same entity; furthermore, if A2 is

used as sending address in another transaction T2 with another sending address A3,

then A1, A2, and A3 are all owned by the same entity. We will refer to these addresses

as having co-sending relations, and the unions of addresses with co-sending relations

form a conservative estimate of entities in the Bitcoin system. The co-sending rela-

tions based grouping of addresses into entities is conservative because it is entirely

possible that the same entity could own multiple such unions of addresses.

Thirdly, another level of anonymity in the Bitcoin system is that the intention of

a transaction is generally not explicitly specified and thus often unknown to others

outside of the entities involved in the transaction. This is largely due to the existence
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of change address in the Bitcoin transactions, which is ubiquitous in Bitcoin trans-

actions because of an important aspect of the design of the Bitcoin system: Bitcoins

can not be spent as a fraction. What this means is that, once an (sending address,

signature, previous receiving transaction) tuple is used in a transaction, all the Bit-

coins associated with this tuple are considered as spent, and this tuple can no longer

be used to send in another transaction. This may sound bizarre at first, but recall

that there is no central authority to keep track of the balance of addresses and to

validate transactions, this spend-all-or-none design greatly simplifies the verification

of transactions: the miner only needs to search the history for the previous transac-

tion(s) referenced in this transaction, and check if there is sufficient fund and if there

are other transactions referring to the same tuple to prevent from double-spending.

Obviously, it is impractical to assume that, in a transaction, the amount in the (ad-

dress, previous receiving transaction) tuple(s) happens to be exactly the same as the

desired receiving amount, so there is usually a change in a transaction. And assuming

that a rational user does not simply give up Bitcoins, the change needs to be sent back

to an address of the sender’s, and more importantly, this has to be done in the same

transaction as if the change is just another receiving instance. Note that the users

do not need to take care of the change manually because the Bitcoin client programs

or the online wallet services have made this process automatic. Nonetheless, this has

a significant impact on how a Bitcoin transaction would look like from an outsider’s

point of view. Because of the change, there are usually more than one receiving ad-

dress in a Bitcoin transaction, including both the actual receivers’ address(es), or the

payment address(es), and the sender’s change address. However, the transaction itself

does not explicitly reveal which one of the receiving addresses is the change address,

so the actual payment(s), or the intention of the transaction, is unknown to an out-

sider. In [27] and [28], researchers have demonstrated methods/heuristics to identify

those change addresses automatically generated by Bitcoin client programs and online

wallet services; and in this study, we also propose a model that effectively identifies
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payment and change in majority of the transactions, revealing the true intentions of

Bitcoin transaction hidden behind seemingly unrelated addresses.

Lastly, to further obfuscate the source and destination of a Bitcoin transaction and

improve privacy, users can make use of one of many mixing services [32] when making

transactions. A mixing service is a third-party service, and it mixes the transactions

between multiple senders and multiple receivers by having the senders send Bitcoins

to address(es) owned by the service, and then the service sends specified amount

of Bitcoins, not necessarily the same Bitcoins it has received from senders, to the

targeted receivers specified by the senders. In this way, the senders and receivers are

not directly associated in a transaction, and thus privacy is improved. However, due

to the centrality introduced by the mixing services and the security of these services

themselves, mixing services have received limited popularity among Bitcoin users.

Also, as suggested in [29], because of the limited user base, many of these mixing

services are not able to effectively obfuscate the transactions, making it possible,

sometimes easy, to track the real source and destination of transactions.

2.3 Initial Analysis: Data and Statistics

The Bitcoin transaction history data, namely the blockchain, is available to the

whole Bitcoin network via the Bitcoin client program. Many of the online wallet

services also provide access of the blockchain and allow queries for individual or

batch transaction level information or address level information. However, in order to

perform a comprehensive analysis such as ours, the blockchain needs to be downloaded

and processed into suitable formats and structures. In this section, we describe the

procedures of our data collection and initial processing, followed by summary statistics

of the obtained blockchain. Further processing of the data into multiple databases

of various structures are discussed in details in the following sections along with the

corresponding analyses enabled and facilitated by each database.



42

2.3.1 Data Collection and Initial Processing

The first step of our data collection is to run the Bitcoin client program, Bitcoin

Core version 0.9.1 [33], on our computers in order to sync to the to Bitcoin network

and download the whole blockchain. During the sync process, the Bitcoin client

program connects to the Bitcoin network, and starts to download the blocks from

other peers in the network until it catches up with the up to date blockchain by finish

downloading the most recent blocks. On May 3rd 2014, we stopped the sync process

and concluded our data collection, giving us the raw blockchain from the very first

block up to block 298,851 generated on May 3rd 2014. The raw blockchain data was

in binary format of around 24 GB stored in a database system named LevelDB [34],

and the transaction level data needed to be extracted and converted into text files

for further processing.

Secondly, the extraction of transaction level data and the conversion from binary

to text format were done via one of the APIs [35] supported by the Bitcoin client

program. We extracted all the transactions in the blockchain and they were converted

into a plain text file of around 29 GB. Each line of the text file corresponded to the

information of a sending address or a receiving address in a transaction, and the

following information was included for each transaction:

1. The transaction ID, which uniquely identifies each transaction.

2. The receiving address(es).

3. The index of each receiving address in this transaction, i.e., the order in which

this receiving address is specified in this transaction, starting from 0 and incre-

mented by 1.

4. The amount of Bitcoins, in the unit of BTC, received by each receiving address.

5. The sending address(es).
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6. The transaction ID of each referenced receiving transaction for each sending

address.

7. The index of each receiving address in its referenced receiving transaction.

8. The height of the block that included this transaction.

9. The time that the block was generated.

Thirdly, in order to incorporate the co-sending relations based grouping of ad-

dresses with the transaction level data, we used a modified version [36] of Ivan

Brugere’s Bitcoin-Transaction-Network-Extraction tools [37] and re-organized the

transaction level data. We have made numerous improvements through our modifi-

cation, most importantly, our modifications recovered various important information

that was missing in the data produced by the unmodified tools, including the send-

ing/receiving addresses and their indices in corresponding transactions, which are

essential for tracking referenced transactions, and we also corrected the handling of

a few problematic addresses, where the unmodified tools incorrectly treated them as

the same address, etc. During this step of processing, the following information was

added to the transaction level data in addition to the above list for each transaction:

10. The entity ID of each receiving address, while the entities are formed based on

co-sending relations.

11. The entity ID of the sending addresses.

Additionally, besides the raw blockchain, we also downloaded external data for

the daily exchange rate from bitcoin (abbreviated as BTC) to United States Dollar

(USD) from the Bitcoin Block Chain Explorer website [38]. The data was in CSV

format of 50 KB.

Finally, due to the relatively large size of the data, it calls for a distributed compu-

tation system for the comprehensive analysis. We made heavy use of the Tessera D&R
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Computational Environment [8], particularly the R and Hadoop Integrated Program-

ming Environment [12], or RHIPE, to carry out the computations and analyses. The

resulting text files from the previous steps were processed, and various databases of R

objects were created to facilitate different analysis threads, including the transaction-

based database for analyzing properties of transactions, the address-based databases

for analyzing properties of addresses, etc. The structures of these databases and the

procedures to create them are described in Section 2.4.1 and Section 2.5.1.

2.3.2 Summary Statistics and Growth of Bitcoin

Overall, the data we have collected consists of all the verified Bitcoin transactions

over the period of 5 years, from Jan 3rd 2009, when the Bitcoin system was created,

up to May 3rd 2014, when we completed the data collection. There are a total

of 298,851 blocks in the blockchain, consisting of 37,993,792 transactions between

34,999,937 addresses. As of May 3rd 2014, there are a total of 12,721,275 Bitcoins

that have been minted. With an exchange rate of 434.5 USD for 1 BTC on May 3rd

2014, these Bitcoins are worth a total of $5,527,393,988.

On Jan 3rd 2009, the first block, or the genesis block, was created including a single

generation transaction, which is the first transaction ever. This marks the inception

of the Bitcoin system and the blockchain. Since then, the Bitcoin system has drawn

more and more attention, especially in the recent couple of years. Figure 2.1 shows

the growth of daily number of transactions in the Bitcoin system.

Link to figure

Figure 2.1.: Daily number of Bitcoin transactions.

From Jan 2009 to Jan 2010, the daily transaction count stayed at a relatively low

and constant level, with around 100–130 transactions per day. As shown in Figure 2.2,
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the majority of the transactions during this time period were generation transactions,

and there were very few payment transactions made. At that time, the users of the

Bitcoin system were mostly those people who were interested in this new technology

and were capable of setting up the mining system to obtain Bitcoins. The technology

barrier for acquiring Bitcoins and using them had limited the popularity of the Bitcoin

system among general users and the system was more of a plaything for tech-gurus

than a method of payment.

Link to figure

Figure 2.2.: Daily fraction of generation transactions.

From Jan 2010 to June 2011, there had been a very rapid growth in the number

of transactions, due to the increased publicity of the Bitcoin system and the estab-

lishment of various Bitcoin exchange sites, including the very first exchange site the

Bitcoin Market [39] established on Feb 06th 2010 and a later but much more popular

exchange Mt. Gox [40] established on July 17th 2010. These exchange sites had

enabled a much wider range of users to participate in the Bitcoin network, by offering

both conversion service between Bitcoins and the local currencies, which made the

acquisition of Bitcoins much easier for users than mining their own blocks, and the

online wallet service, which also made the transaction of Bitcoins easier. The fraction

of generation transactions among all transactions also started to decrease rapidly as

more users started to transfer Bitcoins between their addresses, and more payment

transactions were made during this period.

From June 2011 to April 2012 and from April 2012 to May 2014, the Bitcoin

system has become very popular and the daily transaction count remained at a very

high level, around 4,000 and 32,000 transactions per day, respectively, with a steady

growth during each of these two time periods. The payment transactions started

to dominate the daily transactions while the fraction of generation transactions de-
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creased to around 2% and then to less than 1%. During this time, the ecosystem

around Bitcoin has been spawned, with many more individuals and organizations

starting to accept Bitcoins as a method of payment, and a variety of new services

being established for various purposes, such as online gambling services. Notably, on

April 2012 the SatoshiDice [41], a Bitcoin-based online gambling service, was started

and it was solely responsible for the jump of daily number of transactions between

the two time periods. The SatoshiDice service is studied in details in Section 2.5.3.

Due to the tremendous amount of popularity the Bitcoin system has gained in

the recent years, the value of Bitcoins, in terms of local currencies, has increased

significantly, albeit the fluctuation of this immature market. Figure 2.3 shows the

exchange rate from BTC to USD, and the value of a Bitcoin has increased from just a

few cents, when Bitcoin exchange sites were established, to several hundreds of dollars

in recent weeks, with the value peaking at about $1,150 in December 2013.

Link to figure

Figure 2.3.: Daily exchange rate from BTC to USD.

2.4 Transaction Based Database

The first database we have created is the transaction based database, in which each

transaction is a unit of data record and the transactions can be accessed individually,

in a batch, or as a whole. The transaction based database has enabled and greatly

facilitated our analysis of the general properties of all 37,993,792 transactions in

our data, including 298,851 (less than 1%) generation transactions and 37,694,941

payment transactions.

In this section, we describe the design and structure of the transaction based

database, as well as the procedures to create the database, followed by the analysis of
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various properties of the transactions, including the usage of addresses, values trans-

acted, etc. Due to the difference in functionalities between generation transactions

and payment transactions, their properties are analyzed separately in the following

sections.

2.4.1 Design and Construction of the Transaction Based Database

In order to analyze the properties of transactions, we often need to compute

various variables from the transactions, such as the number sending/receiving ad-

dresses, the values transferred, transaction fees, etc. Since these computations are

all performed on a per transaction basis, it is necessary and convenient to construct

a database in which each transaction is a unit of data record consisting of all the

information we have about this transaction. However, the text file of the transaction

level data generated through the initial processing described in Section 2.3.1 does

not organize the data in such a way, instead, each line of the text file corresponds to

the information of a sending address or the information of a receiving address in a

transaction. Thus, a mergence of the sending information and receiving information

of the same transaction into a single object is needed.

One reason behind the inconvenient structure of the text file, inconvenient in a

data analyst’s point of view, is the difficulty to represent a transaction as a single

line in the text file, because transactions could have different numbers of sending

addresses and different numbers of receiving addresses, which results in a variable and

potentially large number of fields in the text file if we were to represent a transaction in

a single line. Therefore, suitable data structures are also needed for the representation

of a transaction in the database.

Furthermore, due to the design of the Bitcoin system that transactions refer-

ence to previous transactions and are referenced by following transactions in order

to determine the source of funding, certain information regarding a transaction are

not explicitly available in the current transaction without the knowledge of refer-
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enced transactions and referencing transactions. For example, the amount of Bitcoins

brought into the current transaction by each sending address is not available until we

trace back to the referenced receiving transaction; whether or not the received Bit-

coins of each receiving address were spent, and if so, when were they spent, are also

unknown based on the current transaction alone. Therefore, this derived information

from related transactions needs to be computed and merged into each transaction in

the database.

Fortunately, with the help of RHIPE, which integrates R and Hadoop, the mer-

gence of sending information and receiving information into transaction objects, the

computations of derived information from related transactions, and the suitable data

structures to represent transaction objects, are readily available: while R provides

rich and generic types of data structures that suit the needs, Hadoop enables the ef-

ficient processing of GBs of text file and computations over millions of records. Here

we describe in details the procedures to construct the transaction based database via

RHIPE on a cluster of 11 servers and 242 processors.

Transfer Text File into HDFS.

The text file of the transaction level data is transferred from the local file system

of the cluster to the HDFS, where the file is broken into smaller pieces for efficient

processing and distributed to the servers on the cluster. This step is achieved through

RHIPE function rhput().

Input data A plain text file consisting of 37,993,792 transactions scattered into

185,229,749 lines. Each line corresponds to the sending information for each

sending address or the receiving information for each receiving address in a

transaction. Lines for sending information contains 8 tab-delimited columns:

(1) an indicator that says this is sending information, (2) the current transaction

ID, (3) the referenced transaction ID, (4) the index of the sending address in

the referenced transaction, (5) the sending address, (6) the entity ID of the
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sending address, (7) the time of the block that included this transaction, and

(8) the block height of the block. Lines for receiving information also contains

8 tab-delimited columns, but the contents are different: (1) an indicator that

says this is receiving information, (2) the current transaction ID, (3) the index

of the receiving address in the current transaction, (4) the receiving address, (5)

the entity ID of the receiving address, (6) the amount of Bitcoins received, (7)

the time of the block that included this transaction, and (8) the block height of

the block.

Output data The same text file on HDFS.

Create Initial Database of Transaction R Objects

The transaction objects are constructed by merging the sending information and

receiving information in the text file, as well as the exchange rate data. Transactions

are identified by the transaction ID and each transaction is stored in an R list object,

consisting of 5 or 6 named elements depending on the type of the transaction. For

a payment transaction, the list contains 6 named elements: the names and contents

of the first 4 are (1) time, the time of the block that included this transaction, (2)

block, the block height of the block, (3) sender, the entity ID of the sender entity,

and (4) btc2usd, the exchange rate from BTC to USD on the date of transaction,

and these four elements are all in the form of a numeric vector of length 1; the

last 2 are data frames, one data frame named sending contains sending information

with variable number of rows and 3 columns, (1) address, each sending address,

(2) transaction, the referenced transaction ID of each sending address, (3) index,

the index of each sending address in its referenced transaction, and the other data

frame named receiving contains receiving information with variable number of rows

and 4 columns, (1) address, each receiving address, (2) receiver, the entity ID of

each receiving address, (3) index, the index of each receiving address in the current

transaction, (4) value, the amount of Bitcoins received by each receiving address.
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For generation transactions, because there are no sending addresses or referenced

transactions, the element sending is removed and the rest of the list is the same as

payment transactions.

We make the choice to use an R list to represent a transaction because we needed

various structures, in this case numeric vectors and data frames, to represent different

pieces of transaction information, and R lists provide the flexibility of incorporating

various data structures. The list structure also enables fast access to each piece of

information by name, e.g., if trx is the R list object of a transaction, the time of the

transaction can be accessed by trx$time and the receiving addresses can be accessed

by trx$receiving$address in R, respectively.

The initial database of transaction R objects is constructed through a MapReduce

job described below.

Input data The text file of transaction level data on HDFS.

Output data 37,993,792 transactions, each in the form of a key-value pair, with the

transaction ID as the key, and an R list containing transaction information as

the value.

Map Parse each line of the text file as a character string. For each line, or each piece

of sending information or receiving information, the current transaction ID is

extracted and used as the key of the intermediate data. An R vector containing

the rest of the fields of the line is used as the value of the intermediate data.

Intermediate data containing such key-value pairs are transferred to Reduce.

Reduce All the pieces of sending information and receiving information correspond-

ing to the same transaction are assembled, re-organized and stored as an R

list described as above. During this step, the exchange rate data is also made

available across the whole cluster as an R data frame, and the exchange rate on

the date of transaction is looked up and appended to the R list object. With

the transaction ID as the key, and the R list as the value, a key-value pair is

outputted for each transaction.
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Compute Derived Information from Related Transactions

The transaction R objects in the initial database do not contain the information

such as how much Bitcoins were brought in by each sending address, when were they

received, when were the Bitcoins received in the current transaction spent. This in-

formation can be derived after the current transaction is correlated with its referenced

and referencing transactions. In order to obtain the derived information, the trans-

action objects are disassembled into one piece of receiving information, consisting of

the element receiving along with other information regarding the current transac-

tion, and many pieces of sending information each consisting one row of the element

sending along with other information regarding the current transaction. The receiv-

ing information in the current transaction are matched with the corresponding pieces

of sending information from its referencing transactions, and similarly, each piece of

sending information is matched with the corresponding receiving information from its

referenced transaction, and then the derived information is computed and exchanged.

This process is accomplished in a MapReduce job described below.

Input data 37,993,792 transactions from the previous step.

Output data 125,120,532 pieces of sending/receiving information, each in the form

of a key-value pair, with the current transaction ID as the key and an R list

containing sending/receiving information and the derived information as the

value.

Map For each transaction object, one key-value pair is generated as intermediate

data for the element receiving and one key-value pair is generation for each

row of the element sending. For receiving, the current transaction ID is used

as the key, and a subset of the elements in the transaction object, including

time, block, sender, btc2usd, and receiving are extracted and used as the

value. For each row of sending, the referenced transaction ID is extracted as

the key, and rest of the row, along with the current transaction ID, time, and
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block, are extracted and used as the value. Intermediate data containing such

key-value pairs are transferred to Reduce.

Reduce Receiving information and its pieces of referencing sending information are

assembled and the derived information is exchanged. More specifically, after

matching receiving and its referencing sending information by address and in-

dex, the receiving values, time and block of the receiving transaction for each

address are copied from receiving information to each of the referencing sending

information; the sending transaction ID, time and block of the sending transac-

tion for each address, are copied from each sending information to the receiving

information. After the exchange of information, the receiving information are

outputted as the value with the current transaction ID as the key; each sending

information are outputted as the value with the referencing transaction ID as

the key.

Construct the Final Transaction Based Database

After the computation and exchange of the derived information between each

transaction and its referencing and referenced transactions, a final transaction object

with the derived information is formed by re-assembling its sending information and

receiving information. Similar to the initial database, transactions are identified by

the transaction ID and each transaction is stored in an R list object, with the same

5 or 6 named elements as the initial database. However, the derived information is

now contained in the elements sending and receiving.

More specifically, in addition to the first 4 named elements of numeric vectors of

length 1: (1) time, the time of the block that included this transaction, (2) block,

the block height of the block, (3) sender, the entity ID of the sender entity, and

(4) btc2usd, the exchange rate from BTC to USD on the date of transaction, the

transaction R object also includes a data frame sending containing a variable number

of rows and 6 columns: (1) address, each sending address, (2) transaction, the
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referenced transaction ID of each sending address, (3) index, the index of each sending

address in its referenced transaction, (4) value, the value brought in by each sending

address, (5) time, the time when each sending address received these Bitcoins, (6)

block, the block in which each sending address received these Bitcoins; and a data

frame receiving containing a variable number of rows and 7 columns, (1) address,

each receiving address, (2) receiver, the entity ID of each receiving address, (3)

index, the index of each receiving address in the current transaction, (4) value,

the amount of Bitcoins received by each receiving address, (5) transaction, the

transaction ID in which the received Bitcoins were spent, (6) time, the time when

the received Bitcoins were spent, and (7) block, the block in which the received

Bitcoins were spent. If the received Bitcoins of a receiving address in a transaction

are not yet spent, then the corresponding entries of transaction, time, and block

in the data frame receiving is assigned with NA.

The final transaction based database is constructed in the following MapReduce

job.

Input data 125,120,532 pieces of sending/receiving information from the previous

step.

Output data 37,993,792 transactions, each in the form of a key-value pair, with the

transaction ID as the key, and an R list containing transaction information as

the value.

Map For each piece of sending/receiving information, the key-value pair is outputted

as it is.

Reduce All pieces of the sending information and the receiving information corre-

sponding to the same transaction are assembled. Duplicated information be-

tween pieces of sending information and receiving information is removed and

the rest of the information are stored in an R list object. With the current trans-

action ID as the key, and the R list as the value, a key-value pair is outputted

for each transaction.
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With the construction of the transaction based database, individual queries of spe-

cific transactions can be made directly to the database, and batch or entire database

scan can also be easily accomplished through MapReduce jobs with the database

provided as the input. Thus the computations of variables on a per transaction basis

have been made very easy and efficient.

In the following subsections, we make heavy use of the transaction based database

and analyze various properties of generation transactions and payment transaction,

such as the growth of daily transaction, the number of addresses used, values of

Bitcoins involved, and how fast Bitcoins are spent, etc.

2.4.2 Analysis of Properties of Generation Transactions

The generation transactions are created by miners that generated each block of

the blockchain. The miners that created each block had verified the payment trans-

actions included in the block on behalf of the Bitcoin network, and as a reward for

their service, the block rewards and the combined transaction fees from the included

payment transactions were sent to the miners via the generation transaction in the

block.

The generation transactions can be extracted from the transaction based database

by simply filtering those transaction objects where the element sending is missing.

There are a total of 298,851 blocks in the blockchain and each block consists of a

single generation transaction and zero or many payment transactions. The block

rewards in the generation transactions are newly minted Bitcoins, and the number

of Bitcoins minted per block/generation transaction was 50 BTC when the Bitcoin

system was started, and is halved every 210,000 blocks or about 4 years, with the

current block rewards being 25 BTC. This results in a controlled supply of the Bitcoin

as a currency and the number of Bitcoins in existence will never exceed 21 million.

As of May 3rd 2014, there are a total of 12,721,275 Bitcoins minted.
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The Growth of Generation Transactions

To prevent the miners from creating too many blocks too fast and thus causing

inflation in the Bitcoin currency, the difficulty in creating blocks, which is largely the

computation effort to complete the proof-of-work, is adjusted by the Bitcoin system

so that the blocks are created at a relatively constant rate, about one block every

10 minutes. As shown in Figure 2.4, the number of generation transactions has

remained at around 27–28 per day since January 2010 despite the rapid growth of

usage of Bitcoins during this time period. Before January 2010, however, the daily

number of generation transactions was significantly lower, and this is simply because

the lack of popularity of the Bitcoin system and the low value of Bitcoins, and thus

there were too few miners and those miners were not working hard enough to create

blocks.

Link to figure

Figure 2.4.: Daily number of generation transactions.

Usage of Addresses

In generation transactions, the miners can specify one or many receiving addresses.

On September 14th 2010, the block rewards and combined transaction fees in block

79764 were sent to two receiving addresses, and this is the first occurrence of split

allocation in generation transactions. Overall, the distribution of number of receiving

addresses in generation transactions is very skewed as shown in Figure 2.5. There is

only one receiving address in over 95% of the generation transactions, and we will

refer to these as single-receiving generation transactions; however, there are a large

number, in hundreds, of receiving addresses in very few generation transactions, with

the largest being 919 addresses. Recall that miners can work as individual miners or
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participate in mining pools in the Bitcoin network, the dominance of single-receiving

generation transactions does not necessarily imply that most of the blocks are mined

by individual miners. In fact, as we shall see in Section 2.5.4, mining pools, especially

a few major ones, are also specifying a single address to receive the block rewards

and combined transaction fees in generation transactions and then re-distribute the

earnings to its participants in a series of following transactions.

Link to figure

Figure 2.5.: Quantiles of number of receiving addresses in generation transactions.

How Fast Are Minted Bitcoins Spent

The Bitcoins received by the miners in generation transactions are usually spent

fairly quickly, either transferred to other addresses owned by the miners, or re-

distributed to the participants of the mining pools. We quantify how fast these

Bitcoins are spent by the number of confirmations waited before they are used as

funding sources in following transactions. As shown in Figure 2.6, in over 50% of

the generation transactions, the Bitcoins are spent with less than 27 confirmations,

or within 24 hours; and in about 70% of the generation transactions, the Bitcoins are

spent with less than 210 confirmations, or within a week.

Link to figure

Figure 2.6.: Quantiles of number of confirmations before the Bitcoins in generation

transactions are spent.
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It is also worth noting in Figure 2.6 that there are 39,460 generation transactions,

or 13% of all generation transactions, in which the Bitcoins have not yet been spent

as of May 3rd 2014, with a total value of 1,899,484 BTC, or 15% of all minted

Bitcoins. These Bitcoins were never in circulation after being minted and remain

dormant ever since. (The term “dormant Bitcoin” were introduced in [31].) In fact,

most of these generation transactions occurred in the earlier days of the Bitcoin

system. As shown in Figure 2.17, by the end of 2010, the number of such generation

transactions had reached about 35,000, and the value of dormant Bitcoins had already

reached 1,757,705 BTC; since 2011, the number of such generation transactions had

only increased slightly and the Bitcoins minted during this time period had been in

circulation; in the most recent months, there was a small jump in the number of such

generation transactions, likely due to the fact that this is close to the end of our data

collection and the Bitcoins minted in those generation transactions were too new to

be spent.

Link to figure

Figure 2.7.: Cumulative number of generation transactions in which the Bitcoins

minted were not spent as of May 3rd 2014.

The reason that these Bitcoins were never spent after minted is unknown, except

that those newly minted ones which might be spent soon. It could simply be that

the earlier miners/owners of these Bitcoins have lost their private key, thus effectively

the control/ownership, to the receiving addresses in those generation transactions

and were not able to spend those Bitcoins anymore. Since the earlier miners in the

Bitcoin network were mostly playing with this new technology and might not foresee

the value of Bitcoins nowadays, it is possible that they did not make any effort to

preserve the Bitcoins they have obtained through mining. Nevertheless, this large

amount of dormant Bitcoins still pose a threat to this immature Bitcoin market as
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one can imagine the impact they would have to the value of Bitcoins if they were

somehow recovered and entered into circulation.

Notice that in Figure 2.6, the largest number of confirmations for the Bitcoins

minted in a generation transaction to be spent is 282,031, and it turns out that the

Bitcoins in this particular generation transaction were minted on January 30th 2009

and were spent 5 years later on February 2nd 2014. So even the earliest minted

Bitcoins can still be and are being recovered. In fact, there are 2,298 generation

transactions with a total value of 114,902 BTC that were spent 3 or more years after

they were minted. Given the current value of Bitcoins in local currencies, it is no

surprise that the earlier miners are doing whatever they can to recover those Bitcoins

they have minted.

2.4.3 Analysis of Properties of Payment Transactions

Payment transactions are used to transfer Bitcoins from the address(es) of the

sender to the address(es) of the receiver(s). They can be extracted from the transac-

tion based database by simply filtering those transaction objects where the element

sending is not missing. There are a total of 37,694,941 payment transactions, that

is over 99% of all transactions, and payment transactions have dominated the daily

transactions in the Bitcoin network since June 2011. In this section, we break down

the steps of making a payment transaction, and explore the properties of each in the

data.

Usage of Addresses

To make a payment in Bitcoin via a payment transaction, the payer/sender first

must possess one or many addresses that have previously received some amount of

Bitcoins in previous generation or payment transactions. If the sender owns multiple

such addresses or a single address that have previously received Bitcoins multiple

times in a single or multiple transactions, the sender could customize which of them
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will be used as sending addresses in this payment transaction. However, for conve-

nience, most of the available Bitcoin client programs and online wallet services can

automate the selection of sending addresses and complete the transaction for the

sender.

The overall distribution of the number of sending addresses in payment transac-

tions is shown in Figure 2.8. Overall, in about 62% of the payment transactions,

there is a single sending address; and in all other transactions, two or more sending

addresses are pooled together to provide funding for a single transaction. The num-

ber of sending addresses in a single transaction can be as large as 2,585, however, the

fraction of transactions with 20 or more sending addresses is fairly small, being less

than 1%.

Link to figure

Figure 2.8.: Quantiles of number sending addresses in payment transactions.

We refer to those payment transactions with a single sending address as one-

sending transactions and all other transactions with two or more sending addresses as

multi-sending transactions. The relative volume of these transactions changed along

time and is suggesting that the usage of sending addresses in payment transaction

is evolving, as shown in Figure 2.9. Prior to March 2011, there were not sufficient

payment transactions and thus the fraction of one-sending transactions varied quite

a lot; however, since payment transactions began to dominate daily transactions in

March 2011, about 80% of the payment transactions were one-sending transactions,

and the fraction has gradually decreased to about 50% since then. The increasing

usage of multi-sending transactions is suggesting that, as more and more payment

transactions are made, Bitcoins are more often broken into smaller bills and then

merged when spent. This also increases the occurrence of co-sending relations between

addresses and will impact the anonymity as discussed in Section 2.6.
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Link to figure

Figure 2.9.: Monthly fraction of one-sending transactions.

After taking care of the sending addresses, the next step of making a payment

transaction is for the sender to specify the receiving address(es) of the receiver(s) of

the payment. The sender can specify any number of receiving addresses to transfer

Bitcoins to, and the receiving addresses need not to be unique, which means the sender

can even transfer Bitcoins to the same address multiple times in a single transaction.

The distribution of the number of receiving addresses in payment transactions is

quite skewed as shown in Figure 2.10. In majority of the payment transactions there

are a very small number of receiving addresses, with about 6% of the payment trans-

actions having a single receiving address, about 87% having two receiving addresses,

and about 4% having three receiving addresses; the remaining 3% of payment trans-

actions have four up to hundreds or thousands of receiving addresses, with the largest

number of receiving addresses being 3,075.

Link to figure

Figure 2.10.: Quantiles of number receiving addresses in payment transactions.

We refer to those transactions with a single receiving address as one-receiving

transactions, those with two receiving addresses as two-receiving transactions, and

the remaining transactions as three-or-more-receiving transactions. The change in

the relative volume of these transactions along time is shown in Figure 2.11. Before

March 2011, none of the payment transactions had three or more receiving addresses,

and actually there were not many other payment transactions in the Bitcoin network
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either, which explains the fluctuation of the fraction of one-receiving transactions

and two-receiving transactions; after March 2011, payment transactions started to

dominate daily transactions and nearly 90% of them were two-receiving transactions;

however, in the most recent months, the fraction of two-receiving transactions had

seen a slight decrease to about 80%, while the other two taking about 10% each.

Link to figure

Figure 2.11.: Monthly fraction of one-receiving, two-receiving, and three-or-more-

receiving transactions.

Certainly users in the Bitcoin network could be, and in fact they have been, tak-

ing advantage of the ability to transfer Bitcoins to as many as thousands of receiving

addresses in a single transaction, however, recall the existence of change addresses

discussed in Section 2.2.3, while there are two receiving addresses in a two-receiving

transaction, one of the two is the change address to collect the change for the sender,

and the other is the payment address that belongs to the true receiver of the transac-

tion. So effectively, there is only one receiver in a two-receiving transaction and the

dominance of two-receiving transactions is simply reflecting the fact that most of the

payment transactions are from the sender to a single receiver. Similarly, there is at

least one change address, in some cases there could be more than one, in three-and-

more-receiving transactions, making the effective number of receivers less than the

number of receiving addresses in those transactions.

Transaction Values

After specifying the sending addresses and receiving addresses, the sender then

needs to specify the receiving values, i.e., the amount of Bitcoins to be sent to each of

the receiving addresses. The smallest unit of Bitcoin is a “satoshi”, which is 10−8 of
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one bitcoin (BTC), so the receiving values are always multiples of a satoshi. However,

it is possible to transfer 0 BTC to a receiving address in a transaction, and there have

been multiple occurrences of such zero value transactions.

In a one-receiving transaction, the payment value being transacted is the receiving

value of the single receiving address. In two-receiving transactions and three-or-more-

receiving transactions, however, the actual payment values are unknown due to the

existence of the change addresses. So instead, we will study the overall values of

Bitcoins being involved in each transaction.

We define the transaction value of a payment transaction to be the value being

involved, i.e., it is the combined values in the sending addresses in this transaction.

Figure 2.12 shows the overall distribution of transaction values. The transaction

values can be as small as 0 satoshi and as large as 550,000 BTC; the median of

transaction values is close to 1 BTC and over 80% of the values are within the range

of 2−5 BTC to 25 BTC.

Link to figure

Figure 2.12.: Quantiles of transaction values in payment transactions.

As Bitcoins become more valuable in local currencies, the transaction values have

become smaller in recent years, meaning more small bills of Bitcoins are being trans-

ferred. As shown in Figure 2.13, there was a decreasing trend in the monthly per-

centiles of transaction values. Since May 2012, the monthly median values of transac-

tion values had remained less than 1 BTC except in a couple of months, which means

over 50% of payment transactions involved less than 1 BTC; by the end of April 2014,

the 3rd quartile had dropped to 1 BTC and 75% of payment transactions involved

less than or equal to 1 BTC. The big drop in percentiles between April 2012 to June

2012 can be attributed to SatoshiDice, which was established April 2012 and began to
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contributed to a significant proportion of payment transactions in the Bitcoin network

since then. More details about SatoshiDice are discussed in Section 2.5.3.

Link to figure

Figure 2.13.: Monthly selected percentiles of transaction values in payment trans-

actions.

Transaction Fees

Before the sender completes a payment transaction, the last step, which is op-

tional, is to specify a transaction fee to be collected by the miner who would later

include and verify this transaction when generating a block. Effectively, the transac-

tion fee is computed as the (positive) difference between the combined sending values

and the combined receiving values, and any amount of Bitcoins that is not sent to

receiving addresses will be considered as the transaction fee. It is often suggested

that the transaction fee should be a fraction of the payment value, e.g., 5% of the

payment, but transaction fees are voluntary on the part of the senders, as they can

include any fee or none at all in a payment transaction. On the other hand, the min-

ers need not necessarily to process this transaction and include it in the new block

being generated, which means the verification/confirmation of this payment transac-

tion could be delayed. Therefore, the transaction fee is an incentive from the sender

to make sure that a particular transaction will quickly get included into one of the

following blocks being generated. Furthermore, in a lot of popular implementations of

the Bitcoin client programs and online wallet services, there is a default transaction

fee imposed when making a payment transaction [42], especially on those with a very

small amount of transaction values involved.
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It is shown in Figure 2.14 that with the increased usage of the Bitcoin system in

the past few years, more and more payment transactions were made with a transaction

fee. Prior to January 2011, there were very few payment transactions made and a

very small fraction of them were made with a transaction fee; however, since then the

fraction had increased significantly, especially from April 2012 to June 2012, when

the fraction had doubled and kept increasing to over 95% in the recent months.

Link to figure

Figure 2.14.: Monthly fraction of payment transactions with a transaction fee.

It seems that the users in the Bitcoin network are being good citizens and paying

the transaction fees as a good gesture, however, considering the fact that a default

transaction fee is usually imposed by the Bitcoin client programs and online wallet

services the users are using, the users are actually being forced to pay the fees, un-

less they have sufficient technical knowledge to either utilize the low level Bitcoin

raw transaction [43] or take advantage of other non-standard implementations of the

Bitcoin client program without enforced transaction fee [44]. This is also partially re-

flected in Figure 2.15 of the quantiles of overall transactions fees, where a few popular

values dominates in the transactions, as opposed to a less concentrated distribution

one would expect if the transaction fees are paid as the suggested fraction of payment

values. A few popular values are 0.001 BTC, 0.0005 BTC, 0.0002 BTC, and 0.0001

BTC, and their combined fraction of payment transactions is over 91%. These val-

ues happen to be the default amount of transaction fees imposed by those popular

implementations of Bitcoin client programs and online wallet services . Therefore,

while the most technical users are able to avoid the transaction fees, less technical

users, which likely are the majority in the user community, have to pay a fee for the

transactions they are making. And of course, the default fee has declined by a factor
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of 100 from 0.01 BTC in the earliest days of Bitcoins to the recent 0.0001 BTC as

the exchange rate has risen.

Link to figure

Figure 2.15.: Quantiles of transaction fees in payment transactions.

How Fast Are Bitcoins Spent

After a payment transaction has been created and broadcasted by the sender, it

will be relayed by the participants of the Bitcoin network, and eventually be picked

up by the targeted receiver(s) and the miners. Before getting a sufficient number

of confirmations from the miners, this transaction can still be voided and excluded

from the blockchain. However, the received Bitcoins in each receiving address are

available to be spent in another payment transaction immediately after the original

transaction is created. Of course, if the original transaction is voided and excluded

from the blockchain, all following transactions will be voided as well.

It is suggested in [22] that a minimum of 6 confirmations, which is about 1 hour, is

needed to ensure that a transaction is valid, and typically merchants accepting Bitcoin

as a method of payment require much more confirmations before they ship out their

products. However, after tracking all receivings instances that have been spent on or

before May 3rd 2014 in all payment transactions, we found out that Bitcoins received

are often spent faster than that. As shown in Figure 2.16, in about 45% of all receiving

instances the received Bitcoins were spent with less than 6 confirmations, and about

16% were even spent without any confirmation at all.

Link to figure
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Figure 2.16.: Quantiles of number of confirmations before received Bitcoins are

spent.

One typical situation that the received Bitcoins could be safely spent with few or

even none confirmations is the existence of change addresses: if the receiving instance

in a payment transaction is the receiving of the change, then the sender is certain

that the original transaction is valid and thus continue to spend the change received

without taking any risk. Furthermore, there are various other situations where the

receiver deliberately spend the received Bitcoins very fast, including SatoshiDice,

which is discussed in Section 2.5.3.

2.4.4 Analysis of Dormant Bitcoins

As we have seen in Section 2.4.2, there are a noticeable amount of dormant Bitcoins

that have not yet been in circulation as of May 3rd 2014 since they had been minted.

In fact, there are also Bitcoins that are transferred in payment transactions for a

period of time after minted in generation transactions, and then became inactive ever

since, further reducing the amount of Bitcoins in circulation.

Combining both generation transactions and payment transactions, Figure 2.17

shows that, for any given date, the cumulative amount of Bitcoins that have become

inactive since then, i.e., those Bitcoins were never spent from that date up to May

3rd 2014. By the end of 2010, there were about 2 million dormant Bitcoins, among

which 1.76 million were contributed by generation transactions. By the end of 2013,

the amount of dormant Bitcoins had reached 4 million BTC and the increase was

mostly due to inactive Bitcoins received in payment transactions. As it gets closer

to the end of our data collection, the amount of “dormant” Bitcoins quickly climbed

up, simply because there had not been enough time for them to be transferred again.

And lastly, the value on the top right corner in the figure, which reads 12.72 million
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BTC on May 3rd 2014, corresponds to the total amount of Bitcoins that have been

minted so far.

Link to figure

Figure 2.17.: Cumulative amount of Bitcoins that were not spent from any given

date to May 3rd 2014.

Therefore, of all the Bitcoins that have minted so far, over 30% have been out of

circulation for over one and a half years, suggesting that the remaining Bitcoins have

been transferred very frequently considering the large number of Bitcoin transactions

we have seen in the recent years. Also, as we have discussed before, the large amount

of dormant Bitcoins are posing a threat to the immature Bitcoin market as they

could enter or re-enter into circulation and shock the market. In fact, similar to

what we have seen for the dormant Bitcoins in generation transactions, the ancient

Bitcoins in payment transactions could also be discovered and become active again.

In Figure 2.16, the largest number of confirmations for the Bitcoins received in a

payment transaction to be spent is 267,338, corresponding to a payment transaction

occurred in February 2009, where the received Bitcoins were spent about five years

later.

2.5 Address Based Databases

Addresses identify the sender and receiver entities of a transaction. Studying the

profile or usage pattern of addresses is very important, if not more important than

studying transactions themselves, to understand how the Bitcoin system is being used

and to study various entities in the Bitcoin network. Through our analysis, we have

found that the usage pattern of an address can often be characterized by 3 groups of

properties of this address, and address based databases that contain these properties
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for each address are needed to enable efficient access and analysis of these properties,

as well as the creation of visualizations for these properties on a per address basis.

The first group of properties aim to summarize the activity level of the addresses.

An activity of an address is essentially a transaction this address is used in, and we

define 4 types of activities for an address based on how this address is being used

in each transaction: (1) if this is a generation transaction, this address is receiving

the block rewards and we say that this address is conducting a generation activity;

(2) in a payment transaction, if this address is a receiving address but not a send-

ing address, we say that this address is conducting a receiving activity; (3) if this

address is a sending address but not a receiving address, we say that this address is

conducting a sending activity; (4) and if this address is both a sending address and

a receiving address in the same transaction, then we say that this address is con-

ducting a self-sending activity. Generation, receiving, and self-sending activities are

receiving related activities as the address is receiving some amount of Bitcoins, and

sending and self-sending activities are sending related activities as the is spending

some amount of Bitcoins. The activity level of an address can then be summarized

by a few variables: first of all, the overall level of activity of an address, i.e., the

number of transactions of an address, and the number of activities of each type tell a

lot about how actively this address is being used; furthermore, the time and block of

the beginning and ending of sending/receiving related activities, and the number of

active blocks, i.e., the number of blocks this address is conducting activities, provide

information about this address’s lifetime; lastly, the ending account balance of an

address, i.e., how much Bitcoins this address has received but not yet spent as of

May 3rd 2014, often gives a reasonable indication on whether or not this address will

remain active. These variables are aggregated summaries and they take one value for

each address, and they should be included in the address based database.

The second group of properties summarize the usage of addresses in those activi-

ties of a particular address. These include the distributions of the following variables

across all or some types of the activities of this address: (1) the number of sending ad-
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dresses and number of receiving addresses in the activities of each type; (2) in sending

related activities, where this address is a sending address, the number of replications

of this address as the sending address, i.e., the number of times this address is speci-

fied as the sending address in the same transaction; (3) in receiving related activities

where this address is a receiving address, the number of confirmations this address

waited before the Bitcoins received are spent; (4) the number of receiving activities of

this address contributed by each sender entity. These variables quantify how many as

well as how fast addresses are used, and a representation of their distributions should

be included in the address based database.

The third group of properties carry the detailed information of each individual

activity, including the activity type, time and block of this activity, and the amount

of Bitcoins of this address that are involved in this activity. These properties are

no longer aggregated or summarized information as the previous two groups are, and

the address based database should nonetheless include them to provide comprehensive

information regarding activities.

In the following subsections, we first describe our design and structure of various

address based databases that enable query and analysis of those properties for all

34,999,937 addresses, along with the construction of these databases, then we present

our analysis of various properties of these addresses, and we conclude this section by

the studies of a few representative groups of addresses with typical usage patterns.

2.5.1 Design and Construction of the Address Based Databases

The address based databases are created from the transaction based database as

described in Section 2.4.1, where activities/transactions are conveniently stored as

stand-alone objects. However, for each transaction object in the transaction based

database, the information contained needs to be propagated for each address used in

this transaction and then all pieces of transaction information of the same address

need to be assembled to produce those properties mentioned above.
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One naive design of an address based database that contains all the properties for

each address is simply to form a list object consisting of all the activities/transactions

for each address after they are assembled. Certainly, thus constructed database con-

tains all the information we would need since we would be able to compute all the

properties for each address given the list of all its transactions. However, there are

two issues with this design. Firstly, because of the propagation of transactions for

every address in a transaction, the size of the resulting database becomes quite large

as there are usually at least 3 or more addresses in a transaction, and this would

hurt the efficiency of accessing the database and consequent analyses. Secondly, as

we shall see in Section 2.5.2, there are a few addresses that have been used in a huge

number of transactions, in the order of millions, thus the size of the list objects of

all transactions for these addresses would exceed the upper limit on the size of a

single object in R and these list objects will have to be broken into smaller pieces,

which quickly complicates the computation of those properties since the information

for a single address could potentially span across multiple list objects in the database

and these objects need to be assembled before the computation and analysis of those

properties.

Therefore, instead of storing all activities/transactions of an address as a list

object in the address based database, we decide to extract and compute the variables

of those properties and store them with suitable data structures for each address

in our address based databases. We have created three independent address based

databases, one for each group of properties, where individual queries for a particular

address and batch or entire database scan can be made to any one or any combination

of these databases. Note that these databases could be easily merged into a single

database, but we choose not to do so simply because we constructed these databases

sequentially during different stages of our analysis and having three independent

databases provide the same level of accessibility and efficiency with slightly more

flexibility compared to a single database. Also, as new property variables are being

discovered during the interactive analysis, it is usually easier and more efficient to
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create additional address based databases for these properties than to re-compute all

the old properties and merge them with the new ones.

Here we describe in details the procedures to construct these address based databases

via RHIPE on a cluster of 11 servers and 242 processors.

Construct the Activity Level Summary Database

The activity level summary object consists of the following variables for each

address: the total number of activities, the number of activities of each type, the

time and block of the beginning and ending of sending/receiving related activities,

the number of active blocks, and the ending account balance. For each transaction

object and each address in the transaction, these variables are computed and then

aggregated by address to produce the activity level summary object for each address.

Each activity level summary object is stored as an R named vector of numeric values,

each of which corresponds to a variable.

The activity level summary database is constructed in the following MapReduce

job.

Input data The transaction based database, consisting of 37,993,792 transactions,

each in the form of a key-value pair, with the transaction ID as the key, and an

R list containing transaction information as the value.

Output data 34,999,937 activity level summary objects, each in the form of a key-

value pair, with the address as the key, and an R vector containing activity level

summary information of the address as the value.

Map For each transaction and each address in the transaction, indicator variables

that indicate whether or not this activity is of a particular type for this address

are formed, the time and block of this transaction are extracted, and if this

address is a receiving address and the Bitcoins received are not yet spent, the

balance is assigned with the receiving value, otherwise it is assigned with 0.
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With the address as the key, and an R vector consisting of those variables with

proper names as the value, the key-value pairs are transferred to Reduce.

Reduce All activities of the same address, in the form of R vectors, are assem-

bled. The summary variables are computed: each of the indicator variables is

aggregated across all activities, the max and min of time and block for send-

ing/receiving related activities are computed, the number of unique blocks and

the balances are also aggregated. The summary variables are again stored in an

R named vector. With the address as the key, and the R vector as the value, a

key-value pair is outputted for each address.

Construct the Address Usage Summary Database

The address usage summary object consists of information about the distributions

of the following variables for each address: the number of sending addresses and

number of receiving addresses in the activities of each type, the number of replications

of this address as the sending address in sending related activities, the number of

confirmations this address waited before the Bitcoins received are spent in receiving

related activities, the number of receiving activities of this address contributed by each

sender entity. Due to the skewness and extreme values in these variables, the mean

and standard deviation are not suitable summaries for their distributions, instead,

we compute up to 5,000 quantiles with probabilities equally spaced between 0 and

1 for each variable. The address usage summary object is formed as an R list, each

element of which corresponds to a variable and is formed as an R data frame of up

to 5,000 rows and two columns: the f-value and corresponding quantiles.

The address usage summary database is constructed in the following MapReduce

job.

Input data The transaction based database, consisting of 37,993,792 transactions,

each in the form of a key-value pair, with the transaction ID as the key, and an

R list containing transaction information as the value.
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Output data 34,999,937 address usage summary objects, each in the form of a key-

value pair, with the address as the key, and an R list containing address usage

summary information of the address as the value.

Map For each transaction and each address in the transaction, the type of activity

is determined, the number of sending/receiving addresses, the number of repli-

cations and the number of confirmations are computed, and the sender entity

ID is extracted. Notice that unlike the other variables, the number of values

for the number of confirmations could exceed 1 if the same address is specified

as receiving address multiple times. So each of these variables are stored as an

R vector, and an R list consisting of these vectors is formed. With the address

as the key, and the R list as the value, the key-value pairs are transferred to

Reduce.

Reduce All activities of the same address, in the form of R lists, are assembled. The

variables are re-organized by type of activities, and the quantiles are computed

and formed as an R data frame. For the sender entity variable, the number of

activities by sender entity is computed and the quantiles are obtained. With the

address as the key, and an R list of those data frames as the value, a key-value

pair is outputted for each address.

Construct the Activity Detail Database

The activity detail object consists of detailed information about each individual

activity: the type of this activity, the time and block of this activity, and the amount

of Bitcoins of this address that are involved in this activity. Each activity detail

object is constructed as an R data frame with each row being an activity.

The activity detail database is constructed in the following MapReduce job.
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Input data The transaction based database, consisting of 37,993,792 transactions,

each in the form of a key-value pair, with the transaction ID as the key, and an

R list containing transaction information as the value.

Output data 34,999,937 activity detail objects, each in the form of a key-value pair,

with the address as the key, and an R data frame containing activity detail

information of the address as the value.

Map For each transaction and each address in the transaction, the type of activity is

determined, the time and block of this activity, as well as the amount of Bitcoins

involved are extracted, and these variables are formed into an R vector. With

the address as the key, and the vector as the value, the key-value pairs are

transferred to Reduce.

Reduce All activities of the same address, in the form of R vectors, are assembled.

The vectors are binded into an R data frame with each vector/activity being a

row in the data frame, and the data frame is then ordered by time of activity.

With the address as the key, and the data frame as the value, a key-value pair

is outputted for each address.

With the construction of the address based databases, queries of individual address

or groups of addresses can be made directly to the databases and their properties can

be obtained, and entire database scan for all addresses can also be accomplished

through MapReduce jobs. In the following subsections, we first present an overview

of properties of all addresses by utilizing the activity level summary database, then

we focus on a few specific groups of addresses with interesting and representative

usage patterns by making heavy use of all three databases.

2.5.2 Analysis of Properties of Addresses

As of May 3rd 2014, we have observed a total of 34,999,937 addresses that have

ever been used in the Bitcoin network. While there are groups of addresses shar-
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ing similar usage patterns, the properties could vary drastically from addresses to

addresses.

Activity Level of Addresses

The distribution of number of activities/transactions of all types for each address

is shown in Figure 2.18. Clearly, the distribution is very concentrated and heavy-

tailed: close to 5% of addresses have conducted only 1 activity, in which the address

is receiving and the Bitcoins received are never spent; over 80% of addresses have 2

activities, most likely 1 receiving activity followed by 1 sending activity draining the

address; less than 1% of addresses have conducted 28 or more activities, however, there

are a small number of popular addresses that account for a significant proportion of

all the activities, with the largest one conducting 3,153,571 activities, in other words,

this address has occurred in 8.3% of all transactions. We should also notice that when

the the number of activities is small, the address count/fraction for odd numbers of

activities is always smaller than that of the subsequent even numbers, and this is

hardly surprising, as it is simply suggesting that many addresses are used in as many

sending activities as receiving activities. Therefore, the majority of addresses are used

only a small number of times and are never used again, while very few address have

been used extraordinarily frequently. It is generally suggested that a new address

should be generated for every receiving related activity, in order to achieve better

privacy, and our observation does suggest that many addresses are generated and

used in this way.

Link to figure

Figure 2.18.: Quantiles of number of activities/transactions of all types for each

address.
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Figure 2.19 compares the distribution of the number of activities/transactions

for each address with the Pareto distribution, and this gives a better visualization

of the tails of the distribution. Notice that in the top right corner, there are two

groups of adjacent points having similar values on the horizontal axis within groups,

suggesting that there are two clusters of addresses with similar number of activities.

These turned out to be addresses belong to a popular Bitcoin based gambling service,

the SatoshiDice, and in fact, many of the top addresses, including the largest one

with 3,153,571 activities, also belong to SatoshiDice. The SatoshiDice addresses are

analyzed in details in Section 2.5.3.

Link to figure

Figure 2.19.: Pareto quantile-quantile plot of number of activities/transactions of

all types for each address.

For each address, the number of sending related activities, including sending and

self-sending, is plotted against the number of receiving related activities, including

generation, receiving, and self-sending, in Figure 2.20. This figure is produced via

R package “hexbin” [45], and it is a variation of the usual scatter plot, but tailored

for large datasets. The values of (x, y) pairs to be plotted are grouped into hexagon

bins and the count of values in each bin is plotted/colored instead of the actual val-

ues. 28,078,037 addresses, or over 80% of all, have exactly 1 sending activity and

1 receiving activity; 2,017,879 addresses, or 5.77% of all, have exactly 2 sending ac-

tivities and 2 receiving activities; 2,032,908 addresses, 5.81% of all, have only been

used in receiving related activities but never been used in sending related activities,

among which, 1,599,702 addresses, or 4.57% of all, have received once and the Bit-

coins received were never spent. For most addresses, the number of sending related

activities is no more than that of receiving related activities. This is because the

Bitcoins received in multiple receiving related activities are often merged to provide
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funding in a subsequent sending related activity. However, there are a few addresses

that have conducted more sending related activities than receiving related activities,

suggesting that they are receiving multiple times in the same receiving activity and

these receivings are spent separately in subsequent sending activities.

Link to figure

Figure 2.20.: Scatterplot (based on hexagon binning) of number of sending related

activities and number of receiving related activities of each address.

The number of activities/transactions and number of active blocks for each ad-

dress are plotted in Figure 2.21. While majority of the points fall fairly close to

the y = x reference line, suggesting these addresses’ activities are well spread across

blocks, there are addresses whose activities are quite concentrated and producing

hundreds of activities per active block, including those addresses with largest number

of activities/transactions.

Link to figure

Figure 2.21.: Scatterplot (based on hexagon binning) of number of activi-

ties/transactions and number of active blocks for each address.

Inactive Addresses

The account balance of an address at a given time is the sum of received Bitcoins

that are not yet spent at that time. As of May 3rd 2014, 32,098,717 addresses, or

92% of all addresses, have a balance of 0, and only 2,901,220 addresses hold a positive

balance. Notice that it is not possible for an address to have a negative balance, since
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addresses could only spent the Bitcoins they have previously received. Figure 2.22

shows the distribution of balance for addresses with a non-zero balance. Most of these

addresses have a small balance, with about 15% having a balance of only 1 satoshi

and over 90% of addresses having a balance of 1 BTC or less, but a few addresses

have very large balance. In fact, the 1,000 “wealthiest” addresses hold nearly 40% of

all the Bitcoins that have ever been minted. The address with the largest balance is

1FfmbHfnpaZjKFvyi1okTjJJusN455paPH and its balance is 144,341.53 BTC, worth

of over 60 million USD as of May 3rd 2014. This address belongs to the FBI and it

was used to seize the Bitcoins from the alleged owner and operator of “Silk Road”, a

website designed to enable its users to buy and sell illegal drugs and other unlawful

goods and services using the Bitcoin system [46] [47] [48].

Link to figure

Figure 2.22.: Quantiles of account balance as of May 3rd 2014 for addresses with

a non-zero balance.

An ending balance of zero, or in other words, the address has been drained, is

usually an indicator that this address becomes inactive and is likely not going to be

used again. However, addresses with a positive balance could have become inactive

as well, especially when the balance is small. We have observed addresses, such as

a group of addresses belong to SatoshiDice discussed in Section 2.5.3, that had been

used very frequently in some periods of time, and after they had been drained at the

end of these very involved time periods, they received small amounts of Bitcoins, such

as 1 satoshi, during a couple of receiving activities spanned in a much longer time.

Taking into account the fact that a receiving activity is somewhat passive from the

address owner’s point of view compared to other types of activities, because anyone

can just randomly send some amount of Bitcoins to any address, thus the receiving

activities of an address are in less control of its owner, and they could even take place
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with no intentions from its owner involved. We want to note that one of our specu-

lations about the motives of such behavior is that the sender entity is trying to hide

his intention or target of his/her transaction by including some unrelated addresses

as receiving addresses in addition to the targeted receiving address. Verification of

this speculation is very challenging and it is beyond the scope of this study.

With these considerations in mind, we believe that the last sending related activity

of an address is a more reasonable and accurate representation of the address’s last

usage. Thus we define the life time of an address as the time from its first (receiving

related) activity to its last sending related activity, if there is any.

Figure 2.23 shows the distribution of life time (in minutes) of addresses with

at least one sending related activity. About 5.81% of all addresses are excluded

because they have not conducted any sending related activities. Among the remaining

of the addresses, about 15% of them have lifetime as 0 minute, i.e., their sending

activities occurred immediately after their receiving activities and both transactions

were included in the same block; besides those, another 60% of addresses “lived”

shorter than a day and another 20% of addresses were in the range of a day to a

month; however, there are also a few long-lived addresses with a lifetime ranges from

a few months to several years, and the longest lifetime of an address is over 5 years

and it turned out to be one of oldest addresses in a generation transaction being

recovered in February 2014.

Link to figure

Figure 2.23.: Quantiles of lifetime of addresses with at least one sending related

activity.
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2.5.3 The SatoshiDice Addresses and Gambling Services

SatoshiDice [41] is the most popular Bitcoin-based gambling services in the Bitcoin

network, and it utilizes the Bitcoin system to place bets, evaluate the bets, and return

the payouts of the bets. The SatoshiDice service was launched in April 2012 by Erik

Voorhees [49] and remained active as of May 3rd 2014. It is the largest contributor

to the transactions in the Bitcoin network, and its addresses are among the most

actively used addresses in the entire Bitcoin history.

How dose SatoshiDice work

There are 27 different betting games hosted by SatoshiDice, as listed in Table 2.1.

Each of the betting games has a different winning condition, and thus provides a

different odds of winning as well as a correspondingly different return rate. Notice

that in Table 2.1, although it says “Win Odds”, it is actually the probability of

winning a bet: the most difficult-to-win game has merely a 0.0015% chance to win,

but the return is 64,000 times the bet if ever wins; the least difficult-to-win game has a

97.6563% chance to win, and the return is only 1.004 times the bet if wins; other games

have probabilities of winning between these two extremes, and the corresponding

return rates also lie in between.

Table 2.1.: SatoshiDice bet options table.

Link to table

To play a betting game on SatoshiDice, or to place a bet, a player simply needs

to make a payment transaction using the Bitcoin client programs or online wallet

services, and send some amount of Bitcoins, or the bet, to one of the bet addresses

listed in Table 2.1. We will refer to these transaction that are used to place bets as

bet transactions.
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When SatoshiDice receives a bet transaction, it evaluates win or lose and generates

a return transaction, which is also a payment transaction and the return of the bet

is sent back to the player who places the bet. If the bet wins, the return is the bet

multiplied by the prize multiplier in Table 2.1 and that amount is sent back. If the

bet loses, the return is the bet times 0.005, resulting in a number much smaller than

the bet.

If desired, a player can place multiple bets in a single bet transaction by specifying

multiple bet addresses as the receiving addresses. However, each bet will be evaluated

and return independently. For each bet, there will be a return transaction and thus

a bet transaction including multiple bets will spawn multiple return transactions. In

each return transaction, SatoshiDice always includes the corresponding bet it received

as one of the (sending address, signature, previous receiving transaction) tuples, and

this identifies which bet this return transaction is responding to.

Normally, the return of a bet is sent back to the same address that the player

used to place the bet, i.e., the sending address in the bet transaction if there is only

one, or one of the sending addresses if the bet transaction includes multiple sending

addresses. However, SatoshiDice provides a method to have the return sent to a

custom return address specified by the player: if the player adds another receiving

address to the bet transaction in addition to the bet address(es), and send exactly

0.00543210 BTC to it, then the return for the bet will be sent to that address instead.

In order to have the return transactions verified quickly by miners, SatoshiDice

always includes a transaction fee of 0.0005 BTC in the return transactions. When

SatoshiDice sends a return transaction to a player, the transaction fee is subtracted

from the return amount. If this makes the return amount zero or less, the return

is set to 0.00005430 BTC. Notice that the transaction fee in a return transaction

also accelerate the verification of the corresponding bet transaction, because the bet

transaction is referenced in the return transaction, and the miners will need to verify

the bet transaction before they can verify the return transaction.
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The Evolution of SatoshiDice

In April 2012, SatoshiDice launched 24 of its betting games, and later in July 2012,

3 additional betting games were launched. Quickly after its launch, SatoshiDice had

become very popular and started to generate a large number of transactions. Overall,

there are a total of 11,470,008 transactions involving SatoshiDice, either sent to or

from SatoshiDice. That is over 30% of all time transactions in the entire Bitcoin

network!

As shown in Figure 2.24 and Figure 2.25, within weeks after being launched,

SatoshiDice was responsible for around 16,000 transactions daily, or around 50% of

the daily transactions in the Bitcoin network. Up until July 2013, its daily number

of transactions and daily fraction of transactions had remained at a very high level

during that time, with 8,000–32,000 daily transactions and 40%–60% as a fraction of

all Bitcoin transactions.

Link to figure

Figure 2.24.: Daily number of transactions involving SatoshiDice.

Link to figure

Figure 2.25.: Daily fraction of SatoshiDice transactions out of all Bitcoin trans-

actions.

Due to the vast amount of transactions it had generated, SatoshiDice had drawn

a lot attention and debate inside and outside of the Bitcoin user community. Many

Bitcoin users believed that SatoshiDice was spamming the Bitcoin network, and there-

fore should be banned; however, others thought of it as a stress test to the Bitcoin
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system, and as long as it would pay the transaction fees for its transactions, its usage

should be considered valid [50]. Outside the Bitcoin user community, SatoshiDice

also faced various issues because of the gambling nature of the service. In May 2013,

SatoshiDice decided to block all US-based IP addresses attempting to visit its official

website, due to potential legal issues. However, this did not seem to affect its pop-

ularity, as the daily number of transactions shown in Figure 2.24 remained at about

the same level during that time. After all, once the players who wanted to play the

betting games had learned those 27 bet addresses, they could place bets and receive

returns, and bypass the website completely.

On July 18th 2013, Erik Voorhees, the founder of SatoshiDice, announced that

SatoshiDice had been sold for 126,315 BTC, or US$12.4 million at the time of the

announcement [51]. This had raised concerns and caused some insecurity in its user

base and the daily number of transactions plunged from over 16,000 to about 8,000.

Since then, SatoshiDice had become less popular and the daily number of transactions

had gradually decreased to 1,000–2,000 recently. Notice that there was a sizable drop

in the daily number of transactions around October 2013 shown in Figure 2.24, and

this was because On October 31st 2013 SatoshiDice launched the SatoshiDice Tribute

game [52], which claimed to conduct its transactions off the blockchain and thus those

transactions were not included in our data. Unfortunately, the new game was shut

down a month later after being plagued by slow performance, distributed denial of

service attacks and other user related issues.

Bets and Returns

Considering different functionalities, there are three types of transactions involving

SatoshiDice, and they make up the total of 11,470,008 SatoshiDice transactions.

The first type are bet transactions, in which players placed bets by sending Bit-

coins to one or many of the 27 bet addresses listed in Table 2.1, and there are a

total of 5,196,942 bet transactions. Recall that players could place multiple bets in
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the same bet transaction by sending Bitcoins to one or multiple bet addresses one or

multiple times, there are a total of 6,285,179 bets placed in these bet transactions,

and 394,506 bet transactions have multiple bets.

The second type are return transactions, in which the returns of the bets were sent

from SatoshiDice to the players that placed the bets, and there are a total of 6,270,147

return transactions. One thing to note is that the number of return transactions is

larger than the number of bet transactions, and this is due to the existence of multiple

bets in a single bet transaction and each bet resulting in a separate return transaction.

Another thing is that the number of return transactions is smaller than the number

of bets, and in fact, there are no corresponding return transactions for 15,032 bets.

Except for a small number of those bets that were placed towards the end of our

data collection and thus the return transactions might have not been included in our

data, the majority of such bets with no returns had a value less than 0.0001 BTC. We

believe that SatoshiDice simply ignored these bets as the values are much smaller than

the the minimum bet they have specified in Table 2.1. Furthermore, these Bitcoins

received by SatoshiDice in these bets were not spent as of May 3rd 2014, partially

suggesting that SatoshiDice was not trying to trick the players and steal away the

Bets.

The remaining 2,917 transaction are the third type, and we will refer them as

operational transactions. The usage of these transactions are unknown as they are

neither bet transactions or return transactions. Based on manually inspection, most

of these transactions occurred around the time SatoshiDice was just launched, and

we believe that they were mainly used to to initially set up the pool of funds to back

the bets, and some were used to collect and transfer the earnings of the SatoshiDice

service.

Overall, combining all 27 bet addresses, the total value of bets that have been

placed on SatoshiDice is 4,407,347 BTC, and the total value of returns sent back to

players is 4,321,181 BTC. The difference of these two numbers, subtracted by the

total value of transaction fees 5,597 BTC paid out by SatoshiDice, gives the earnings
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of SatoshiDice a total value of 80,569 BTC as of May 3rd 2014, or 1.83% of total

value of bets.

Figure 2.26 shows the number of bets to each of 27 bet addresses. The most

popular bet game is the one with winning probability 48.83%, and there are close

to 1.5 million bets, or around 25% of all the bets, to this bet address; it is closely

followed by 17% of all bets placed on the bet address with winning probability 50.00%

and 9.3% on the bet address with winning probability 73.24%. Interestingly, there

are far more bets placed on the bet address with the lowest winning probability than

any other bet addresses with lower winning probabilities. Gambling, indeed!

Link to figure

Figure 2.26.: Number of bets to each bet address.

According to Table 2.1, there is a minimum on the value of bets for all 27 bet

addresses and the minimum is set to be 0.01 BTC; there is also a maximum on

the value of bets and it varies across bet addresses. Bets that fall outside of the

range are not supposed to be evaluated, and the bets would simply be returned back

to the player. However, in practice, we have observed that bets smaller than the

specified minimum are often accepted and evaluated by SatoshiDice, suggesting that

SatoshiDice did not always respect the specified minimum. The overall quantiles

of values of the bets are shown in Figure 2.27, over 90% of values are fairly small,

within the range from 0.001 BTC to 1 BTC, and around 26% of bets have exactly

the specified minimum value of 0.01 BTC. The largest bet ever placed on SatoshiDice

has a value of 717 BTC, which exceeded the specified maximum, and the bet was not

evaluated and directly returned to the player that placed the bet.
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Link to figure

Figure 2.27.: Quantiles of values of the bets.

As one would have expected, the distributions of values of the bets are different

across bet addresses because of the different odds of winning. This is summarized

in Figure 2.28, where 10 selected percentiles of the values of the bets are plotted

against the odds of winning for each bet address. The lower percentiles across bet

addresses are fairly similar and the values are concentrated around 0.01 BTC; the up-

per percentiles, on the other hand, are generally increasing with the odds of winning,

suggesting players are placing larger bets on easier-to-win games and smaller bets on

harder-to-win games, which is a reasonable betting strategy.

Link to figure

Figure 2.28.: Selected percentiles of values of bets to each bet address.

Besides its ease of use, another important reason that SatoshiDice is able to gen-

erate a large number of transactions is that the betting games are operating with zero

confirmation, meaning the bets are evaluated as soon as SatoshiDice picks them up

from the Bitcoin network, and the return transactions are usually sent back instantly.

Figure 2.29 shows the quantiles of number of confirmations SatoshiDice waited before

sending back the returns. Around 65% of return transactions are within the same

block as the bet transactions, and over 95% of return transactions are made with less

than 3 confirmations.
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Link to figure

Figure 2.29.: Quantiles of number of confirmations between bet and return.

Finally, in order to verify that SatoshiDice is hosting the betting games at the

odds of winning claimed in Table 2.1, we investigated every bet and return pair and

compared the observed odds of winning with the claimed ones for each bet address.

As shown in Figure 2.30, for majority of the bet addresses, the observed odds are

practically the same as the the claimed ones; for bet addresses with the smallest

winning odds, there are deviations between observed odds and claimed ones. However,

the deviations are likely due to the low odds of winning and thus a small variation in

the number of winning bets to these bet addresses could cause a non-trivial difference

in the observed odds of winning.

Link to figure

Figure 2.30.: Observed odds of winning and claimed odds of winning for each bet

address.

Usage of Bet Addresses and Non-bet Addresses

We have found that SatoshiDice was in control of at least a total of 1,090 ad-

dresses. Besides those 27 bet addresses that SatoshiDice had publicly announced on

their official website as listed in Table 2.1, another set of 1,063 addresses are also

identified as SatoshiDice addresses, and they will be referred to as non-bet addresses

to distinguish them from bet addresses. These non-bet addresses were not publicly

announced by SatoshiDice as their addresses, but they are nevertheless identified as
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such because they have co-sending relations with those bet addresses and with each

other.

SatoshiDice, or more specifically the computer program behind the SatoshiDice

services, makes heavy use of both the bet addresses and non-bet addresses to support

the operation of the betting games. Because they were programmed to do so, the bet

addresses and non-bet addresses are used in very systematic yet distinct ways.

The 27 bet addresses are among the most actively used Bitcoin addresses of all

time, and in fact, 9 of them make it to the top 10 list of addresses by frequency of oc-

currences, and the rest of them are also on the top 130 list. In terms of activity types,

the bet addresses have conducted only receiving activities and sending activities, and

they have never been used in self-sending activities. Furthermore, in terms of func-

tionality, they are only used in bet transactions and return transactions, but never

used in operational transactions. In bet transactions, they are specified as receiving

addresses by the players of SatoshiDice in order to place bets; and in bet transactions

with multiple bets, multiple bet addresses would be specified as receiving addresses

and furthermore, they could even be replicated if the player decided to place multiple

bets to the same bet addresses in a single bet transaction. For every bet sent to a bet

address, the bet address is programmed to quickly reacts to the bet and generate a

return transaction. In return transactions, since SatoshiDice is in control of making

the transactions, the bet addresses are used in a more deterministic fashion: exactly

one bet address will be used as a sending address in each return transaction so that

the return transaction could refer to the corresponding bet that was placed.

The 1,063 non-bet addresses are only used in operational transactions and return

transactions, and their functionalities are quite different from those of bet addresses.

Besides being used in operational transactions either to set up the pool of funds to get

the SatoshiDice service started or to collect and transfer the earnings of SatoshiDice,

the non-bet addresses are mainly used in return transactions for two purposes: (1) to

provide additional funding, and (2) to collect the change.
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The first one is a direct consequence of the fact that SatoshiDice always includes

the particular bet address as a sending address in the corresponding return trans-

action. More specifically, in each return transaction, depending on the result of the

bet, none or some non-bet addresses would need to be included as sending addresses

in addition to the referenced bet address: if the bet wins, the return value would be

larger than the bet, so the tuple of (bet address, signature, bet transaction) alone

does not have sufficient funds to return to the player, therefore one or many non-

bet addresses would be pooled to fund the return transaction; in fact, even if the bet

loses, non-bet addresses were sometimes still pooled in the return transaction to cover

the transaction fees. Figure 2.31 shows the quantiles of number of sending addresses

in return transactions for each bet address. As the winning probability decreases,

the fraction of return transactions that include a single-sending address, i.e., only

the bet address as sending address, increases from less than 10% to more than 60%.

This is because higher winning probabilities lead to higher fraction of winning bets,

and consequently result in higher fraction of return transactions in need of additional

funding. Another interesting thing in Figure 2.31 is that, besides the obvious favor

of one bet address and one non-bet address combination as the sending addresses to

provide funding in return transactions for winning bets, the combination of one bet

address and three non-bet addresses also occurred very frequently, taking up around

20% of return transactions for each bet address.

Link to figure

Figure 2.31.: Quantiles of number of sending addresses in return transactions for

each bet address. Bet addresses are ordered by winning probability.

The second usage of non-bet addresses can be attributed to the existence of change

in any Bitcoin transactions, in this case the return transactions. In each return trans-

action, regardless of win or lose, some amount of Bitcoins is returned to the player’s
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address, and the change of this transaction, if there is any, is then collected by non-bet

addresses. As shown in Figure 2.32, there are only three possible values of the num-

ber of receiving addresses in return transactions: 1, 2, and 3. The value 2 dominates

in return transactions across all bet addresses, meaning in most of the return trans-

actions, one non-bet address was specified as a receiving address in addition to the

player’s address to collect the change; there are very small number of return transac-

tions where the player’s address was the only receiving address, suggesting there was

no change to be collected; there are also a small number of return transactions where

two non-bet addresses were specified as receiving addresses, and it turns out that the

values of change in these return transactions were quite large, and SatoshiDice were

breaking the change into two small pieces for further usage.

Link to figure

Figure 2.32.: Quantiles of number of receiving addresses in return transactions

for each bet address. Bet addresses are ordered by winning probability.

These non-bet addresses, despite not publicly announced, were also used very

frequently as 50 of them make it to the top 80 list of Bitcoin addresses by frequency

of occurrences. Figure 2.33 shows the quantiles of number of activities/transactions

of the non-bet addresses, and three groups of non-bet addresses clearly stand out and

separate themselves from each other and the rest of the non-bet addresses: group 1

consists of 25 addresses and each was involved in 395,000 activities; group 2 consists

of another 25 addresses and each was involved in 84,000 activities; group 3 consists of

1,001 addresses and each was involved in a range of 100–200 activities; and the rest

of 12 addresses all have less than 60 activities.
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Link to figure

Figure 2.33.: Quantiles of number of transactions of non-bet addresses.

The first three groups of non-bet addresses were mainly used in return transactions

to provide additional funding and collect the change, but each group were active in

a different period of time. Addresses in group 3 came out first during the first few

weeks when SatoshiDice was launched, and by the end of May 2012, these addresses

were drained, i.e., all Bitcoins ever received were transferred away, and they had

become inactive ever since. Addresses in group 2 became active in May 2012 and

they replaced group 3 to support the SatoshiDice betting games. In September 2012,

addresses of group 2 were also drained and they were replaced by the addresses

in group 1, which remained active as of May 3rd 2014. In fact, the addresses in

group 2 did not disappear completed from the Bitcoin network. We have observed

a few transactions where addresses in group 2 are specified as one of many receiving

addresses, but the receiving values are quite small and they have never been spent by

SatoshiDice, therefore, we believe that SatoshiDice is not aware of these transactions

and these addresses had indeed become inactive.

Finally, after investigating the properties, we found out that these non-bet ad-

dresses were used in a very similar fashion, if not identical, and we believe that their

migration is simply the result of SatoshiDice upgrading its underlying program that

operates the betting games.

Address/Entity Grouping in Bet Transactions

Thanks to the unique functionalities of the bet transactions to SatoshiDice, we

have identified two facts that could be exploited to further the grouping of addresses
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into entities beyond the grouping based on co-sending relations as described in Sec-

tion 2.2.3.

Firstly, since a player can specify a custom return address to receive the return of

a bet, it is reasonable to believe that this custom return address belongs to this player.

In order to identify the custom return addresses, we search for receiving addresses in

bet transaction that satisfies both of the following two conditions: (1) this address

must not be one of the bet addresses; (2) this address is receiving exactly 0.00543210

BTC. Note that we have found a small number of bet transactions where multiple

receiving addresses satisfy both conditions, while SatoshiDice had treated whichever

address with the largest index, i.e., specified the last among receiving addresses,

as the custom return address to send the return to, we will treat them all as the

custom return address, assuming that the players are simply experimenting to find

out the behavior of SatoshiDice with respect to custom return addresses. We have

thus identified a total of 56,125 bet transactions where at least one custom return

address is present.

Secondly, recall the widely existence of change addresses in payment transactions,

there should also be change addresses in bet transactions, and the change addresses

should belong to the players as well. We argue that that in bet transactions, the

bet addresses are not receiving the change, because they are naturally receiving the

payments, in this case the bets, and they are programmed by SatoshiDice to react to

the bets by sending the returns in return transactions. Thus this leaves one of the

rest of receiving addresses, if there is any, to be the change address. Therefore, in a

bet transaction, if there is only one receiving address that is neither a bet address nor

a custom return address, then we treat this receiving address as the change address.

We have found a total of 5,146,202 bet transactions where the change address can be

identified as such.

Each one of the above two strategies would lead to link up a pair of co-sending

relation based entities, one corresponding to the player entity that placed the bet,

and the other corresponding to the entity that the change/custom return address
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belongs to. Overall, combining both strategies, we have identified 441,736 unique

pairs of entities that we believe could be further grouped into same entities. These

pairs consist of a total of 344,070 entities, and a union-finding algorithm merges them

into merely 14,557 unique entities, a 24:1 ratio of further grouping.

Notice that while the first strategy is somewhat unique in the context of bet

transactions to SatoshiDice, the second strategy, on the other hand, is quite general

and can be extended and applied to many other transactions involving other services.

This is further discussed in Section 2.6.

Other Bitcoin-based Gambling Services

The early success of SatoshiDice has inspired a few other Bitcoin-based gambling

services. These services are not as popular as SatoshiDice, nevertheless, they have

contributed a noticeable amount of transactions in the Bitcoin network, and many

of their addresses have easily made to the top 100 list of addresses by frequency of

occurrences.

A few of the notable gambling services are: the BetCoin Dice [53], established in

July 2013 and responsible for 1,137,443 transactions; the SatoshiBones [54], estab-

lished in September 2013 and responsible for 565,606 transactions; and the Lucky-

Bit [55], established in October 2013 and responsible for 308,620 transactions. Jointly,

they have contributed 5.29% of all time transactions, in addition to SatoshiDice’s

30.19%. And all of these services remained active as of May 3rd 2014 and continued

to generate a non-trivial number of transactions on a daily basis.

These gambling services provide variations of betting games similar to the ones

provided by SatoshiDice and they also operate in a similar way as SatoshiDice op-

erates in terms of handling bets and returns, more specifically, they also make use

of bet addresses to receive and react to bets and non-bet addresses to provide addi-

tional funding and to collect change, etc. The same analysis we have performed for
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SatoshiDice could readily be applied to these services as well and we will skip the

detailed investigation here.

2.5.4 The DeepBit Addresses and Similar Addresses

DeepBit [56] is one of the largest and oldest mining pools in the Bitcoin network,

and it was established on February 24th 2011 and remained active, although barely,

as of May 3rd 2014.

DeepBit had not revealed its addresses to the public, but one particular address

had been identified by the Bitcoin user community as one of DeepBit’s addresses:

1VayNert3x1KzbpzMGt2qdqrAThiRovi8. We will refer to this address as the Deep-

Bit distribution address, because it was mainly used, or more specifically it was pro-

grammed, to distribute the block rewards DeepBit had earned via the pooled mining

to its participants. This address have been used very heavily, and its usage presents

a typical usage pattern shared by many other addresses.

Transactions involving the DeepBit Distribution Address

The DeepBit distribution address is involved in a total of 786,501 transactions,

or 2.07% of all time Bitcoin transactions, and it is ranked the 5th among all Bitcoin

addresses by frequency of occurrences, the only one on the top 10 list that does not

belong to SatoshiDice. Figure 2.34 shows the daily number of transactions involv-

ing the DeepBit distribution address. In November 2011, the DeepBit distribution

address became active and started to generate 1,000–2,000 transactions on a daily

basis; starting from late 2012, however, due to the growing competition from newly

joined miners and mining pools equipped with various advanced mining technology,

DeepBit was not able to generate as many blocks as it was able to in the previous

year, and the daily number of transactions involving the distribution address had

dropped to 500–1,000 in the following six months; notably, after the establishment

of GHash.IO [57] in July 2013, which later became the largest mining pool in the
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Bitcoin network, the market share of DeepBit continued to shrink and many of its

participants left DeepBit for other mining pools, and the DeepBit distribution address

was generating merely a few transactions a day in recent months.

Link to figure

Figure 2.34.: Daily number of transaction involving the DeepBit distribution

address.

Interestingly, despite being the address of one of most popular mining pools, the

DeepBit distribution address has never conducted any generation activity, i.e., it has

never directly received block rewards from the Coinbase in generation transactions.

Instead, some other temporary addresses, which we believe should also belong to

DeepBit, were used in generation transactions to receive the block rewards; these

addresses were later used in payment transactions, alone or jointly, to send or merge

the rewards to the DeepBit distribution address, and thereafter these addresses were

never used again; finally, the DeepBit distribution address distributed the rewards in

a series of following transactions to many different addresses, which we believe belong

to the participants of the DeepBit mining pool.

We have identified a total of 17,171 (out of 298,851) generation transactions, where

a single temporary address other than the DeepBit distribution address was receiving

the block rewards, and then sent all of them to the DeepBit distribution address in

a later transaction. Furthermore, we have also found a small number of generation

transactions, where the temporary addresses receiving the block rewards sent a frac-

tion of the rewards to the DeepBit distribution address in later transactions. Overall,

the total value of block rewards received indirectly by the DeepBit distribution ad-

dress is 810,723.7 BTC. Notice that the DeepBit distribution address had not been

used by DeepBit until November 2011, about 8 months after the establishment of the
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DeepBit mining pool, the above amount only provides a lower bound of how much

block rewards DeepBit and its participants has earned.

Properties of the DeepBit Distribution Address

Because of the particular functionality as a method of distributing relatively large

amount of Bitcoins to many receiving entities, the usage of the DeepBit distribution

address presents a typical pattern, characterized by its types of activities, the specifi-

cations of sending and receiving addresses when conducting sending related activities,

and the confirmations needed for it to spend received Bitcoins when conducting re-

ceiving related activities.

First of all, the DeepBit distribution address was very frequently used in self-

sending activities, where this address appeared both as a sending address and a

receiving address in the same transaction. There are 768,089 self-sending activities,

taking up to 97.66% of all its activities, 14,293 receiving activities, or 1.82%, and

4,119 sending activities, or 0.52%. The activities of the DeepBit distribution address,

including sending, receiving, and self-sending activities, are shown in Figure 2.35,

where different types of activities are colored differently and plotted as vertical lines

in the order of time of occurrence; the vertical lines originate from 0, and the length

of the lines corresponds to the amount of Bitcoins of this address that are involved

during these activities, and the direction of the lines corresponds to the direction

of the change of account balance of this address, i.e., lines pointing up when this

address’s balance is going up and pointing down when balance is going down.

Link to figure

Figure 2.35.: Activities of the DeepBit distribution address.
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It is easy to see in Figure 2.35 that the activities of the DeepBit distribution

address consist of many cycles of similar series of activities: a series usually starts with

a few receiving activities, where this address received some relatively large amount of

Bitcoins (usually 25 BTC or larger), followed by a much larger number of self-sending

activities and a couple of sending activities, where relatively smaller pieces of Bitcoins

(usually within the range from 0.01 BTC to 1 BTC) were sent away from this address.

Secondly, certain specifications of sending and receiving addresses dominate the

self-sending and sending activities of the DeepBit distribution address. In fact, there

are 759,585 among all 768,089 self-sending activities where one sending address and

two receiving addresses were specified in a transaction; and there are 4,054 among

all 4,119 sending activities where one sending address and one receiving address were

specified. Therefore, in most cases, when the DeepBit distribution address was self-

sending, it was the only sending address and it was also receiving the change while

sending some amount of Bitcoins to another receiving address; when the DeepBit

distribution address was sending, which usually happened after a series of self-sending

activities, it simply sent all the left-over Bitcoins to a single receiving address.

Thirdly, as shown in Figure 2.36, the number of confirmations the DeepBit dis-

tribution address waited before spending received Bitcoins are generally small, yet

the distribution varies in different types of activities. When the DeepBit distribution

address was self-sending, because the Bitcoins it received were the change of this

transaction and the validity was implied, they were usually spent very quickly: over

60% of them were spent without any confirmation, and over 90% were spent with

6 or fewer confirmations; on the other hand, when this address was receiving, most

likely receiving block rewards from those temporary addresses, the Bitcoins received

were spent not as fast, with the corresponding 60% percentile being 5 confirmations

and 90% percentile being 9 confirmations. Given the fast response of the DeepBit

distribution address in receiving related activities, it is likely that this address is han-

dled by a computer program to operate in such a way, especially during self-sending

activities.
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Link to figure

Figure 2.36.: Quantiles of number of confirmations the DeepBit distribution ad-

dress waited before spending received Bitcoins.

In summary, the majority of activities of the DeepBit distribution address consist

of many similar series of activities: one receiving activity triggers a long chain of self-

sending activities, and the chain is then concluded with a sending activity. During

each series of activities, a large bulk of Bitcoins received in the receiving activity is

gradually and quickly distributed to a number of receiving addresses, one receiving

address at a time. Therefore, the DeepBit distribution address presents the following

properties: (1) self-sending activities dominate the activities of this address, account-

ing for 97.66% of all activities; (2) in most of its self-sending activities, 98.89% of

all self-sending activities, it is the sole sending address and it is also collecting the

change, while another receiving address is receiving the payment; (3) between con-

secutive self-sendings activities, the number of confirmations is usually small.

Other Distribution Addresses

Powered by the address based databases, we are able to identify many other

addresses that share similar properties as the DeepBit distribution address: these

addresses are mainly conducting self-sending activities, and during these chains of

self-sending activities, these addresses send some amount of Bitcoins to many other

addresses, with one address at a time. All these addresses are, in some sense, “dis-

tributing” relatively larger bulk of Bitcoins into many other addresses.

A couple of notable examples of addresses sharing similar properties are: address

1BTC24yVKQdQNAa4vX71xLUC5A8Za7Rr71 that belongs to Bitcoin-24 [58], one

of the largest Bitcoin exchange site in Europe, and it is mainly used to send to its
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users’ addresses whenever they purchase Bitcoins with local currencies; and address

13x9weHkPTFL2TogQJz7LbpEsvpQJ1dxfa that belongs to Reddit Bitcoin Faucet

[59], a faucet service started by a user of www.reddit.com [60], and the address is used

to give away tiny fractions of Bitcoins for free to many other users of www.reddit.com

for the purpose of promoting the Bitcoins system.

Note that this is certainly not the only way of distributing Bitcoins, and we have

found other addresses with variations of the distribution behavior: these addresses

are also mainly conducting self-sending activities, however, instead of sending to one

other address at a time, many receiving addresses could be specified and thus reduce

the length of the chains of the self-sending activities. A couple of examples of such

addresses are: address 15ArtCgi3wmpQAAfYx4riaFmo4prJA4VsK that belongs to

Bitcoin Faucet [61], another faucet service that used to give away free Bitcoins for

the same purpose of promoting the Bitcoin system from early 2012 to early 2013;

address 1cointQVgw2EwnJx3EFVPvD65gSsD9nJ7 and related addresses that belong

to CoinBox.me [62], a service that enables its users to make micro Bitcoin transactions

while avoiding the transaction fees by merging multiple micro transactions into larger

transactions.

2.5.5 The WikiLeaks Addresses and Similar Addresses

On June 14th 2011, WikiLeaks announced on Twitter that they started accepting

donations in Bitcoin at the address 1HB5XMLmzFVj8ALj6mfBsbifRoD4miY36v [63],

which we will refer to as the WikiLeaks static address.

The WikiLeaks static address has been involved in a total of 2,394 transactions,

several orders of magnitude smaller than the SatoshiDice addresses and the DeepBit

distribution address. Nevertheless, the WikiLeaks static address presents another

typical usage pattern, which is shared by many other addresses. More importantly,

rather than some computer programs behind the SatoshiDice addresses and the Deep-

Bit distribution address, our analysis suggests that the WikiLeaks static address is
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handled by actual human users, which make the analysis more applicable to general

users of the Bitcoin system.

First of all, the activities of the WikiLeaks static address are dominated by re-

ceiving activities, which accounts for 2,286 out of 2,394 transactions, and there are

only a few sending activities along with very few self-sending activities. As shown in

Figure 2.37, a pattern of a long series of receiving activities followed by a few sending

activities emerges during the course of activities of this address. And the receiving

values are usually relatively small compared with the sending values.

Link to figure

Figure 2.37.: Activities of the WikiLeaks static address.

Secondly, these receiving activities of the WikiLeaks static address are contributed

by a relatively large number of sender entities, i.e., this address has received Bitcoins

from many different entities. In fact, there are a total of 2,018 entities sending to

this address in those 2,286 receiving activities. As shown in Figure 2.38, the majority

of the sender entities have sent to the WikiLeaks static address only once and no

particular sender entity stands out.

Link to figure

Figure 2.38.: Quantiles of number of transactions from each sender entity to the

WikiLeaks static address.

Thirdly, when the WikiLeaks static address is conducting sending activities, it

usually pools multiple funding sources in the same transaction. Besides including

other sending addresses, the WikiLeaks static address is often specified multiple times
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as sending addresses in the same transaction. This is demonstrated in the left panel of

Figure 2.39, as the WikiLeaks static address is replicated at least once in the majority

of its sending activities, and sometime it is replicated 10s of times.

Link to figure

Figure 2.39.: Quantiles of number of replications the WikiLeaks static address is

specified as a sending address in each transaction.

In summary, we have learned that the WikiLeaks static address has received small

amounts of Bitcoins from many different entities in many receiving activities, and

these Bitcoins received are often merged into larger pieces and sent away in following

sending activities. Considering the functionality of the WikiLeaks static address,

which is accepting donations from donors, it is very natural that this usage pattern

emerges from this address: various donors make donations by sending Bitcoins to the

WikiLeaks static address, and these donations are then merged and transferred to

other addresses, likely to those exchange services where the Bitcoins are converted

into local currencies.

As of May 3rd 2014, the WikiLeaks static address has received a total of 3,857

BTC as donations. However, these do not include every donation they have received

via the Bitcoin system. WikiLeaks have introduced a mechanism for donors to make

donations to newly generated addresses on their website [64] instead of the static

address, in order to better protect the donors’ privacy. These temporary addresses

are usually used twice, one receiving activity and then one sending activity, and

many of them have been used in the same transactions along with the WikiLeaks

static address to merge the donations.

Finally, we have found that there are many other addresses being used in a similar

way as the WikiLeaks static address: they have been used to receive small amounts of

Bitcoins from many different entities in many receiving activities, and these Bitcoins
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received have been merged into larger pieces and spent in following sending activities.

We will refer to these addresses as static receiving addresses, and we believe that they

are likely the “face” addresses of some individuals or organizations, and they remain

static so that the sender entities could make payments, in the context of WikiLeaks,

make donations, to those individuals or organizations on an ad hoc basis.

It is important to note that these static receiving addresses are unlikely to be

used as the change address in a transaction because they are usually the natural

payment addresses. In Section 2.6.2, we will exploit this fact for the purpose of the

identification of payment and change in a transaction, and an empirical definition of

static receiving address is also provided.

2.6 Modeling: Identification of Payment and Change

As discussed in Section 2.2.3, a change address almost always exists in a payment

transaction to collect the change for the sender, however, it does not distinguish itself

from other receiving address(es), or the payment address(es). Thus, in a payment

transaction with more than one receiving addresses, the addresses receiving the pay-

ments are unknown to the outsider of the transaction, neither are the payment values

being transferred. This greatly complicates the flow of Bitcoins and makes it very

difficult to understand the transactions between entities.

Thus, the identification of payment address and change address become very im-

portant to understand the actual usage of the Bitcoin system. For one thing, being

able to determine which receivings are the payments and which is the change answers

two questions that are trivial in other currency systems, yet quite difficult in the

context of the Bitcoin system, to whom the payment is sent and how much is being

transferred. Furthermore, in the sense of anonymity, the change address identified

can be associated with the sender entity, and thus further improve the understand-

ing of ownership and relationship of addresses beyond the co-sending relations based

grouping into entities discussed in Section 2.2.3.
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The identification of payment address and change address is certainly very impor-

tant and rewarding, yet it comes with great challenges as well. The challenges lie not

only in coming up with heuristics or models for identification, but also the validation

of such heuristics/methods, simply because the lack of truth known to the outsiders

of payment transactions.

In certain transactions, the notion of change does not apply and thus it is trivial

to identify the payments in such transactions. These include 298,851 generation

transactions, in which miner’s addresses receive the block rewards, and 2,371,902

one-receiving transactions, which are payment transactions with a single receiving

address: in generation transactions, there is no change address and all receiving

addresses are receiving the payments, or more specifically, the block rewards; in one-

receiving transactions, obviously the single receiving address is the payment address

and there is no change address involved either. It is entirely possible that a sender

could simply be sending some amount of Bitcoins to his/her own address in a one-

receiving transaction, nevertheless, we can still think of it as a payment, only that

the payment is made to the sender himself/herself.

For all other payment transactions, there are two or more receiving addresses.

We argue that at least one of these receiving addresses is receiving the payment and

at least one other is collecting the change. In theory, it is possible that all of the

receiving addresses are receiving payments, but in reality, the probability of such

events should be very very low for the following reasons. First, it is very unlikely that

the combined sending value in the sending addresses happens to be exactly the same

as the targeted payments, so the probability of not having a change in a transaction is

very low; second, given that there exists the change, a rational sender is very unlikely

to give away the change by not specifying a change address.

For simplicity, we will only target on two-receiving transactions, i.e., payment

transactions with exactly two receiving addresses, and we exclude all three-or-more-

receiving payment transactions in this study. This simplifies the task to be the iden-

tification of which one of the two receiving addresses is the payment address, or
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equivalently, which one is the change address. Recall that around 87% of all payment

transactions are two-receiving transactions and less than 7% of payment transactions

are three-or-more-receiving transactions, the majority of the transactions are well

covered.

In the following subsections, we first identify a collection of two-receiving trans-

actions where the payment and change can be determined easily with a high confi-

dence, we further identify features that could be used to characterize the properties

of payments or changes in this collection of transactions, and finally we propose a

classification model for the identification of payment and change in two-receiving

transactions. We will see that, for three-or-more-receiving transactions, the proposed

model can also be applied with some modifications.

2.6.1 Partition of Two-receiving Transactions

In general, the payment and change of a two-receiving transaction is unknown

to an outsider of the transaction, however, there are certain scenarios where this

information is implied. Recall that the change address is used to collect the change

for the sender entity, thus intuitively the change address should belong to the sender.

Therefore, in a two-receiving transaction, if one receiving address is known to be

owned by the sender while the other is not, then the former address is more likely to

be the change address than the later. We have identified two scenarios in which we

could determine whether or not a receiving address belongs to the sender, and thus

we could identify two corresponding subsets of two-receiving transactions where the

payment and change are known with a high confidence.

The first set are those transactions where one and only one receiving address is

the same as the sending address, or is the same as one of the sending addresses if

there are multiple sending addresses in this transaction. It is obvious this receiving

address belongs to the sender and thus we consider it to be collecting the change. We

will refer to these transactions as same-address transactions.
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The second set are those transactions where one and only one receiving address is

known to belong to the same entity as the sender via the co-sending relations based

grouping, and thus it is also owned by the sender and collecting the change. We will

refer to these transactions as same-entity transactions.

Besides the same-address transactions and same-user transactions, there are a

relatively small number of two-receiving transactions, or 112,274 transactions to be

exact, where both the receiving addresses are known to be owned by the sender, either

both are identical to the sending addresses, or both can be grouped into the sender

entity based on co-sending relations. In such cases, the sender is simply breaking

larger bulk of Bitcoins into two smaller pieces for future use in these transactions. We

could still reasonably impose a notation of payment and change in such transactions

by claiming that the receiving that is spent first to be the payment and the other to

be the change. However, since these transaction make up a very small fraction of all

the transactions, we decide to simply exclude them from this model.

Furthermore, we also excluded a few notable groups of transactions: the bet trans-

actions to SatoshiDice’s bet addresses, the return transactions from SatoshiDice’s

bet addresses, and the distribution transactions from DeepBit’s distribution address.

There are mainly two reasons for the exclusion of these transactions: (1) as demon-

strated in Section 2.5.3 and Section 2.5.4, it is fairly easy to determine the payment

and change in these transactions and thus there is no need to include them in the

model; (2) these sets of transactions make up a significant proportion of all the two-

receiving transaction, and we do not want to build a model that is tailored to these

transactions.

Finally, we have identified 4,801,793 same-address transactions and 3,169,716

same-entity transactions, where the payment and change are implied. Combining

these two sets of transactions, we have a total of 7,971,509 two-receiving transac-

tions, and these transactions will serve as the model building set from which we would

identify features that characterize the properties of payment and change, and build

and validate a model to classify payment and change. In the remaining 12,915,420
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two-receiving transactions, neither of the receiving addresses is known to be owned

by the sender, and the payment and change are to be determined with the help of the

model. It is important to note that, despite the lack of truth unknown to outsiders

of payment transactions, we were able to identify those transactions where the truth

is implied, and they could be used to validate or evaluate other heuristics or methods

attempting to identify payment and change such as ours.

2.6.2 Feature Identification

After a detailed investigation of the model building set of transactions defined

above, we identified a selection of features that characterize the properties of payment

and change. These features are very intuitive and they include features derived from

the receiving values, features derived from the profile of receiving addresses, and

features describing usage of the receivings, etc.

Complexity of Receiving Values

The complexity of a receiving value is computed in the following way: the receiving

value, in the unit of BTC, is converted to the unit of satoshi by multiplying the value

by 108, this effectively converts the receiving value into integers because satoshi is the

smallest unit of Bitcoin; then the leading and trailing 0’s in the string of the value

are removed; and finally, the complexity of the value is the number of digits in the

resulting string. For example, a receiving value of 0.099 BTC will be converted to

9900000 satoshi, then to “99” after removing the trailing 0’s, resulting in a complexity

of 2 as there are two digits in the resulting string.

The complexity of a receiving value measures how “random” the value string is,

and we argue that in a payment transaction, the complexity of the payment value is

likely not higher than that of the change value. The payment value, which usually

reflects the price of goods or services, are often determined in a systematic way and

tend to be less complex values such as 10 BTC or 0.099 BTC, with a complexity of
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1 and 2, respectively. On the other hand, the change value is the combined sending

values subtracted by the payment value and the transaction fee, which is, while not

zero, usually a small fix amount such as 0.0005 BTC or a fix proportion of the payment

value such as 5%. Thus the complexity of the change value depends on not only the

complexity of the combined sending values, but also the complexity of the payment

value, and possibly the transaction fee. If the combined sending values have a low

complexity and there is no transaction fee, then the complexity of the change value

should be similar to that of the payment value; if the combined sending value has a

high complexity or there is some amount of transaction fee, then the complexity of

the change value is likely to be higher than that of the payment value. For example,

given two receiving values being 0.99 BTC and 0.3757798 BTC in the same payment

transaction, the former is more likely to be the payment and the later is more likely

to be the change.

Therefore, a simple rule to determine the payment and change is to compute

the complexities of both receiving values in the same transaction, and claim the

receiving value with smaller complexity to be the payment and the other to be the

change. Figure 2.40 shows the distribution, in terms of fraction of transactions, of

the absolute value of difference between the complexities of two receiving values in

the model building set of transactions. In around 13% of the transactions in the

model building set, the two receiving values have the same complexity; in the rest

87% of transactions, there is a non-zero difference and the absolute value of the

difference varies from 1 to 11, with more transactions having smaller differences and

less transactions having larger differences.

Link to figure

Figure 2.40.: Fraction of transactions in the model building set against absolute

value of difference between the complexities of two receiving values.



108

We apply the above rule to those transactions in the model building set when

there is a non-zero difference between the complexities of two receiving values, and the

results are shown in Figure 2.41. The fraction of transactions in which the receiving

value with a lower complexity is the payment is plotted with the absolute value

of difference between the complexities of two receiving values. The fractions are all

greater than 0.5, suggesting that the payment values are more likely to be less complex

one; and as the absolute value of difference of complexities increases, the fraction

increases from around 0.6 to over 0.95, meaning the less complex value are more

and more likely to be the payment value when the difference between complexities

becomes larger.

Link to figure

Figure 2.41.: Fraction of transactions where the receiving value with smaller com-

plexity is the payment.

Therefore, to incorporate the information about complexities of receiving values

when determine payment and change, we consider the difference between the com-

plexities of two receiving values in the same transaction as a feature and include this

variable in the upcoming model.

Multi-sending Transactions

Multi-sending transactions are those payment transactions in which there are two

or more sending addresses. In these transactions, the Bitcoins in the sending addresses

are pooled together to provide funding for the payment. Intuitively, a multi-sending

transaction should only occur when the payment value is relatively large and the

sending values in multiple sending addresses have to be combined in order to provide

sufficient funding. Thus, strictly speaking, in these multi-sending transactions, the
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payment value should be larger than the combined values of every combination of

the sending addresses except the one combination which includes all of the sending

addresses; and the change value, on the other hand, should be smaller than each of

the sending values, and consequently smaller than the payment value.

In practice, however, this is not always the case. Figure 2.42 gives a hexagon

binning version of the scatter plot of the payment value against the change value for

each transaction in the model building set, conditioning on the number of sending

addresses in this transaction. On the first page which corresponds to single-sending

transactions, the points are scattered on both sides of the y = x reference line and

no pattern stands out. On all other pages, which correspond to multi-sending trans-

actions, there are points on the top left side of the y = x reference line as well and

the payment values are not always greater than the change values. However, we

should note that the the payment values are generally more likely to be larger than

the change values in multi-sending transactions, especially as the number of sending

addresses increases.

Link to figure

Figure 2.42.: Payment value against change value in model building set of trans-

actions, conditioning on number of sending addresses.

Furthermore, we have observed that senders would sometimes include sending

addresses bringing various small amount of Bitcoins, such as 1 satoshi, into multi-

sending transactions, and we suspect that these senders are merging their (small)

funds while making a payment at the same time. Therefore, in order to take advantage

of the general properties of multi-sending transactions while taking into account these

unusual behaviors, we decide to loose the restriction by simply checking if a receiving

values is larger than each of the sending values. Another simple rule to determine

payment and change is to see if one of the receiving values is larger than each of the
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sending values and the other is not, and we would claim the former is the payment

and the later is the change.

In the model building set of transactions, there are a total of 3,415,525 multi-

sending transactions, and in 2,458,966 of them the above rule applies, i.e., one of the

receiving values is larger than all individual sending values while the other is not.

After applying the above rule, we have correctly identified the payment in 92.82% of

those 2,458,966 transactions.

Therefore, to make use of the information regarding the receiving values in multi-

sending transactions, we also include variables that indicate whether or not each

receiving value is larger than all individual sending values in the upcoming model.

Shadow Address

As introduced in [27] and further exploited in [28], there are addresses, referred to

as shadow addresses, that are automatically generated by the Bitcoin client programs

or the online wallet services to collect the change for the sender each time the sender

is making a payment.

The identification of shadow address would directly lead to the identification of

change address, however, the truth about which address is a shadow address is un-

known. Empirically, an informative guess can be made based on the properties of

these shadow addresses: because a new shadow address is generated every time there

is a change to be collected and the sender, or effectively the owner of the shadow

address, is usually not informed by the client program or online wallet services of this

address and thus is not aware of its existence, the sender is likely not going to use this

address to receive any Bitcoins again. Therefore, these shadow addresses are usually

used to receive once and will likely never be used to receive again.

Based on these properties, various definitions of shadow address have been pro-

posed in [27] and [28]. Similarly in this study, we define a shadow address to be

an address that satisfies the following conditions. It is important to note that these
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definitions are usually more aggressive than we would want them to be, because these

properties are shared by addresses other than shadow addresses. For example, a very

careful Bitcoin user would generate a new address for each receiving activity, and

these addresses would have been label as shadow address based on these definitions

as they are also used to receive only once, but not for collecting the change. Neverthe-

less, these aggressive definitions have proved to be useful in other studies and is also

useful in ours to determine payment and change, and we decide to take advantage of

them anyway.

• This address has conducted only one receiving activity.

• This address was not receiving in a generation transaction.

• This address was not the only receiving address.

• This address was not receiving in a same-address transaction.

• This address was not receiving multiple times in the same transaction.

• If there are more than one address satisfying the above conditions, none of them

are shadow addresses.

Through this definition, we have identified a total of 12,249,619 shadow addresses.

In a two-receiving transaction, if one of the two receiving addresses is a shadow address

and the other is not, then the shadow address is likely to be the change address and

the other address is like to be the payment address. In the model building set, there

are 1,485,994 transactions where this condition holds, and in 95% of them, the shadow

address is indeed receiving the change.

Thus, we include additional variables that indicate whether or not each receiving

address is a shadow address in the upcoming model.
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Static Receiving Address

As introduced in Section 2.5.5, static receiving addresses, such as the WikiLeaks

static address, are those addresses that have been used to receive Bitcoins from many

different entities in many receiving activities, and then those Bitcoins received are

often merged into larger pieces and are spent in following sending activities of those

addresses.

We believe that many of these static receiving addresses are the “face” addresses

of certain individuals or organizations, and they are used to receive payments, or

donations in cases similar to WikiLeaks, from various sender entities. Some of these

addresses are often publicly announced in some way, either on their websites or in

various online forums, and they remain static and active to conduct receiving activ-

ities because it is more convenient for different sender entities to make payments,

sometimes repeatedly, to the same address; other static receiving addresses are often

the “favorite” addresses of individual users, i.e., many users did not bother generat-

ing new addresses when they receive Bitcoins from others and kept using the same

addresses again and again for simplicity and their own convenience.

Loosely speaking, addresses hosting specific services, such as the 27 SatoshiDice

bet addresses and the bet addresses of other gambling services mentioned in Sec-

tion 2.5.3, are also static receiving addresses. These addresses are receiving Bitcoins

from many other sender entities, and they have to remain static so that they can con-

tinue to provide particular services, betting games in the case of SatoshiDice and other

gambling services, for its users. The only difference between these service addresses

and the “face” addresses mentioned above is how the received Bitcoins are spent:

while “face” addresses tend to merge small funds into larger pieces when spending,

the service addresses would behave in a more deterministic and systematic way as

they are programmed to do so, e.g., those bet addresses would react to each bet and

spend the received Bitcoins in the return transaction rather than merging funds.
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Naturally, these static receiving addresses are likely to be used to receive payments

instead of changes due to its particular functionalities.

In this study, we define a static receiving address as following:

• This address has no less than 10 receiving activities.

• This address has no less than 10 sending related activities, including sending

activities and self-sending activities.

• This address rarely conducts self-sending activities, more specifically less than

20% of sending related activities are self-sending activities

• When this address conducts self-sending activities, it is the only receiving ad-

dress in the transactions, i.e., this address is merging funds into itself rather

than collecting the change in its self-sending activities.

• At least 20% of the sender entities has sent to this address only once.

We have identified a total of 167,103 static receiving addresses by this definition.

In a two-receiving transaction, if one of the two receiving addresses is a static receiving

address and the other is not, then the static receiving address is likely to be the

payment address and the other is the change address. In the model building set,

there are 1,958,085 transactions where this condition holds, and in almost all of them,

99.78% to be exact, the static receiving address is receiving the payment.

Therefore, we include additional variables that indicate whether or not each re-

ceiving address is a static receiving address in the upcoming model.

2.6.3 The Classification Model

From the previous subsection, we have identified 4 features that characterize vari-

ous properties of payment and change in two-receiving transactions. In the model, we

decide to represent the features in the form of the following predictor variables describ-
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ing the two receiving values/addresses, as a trade-off between simplicity/efficiency of

storage and representability of the features.

complexity: The difference between the complexities of two receiving values in a

two-receiving transaction. The difference is calculated as the complexity of the

second receiving value subtracted by that of the first receiving value. This

variable takes integer values from −11 to 11.

multi.sending: Whether or not neither, either, or both of the two receiving values

satisfy the condition that the value is greater than each of the sending values in

a two-receiving transaction. This is a categorical variable and it is represented

as an integer value from 0 to 3, with 0 says neither of the two receiving values

satisfy the condition, 1 says the first one satisfies, 2 says the second one satisfies,

and 3 says both of the two satisfy. Notice that in a single-sending transaction,

neither of the two receiving values could be greater than the single sending value,

so this variable would take the value of 0, which is the same value this variable

would take when neither of the two receiving values are greater than each of

the sending values in multi-sending transactions. In both cases, the information

regarding the relative size of receiving values compared with sending values is

not going to be of much help in determining the payment and change anyway,

so we decide to merge these two cases into the same category of this variable,

instead of introducing an additional indicator variable for multi-sending/single-

sending transactions.

shadow: Whether or not neither, or either of the two receiving addresses is a shadow

address. This is also a categorical variable and it is represented as an integer

value from 0 to 2, with 0 says neither of the two receiving addresses are shadow

addresses, 1 says the first one is, and 2 says the second one is. Based on

our definition of shadow addresses, there is at most one shadow address in

a transaction, so it is impossible to have both receiving addresses as shadow

addresses.
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static: Whether or not neither, either, or both of the two receiving addresses is a

static receiving address. This is another categorical variable and it is represented

as an integer value from 0 to 3, with 0 says neither of the two receiving addresses

are static receiving addresses, 1 says the first one is, and 2 says the second one

is.

For each two-receiving transaction, the response variable y, or the class label,

takes one of two values, “Payment” and “Change”, depending on the status of the

first receiving address: y = Payment if the first receiving address is receiving the

payment, and y = Change if it is collecting the change.

With the help of the transaction based database described in Section 2.4.1, the

extraction of the model building set of two-receiving transactions from all the trans-

actions has become very easy to program and efficient to run, so are the computations

of predictor variables and response variables in those transactions. This is achieved in

a single MapReduce job and the database is scanned once. In this MapReduce job, we

computed the 4 predictor variables and the response variable for each transaction in

the model building set, and there are a total of 7,971,509 observations/transactions.

Now that the data are small enough, we could read them into memory and store them

in an R data frame of 7,971,509 rows and 5 columns for more interactive analysis and

modelling.

Notice that most of our predictor variables are categorical variables, we decide

to fit a classification tree [65] to the data using the R package “tree” [66]. The

classification tree model is built in the following steps.

First of all, we randomly split the 7,971,509 observations into two parts, one part

consists of 4,971,509 observations and serves as the training set in order to build and

validate the model, and the other part consists of 3,000,000 observations and serves

as the testing set in order to obtain a better estimate of the testing misclassification

error of the model.

Secondly, we fit a classification tree to the training set. A large tree is grown with

29 terminal nodes, and the training misclassification error rate is 0.04749. We apply
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the tree to the testing set and the testing misclassification error rate is 0.04740. The

results are very promising as the misclassification error rate is less than 5% in both

the training set and the testing set.

Next, we consider whether pruning the tree might lead to improved results. We

perform a 10-fold cross-validation in order to determine the optimal level of tree com-

plexity, and the smallest tree with the smallest cross-validation error rate is selected.

The selected tree has 9 terminal nodes, and it is fitted to the training set and then

applied to the testing set. The misclassification error rate is 0.05135 in the training

set and 0.05125 in the testing set. Compared with the above large tree, the misclas-

sification error rates has only increased slightly while the selected tree has become

much simpler.

Figure 2.43 displays the result of the selected tree. It consists of a series of splitting

rules, starting at the top of the tree. The splitting rules are based on the value of

predictor variables and all 4 predictor variables are being used in this tree. For

example, the top split assigns observations/transactions having variable shadow = 1,

i.e., the first receiving address as a shadow address, to the left branch and predict the

first receiving address as the change address. Observations having variable shadow

= 0 or 2, i.e., the second receiving address is a shadow address or neither of the

two are shadow addresses, are assigned to the right branch and further splitting are

performed based on other variables. There are a total of 9 terminal nodes in the tree,

corresponding to 9 different conditions under which the first receiving address in a

two-receiving transaction is predicted to be a change address or a payment address.

Link to figure

Figure 2.43.: Classification tree for identifying payment and change.

Finally, we want to note that the training error and testing error of the tree are

both fairly small (around 5%), suggesting the model is doing a decent job identifying
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payment and change; and also these two are close to each other, suggesting that there

is unlikely to be any over-fitting. Indeed, given the vast number of observations and

small number of features, over-fitting is unlikely to occur. On the other hand, this

provides opportunities to further improve the model, by introducing more and more

features. Potential features could be discovered from either within the transaction

history data as we have obtained, or from external data sources, including lower level

network information such as TCP/IP layer information, off-network information such

as voluntary disclosure of ownership of addresses, etc. With the additional features

added to the model building set of two-receiving transactions we have identified,

similar tree based models or other classification models could be readily built and

validated with the enhanced data similar to the analysis we have presented here.

Furthermore, while the classification model does not apply directly to three-or-more-

receiving transactions, these features we have identified are nonetheless informative to

identify the payment address(es) and change address(es) in those transactions. And

we will leave these as future work.

2.7 Conclusion

We have described our procedures for the collection and processing of the Bitcoin

transaction history data, and we have designed and constructed various databases of

transaction level and address level information that enable efficient individual ran-

dom queries and entire database scans, and facilitate comprehensive analysis of Bit-

coin transactions and Bitcoin addresses. The transaction based database consists

of information per transaction basis, and various properties of the transactions are

analyzed while extensively utilizing the database. The address based databases con-

sist of summarized or detailed information per address basis, and powered by these

databases, we have performed an analysis of overall properties of all addresses, as

well as the construction and analysis of the profiles of a few representative groups

of addresses. Furthermore, we have proposed and validated a classification model
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for the identification of payment and change in Bitcoin transactions: the model it-

self effectively identifies payment and change in two-receiving transactions, and along

with the model building set of transactions we have identified and the features char-

acterizing the properties of payment and change we have proposed, they provide a

framework for building and validating similar models to identify payment and change

and a novel method of studying the anonymity of the Bitcoin system.
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