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ABSTRACT 

Kumar, Sumeet. Ph.D., Purdue University, December, 2014. Thermoelectric Waste Heat 
Recovery in Automobile Exhaust Systems: Topological Studies and Performance 
Analysis. Major Professors: Dr. Stephen Heister and Dr. Xianfan Xu, School of 
Mechanical Engineering. 
 
 

The demand for improved fuel efficiency in automobiles has placed an emphasis 

on exhaust system waste heat recovery as a 40% of the fuel’s chemical energy is lost to 

the environment in modern spark ignition engines. To advance fuel economy, researchers 

are currently evaluating technologies to exploit exhaust stream thermal power using 

thermoelectric generators (TEGs) that operate using the Seebeck effect.  Thermoelectric 

generators have the potential to recover some of this waste energy in the exhaust stream 

potentially improving fuel economy by as much as 5%.  

Attempts are made to maximize the electrical power generation by optimizing the 

thermoelectric generator geometry for a prescribed volume. A plate-fin heat exchanger 

configuration is assumed and consideration is given to pressure drops associated with the 

fins placed in the exhaust flow path; and the cross-sectional changes across 

thermoelectric generator inlet-exit ports. Multiple filled skutterudites based 

thermoelectric modules are employed in the higher temperature regions and Bismuth 

Telluride modules are used at lower temperature regions of the device. 



xxi 

 

xxi 

Power is optimized for rectangular configurations featuring longitudinal and transverse 

flow through the device and for hexagonal and cylindrical topologies as well. Optimal 

designs that maximize power output for fixed volume and number of thermoelectric 

elements are obtained for all configurations.  In general, the rectangular configuration 

with transverse flow has the best overall performance.  

System modeling of thermoelectric (TE) components is performed to maximize 

thermoelectric power generation. One-dimensional heat flux and temperature variations 

across thermoelectric legs have been solved using iterative numerical approach as a tool 

to optimize both TE module and TEG designs. Design trades are explored assuming the 

use of skutterudite as thermoelectric material that has potential for application to 

automotive applications where exhaust gas and heat exchanger temperatures typically 

vary from 100°C to 600°C.  Dependencies of parameters such as leg geometry, fill 

fractions, electric current, thermal boundary conditions, etc., on leg efficiency, thermal 

fluxes and electric power generation have been studied in detail. Optimal leg geometries 

are computed for various automotive exhaust conditions. 

Axial conduction in the wall liner is further modeled numerically and its impact 

on temperature distribution in gas stream, wall liner, and temperature difference across 

thermoelectric junctions are presented. The developed model is simulated to establish 

TEG output sensitivity to liner materials and thicknesses for both zero and non-zero axial 

conduction cases. Further, the axial conduction sensitivity to inlet conditions is 

considered and the effect on TEG output statistics are presented.  
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CHAPTER 1. INTRODUCTION 

1.1 Background 

Substantial waste heat energy is available from automobile exhaust gas. Two-

thirds of the thermal energy in a vehicle is lost as waste heat, out of which 40% is lost 

through hot exhaust gas [1,2] as shown in Figure 1.1. Thermoelectric generators (TEGs) 

have the potential to recover some of this waste energy in the exhaust stream potentially 

improving fuel economy by as much as 5%. 

 

 

 

Figure 1.1. Energy flow path in an internal combustion engine [1]. 
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Figure 1.2. Illustration of the location of a thermoelectric generator in a vehicle. For the 
TEG drawing: gray body: hot gas heat exchanger; thin green layer above and below hot 
gas heat exchanger: TE modules; yellow blocks with tubing: cold side heat exchanger. 

(Courtesy: General Motors) 
 

1.2 Thermoelectric Generator 

Thermoelectric generator is a device which converts available waste heat from an 

automobile exhaust into electricity using the Seebeck Effect as shown in Figure 1.2. The 

main components of these devices are: - a hot side heat exchanger, a coolant and cold 

side heat exchanger system, thermoelectric materials packaged as modules and a bypass 

system. The bypass system is required for scenarios when the exhaust gas exceeds the 

maximum allowable temperature for the safer operation of the thermoelectric modules.  

The hot side heat exchangers are either exhaust gas based or coolant based.  The exhaust 

gas based TEGs convert the available waste heat from the exhaust gas of the internal 

combustion engine into usable electricity. Similarly, coolant based TEGs use the engine’s 

coolant waste heat to generate electricity. 
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1.2.1 Hot Side Heat Exchanger 

The hot exhaust gas from the automobile engine flows through the thermoelectric 

generator. The working fluid is a mixture of unburnt fuel, oxides of carbon, sulfur and 

remaining nitrogen. Here, the fluid can be modeled as a hot air without much loss in 

generality. The heat transfer through air poses a big constraint due to limitation of poor 

heat transfer coefficient. Desirable heat transfer is achieved by effective design of heat 

exchanger system. There could be several choices of commercial heat exchangers. 

However, plate fin based heat exchanger was preferred for the current design analysis due 

to its simplicity in design and modeling. In a plate fin heat exchanger, adding large 

number of fins could be helpful in augmenting high heat transfer rates but at the same 

time dangerously poses a risk of high back pressure rise which affects the fuel economy 

and engine performance. Hence optimum number of fins and fin thickness or spacing is 

the effective way of increasing the system effectiveness. 

 

1.2.2 Thermoelectric Components 

The thermoelectric n and p type materials are arranged in form of thermoelectric 

couples which are commercially packaged as thermoelectric modules. These 

thermoelectric modules are characterized by their hot and cold junction surfaces. The hot 

side is in contact with of the hot surface of the thermoelectric generator and the cold side 

in contact with engine coolant supply. 
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1.2.2.1 Thermoelectric Couple 

Figure 1.3 depicts a schematic of a typical thermoelectric couple. The n-type and 

p-type thermoelectric legs are sandwiched between copper conductive tabs. These copper 

tabs complete the electric circuit when connected to an external electrical load resistance. 

These tabs are attached to ceramic substrates such as Alumina (Aluminum Nitride). 

Ceramic substrates are good heat conductor and excellent electrical insulators. Hence 

they facilitate heat transfer across the intermediate junctions and prevent any electrical 

current leakage. The hot side of the thermoelectric couple is kept in contact with the 

thermoelectric generator and heat exchanger assembly using commercial thermal grease 

to reduce thermal interface resistance. The cold side is in thermal contact with the engine 

coolant supply which is maintained at constant temperature of 100˚C. A plate fin type 

heat exchanger is integrated into the TEG to enhance heat transfer from the hot exhaust 

gas to hot side of Thermoelectric (TE) couples. The plate fin assembly contact resistance 

depends on integration and is not considered in current model. 

 

1.2.2.2 Thermoelectric Module 

An array of thermoelectric couples is arranged on a ceramic substrate to constitute 

a Thermoelectric Module. The n-type and p-type legs are connected serially to form an 

electrical circuit and parallel fashion in a thermal circuit. Individual modules can be 

connected in a desired pattern to output required voltage and wattage. A stratified 

illustration is provided in Figure 1.4.  
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Figure 1.3. Schematic of a thermoelectric couple. 
 

 

 

 

Figure 1.4. Stratified Schematic of a thermoelectric module. 
Source: http://www.tec-microsystems.com/EN/Intro_Thermoelectric_Coolers.html. 
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1.2.3 Coolant Supply System 

The cold side of the thermoelectric modules is in contact with the engine coolant 

supply. Engine coolant used in automobiles such as ethylene glycol generally has high 

specific heat capacity; hence the variation in coolant temperatures during heat transfer is 

within the range of 5˚C. The rectangular blocks with coolant supply are attached to the 

cold side of modules to maintain temperatures around 100˚C. However, this increases the 

load on car radiator and may lead to increase in radiator size. 

 

1.2.4 Bypass System 

The exhaust gas temperature depends on engine running condition and can shoot upto 

very high temperatures during extreme load conditions. Thus, exhaust temperatures may 

exceed safer limits of thermoelectric components resulting in impairment of devices. 

Design of a bypass flow system to prevent such scenarios is a critical part of this analysis. 

The bypass system can be located within or outside to the thermoelectric generator. A 

control valve may be utilized in addition to facilitate the hot gas transfer under bypass 

conditions.  

 

1.3 Major Challenges 

The major challenges associated with modeling of thermoelectric generators for 

automobiles are: 

1) Thermoelectric Materials – The low figure of merit (ZT) values for the currently 

viable thermoelectric materials account for low overall system energy conversion 

efficiencies. Significant research activities are going on to improve the ratio of 
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electrical to thermal conductivity in multiple doped semi-conductors. The 

maximum possible efficiency of a thermoelectric device for hot side TH and cold 

side TC temperatures is given by Eq. (1.1) at various ZTs [3]. To achieve a device 

efficiency of 25% for automobile application, the thermoelectric materials must 

have a bulk material ZT of 4 and above. 

 max
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Figure 1.5. Maximum efficiency for a thermoelectric device at various TH with TC = 
100˚C using Eq. (1.1) [3]. 

 

2) Engine back pressure – The installation of thermoelectric generators amounts to 

additional pressure drops along the exhaust pipeline. The viscous drag on the heat 

exchanger fins and generator walls amount to considerable pressure drops. The 

variations in cross-sections along manifolds too add up, amounting to net pressure 
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drop. The increased back pressure leads to adverse effects on the automobile 

engine; hence reducing engine efficiency and decreasing fuel economy. 

3) Topology – The shape of the thermoelectric generator governs the heat transfer 

and fluid flow characteristics in the flow region. The available volume for a TEG 

design is limited and restricted for a vehicle type. Inefficient topology design may 

end up losing waste heat energy, increased device cost, etc. The device must fit 

properly the geometrical constraints for an automobile.    

4) Heat exchanger – The design of the heat exchanger is very critical for efficient 

thermo-electric energy conversion. The gas flows in the TEG have Reynolds 

numbers (based on hydraulic diameter) in the range of 1000-5000 thereby placing 

it in a transition region between laminar and turbulent.  Because there is a very 

limited pressure drop available in the exhaust gases, it is difficult to attain good 

heat transfer coefficients under these conditions. Deployment of large number of 

fins would result in marginal gain in heat transfer with increased pressure drop,  

weight and cost; whereas heat exchanger with inadequate fin design (number and 

thickness) would result in insufficient heat transfer. Optimization of design would 

result in extraction of high proportions of heat energy from the poorly conducting 

hot gas. Cost and weight considerations limit the usability of highly conductivity 

materials for e.g. Copper for bulk production 

5) Engine Radiator – The coolant system needs to be redesigned to handle extra heat 

rejection from the cold junction of the thermoelectric modules. Car radiator size 

needs to be increased to enhance heat transfer to ambient air. 
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6) Weight and Cost of device – As mentioned above, weight and cost are too major 

roadblocks for development of thermoelectric generators on a mass scale 

production. Expensive thermoelectric materials and heavier TEGs will not help in 

reasonable fuel savings over a normal usage period of an automobile.  

 

1.4 Literature Survey 

A comprehensive theoretical study concluded that a TEG powered by exhaust heat 

could meet the electrical requirements of a medium sized vehicle [1]. Yang [4] argues 

that thermoelectric technology has the ability to draw on as much as tens of kilowatts of 

heat losses in vehicles, providing a substantial thermal energy reservoir.  As automobile 

exhaust gases are typically of the range of 400-800˚C, high temperature thermoelectric 

devices are required for at least part of the flow path.  

Inclusion of a TEG in the exhaust system imposes additional pressure drops due to 

the viscous drag on the fin surfaces and cross-sectional area changes. High pressure drops 

can lead to considerable loss in fuel economy. Also, power generation from a TEG 

strictly depends on engine driving conditions. Large variations in exhaust temperatures 

and gas flow rates present challenges in the proper conditioning of any electric power 

generated. Finally, the cost effectiveness of TE materials and the additional weight of the 

TEG [5] are other constraints that make system level modeling and commercialization a 

daunting task. 

Thermoelectric generators have relatively low efficiency (typically around 5%) and 

have, historically, had restricted usage in specialized medical, military and space 

applications [6]. Thermoelectric converters have been used in deep space probes since the 
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1950’s due to the ease of scalability and the overall simplicity as compared to alternative 

approaches [7]. However, the recent improvements of the energy conversion efficiencies 

[4,8–10] of TE materials, combined with increased interest in energy efficiency and fuel 

economy, has led to an unprecedented increase in research into their potential 

deployment in environments where heat energy is free or cheap like solar radiation 

[11,12], automobile exhaust [13–15], gas turbines and diesel cycle cogeneration systems 

[16], etc. In situations where the supply of waste heat is freely available, efficiency of 

conversion is not an overriding consideration and things such as simplicity, scalability 

and packaging are more important. Environmental regulations and increasing energy 

costs indicate a significant role for waste heat generators in automobiles [9]. Morelli [18] 

assessed critical issues considered for exhaust gas generator design such as location, heat 

transfer from exhaust, generator mass, thermoelectric stability, and overall environmental 

friendliness. It was emphasized that internal finning and diffuser arrangement in the TEG 

system are important to minimize the temperature difference between the hot gas and the 

hot side of the thermoelectric device. 

 

1.4.1 Thermoelectric Generator Design 

The first automotive exhaust TEG was constructed in 1963 [19]. In the second half of 

the last century, prototypes were developed by Porsche [19], Hi-Z [20,21], Nissan Motors 

[22], and Clarkson University in collaboration with GM [23,24]. All of these TEGs have 

used exhaust gases and engine coolant as the heat source and sink, respectively. Hsiao et 

al. [25] built a one-dimensional thermal resistance model for a TEG and found the 

performance on the exhaust pipe is better than on the radiator. Karri et al [26] highlighted 
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the use of a thermoelectric generator placed in the exhaust stream of a sports utility 

vehicle (SUV) and a stationary, compressed natural gas (CNG) fueled engine generator 

set. Kim et al [28] has proposed a low heat temperature TEG model which works on 

engine coolant as the source and that could replace a conventional radiator without any 

additional components. Numerical models [28–30] have been developed to assess TEG 

performance at various engine operating conditions using plate/fin heat exchangers and 

commercial Bi2Te3 based modules.  

A diesel engine TEG application modeled by Espinosa et al [15] was composed of 

Mg2Si/Zn4Sb3 for high temperatures followed by Bi2Te3 for low temperature. It was 

shown that for exhaust gas temperatures in the range of 250-350˚C, the use of only high 

temperature modules could be a simple and cost-effective solution. Their work addresses 

the effect of the number of thermoelectric elements and electrical connections. Other 

work by Yu et al [1] has proposed a system for output electrical power conditioning to 

maximize power transfer to charge the battery under different working conditions. 

Researchers at BMW obtained 200 W of electrical power from a TEG comprising 24 

Bi2Te3 modules in a 3 L engine driven BMW 535i vehicle at 130 km/h [5,31]. Crane et al 

[32] have mentioned the evolution from planar topology of TEG to a cylindrical shape 

during phase 3-4 of TEG design of BSST 1  led US DOE project implemented in 6 

cylinder inline BMW engine at the National Renewable Energy Laboratory (NREL) in 

Golden Colorado. The bench test of BSST’s cylindrical TEG designed for the Ford 

Lincoln MKT and the BMW X6 has reported electrical power generation exceeding 

                                                 
1

 BSST is a wholly owned subsidiary of Amerigon dedicated to the advancement of thermoelectric research in the areas of both 
temperature control and power generation. 
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700W [33]. General Motors mentioned that achieving 350 W and 600 W is possible when 

operating a Chevrolet Suburban under city and highway driving conditions, respectively, 

with an average of 15 kW of heat energy was available over the drive cycle [34]. Meisner 

has outlined the General Motors progress the in development of various phases of TEG 

prototypes by using Bi-Te and Skutterudite modules in the Chevrolet Suburban vehicle 

[35,36]. 

The overall performance of a TEG is not only determined by the figure-of-merit or ZT 

of the TE materials, but more importantly the overall thermal profile in a TEG. There is a 

large temperature drop from the hot gas to the TE modules and then to the coolant, as 

well as along the flow direction. Xuan et al. [37] employed a phenomenological model to 

study the effects of internal and/or external interface layers on thermoelectric devices 

performance. Liang et al [38] have discussed the effect of thermal and electrical contact 

resistances on power output from a thermoelectric generator with modules connected in 

parallel to a single load resistor. Improved thermal interface materials hold the promise of 

maximizing heat conduction on both sides of the thermoelectric modules (TEM) [39–41].  
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Table 1.1. Previous efforts in Automotive TEG prototype development. 
No. Reference Automobile Electric 

Power  

TE Technology 

1 Birkholz [19] 
(1988) 

Porshe 944 engine 58W 90 FeSi2 thermoelements 

2 Bass et al [20,21] 
(1994) 

Cummins NTC 350 
Class 8 diesel 
engine 

1068 W 72 Hi-Z TEMs (13W) 
based on Bi2Te3 

3 Ikoma et al [22] 
(1998) 

3000 cc gasoline 
engine (Nissan 
Motors) 

35.6W 72 TEMs based on B and 
P doped Si2Ge  

4 Matsubara [42,43] 
(2002) 

2000 cc Toyota 
Estima  

266W 6 segmented TEMs 
(Skutterudites / Bi2Te3) 
and 4 HZ-14 TEMs 
(based on Bi2Te3 from- 

HI-Z Technology, Inc.) 
5 Thatcher [23,24] 

(2007) 
1999 GMC Sierra 
pickup truck  

170 W  16 HZ-20 TEMs (based 
on Bi2Te3 from- HI-Z 
Technology, Inc.) 

6 Eder [31] 
(2009) 

3L twin-turbo 
gasoline engine 
BMW 535i 

200W 24 TEMs based on 
Bi2Te3  

7 Crane (BSST) [32] 
(2009) 

3L BMW inline 6 
cylinder with two 
turbocharger 

125W 2 stage segmented TE  
elements (half-Heusler 
alloy(Zr, Hf based), 
Bi2TE3) near hot gas inlet 
and Bi2TE3 elements near 
exit 

8 Kim et al [27] 
(2010) 

Placed on radiator 
of 2L engine SUV 

75W 72 TEMs based on 
Bi2TE3 

9 Meisner [35,36] 
(2011)  

GM Chevrolet 
Suburban 

30W/TEM 
near inlet and 
15W/TEM 
near rear end 

42 Bi2TE3 based TEMs 
(phase 2-prototype) 
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1.4.2 Thermoelectric Material  
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Figure 1.6. ZT curve for thermoelectric materials [8–10,44,45]. 
 

Over the last several decades, alloy-based TE materials including Bi2Te3 – Sb2Te3 

and Si-Ge systems have been extensively studied and optimized for use in their different 

temperature ranges [3,4,46]. TEMs based on FeSi2 [19], PbTe [47] have been used for the 

exhaust generators. 6-8% conversion efficiency was estimated for the segmented TE 

modules with a ΔT = 560°C [38]. Bass et al [20,21] constructed a 1 kW thermoelectric 

generator based on bismuth telluride technology operated using the turbo exhaust outlet 

of a 14-L Cummins NTC 275 diesel engine. Recently, interest has renewed in the 

investigation of new and more efficient TE materials, in particular, nano-scale materials 

[4] including super-lattice structures [4], nanowires [39,40], quantum dots [4], and 

nanostructured-bulk alloys [4]. Increased materials efficiency has been realized by taking 

advantage of electronic band structure engineering [4,49] and phonon engineering [3, 39]. 

When integrated into automotive exhaust systems, the potential exists for fuel savings 

approaching 5%. Matsubara [14,43] made a high efficient thermoelectric stack TEG for 
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automobiles composed of segmented legs using highly doped CoSb3 and filled 

skutterudites RM4Sb12 ( R = Ce, Yb; M = Co, Fe, Ni, Pt, Pd) followed by HZ-14 modules 

and achieved 5% to 10% efficiency, depending on engine operating conditions. The 

operating range was 350-750°C and it was demonstrated that ZT = 1.5 to 2.0 will be 

needed to attain a goal of 10% overall efficiency.  

Established TE semiconductors exhibit poor figures of merit operating temperatures 

exceeding 500°C [3,46]. Recent research in high performance multiple filled 

skutterudites  [8,9] has shown ZT > 1.5, for n-type materials, at high temperatures as 

shown in Figure 1.6. Additionally, skutterudites have higher performance than standard 

Bismuth-Telluride devices at temperatures above 200˚C.  

As discussed by Hendricks et al. [50] a thermoelectric generator should be studied as 

an integrated solution. The reason is that thermoelectric material properties and heat 

exchanger performance are closely linked. As most of the prior efforts have explored 

installation of the TEG on an existing vehicle, there were limitations in the volume and 

topology of the TEG.  In the present study, we explore optimal TEG designs assuming a 

rectangular topology with a fixed volume constraint.  In addition, this work explores the 

potential to use hybrid TEGs with skutterudites being applied in highest temperature 

regions and Bismuth Telluride modules in regions where their output exceeds that of 

skutterudites modules. 
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1.5 Motivation 

The challenges associated with the development of thermoelectric technology for 

application in automobiles create numerous venues for further research. The upcoming 

research activities in thermoelectric materials and new improvements like topological 

study and heat exchanger optimization, altogether, make this an interesting problem.  

1) Advent of multiple filled Skutterudites [8,44,45] with enhanced nanostructure and 

operating temperatures close to the automobile vehicle exhaust temperature have 

demonstrated higher ZT performance (Figure 1.7) and promises to be a good 

thermoelectric material for application of interest . 

0

0.5

1

1.5

2

100 200 300 400 500 600 700 800 900

Ce
0.1

In
0.1

Yb
0.2

Co
4
Sb

12

Ba
0.06

La
0.05

Yb
0.02

Co
4
Sb

12

Ba
0.08

La
0.05

Yb
0.04

Co
4
Sb

12

Ba
0.10

La
0.05

Yb
0.07

Co
4
Sb

12

Ba
0.09

La
0.04

Yb
0.13

Co
4
Sb

12

Ba
0.09

La
0.04

Yb
0.14

Co
4
Sb

12

Ce
0.28

Fe
1.5

Co
2.5

Sb
12

 ( p - type )

Co
4
Sb

12
 ( p - type)

Ba
0.30

Ni
0.05

Co
3.95

Sb
12

 ( n - type )

Ba
0.30

Co
4
Sb

12
 ( n - type )

Bi
2
Te

3

Z
T

T (K)  

 
Figure 1.7. Figure of Merit ZT values for Thermo-electric materials [8,44,45]. 
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2) The study of various possible topologies for thermoelectric generator has been 

overlooked till date and not given due importance in existing literature. Analysis 

of various topologies ranging from rectangular, hexagonal and circular could lead 

to highly efficient thermoelectric modules arrangement and bypass pipe design.   

3) Optimized heat exchanger integrated in selected topology could provide high heat 

transfers with incurred pressure drop within the predefined limits for internal 

combustion engines.  

As evident from Figure 1.7, thermoelectric modules exhibit higher ZTs for selected 

range of temperature. Hybrid arrangement of thermoelectric modules on the hot surfaces 

could be much beneficial resulting higher system efficiencies. 

1.6 Objectives of Present Study 

The current study focusses primarily on following main objectives: 

1) Maximization of electrical power generation for a given volume by study and 

comparison of various topologies – rectangular, cylindrical and hexagonal ducts 

for thermoelectric generators with provision of a bypass system. 

2) Optimization of heat exchanger configurations for maximization of electric power 

generation with induced engine back pressure within the predefined limit. 

3) Study of hybrid combinations of thermoelectric modules – Skutterudites and 

Bismuth Telluride for placement on hot surfaces of thermoelectric generator. 

4) Optimization of geometric configurations of thermoelectric modules to maximize 

electric power generation for automotive heat transfer profiles. 

5) Modeling axial conduction effects in liner and analyze associated impact on TEG 

performances. 
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1.7 Thesis Organization 

Chapter two describes the system level developed to assess the performance of 

various TEG configurations. TE types, heat exchanger designs and overall TEG 

topologies. Chapter three summarizes the results of the TEG optimization for 

rectangular, cylindrical and hexagonal topologies. Chapter four presents 

thermoelectric design study for skutterudite based thermoelectric modules. Chapter 

five investigates axial conduction effects in hot wall lining and its impact on TEG 

performance. Chapter six presents thesis summary and topics for future investigation.  
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CHAPTER 2. THERMOELECTRIC GENERATOR MODEL 

2.1 Modeling of Thermoelectric Generator System 

Various topologies were considered for the shape of thermoelectric generator ranging 

from rectangular box to circular cylinders. The thermoelectric generator system can be 

visualized a network of thermal resistances. Thermoelectric components can be modeled 

as equivalent thermal resistances. The generator is discretized into small control volumes  

distributed along the flow direction. Detailed description of design models will be 

explained later in this chapter. Here are the basic assumptions taken as a part of modeling  

 

2.1.1 Assumptions 

Below are the important assumptions for system level modeling: 

1) 1-D steady state analysis of fluid flow is considered with flow direction along 

length being the dimension with variation. 

2) The exhaust gas is assumed to be air with temperature dependent properties 

3) The variation in fluid properties and thermoelectric properties with temperature is 

along considered along the flow direction 
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4) The convection heat transfer between the thermoelectric legs and the top surface 

of the generator is neglected. 

5) Thomson effect is not taken into consideration 

6) Temperature averaged over junction temperatures are used to compute 

thermoelectric properties for each legs 

7) Uniform distribution of thermoelectric couples over the entire available module 

surface.  

8) The contact electrical resistance at the copper conductive tabs in the 

thermoelectric couple is not considered. 

 

2.1.2 Volume Discretization 

The thermoelectric generator domain is discretized in to small control volumes 

along the exhaust flow direction. The temperature is assumed to be uniform inside the 

control volume. Inside a control volume, the available hot surface is designated as ABase. 

80% of ABase is assumed to be covered by uniform distribution of thermoelectric modules 

represented as Amodule. The number density of thermoelectric couples is known a-priori 

for commercial thermoelectric modules and hence the approximate number of 

thermoelectric n-p legs can be computed for the each control volume represented as 

Amodule.  

 , NumberDensity*CV TEC Modulen A  (2.1) 
 

The remaining 20% of Amodule is considered to be covered by thermal insulation 

represented as AIns. The symmetry in flow region helps in simplifying the domain under 
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investigation. For e.g. longitudinal topology has a central symmetry; hence only a upper 

half domain is simulated. The modeling of thermal resistance network is explained in 

details in following section.   

 

2.1.3 Thermal Resistance Network 

The thermoelectric generator system can be modeled as thermal resistance 

network. The thermal circuit for a typical thermoelectric generator system is shown in a 

schematic (Figure 2.1).  

The hot side heat exchanger assembly can be modeled as an effective thermal 

resistance given by Eq. (2.2). Fin resistance modeling for plate fin heat exchanger 

assembly can be found in Incropera [51]. Here 0  is the overall fin effectiveness; At is the 

total area of the heat exchanger i.e. fin surface area and the base area in a control volume. 

gh  is the average heat transfer coefficient and is based on fin channel Reynolds number. 

The thermal resistances for top surface of the device, ceramic slab, thermal grease and the 

insulation can be given by Eq. (2.1) - (2.5). 

  , 01/ gfin eq tR h A  (2.2) 

 
  , /TEG base base base baseR t A  (2.3) 

 
  /ceramic ceramic ceramic ModuleR t A  (2.4) 

 
  /grease grease grease ModuleR t A  (2.5) 

 
  /Ins Ins Ins InsR t A  (2.6) 
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Figure 2.1. Thermal resistance network and temperature locations   
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Radiation heat transfer is considered for hot exposed surfaces i.e. insulated top 

surface and the part of thermoelectric modules’ hot surface not covered by the TE legs. 

The expressions for radiation heat transfer coefficient and the radiation resistances for 

these surfaces are given by Eq. (2.7) - (2.10). Here, ATEC  and AIns are the areas of a TE 

couple and thermally insulated surface in a control volume respectively. 

  , ,1/rad Ins rad Ins InsR h A  (2.7) 
 

  , , ,1/rad TEM rad TEM Module CV TEC TECR h A n A     
(2.8) 

 
  3 2 2 3

, 5 5 8 5 8 8rad TEM TEMh T T T T T T    
 (2.9) 

 
  3 2 2 3

, 3 3 8 3 8 8rad Ins Insh T T T T T T      (2.10) 
 

The thermoelectric properties of n and p legs are the functions of temperature. 

The properties are averaged over the junction temperatures. The properties seebeck 

coefficient (S), thermal conductance (K), internal electrical conductance (Rel) can be 

computed for a thermoelectric couple as given by Eq. (2.11) - (2.13). 

 TEC p nS S S   (2.11) 
 

 p p n n
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p n
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L L

 
   (2.12) 
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Similarly, ZT for a thermocouple can be computed as shown in Eq. (2.14). 

Equivalent thermal resistances for thermoelectric components can be defined by 

manipulation of equations. Across the thermocouple junction, open circuit voltage can be 

defined as:  

  5 6oc TECV S T T   (2.15) 
 

The electrical current through the thermocouple, connected to an external 

electrical load resistance (Rel,L), can be specified as 

 
 , ,

oc

el L el TEC

V
I

R R



 (2.16) 

  
Hence, the heat transfer from the hot side and cold side of the thermocouple 

junction system is given as: 

 2
5 , 5 6

1 ( )
2H TEC el TEC TECQ S T I I R K T T     (2.17) 

 

 2
6 , 5 6

1 ( )
2C TEC el TEC TECQ S T I I R K T T     (2.18) 

 
And the electrical power output across the external load resistance is given as 

difference of Eq. (2.17) and Eq. (2.18). 

 2
, ,el TEC H C el LP Q Q I R    (2.19) 

 
Hence, the thermal resistances are modeled to complete the network branches 

along path 5-8 in Figure 2.1. Since, the thermal energy transfer through these 

thermoelectric couples is in a parallel fashion; their contribution in a control volume can 

be summed up in an equivalent module resistance given as: 
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Whereas equivalent load resistance for branch 5-8 can be written as: 
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  (2.21) 

 
Similarly, the thermal resistances in the branches 0-2 and 2-8 (insulation and 

TEM) can be added up together for a thermal circuit as: 

 02 , ,fin eq TEG BaseR R R   (2.22) 
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Using the resistances in the top and bottom branches, an explicit expression for T2 

in terms of T0 and T8 can be derived as: 
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(2.25) 

 
For the topologies with symmetry like longitudinal flow model, gas bulk 

temperature at the end of each ith CV boundary can be computed from energy balance as: 

   , 1 , , ,/ / 2g i g i g HeX g P airT T Q m C    (2.26) 
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Table 2.1. Inputs required in thermal resistance network. 

Parameters  Value Unit 

Geometry   

Thermoelectric Generator Volume 0.003592 m3 
Exhaust Inlet and Outlet Pipe Diameter 0.0635 m 
Dimensions for Rectangular topology 
[length, height, width] 

 
[0.01 – 2.0, 0.01 - 0.35, 0.01 - 1.2] 

 
[m, m, m] 

Dimensions for Circular topology 
[Outer Diameter, Inner diameter] 

 
[0.05 – 0.20, 0.01 - 0.04] 

 
[m, m] 

Fins (Copper) 
[thickness, spacing]  
Thermal conductivity 

 
[1 - 8, 1 - 8] 
401 

 
[mm, mm] 
Wm-1K-1 

Thermoelectric Module   

Skutterudite 
Module [Cross-section, Height] 
TEC [NTEC, Cross-section, Height]] 
εModule 
Thermoelectric Material 

 
[0.0508 x 0.0508, 0.007] 
[32, 0.002x0.002, 0.004] 
0.55  
Ba0.08La0.05Yb0.04Co4Sb12 (n type)[8] 
DD0.76Fe3.4Ni0.6Sb12 (p type) [9] 

 
[m2, m] 
[-, m2, m] 
[-] 
[-] 
[-] 

Bsimuth Telluride 
Module [Cross-section, Height] 
TEC [NTEC, Cross-section, Height] 
εModule 
Thermoelectric Material 

 
[0.04013 x 0.04013, 0.004] 
[127, 0.004x0.004, 0.002] 
0.55 
Bi2Te3[10] 

 
[m2, m] 
[-, m2, m] 
[-] 

Fluid   

Air Properties Ideal gas Formulation [EES] [-] 

Materials   

Thermal Grease (Grafoil Laminate) 
Gap 
Thermal conductivity 

 
0.001 
5 

 
m 
Wm-1K-1 

Thermal Insulation (Min-K)[52] 
 Gap 
Thermal conductivity 
εIns 

 
0.002 
0.0334 
0.75 

 
m 
Wm-1K-1 

[-] 
Thermoelectric Base (Copper) 
Thickness 
Thermal Conductivity  

 
0.008 
401 

 
m 
Wm-1K-1 
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2.1.4 Pressure Drop Calculations 

The fluid flow across the thermoelectric generator induces pressure drops 

throughout. The changes in cross-sections at entry port i.e. exhaust inlet pipe to TEG and 

exit port lead to pressure drop or gain depending on the area ratios at the transition. The 

pressure drop is calculated using Borda-Carnot Eq. (2.27) and Eq. (2.28) [49]. Due to 

turbulent flow pipe regime for mass flow rate 20-100g/s (Re = 12000-60000), flow 

transition between exhaust pipe and TEG cross-section can be approximated as sudden 

expansions or contractions. The expressions for pressure change across sudden expansion 

(Exp) and contraction (Con) from section 1 to 2 are given as follows: 

 21 1
,1

2 2

1 vExp air air

A A
P d

A A

 
    

 
 (2.27) 
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 (2.29) 

 
The viscous drag effect on the fin surfaces adds to the pressure drop along the 

length of the TEG. Pressure drop across the heat exchanger assembly given in Eq. (2.30) 

is calculated by computing friction factor f based on Reynolds number and hydraulic 

diameter of a fin channel for a given aspect ratio [51]. The friction factor depends on the 

fluid flow regime. 
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2.1.5 Solution Methodology 

Since, the non-linear thermal resistances depend on thermoelectric material properties 

and its terminal temperatures, the temperatures in the thermal circuit must be solved in an 

iterative manner. The thermoelectric properties and thermal resistances are updated at 

each iteration step until the temperatures don’t change beyond a tolerance value (10-6). 

The solution consists of two iteration loops: inner and outer iteration. Outer iteration loop 

runs until the gas bulk temperature is converged for each control volume. Inner iteration 

loops until the temperature and resistances values converge within a control volume 

based on the mean gas bulk temperature supplied by outer iteration loop. The sequence of 

solution of equations for the control volumes is as follows: 

1) Initialize coolant temperature (Tcoolant), inlet gas bulk temperature (Tg,i) and mass 

flow rate (ṁ). 

2) Assume gas bulk temperature at the end of ith CV (Tg,i+1). 

3) Outer Iteration Loop- 

a. Compute mean gas bulk temperature as given in Eq. (2.31) and pass it to 

inner iteration loop. 

  , , , , 1 / 2g i mean g i g iT T T    (2.31) 
 

b. Inner Iteration Loop: 

i. Assume T2 and other temperatures (based on T2 for first iteration) 

inside a CV based on Tg,i,mean and Tcoolant. 

ii. Compute thermoelectric parameters and resistances based on these 

temperatures 

iii. Compute T2 in Eq. (2.25) and compute relative error from Eq. (2.32)  
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Figure 2.2. Flowchart for the solution methodology. 
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    (2.32) 

 
Check for convergence i.e. if relative error < 10-6 

iv. If converged, compute Tg,i+1 using Eq. (2.26) and exit the inner 

iteration loop 

v. If not converged, update temperatures and resistances and reiterate 

for inner loop. 

c. Check for convergence for Tg,i+1, if not, go to step 3 

d. If converged, exit the outer loop 

4) Proceed to next i+1th CV and repeat onwards from Step 2 

During the solution of thermoelectrical and thermodynamical parameters in the flow 

domain, parameters like electrical power, heat transfer rates are stored as arrays for post-

processing of results. 

 

2.2 Design Model for Thermoelectric Generator 

Various designs were modeled for thermoelectric generator for maximization of 

electrical power output. The designs can be primarily classified into two topologies: 

1) Rectangular 

a. Longitudinal Flow Configuration 

b. Transverse Flow Configuration 

2) Circular 

a. Hexagonal 

b. Cylindrical   
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2.2.1 Rectangular Topology 

The rectangular topology can be divided into two configurations – (i) longitudinal 

and (ii) transverse. The names signify the arrangement of the thermoelectric modules 

w.r.t to the parallel exhaust flow in a rectangular topology.  

 

2.2.1.1 Longitudinal Flow Configuration 

Salient features: 

1) The thermoelectric modules are located on the top and the bottom surface of the 

box and arranged uniformly over the available surface (80% of total surface area) 

as shown in Figure 2.3 

2) The remaining 20% area is thermally insulated to minimize heat leakage. 

3) Lateral walls are thermally insulated. 

4) Plate fin heat exchanger is integrated inside the box volume. 

5) The cold side of the modules is cooled by engine coolant system. 

6) The entry and exit ports of the box are connected to exhaust pipe (not shown in 

schematic). 

7) The bypass pipe is attached separately near the inlet to the generator with help of 

a control valve and is not shown in the design. 
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Figure 2.3. Longitudinal Flow Configuration. 
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2.2.1.2 Transverse Flow Configuration 

Salient features: 

1) The thermoelectric modules are stacked vertically along the flow path inside in 

the cuboid. 

2) There are separate channels for hot has flow (front to back) and coolant flow 

(bottom to top) as shown in Figure 2.4 

3) Exhaust gas flow is distributed axially from centrally-located inlet pipe as shown 

in schematic. 

4) The hot gas channels are integrated with plate fin heat exchangers as shown. 

5) Top and bottom  walls are thermally insulated 

6) The bypass pipe is attached separately to inlet supply pipe and is not shown in the 

generator design. 
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Figure 2.4. Transverse Flow Configuration.  
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2.2.2 Circular Topology 

The topologies having circular symmetry are considered as test models in this 

section. Two types of circular configuration (i) regular hexagon and (ii) cylinder are 

considered for analysis. The circular configurations have a provision of bypass pipe 

running axially through the designs.  

2.2.2.1 Hexagonal Configuration 

Salient features: 

1) The thermoelectric modules are placed on the outer surface of the hexagonal pipe 

2) The inner hexagonal pipe acts like a central bypass pipe to offset high temperature 

effects as shown in Figure 2.5 

3) The annular region is integrated with plate fins running along the length of the 

generator. 

4) Cold side of modules are attached to engine coolant modules (not shown) 

 

2.2.2.2 Cylindrical Configuration 

Salient Features: 

1) The thermoelectric modules are placed on the outer curved surface of the 

cylindrical pipe 

2) The inner pipe  acts like a central bypass pipe as shown in Figure 2.6 

3) Plate fin heat exchanger is placed inside the annular region similar to hexagonal 

configuration 

4) Cold side of modules are attached to engine coolant modules (not shown) 
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Figure 2.5. Hexagonal Configuration. 
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Figure 2.6. Cylindrical Configuration. 
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2.3 Verification and Validation 

This section checks the accuracy and consistency of the C++ code developed for 

running the test models and formulating the results. The basis for the study was 

motivated from the General Motors TEG prototype. Due to improper power conditioning 

and faults in electrical-mechanical assembly integration, the test runs were not successful. 

The incidents of shortage in electrical lines have been reported by General Motors and 

power measurements were not accurate. Since, the experimental results are not available 

till date, it is practically impossible to validate it with a physical case. The code was in 

fact verified by checking grid independence. The energy balance was too performed on 

the four test models to verify that the resultant solutions obey energy conservation 

principles. The inlet conditions were ṁin = 35 g/s and Tin = 550˚C. 

2.3.1 Grid Independence 

The numerical code was run for a various grid sizes ranging from as coarse as 2 to 

128 elements along the flow direction. The physical quantity of interest i.e. electrical 

power was plotted with the number of grid elements for all four models as shown in 

Figure 2.7 to Figure 2.10. Grid Independence was run for extreme cases for each of the 

four models to compute reasonable size of grid element for each model. The generated 

electric power and the relative error is plotted against increasing grid size for each model 

in Figure 2.7 to Figure 2.10. The relative error was calculated as: 

 , 1 ,
,

,

100 %el i el i

rel i

el i

P P
Err x

P

 
     (2.33) 

 
The subscript ‘i-1’ stands for the coarser grid and ‘i’ for the finer grid size. Grid size 

of 0.001 was found to satisfy the grid independence for most of the cases for each model.
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Figure 2.7. Grid Independence study for Longitudinal Flow Model. 
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Figure 2.8. Grid Independence study for Transverse Flow Model. 
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Figure 2.9. Grid Independence study for Hexagonal Model. 
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Figure 2.10. Grid Independence study for Cylindrical Model. 
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2.3.2 Energy Balance 

The code was verified to insure basic energy conservation principles. The energy 

balance was performed for all the four models under analysis. The enthalpy influx rate 

 in is calculated by multiplying air enthalpy at 550˚C with mass flow rate of 35 g/s. 

Similarly, the enthalpy outflow  out was calculated at the exit temperatures. The enthalpy 

change Δ  =  in –  out is the energy transferred by the gas to the generator.   coolant is the 

rate at which energy is re ected due to conduction from cold side and the radiation 

effects.   trf is the sum of generated electrical power ( el) and heat re ection (  coolant ). The 

energy imbalance ( Err ) is computed from the difference of   trf and Δ . The relative 

error (%) for all the models analyzed is less than 0.052 %.  

 

Table 2.2. Energy Balances for four Models. 

Model 
 in 

[W] 

 out 

[W] 

   

[W] 

 el 

[W] 

  coolant 

[W] 

  trf 

[W] 

|Err| 

[W] 

Err 

[%] 

Longitudinal 29669.5 19033 10636.5 553.4 10088.6 10641.9 0.0055 0.052 

Transverse 29669.5 20335 9334.5 614.5 8722.5 9337 0.0025 0.027 

Hexagonal 29669.5 19792.5 9877 660.6 9220.4 9881 0.0004 0.041 

Cylindrical 29669.5 17930.5 11739 714.4 11027.8 11742.2 0.0032 0.027 
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CHAPTER 3. TOPOLOGY STUDIES AND PERFORMANCE ANALYSIS  

The basic models discussed in Section 2.2 were run for various parameters to study 

their influence on the electrical power generated. This chapter will discuss these results 

supplemented with analysis on dependence on critical parameters for each model. The 

chapter is divided into smaller sub sections for the convenience of the readers:  

1. Baseline Model 

2. Analyzed Topologies 

A. Rectangular configuration 

I. Longitudinal 

II. Transverse 

B. Circular configuration 

I. Hexagonal  

II. Cylindrical 

3. Model Comparison  

The first subsection discusses results of the baseline model which was developed by 

General Motors as a part of TEG development. The remaining subsections present 

analysis primarily based on optimization study of topologies discussed in previous 

chapter. The inlet flow conditions are described briefly in the next subsection. 
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3.1 Inlet Conditions 

The inlet conditions of hot exhaust gas to the thermoelectric generator depend on 

engine running conditions. The exhaust data for Chevrolet Suburban vehicle was made 

available by General Motors, USA. The inlet exhaust mass flow rate ranges from 0 to 100 

g/s whereas the inlet temperature varies from 180˚C to 700˚C. For the sake of simplicity 

in analysis, the inlet values were averaged over the engine running cycle for steady state 

analysis. The average mass inlet conditions were calculated as 35 g/s and 550˚C. 

 

 
3.2 User Inputs for Parametric Studies 

The inputs chosen for this analysis were taken from the General Model’s baseline 

model. The materials properties used for insulation, thermal grease, etc. were chosen 

from the baseline model itself. The material properties except thermoelectric materials 

are assumed to be independent of temperature variation. For thermoelectric materials, 

look up methods are used to interpolate values from temperature dependent property data 

tables. The geometrical specifications of prototype skutterudites and commercial Bi2Te3 

modules from Marlow Industries are used for modeling. The specifications used for the 

thermoelectric modules were also derived from the same prototype. These user inputs 

have been presented in Table 3.1. 
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Table 3.1. User Inputs. 

Parameters  Value Unit 

Geometry   

Thermoelectric Generator Volume 0.003592 m3 
Exhaust Inlet and Outlet Pipe Diameter 0.0635 m 
Dimensions for Rectangular topology 
[length, height, width] 

 
[0.01 – 2.0, 0.01 - 0.35, 0.01 - 1.2] 

 
[m, m, m] 

Dimensions for Circular topology 
[Outer Diameter, Inner diameter] 

 
[0.05 – 0.20, 0.01 - 0.04] 

 
[m, m] 

Fins (Copper) 
[thickness, spacing]  
Thermal conductivity 

 
[1 - 8, 1 - 8] 
401 

 
[mm, mm] 
Wm-1K-1 

Thermoelectric Module   

Skutterudite 
Module [Cross-section, Height] 
TEC [NTEC, Cross-section, Height]] 
εModule 
Thermoelectric Material 

 
[0.0508 x 0.0508, 0.007] 
[32, 0.002x0.002, 0.004] 
0.55  
Ba0.08La0.05Yb0.04Co4Sb12 (n type)[8] 
DD0.76Fe3.4Ni0.6Sb12 (p type) [9] 

 
[m2, m] 
[-, m2, m] 
[-] 
[-] 
[-] 

Bismuth Telluride 
Module [Cross-section, Height] 
TEC [NTEC, Cross-section, Height] 
εModule 
Thermoelectric Material 

 
[0.04013 x 0.04013, 0.004] 
[127, 0.004x0.004, 0.002] 
0.55 
Bi2Te3[10] 

 
[m2, m] 
[-, m2, m] 
[-] 

Fluid   

Air Properties Ideal gas Formulation [EES] [-] 

Materials   

Thermal Grease (Grafoil Laminate) 
Gap 
Thermal conductivity 

 
0.001 
5 

 
m 
Wm-1K-1 

Thermal Insulation (Min-K) 
 Gap 
Thermal conductivity 
εIns 

 
0.002 
0.0334 
0.75 

 
m 
Wm-1K-1 

[-] 
Thermoelectric Base (Copper) 
Thickness 
Thermal Conductivity  

 
0.008 
401 

 
m 
Wm-1K-1 
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3.3 Baseline Geometry 

The prototype run by General Motors was used as a benchmark model for the current 

analysis. This prototype was designed for Chevrolet Suburban vehicle [35,36].The 

baseline model has a longitudinal configuration in a rectangular topology with 

skutterudite modules mounted on top and bottom surface of the thermoelectric generator. 

The basic configuration details of the model and heat exchanger are presented in Table 

3.2. The baseline case was run for various input conditions as mentioned in Section 3.1. 

 

 

Table 3.2. General Motors' basline model configuration. 
Parameter Value Unit 

Height 38  mm 

Width 224  mm 

Length 413.1  mm 

Fin Thickness 3.3 (Cu) mm 

Fin Spacing 6.35 (Cu) mm 

 

 

 

3.3.1 Effect of Mass flow Rate and Inlet Temperature 

 The baseline geometry was tested for varying input conditions i.e. mass flow rate 

and inlet temperature. As mentioned before, these conditions depend on the engine load 

and will guide the variations in electrical power output during a normal engine running 

cycle. Figure 3.1 represents the rise in electrical power generation with increasing flow 
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rate from 20-100 g/s of exhaust gas at Tin = 550°C.  The rise in mass flow rate increases 

the heat transfer rate from the hot gas through the thermoelectric modules and hence 

higher electrical power generation. On other hand, increased mass fluxes inside the heat 

exchanger increase the friction drag forces on the fins and hence increased pressure drop. 

This upward trend is represented by the Figure 3.2. The calculated pressure drop is found 

to be lesser than the allowed limit for a Chevrolet Suburban vehicle. However, the current 

1D analysis does not account for recirculation effects near the inlet and exit ports arising 

due to high area ratios. The spatial variation in flow regimes along the width and height 

of the thermoelectric generator is too neglected; hence this is not the true measure of 

actual device pressure drop. 

The similar trend is observed when the inlet exhaust temperature was varied 

within the range of 673K – 973K (400°C – 700°C) at an average mass flow rate of 35 g/s. 

as shown in Figure 3.3 The electrical power generation rate increases with increasing 

inlet temperature .The relatively hotter temperatures in the flow region raises the hot side 

temperature of the thermoelectric modules and hence higher seebeck potential is 

generated across the junctions. The variation in pressure drop with the varying inlet 

temperature is represented by Figure 3.4. The decrease in air density with higher inlet 

temperatures tends to increase the channel velocities. This explains the slight increase in 

pressure drop with the inlet exhaust temperature. The allowed limit for back pressure rise 

is 812 Pa for ṁin  = 35 g/s. 
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Figure 3.1.  Power output vs. flow rate for Baseline Model at Tin = 823 K (550˚C). 
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Figure 3.2. Total pressure drop vs. flow rate for Baseline Model at Tin = 823K (550˚C). 
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Figure 3.3. Power output vs. Inlet Temperature for Baseline Model at ṁin = 35 g/s. 
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Figure 3.4. Total pressure drop vs. Inlet Temperature for Baseline Model at ṁin = 35 g/s. 
The allowed pressure drop is 812 Pa at given flow rate of 35 g/s. 
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Figure 3.5 represents the temperature drop across various materials in the 

thermoelectric generator along the flow direction of the exhaust gas. It is remarkable to 

note that there is a difference of more than 100 degrees between the gas bulk temperature 

and the hot side of the thermoelectric module. The temperature drop across the hot side 

contact by thermal grease is of the order of 30 degrees. However, the current analysis 

doesn’t take into account the fin contact resistances, improper surface contacts due to 

thermal induced deformations, non-uniformity of thermal grease thickness, etc. Hence, 

the actual temperature drop is expected to be much higher than stated here. The 

temperature drop across the junctions decreases from 300 degrees to 120 degrees. For the 

skutterudites, ZT values decreases with the decrease in temperature (Figure 1.6), the 

modules near the inlet generate more electrical power than those near the rear end as 

observed from Figure 3.6. This exhibits that electrical power generation is very much 

dependent on the actual temperature difference across its junctions. 

The energy fluxes were calculated by dividing the energy transfer rate per unit of 

top surface of the generator. The plot in Figure 3.6 represents the decreasing trend in the 

energy fluxes along the flow direction. The heat leakages due to radiation and the thermal 

insulation are very low as compared to conduction losses., hence most of the heat 

transferred by heat exchanger flows through the thermoelectric modules. 
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Figure 3.5. Temperature differences across materials along flow direction for Baseline 
Model at ṁin =35g/s and Tin=550˚C. 
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Figure 3.6. Energy flux along flow length for Baseline Model at ṁin =35g/s and 
Tin=550˚C. 
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The pie chart in Figure 3.7 represents the energy distribution for the baseline 

model. The output efficiency of the baseline model in terms of electrical power 

generation is found to be 3.4%. Nearly 36% of incident energy leaves the generator to the 

environment as exhaust gas. 58% of the incident energy rate is rejected to the engine 

coolant system. The increased load on the coolant system implies bigger engine radiators 

to reject more heat to the environment. 

  Figure 3.8 represents the variation of thermoelectrical parameters along the flow 

length. The values have been normalized by their maximum values which occurs at z = 0. 

The parameters show a decreasing trend with the flow length. The ZT value of a 

thermoelectric couple decreases from a maximum of 0.88 to 0.60 at the exit. The 

maximum current value was found to be quite high as 13.9 A, however the Thomson 

effect was not considered in this analysis. Additionally, several thermoelectric couples in 

an actual thermoelectric module are connected in a serial electrical circuit; hence actual 

drawn current would be lesser. The current also depends on the actual vehicle electrical 

load. Improper matching of thermoelectric inner resistance to external load resistance can 

lead to significant loss in power generation. Hence, power conditioning of electrical 

output is critical.   
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Figure 3.7. Thermal energy distribution for Baseline Model. 
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Figure 3.8. Normalized parameters along the TEG length at ṁin =35g/s and Tin=550˚C. 
 
 

Table 3.3. Thermoelectric Couple Parameters. 
I0 (A) V0 (V) P0 (W) R0 (Ω) Rl0 (Ω) ZT0 

13.9 0.107 0.743 3.89E-3 3.89E-3 0.88 

  

Energy lost by 
Radiation   

2% 

Energy Lost to 
Coolant 
58.7% 

Electrical 
Power Output 

3.4% 

Energy leaving 
TEG 

 35.9% 
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3.3.2 Major Conclusions 

 The analysis of the baseline model leads to major conclusions and provides us 

several ventures at which the baseline could be improved for this configuration. 

1) The electrical power generation is a strong function of mass flow rate and inlet 

exhaust temperatures. The implications of varying inlet conditions could be very 

severe if proper conditioning of output power is not carried out. 

2) The thermoelectric modules close to the inlet are exposed to the much higher gas 

temperatures and hence they generate higher electrical power output.  

3) ZT value of high temperature skutterudites decrease considerably along the flow 

direction. Use of modules with higher ZTs at lower temperature near the rear end 

could be quite beneficial. 

4) The heat transfer at average inlet conditions was around 60% of the incident 

energy for the given heat exchanger. By optimizing the fin spacing and thickness, 

the heat transfer rate can be enhanced considerably. 
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3.4 Rectangular Topology 

The types of topologies discussed in 0 were analyzed for various set of test 

conditions and parameters for output optimization. This section presents the analysis 

done for flow configurations with rectangular topology.  

 

3.4.1 Longitudinal Flow Configuration 

This section primarily focuses on optimization of longitudinal flow configuration. 

This parameters variation was mostly motivated from the conclusions derived in Section 

3.3.2. The model having dimensions as same as baseline model was selected to observe 

the impact of varying heat exchanger configuration. The number of fins and fin thickness 

for a plate fin type heat exchanger were varied and their impact on power output and 

pressure drop fin spacing was studied.  

Figure 3.9 represents the electrical power generation at different fin 

configurations for average inlet conditions. This plot represents the power output with 

increasing number of fins of thickness varying from 2 mm to 8 mm. The associated 

pressure drop is represented in Figure 3.10. It is observed that for a given number of fins, 

thinner films incur comparatively lesser pressure drops. Both electric power output and 

pressure drop values increases with the number of fins. Large number of fins will result 

in high cost and weight of the thermoelectric generator. Configurations with optimized 

number of fins and thickness can output electrical power of range 600 to 700 W with 

pressure drops within the allowed backpressure limits.  
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Figure 3.9. Power output vs. different fin configurations at ṁin =35g/s and Tin=550˚C. 
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Figure 3.10. Total Pressure drop vs. different fin configurations at ṁin =35g/s and 
Tin=550˚C. 

 



56 

 

56 

As mentioned in previous sub-sections, the hot junction temperature drops 

considerably along the flow length of the generator. The associated ZT and power 

generation capacity of the Skutterudite modules also reduced along the flow direction. To 

overcome these shortcomings, use of thermoelectric modules exhibiting better ZT 

performance was encouraged. Bismuth Telluride based modules were considered as they 

perform well at lower hot side temperatures. Figure 3.11 shows the ZT values of 

thermoelectric couples from Skutterudite and Bismuth Telluride modules. To maximize 

ZT performance and prevent Bismuth Telluride based modules from damage; the cutoff 

temperature for transition was set at 550K. The baseline model was analyzed with two 

different configurations (a) Skutterudites (S) only and (b) hybrid arrangement of 

Skutterudite and Bismuth Telluride modules (SB).  
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Figure 3.11. ZT values for a thermoelectric couple based on Skutterudite and Bismuth 
Telluride Modules. Cutoff temperature for transition is set at 550K. 
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Figure 3.12. Power output vs. different mass flow rates at Tin=550˚C for ‘S’ and ‘SB’ 
arrangement with optimized heat exchanger configuration. . S-SB and B-SB denote the 

number of separate Skutterudites and Bismuth Telluride modules required for ‘SB’ 
configuration. 
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Figure 3.13. Number of TEMs vs. flow rates at Tin=550˚C for ‘S’ and ‘SB’ arrangement 
with optimized heat exchanger configuration. 
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Figure 3.14. Power output vs. Inlet exhaust temperatures at ṁin =35 g/s for ‘S’ and ‘SB’ 
arrangement with optimized heat exchanger configuration.  
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Figure 3.15. Number of TEMs vs. Inlet exhaust temperatures at ṁin =35 g/s for ‘S’ and 
‘SB’ arrangement with optimized heat exchanger configuration. 
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Figure 3.12 and Figure 3.14 show the benefit of using hybrid arrangement of 

modules on power output for varying mass flow rate and inlet temperature respectively. 

This suggests that for a given surface area and inlet conditions, more electrical power can 

be generated by the use of hybrid configurations than using the skutterudites alone. Since, 

the inlet conditions decide the location of cutoff temperature along the flow direction, the 

number of skutterudite and bismuth telluride modules required in a hybrid ‘SB’ 

configurations differs with the inlet conditions as shown in Figure 3.13 and Figure 3.15. 

It is observed that number of skutterudite modules increases with increasing mass flow 

rate and inlet exhaust temperature whereas it decreases for the bismuth telluride modules. 

The analysis shows a relatively higher number of bismuth telluride modules since their 

cross-sectional area is lesser than skutterudite modules. Here cost could be an important 

factor to decide the relative number of type of modules to be used for actual applications. 

The geometry of the model was varied keeping the total volume constant as the 

baseline model. The length, width and height of the generator was varied within 

predefined limits (refer to Table 3.1) for inlet mass flow rate of 35 g/s and temperature 

550˚C. The configurations were fitted with optimized heat exchanger configurations. 

However, topologies with pressure drop exceeding 812 Pa were disregarded. Figure 3.16 

represents a 3D plot of electrical power output for skutterudite only arrangements. It is 

observed that wider and flatter (minimum height) generators generate the maximum 

possible electrical powers. 
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Figure 3.16. 3D plot of Power output at optimized fin configurations at ṁin =35 g/s and 

Tin = 550˚C. 
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Figure 3.17. Power output and pressure drop variation at different aspect ratio (AR = 
width/length) at fixed generator height of 38 mm using 50 skutterudites  

(Inlet: ṁin =35 g/s, Tin = 550˚C for with tfin = 3.3 mm and sfin = 6.35 mm). 
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Another analysis was performed by keeping the height same as 38 mm and 

changing the aspect ratio (=width/length) to accommodate 50 skutterudite modules on top 

and bottom surfaces of the generator. Figure 3.17 shows that power output is higher at 

high aspect ratios or wider generators and associated pressure drops are lesser due to 

shorter lengths.  

 

3.4.2 Major Conclusions 

 The analysis of the longitudinal flow configurations model leads to following 

findings:. 

1) The heat exchanger configurations play a major role in electrical output and the 

pressure drops. Optimized number of fins and thickness (or spacing) can help 

generators produce electrical output of desired range of 600-700 W while keeping 

the backpressure gain well below 812 Pa for average inlet conditions. 

2) Use of hybrid arrangements of thermoelectric modules is an advantage for 

augmented electrical power generation for a given inlet condition. 

3) Wide and flat (with minimum practical height) thermoelectric devices generate 

the maximum possible electrical power of the order of 800W. 

4) Wider and shorter (in length) generators exhibit much higher electrical power 

output and quite lesser associated pressure drops for a given number of 

thermoelectric modules. 
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3.4.3 Transverse Configuration 

This section presents analysis on transverse configuration in a rectangular topology. 

As mentioned in previous section, the hot exhaust flows through the channels inside the 

domain and thermoelectric modules are located inside the box as longitudinal racks. The 

plate fin heat exchangers are integrated within the hot channels. The number of racks 

inside box volume controls the total number of thermoelectric modules for a given 

rectangular shapes.   

 Figure 3.18 represents the effect of change in channel width on the power output, 

number of modules and pressure drop (in Figure 3.19) for a rectangular domain with 

fixed heat exchanger configuration. The channel width controls the total number of 

thermoelectric racks inside the TEG volume, hence the number of modules decreases as 

the channel width increases as shown in right axis. Similarly, the power generation rate 

too decreases with channel width. The curve has a staircase pattern and it shows a drop 

once a thermoelectric module rack is eliminated. There is sudden drop in power 

generation for very small channel width because the effective heat exchanger area 

decreases and hence heat transfer to the modules is inadequate. Figure 3.19 represents the 

pressure drop with varying channel width. Pressure drop is found to be very high at lower 

channel widths having smaller cross-sections. However, for this case the observed 

pressure drops are much higher than the allowed limits. 
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Figure 3.18. Left Y axis represents electrical power output with varying channel width (1 
mm - 50 mm) with Nfin = 9 per channel (tfin = 2mm, sfin = 2.2 mm) with baseline 

geometry(height: 3.8 cm, width: 22.4 cm and length: 41.3 cm) at ṁin  = 35 g/s and Tin = 
550˚C.  Right Y axis displays number of skutterudite modules. 
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Figure 3.19. Y axis represents total pressure drop with varying channel width for same 
inputs mentioned in Figure 3.18. 
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Several configurations were tested by modifying the aspect ratios of the transverse 

configurations. The TEG length was fixed as multiples of module side i.e. only one 

module is placed along the length of the TEG. This was done to insure that thermoelectric 

modules face the highest temperature at gas side. The aspect ratio (width/height) was 

varied and its impact was studied. The geometries with optimized heat exchanger 

configuration and optimized number of skutterudite modules; and pressure drop within 

the predefined limit were considered for results analysis. 

Figure 3.20 shows the power output rate for varying aspect ratios for three different 

flow rates. It is found that the power generation doesn’t vary much with the geometry 

changes. It can be accounted by the fact that all the thermoelectric modules face the same 

hot gas bulk temperature (since the TEG length is one module height).  However, there is 

a quite difference in the power generation rates as the mass flow rates increases which 

has been demonstrated by the longitudinal configuration. The bottom graph displays the 

number of TEMs required to achieve the generation rate at various aspect ratios.  It is 

found that 50-60 skutterudite modules fall in the optimum range independent of inlet 

mass flow rate. The pressure drop for these cases were found to be well below ( < 60%) 

the allowed backpressure limit. This could be explained with the fact that TEG length is 

of only one module width, hence pressure drops due to viscous drag on fins will not be 

quite high. 
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Figure 3.20. The top figure shows the optimized power output with respect to varying AR 
(aspect ratio = width/height) keeping the length equal to 1 module side at Tin = 550˚C. 

The legend shows electrical output at different mass flow rates. The bottom figure 
represents number of skutterudite modules required for each configuration. 
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Adding to previous behavior, the effect of the number of skutterudite modules was 

also studied by varying the aspect ratios. The number of modules was limited to 20, 40 

and 60 and their impact was noted on the power output. It is found that aspect ratio 

doesn’t have any significant impact on the power generation rate. This is important to 

note that there is not much gain in power output if the number of modules is switched 

from 40 to 60 which is not the case from 20 to 40 modules. Hence, to obtain a power 

output range around 700W, 40 skutterudite modules will be sufficient. Adding more 

number of modules may lead to slight increase in electrical power output but will result 

in additional cost of TEG. 

The bottom plot represents the total pressure drop incurred for different aspect ratio at 

different number of modules. To accommodate higher number of thermoelectric modules 

inside the rectangular domain at a given aspect ratio (TEG width), the channel width has 

to be reduced. This increases the fin channel Reynolds number and hence higher pressure 

drops.  Again this supports the fact, that use of 40 modules in this case would be quite 

beneficial than going for much higher number of thermoelectric modules. 

 

  



67 

 

67 

, 

0

100

200

300

400

500

600

700

800

0.1 1 10

20
40
60

P
o

w
e
r 

O
u
tp

u
t 

[W
]

AR (width/height)

Number of Modules

 

 

0

100

200

300

400

500

600

700

800

0.1 1 10

20
40

60

T
o

ta
l P

re
s
s
u
re

 D
ro

p
 [

P
a
]

AR (width/height)

Number of Modules

 

Figure 3.21. The top figure shows the optimized power output with respect to varying AR 
(Aspect ratio = width/height) keeping the length equal to 1 module side for ṁin  = 35 g/s 

and Tin = 550˚C. The colored curves show electrical output at different number of 
skutterudites modules as shown in legend. The bottom figure shows the pressure drop 

occurred for the same case. 
  



68 

 

68 

3.4.4 Major Conclusions 

1) The analysis of the configurations with TEG length = one module show that 50-

60 skutterudite modules will be sufficient to generate power of the order of 700W 

at average inlet conditions.  

2) The electrical power generated is a strong function of the inlet mass flow rate. 

However the optimized numbers of modules are independent of inlet conditions 

and the aspect ratio.  

3) The analysis with limited number of modules exhibit power output of the order of 

700W at average inlet conditions with 40 skutterudite modules. 

4) Marginal gain in electrical power is observed when number of modules is 

increased from 40 to 60.  

5) The power output is independent of the varying aspect ratio since the 

thermoelectric modules are subjected to same gas bulk temperature within TEG 

length for cases having fixed or unlimited number of modules. 

6) The associated pressure drops are found to be quite low since the TEG length is 

restricted to one module side. 
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3.5 Circular Topology 

This section discusses the topologies having a circular symmetry. The central 

bypass pipe is a common feature for these topologies. This protects the thermoelectric 

devices from over-heating of thermoelectric modules, high backpressure in engine, etc. 

The results from hexagonal and cylindrical configurations are discussed in following sub-

sections. 

 

3.5.1 Hexagonal Topology 

The cross-section of the hexagonal topology is bounded by inner and outer diameters. 

The effect of variation in these two diameters was studied on power output and pressure 

drop while keeping the whole volume constant. Figure 3.22 represents the power output 

generated for average inlet conditions for optimized heat exchanger configurations. The 

inner diameter was varied within 0.01 m to 0.04 m and outer diameter from 0.06 m to 0.2 

m. It is observed that power output reaches a maximum of 658W at outer diameter of 

0.105 m. The number of modules is found to be 42 at this maximum. The power output is 

nearly independent of inner diameter for higher values of diameter. However, the power 

output decreases considerably at higher values of inner diameter. This can be explained 

by the fact that the effective surface area of heat exchangers in the annular region 

decreases. The effective number of skutterudite modules decreases with increasing outer 

diameter or decreasing generator’s length due to fixed volume constraint. Figure 3.23 

represents the associated pressure drops which decreases with increasing outer diameter 

or decreasing device length.  The configurations with higher inner diameter leads to 

smaller cross-sections for exhaust gas flow and hence relatively higher pressure drops.  
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Figure 3.22. Power output with varying outer diameter for different inner diameters for ‘S’ 
configuration at ṁin  = 35 g/s and Tin = 550˚C for optimized heat exchanger configuration. 

Right Y-axis shows number of Modules. 
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Figure 3.23. Total Pressure drop with varying outer diameter for different inner diameters 
for ‘S’ configuration at ṁin = 35 g/s and Tin = 550˚C for optimized heat exchanger 

configuration.  
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The hexagonal topology was also studied for hybrid ‘SB’ and standalone ‘S’ 

arrangements of thermoelectric modules. These arrangements were compared for varying 

inlet conditions like mass flow rate (Figure 3.24) and inlet exhaust temperatures (Figure 

3.26). The plots suggest increase in electrical power generation with increasing mass flow 

rate or inlet temperature. As evident from previous topological studies, it is observed that 

the hybrid arrangements of TEMs exhibit much higher electrical power output as 

compared to skutterudites only arrangement. Similarly, the number of skutterudites 

increases with increasing exhaust gas mass flow rate or inlet temperature as shown in 

Figure 3.25 and Figure 3.27. 
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Figure 3.24. Power output with varying mass flow rates for outer diameter = 0.105m and 
inner diameter = 0.04 m for ‘S’ and ‘SB’ configuration at Tin = 550˚C. 

 

 

0

10

20

30

40

50

60

20 40 60 80 100

S (Optimized)
S-SB (Optimized)
B-SB (Optimized)

N
u

m
b
e

r 
o

f 
M

o
d
u

le
s

Mass flow rate [g/s]  

Figure 3.25. Number of Modules vs. mass flow rates for outer diameter = 0.105 m and 
inner diameter = 0.04 m for ‘S’ and ‘SB’ configuration at Tin = 550˚C. 
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Figure 3.26. Power output with varying inlet temperatures for outer diameter = 0.105 m 
and inner diameter = 0.04 m for ‘S’ and ‘SB’ configuration at ṁin  = 35 g/s. 
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Figure 3.27. Number of Modules vs. varying inlet temperatures for outer diameter = 
0.065 m and inner diameter = 0.04 m for ‘S’ and ‘SB’ configuration at ṁin  = 35 g/s. 
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3.5.2 Major Conclusions 

 The major findings from current analysis were: 

1) The hexagonal configuration has a provision of bypass system which is integrated 

inside the thermoelectric generator design. 

2) Hexagonal configuration with shorter flow lengths exhibit higher electrical power 

and quite lesser pressure drops. 

3) The electrical power reaches a maximum of 658 W at outer diameter of 0.105m 

for the given volume. 

4) The generated power is independent of inner diameter size. However, the power 

output decreases considerably if inner diameter is comparable to outer diameter (> 

50%).  

5) Hybrid arrangements guarantee much higher electrical power for a given heat 

exchanger configuration and inlet conditions. 
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3.5.4 Cylindrical Topology 

This sub-section presents the results from the cylindrical topology. This model is 

similar to the hexagonal model except the thermoelectric modules are mounted on the 

curved outer surface. However, it might be difficult to achieve a very good thermal 

contact on curved surfaces for thermoelectric modules for practical applications  

The inner and outer diameters of the cylindrical pipes were varied to assess the 

impact on generated electrical power and associated pressure drops with optimized heat 

exchangers. Figure 3.28 shows that electrical power output reaches to a maximum of 720 

W at outer diameter of 0.08 m. The power generation rate decreases with increasing outer 

diameter since the number of thermoelectric modules that can be mounted on the outer 

curved surface decreases. The electrical power is almost independent of inner diameter 

values but it decreases considerably when inner diameter is comparable to outer diameter 

( > 50%).As the inner diameter becomes comparable to the outer diameter, the effective 

surface area of heat exchanger in annular region decreases. The associated pressure drop 

curves in Figure 3.30 show a similar trend. After outer diameter of 0.1 m, the pressure 

drop decreases with the increase in outer diameter of the inner diameter. The selection of 

optimized heat exchangers for the outer diameter range 0.06 m to 01 m, limits the 

pressure drop below 812 Pa.  
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Figure 3.28. Power output with varying outer diameter shown for different inner 
diameters for ‘S’ configuration (ṁin = 35 g/s and Tin = 550˚C). Right axis shows the 

required number of Skutterudite Modules. 
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Figure 3.29. Total Pressure drop with varying outer diameter for different inner diameters 
for ‘S’ configuration (ṁin = 35 g/s and Tin = 550˚C). 
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The effect of varying inlet conditions was also studied on the output parameters as 

discussed in previous sub-sections. The inlet parameters like mass flow rate and the inlet 

temperature was varied within predefined limits and their impact on electrical power 

generation and pressure drop was studied. It is observed that electrical power generation 

rate increases with the increase in mass flow rate for ‘S’ configuration in Figure 3.30. 

The hybrid configurations of skutterudite and bismuth telluride generate much higher 

power than the skutterudite alone. All these results are calculated from the configurations 

with optimized heat exchangers. 

Similar observation is found when the inlet temperature varies within the range of 

400 ˚C to 700 ˚C as shown in Figure 3.32. The output power increases with the increasing 

inlet temperature. The hybrid arrangement ‘SB’ exhibits higher electrical power 

generation at a given inlet condition when compared to ‘S’ skutterudite only 

configuration.  Figure 3.33 represents the required number of thermoelectric modules for 

‘S’ and ‘SB’ configuration at varying inlet gas temperature. The number of the 

skutterudites in a hybrid ‘SB’ configuration increases with increasing inlet temperature 

since the cutoff point shift towards the exit of the device 
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Figure 3.30. Power output with varying mass flow rates for outer diameter = 0.08 m and 
inner diameter = 0.04 m for ‘S’ and ‘SB’ configuration at Tin = 550˚C for optimized heat 

exchanger configuration. 
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Figure 3.31. Required number of Modules with varying mass flow rates for outer 
diameter = 0.08 m and inner diameter = 0.04 m for ‘S’ and ‘SB’ configuration at Tin = 

550˚C for optimized heat exchanger configuration. 



79 

 

79 

 

200

400

600

800

1000

1200

1400

1600

600 700 800 900 1000

S (Optimized)
SB (Optimized)

P
o
w

e
r 

[W
]

Inlet Temperature [K]  

Figure 3.32. Power output with varying inlet temperatures for outer diameter = 0.08 m 
and inner diameter = 0.04 m for ‘S’ and ‘SB’ configuration at ṁin = 35 g/s. 

 

 

0

20

40

60

80

100

120

600 700 800 900 1000

S (Optimized)
S-SB (Optimized)
B-SB (Optimized)

N
u
m

b
e
r 

o
f 
M

o
d

u
le

s

Inlet Temperature [K]  

Figure 3.33. Required number of modules with varying inlet temperatures for outer 
diameter = 0.08 m and inner diameter = 0.04 m for ‘S’ and ‘SB’ configuration at ṁin = 35 

g/s. 
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3.5.5 Major Conclusions 

 The conclusions are similar to ones derived for the hexagonal flow configuration 

as follows: 

1) The cylindrical configuration has a provision of bypass system which is integrated 

inside the thermoelectric generator. 

2) Cylindrical configuration with shorter flow lengths exhibit higher electrical power 

and quite lesser pressure drops. 

3) The electrical power reaches a maximum of 720 W at outer diameter of 0.08 m 

and inner diameter of 0.04 m for the given volume which is quite higher than the 

hexagonal flow configuration. 

4) The generated power is independent of inner diameter size. However, the power 

output decreases considerably if inner diameter is comparable to outer diameter (> 

50%).  

5) Hybrid arrangements guarantee much higher electrical power for a given heat 

exchanger configuration and inlet conditions. 
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3.5.7 Model Comparison 

The four models were compared in respect to electric power generation with the 

number of Skutterudite Modules at ṁin = 35 g/s and Tin = 550˚C. 
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Figure 3.34. Power dependence of various designs on number of TEMs. 
 

The models were of optimized geometry and with optimized heat exchanger 

configuration. It is evident from the Figure 3.34 that all the four models show a linear 

increase in electric power generation upto 40 Skutterudite modules. Transverse flow 

configurations fail to deliver after 60 modules since it becomes difficult to accommodate 

higher number of modules in the given volume. Topologies having circular flow 

configuration cannot accommodate higher number of modules as their length decreases 

However these models with longer TEG’s lead to considerable pressure drops which 

make them inefficient.  
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CHAPTER 4. OPTIMIZATION OF SKUTTERUDITE BASED THERMOELECTRIC 
MODULES 

4.1 Introduction 

System modeling of thermoelectric (TE) components requires solution of coupled 

thermal and electric fluxes through the n- and p-type semiconductor legs given the 

appropriate thermal boundary conditions at junctions. Such applications have large 

thermal gradients along the semiconductor legs where materials properties are strong 

functions of spatial varying temperature fields. In this present work, one-dimensional heat 

flux and temperature variations across thermoelectric legs have been solved using 

iterative numerical approach as a tool to optimize both TE module and TEG designs. 

Design trades are explored assuming the use of skutterudite as thermoelectric material 

that has potential for application to automotive applications where exhaust gas and heat 

exchanger temperatures typically vary from 100°C to 600°C. Dependencies of parameters 

such as leg geometry, fill fractions, electric current, thermal boundary conditions, etc., on 

leg efficiency, thermal fluxes and electric power generation have been studied in detail. 

Optimal leg geometries are computed for various automotive exhaust conditions. 

4.2 Literature Survey 

A number of analytical and numerical models [37,38,50,54] have been employed to 

assess the thermoelectrical generator system with varying levels of sophistication. 

Espinosa et al[14] employed Mg2Si/Zn4Sb3 for high temperatures followed by Bi2Te3 for 

low temperatures.  
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This does account for the temperature dependent properties along the heat 

exchanger but not within the legs. Kumar [55–57] presented a thermal resistance network 

based model to analyze a thermoelectric generator system for a General Motors Co. 

prototype generator designed for Chevrolet Suburban. Junction averaged thermoelectric 

properties were used to calculate the Seebeck voltage potential and electrical power.  

The optimization of these generators requires holistic approach to address each and 

every component of a generator system. The averaging techniques fail to deliver accurate 

results at the thermoelectric module level at higher electric current density conditions [48]. 

In addition, these techniques cannot be applied precisely for optimization of 

thermoelectric leg geometries as shown in APPENDIX. In these methods, the Thomson 

coefficient is taken as zero. Also, the material property variations along the thermoelectric 

leg height are not accounted. The high cost of rare-earth elements used in candidate TEM 

legs also enters as a prime variable in system trade-off studies. 

To address these issues, the present work focuses on modeling the thermoelectric 

components of a TEG system subjected to conditions characteristic of automobile exhaust. 

A numerical model is implemented to study the interdependence of electrical power 

generation on leg height, junction conditions, and area ratio of n-type to p-type material 

[58]. The method captures the temperature dependent properties along a thermoelectric 

leg. Mesh independence is verified and the tool is used to analyze sample cases 

comparable to automobiles exhaust. The thermoelectric material for this study is limited 

to multiple filled Skutterudites [8,9]. These materials have desirable zT values at high 

temperature making them suitable for applications related to diesel and gasoline engines. 

The following section provides a description of the implemented model, followed by the 

results and conclusions from the study. 
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4.3 Numerical Modeling 

The thermal and electrical fluxes through the thermoelectric legs of a TE couple 

(one n-type and one p-type leg) are studied using the numerical model by Shih [58]. A TE 

module will be comprised of many of such TE couples connected in series electrically 

and thermally in parallel. The n- and p-type legs have been discretized lengthwise into 

segments as shown in Figure 4.1. Segment ‘0’ is in contact with cold  unction and Nth 

segment is in contact with hot side junction. Here TH and TC are hot side and cold side 

junction temperatures. I is the electric current through the thermoelectric legs whereas RO 

is the load electrical resistance.  

 

Figure 4.1. Schematic of a thermoelectric couple with discretization along leg height 
 

Assuming 1-D conduction along the thermoelectric leg, the steady state energy 

balance of a thermoelectric element is reduced to Domenicali’s equation [59] as shown 

below. 

 2( ) ( )( ) ( ) ( )T x S x
x x J JT x

x x x
 

   
   

   
 (4.1) 

 ( )( ) ( ) ( ) ( ) T x
q x JT x S x x

x



 


 (4.2) 
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where (x) is the thermal conductivity, ρ(x) is the electrical resistivity, and S(x) is 

the Seebeck coefficient of the thermoelectric materials as they varying along the leg 

height dimension ‘x’. T(x), q(x) and J are the temperature, heat flux, and current density 

flux, respectively. In Eq. (4.1), the left hand term is the Fourier conduction in one 

dimension, the first term in right hand side is the joule heating and last term includes both 

Peltier (∇ S at junction) and Thomson (∇ S in thermal gradient) effects. In Eq. (4.2), the 

first term on right hand size is the entropy transport term and second term being the 

thermal conduction.[59]. Eq. (4.2) can be substituted in Eq. (4.1) to derive equation in 

terms of heat flux q(x) as: 

  2d ( ) ( ) ( )( ) 1 ( ) ( )
d ( )
q x JS x q x

x J Z x T x
x x




    (4.3) 

 

where Z(x) is the figure of merit as: 

 
2 ( )( )

( ) ( )
S x

Z x
x x 

  
(4.4) 

 

Eq. (4.2) can be rearranged as Eq. (4.5) as first order equation. 

  
( ) 1 ( ) ( ) ( )]

( )
dT x

JT x S x q x
dx x

   (4.5) 

 

For n - type thermoelectric legs, Eq. (4.3) - (4.5) can be discretized along the leg 

height as a set of algebraic equations represented by Eq. (4.6) - (4.7) [58]. The subscript 

m denotes the mth TE discrete segment where m = 0 and m = N are the segments attached 

to cold side and hot side junctions respectively. A finite difference method is used to 

discretize gradient terms using the first order forward difference approximation. 

Prescribed hot side junction TN (Nth segment) and the cold side junction T0 (0th segment) 

temperatures serve as boundary conditions. Current density flux through each leg is a 
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parametric input to these equations. Since, Eq. (4.6) and Eq. (4.7) are coupled; they have 

to be solved iteratively to calculate heat fluxes through each TE leg. The properties of 

thermoelectric legs are averaged over a discrete thermoelectric segment. These 

calculations are performed for n- and p - type leg of the TE couple. 

  1m m m m m

m

dx
T T JT S q


     (4.6) 

  2
1 1 m m

m m m m m

m

JS q
q q J Z T dx




 
    

 
 (4.7) 

 

The leg efficiency is the ratio of the electric power generated to the thermal power 

available at hot side junction. For the n- or p- type leg, this may be expressed as [58]. 
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(4.8) 

 

The first term in the numerator is the summation of Seebeck potentials along the leg 

height, and the second term is the potential loss due to electric resistance. For a module 

comprised of a single n and single p type leg, the efficiency can be expressed:   

 p n p n

p n p n

p h n h p h p n h n

T

h h h p h n

Q Q q A q A

Q Q q A q A

   


 
 

 
 (4.9) 
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Figure 4.2. ZT curves for the Skutterudites [8,9]. 
 

The mesh independence was first verified assuming a skutterudite module, n-type 

Ba0.08La0.05Yb0.04Co4Sb12 and p-type DD0.76Fe3.4Ni0.6Sb12 TE material (as shown in Figure 

4.2 [8,9]. The spatial varying material properties S(x), ρ(x) and κ(x) were tabulated as 

functions of temperature. The numerical code uses a data lookup function to read the 

corresponding material property table and derives value using linear interpolation. The 

leg efficiencies were calculated using Eq. (4.8) for n- and p- type skutterudite legs at JP = 

50.9 A/cm2 and JN = -37.1 A/cm2 respectively. The cold side temperature Tc is fixed to 

100˚C for calculations throughout this study. The  unction temperature difference ΔT (TH 

– TC) was set to 450˚C and leg height (Lx) as 10 mm. The provided values for JP = 50.9 

A/cm2 and JN = -37.1 A/cm2 are the optimal current flux densities for ΔT = 450˚C, Lx as 

10 mm which have been discussed later. The respective leg efficiencies were plotted 

versus increasing counts of discrete segments along leg height (mesh size - Nx) as shown 

in Figure 4.3. It was found that the solutions vary less than 0.02% from the finest mesh if 
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a mesh size of 80 is employed. However, the value of Nx = 500 is used  throughout 

remaining calculations in this chapter. 

Figure 4.4 shows the temperature and heat flux profiles along the TE legs for 

Skutterudite. Since material properties are functions of temperatures, we observe spatial 

variations in flux profiles. It should be noted that temperatures of TE segments must 

match at the boundary junctions whereas the respective heat fluxes do not match since 

input current densities are different. 

Eq. (4.8) was used to calculate respective leg efficiencies for various electric current 

densities. Figure 4.5 shows that there exists an optimal current density for each n or p 

type leg which can be explained by Eq. (4.8). The magnitude of the numerator will 

decrease for lower current density values; however the total voltage potential will 

decrease with higher current density values with increasing electric resistive potential loss.  

Table 4.1 summarizes the optimal conditions for both leg types; it is noteworthy that n-

type legs are more efficient than their counterpart p-type legs. 
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Figure 4.3. Mesh independence study at respective current density fluxes at JP = 
50.9A/cm2, JN = -37.1A/cm2, ΔT = 450 ˚C and Lx = 10 mm. 
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Figure 4.4. Heat flux and temperature profiles along the TE legs at JP = 50.9 A/cm2, JN = -

37.1 A/cm2, ΔT = 450˚C and L = 10 mm. 
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Figure 4.5. Respective leg efficiencies vs. input current density fluxes with ΔT = 450˚C 

and L = 10 mm. 
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Table 4.1. Optimal current density values for Skutterudites for leg height Lx = 10 mm 

 TJunction 

(˚C) 

Peak,n Jn (Opt.) 

(A/cm
2
) 

Peak,p Jp(Opt.) 

(A/cm
2
) 

450 0.126 50.32 0.104 -37.34 

350 0.101 40.53 0.084 -29.83 

250 0.074 30.00 0.061 -21.76 

150 0.045 18.64 0.036 -13.26 

50 0.015 6.42 0.012 -4.42 

 
 

 

 

 

4.4 Thermoelectric Module Optimization 

As represented in Figure 4.1, the TE module modeled here consists of a single n- 

and single p-type TE leg. At steady-state operation the electric current is identical through 

both legs, as such the ratio of cross-sectional area can represented as |-JPAP|= |JNAN|= |I|. 

The following analyses highlight the implication of parameters such as input current 

density flux, TE leg area ratio (AN/AP), junction temperatures and leg height on the 

thermoelectric module efficiency.  

First, the module efficiency dependence on the area ratio was examined. Figure 4.6 

shows the module efficiency computed by Eq. (4.9) for various area ratios (AN/AP) at ΔT 

= 450˚C and Lx = 10 mm. For Skutterudites, the maximum module efficiency (11.33%) 

occurs at optimal area ratio of 0.8. The module efficiency, equation (Eq. (4.9)), doesn’t 

change as long as the area ratio (AN/AP) remains constant which also limits JN for a given 

value of JP. This implies that the proper sizing of AP can help to achieve the maximum 
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module efficiency. However, the sizing of AP (or AN) will depend on the magnitudes of 

electric current and thermal energy considerations 

The TEM efficiency variation with leg height was studied by fixing the area ratio at 

0.8. The results shown in Figure 4.7 and Figure 4.8 demonstrate the impact of leg height 

on module efficiency at various current density fluxes and heat fluxes, respectively. An 

optimal condition exists for both of these parameters indicating that leg height cannot be 

independently optimized without considering local heat transfer conditions within the 

TEG. Since most TEG designs employ a flow-path that subjects TE modules to varying 

temperatures (hottest at inlet and coldest at outlet of TEG), a truly optimal design will 

then require differing leg heights or fill fractions (shown later) at various points in the gas 

path due to changing heat fluxes at various duty cycles. 
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Figure 4.6. TE Module vs. Current Density Values at ΔT = 450 ˚C and Lx = 10 mm. 
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Figure 4.7. TE efficiency vs. JP for various leg heights at ΔT = 450 ˚C and AN/AP = 0.8. 
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Figure 4.8. TE efficiency vs. hot side heat flux for various leg heights at ΔT = 450 ˚C and 

AN/AP = 0.8. 
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Figure 4.9 and Figure 4.10 show the variation in module efficiency with respect to 

varying hot side inputs (JP, qHP) at Lx= 10 mm and AN/AP = 0.8 for various junction 

temperatures. There is an upper limit for a given ΔT across a TE module. The possible 

maximum module efficiency decreases with decreasing ΔT across  unctions. These plots 

serve as a tool for thermoelectric design based on operating regimes (junction 

temperatures). 

For skutterudites used here, the maximum module efficiency (11.35%) occurs at 

an optimal area ratio of 0.8 for specified conditions of ΔT = 450°C and Lx = 10 mm. The 

cross-sectional areas of the TE legs can be varied without affecting the module efficiency 

as long as AN/AP ratio is constant. For a given AN/AP and ΔT, maximum efficiency is 

attainable at different JP or qHP. However, maximum possible efficiency is limited by ΔT 

and decreases with decreasing thermal gradient across  unctions (ΔT). 
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Figure 4.9. TE efficiency vs. JP for various ΔT at Lx = 10 mm and AN/AP = 0.8. 
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Figure 4.10. TE efficiency vs. hot side heat flux for various ΔT at Lx = 10 mm and AN/AP 

= 0.8. 
 

4.5 Thermoelectric Design for TEG Optimization 

As discussed previously, thermal energy can be extracted from exhaust gas for 

thermoelectric power generation. Waste heat extraction can be facilitated by allowing 

poor conducting gas to pass through a heat transfer mechanism such as a heat exchanger. 

Peak exhaust gas temperatures lie in the range of 550˚C to 650˚C providing the 

thermoelectric modules a waste heat energy supply in the range of 10 kW a mid-sized 

vehicle [55]. The following steps illustrate the approach taken for thermoelectric 

designing of such systems 

1) The average heat flux is calculated for a given TE module area based on fill 

fraction. 

2) The calculated heat flux is matched to that of a TE module at a given leg height, 

ΔT, and AN/AP. 
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3) Subsequently, electric power estimates and volume of TE materials are calculated. 

Here, two scenarios are considered to assess the efficacy of thermoelectric design 

as represented by Figure 4.11. . The heat transfer happens across a heat exchanger surface 

having width = 0.5 m and length = 0.5m. Case 1 represents configurations where heat 

transfer and temperature are uniform at the heat exchanger surface in a TEG system. In 

Case 2, the heat transfer and temperature profiles at surface vary along the flow direction. 

The variation along the flow direction can be visualized as a series of step decrements 

numbering 1 to 5 as shown in Figure 4.11 for ease of calculation. One step length is equal 

to 1/5th of the flow direction length. Certain percentage of the heat transfer area is covered by 

thermoelectric legs and is represented by fill fraction. 90% of incident thermal energy is assumed to be 

conducted through the thermoelectric legs and thus generating electrical power. The remaining 

10% is assumed to be lost through the conduction in insulators filled between TE legs and 

via radiation losses. The optimal leg area ratio (AN/AP) of 0.8 is taken for all subsequent 

calculations. The cold side junction temperature is approximated as the coolant 

temperature and kept fixed at 100˚C.   
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Figure 4.11. Variation of heat transfer and temperature over a heat exchanger surface for 
Case 1 and Case 2. The linear variation is approximated as stepwise profile in five steps 

for Case 2. 
 
 

 
4.5.1 Case 1: Uniform Heat Transfer and Temperature 

In this case, there is a uniform supply of 10 kW thermal energy through the exhaust 

gas over 2500 cm2 of heat transfer surface area which is in conjunction with hot side 

surface of thermoelectric modules. For example, after deducting the losses and transfer 

inefficiencies, the average heat flux value over the surface is 18 W/cm2 for a 20% fill 
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fraction and varies with different fill fraction values. A uniform ΔT = 250°C is assumed 

across TE hot and cold side junctions. The calculations for Skutterudite TE modules were 

run for a range of TE leg heights and fill fractions. Figure 4.12 shows the estimated power 

generation for a given thermal energy and surface temperature conditions. Figure 4.13 

shows the volume of TE material required to generate power that appears in Figure 4.12. 

The fill fraction increases with leg height to match surface heat flux and generate same 

order of electrical power. This in turn increases the required amount of TE material 

volume. The TE modules with leg height of 3.75 mm and a fill fraction of 15% predict 

generation of 593.8W of electrical power; and require just 140.6 cm3 of skutterudite 

material over 2500 cm2 of heat exchanger area. 

4.5.2 Case 2: Varying Heat Transfer and Temperature 

This case mimics transfer in a TEG that has a gas path that has successive heat 

extraction along its length. The heat transfer and temperature profiles are equally 

distributed area-wise in five steps along the flow direction. Figure 4.14 shows the 

electrical power generated at various leg heights (3mm – 7mm) for optimal fill fraction. 

The optimal fill fraction along the steps in the flow direction and required total material 

volumes are plotted in Figure 4.15. The electrical power generation capacity of TE 

couples decreases considerably along the flow direction and is less than 10W for Step 5 

signifying strong dependence of TE efficiency on the  unction ΔT. TE modules with leg 

height of 4.5mm and having a fill fraction of 20% for Step1 and 15% for Steps 2-5 

generates electrical power of 758.9 W; requiring 33.8 cm3 of TE material. The 

thermoelectric couples in the Step 5 for this configuration only generate 3.39 W of 

electrical power. 
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Figure 4.12. Electrical power estimates versus leg height at different fill fraction for Case 

1 with area ratio (AN/AP) fixed at 0.8 for skutterudite. 
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Figure 4.13. Required volume of TE materials for Case 1 at different fill fractions. 
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Figure 4.14. Electrical power generation at various leg heights for optimal fill fraction 

and AN/AP = 0.8. The steps 1-5 represent each row of TE couples arranged along the flow 
direction. 
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Figure 4.15. Optimal fill fractions at various leg heights for Steps 1-5 varying along the 
flow direction (Case 2). The right axis shows the required volume of Skutterudite material. 
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Table 4.2 summarizes the energy distribution and optimal configuration for both 

cases. The optimal configuration for Case 2 suggests having a variable fill fraction along 

flow direction. 

Table 4.2. Electrical power generation for both cases. 

 

Surface Heat 

transfer     

[kW] 

Electrical 

Power 

[W] 

Efficiency  
[%] 

Optimal 

leg height 

(mm) 

Optimal Fill 

fraction 

[%] 

Volume of 

Skutterudite 

[cm
3
] 

Case 1 10.0 593.8 5.9 3.75 15 140.6 

Case 2 10.0 758.9 7.6 4.5 20,15,15,15,15 180 
 

4.6  Conclusions 

A numerical method has been implemented and simulated to calculate heat transfer 

and temperature profiles for n and p type thermoelectric legs for Skutterudite material. 

The leg efficiencies are found to be strong functions of electric density (current), junction 

temperature differences, and leg height. Leg height, fill fraction, and area ratio (AN/AP) 

play an important role in TEM optimization for any maximum power generation study. 

However, maximum module efficiencies are limited by junction temperatures. Iterative 

method provides accurate design tools to optimize TEMs for cases related to automotive 

waste heat recovery. The careful selection of leg height and fill fraction helps to meet the 

maximum electrical power generation while minimizing material requirements. For a 

fixed heat exchanger surface, to generate same amount of power, longer thermoelectric 

legs require higher fill fractions or larger cross-sectional areas to match the hot side heat 

flux. But this in turn increases the volume of Skutterudite material required. For 

automotive applications considered here (10 kW heat supply over 0.25 m2 of heat 

exchanger surface), leg heights in range of 3 mm to 5 mm are found to effectively 

generate maximum possible electrical power.  
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CHAPTER 5. EFFECT OF HOT WALL AXIAL CONDUCTION ON THE 
PERFORMANCE OF THERMOELECTRIC GENERATORS 

 This chapter discusses the axial thermal conduction calculations in the metallic 

wall liner sandwiched between heat exchanger and the thermoelectric module. The 

previously discussed numerical model has been improved to include axial conduction 

effects and solve thermal fluxes, and temperature profiles in the liner. The simulations are 

run with various parameters - inlet conditions (flow rates and exhaust inlet temperatures), 

liner material (copper and stainless steel), and liner thickness. Subsequently, the 

conduction effects on the temperature distributions and power generation estimates are 

presented.  

5.1 Axial Conduction in Hot Wall Liner 

The axial conduction in the metal wall liner could be detrimental for proper 

functioning of a thermoelectric generator (TEG) since it serves to reduce the effective 

temperature difference between thermoelectric legs and hence, the power generation. The 

magnitude of conduction will vary with the material and the thickness of the wall liner, as 

well as the design of the TEG itself.  

The TEG numerical model presented in previous chapters is modified further to study 

the axial conduction effects on TEG performance. The TEG output power dependence on 

geometry and inlet flow conditions has been explored and discussed in detail in 

CHAPTER 2.      
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5.2 Numerical Model 

The schematic of the lower half of a thermoelectric generator is presented in Figure 

5.1. Hot gas flows axially in the upper passage from left to right in the Figure. The top 

surface in Figure 5.1 is a symmetry plane since only half of the TEG system is being 

modeled as mentioned in CHAPTER 2.The hot gas wall liner is the metallic TEG base in 

which axial conduction is being considered. As we are considering application to an 

automotive exhaust, a stainless steel material would generally be employed in order to 

sustain the hot and corrosive exhaust environment. Since the TEM array located below 

this TEG liner is of low thermal conductivity, we presume that axial conduction effects 

are dominated by the metal wall material and for this reason axial conduction is neglected 

in the other layers below this liner. 

 

Figure 5.1. Schematic of a longitudinal thermoelectric generator with control volumes for 
hot gas passage and the hot gas wall lining 

Figure 5.2 shows the thermal energy transport through the control volumes (CV) 

at the ith location from the exhaust gas entry. Here, HGas,i represents the gas enthalpy 

available at the left face of gas CV and is calculated as given in Eq. (5.1). Here, CP is 

specific heat capacity of exhaust gas and ṁ is the mass flow rate. The quantity Tgavg,i  in 
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Figure 5.2 is the average gas bulk temperature in the ith CV The quantity Qgas,i is the 

thermal energy transferred by the heat exchanger to hot wall CV and is calculated as the 

difference of gas enthalpies at adjacent faces (Hgas,i – Hgas,i+1) in the gas CV. 

 , ,gas i P gas iH mC T  (5.1) 

The quantity Tw,i is the cell centroid value of wall temperature in ith hot wall liner CV. 

The ‘Tw’ terms in i-1th and ith liner CVs are coupled due to axial conduction term ‘ Axial,i’ 

as shown in Eq. (5.2. Here, Rw,i is the axial thermal resistance, kW is the thermal 

conductivity of the wall material, and tw is the thickness of liner.  

 

Figure 5.2. Thermal energy transport in ith hot wall liner and gas CV 
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   (5.2) 

The TEG resistance model discussed in CHAPTER 2 was modified to account for 

axial conduction calculations in the TEG metallic base as shown in Figure 5.3. The 

resistance network was split along the TEG metallic wall resistance term ‘RTEG,base’. 

Hence QNetwork,i in Figure 5.2 is equivalent to thermal energy flowing through the 
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resistance RTEG,base in Figure 5.3. The axial conduction term in Eq. (5.2) is discretized 

using a centered finite difference as: 

  , 1 , , 1 , , ,2w i w i w i w i Network i Gas iT T T R Q Q      (5.3) 

 

Figure 5.3. Thermal resistance network in a control volume 
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Now, the bulk mean gas temperature in gas CV is defined by Eq. (5.4). The heat 

transferred through the heat exchanger (Qgas,i) is equal to energy which is being conducted 

through the 1D thermal resistance network between Tgavg,i and Tw,i. because of symmetry 

plane in gas CV. The thermal resistance between these two temperature nodes is 

composed of heat exchanger resistance (Rfin,eq) and half of liner conduction resistance 

/ 2w

w

t

w x

 
 

 
. Here w is the width of TEG parallel to flow direction; and Δx is the discrete 

step size along flow direction. Using these relationship, the gas temperature at right face 

of ith gas CV (Tg,i+1) can be defined as a linear combination of Tg,i+1 and Tw,i  as shown in 

Eq. (5.5). The coefficients a, b and c are defined in Eq. (5.6). The heat energy transferred 

through the heat exchanger to the wall liner (Qgas,i) is then calculated by Eq. (5.7).  

 , , , 1( ) / 2gavg i g i g iT T T    (5.4) 
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Hence, the net energy imbalance in the ith liner CV (QErr,i )can be calculated as : 

 
, , , , 1 ,Err i Axial i Gas i Axial i Network iQ Q Q Q Q     (5.8) 

Since the temperature terms in the hot gas wall are coupled; temperatures in the 

resistance network, wall liner temperatures, and gas temperatures in the flow direction 

have to be solved simultaneously. The leftmost wall face and rightmost wall face of the 

wall liner were modeled as adiabatic boundaries since these walls are thermally insulated. 

The hot side wall liner is followed by the thermoelectric module array and coolant supply 

in transverse direction to exhaust flow as mentioned in the parent TEG resistance model.  

5.3 Solution Method 

Following methodology was used to solve the axial conduction problem: 

1) Linearly decreasing profiles for wall liner temperatures (Tw) and gas 

temperatures (Tg) are the initial guess for all control volumes. 

2) The resistance network model is solved to calculate QNetwork,i  on the basis of 

updated Tw,i for all CVs 

3) Tg,i+1 (Eq. (5.5)) and QGas,i Tw,i (Eq. (5.7)) are computed for all CVs which are 

based on Tg,i and Tw,i   

4) Equation set (Eq. (5.3)) is solved for wall liner temperatures (Tw) in CVs using 

Gauss-Seidel successive over-relaxation method (GSSOR)[60] until root 

mean square (RMS) error in Tw,i (Eq. (5.9)) falls below 0.001˚C 

  
2

, ,old

RMS Error
W new W

i

T T

N






 (5.9) 

5) Updated Tw values are used to calculate net energy imbalances in hot wall 

CVs denoted by Eq. (5.8).  
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6) If global heat energy imbalance ΣQErr,i is greater than 0.001W and sum of 

RMS errors in Tw and Tg are above 0.001˚C, steps (2 – 5) are repeated till they 

satisfy both convergence criteria. 

 

5.4 Results 

5.4.1 Liner Material and Thickness Sensitivity 

Axial conduction effects were studied for a hot gas flow rate of ṁ = 36g/s and Tin = 

973K. TE generator has baseline dimensions of height, width and flow length as 0.038m, 

0.224m and 0.4131 m respectively. The front and rear end of wall liner is modeled as 

adiabatic wall. Materials properties of exhaust gas and thermoelectric components are 

functions of temperature. Copper (401 W/m2-K) and stainless steel (20 W/m2-K) are 

selected as wall liner materials to analyze the impact of high and low thermal 

conductivities. The temperature dependence of thermal conductivity of liner materials is 

not considered. Hot gas liner thicknesses (tW) of 5, 10 and 20 mm were considered. Small 

step size (Δx) of 0.001m was used to run the simulation to check that the coefficients a, b, 

and c in Eq. (5.6) are greater than zero for numerical stability. Also, grid size suggested 

by grid independence study is larger than the selected grid size.  

Figure 5.4 represents the axial variation of gas bulk temperature for various liner 

thicknesses for the two different liner materials. Here, the blue lines represent cases with 

zero axial conduction, while the red lines include this effect. The axial conduction effects 

are unnoticeable for the relatively low thermal conductivity stainless steel wall but are 

highly evident in the case of a copper wall. The variations in gas temperatures due to 

axial conduction effect in copper liner become increasingly higher as gas flow through 
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the TEG heat exchanger passage. This is due to presence of zero axial conduction fluxes 

at the entry region (left liner boundary is adiabatic). The thermal resistance due to liner 

thickness is more profound in stainless steel liner; and hence, it reduces the relative gas 

temperature and results in less gas temperature drops.  

Figure 5.5 shows the axial distribution of liner temperature for the conditions used in 

Fig. 5.4 for both liner materials. For the copper liner, the axial conduction effects increase 

with the wall thickness, and differ considerably from non-axial conduction cases. The 

results are similar for a stainless steel wall but variations in magnitude are much smaller. 

Figure 5.6 shows the variation in TEM  unction temperature difference (ΔTTEM) along the 

flow direction for conditions used in Fig. 5.4.  For the copper liner, the ΔTTEM at the TEG 

entry is computed to be 328K for a 20 mm thickness with axial conduction while the 

value grows to 395K with no axial conduction effects. The axial conduction tends to 

homogenize liner temperature and therefore lowers the ΔTTEM available to TE modules at 

the inlet region and increases it at the exit region. However, ZTTEM decreases with 

average TE junction temperature; and hence this lowers the effective thermoelectric 

generator performance which has been discussed later in this chapter. The order of this 

similar variation is lower for stainless steel based wall liners.  
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(a) 

 

(b) 

Figure 5.4. Gas temperature variation along the flow direction for (a) Copper and (b) 
Stainless steel Wall liners at ṁ = 36g/s and Tin = 973K. 
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(a) 

 

(b) 

Figure 5.5. Hot wall liner temperature variation along the flow direction for (a) Copper 
and (b) Stainless steel Wall liners at ṁ = 36g/s and Tin = 973K. 
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(a) 

 

(b) 

Figure 5.6. TEM junction temperature variation along the flow direction for (a) Copper 
and (b) Stainless steel Wall liners at ṁ = 36g/s and Tin = 973K. 
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Figure 5.7. Axial conduction flux in wall lining and its variation along the flow direction 
for Copper and Stainless steel Wall liners at ṁ = 36g/s and Tin = 973K. 

 

The axial conduction fluxes are plotted along the flow direction as shown in Figure 

5.7. Since copper is highly thermally conductive material (about 20 times stainless steel), 

the axial conduction flux has much smoother gradients in the copper liner as compared to 

that of  stainless steel. The magnitude of axial conduction flux decreases with increase in 

thermal resistance (liner thickness). The flux matches the zero flux boundary condition at 

both inlet and exit locations. In general, the magnitudes of axial conduction fluxes are 

found to be higher near the inlet region as compared to exit region due to presence of 

steeper temperature gradients near inlet region. This is in turn lowers the effective ΔTTEM 

at the entry region and increases ΔTTEM near the TEG exit. Since, TEMs have higher 

thermoelectric power conversion efficiencies (or ZTTEM) at higher temperatures. This 

changed ΔTTEM along flow direction deters the TEG power generation characteristics. 

Table 5.1 summarizes these conduction effects and highlights their impact on the TEG 



113 

 

performance. Inclusion of axial conduction effects in the numerical model predicts 

lowering of power generation term (PElectric) by 4.5% for the 5 mm copper liner and 

increases to 13.2% for the 20 mm copper liner. For the stainless steel liner, the power 

generation lowers by 0.25% for a 5 mm thick wall and increases upto 0.83% for a 20 mm 

thick wall. The impact of thermal resistance due to liner material and thickness is quite 

notable for both zero and non-zero conduction effects. TEG with low resistive liner (5 

mm, copper) generates 919W of electrical power as compared of 727W for high resistive 

liner (20 mm, stainless steel). Temperature drop in gas along the flow (ΔTGas) is 373K for 

5 mm copper wall and only 330K for a 20 mm stainless steel wall. 

 

 
Table 5.1. Parameters representing impact of axial conduction on TEG performance. 

 t
w 

[mm] 

Q
Hex 

[W] P
Electric

[W] T
Gas

[K] 

Cu SS Cu SS Cu SS 

No Axial 
Conduction 

5 14830 14398 919 866 373 362 

10 14806 13968 916 816 373 351 

20 14760 13172 910 727 372 330 

With Axial 
Conduction 

5 14569 14384 879 864 368 364 

10 14354 13942 848 812 362 353 

20 14039 13130 804 720 354 331 
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5.4.2 Inlet Condition Sensitivity 

The model was also utilized to examine the sensitivity to the inlet flow conditions. 

The TEG inlet was subjected to low, medium and high levels of flow rates and inlet 

temperatures. Combinations of gas flow rates such as 5g/s, 25g/s and 50 g/s with inlet 

temperatures such as 473K, 773K and 1073K were considered. The model was run for a 

stainless steel liner having 5 mm and 20 mm thicknesses.  

Figure 5.8, Figure 5.9 and Figure 5.10 represent the variations in exhaust gas 

temperature, liner temperature and TE junction temperature difference along the flow 

direction respectively. The solid lines are for the cases with zero axial conduction effects 

whereas the dashed lines represent the cases with axial conduction effects included. 

Cases with medium (25g/s) and high (50g/s) flow rates exhibit less or unnoticeable 

variations. It is found that axial conduction is most effective with low flow rate cases 

associated with 5 g/s. The variations in temperature profiles are much higher for a 20 mm 

liner as compared to a 5 mm liner. Again, these variations increase with increasing inlet 

temperatures for a fixed flow rate of 5g/s. For the inlet condition (5g/s, 1073K), ΔTTEM  at 

the entry location is predicted to be lowered by 59K and 98K for 5 mm and 20 mm thick 

wall respectively if axial conduction effects are considered. These results suggest that 

axial conduction will be most detrimental for cased with low flow rate and high inlet 

temperatures. 
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Figure 5.8. Gas temperature variation along the flow direction for 5 mm and 20 mm thick stainless 
steel liners at inlet temperatures of 473K, 773K and 1073K with flow rates 5g/s, 25g/s and 50g/s.  
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Figure 5.9. Liner temperature variation along the flow direction for 5 mm and 20 mm thick 
stainless steel liners at inlet temperatures of 473K, 773K and 1073K with flow rates 5g/s, 25g/s and 

50g/s.  
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Figure 5.10. TEM junction temperature variation along the flow direction for 5 mm and 20 mm 
thick stainless steel liners at inlet temperatures of 473K, 773K and 1073K with flow rates 5g/s, 

25g/s and 50g/s.  
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Table 5.2. Parameters representing impact of axial conduction effects on TEG 
performance at inlet mass flow rate of 5 g/s. 

Tin 
[K] 

t
w 

[mm] 

Q
Hex 

[W] P
Electric

[W] T
Gas

[K] 

With-
Axial 

Zero-
Axial 

With-
Axial 

Zero-
Axial 

With-
Axial 

Zero-
Axial 

473 
5 506 507 3.2 3.5 99.6 99.7 
20 503 506 2.5 3.1 98.8 99.5 

773 
5 2087 2089 56 61 398 399 
20 2072 2084 43.1 54.2 395 398 

1073 
5 3767 3771 177 191 697 698 
20 3742 3763 137 170 693 697 

 

The inlet sensitivity to TEG performance is presented in Table 5.2. Since, it is 

observed that the axial conduction is mostly profound for 5g/s flow rate condition, hence, 

TEG performances based on varying inlet temperatures and liner thicknesses are 

tabulated. For Tin = 1073K, electrical power generation lowers to 177 W (differs by 7.9%) 

and 137 W (differs by 25.4%) for 5 mm and 20 mm thick liner respectively after 

including axial conduction effects. Even though the change in QHex and ΔTGas is not much 

appreciable (within 0.2%), the axial conduction shapes the temperature distribution 

profile at hot side of TE module array; and hence, deters the electric power generation. 

5.5 Conclusions 

The axial conduction effect was modeled and formulated into the parent TEG 

numerical model. The new model was run to evaluate TEG performance sensitivity on 

liner material, liner thickness, and inlet exhaust conditions. The axial conduction affects 

the temperature distributions in gas stream, hot wall liner and hot side surface of TE 

modules. Axial conduction homogenizes the temperature in liner leading to decrease in 

ΔTTEMs near the inlet region (comparatively much hotter than rear end of TEG) and 
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increase in ΔTTEMs near the exit region. Figure of merit of TEMs (ZTTEM) decreases with 

decreasing average TE junction temperatures; hence, TEG output performance lowers 

down. The axial conduction effects are found to have more pronounced impact for a liner 

made of highly conductive copper than that of stainless steel; and the effects increase 

with liner thickness. For inlet condition with low flow rate and high temperature 

condition (5g/s, 1073K), the axial conduction is found to be most detrimental and lowers 

the electrical power predictions by 25.4% for a 20 mm stainless steel liner when 

compared to the case with zero axial conduction.  
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CHAPTER 6. SUMMARY 

6.1 Summary and Conclusions 

In this work, comprehensive numerical models have been developed to simulate 

and study the performance of thermoelectric generators (TEGs). The first part of this 

thesis deals with the formulation of theoretical models to characterize TEGs and is 

followed by development of numerical framework to perform system level calculations 

on electrical power generation and pressure drop for a number of critical parameters. The 

baseline model of General Motors has been studied and critical suggestions for 

improvement in performance have been presented. Hybrid arrangement of Skutterudite 

and bismuth telluride with optimized heat exchanger was found to be the most optimal 

configuration for the baseline TEG in terms for power generation 

The second part of this thesis focusses on new TEG topology studies. New design 

concepts based on longitudinal, transverse, cylindrical and hexagonal circular cross-

sections are introduced. These topologies have characteristic shapes with varying degrees 

of thermoelectric module arrangement with respect to flow, heat exchanger configuration, 

and bypass system. The variants of developed numerical model are used to study 

performances statistics for identical inlet conditions and number of thermoelectric 

modules within allotted pressure budget. The transverse model was found to be the most 

efficient design for a fixed number of thermoelectric modules at average inlet conditions.  
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The third part of this thesis has been based on optimization of thermoelectric 

modules. A numerical approach based on finite difference method is implemented to 

characterize thermoelectric power conversion efficiencies and their dependence on 

thermoelectric leg height, cross-sectional areas and TE leg terminal temperatures. The 

developed model is further employed to optimize thermoelectric modules based on 

Skutterudites material. Two typical heat exchanger profiles (plate fin heat exchanger and 

jet impingement) are studied as inputs and optimized geometric configurations for 

Skutterudite based TEMs are presented. TE modules with leg height of 3.5 mm to 5 mm 

were found to be most suitable for automotive waste heat recovery systems.  

The fourth part of this thesis investigates the axial conduction effects on TEG 

performance. The numerical model is developed to incorporate axial conduction terms in 

wall liner and additions are incorporated in parent numerical model. The TEG output 

sensitivity to liner material, liner thickness, and inlet flow conditions are presented. Axial 

conduction was found to be more prominent in copper liners as compared to stainless 

steel ones and increases with liner thickness. Axial conduction in liner was most 

detrimental to TEG performance for inlet conditions with low flow rates and high 

temperatures.  

6.2 Future Work 

6.2.1 Jet Impingement 

The analysis of TEG system based on traditional heat exchanger mechanisms 

approaches has shown that the TEMs should be placed at hottest regions of the TEG 

system. Also, all the TEMs should be exposed to the same hottest temperatures. TEG 

design based on jet impingement is one of the probable designs which could harness this 



122 

 

concept. The surface heat transfer surface coefficients for jet impingement range from 

200-500 W/m2-K at the expense of desired pressure drop limit of 800 Pa [61]. 

6.2.2 Modeling Test Bed to Support TEG Development 

As a part of thermoelectric design, this project intends to develop a thermoelectric 

generator’s prototype in the facilities of Zucrow Labs, Purdue University. The CFD 

analysis will be quite helpful in finalization of the final design of prototype. The major 

findings from the 1D analytical and CFD analysis will be very beneficial in the 

development of thermoelectric generator. 

6.2.3 Transient Analysis 

The inlet conditions to the TEG such as the mass flow rate and the exhaust 

temperature depend on the engine running condition. It has been shown in the present 

analysis that the variation in the inlet conditions strongly affects the electrical power 

output, electrical voltage and load current. Hence, a transient analysis of TEG over an 

engine drive cycle is a critical study. This analysis will help us to assess TEG’s 

performance over a real-time scale. The sensitivity of TEG could be another important 

study to measure the thermal lag in power generation to inlet variations. However, the 

transient analysis in 1D may not provide us much understanding about the varying flows 

and flow reversals inside TEG, 3D analysis could be bit more comprehensive. But 1D 

transient analysis would be an important first step before initiating a computational study 

of 3D model as discussed in following section.  

6.2.4 Computational Analysis of 3D Model 

Since, the current model’s analysis was performed in only two dimensions, various 

physical phenomena associated to this problem like fluid flow reversal, non-uniform 
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temperature distribution, etc., cannot be analyzed. This is possible if the mass, 

momentum and energy conservation equations are solved in 3D domain of the 

thermoelectric generator. Currently available commercial software like ANSYS Fluent 

has the capability to simulate real life complex physical problems in a 3D computational 

domain. Comprehensive 3D model simulations will help to understand thermoelectrical 

and thermodynamical phenomena inside TEGs. 
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APPENDIX 

Comparison of Methods for Electric Power Calculations 

The material properties of thermoelectric legs are dependent on the temperatures. 

The spatial variation in temperature would lead to large differences in calculated 

parameters if averaging principles were used. The average based calculations are 

performed by Eq. (A.1) [58].  
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In this section, a list of such methods are represented and compared with the 

discussed iterative methods. Iterative method has been discussed in detail in previous 

sections of this paper. The methods of interest are with brief description: 

1) Simple Average Method: The leg properties are calculated at average junction 

temperature. i.e. TM = (TH + TC)/2. For example:  , ,n p n p MT   

2) Integral Average Method: 

a. Integral Average (α): Only Seebeck coefficients are integral averaged over 

TH and TC. Other properties are calculated at average junction temperature.  
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 (A.2) 

b. Integral Average (all): All the properties are integral averaged over 

junction temperatures.  
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Figure A 1. Method comparison at different current inputs for skutterudites at Lx = 10 

mm, AN/AP = 0.8; ΔT = 450˚C, and Ap = 1cm2. 
 

The simple average method over predict efficiency values and do not match the 

iterative method. However, integral average methods perform better than simple 

averaging method; it may not be suitable for near optimal point analysis or for high 

current values input. The simple averaging methods do not take into account the 

Thomson effect at higher current values. Iterative method accounts for the material 

property variations and hence Thomson effect is accounted for various ranges of input 

current. 
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