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ABSTRACT

Kim, KiHyung Ph.D., Purdue University, December 2014. Strategic Flexibility. Ma-
jor Professor: Abhijit Deshmukh.

A flexible system is defined as one that can change the entity’s stance, capability

or status reacting to a change of the entity’s environment. Flexibility has gathered

the attention of academic researchers and industry practitioners as an efficient ap-

proach to cope with today’s volatile environment. As the environments become more

unpredictable and volatile, it is imperative for a flexible system to respond quickly to

a change in its circumstance. How much flexibility is embedded into the system also

has a critical impact on the long-term effectiveness of the flexible system. Moreover,

this research focuses on the strategic environment where a decision maker’s behavior

influences other decision makers’ and vice versa.

The primary objectives of this dissertation are developing a concrete framework

for designing a flexible system by considering the exercise delay as a measure of

flexibility and investigating the rational behaviors of decision makers who operate

flexible systems under strategic environments. The general approach employed to

develop the theoretical models for this dissertation includes optimal control theory,

non-linear optimization, stochastic differential equation and game theory.

The first part of this research studies the optimal decisions on a flexible system

with exercise delay within stochastic environments by postulating two level deci-

sions, operational level and design level decisions. The operational level problem is

modeled as a delayed optimal stopping time problem, and this research provides a

comprehensive profile of the optimal operational policies according to the parameters

representing the market conditions and characteristics of the alternative and designed

features of the flexible system. In addition, the profile elucidates the interdependence
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between the operational level decision and the design level decision separating the en-

tire domain of the design problem into sub-regions. This research effort finds that the

design problem is decomposable with well-behaved non-linear optimization problems,

and provides illustrative examples to show the usefulness of the developed framework.

The second part of this research concentrates on strategic environments which

force a decision maker to cope with both exogenous uncertainty and endogenous in-

teractions among decision makers. As the strategic environment, a duopoly market

share competition is postulated where the total market profit is regarded as the un-

derlying uncertainty. The player retaining an exclusive patent is regarded as a player

competing in the market with a flexible system that does not have exercise delay, and

the other competitor is interpreted as a player operating a flexible system with exer-

cise delay. The open loop and closed loop information structures are considered for

each model. The results showed that the open loop equilibrium is unique dominant

strategy equilibrium. An interesting implication of the open loop equilibria is that the

profitability of the flexible option decides the role of its owner in the duopoly market

competition. This research finds that the closed loop equilibrium has two distinctive

forms. When the asymmetry of exercise delay is large, the closed loop equilibrium is

identical to the open loop equilibrium. On the other hand, if the asymmetry provides

only a small enough advantage to the player who has a flexible option without ex-

ercise delay, the rational behaviors of the players are complicated in the closed loop

equilibrium. The first insight from the closed loop equilibrium with large asymmetry

is that the closed loop information structure hastens the execution of flexible options,

and it results in lower payoffs to both of the players. Second, the role of each player

is determined not only by the characteristics of the flexible options but also by the

value of stochastic factor. Third, even the player with a competitive disadvantage

from the asymmetry has a positive chance to be the leader of the market.

This research contributes to the area within industrial engineering and operations

research by improving the current theoretical achievement of flexibility. The accom-
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plishments of this work provides insights to various domains those would benefit from

enhanced flexibility in the decision making process.
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1. INTRODUCTION

1.1 Motivation

Flexibility has gathered the attention of academic researchers and industry prac-

titioners as an efficient approach to cope with future uncertainty. A flexible system

is defined as one that can change the entity’s stance, capability or status reacting

to a change of the entity’s environment. Needless to say, future uncertainty is an

important factor that decision makers have to deal with, and it becomes even more

vital in today’s volatile environment. Since a flexible system can take the best action

within its available options, it is regarded as an effective approach to manage future

uncertainty. As the environments become more unpredictable and volatile, it is im-

perative for a flexible system to respond quickly to a change of its circumstance. How

much flexibility is embedded into the flexible system also has critical impact on the

long-term effectiveness of the flexible system. Moreover, it is necessary to scrutinize

the environment of a system to utilize the benefit from flexibility. Among the envi-

ronmental characteristics, this research focuses on the strategic environment where

a decision maker’s behavior influences other decision makers’. Since the interactions

among decision makers cause a different type of risk from that which the classical

flexibility approach deals with, it is essential to consider the strategic environment

appropriately.

The usefulness of flexibility under stochastic environments becomes clear, when it

is compared to the traditional theory. According to Dixit and Pindyck [1], the ortho-

dox theory that is mainly based on Net Present Value (NPV) approach has drawbacks

in complex and volatile environments. They pointed out that the traditional approach

is valid for a reversible decision or a “now or never” type decision. Because NPV is

based on the estimated future uncertainty, estimation risks are inherent in the tradi-
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tional approach. In other words, the estimation may not describe the future states

appropriately, and it can cause an unsatisfactory decision under unstable situations.

The traditional approach implicitly assumes that a decision maker can revise the

decision that is turned out to be grounded in unsatisfactory estimation. However,

many of decisions are irreversible in reality. When the decision is irreversible, de-

cision makers prefer flexible decision making that enables to postpone the decision

until the underlying uncertainty is resolved enough to avoid the estimation risk. Al-

though, the traditional theory is appropriate for the situations when a decision must

be made now or the opportunity to take the action disappears forever, the approach

is not adequate for flexible decision making. Because of these reasons, flexibility is

increasingly turned to as an effective approach to dealing with uncertainty in systems.

This research extends current research of flexibility by considering exercise delay

that does not get enough attention from decision makers. The extent of flexibility can

be measured in a number of different ways. For example, the overall cost to change

the capacity of a system [2], the extend of possible choices [3], and the states that a

flexible system is efficient in [4] are suggested measures of flexibility. This research

focuses on the time delay between different system states, or the time required to

flex the system. The author believes how quickly a system can implement a flexible

decision is an essential measure of any system that is considered flexible. After all,

given enough time and resources, any system can be considered flexible. With this in

mind, the delay between the time a decision is made and the time that decision takes

effect becomes a useful notion of flexibility, which is called “exercise delay.” Systems

with greater flexibility will have shorter exercise delay, whereas less flexible systems

will have greater delays. How United Colors of Benetton acquired its competitive

advantage in the fashion industry is a well-known real world example showing the

importance of exercise delay [5]. Since customers’ preferences to color is volatile and

difficult to predict, Benetton employed the “Knit now, Dye later” policy. Benetton

produces clothes without colors and dyes pre-produced clothes when the new season’s

popular color fashions become apparent. Because of the ability adapting Benetton’s
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items for the change of customers’ preference quickly, it was popular in the 1980s and

the 1990s. This research regards exercise delay as an essential component of a flexible

system.

The efficiency of a flexible system is determined by not only how well the system

is operated but also by how much flexibility is embedded in the system. For instance,

suppose that a man is stranded on a desolate island with a Swiss Army Knife and

canned foods. Unless the knife is equipped with a can opener, it is not very useful for

his survival. This hypothetical example illustrates that the flexible system may not

be effective no matter how well the system is operated, if it is ill-designed. Since the

design of a flexible system has been studied mainly in the view point of capability

change, the literature lacks a formal approach to studying the optimal design or level

of flexibility with respect to the exercise delay.

Insufficient consideration of the strategic environment can cause dire consequences

for the system; especially when the other decision makers are uncooperative. A de-

cision maker may overestimate the value of a flexible system and not operate it

optimally, if the strategic environments are not considered appropriately. The exam-

ples showing the importance of strategic environment are easily found in competitive

industries. Google paid 12.5 billion dollars to acquire Motorola in 2012, and sold

the company to Lenovo at 2.91 billion dollars except for the majority of Motorola’s

patents. After spending about 10 billion dollars, Google retains only Motorola’s

patents, and many of the patents has not been implemented yet. The retained patents

provide flexibility to Google, because customers’ demands are hard to predict. If the

patents enable Google to satisfy a new demand, the company is able to manage the

stochastic environment which comes from customers’ volatile demands. However,

whether the patents are worth of 10 billion dollars is controversial. Samsung is one of

the biggest competitors against Google in the mobile phone market. Since Samsung

has been engaged in many patent infringement suits, it aggressively invests in the

research and development of alternative technologies. If Google underestimated the
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R&D efforts of competitors, the deal with Motorola regarding the patents could be

overestimated.

The strategic environments affect not only the evaluation of a flexible system but

also the operation of it. In the context of launching a new product without compe-

tition, a company may want to postpone introducing the new product to utilize the

benefits from the existing production line. Suppose that the workers are so accus-

tomed to the current production process that the company saves costs by learning

curve effect, and the new product may encroach on the profit of the current prod-

uct. Then the company has incentive to postpone launching a new product until the

customers’ demand of the existing product is exhausted. Alternatively, presume that

the market is competitive, and the first mover’s advantage exists. Then the company

has incentive to preoccupy the new product market by introducing the new product

earlier than its competitor, even if it costs the benefit from the current production

mode. In terms of flexible system management, it suggests the competition hasten

the execution time of flexible option.

This research is motivated to develop an concrete framework for an optimal design

of a flexible system that has exercise delay and to derive and analyze the equilibrium

of interactions between decision makers who operate flexible systems.

1.2 Overview of Research Goals

The primary objectives of this dissertation are to develop a concrete framework of

flexible system design considering exercise delay and to analyze the rational behavior

of system operators who manage a flexible system and interact with each other. The

increasing attention that has been directed toward managing the impact of uncertain-

ties in flexible systems with exercise delay has not yet provided a framework for the

system design problem. It is a cornerstone of design task how the designed flexible

system is operated, and the operational decision is based on the designed features.

To the best of author’s knowledge, the current literature has not yet provided a sys-
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tematic framework for the design problem considering the interdependency of design

and operational level decision. Providing a well-established flexible system design

framework is one of the main goals of this dissertation.

Strategic environments compel a decision maker to consider both the uncertainty

that is not controlled by any of decision makers and the risk caused by other players.

Considering the endogenous interdependency among decision makers and investigat-

ing decision makers’ rational behavior in an equilibrium are the other main goals of

this research effort.

These research goals are accomplished through the development of the theoretical

models of a flexible system and the solutions under stochastic environments and

strategic environments.

1.2.1 Flexible System with Exercising Delay

This research considers an irreversible decision under a stochastic environment.

A system designer builds a flexible system that enables the operator of the system to

postpone the irreversible decision until the uncertainty is resolved enough to ensure

the irreversible decision is effective. This dissertation postulates there is an exercise

delay between the decision and implementation of the flexible alternative, and once

the decision is made, it cannot be revoked. Since the traditional approach is not

adequate in this situation, this research effort utilizes the findings in optimal control

theory and develops a systematic framework for designing the flexible system.

This research provides the following benefits to the flexible system managements

regarding exercise delay as the measure of flexibility under stochastic environments.

• Deriving the optimal operational policy of a flexible system with exercise delay :

A comprehensive profile of optimal operational policies according to the param-

eters those represent market conditions and the flexible system configurations

is beneficial to system operators.
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• Analyzing the effect of exercise delay on the optimal operational policy : During

the exercise delay, the system is exposed to additional uncertainty which is

avoidable when there is no exercise delay. Therefore the exercise delay affects

the optimal operational decision. Analyzing the effect, this research aims to

provide insights into the characteristics of a flexible system design problem.

• Developing a concrete method to find the optimal design of a flexible system:

By investigating the mutual effects between design and operations, this research

effort elucidates the structure of design problem and suggests an appropriate

approach to solve the design problem. The suggested framework for design

problem is desirable to be solved with usual non-linear optimization methods.

To achieve these research goals, Chapter 3 of this dissertation develops theoretical

models and illustrative examples for two distinctive flexible systems. The model in

Section 3.3 considers only one flexible alternative is available for a flexible system

in terms of capability. It postulates that the operational task is to determine the

optimal time to initiate the change of system, and the design task is to embed the

optimal exercise delay into the flexible system. Section 3.4 models a flexible system

whose exercise delay and the level of capability change are determined in the design

phase.

1.2.2 Strategic Flexibility

This research expands the assumption of stochastic environments to strategic en-

vironments by including the interactions between decision makers. As the application

context, this research models a market share competition in a duopoly market where

the total market profit is stochastic. One player in the market retains an exclusive

patent, and the other player has to complete a research and development project to

compete with the player with patent in the new product market. Since this disser-

tation regards how fast a flexible system responds to the change of environment, the

developed model belongs to a stochastic preemption game.
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The results of this dissertation provide the following advantages to the flexible

system managements under strategic environments.

• Improving the construction of strategy space of option exercise games : For de-

terministic preemption games, how to describe the players strategy is well es-

tablished with rigorous mathematical background [6]. However, it is still a

matter of study in stochastic preemption games. Reflecting the characteristics

of stochastic game, this research suggests the strategy space based on both the

history and the current position of stochastic factor.

• Finding the open loop equilibrium of strategic flexibility : In the open loop model,

players cannot observe their opponents’ actions during the game [7]. Therefore

no player updates his or her strategy after the beginning of the game. By deriv-

ing the equilibrium of the model, the rational behavior of the players provides

insight to the management of flexible system. Moreover, the equilibrium of this

model illustrates how the patent plays a role as a entrance barrier when the

information about the competitors’ behavior is restricted.

• Finding the closed loop equilibrium of strategic flexibility : In the closed loop

model, players are able to observe their competitors’ actions and to update

their own strategies based on the observed actions [7]. Although a comprehen-

sive and concise description of players’ strategy is required to derive closed loop

equilibrium, a satisfactory construction of the strategy space is not yet reported

for stochastic preemption games. This research aims to provide a strategy space

that describes the players’ strategy appropriately, and to derive the closed loop

equilibrium illustrating the rational behavior of the players under the closed loop

information structure. Finding insights into the rational decisions by compar-

ing the open loop equilibrium and the closed loop equilibrium is an additional

purpose of this research effort.

Chapter 4 is devoted to accomplishing these research objectives. Section 4.3 mod-

els the duopoly market share competition, where a player operates a flexible system
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without exercise delay, and the other player manages a flexible system with a fixed

exercise delay. The model in Section 4.4 considers the competition where the exercise

delay is a random variable.

1.3 Organization of the Dissertation

The remainder of this dissertation is organized as follows. Chapter 2 reviews the

research conducted in the area of flexibility. This chapter emphasizes the evolution of

flexibility concept, measure of flexibility, evaluation methods and strategic flexibility.

Chapter 3 introduces two models of flexible systems with exercise delay, and pro-

vides the optimal solutions of operational decisions and frameworks for system design

problems. The first model assumes that there is only one alternative in terms of

the level of capability change, and this assumption is relaxed in the second model to

accommodate an infinitely many alternatives case. The results of this chapter pro-

vide the closed form solution of the operational level problem that covers the cases of

expanding capability, reducing capability and even terminating the operation. Based

on the analytical solution, the effect of exercise delay upon the optimal operational

decision is analyzed. Moreover, the results clarify a structure of design problem and

indicate the difficulties of design problem caused by the interdependence between de-

sign and operational level decisions. A decomposition method is developed to solve

the design problem with usual non-linear optimization methods. Illustrative examples

in the context of a renewable energy utility are included .

Chapter 4 investigates the strategic flexibility in the context of duopoly market

share competition. This chapter assumes a company in the market retains an exclusive

patent and the other has to conduct Research and Development (R&D) project to

compete against the firm with the patent. This research models the exclusive patent

as a flexibility without exercise delay and R&D opportunity as that with exercise

delay. The first model assumes that the duration and costs of R&D are known

as fixed numbers, and the second model considers a stochastic duration and costs
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case. By deriving the open loop and closed loop equilibria and comparing them,

this dissertation provides insights into the rational behaviors of option exercise game

players.

This dissertation is concluded in Chapter 5 by presenting conclusions, research

contributions and potential extension areas for future research. The author provides

appendices containing the proofs of theorems, detailed calculations, numerical solu-

tions of illustrative examples. The bibliography of referenced work is at the end of

this dissertation.
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2. RELATED WORK

2.1 The Concept of Flexibility

Research in the area of flexibility has over 70 years of history. Stigler [8] pub-

lished the seminal paper which explicitly used the terminology “flexibility.” In the

research, Stigler regarded a system having a flat average cost curve as a flexible

system. Marschak and Nelson [9] disputed the concept of flexibility suggested by

Stigler. They conceptualized flexibility in terms of marginal cost rather than average

cost. Hart [10] emphasized decision postponement as the core component of flexi-

bility. With flexibility, a decision maker can postpone an irreversible decision until

future uncertainty is resolved enough. Feibleman and Friend [11] defined flexibility in

an organization context as “the capacity of an organization to suffer limited change,

without severe disorganization.”

In fact, flexibility is so important that there are entire journals and several ex-

cellent literature reviews devoted to the subject; however the concept of flexibility is

still vague and ambiguous. Buzacott and Mandelbaum stated the following in their

recent review paper [3]:

“As exciting and useful as the concept of ‘flexibility’ seems, there is no

common agreement on how to define or implement the concept and it has

been very problematic to get coordination between theoretical academic

understanding of flexibility and industrial practice.”

Saleh et al. [4] pointed out that one source of ambiguity is due to confusion

among similar terminologies such as robustness, adaptability and agility. Even though

the discussion is restricted to flexibility, the ambiguity does not disappear because
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flexibility concept highly depends on particular managerial situations or context of

the system [12].

To elucidate the concept of flexibility, Section 2.1.1 provides the conceptual devel-

opment in the manufacturing area. Manufacturing flexibility is an extensively studied

area of flexibility thanks to the concrete flexible systems, such as flexible manufactur-

ing systems (FMS), group technology and modular manufacturing. The findings in

manufacturing flexibility provide a theoretical benchmark to other areas. In the early

conceptual studies of manufacturing flexibility, identifying the types of flexibility to

improve manufacturing flexibility was the main subject of study.

Later research focused on abstracting the dimensions of flexibility from the iden-

tified types of flexibility. Since the flexibility dimension framework is applicable to

other areas, it extended to other areas, such as intellectual technology, supply chain,

and business process. Section 2.1.2 summarizes the dimensions found in the manu-

facturing context and the extended dimensions in other fields.

2.1.1 Types of Flexibility in Manufacturing Flexibility

Browne et al. [13] established the taxonomy of 8 flexibility types, and many fol-

lowing conceptual studies in manufacturing flexibility accept the types of flexibility

approach. Among the review papers, Sethi and Sethi [14] is often cited. By re-

viewing over 202 research articles, they provided 3 levels of flexibility: component

or basic flexibilities, system flexibilities, and aggregate flexibilities, and defined 11

flexibilities. Vokurka and O’Leary-Kelly [15] improved Sethi and Sethi’s framework

including empirical research. They defined 15 types of flexibility and identified four

important exogenous variables of manufacturing flexibility; strategies, organizational

attributes, technology and environmental factors. Other review papers, such as Gupta

and Goyal [16], Sarker et al. [17] De Toni and Tonchia [18], Shewchuk and Moodie [19],

Parker and Wirth [20], Beach et al. [21] and Bengtsson [22], and Koste et al. [23] ac-
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cepted the types of flexibility analysis. The author summarizes the widely accepted

definitions of flexibility types and the studies supporting the importance of the type.

1. Machine Flexibility: When a machine can complete various types of operations

the machine is flexible. Lim [24] studied machine flexibility with FMS designs

with empirical data. The research found two bottle neck processes of machine

flexibility; automated fixture assembly and mounting. Jaikumar [25] researched

how to improve machine flexibility in group technologies.

2. Material Handling Flexibility: If materials, such as raw materials and parts,

can be placed in proper positions efficiently, the system has material handling

flexibility. Gupta and Somers [2] asserted that there are three activities, loading

and unloading of parts, inter-machine transportation, and storage of parts, to

improve material handling flexibility. Material handling flexibility improves

machine usage and process efficiency.

3. Operation Flexibility: Operation flexibility means the ability to produce a prod-

uct in various ways. This definition is provided in Browne et al. [13], and Sethi

and Sethi [14]. Modular process with standardized components is a typical

example of operational flexible system [26].

4. Automation Flexibility: Automated or computerized manufacturing systems

are flexible, since the manufacturing process can react to the realization of

uncertainty easily. Parthasarthy and Sethi [27] defined intensity of flexible au-

tomation, and analyzed its relationship with the performance of the manufac-

turing system. The empirical studies showed that flexible thinking is required

at strategic level. Gebauer and Scharl [28] studied automation flexibility in the

context of web business process.

5. Labor Flexibility: Vokuka and O’Leary-Kelly [15] defined labor flexibility as

“the range of tasks that an operator can perform within the manufacturing

system.” Labor flexibility is emphasized in the series of Slack’s studies [29–31].



13

Gerwin [32] studied the labor flexibility in the context of computer-aided man-

ufacturing. He also emphasized the worker’s skill on general purpose machines

over specialized equipment. Parthasarthy and Sethi [27] found that flexible au-

tomated manufacturing system requires more skillful workers and that project

team is an appropriate organization of flexible automation.

6. Part-Mix Flexibility: If a system is able to produce the set of parts without

major modifications, the system is part-mix flexible. Although Sethi and Sethi

called this flexibility “process flexibility,” this dissertation uses the candid ter-

minology, part-mix flexibility, because process flexibility has a broader meaning

in recent research [33, 34]. Avonts and Van Wassenhove [35] clarified the con-

cept of part-mix flexibility in flexible manufacturing system (FMS) context, and

modeled FMS decision making problem as a queuing network problem. Ger-

win [36] introduced a similar concept, mix flexibility, as “The processing at any

one time of a mix of different parts loosely related to each other.” Tomlin and

Wang [37] studied supply chain design problem as a mix flexibility optimization

problem. They compared performances of four types of system; Single-source

dedicated, Single-source flexible, Dual-source dedicated and Dual-source flexible

systems.

7. Routing Flexibility: When a system has routing flexibility, the system can pro-

duce a part with various routes. Vokuka and O’Leary-Kelly [15] defined the

routing flexibility as “the number of alternative paths a part can take through

the system in order to be completed.” These flexibility definitions concur with

the definitions of Browne et al. [13] and Gerwin [36]. Rossi and Dini [38] investi-

gated job-shop scheduling of systems with routing flexibility. They used an ant

colony optimization method to utilize the routing flexible system and showed

that the proposed algorithm is superior to genetic algorithm. Caprihan and

Wadhwa [39] studied the performance of a flexible manufacturing system with

routing flexibility with simulation. They found that increasing routing flexibil-
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ity does not guarantee the improvement of performance. This result implied

that there exists an optimal level of flexibility.

8. Product Flexibility: When existing parts of a system can be replaced with

new parts without spending significant amounts of time and costs, the system

has product flexibility. Gerwin and Tarondeau [40] refers product flexibility to

changeover and modification flexibility, and asserted that firms can response to

change of customers’ volatile preferences with the flexibility. Palani et al. [41]

supported the results of [40] with empirical findings.

9. Design Flexibility: With design flexibility, a system is able to introduce a new

product with short amount of time and low costs. Robb Dixon [42] empha-

sized introducing new product with empirical research. Kouvelis et al. [43] and

Kouvelis [44] focused on long-term problems in flexible manufacturing systems

such as design and planning problems. They classified the problems in terms of

decision level and planning horizons such as long term, medium term and short

term. Palani et al. [41] found that modularization, especially designing module,

enhances product flexibility.

10. Delivery Flexibility: Slack [31] defined delivery flexibility as “the extent to which

delivery dates can be brought forward” and “the time taken to reorganize the

manufacturing system so as to replan for the new delivery date.” Vokuka and

O’Leary-Kelly [15] interpreted Slack’s definition as “the ability of the system to

respond to changes in delivery requests.” Sabri and Beamon [45] analyzed the

effect of delivery flexibility on supply chain.

11. Volume Flexibility: Volume flexibility is the ability to adjust output levels ac-

cording to the change of environment. Vokuka and O’Leary-Kelly [15] defined

the measure of volume flexibility as “the Range of output levels that a firm can

economically produce products.” Jack and Raturi [46] conducted three case

studies, and found the drivers and sources of volume flexibility. They clas-

sified the sources of volume flexibility into four categories; internal, external,
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short-term and long-term sources. The results showed that volume flexibility

increases financial performance and delivery performance of firms. Short term

sources and internal long-term sources were verified as the sources of volume

flexibility through statistical analysis.

12. Expansion Flexibility: If the capacity of a manufacturing system is able to be

adjusted easily, the manufacturing system has expansion flexibility. Gupta and

Somers [2] defined expansion flexibility as “the extent of overall effort needed

to increase the capacity.” Karsak and Özogul [47, 48] evaluated the value of

expansion flexibility based on a real option approach.

13. Program Flexibility: Sethi and Sethi [14] defined program flexibility as “the

ability of the system to run virtually untended for a long enough period,” and

Vokuka and O’Leary-Kelly [15] stated that “program flexibility reduces the

overall manufacturing time by decreasing set-up times.” Gupta and Somers [2]

verified the importance of program flexibility by factor analysis on data from

top level managers.

14. Production Flexibility: When a manufacturing system can produce a new prod-

uct without adding major capital equipment, the system is production flexible.

Gupta and Somers [2] found three factors of determining production flexibil-

ity; variety and versatility of available machines, flexibility of material handling

systems, and the factory information and control systems.

15. Market Flexibility: Market flexibility is a broad concept of flexibility. Sethi

and Sethi [14] defined it as “the ease with which the manufacturing system can

adapt to a changing market environment.” This flexibility enables the firm to

cope with volatile environments and competitors’ behavior [2].
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2.1.2 Dimensions of Flexibility

Researchers have abstracted the essence of the types of flexibility. The dimensions

of manufacturing flexibility provided broader understanding about flexibility rather

than focusing on concrete activities. Since the dimensions of manufacturing flexibility

are generally applicable, the research of flexibility in other fields employed flexibility

dimension analysis.

Recently, Buzacott and Mandelbaum provided am exemplary literature review,

including a comprehensive framework for understanding flexibility, and emphasized

dimensions of flexibility [3, Section 2.4]. Parker and Wirth [20] suggested the rela-

tionships between types and dimensions of manufacturing flexibility. They analyzed

manufacturing flexibility with six categories; system vs. machine, action vs. state,

static vs. dynamic, range vs. response, potential vs. actual, and short, medium and

long term. Shewchuk and Moodie [19] employed a part of the dimensions in their

classification.

The research of flexibility dimension analysis has been extended to other fields

such as information technology, business process and supply chain management. As

a consequence of extension, interdisciplinary study about flexibility has been con-

ducted. Golden and Powell’s work [49] is a survey paper of flexibility in information

technology field. Schonenberg et al. [34] reviewed flexibility studies in the view point

of business process. Saleh et al.’s work provides an interdisciplinary literature review

for flexibility [50].

1. Level of flexibility: Gerwin [36] mentioned the level of flexibility, and it is im-

proved in his following work [51]. Suri and Whitney [52] and Kouvelis [44]

classified the level of flexibility into three levels. The top level decision is called

strategic decisions, and it contains the decisions about part family selection and

system capacity. The second level decision includes batching and resource allo-

cation decisions. Scheduling, dispatching, tool management and system moni-

toring decisions belong to the third decision level. Sethi and Sethi [14] provided
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three levels of flexibility in their framework of flexibility; component or basic,

system, and aggregate flexibility. Component or basic level flexibility includes

machine, material handling, and operation flexibility. System flexibilities con-

sist of process, routing, product, volume and expansion flexibility. Gupta [53]

classified flexibility according to the magnitude of changes that flexible choice

provides. He asserted machine, cell, plant and corporate levels of flexibility.

De Toni and Tonchia [18] emphasized vertical or hierarchical classification of

flexibility and summarized the studies related to the level of flexibility. They

analyzed flexibility in four levels; plant and machine, production function and

work department level, product line level and global level of the firm. Parker

and Wirth [20] call this dimension as system vs. machine dimension. Buzacott

and Mandelbaum [3] stated that the level of flexibility defines the boundary of

decision problems and systems.

In supply chain management, the level of flexibility is extended beyond the firm’s

level. Mair [54] added the corporation’s network level of flexibility to micro

level and factory level by studying Honda’s case. Stevenson and Spring [55]

also emphasized the network, outside of a firm level dimension, as a dimension

of flexibility. Although Parker and Wirth [20] called this dimension the system

vs. machine dimension, the research of supply chain management field suggest

“level of flexibility” is more appropriate name of this dimension. Therefore, this

dissertation calls it level of flexibility.

2. Prior, Action, and State Flexibility: Buzacott and Mandelbaum [3, Chapter 2]

provided the definitions of prior, action and state flexibility as following.

• Prior Flexibility: The variety of initial actions or decisions that decision

makers can take

• State Flexibility: The system with state flexibility is able to manage ex-

ogenous uncertainty by being effective under any environmental outcome

and thus coping with the stochastic environmental change. Suppose that
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an alternative is effective for one environment and is not effective for all

the others, than the alternative is state inflexible. On the other hand, if a

choice is effective for many situations, it is state flexible.

• Action Flexibility: The system equipped with action flexibility is able to

respond to resolved uncertainty by taking effective recourse action.

3. Decision Epoch: Carlsson [56] stated that “Static flexibility refers to the ability

to deal with foreseeable changes (i.e., risk), such as fluctuations in breakdowns

in the production process” and “dynamic flexibility refers to the ability to deal

with uncertainty in the form of unpredictable events, such as new ideas, new

products, new types of competitors, etc.” For dynamic flexibility, Buzacott

and Mandelbaum distinguish two periods cases and continuous time cases [3,

Section 2.4.6]. Two periods decision making problem is the simplest case of

finite decision epoch. Therefore this dissertation suggests four decision epochs;

single, finite, countable and continuous decision epoch.

4. Range and Response: Slack [30] recommended decision makers analyze flexibil-

ity in terms of range and response dimensions. Range of flexibility refers to the

extent of alternatives that a decision maker can choose. On the other hand,

response of flexibility expresses how fast the alternative can be implemented.

Buzacott and Mandelbaum include this dimension in “ease of change” [3, Sec-

tion 2.4.3].

5. Potential and Actual Flexibility: Browne et al. [13] discussed the dimensions of

potential and actual flexibility. Potential flexibility means the flexibility which

exists but is utilized only when it is needed. Actual flexibility refers to the

flexibility which is utilized regardless of the environmental status.

6. Decision Horizon: Gershwin et al. [57] provided three levels of decision horizon

as following;

• Long Term: Investment and initial design decisions
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• Medium Term: Design and planning decisions

• Short Term: Real time control

Gupta and Buzacott [58] decomposed “changes” with time scale according to

Gershwin’s decision horizon.

7. Uncertainty: Groote [59] suggested a general framework about the flexibility

of production processes. The research asserted three main properties of flex-

ibility in terms of environment allocation, operations strategy and strategic

interfaces. Especially, it classified the application area by the number of uncer-

tainty, one-dimensional applications and multidimensional applications. Buza-

cott and Mandelbaum stated not only the property of uncertainty but also the

interaction among decision makers [3, Section 2.4.4]. They emphasized that

interaction has different characteristics from exogenous uncertainty. Exogenous

uncertainty is not influenced by a decision maker’s decision. However, when

there is interaction, a decision maker’s decision affects the environment.

2.2 The Measure of Flexibility

The measure of flexibility represents how much a system is flexible. It is not sur-

prising that the measure of flexibility is not clear either, since the concept of flexibility

has not matured yet. While various measures of flexibility have been suggested, they

can be classified into four categories; the amount of cost to change, the number of

feasible alternatives, the extent of uncertain states in that the purpose of system is

achieved, and others.

The first approach asserts that the cost to accomplish the desired change measures

the flexibility of system. For example, Gupta and Somers [2] measures expansion

flexibility with the overall cost to increase system’s capacity. When the alternatives

of flexible systems are fixed, the cost base approach is appropriate. However, it is
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not sufficient to measure flexibility with only the cost to accomplish the change when

there are a number of possible choices.

The second approach measures flexibility with the extent of possible choices. For

instance, Mandelbaum and Buzacott [60] suggests the remaining choices available in

the subsequent period as the measure of flexibility in the context of decision theory.

This approach has disadvantages that useless alternatives are counted in measuring

flexibility. If a choice would be never used, the alternative does not contribute to

enhance the performance of the flexible system.

The third measure of flexibility is based on the states that a flexible system is

efficient. Gupta and Rosenhead [61], which is believed the first research to provide

the measure of flexibility [50], mentioned the following:

Rather than try to identify the best alternatives, we can ensure that our

early investment decisions permit the achievement of as many end-states

as possible. Subsequent stages of the investment plan are left to be de-

termined at later dates, when more recent information is available · · · . In

the context of our discussion, flexibility of a decision must be measured in

terms of the number of end states which remain as open options. [61, Page

B20-B21].

Subsequent studies support the open state based approach, since it provides useful

insight to the value of flexibility [50].

The entropy of flexible systems is suggested as a measure of flexibility [16, 62,

63]. According to Kumar [62], this measure has firm axiomatic foundations. The

properties and potential of entropy based measure is still the subject of study.

2.3 The Value of Flexibility

Various methods for valuing flexible systems have been developed. The most pop-

ular approach is the real options approach. Since flexibility has similar properties

as financial options, researchers employ the findings in financial options to evaluate
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flexibility. This is called the real options approach. Other than the real options ap-

proach, a number of methods are able to assess the value of flexibility according to the

context, for instance, dynamic programming, optimal control theory and expanded

net present value methods. Because of the variety of the methods, this dissertation

focuses on the important dimensions of the value of flexibility rather than the concrete

valuation methods.

2.3.1 Real Options Approach

Real options approach is the application of financial option theory to non-financial

investments. Financial options are basically contingent claims that can be made only

if attractive outcomes occur. Because flexible decision making and financial options

have this similarity, the methods to evaluate financial options are applicable to valuing

flexible system. Financial options theory is an extensive field, including the Nobel

Prize winning contributions of Black and Scholes [64] and Merton [65]. They derived

a closed-form solution to the value of a European call option. This method extended

to real assets which have similar properties with the European options [66]. Dixit and

Pindyck [1] and Trigeorgis [67] provided well-structured accounts of both the theory

and applications of real options. Bengtsson [22] reviewed flexibility and real options,

based on the classification of Sethi and Sethi [14] and investigated the ability of

real options methodologies to model flexibilities such as routing, volume, expansion,

shut-down, abandonment and deferment.

Before examining specific real options approachs to flexibility, the author remarks

that two critical assumptions of financial options theory should be carefully treated

in applying the results to real decision problems. The assumptions are the risk atti-

tude of the decision-maker and the completeness of markets. In the financial realm,

risk preferences can often be ignored via market completeness, however, in general

decision environments, outcomes cannot be replicated with tradable assets, and risk
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preferences must be taken into account [1]. The comparable assumptions of flexibility

evaluation are risk neutral decision makers and known payoff functions.

1. Option to Defer: Real option provides rights to wait until future uncertainty

is resolved enough to make an appropriate decision. Tiltman [68] applied real

option theory to pricing and deciding the optimal time to develop vacant ur-

ban land. Ingersoll and Ross [69] pointed out that most of investment projects

have similar properties with financial options, and the value of waiting to in-

vest can be found through option valuation models. McDonald and Siegel [70]

investigated the optimal timing to invest an irreversible project when the value

of project follows a continuous stochastic process, geometric Brownian motion.

They derived the closed form solution of the optimal timing and the value of

project.

2. Time-to-Build: When a project includes multiple stages, the option theory is

applicable to each stage. Majd and Pindyck [71] studied staged construction

investments with adjustments in response to resolved uncertainty by consid-

ering the effects of the time-to-build and opportunity cost on the investment

decision. Carr [72] researched sequential exchange opportunities using option

pricing theory.

3. Option to Alter Operating Scale: If the facing uncertainty turns to be favor-

able, the firm can expand the volume of production. On the contrary, if the

environment of the firm is hostile, the firm can shut down or contract the op-

eration. Brennan and Schwartz [73] evaluated a flexibility copper mine system

applying real option theory. They found the optimal policies to develop operate

and abandon the mine considering fluctuating copper price which follows geo-

metric Brownian motion. Trigeorgis and Mason [74] and Pindyck [75] are other

examples which belong to this category of real option.

4. Option to Abandon: If the environment is extremely unfavorable, a decision

maker can abandon an ongoing project permanently. The value of a project
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which can be abandoned and the optimal time of abandonment are the main

subjects of option to abandon. McDonald and Siegel [76] analyzed the value

of abandon option under the assumption of geometric Brownian motion. They

considered risk-neutral and risk-averse decision makers, and conducted sensitiv-

ity analysis of the optimal policy and the value of option. Myers and Majd [77]

caught the similarity between the option to abandon and American put op-

tion on a stock which pays dividend. Using an American put option evaluation

method, they found the value of option to abandon and optimal strategy to

exercise abandonment option.

5. Option to Switch: If a firm has product mix flexibility or process flexibility,

managers of the firm can change the current state of the firm to another available

state. Kulatilaka [78] modeled a flexible industrial steam boiler which can choose

its fuel between oil and natural gas. Kulatilaka and Trigeorgis [79] developed a

general framework to evaluate switch option.

2.3.2 Dimensions of Valuing Flexibility

Other than real options approach, Ross et al. [80] presented a framework for

defining the “changeability” of a system, which encompasses flexibility, adaptability,

scalability, and robustness. Ross et al. present their framework as a basis for design,

analysis, and evaluation of engineered systems. While the emphasis of this literature

has surrounded defining, measuring, and best practices for designing flexible sys-

tems [81], there is comparatively little work on techniques for valuing flexibility, and

their assumptions, trade-offs, and abilities. Notable works in this area include [82–84].

Neely [82] and Nilchiani and Hastings [83] approached the valuation problem from

different domains, such as R&D and space systems, but each consider net present

value, decision analysis and real options as approaches for valuing projects and sys-

tems. They arrived at similar conclusions that the classification of uncertainty can

differentiate systems by which approaches are most appropriate. These works com-
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monly point out there are system characteristics affecting the evaluation methods.

The author recapitulates the important dimensions of evaluating flexibility.

1. The Number of Decision Epochs: In the simplest case, there is a single point

in time when a decision can be made, for example, European style financial op-

tions. In this case, closed-form solutions for the value of the flexibility are often

available. For example, when the value of the optional asset follows the log-

normal distribution and other standard market assumptions hold, the Black-

Scholes formulas give the value of the option. More generally, there may be

multiple, but finitely many decision epochs. This is the case for systems with

recurring decision opportunities and fixed lifespans. If the life of the system is

indefinite or approximately infinite, a system with discrete decision epochs can

be modeled as having countably many epochs. In the extreme, systems can be

modeled with uncountably many decision epochs if decisions can be made con-

tinuously. In financial options applications, distinctions between the numbers

of decision epochs can clearly be seen in the distinctions between European,

Bermudan, and American style options. In general, systems with more decision

epochs require more sophisticated formulations.

2. The Number of Alternatives: By definition, any decision epoch has at least two

alternatives. Systems with minimal flexibility, two alternatives at exactly one

decision epoch, are rarely encountered in reality, and are structurally equiv-

alent to European-style financial options. Although it is often the case, or

assumed for convenience, systems need not have the same number of alter-

natives per decision epoch. Systems with just two alternatives per epoch are

often well-behaved, with state thresholds delineating optimality regions for the

two alternatives. Operational decisions with a range of discrete or continuous

alternatives, e.g., inventory management of a continuous commodity can have

finitely many, countably many, or uncountably many alternatives per epoch. As

the number of alternatives per decision epoch increases, there is greater need to
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express the relationship between the costs, benefits, and constraints of the sys-

tem and the alternatives through mathematical functions. Ceteris paribus, the

value of flexibility is always non-decreasing in the number of total alternatives

the system operator faces over the lifespan of the system. Generally speaking,

as the number of alternatives increases, solving for the optimal operational or

control strategies becomes increasingly difficult.

3. The Characterization of Uncertainty: The underlying uncertainty plays an im-

portant role in the modeling, formulation, and techniques which are appropriate

for valuing flexibility. Increasing the number of uncertain factors modeled sig-

nificantly hampers the prospect of analytical solutions, and increases the com-

putational burden of numerical and simulation-based solutions. The level of

precision needed to characterize uncertainty parallels the timing of the decision

epochs. There is no need to model the stochastic process of uncertain variables

at a greater level of detail than can be utilized by the decision-maker. When

detailed information on the stochastic process governing a random variable can

always be reduced to the so-called calibrating distribution of the random vari-

able at the decision epochs analytically or numerically [85]. When limited in-

formation about uncertain variables is available, e.g., moments or data on the

distribution function, the maximum entropy principle can be used to estimate

the distribution of the uncertainty. When modeling uncertainties, the assump-

tions of stationarity (probabilities are invariant to time shifts) and independence

(multiple realizations of uncertainty provides no information about each other)

are assumptions that allow for stronger formulations and solution methods.

4. The Decision Maker’s Objective and Constraints: The typical decision maker’s

goals are to maintain a given capability while minimizing cost, maximize the

rewards from a fixed cost, or most generally, maximize the net value of benefits

less costs. Moreover, when there are constraints that limit the operation of a

flexible system, it affects the value of flexibility.



26

2.4 Strategic Flexibility

Strategic flexibility is the intersection of game theory and traditional flexibility.

As Grenadier [86] pointed out the traditional real option paradigm is limited by not

enough consideration of strategic environment in which many decision makers interact

with each other. Integrating the knowledge of flexibility and game theory provide

more profound understanding about the behavior of real world decision makers.

There are two approaches to harmonize flexibility and game theory; option exercise

games and stochastic differential games. Option exercise games are based on the real

option approach extend to game theoretic modification. On the other hand, stochas-

tic differential games are grounded on game theory, and extend to include stochastic

factors which are expressed with stochastic differential equations. Researchers in eco-

nomics, business, and engineering fields mainly take option exercise games approach,

and applied mathematicians have contributed to stochastic differential games area.

2.4.1 Option Exercise Games

Huisman [87], Smit and Trigeorgis [88] and Chevalier-Roignant and Trigeorgis [89]

provide a text book of option exercise games. Grenadier [90] edited selected papers

of option exercise games. Ferreira et al. [91] emphasized option exercise games is

an appropriate approach to analyze the competitive advantage in strategic stochastic

environment. This section will review option exercise games studies by subjects

1. Real Estate Investment: Real estate investment has important properties that

make strategic environments significant in decision making. Williams [92] as-

serted that real asset development has finite elasticity of demand, limited num-

ber of and capacities of developers and limited supply of investment opportuni-

ties. Therefore, real estate development is one of the popular application areas

of option exercise games. He derived a sub-game perfect Nash equilibrium fo-

cusing on the limited supply of undeveloped real estate and finite elasticity of



27

demand due to the limited number of developer. Grenadier [93] found optimal

investment time for real estate development and strategic equilibrium.

2. Option to defer under competition: Smit and Ankun [94] considered the option

to defer investment in manufacturing under competition. They found that the

postponement of an investment decision may lose first mover’s advantage.

3. Strategic Growth: The exercise of options is an appropriate model to explain

strategic growth such as R&D, advertising campaigns, and logistical planning,

under competition. Since these activities can yield long term competitive ad-

vantages and growth opportunities, those are called strategic growth options.

Loury [95] is the seminal paper in strategic growth subject, R&D investment

with competition. Kulatilaka and Perotti [96] studied the optimal decision of

strategic growth under imperfect competition. Joaquin and Butler [97, Chapter

16] developed a strategic investment model when one firm has a competitive

advantage thanks to an asymmetric cost structure. They derived an optimal

exercising strategy of output level and timing and found a unique sub-game

perfect equilibrium under the assumption of duopoly market. Weeds [98] stud-

ied strategic growth option under two stochastic factors; the value of patent

and the probability of success of the project. Her results showed that there are

various optimal strategies according to the parameter values.

4. Incomplete Information and Preemption: When the competitors have incom-

plete information, the value of preemption, the first mover’s advantage, is not

the same to the case of complete information. Grenadier [99] studied the prob-

lem that each player behaves based on asymmetric private information, and

found an equilibrium framework. Interesting results include that if a player

chooses exercising policy based on the observed behavior of a competitor, a

“follow the leader” type of policy is optimal. Lambrecht and Perraudin [100]

investigated optimal strategies when there is a threat of competitor’s entry. The

information about a competitor’s entry is known with a probability distribution.
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5. Duopoly or Oligopoly Market Competition: Dias and Teixeira [101] reviewed

Smets [102]. He studied a stochastic symmetric duopoly problem. In his model,

an impact on market price follows geometric Brownian motion, and each firm

has an identical cost structure to its competitor. He found symmetric equilib-

rium of the market using dynamic programming approach with simplified as-

sumption about production level. Joaquin and Buttler [97, Chapter 16] expand

Smets’s work into asymmetric duopoly market and derived mixed strategy the-

orem. Grenadier [86] derived the Nash equilibrium for a Cournot competition

where both of the players have symmetric payoff structures and information.

The results show that the payoff of each player is determined by the underlying

stochastic process and the strategies of the players.

2.4.2 Stochastic Differential Games

The researchers in the stochastic differential games field focus on the structure of

the problems and problem characteristics, such as pursuit evasion, zero sum games,

cooperative and non-cooperative games, rather than the application. Recently, Ra-

machandran and Tsokos [103] provided a book about stochastic differential games fo-

cusing on pursuit-evasion games, concept of solutions and solving techniques. Friesz

[104] and Dockner et al. [105] focused on the application of stochastic differential

games in economics and management context. Bardi et al. [106] and Cardaliaguet

and Cressman [107] dealt with technical methods, especially numerical method, for

solving stochastic differential games. Contrary to other books which focus on non-

cooperative games, Yeung and Petrosyan [108] provided a text book treat about

cooperative stochastic differential games. This section contains a brief review about

stochastic differential games with traditional research topics and solving technique

point of views.

Roxin and Tsokos [109] define stochastic differential games. According to the

definition, games are stochastic if there is noise in the players’ observations of the
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state of the system or the transition equation. Bardi and Gaghavan [106] reviewed

many aspects of differential games such as pursuit evasion games, zero-sum games,

cooperative and non-cooperative games and other types of dynamic games. Pursuit

Evasion games believed the first application area of stochastic differential games.

The seminal work of Von Neumann and Morgenstern [110] applied to pursuit evasion

problem [111] since 1954. Basar and Haurie [112], a problem of pursuit-evasion is

considered where the pursuer has perfect knowledge whereas the evader can only

make noisy measurements of the state of the game.

This dissertation is interested in the solution techniques which are developed

in stochastic differential games. In the early development of solving techniques of

stochastic differential games, it is believed that a control process where each player

choose the optimal control variable to accomplish his or her objective. However,

subsequent research showed that the optimal control approach is inappropriate to be

applied directly to solve stochastic differential games [111,113].

Ho [114] solved a stochastic differential game problem with variational techniques.

Stimulated by [114], martingale approach and variational inequality approach were

popular in the 1970s. The existence and uniqueness of a solution was investigated by

many researchers, for example, Elliott [115], Bensoussan and Friedman [116].

A type of dynamic programming approach, Hamiltonian-Jacobi-Issacs (HJI) equa-

tion, was another widespread method to attack stochastic differential games. The

early works on differential games are based on the dynamic programming method now

called as Hamiltonian-Jacobi-Issacs (HJI) [117]. However, is an HJI equation may not

have smooth solutions, and existing non-smooth solutions may not be unique. There-

fore, in 1980s viscosity solution, a generalized solutions for Hamilton-Jacobi equation,

emerged. If a HJI equation satisfies a class of boundary conditions, viscosity solution

represents the unique solution of the HJI equation. The notion of viscosity solu-

tion is also useful to show a convergence property of algorithms based on dynamic

programming [118,119].
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3. FLEXIBLE SYSTEM WITH EXERCISE DELAY

3.1 Introduction

This research considers an irreversible decision under a stochastic environment.

This chapter postulates that a system designer builds a flexible system that enables

the operator of the system to postpone an irreversible change of system capability until

the underlying uncertainty is resolved enough to cope with a stochastic environment.

There exists “exercise delay” between the time the change is initiated and the time

that the change is completed. Since the operational decision is a premise of the design

problem, it is required to derive a comprehensive optimal solution of the operational

level decision. This research employs an optimal control theory that is based on

variational inequality approach to solve the operational level problem, and derives

a comprehensive closed form solution of operational level problem. Based on the

closed form solution, this research effort analyzes the effect of exercise delay on the

operational policy and identifies the interdependency of the operational task and

design task. Given the optimal operational decision, the system designer decides how

much flexibility, i.e., how long the exercise delay, is embedded in the flexible system.

The system design framework is developed upon the findings from operational

level decisions. Given the optimal operational decision, the system designer decides

how much flexibility, i.e., how long the exercise delay, is embedded in the flexible

system. The framework suggests that the design problem is decomposed into sub-

problems according to the effect of decided design variables on the operational level

decision. The developed framework is so concrete that the design level problem is

solvable with usual non-linear optimization methods with once differentiability cost

function.
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The rest of this chapter is outlined as follows. Section 3.2 provides a brief review

of delayed flexible systems and design of flexible system design. Section 3.3 models

a delayed flexible system that has only one flexible alternative with respect to the

capability change. The operational task is to determine the optimal time to start the

change the system’s capability, and the design task is choosing the optimal exercise

delay. The operational problem and design problem are stated in Section 3.3.1. The

comprehensive description of the optimal operational policy is reported in Section

3.3.2. Section 3.3.3 provides the decomposition framework of design level problem

and an illustrative example to show the usefulness of the framework. Section 3.4

considers the case that the system designer decides both the length of exercise delay

and the level of capability change. The results in this section are reported with the

similar structure of previous section. This chapter ends with the summary in Section

3.5.

3.2 Literature Review

3.2.1 Flexible System with Exercise Delay

Review papers and conceptual studies about flexibility agree with the importance

of exercise delay. Buzacott and Mandelbaum [3] highlight exercise delay as a measure

of flexibility. Slack emphasizes system response, which is defined as “the ease with

which it moves from one state to another, in terms of cost, time or organizational

disruption” as a measure of flexibility [29–31].

This research leverages the relatively well-developed literature devoted to the op-

timal operation or control of a flexible system. Bar-Ilan and Strange [120] delivered

a seminal research article in this area. They consider the case when the recourse

decision can be abandoned during the delay, and find that the option of abandon-

ment can make option exercise time early. Other extensions dealing with delayed

options or delayed stopping problems include Alvarez and Keppo [121], who consider

the case where delivery lags and revenues are correlated; Bayraktar and Egami [122],
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who provide a constructive solution and model the magnitude of the option deci-

sion; and Sødal [123], who considers extensions such as multi-agent systems. Ap-

plications of these and similar models include mergers and acquisitions [124], power

generation [125, 126], and the decision to implement advanced manufacturing equip-

ment [127]. Relative to the existing results in the literature, primary contributions

of this research are the measurement of flexibility in terms of the exercise delay, and

the modeling and solution of the system design problem.

Optimal stopping problems are a classic formulation from the operations research

and real options communities, where dynamic programming [1] and variational in-

equality approaches [128] are two common solution approaches. The operation of

a flexible system with a single irreversible decision can be modeled as an optimal

stopping problem, where the typical solution to the control problem is a threshold

policy which delineates between exercise and continuation regions. The most general

approach for a flexible system with exercise delay is by modeling the optimal opera-

tion or control problem as a delayed optimal stopping time problem. Øksendal [129]

provides the method to convert a delayed optimal stopping time problem to a nor-

mal optimal stopping time problem without delay, under the assumption of strong

Markov property. Moreover, he delivers a rigorous method to solve a optimal stop-

ping time problem, and this paper leverages these results to solve the system design

problem [128, Chapter 10].

3.2.2 Design of Flexible Systems

A number of studies devoted to study the optimal design of a flexible system.

Fine and Freund [130] studies the optimal investment in flexibility of a firm that can

distribute its capacity between two products. The uncertainty that the firm faced

was the quantity of demands described with discrete probability distributions. This

research addresses the optimal design of a prior flexibility. Van Mieghem [131] models

the optimal flexibility investment problem as a news-vendor problem with arbitrary
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multivariate demand distribution. The research finds the optimal investment policies

according to costs, prices and demand uncertainty. Bish and Wang [132] develop van

Mieghem’s work to the case that there are correlations among the uncertain amount

of demands. Research about partial flexibility provides significant insights into the

investment of flexibility.

Partial flexibility means that facilities can only produce a certain range of prod-

ucts. Jordan and Graves [33] provide important concepts, smart limited flexibility

and chaining. Smart limited flexibility means the appropriate limited flexibility pro-

vides most of the benefits of full flexibility. Moreover, chaining strategy, combination

of limited flexible facilities, enhances the performance of limited flexible systems. Jor-

dan and Graves’ work [33] has been extended in many application areas; Graves and

Tomlin [133] extend the result in multistage supply chains context; Gurumurthi and

Benjaafar [134] apply the result to queuing systems; Hopp et al. [135] apply the re-

sults for scheduling flexible workforce. The flexibility in a network context is also an

interesting research area in the systems flexibility point of view. Iravani et al. [136]

suggested structural flexibility that is the flexibility concept for serial, parallel, open

and closed networks. Based on network flow model, Akşin and Karaesmen [137]

showed that the throughput of a network is concave with respect to the level of

flexibility. Using the property, they studied the relationship between flexibility and

capacity. Chou et al. [138] studied the worst-case performance of a symmetric system,

and provided design guidelines. Although numerous studies are devoted to design of

flexible system, the author has not found the research considering the exercise delay

as a design variable, yet.

3.3 One Alternative Model

3.3.1 Model

This research considers a system with an infinite lifetime [0,∞). Let (Ω,F ,P) be

a complete probability space equipped with a filtration (Ft)t≥0 satisfying the usual
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conditions, and B(t) be a standard Brownian motion. The state variable, X(t),

represents the underlying uncertainty in the system environment, and is assumed to

follow a geometric Brownian motion with constant coefficients, i.e.,

dX(t) = µX(t)dt+ σX(t)dB(t), X(0) = x ∈ [0,∞), t ∈ [0,∞) (3.1)

where µ ∈ R and σ ∈ [0,∞) are the drift and volatility parameters. Geometric

Brownian motion is widely accepted to model underlying uncertainties of flexible

systems, such as a price process in a perfectly competitive market. Notice that the

stochastic differential equation (3.1) has a unique solution, and satisfies strong Markov

Property.

Suppose that the system operator has one opportunity to change from the cur-

rent system to an alternative system, for example, by upgrading or downgrading

equipment. The current and alternative systems yield discounted linear profit rate of

e−ρt(a1X(t) + b1) and e−ρt(a2X(t) + b2), respectively. The parameters, a1, a2, b1, b2,

and ρ, are given constants. The discount factor ρ is assumed to be positive and ρ > µ

to ensure existence of expected payoff. This setting can describe various system per-

formances which is linear to underlying uncertainty. For example, in the context of

production, ai stands for the production levels of system i, and bi < 0 represents

manufacturing cost of system i, for i = 1, 2. In terms of real options, this model in-

cludes entry option with a1 = b1 = 0, exit option with a2 = b2 = 0, expansion option

with a1 < a2, and downsizing option with a1 > a2. For the sake of convenience, this

research refers to the case when the alternate system provides less variable yield than

the initial system (a1 > a2) as a downgrade, and the opposite case (a1 < a2) as a up-

grade. To avoid trivial solutions, this research assumes that a1 6= a2. For notational

simplicity, let θ = {µ, σ, ρ, a1, a2, b1, b2} represent the full set of parameters.

When the system operator decides to change the system at time τ , there is a delay

δ until the alternative system takes effect at time τ + δ. During the exercise delay the

system is assumed to continue the initial yield mode. Moreover, the author assumes

that there exists only one opportunity to change the system. According to the results

of [129], the operational level problem with multiple opportunities can be solved
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by iterative application of the method that this research employs. Therefore, this

assumption does not undermine the value of this research but assist to focus on the

design level problem. Making the decision to change to the alternative system incurs

the cost (c̃(δ) < 0) or revenue (c̃(δ) > 0); this study models the one-time cash flow

as occurring at the time when the transformation is completed, τ + δ. Upgrading the

system would typically incur a cost, whereas downgrading the system may produce

revenue through the sale of equipment. At this point, the system operators control

problem can be formulated. The operational performance function, j(x, τ |δ), and the

operational value function, v(x, δ) can be written as

j(x, τ |δ) = E

 ∫ τ+δ0
e−ρt(a1X(t) + b1)dt+ e−ρ(τ+δ)c̃(δ)

+
∫∞
τ+δ

e−ρt(a2X(t) + b2)dt

 (3.2)

v(x, δ) = sup
τ∈[0,∞)

j(x, τ |δ) (3.3)

where the expectation is taken with respect to the probability law of X(t) starting

at X(0) = x. The operational level problem is for the system operator to determine

the optimal time, τ ∗ to exercise the option.

At the design level, the system designer builds the system with optimal delay, δ∗,

considering the costs of designing, acquiring, and constructing a system, given that

system will be operated optimally. The possible choice set of δ is [δmin, δmax] where

0 ≤ δmin ≤ δmax <∞. The initial cost of designing and building the flexible system is

C(δ). Then the value of optimally designed flexible system under optimal operational

control becomes

V (x) = sup
δ∈[δmin,δmax]

[v(x, δ)− C(δ)] (3.4)

One additional assumption is that the system designer and operator have the same

objective functions, and therefore any principal-agent scenarios requiring incentives

is not a subject of this research. This research now turns to analyzing this model in

order to derive optimal control and design policies.
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3.3.2 Operational Level Decision

Optimal Operational Policy

The operational control problem of this flexible system is a delayed optimal stop-

ping time problem. The results of [129] show how to transform this problem into an

optimal stopping time problem without delay based on the strong Markov condition.

In general, the optimal control policy is a threshold policy where the continuation re-

gion is either below the threshold when the alternative system is an upgrade or above

the threshold when the alternative system is a downgrade [1, pp.128-130]. How-

ever, based on system parameters, the decision to exercise the option could be made

immediately, when the state variable crosses an optimal threshold, or never. The

combinations of parameters which determine the boundaries of the optimal policies

are described in the following theorem.

Theorem 3.3.1 The solution of operational problem (3.2) and (3.3) is summarized

in Table 3.1.

Proof in Appendix A.1

The first three rows of Table 3.1 correspond to the upgrade case. Here the solution

yields two cases, when it is desirable to exercise the option immediately, and when

it is optimal to stay in the current system until the state variable rises above a

threshold. The second three rows of Table 3.1 correspond to the downgrade case.

Here the solution yields three cases, where the option is never desirable, immediately

desirable, and desirable once the state variable falls below an optimal threshold. The

reason there is no set of parameters within the upgrade case which produce a solution

to never exercise the option is that the state variable X(t) is not bounded above,

and therefore the greater variable yield from the alternate system can always become

great enough to compensate for the exercise costs as well as possibly greater system

fixed operation costs. It can easily be verified that when the state variable is exactly
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Table 3.1
Optimal Operational Policy and Operational Value

x, θ Optimal Operational Policy v(x, δ)

a1 < a2
c̃(δ) < b1−b2

ρ

0 ≤ x < x∗1(δ)
Continue in current mode until

vc,1(x, δ)
τ ∗1 = inf{t ≥ 0|x ≥ x∗1(δ)}

x∗1(δ) ≤ x Exercise the option immediately v0(x, δ)

c̃(δ) ≥ b1−b2
ρ

Exercise the option immediately v0(x, δ)

a1 > a2

c̃(δ) ≤ b1−b2
ρ

Never exercise the option v∞(x)

c̃(δ) > b1−b2
ρ

0 ≤ x ≤ x∗2(δ) Exercise the option immediately v0(x, δ)

x∗2(δ) < x
Continue in current mode until

vc,2(x, δ)
τ ∗2 = inf{t ≥ 0|x ≤ x∗2(δ)}

x∗i (δ) =
ri(µ− ρ)

(a1 − a2)(ri − 1)

[
b1 − b2
ρ
− c̃(δ)

]
e−µδ, for i = 1, 2 (3.5)

r1 =
(σ2 − 2µ) +

√
(2µ− σ2)2 + 8ρσ2

2σ2
(3.6)

r2 =
(σ2 − 2µ)−

√
(2µ− σ2)2 + 8ρσ2

2σ2
(3.7)

v0(x, δ) =
{(a1 − a2)e(µ−ρ)δ − a1}x

µ− ρ
− b1 − b2

ρ
e−ρδ +

b1
ρ

+ e−ρδ c̃(δ) (3.8)

v∞(x) =
a1x

ρ− µ
+
b1
ρ

(3.9)

vc,i(x, δ) =
e−ρδ

ri − 1

[
b1 − b2
ρ
− c̃(δ)

](
x

x∗i (δ)

)ri
− a1x

µ− ρ
+
b1
ρ
, for i = 1, 2 (3.10)
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equal to the threshold level, the system operator is indifferent between exercising and

continuing.

Effect of Delay on Optimal Control

In analyzing the effect of exercise delay on the optimal operational policy, the key

insight is that lengthening the exercise delay of the system increases the risk exposure

an operator faces when controlling the system flexibility. It turns out this increased

exposure has varying effects on the expected exercise time depending both on the

trend of the stochastic process and the effect of the option itself.

To concentrate on the effect of additional risk exposure, consider a constant exer-

cise cost. If the exercise cost is a constant, d
dδ
x∗i (δ) = −µx∗i (δ). When the stochastic

process has positive drift, µ > 0, the future state is likely to be favorable to an

upgraded system. This expectation hastens execution of a upgrade option given a

realization of underlying uncertainty, since d
dδ
x∗1(δ) < 0, and may eventually make

the option immediately desirable. On the other hand, the trend in the state vari-

able means those longer delays make downgrade options increasingly dour. A longer

exercise delay lowers the threshold value for downgrading, because d
dδ
x∗2(δ) < 0, and

may eventually bring the option into the never desirable case. It implies that the

longer delay defers downgrading the system. In the case that µ < 0, the exercise

delay has opposite effects on the optimal operational policies, since d
dδ
x∗1(δ) > 0 and

d
dδ
x∗2(δ) > 0.

In the interesting solution cases where the option is not currently desirable but

will be exercised if the state variable crosses some threshold this research provides

the following interpretation. If the trend of underlying uncertainty is favorable to the

alternative system, the system operator is essentially trading off the optimality of the

current system configuration in the current state against the future optimality of the

alternative system configuration in the uncertain future states. With highly flexible

systems (short exercising delays), the operator is able to delay execution when the
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trend of the stochastic process is favorable to the alternate system to squeeze ever

last drop out of the current system’s optimality. With less flexibility (longer exercise

delays) the system operator’s hand is forced to more quickly act upon the expected

optimality of the alternative system in future states.

Even when the trend of the underlying uncertainty is unfavorable to the alternative

system, flexibility may be exercised. It is the case that the realized uncertainty

is so favorable (to the alternative system) that the alternative system can harvest

enough benefits from the temporary advantageous status. In this case, a longer

delay requires more advantageous status to exercise the flexible option, and it results

postponements of execution time. In the view point of exposure delay, a longer delay

increases the risk that the realized advantageous status becomes unfavorable against

the alternative system. Therefore, the system operator exercises the flexible option

with more favorable realization of underlying uncertainty to compensate the increased

risk exposure due to the exercise delay.

The above analysis can be extended into the case that the exercise cost is a function

of exercise delay to consider both risk exposure effect and cost effect of exercise delay

upon optimal operational policy. Suppose that the exercise cost is once differentiable

with respect to exercise delay δ. The first derivative of the threshold value with

respect to exercise delay is expressed as

d

dδ
x∗i (δ) = −

[
ri(µ− ρ)

(a1 − a2)(ri − 1)

] [
µ
b2 − b1
ρ
− µc̃(δ) +

d

dδ
c̃(δ)

]
e−µδ (3.11)

As shown in (3.11), even strong assumptions such as convexity or monotonicity of

the exercise cost function do not guarantee straightforward relationships between ex-

ercise delay and exercise time. If d
dδ
c̃(δ) > µ

[
c̃(δ)− b2−b1

ρ

]
then x∗i (δ) is increasing,

otherwise x∗i (δ) is decreasing. Given that d
dδ
c̃(δ) > µ

[
c̃(δ)− b2−b1

ρ

]
,∀δ ∈ [δmin, δmax],

the optimal threshold value of upgrade is a monotone decreasing function and that of

downgrade is a monotone increasing function in exercise delay. Hence the expected

exercise time is monotone decreasing with respect to exercise delay in both of the

cases. On the other hand, if d
dδ
c̃(δ) < µ

[
c̃(δ)− b2−b1

ρ

]
,∀δ ∈ [δmin, δmax], the rela-
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tionships are reversed. The integrated effect of exercise delay is summarized in Table

3.2.

Table 3.2
The Effect of Exercise Delay upon Optimal Operational Policy

d
dδ c̃(δ) > µ

[
c̃(δ)− b2−b1

ρ

]
d
dδ c̃(δ) < µ

[
c̃(δ)− b2−b1

ρ

]
Upgrade Longer delay postpones Longer delay hastens

(a1 < a2) the expected exercise time. the expected exercise time.

Downgrade Longer delay hastens Longer delay postpones

(a1 > a2) the expected exercise time. the expected exercise time.

3.3.3 Optimal Design of Flexible System

This section investigates the problem faced by a system designer; how much exer-

cise delay (flexibility) to build into a system. At the design stage, a system designer

chooses the optimal length of exercise delay assuming the system is operated opti-

mally as summarized in Theorem 3.1. The first insight this dissertation discovers is

that the design problem is decomposed into two sub-problems based on the optimal

operation. Moreover, this research effort discovers that when the exercise cost and

system design cost are once differentiable with respect to the length of exercise de-

lay, the design problem is well posed and solvable with usual non-linear optimization

method such as KarushKuhnTucker (KKT) conditions.

Decomposition of Design Problem

To illustrate the structure of optimal design problem, consider an upgrade case.

Here, this research postulates that the exercise cost is a continuous function with re-

spect to exercise delay to reflect more situations. Figure 3.1 demonstrates an example

of the structure of an operational value of a flexible system under optimal operation.
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Figure 3.1. Structure of Flexible System Design Problem with Delay

The horizontal and vertical axis stands for the length of exercise delay, δ, and

the current value of state variable, X(0), respectively. In the assumed case there

exists a threshold value x∗1(δ) that determines the optimal operational policy. If the

current state variable X(t) is smaller than x∗1(δ), staying current mode is optimal. In

opposition, if X(t) ≥ x∗1(δ), exercising the flexible option is optimal. Therefore the

region above x∗1(δ) is called exercising region and that below x∗1(δ) is continuation

region. In the exercising region, the operational value of flexible system is v0(X(0), δ)

and that in the continuation region is vc,1(X(0), δ).

Let x∗min and x∗max be the minimum and maximum value of x∗1(δ). If the cur-

rent state is higher than x∗max or lower than x∗min, the the design problem is simple.

If X(0)x∗max, such as X(0) = x1, the operational value function is v(X(0), δ) =

v0(X(0), δ),∀δ ∈ [δmin, δmax], and v0(X(0), δ) is given in Theorem 3.3.1 explicitly.

Therefore the design problem (3.3) becomes V (x) = supδ∈[δmin,δmax] [v0(X(0), δ) −

C(δ)]. Similarly, when X(0)x∗min, for instance X(0) = x3, the operational value

function is vc,1(X(0), δ), for all δ ∈ [δmin, δmax]. Therefore the design problem is

V (x) = supδ∈[δmin,δmax] [vc,1(X(0), δ)−C(δ)]. Given the once differentiability assump-



42

tions of cost functions, it is a nice behave non-linear optimization problem that is

solvable with usual techniques.

When X(0) ∈ (x∗min, x
∗
max), the design problem becomes complicated. Suppose

that the system designer sets δ ∈ [0, δ̄1) ∪ (δ̄2, δmax]. Then the operator waits until

the underlying uncertainty X(t) hits the threshold value x∗1(δ) to exercise the flexible

option. Hence, the operational value function v(X(0), δ) = vc,1(X(0), δ). Otherwise,

the operator exercise the option immediately and the operational value function is

v(X(0), δ) = v0(X(0), δ). Notice that the objective function of design problem is the

sum of operational value function and the system design cost. Since the length of

delay changes the objective function of design problem, the system design problem is

decomposed into two sub problems. Following theorem provides the characteristics

of design level problem in complicated cases, which is helpful for computation.

Theorem 3.3.2 When the exercise cost and system design cost are continuous with

respect to δ, the design problem (3.3) is decomposable into two nonlinear optimization

problems. For upgrade cases, the optimal solution of design problem is obtained by

comparing the two solutions of sub-problems:

P1 =


maxδ vc,1(X(0), δ)− C(δ)

s.t. δmin ≤ δ ≤ δmax

X(0) ≤ x∗1(δ)

and P2 =


maxδ v0(X(0), δ)− C(δ)

s.t. δmin ≥ δ ≤ δmax

X(0) ≥ x∗1(δ)

(3.12)

For downgrade cases, the design level problem is solvable by decomposing the original

design problem into two sub-problems:

P1 =


maxδ vc,2(X(0), δ)− C(δ)

s.t. δmin ≤ δ ≤ δmax

X(0) ≥ x∗2(δ)

and P2 =


maxδ v0(X(0), δ)− C(δ)

s.t. δmin ≥ δ ≤ δmax

X(0) ≤ x∗2(δ)

(3.13)

Proof in Appendix A.2

The sub-problem P1 can be interpreted as finding the optimal configuration with

the constraints forcing the system operator to wait until the execution criterion is
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satisfied. On the other hand, P2 means that with constraints compelling the system

operator exercise the flexible option immediately. Since each sub-problem attains

its maximum in the feasible region, the objectives of decomposed problems are maxi-

mization instead of finding supremum in (3.4). Moreover, when the cost functions are

smooth, the objective functions are smooth as well. It implies that usual non-linear

optimization techniques (such as KKT conditions) are able to be employed to solve

the design problem.

Illustrative Examples

This subsection provides an illustrative example in the context of renewable en-

ergy source expansion flexibility [89, pp.164-165]. Suppose that an electric utility

considers investing in an expandable power plant. The power plant starts with a

limited number of turbines, and if the electricity price goes up the utility can double

up the capacity. The expansion takes time and the utility can expedite the expan-

sion by paying additional amount of money. At the design phase, the utility system

designer decides how fast the power plant is expanded. The system operators task is

to increase the capacity at the right time observing the electricity price.

The electricity price follows a geometric Brownian motion described in (3.1) with

µ = 0.02 and σ = 0.1. It means that the price is expected to be increased with 2%

per year continuous compound growth rate, and the price process has 10% volatility.

Before the expansion, the power plant generates a unit of electricity with a unit cost,

i.e., a1 = 1 and b1 = −1. When the generation capacity is doubled up, the generating

cost increases proportionally (a2 = 2 and b2 = −2). The discount rate is assumed to

be 5%, i.e., ρ = 0.05. The system building cost and the exercise cost are assumed to

be

c̃(δ) = −e−δ, C(δ) =
1

δ

The system building cost is inversely proportional to the exercise delay and is mo-

tivated by [139, 140]. Both of the papers asserted that the value of a supply chain
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is inverse proportional to response time. The exponential decreasing exercise cost

is intuitively acceptable. Moreover, the exercise cost yields a monotone decreasing

x∗1(δ), and it is helpful to clarify the structure of decomposition. This research sets

the range of exercise delay as δmin = 0.1 ≤ δ ≤ δmax = 10, where δ is the exercise

delay in years.

This section focuses on exemplifying the process of solving the design problem

using Theorem 3.3.2 rather than providing the specific results. For the readers who

are interested in replicating the results, the numerical solution is given in Appendix

B.3. Since this example is an upgrade case, x∗1(δ) divides the design problem into two

δmin δmaxδ̄

x
∗

min

X(0)

x
∗

max

Exercise Delay δ

 

 
x
∗

1(δ)
X(0)

Figure 3.2. Exercising Threshold Value and Decomposition

sub-problems. With the postulated parameters and exercise cost, x∗1(δ) decreases as
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the exercise delay increases. The maximum of x∗1(δ) is attained when the exercised

delay is set to be δmin, and the maximum is attained at δmax. The horizontal axis

represents the length of delay (δ), and the vertical axis represents the price of elec-

tricity. The solid line of Figure 3.2 shows the threshold value x∗1(δ), and the dotted

line represents the current electricity price X(0). Notice that the current price and

exercising threshold value are identical at δ = δ̄, and x∗1(δ) is higher than X(0) for

δ < δ̄. This implies that if the system designer sets the length of delay less than δ̄,

the system operator waits until the price goes up x∗1(δ) to expand the capacity. The

optimal configuration of the expandable power plant for δ < δ̄ is obtained by solving

P1. On the other hand, the optimal operational decision is expanding the capacity as

soon as possible when the power plant is designed with exercise delay δ that is longer

than δ̄. By solving P2, the system designer can find the optimal design.

Figure 3.3 represents the objective function value of design problem v(X(0), δ, θ)−

C(δ) with respect to exercise delay, given the current electricity price. The solid

line represents the objective function value of P1 and the dashed line stands for

that of P2. The optimal solution of each sub-problems are denoted by δ∗1 and δ∗2.

Since the optimal solution of P1 yields higher value V ∗ than that of P2, the optimal

solution of design problem is δ∗1. Therefore, the expandable power plant is designed

to increase its capacity in δ∗1, and the system operator expand the capacity when the

electricity price goes up to x∗1(δ
∗
1), given the current price X(0). In analyzing the

optimal flexibility design with respect to the current price, this research focuses on

the area, X(0) ∈ [x∗min, x
∗
max] in which the design problem need to be decomposed

into two sub-problem.

Figure 3.4 shows the optimal objective function values of sub-problems with re-

spect to current electricity price X(0). The solid line is the optimal value of P1 and

the dotted line is that of P2. In Figure 3.5, the solid line (δ∗1) and the dotted line (δ∗2)

represents the optimal solution of P1 and that of P2, respectively. In Figure 3.4, the

optimal value of P1 is greater than that of P2 when the current price is lower than

x̄. Among the exercise delays those force the system operator stay in the current
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δmin δmaxδ∗2δ∗1
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∗
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∗
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Figure 3.3. Design Problem Objective Function Value

capacity until the price goes up high enough, δ∗1 is the best choice. On the other

hand, δ∗2 yields the highest value among the exercise delays those compel the system

operator to expand the capacity immediately. Since P ∗1 is higher than P ∗2 when the

current price is lower than x̄, it is optimal for the system designer to set the exercise

delay as δ∗1, and for the system operator to wait until the electricity price grows up

to x∗1(δ
∗
1). On the other hand, when the current price is higher than x̄, the value of

expandable power plant is maximized by starting the expansion immediately within

δ∗2. Therefore, the shaded δ∗ in Figure 3.4 is the optimal solution of overall design

problem based on the current price of electricity.
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With the given assumptions about the cost functions, an exercise delay that en-

forces the system operator to hold the expansion option is lower than that of immedi-

ate expansion. Therefore, δ∗1 is always lower than δ∗2. Since a higher electricity price

is more desirable for expanding the capacity, higher price provides an incentive to

shorten the exercise delay at the expense of higher costs. The downward slopes of δ∗1

and δ∗2 reflect this incentive. When the current price is low, immediate upgrade of the

system is not attractive. Therefore to save on costs, the system designer chooses a

longer delay among the delays forcing an immediate upgrade. However, if the system

designer selects a relatively short delay among the delays which make the system

operator hold off on the expansion option until the electricity price becomes favor-
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Figure 3.5. Optimal Solutions of Sub-problems

able enough for the capacity expansion. Between the optimal choices, δ∗1 yields higher

value than δ∗2 when the current price is lower than x̄ as shown in Figure 3.4. Therefore

the optimal solution of overall design problem is δ∗1 where X(0) < x̄. Notice that the

slope of δ∗1 in this region is determined by the additional costs to shorten the exercise

delay and incremental value of v(c, 1) (operational value function given that holding

the option is optional). Once the price reaches x̄, immediate expansion becomes more

beneficial than holing the expansion option for better chances. Hence, the optimal

solution of the overall design problem is δ∗2 where X(0) < x̄. In this region the slope

changes because the additional costs and incremental value of v0 determine the slope.
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3.4 Multiple Alternatives Model

This section extends the model of Section 3.3 including the level of capacity change

as a design variable. In Section 3.3, the flexible system has only one alternative,

and the assumption helps to elucidate how exercise delay affects optimal decisions.

However, the extent of capacity change has been the main focus of flexible system

design. By considering both exercise delay and level of capacity change, this research

contributes to the research area of flexibility. Similar to the previous section, the

problem is postulated as a two levels decision problem. The system designer decides

the length of exercise delay and the level of capacity change imposing that the system

operator behaves optimally. At the operational level, a system operator chooses the

time to execute the flexible option.

3.4.1 Model

At the operational level, system operator decides the time to exercise the flexible

option, given the exercise delay δ and the level of capacity change ζ those are deter-

mined in design level. The operational performance function j(X(0), τ |δ, ζ) and value

function v(X(0), δ, ζ) are defined as

j(X(0), τ |δ, ζ) = E

 ∫ τ+δ0
e−ρt{aX(t) + b}dt+ e−ρ(τ+δ)c̃(δ, ζ)

+
∫∞
τ+δ

e−ρtζ{aX(t) + b}dt

 (3.14)

v(X(0), δ, ζ) = sup
τ
j(X(0), τ |δ, ζ) (3.15)

Consider a flexible energy utility, whose initial configuration generates a units of elec-

tricity with the operating cost −b. By paying the exercise cost or harvesting the

salvage value c̃(δ, ζ), the capacity can be increased or decreased to ζ units. It takes

time δ to adjust the capacity of the flexible power plant. The generating cost is

changed proportionally to the capacity change. The unit price of electricity follows

the geometric Brownian motion defined in (3.1). The system designer’s task is de-

termining the length of exercise delay and the extent of capacity change assuming
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that the system operator optimally exercises the designed flexible option. The design

problem is expressed with

V (X(0)) = sup
(δ,ζ)∈A

E [v(x(0), δ, ζ)− C(δ, ζ)] (3.16)

The system designer can choose one of the flexible system configuration, which belongs

to A = [δmin, δmax] × [ζmin, ζmax]. Since negative δ and ζ do not have practical

meanings, this research assumes that 0 ≤ δmin ≤ δmax and 0 ≤ ζmin ≤ ζmax. If ζ > 1,

the capacity is increased when the expansion is completed. On the other hand, ζ < 1

means decrease the capacity.

This research considers continuous and once differentiable cost functions on A and

imposes following additional assumptions on cost functions.

c̃(δ, 1) = 0, ∀δ ∈ [δmin, δmax] (3.17)

C(δ, 1) = 0, ∀δ ∈ [δmin, δmax] (3.18)

Suppose that ζ = 1. Then the exercising flexible option does not change the capacity

of the system. The cases of c̃(δ, 1) 6= 0 and C(δ, 1) 6= 0 yield obvious solutions of

operational and design problems. To avoid these obvious solutions, (3.17) and (3.18)

are imposed. For example, if c̃(δ, 1) > 0 and ζ = 1, the system operator exercise the

option as soon as possible to acquire the free cash inflow.

3.4.2 Optimal Operational Policy

Given the exercise delay δ and the extent of change ζ, the optimal operational

policy is derived using Theorem 3.3.1 by setting a1 = a, a2 = ζa, b1 = b and b2 = ζb.

Theorem 3.4.1 summarizes the optimal policy.

Theorem 3.4.1 The optimal operational policy, the solution of (3.15), is summa-

rized in Table 3.3, where r1 and r2 are identical to those in Theorem 3.3.1.

Notice that the threshold value of changing the system feature is expressed with

x∗i (δ, ζ) to emphasize on the effect of design variables on the operational policy. The-

orem 3.4.1 is a straight forward application of Theorem 3.3.1 except for the case that
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Table 3.3
Optimal Operational Policy Given the System Configuration

X(0), θ Optimal Operational Decision v(X(0), δ, θ)

ζ > 1
0 ≤ X(0) < x∗1(δ, ζ)

Continue in the current mode until
vc,1(X(0), δ, ζ)

τ ∗1 {t ≥ 0|X(t) ≥ x∗1(δ, ζ)}

X(0) ≥ x∗1(δ, ζ) Exercise the option immediately v0(X(0), δ, ζ)

ζ = 1 Indifferent aX(0)
ρ−µ + b

ρ

ζ < 1

0 ≤ X(0) < x∗2(δ, ζ) Exercise the option immediately v0(X(0), δ, ζ)

x∗2(δ, ζ) < X(0)
Continue in the current mode until

vc,2(X(0), δ, ζ)
τ ∗2 = {t ≥ 0|X(t) ≤ x∗2(δ, ζ)}

where for i = 1, 2 (3.19)

x∗i (δ, ζ) =

[
ri(µ− ρ)

a(1− ζ)(ri − 1)

] [
b(1− ζ)

ρ
− c̃(δ, ζ)

]
e−µδ (3.20)

v0(X(0), δ, ζ) =

[
a(1− ζ)

µ− ρ
e(µ−ρ)δ − a

µ− ρ

]
X(0)− b(1− ζ)

ρ
e−ρδ +

b

ρ
+ e−ρδ c̃(δ, ζ)

(3.21)

vc,i(X(0), δ, ζ) =
e−ρδ

ri − 1

[
b(1− ζ)

ρ
− c̃(δ, ζ)

] [
X(0)

x∗i (δ, ζ)

]ri
− a

µ− ρ
X(0) +

b

ρ
(3.22)
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ζ = 1. The result for ζ = 1 is obtained by plugging ζ = 1 and c̃(δ, 1) = 0 into

(3.14) and (3.15). Notice that the system would not be changed by exercising the

flexible option when ζ = 1. Therefore, the system operator is indifferent to whether

to exercise the flexible option or not.

3.4.3 Optimal Design

The design problem is also decomposable with sub-problems, given the current

value of the underlying uncertainty X(0). If all the available alternatives are upgrade

options, 1 < ζmin, the decomposition is similar to (3.12). In the case that 1 > ζmax, all

the alternatives are downgrade options. Therefore, the the decomposition is similar

to (3.13). However, when the set of alternatives includes upgrade, downgrade and

staying with the current system mode, i.e., 1 ∈ [ζmin, ζmax], the design problem is not

well-posed, since x∗i (δ, ζ) is not defined at ζ = 1. This research finds that the design

problem can be decomposed into well behaved sub-problems by imposing a fictional

threshold if it is necessary. For notational simplicity, define A = [δmin, δmax]× [ζmin, 1]

and Ā = [δmin, δmax]× [1, ζmax] for the case that ζmin ≤ 1 ≤ ζmax.
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Theorem 3.4.2 Assume that c̃(δ, ζ) and C(δ, ζ) are once differentiable on A. The

design problem (3.15) is decomposed into four sub-problems.

P1 =


maxδ,ζ v0(X(0), δ, ζ)− C(δ, ζ)

s.t. (δ, ζ) ∈ A

X(0) ≤ x∗2(δ, ζ)

(3.23)

P2 =


maxδ,ζ vc,2(X(0), δ, ζ)− C(δ, ζ)

s.t. (δ, ζ) ∈ A

X(0) ≥ x∗2(δ, ζ)

(3.24)

P3 =


maxδ,ζ vc,1(X(0), δ, ζ)− C(δ, ζ)

s.t. (δ, ζ) ∈ Ā

X(0) ≤ x∗1(δ, ζ)

(3.25)

P4 =


maxδ,ζ v0(X(0), δ, ζ)− C(δ, ζ)

s.t. (δ, ζ) ∈ Ā

X(0) ≥ x∗1(δ, ζ)

(3.26)

If b
ρ

+ ∂c̃(δ,ζ)
∂ζ

∣∣∣
ζ=1

< 0, the threshold value is defined as

x∗i (δ, 1) =
ri(µ− ρ)

a(ri − 1)

[
b

ρ
+
∂c̃(δ, ζ)

∂ζ

∣∣∣∣
ζ=1

]
e−µδ

.

Proof in Appendix A.3

It is worthwhile to review the economic meanings of decomposed problems. Pos-

tulate that the constraints of (3.23) are satisfied in the design phases. Then the

designed features of the flexible system is downgrading the capacity with a exercise

delay. Moreover the designed features force the system operator to start the reducing

capacity immediately. In the feasible region of (3.24), the system capacity is de-

creased by exercising the flexible option, and the capacity reduction starts when the

underlying uncertainty hits x∗2(δ, ζ) that is lower than the current status. If the con-

straints of (3.25) are satisfied, the flexible system is designed to expand its capacity,
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and the expansion starts when the underlying uncertainty reaches the threshold value

x∗1(δ, ζ) that is higher than current state. The region that the constraints of (3.26) are

satisfied, the flexible system has expansion option, and the expansion starts as soon

as possible, because the exercising threshold value is lower than the current state.

Illustrative Example

This subsection provides another illustrative example. An electric utility considers

investing in a flexible power plant whose capacity change takes time δ. The generation

capacity is changed from 1 to ζ by exercising the flexible option. The system oper-

ator’s task is finding the optimal time to start altering the capacity, and the system

designer’s is determining optimal δ and ζ considering the related costs and benefits.

The parameters representing the market conditions are the same to the previous ex-

ample, i.e., µ = 0.02, σ = 0.1 and ρ = 0.05. The range of possible choices for system

designer is assumed to be δmin = 0.1 ≤ δ ≤ δmax = 10 and ζmin = 0 ≤ ζ ≤ ζmax = 3.

The economic implication of the range of possible capacity change is that the utility

can increase its capacity by three times of current capacity at most, and can reduce

the capacity as much as the company wants. The reduction of capacity even includes

exiting from the industry by choosing ζ = 0.

The the exercise cost c̃(δ, ζ) and system building cost C(δ, ζ) are assumed to be

c̃(δ, ζ) = (1− ζ)e−δ, C(δ, ζ) =
(ζ − 1)2

δ

These assumptions concurs with the assumptions in (3.17) and (3.18). Moreover,

these costs represent that quick response system costs more in both exercise and design

phases, because ∂
∂δ
c̃(δ, ζ) < 0 and ∂

∂δ
C(δ, ζ) < 0. When the capacity is increased,

the system operator pays change cost, i.e., c̃(δ, ζ) < 0 for ζ > 1. On the other

hand, a capacity scale down causes a cash inflow from salvage values of existing

facilities, i.e., c̃(δ, ζ) > 0 for ζ < 1. However, the more the system can change its

capacity, the more flexible the system is no matter what the direction of the change

is. Therefore, the system designing cost is a convex function in the extend of capacity
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change and is minimized at ζ = 1. The system building cost reflects this aspect, since

∂
∂ζ
C(δ, ζ)

∣∣∣
ζ=1

= 0 and ∂2

∂ζ2
C(δ, ζ) > 0.
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Figure 3.6. Value Functions of Sub-Problems

The lines P ∗1 , P
∗
2 , P

∗
3 and P ∗4 in Figure 3.6 represent the optimal objective func-

tion values of the sub-problems P1, P2, P3 and P4, respectively. The shaded line V ∗

represents the optimal function value of overall design problem. Notice that the sub-

problems are not defined for the entire domain of [xmin, xmax]. For example, P3 is not

defined for high X(0) close to xmax. It means that no configuration of the expandable

power plant satisfies the constraints of the sub-problem P3 for the high enough initial

electricity price.
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Figure 3.6 provides more information than the value of the optimally designed

power plant. In the region of [0, x̄1], P1 yields the highest value. Considering the

economic meaning of P1, this result implies that the flexible option of the power

plant is designed to be reduction of the capacity, and the system operator exercise

the option immediately. If the current price is higher than x̄1 and lower than x̄2, the

flexible power plant must be designed to expand its capacity by exercising the flexible

option, and the system operator waits until the price rises to x∗1(δ
∗, ζ∗). When the

current price is higher than x̄2,
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Figure 3.7. Optimal Flexible Wind Farm Configurations

Figure 3.7 shows the optimal design of the flexible power plant. Figure 3.7(a) and

Figure 3.7(b) illustrate the optimal exercise delay and the optimal capacity change

with respect to the current electricity price, respectively. In the region of [xmin, x̄1],

the utility exits from the energy market in a relatively short time, and the exit starts

immediately. When the current price belongs to the intermediate region [x̄1, x̄2], the

flexible power plant is designed with an expansion option that expands the capacity

of the power plant three times in a relatively long expansion period. The system



57

operator wait until the electricity price reaches to a threshold value x∗1(δ
∗, ζ∗) that is

higher than the current price. If the current price is higher than x̄2, the utility starts

the capacity expansion immediately. The capacity is increased up to the maximum

capacity and it takes shorter time than the time of the intermediate region and longer

time than the exit case. For the readers who are interested in replicating this example,

the author provides the critical values, x̄1 ≈ 0.4349 and x̄2 ≈ 1.1154.

3.5 Delayed Flexible System Summary

Systems engineering and design are called on to develop increasingly complex and

costly systems. These systems must have appropriate levels of flexibility in order to

maintain relevance and capitalize on opportunities. Section 3.3 modeled the control

of a flexible system as a delayed optimal stopping problem assuming the available

capability change is fixed. Section 3.4 extended the model of Section 3.3 by including

the level of capability change into the design variables. The measure of flexibility

considered at the design phase was the delay between the decision to exercise flexible

alternatives and the implementation of such decisions. First solving for optimal con-

trol policies, the author constructed the parameter settings and thresholds to guide

the system operator to exercise the option, continue, or never exercise. This research

finds a non-trivial effect of exercise delay upon operational decision. Turning to the

system design problem, when the cost (or revenue) resulting from exercising flexibil-

ity is once differentiable, the author provides concrete optimization problems for the

optimal system design that is solvable with usual non-linear optimization methods.

Although this research employs a relatively simple model of flexible systems in

order to preserve tractability, the author believes that these results can aid system

designers in choosing how flexible to make systems. Highlighting the delay between

decision time and implementation time will be especially important for systems in

which there is considerable value of flexibility, where system effectiveness is funda-

mentally tied to uncertainties which can be capitalized on.
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4. DUOPOLY MARKET SHARE COMPETITION WITH

ASYMMETRIC EXERCISE DELAY

4.1 Introduction

The research of flexibility has expanded to option exercise games which consider

the other decision makers’ behaviors since the 1990s. As investigated in Chapter 3,

exercise delay has significant impacts on the optimal operational policy and the value

of flexible systems. What if the flexible system with delay is exposed to other decision

maker’s action? To answer this question, this chapter extends the model in Chapter

3 including the interactions between decision makers by assuming one decision maker

operates a flexible system without exercise delay and the other manages another

flexible system with exercise delay.

An option exercise game is an appropriate model to evaluate flexible options when

the options interact with each other, since it is an integrated approach of game and real

option theories. One of the applicable areas of this research is evaluating an exclusive

patent with potential entry of alternative technology. When a firm acquires a patent,

the firm may not implement the patent protected technology to produce a new product

right away. The firm can wait until the new product market becomes profitable

enough to compensate the implementation costs. However, if the firm confronts the

threat from the other firm’s R&D opportunity, the threat should be considered. When

the growth of the market is stochastic, the option exercise games approach provides

valuable insight to evaluate the patent [89]. This research interprets an exclusive

patent as flexibility without exercise delay, and R&D opportunity as that with exercise

delay. If a firm has an exclusive patent, the firm can introduce a new product in a

short amount of time, by paying a relatively small implementation fee. On the other
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hand, the firm without patent should do R&D to introduce a comparable product, and

it takes considerable time and resources. Each firm decides when it launches the new

product or it starts the R&D project, reacting to uncertain market profitability and

the other competitor’s action. Therefore, the implementation of patent protected

technology is execution of a flexible option without exercise delay and initiating a

R&D project is that with exercising delay. This dissertation studies a patent and

R&D competition game in the prospect of option exercise games.

This research postulates two players are competing market share in a duopoly

market where the total market volume is stochastic. Both of the players are risk-

neutral, i.e., they are only interested in the expected profit, rather than including the

accompanying risks in their decisions. The players have complete information about

the competition. It means every player knows the payoffs and possible actions of other

players. About the information structure, this research considers both the open loop

structure and the close loop structure. In the open loop model, players cannot observe

the actions of other players after the beginning of the game. In the context that this

chapter considers, the players cannot detect when the other player introduces the

new product into the market and when the R&D project is initiated. On the other

hand, the closed loop model assumes that players have perfect information about the

past. So, as soon as one player starts to produce a new product or initiates the R&D

project, the other player knows about it.

This chapter is organized as follows. Section 4.2 provides brief literature review

about preemption game, option exercise games with exercise delay and asymmetric

option exercise games. Section 4.3 provides the model of patent and R&D competition

under deterministic R&D duration and cost assumption. This section contains the

open loop and closed loop equilibrium of the option exercise game. Section 4.4 extends

the deterministic period and cost assumption to stochastic situation. Conclusions are

in section 4.5.
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4.2 Literature Review

This research models the problem as a stochastic preemption game in continuous

time. The continuous time preemption game between two identical firms under a

deterministic environment studied in the early 1980s. Reinganum [141, 142] studied

the equilibrium of the game. She assumed that the roles of players, the first mover

and the second mover, is predetermined. Therefore, the resulting equilibrium is an

open loop equilibrium. Moreover, she assumed that the market profitability is not

matured so that no player invests at the outset of the game. Under the assumption,

she found that either of the player exercises the option when the market is matured,

but simultaneous investment is not a equilibrium. Extending Reinganum’s work, Fu-

denberg and Tirole [6] constructed a mixed strategy space and derived mixed strategy

perfect equilibria. Since the role of each player is not determined at the beginning of

the game, the equilibrium is a closed loop equilibrium.

Following [141, 142], Smets [102] extended the deterministic setting to stochastic

environment, and applied it to international investment context. He considered two

identical firms as well and investigated pure strategy equilibrium. Huisman and Kort

extended deterministic mixed strategy equilibrium framework to stochastic games

in their series of studies [87, 143]. Spencer and Brander [144] studied duopoly with

quantity competition and derived closed form solution considering a random demand

which is determined by both of the participant’s production. Demand function was

modeled as a linear function that follows a random distribution on a closed interval.

Williams [92] provided the rigorous derivation of a Nash equilibrium in a real options

framework. He found the equilibrium in a strategic setting without delay, and the

fact that increasing competition leads to earlier exercise of options. Baldursson [145]

found Nash equilibrium and derived stochastic processes adapted optimal strategies

considering the exogenous process influencing demand. This is an open-loop strategy,

in the sense that there is no feedback from the investment of any firm to the investment

of any other firm.
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Grenadier [86] asserted that he derived the closed-loop solution of stochastic dif-

ferential Cournot games. Based on dynamic programming approach, he derived a

differential equation which solves the differential game with boundary conditions;

continuity, smooth-pasting and super-contact conditions. He provided a closed-loop

strategy with the assumption of symmetric structure. Novy-Marx [146] extended

Grenadier’s work. He considered the case that firms are heterogeneous and found

the optimal investment decision under the assumptions of geometric Brownian mo-

tion and a constant elasticity demand function. Back and Paulsen [147] contradicted

Grenadier’s results. They proved the trigger strategies of [86] are not the best re-

sponses and derived the best response function under the assumption of geometric

Brownian motion and linear inverse demand curve. Back and Paulsen pointed out

the preemption opportunity is the incentive to deviate from the symmetric closed-

loop strategy provided in Grenadier [86]. Thijssen et al. [148] focused on the value

of preemption. When a player acquires the advantage of first mover, the player need

to take additional risk. Comparing the benefit of preemption and additional risk,

they provided the insight of optimal decision under a discontinuous stochastic en-

vironment. Thijssen et al. [149] studied an extended definition of strategy spaces

under jump diffusion stochastic environments. Steg [150] derived explicit solutions

under the assumptions that the exogenous uncertainty follows a Lévy process and

the inverse demand curve has a positive constant elasticity. Chevalier-Roignant et

al. [151] delivered a well-organized overview research about competitive investment

including quantity competition in oligopoly market and provided the mixed strategy

equilibrium framework that this research employs.

Asymmetric option exercising games, in which players have uneven profit struc-

tures or information, are an intensive research area. Pawlina and Kort [152] investi-

gated an asymmetric investment costs case. They found that small cost differences

cause coordination problem which makes open loop equilibrium and close loop equi-

librium different. However when the cost difference is significant, the two equilibria

are identical. Miltersen and Schwartz [153] considered asymmetry in the develop-
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ment and commercialization of a new product, in the context of patent protected

R&D investments. Murto [154] studied the production scale difference.

Several studies devoted themselves to the effect of exercising delay on option exer-

cise games. Grenadier [93] and Weeds [98] considered exercising delay as a component

of duopoly option exercise games. Grenadier [93] studied deterministic exercising de-

lay and Weeds [98] included stochastic exercising delay, which follows an exponential

distribution. However, to the best of author’s knowledge, asymmetric exercise delay

has not been studied in the context of option exercise games.

4.3 Fixed R&D Duration and Cost

4.3.1 Model

Two risk neutral players compete in a duopoly market. Firm P procured an

exclusive patent, and is waiting for the optimal time to implement the technology

into the market. As soon as firm P decides to implement the the technology, it can

increase its market share by paying an implementation fee IP . On the other hand,

firm D, the competitor of firm P , does not have the patent. So it takes time, δ ,

for firm D to invent a new technology that enables firm D to produce a comparable

product and does not infringe on the patent. The cost of R&D project is denoted by

ID and assumed to be paid at the beginning of the project. The initial market share

of firm D is π0 and the incremental market share is KD. Those of firm P are denoted

by 1−π0 and KP , respectively. Since the negative market share does not make sense,

the market shares satisfy 0 ≤ π0 ≤ 1, 0 ≤ KD ≤ 1− π0 and 0 ≤ KP ≤ π0.

A geometric Brownian motion with constant coefficients describes the total market

profit.

dX(t) = µX(t)dt+ σX(t)dB(t), X(0) = x0 (4.1)

where B(t) is the standard Brownian motion defined on a complete probability space

(Ω,F ,P).
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Firm P launches the new product using patent protected technology at time τP ,

and firm D starts its R&D project at τD. The R&D project will be completed at

τD+δ and from this time firm D will earn higher profit. Each firm decides the optimal

τP and τD. The performance functions are described as the followings

J̃P (τP |τD, x0) =
∫ τm
0

e−ρt(1− π0)X(t)dt+
∫ τP
τm
e−ρt(1− π0 −KD)X(t)dt− e−ρτP IP

+
∫ τM
τP

e−ρt(1− π0 +KP )X(t)dt+
∫∞
τM
e−ρt(1− π0 +KP −KD)X(t)dt

J̃D(τD|τP , x0) =
∫ τm
0

e−ρtπ0X(t)dt+
∫ τD+δ

τm
e−ρt(π0 −KP )X(t)dt− e−ρτDID

+
∫ τM
τD+δ

e−ρt(π0 +KD)X(t)dt+
∫∞
τM
e−ρt(π0 +KD −KP )X(t)dt

(4.2)

where τm = min(τP , τD + δ) and τM = max(τP , τD + δ). The discount factor ρ > 0

satisfies µ− ρ < 0 to ensure the existence of expected value.

4.3.2 Open Loop Equilibrium

In an open loop game, players decide their strategies at the beginning of the

game and would not change them, because the players do not acquire any further

information about other player’s action after the beginning of the game. Because the

firms are risk neutral, each player decides the optimal time to invest to maximize the

expected value of performance function. The relatively simple structure of this game

yields dominant strategy equilibrium. Each player has the dominant strategy which

is not affected by the other player’s strategy, and the equilibrium is unique. Theorem

4.3.1 summarizes the open loop equilibrium.

Theorem 4.3.1 In the open loop game, it is optimal for firm D to start it’s R&D

project at τ ∗D = inf{t ≥ 0|X(t) ≥ x∗D}, where x∗D = − r1(µ−ρ)IDe−(µ−ρ)δ

(r1−1)KD
. For firm P the

optimal policy is τ ∗P = inf{t ≥ 0|X(t) ≥ x∗P}, where x∗P = − r1(µ−ρ)IP
(r1−1)KP

. The expected

values of the systems are summarized in Table 4.1 for each case.

Proof See Appendix A.4.



64

Table 4.1
The Value of Flexible Systems in the Open Loop Equilibrium

Optimal Trigger Points Initial Market Profit Player P Player D

x∗P < x∗D

x0 ≥ x∗D V P
1 (x0, x0) V D

1 (x0, x0)

x∗P ≤ x0 < x∗D V P
1 (x∗D, x0) V D

2 (x∗D, x0, x0)

x < x∗P V P
2 (x∗P , x

∗
D, x) V D

2 (x∗D, x
∗
P , x0)

x∗P = x∗D
x0 ≥ x∗D = x∗P V P

1 (x0, x0) V D
1 (x0, x0)

x0 < x∗D = x∗P V P
2 (x∗D, x

∗
P , x0) V D

2 (x∗P , x
∗
D, x0)

x∗P > x∗D

x0 ≥ x∗P V P
1 (x0, x0) V D

2 (x0, x0)

x∗D ≤ x0 < x∗P V P
2 (x∗P , x

∗
D, x0) V D

1 (x∗P , x0)

x0 < x∗D V P
2 (x∗P , x

∗
D, x0) V D

2 (x∗D, x
∗
P , x0)

where

V P
1 (x∗D, x0) =

KDe
(µ−ρ)δ(x∗D)1−r1

µ−ρ xr10 − KP
µ−ρx0 − IP −

1−π0
µ−ρ x0

V P
2 (x∗P , x

∗
D, x0) =

[
IP (x

∗
P )

−r1

r1−1 +
KDe

(µ−ρ)δ(x∗D)1−r1

µ−ρ

]
xr10 − 1−π0

µ−ρ x0

V D
1 (x∗P , x0) =

KP (x
∗
P )

1−r1

µ−ρ xr10 − KDe
(µ−ρ)δ

µ−ρ x0 − ID − π0
µ−ρx0

V D
2 (x∗D, x

∗
P , x0) =

[
ID(x∗D)−r1

r1−1 +
KP (x

∗
P )

1−r1

µ−ρ

]
xr10 − π0

µ−ρx0
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In the open loop equilibrium, the role of each player is determined by the prof-

itability of technologies. When x∗P < x∗D, τ ∗P < τ ∗D. Therefore, Player P will be the

first mover in this case. On the other hand, if x∗D < x∗P , the role of each player is re-

versed. The case that x∗P < x∗D is equivalent to KDe
(µ−ρ)δ

ID
< KP

IP
, and x∗P > x∗D implies

KDe
(µ−ρ)δ

ID
> KP

IP
. Notice that KP and KD represent the benefit from implementing

or developing new technologies, and ID and IP denote the costs. Therefore KDe
(µ−ρ)δ

ID

and KP
IP

stand for the profitability of each technology. The open loop equilibrium

suggests that the player who has more profitable technology moves first. Since Player

P already procured the patent, the implementation fee IP of the patent protected

technology is probably lower than the R&D cost of Player D. When the patent pro-

tected technology and the researched and developed technology are comparable, KP

and KD tend to be close. In this case, Player P is inclined to be the first mover.

Notice that the dominant strategy holds for the oligopoly model as well. Sup-

pose that there are N players in the oligopoly market. Let In, δn and Kn de-

note player n’s exercise cost, exercise delay and incremental market share, respec-

tively for n = 1, 2, · · · , N . Then each player’s dominant strategy is expressed with

τ ∗n = inf {t ≥ 0|X(t) ≥ x∗n} where x∗n = − r1(µ−ρ)Ine−(µ−ρ)δn

(r1−1)Kn .

4.3.3 Closed Loop Equilibrium

In a closed loop game, every player observes the realized value of the stochastic

factor and competitors’ behavior as time goes by. Based on the observed information,

each player updates his or her strategy. This section investigates the mixed strategy

closed loop equilibria of the patent and R&D competition.

As soon as one player exercises the flexible option, the remainder faces a one

decision maker’s decision problem. Because there is only one chance of investment

and the investment is irreversible, the first mover cannot react to the second mover’s

action. Therefore, there is no reason the follower deviates from the optimal decision
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as a follower. It implies that the game ends when at least one player exercises his or

her option.

Henceforth, this research assumes x∗D > x∗P by considering the usual real world

situation that is stated in the open loop equilibrium. Since the analysis structure

for the case of x∗D < x∗P is similar to the assumed case, this assumption does not

deteriorate the value of this research. This research investigated the closed loop

equilibrium where the initial state of the sub-game is lower than any player’s open

loop exercising trigger point, i.e., x0 < x∗P where x0 is the initial market volume of

the sub-game starting at t0. Moreover, the author does not include collaboration of

the players in the analysis.

Strategy and Equilibrium

It is worthwhile to review the development of strategy space in a preemption game.

Consider a duopoly market share competition game starting at time t0 with initial

total market volume X(t0). Suppose that no player exercises its flexible option until

time t which is later than t0, i.e., t ≥ t0, and the total market volume at that time

is Xt. Then the decision making structure from time t is exactly same to that from

the time t0. Therefore the decision from time t ≥ t0 can be considered as another

game with initial state Xt. This game is called as a sub-game. A sub-game of an

original game should satisfy independence conditions [155, pp. 274]. The imposed

assumptions of this research guarantee to satisfy the assumptions.

In the deterministic continuous preemption game Fudenberg and Tirole [6] defined

strategy space with two real value function Gt
i(s) and qi(s), for s ≥ t, where t is the

starting time of a sub-game. The payoffs of players are deterministic and expressed

explicitly with respect to time. The first element of the strategy, Gt
i(s), stands for

the cumulative distribution function of the probability that Player i has exercised the

player’s option before or at time s ≥ t, given that the other player has not invested yet.

On the other hand, qi(s) represents Player i’s intensity of exercising option at time s.
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The intensity function qi(s) is employed to compensate the loss of information from

the näıve extension of a discrete-time mixed strategy into a continuous-time game.

When both players have incentives to exercise option, at least one player will invest.

In this case the coordination problem occurs. The coordination means that which

player moves first or simultaneous move, when both players have incentive to be the

leader. The coordination of the players becomes a measure zero event if the strategy is

defined only with the cumulative distribution function. To address this coordination

problem, an atoms function in the sense of optimal control theory is needed. An

intuitive interpretation of the intensity function is a tie breaker. When both of the

players have incentive to invest, at least one of the players exercises the option. In this

case, the coordination is determined by the intensity function. In sum when Gt
i(s) > 0

for all i, who moves first or simultaneous investment is decided by the intensity of the

players. This strategy space is expended to stochastic contexts [149, 151, 152], and

this research follows Chevalier-Roignant and Trigeorgis’s framework [151, chapter 12].

A simple strategy consists of the two real value functions, Gt
i(s) and qi(s). A

pair of simple strategies (Gt
P (s), qP (s)) and (Gt

D(s), qD(s)) is a Nash equilibrium of

the sub-game starting at time t with neither player having exercised, if each player’s

strategy maximizes his payoff given the other player’s strategy fixed. Moreover, a

pair of closed-loop strategies {(Gt
P (s), qtP (s))}t≥t0 and {(Gt

D(s), qtD(s))}t≥t0 is a perfect

equilibrium of a game beginning at time t0, if the simple strategies are Nash equilibria

∀t ≥ t0.

For stochastic option exercise games, the simple strategies are Ft adapted rather

than explicit functions of time. Thijssen et al. [149] focused on this characteristics, but

they did not clarified the arguments of simple strategy. This research elucidates the

arguments of the simple strategies at the equilibrium relying on the Markov property

and existence of threshold types exercise trigger. Let M t(s) and mt(s) be the running

maximum and minimum of a stochastic process X(s) of a sub-game starting at t, i.e.,

M t(s) = maxt≤u≤sX(u) and mt(s) = mint≤u≤sX(u). The cumulative distribution
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function Gt
i(s) is explicitly expressed with the arguments as Gt

i(M
t(s),mt(s)). The

intensity function is defined as qi(s) = qi(X(s)).

Terminal Payoff

There are three possible scenarios terminating the patent and R&D competition.

The first case is that both of the players exercise options, i.e., Player P starts to pro-

duce a new product and Player D launches the R&D project at the same time. When

the total market volume at the time of exercising the option is given as X(t) = x,

PM(x) and DM(x) represent the payoff of Player P and that of Player D, respectively.

Suppose that Player P preempts Player D by exercising his option when X(t) = x.

Then Player D optimally chooses the time to start R&D project as a follower. In this

case PL(x) and DF (x) denote the payoff of Player P as a leader and that of Player D

as a follower, respectively. On the other hand, when Player D starts the R&D project

first when X(t) = x, the payoff of Player P as a follower is denoted by PF (x) and

DL(x) represents that of Player D as a leader. The terminal payoffs are calculated

as followings and the detail calculation procedure is in Appendix B.1.

Player P ’s terminal payoffs

PM(x) =

[
KDe

(µ−ρ)δ −KP

µ− ρ

]
x− IP −

1− π0
µ− ρ

x (4.3)

PL(x) =

 PM(x) x ≥ x∗D

− IDr1
r1−1

(
x
x∗D

)r1
− KP

µ−ρx− IP −
1−π0
µ−ρ x x < x∗D

(4.4)

PF (x) =

 PM(x) x ≥ x∗P
IP
r1−1

(
x
x∗P

)r1
+ KDe

(µ−ρ)δ

µ−ρ x− 1−π0
µ−ρ x x < x∗P

(4.5)



69

Player D’s terminal payoffs are

DM(x) =

[
−KDe

(µ−ρ)δ +KP

µ− ρ

]
x− ID −

π0
µ− ρ

x (4.6)

DL(x) =

 DM(x) x ≥ x∗P

− IP r1
r1−1

(
x
x∗P

)r1
− KDe

(µ−ρ)δ

µ−ρ x− ID − π0
µ−ρx x < x∗P

(4.7)

DF (x) =

 DM(x) x ≥ x∗D
ID
r1−1

(
x
x∗D

)r1
+ KP

µ−ρx−
π0
µ−ρx x < x∗D

(4.8)

where

x∗D =
IDe

−(µ−ρ)δ(µ− ρ)r1
−KD(r1 − 1)

(4.9)

x∗P =
IP (µ− ρ)r1
−KP (r1 − 1)

(4.10)

Notice that PM(x) and DM(x) are straight lines with positive slope. Moreover,

PF (x) and DF (x) are positive, increasing and convex ∀x > 0, and PL(x), x ∈ (0, x∗D),

and DL(x), x ∈ (0, x∗P ) are concave. With the assumption x∗P < x∗D, firm P ’s payoff

structure is unique, but there are two possible structures of firm D’s payoff according

to the parameter values. Figure 4.1 shows the structure of Player P ’s payoffs. The

blue solid, the red dash-dot and the black dash lines represent PM(x), PL(x) and

PF (x), respectively. The terminal payoffs inform fundamental incentive of Player P ’s

behavior. The intersection of PL(x) and PF (x) in (0, x∗P ) is unique and denoted by

xP . In the region of [0, xP ), Player P does not have incentive to be a leader, since

being follower provides higher payoff than being leader. When the current market

volume belongs to (xP , x
∗
P ), Player P wants to be a leader, but there is a risk having

undesirable payoff PM(x) if Player D starts R&D project at the same time. Figures

4.3.3 and 4.3.3 illustrate two cases of Player D’s payoff. When Player D’s payoff as

a leader, DL(x), never exceeds that as a follower, DF (x), Figure 4.3.3 illustrates the

payoffs. In this case, being a follower is preferable to moving first when x ∈ [0, x∗D) and

indifferent when x = [x∗D,∞) for Player D. It implies that Player D has no incentive

to start an R&D project earlier than Player P ’s introduction of new product because

of the assumption x∗P < x∗D. Because the quick response of Player P enables Player
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−𝐼𝐼𝑃𝑃

𝑉𝑉𝑃𝑃

𝑃𝑃𝑀𝑀 𝑥𝑥
𝑃𝑃𝐿𝐿 𝑥𝑥
𝑃𝑃𝐹𝐹 𝑥𝑥

Figure 4.1. Player P ’s Payoff Structure

P not to be afraid of being preempted, this case is referred to a ‘Large Asymmetry’

case.

The other case, which is represented in Figure 4.3.3, is that DL(x) is higher than

DF (x) for x ∈ (xD, x̄D). Notice that x̄D, the bigger intersection of DL(x) and DF (x),

is smaller than x∗P . This means when the total market volume belongs to an open

interval (xD, x̄D), Player D has incentive to preempt Player P , even though there is

a risk of simultaneous movement. This case is referred to ‘Small Asymmetry’ case
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𝑥𝑥𝑥𝑥𝑃𝑃∗ 𝑥𝑥𝐷𝐷∗

−𝐼𝐼𝐷𝐷

𝑉𝑉𝐷𝐷 𝐷𝐷𝑀𝑀 𝑥𝑥
𝐷𝐷𝐿𝐿 𝑥𝑥
𝐷𝐷𝐹𝐹 𝑥𝑥

Figure 4.2. Player D’s Payoff with Large Asymmetry

Closed Loop Equilibrium with Large Asymmetry

When the patent provides large advantage to Player P , Player D does not have an

incentive to be the leader. With a large advantage of procuring a patent, the closed

loop equilibrium has a relatively simple strategy profile.

Theorem 4.3.2 If the set of parameters satisfies (4.11), DL(x) ≤ DF (x) for all

x ≥ 0.

ID

{
ID

(x∗D)r1
+

IP r1
(x∗P )r1

} 1
r1−1

>

[
r1 − 1

r1
· KP +KDe

(µ−ρ)δ

ρ− µ

] r1
r1−1

(4.11)

In this case, the following strategies are a perfect equilibrium for a game starting at

t0 with X(t0) < x∗p, where t0 ≤ t ≤ s.

Gt
P (s) =

 0 M t(s) < x∗P

1 M t(s) ≥ x∗P

, qP (s) =

 0 X(s) < x∗P

1 X(s) ≥ x∗P

(4.12)

Gt
D(s) =

 0 M t(s) < x∗D

1 M t(s) ≥ x∗D

qD(s) =

 0 X(s) < x∗D

1 X(s) ≥ x∗D

(4.13)
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Figure 4.3. Player D’s Payoff with Small Asymmetry

Proof See Appendix A.5

All games starting with X(t0) = x0 < x∗P end when Player P moves first at

the time τ ∗P = inf {s ≥ t0|X(s) ≥ x∗P}. Player D exercises its option when τ ∗D =

inf {s ≥ t0|X(s) ≥ x∗D}. The author remarks that this equilibrium is identical to the

open loop equilibrium in Theorem 4.3.1. This result implies that the coordination

problem does not occur with large asymmetry, and coincides with the previous re-

search [151, pp. 393-394] [152].

Closed Loop Equilibrium with Small Advantage

If the set of parameters does not satisfy the inequality (4.11), Player D has in-

centive to preempt Player P in the region (xD, x̄D). Given x0 < x∗P , Player P cannot

wait until the market volume grows up to x∗P due to the preemption threat from firm

D. This research seeks epsilon-equilibrium as the closed loop equilibrium. Intuitively
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speaking, in the context of a preemption game, a player can exercise his or her option

right before the time that the other player intends to. For more formal discussion,

refer to [156]. Here, this research assumes that xP < xD, and Section 4.4.3 discuss

the case that xP > xD

Theorem 4.3.3 Suppose that Player P has small advantage by procuring the patent,

i.e., the inequality (4.11) does not hold, and xP < xD. Then, the following simple

strategies consist of perfect equilibrium for a game starting at t0 with X(t0) = x0 < x∗P

and arbitrary small ε > 0, where t0 ≤ t ≤ s.

Gt
P (s) =


0 M t(s) < xD − ε

0 x̄D < mt(s) + ε and M t(s) < x∗P

1 Otherwise

(4.14)

qP (s) =



0 X(s) < xD
DL(X(s))−DF (X(s))
DL(X(s))−DM (X(s))

xD ≤ X(s) ≤ x̄D

0 x̄D < X(s) < x∗P

1 x∗P ≤ X(s)

(4.15)

Gt
D(s) =


0 M t(s) < xD

0 x̄D < mt(s) and M t(s) < x∗D

1 Otherwise

(4.16)

qD(s) =



0 X(s) < xD
PL(X(s))−PF (X(s))
PL(X(s))−PM (X(s))

xD ≤ X(s) ≤ x̄D

0 x̄D < X(s) < x∗D

1 x∗D ≤ X(s)

(4.17)

Proof See Appendix A.6

The profile of perfect equilibrium strategies implies the players’ behaviors accord-

ing to the initial state of the game x0 as follows.

1. x0 < xD

Player P preempts Player D by implementing the patent protecting technology
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at the moment right before X(s) hits xD. In other words, Player P moves first

when τ ∗P = inf{s ≥ t0|X(s) ≥ xD−ε}. Therefore, the simultaneous investment,

which is called ‘coordination failure,’ would not happen.

2. xD ≤ x0 ≤ x̄D

In this case, both players have incentive to exercise their option at the beginning

of the game. Therefore, the game ends immediately, since at least one player

exercises his or her option. The coordination is determined by the intensity of

the players, qP (x0) and qD(x0). Let P(Leader=P )(x0) = P(Follower=D)(x0) denote

the probability of Player P is the leader and Player D is the follower. Simi-

larly, P(Leader=D) = P(Follower=P )(x0) represents the probability that the roles of

players are reversed. The probability of simultaneous execution is connoted by

P(Simultaneous Investment)(x0). At the equilibrium, the probabilities are calculated

as

P(Leader=P )(x0) =
qP (x0)(1− qD(x0))

qP (x0) + qD(x0)− qP (x0)qD(x0)
(4.18)

P(Leader=D)(x0) =
qD(x0)(1− qP (x0))

qP (x0) + qD(x0)− qP (x0)qD(x0)
(4.19)

P(Simultaneous Investment)(x0) =
qD(x0)qP (x0)

qP (x0) + qD(x0)− qP (x0)qD(x0)
(4.20)

3. x̄D < x0 < x∗P

Player P moves first at the time either the market volume grows up to x∗P or

shrinks to x̄D−ε. Therefore Player P is the leader, and simultaneous investment

does not happen.

Comparing to the open loop equilibrium stated in Theorem 4.3.1, the closed loop

information structure hastens the players’ investment time when the asymmetry of

exercise delay is small. Moreover, the expected payoff of the player who retains a

competitive advantage from a short exercise delay with closed loop information is less

than or equal to that with open loop information.
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4.4 Stochastic R&D Duration and Cost

In this section, the assumptions about fixed R&D project period and cost in

Section 4.3 are relaxed to stochastic variables. In the real world, required time and

cost of a R&D project is not known in advance. To consider this aspect, the delay

of implementing decision is assumed to follow an exponential distribution with mean

1/γ, i.e. δ(γ) ∼ exp(γ) and γ > 0. This assumption is accepted by previous research

such as [98]. Since the structure of this game is almost identical to the structure

of the game in Section 4.3, this section focuses on the difference from the previous

section.

4.4.1 Model

The unit cost per time of the R&D project is fixed as c > 0. Although the

cost per unit time is fixed, the total cost of the R&D project is random due to

the random duration of the project. The other settings are identical to section 4.3.

Player P is endowed with the initial market share (1− π0), and possesses the patent

protected technology that enables introducing a new product without exercise delay.

By investing IP at the time τP , Player P increases his or her market share by 0 ≤

KP ≤ π0. Player D starts the R&D project at time τD and the project is completed

at τD + δ(γ). Initially, Player D’s market share is π0, and it can be increased by KD

from τD + δ(γ). The increase of a player’s market share causes the other player’s loss

of market share. The other conditions for parameter values hold as well. Reflecting

the stochastic duration of R&D project, the performance functions for players are

expressed as the following.
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JP (τP |τD, x0) =
∫ τm
0

e−ρt(1− π0)X(t)dt+
∫ τP
τm
e−ρt(1− π0 −KD)X(t)dt− e−ρτP IP

+
∫ τM
τP

e−ρt(1− π0 +KP )X(t)dt+
∫∞
τM
e−ρt(1− π0 +KP −KD)X(t)dt

JD(τD|τP , x0) =
∫ τm
0

e−ρtπ0X(t)dt+
∫ τD+δ(γ)

τm
e−ρt(π0 −KP )X(t)dt

+
∫ τM
τD+δ(γ)

e−ρt(π0 +KD)X(t)dt−
∫ τD+γ

τD
e−ρtcdt

+
∫∞
τM
e−ρt(π0 +KD −KP )X(t)dt

(4.21)

4.4.2 Open Loop Equilibrium

This game also yields the following dominant strategy equilibrium.

Theorem 4.4.1 In the open loop setting, it is optimal for Player D to start its R&D

project at τ ∗D = inf {t ≥ 0|X(t) ≥ x∗D}. For Player P , it is optimal to implement the

new technology at τ ∗P = inf {t ≥ 0|X(t) ≥ x∗P}. The optimal trigger points are

x∗P = −r1IP (µ− ρ)

KP (r1 − 1)
(4.22)

x∗D =
cr1(µ− ρ)(µ− ρ− γ)

γKD(r1 − 1)(ρ+ γ)
(4.23)

Proof See Appendix A.7.

Similar to the fixed R&D duration and cost case, the open loop equilibrium implies

that the profit-abilities of patent and R&D determine the coordination of players. If

IP
KP

< − c(µ−ρ−γ)
γKD(ρ+γ)

, Player P moves first, because x∗P < x∗D. On the other hand, if

IP
KP

> − c(µ−ρ−γ)
γKD(ρ+γ)

, Player D becomes the leader.

4.4.3 Closed Loop Equilibrium

To investigate the closed loop equilibrium, this research assumes x∗P < x∗D same

as the previous section.
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Terminal Payoff

As shown in Section 4.3.3, the terminal payoffs are the cornerstones of deriving

the closed loop equilibrium. The author summarizes the terminal payoffs in (4.24)

- (4.29) and provides the detail procedure of calculation in Appendix B.2. If both

players exercise the options at the same time when X(t) = x, Player P ’s payoff

is PM(x), and that of Player D is DM(x). When Player P preempts Player D by

implementing its patented technology at X(t) = x, Player P earns PL(x), and Player

D receives DF (x). Suppose that Player D starts the R&D project when X(t) = x

before Player P introduces a new product using the patent. Then Player D and

Player P gross DL(x) and PF (x), respectively.

PM(x) = −
[

γKD

(µ− ρ− γ)(µ− ρ)
+

KP

µ− ρ

]
x− IP −

1− π0
µ− ρ

x (4.24)

PL(x) =

 PM(x) x ≥ x∗D

− cr1
(r1−1)(ρ+γ)

(
x
x∗D

)r1
− γKD

(µ−ρ)(µ−ρ−γ)x−
1−π0
µ−ρ x x < x∗D

(4.25)

PF (x) =

 PM(x) x ≥ x∗P
IP
r1−1

(
x
x∗P

)r1
− γKD

(µ−ρ)(µ−ρ−γ)x−
1−π0
µ−ρ x x < x∗P

(4.26)

DM(x) =

[
γKD

(µ− ρ− γ)(µ− ρ)
+

KP

µ− ρ

]
x− c

ρ+ γ
− π0
µ− ρ

x (4.27)

DL(x) =

 DM(x) x ≥ x∗P

− IP r1
(r1−1)

(
x
x∗P

)r1
+ γKD

(µ−ρ)(µ−ρ−γ)x−
c

ρ+γ
− π0

µ−ρx x < x∗P
(4.28)

DF (x) =

 DM(x) x ≥ x∗D
c

(r1−1)(ρ+γ)

(
x
x∗D

)r1
+ KP

µ−ρx−
π0
µ−ρx x < x∗D

(4.29)

Notice that the terminal payoffs have the identical structures to the deterministic

R&D duration and cost case. The payoffs, PM(x) and DM(x), are straight lines with

positive slopes, and PF (x) and DF (x) are increasing convex. Moreover, PL(x) for

x ∈ [0, x∗D] and DL(x) for x ∈ [0, x∗P ] are concave.
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Closed Loop Equilibrium

Since the terminal payoff structures are identical to those with fixed R&D duration

and costs, the equilibrium is the same to the case of fixed R&D duration and costs

except for the value of focal points such as xP , xD and x̄D. When the patent provides a

small advantage, i.e., DL(x) ≤ DF (x),∀x ≥ 0, the closed loop equilibrium is identical

to the equilibrium stated in (4.12) and (4.13) with the threshold values in (4.22) and

(4.23). If the patent provides a large advantage, i.e., DL(x) ≥ DF (x) for xD ≤ x ≤

x̄D, the equilibrium is derived with the same procedure in section 4.3.3. Since the

equilibrium stated in Theorem 4.3.3 assumed xP < xD, the author states the closed

equilibrium when xP > xD. The proof in Appendix A.6 covers this theorem as well.

Theorem 4.4.2 Suppose that Player P has small advantage by procuring the patent,

i.e., DL(x) ≥ DF (x) for xD ≤ x ≤ x̄D, and xP > xD. Then, the following simple
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strategies consist of perfect equilibrium for a game starting at t0 with X(t0) = x0 < x∗P

and arbitrary small ε > 0, where t0 ≤ t ≤ s.

Gt
P (s) =


0 M t(s) < xP

0 x̄D < mt(s) + ε and M t(s) < x∗P

1 Otherwise

(4.30)

qP (s) =



0 X(s) < xP
DL(X(s))−DF (X(s))
DL(X(s))−DM (X(s))

xP ≤ X(s) ≤ x̄D

0 x̄D < X(s) < x∗P

1 x∗P ≤ X(s)

(4.31)

Gt
D(s) =


0 M t(s) < xP − ε

0 x̄P < mt(s) and M t(s) < x∗D

1 Otherwise

(4.32)

qD(s) =



0 X(s) < xP
PL(X(s))−PF (X(s))
PL(X(s))−PM (X(s))

xP ≤ X(s) ≤ x̄D

0 x̄D < X(s) < x∗D

1 x∗D ≤ X(s)

(4.33)

Proof See Appendix A.6

The players’ behaviors on the perfect equilibrium are summarized as the following.

1. x0 < xP : Player D starts R&D project before Player P introduce a new product

when the market volume grows to X(s) ≥ xP .

2. xD ≤ x0 ≤ x̄D: At least one player exercises the flexible option, and the game

ends at the outset of the game. The probability of the coordination is the same

as (4.18)-(4.20).

3. x̄D < x0 < x∗P : Player P preempts Player D.



80

4.5 Strategic Flexibility Summary

Under strategic environment, an operator of a flexible system must consider and

react properly to both the stochastic circumstance and other decision makers behav-

ior. This chapter extended the environments considered in Chapter 3 to strategic

environments including the interactions between decision makers. Duopoly market

share competition was employed in this chapter to clarify the context of option ex-

ercise games. This research interpreted an exclusive patent as flexibility without

exercise delay, and R&D opportunity as that with exercise delay. Section 4.3 mod-

eled the asymmetric option exercise game when the exercise delay is fixed, and Section

4.4 considered a stochastic exercise delay.

In the open loop model, the game yields unique dominant strategy equilibrium,

and the profitability of each technology decides who exercises the option first. For

the closed loop model, this research suggested a strategy space with respect to the

running maximum, the running minimum and the current state of the stochastic

factor. Based on the construction of strategy space, this dissertation successfully

assessed the closed loop equilibria of the option exercise game. When the asymmetry

between the players is large, the closed loop equilibrium is identical to the open

loop equilibrium. However, if the short exercise delay does not provide a sufficient

competitive advantage, both players exercise their option earlier than the case of large

asymmetry. Moreover, in this case the expected payoffs of the players are lower than

the large asymmetry case.
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5. CONCLUSIONS

The primary objectives of this dissertation were developing a concrete framework for

designing a flexible system by considering the exercise delay as a measure of flexibility

and investigating the rational behaviors of decision makers who operate flexible sys-

tems under strategic environments. The general approach employed to develop the

theoretical models for this dissertation included the optimal control theory, non-linear

optimization, stochastic differential equation and game theory. The impact of exer-

cise delay as a measure of flexibility was investigated with respect to operational level

and design level under a stochastic environment. By deriving a comprehensive profile

of optimal operational policies of a flexible system with exercise delay and identify-

ing the interdependency of design and operational level decisions, a well-organized

concrete framework to solve the design level problem was developed. Moreover, the

impact of interactions between decision makers who manage a flexible system was

studied under both the open loop and the closed loop information structures. The

derived equilibria provided insights into a market share competition under stochastic

duopoly market.

This chapter summarizes the research conducted in this dissertation, highlights

the contributions to the current literature and proposes potential extensions for future

research.

5.1 Summary

This study considered two distinct environments, stochastic and strategic envi-

ronments, of a flexible system. The models for each environments focused on exercise

delay as the essential component of flexibility.
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5.1.1 Designing a Flexible System under Stochastic Environment

The first part of this research was presented in Chapter 3 and studied the optimal

decisions on a flexible system with exercise delay within stochastic environments. The

model postulates two level decisions, operational level and design level decisions.

The first model of this chapter assumed that the operational level problem is

deciding the optimal time to exercise the designed option, and the design problem

is choosing the optimal level of flexibility, i.e., the length of exercise delay. The

operational level problem was modeled as a delayed optimal stopping time problem,

and this research provided a comprehensive profile of the optimal operational policies.

The profile provides a guideline for optimal operational policies according to the

parameters representing the market conditions and characteristics of the alternative

and designed features of the flexible system. Leveraging a general approach developed

in optimal control theory, the first goal of this research, successful derivation of the

operational level solution, was accomplished.

In addition, the profile elucidates the interdependence between the operational

level decision and the design level decision separating the entire domain of the design

problem into sub-regions. This finding contributes to the area of flexible systems

engineering. By analyzing the characteristics of the design problem in each sub-region,

this research effort found that the design problem is decomposable with well-behaved

non-linear optimization problems. With an illustrative example, the usefulness of the

developed framework was shown.

The second model of Chapter 3 expanded the previous model by including the

extent of capability change in the design level decision variables. The possible choices

of the capability change included expanding the capability, reducing the capability,

terminating the operation of flexible system and staying the initial mode forever. The

inclusive optimal operational policy developed with the previous model was utilized

to assess the operational level solution. Following the similar process of the previous

model, the interdependence between the two level problems was also confirmed for
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this model. With a careful examination of the possible singularity, this research

showed that the design problem of the extended model is also decomposable, and

another illustrative example is provided to clarify the usefulness of the suggested

flexible system design framework.

5.1.2 Management of Flexible System in Duopoly Market

Strategic environments force a decision maker to cope with both exogenous un-

certainty and endogenous interactions among decision makers. Investigating decision

makers’ rational behaviors in equilibrium was another main goal of this dissertation.

As the strategic environment, a duopoly market share competition was postulated

where the total market profit was regarded as the underlying uncertainty. The player

retaining an exclusive patent was regarded as a player competing in the market with

a flexible system that does not have exercise delay. The other competitor was inter-

preted as a player operating a flexible system with exercise delay.

Because two types of exercise delay and the two types of information structure

were considered in this dissertation, four equilibria were derived. This research effort

stared with a fixed exercise delay model and evolved into the model with a stochastic

exercise delay. The open loop and closed loop information structures were considered

for each model. The results showed that the open loop equilibria are unique dominant

strategy equilibria in both of the models with respect to exercise delay. An interesting

implication of the open loop equilibria was the profitability of flexible option decides

the role of its owner in the duopoly market competition.

Although construction of an appropriate strategy space is a premise of deriv-

ing closed loop equilibrium, a satisfactory strategy space has not yet reported for a

stochastic preemption games. Bearing in mind the strategy space for deterministic

preemption games, the author suggested strategy space that is adapted to the set of

cumulated information up to the present time of the game. With the suggested strat-
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egy space, the closed loop equilibria were described properly. This is a contribution

of this research effort to the area of option exercise games.

This research found that the closed loop equilibrium has two distinctive forms.

When the asymmetry of exercise delay is small, the closed loop equilibrium is identical

to the open loop equilibrium. On the other hand, if the asymmetry provides a large

enough advantage to the player who has a flexible option with no exercise delay,

the rational behaviors of the players are complicated in the closed loop equilibrium.

Comparing the closed loop equilibrium with the open loop equilibrium, this research

discovered the following interesting insights.

1. The closed loop information structure hastens the execution of flexible options,

and it results in lower payoffs to both of the players.

2. The role of each player is determined not only by the characteristics of the

flexible options but also by the value of stochastic factor.

3. Even the player with a competitive disadvantage from the asymmetry has a

positive chance to be the leader of the market.

5.2 Future Work

The author summarizes the possible extensions to this research effort as follows:

1. This research mainly focused on theoretical development of flexible systems

management under stochastic and strategic environments. However, the devel-

oped models are applicable in many practical contexts with minor modifications.

The illustrative examples in Chapter 3 and the context employed in Chapter

4 showed the application potentials of this research. Moreover, the construc-

tive frameworks of this research are useful to find insights from the real world

problems. For example, this dissertation reported closed form solutions for the

operational level problem of flexible system management under stochastic envi-
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ronments. If this result is applied to a real world problem, it can make sensitive

analysis easily

2. The stochastic processX(t) was assumed to follow a geometric Brownian motion

and employed to represent the underlying uncertainty of the flexible systems.

However, this assumption may not be appropriate to model all underlying uncer-

tainties. Especially, the assumed stochastic process satisfies the strong Markov

property. If the underlying uncertainty does not satisfy the property, the theo-

rem, which this research heavily relied on for deriving the optimal operational

policy of delayed flexible system, does not hold. Furthermore, when the under-

lying uncertainty is not Markov, empowerment to the system operator can be

an interesting research topic. For example, it can be more efficient for system

designer to set the range of exercise delay in which the system operator decides

the specific exercise delay when he or she exercises the flexible option, instead

of setting a fixed length of delay.

3. The flexible systems considered in this dissertation allowed only one change of

to the system configuration over the life time of the flexible system. If a flexi-

ble system allows multiple changes, an appropriate numerical method may be

required to solve the problem. For example, this extension would explain the

automation flexibility. Once an automated system is established, the change

within the embedded alternatives can occur frequently. Unfortunately, the re-

sults in this dissertation have limits to assess the frequently changing flexible

system, especially computation-wise. Investigation of the practical methods for

the frequently changing flexible system would be an interesting extension of this

research.

4. The flexible options were implicitly assumed to have infinite life time, i.e., as

long as the irreversible change of the system has not been made, it is possible

to change the system whenever the system operator wants. However, in reality

many of the opportunities disappear within a certain amount of time. When
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the flexible option is perishable, the operational problem does not yield a useful

closed form solution. Investigating a flexible system whose alternatives are

available for limited time is an interesting research topic.

5. The closed loop equilibrium derived in this dissertation was unique with the

assumption that players exercise their options at the outset of a game if the

game starts with a high initial state. However, other closed loop equilibria are

reported for both stochastic and deterministic preemption games when both of

the players payoff structures and available strategies are identical. The studies

showed that it is equilibrium that both of the players wait until the state variable

increased to very high state. Yet, for asymmetric option exercise games, the

existence of other closed loop equilibrium is still matter of study.

6. There could be the first movers advantage or the second movers advantage. In

terms of flexible option, the first movers advantage implies that the gain from

exercising the flexible option ahead of the competitor is greater than the gain

from following the competitor. If there is the first movers advantage, no useful

closed form solution of option exercise policy has been reported for asymmetric

exercise delay case. Even an appropriate numerical method for this problem

is still under research. Obstacle problem approach and front tracking method

are the current candidates for the numerical method. Since the first movers

advantage exists in many of the real world situations, this could be a valuable

research topic.

7. This dissertation does not consider design problems under strategic environ-

ments. It is mainly for two reasons. The first reason is the possible existence of

multiple equilibria. The other reason is difficulties of constructing design level

games. When there are multiple equilibria, it may be challenging to assess which

equilibrium will be attained. Moreover there must be interactions in the design

phase. The players can acquire a flexible system without exercise delay through

an auction, or through a negotiation with the system seller. The mechanism to
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acquire the flexible system is also open to research. An integrated approach for

both the operational level option exercise games and design level game would

contribute to the research areas of option exercise games and flexible decision

making.

These contributions will impact decision making with flexible systems.
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APPENDIX A

PROOFS OF THEOREMS

A.1 Proof of Theorem 3.3.1

Proof Let fi(t,X(t)) = e−ρt(aiX(t) + bi) for i = 1, 2 and

G(x) = Ex
[∫ ∞

0

f2(t,X(t))dt

]
= − a2

µ− ρ
x+

b2
ρ

Then

v(x, δ) = supτ Ex
[∫ τ+δ

0
f1(t,X(t))dt+ e−ρ(τ+δ)c̃(δ) +

∫∞
τ+δ

f2(t,X(t))dt
]

= supτ Ex
[∫ τ+δ

0
f1(t,X(t))− f2(t,X(t))dt+ e−ρ(τ+δ)c̃(δ)

]
+G(x)

Let f1(t,X(t))− f2(t,X(t)) = e−ρt(aX(t) + b), where a = a1 − a2, b = b1 − b2,

Ex
[∫ τ+δ

0
f1(t,X(t))− f2(t,X(t))dt+ e−ρ(τ+δ)c̃(δ)

]
= Ex

[∫ τ+δ
0

e−ρt(aX(t) + b)dt+ e−ρ(τ+δ)c̃(δ)
]

By [129, Theorem 2.1], The delayed optimal stopping time problem can be trans-

formed to a classic optimal stopping time problem without delay based on Markov

property as follows:

supτ Ex
[∫ τ+δ

0
e−ρt(aX(t) + b)dt+ e−ρ(τ+δ)c̃(δ)

]
= supτ Ex

[∫ τ
0
e−ρt(aX(t) + b)dt+ Ex

[∫ δ
0
e−ρt(aX(t) + b)dt+ e−ρδ c̃(δ)

∣∣∣x = X(τ)
]]

= supτ Ex
[∫ τ

0
e−ρt(aX(t) + b)dt+ eρτ (F1X(τ) + F2)

]
where F1 = a(e(µ−ρ)δ − 1)/(µ− ρ) and F2 = (b/ρ)(1− e−ρδ) + e−ρδ c̃(δ). Therefore,

v(x, δ) = ṽ(x, δ) +G(x) (A.1)

where

ṽ(x, δ) = sup
τ

Ex
[∫ τ

0

e−ρt(aX(t) + b)dt+ eρτ (F1X(τ) + F2)

]
(A.2)
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The solution of equation (A.2) can be found using the approach of [128, Chapter

10]. Let S = {(x, τ) ∈ (0,∞)× (0,∞)} be the solvency region. Define an operator

for a function of s and x, A := ∂
∂s

+ µx ∂
∂x

+ 1
2
σ2x2 ∂2

∂x2
, based on Ito’s formula. Let

h1(s, x) := e−ρs(ax + b) and h2(s, x) := e−ρs(F1x + F2). Consider the set U =

{(x, τ) ∈ (0,∞)× (0,∞)|A(h2) + h1 > 0}

A(h2) + h1 = −ρe−ρs(F1x+ F2) + µxe−ρsF1 + e−ρs(ax+ b)

= e−ρ(s+δ)
{
aeµδx− ρc̃(δ) + b

}
Therefore U = {(x, τ) ∈ (0,∞)× (0,∞)|A(h2) + h1 > 0}

=
{

(x, τ) ∈ (0,∞)× (0,∞)
∣∣ax > e−µδ(ρc̃(δ)− b)

}
. We can consider the following

cases.

1. a > 0 and c̃(δ) ≤ b/ρ

ax > e−µδ(ρc̃(δ)− b)⇔ x >
e−µδ

a
(ρc̃(δ)− b)

This means U = S, because above inequality is satisfied ∀x ∈ (0,∞). Therefore,

the flexible option should not be exercised [157, Proposition 2.3 and Proposition

2.4].

2. a < 0 and c̃(δ) ≥ b/ρ

ax > e−µδ(ρc̃(δ)− b)⇔ x <
e−µδ

a
(ρc̃(δ)− b)

In this case U = ∅. Then exercising option immediately is optimal.

3. a > 0 and c̃(δ) > b/ρ

ax > e−µδ(ρc̃(δ)− b)⇔ x >
e−µδ

a
(ρc̃(δ)− b)

It means U =
{

(s, x)
∣∣∣x > e−µδ

a
(ρc̃(δ)− b) > 0

}
. The continuation region D has

the form

D = {(s, x)|x∗ < x}

for some x∗ that satisfies 0 < x∗ ≤ e−µδ

a
(ρc̃(δ)− b).
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4. a < 0 and c̃(δ) ≤ b/ρ

ax > e−µδ(ρc̃(δ)− b)⇔ x <
e−µδ

a
(ρc̃(δ)− b)

In this case, U =
{

(s, x)
∣∣∣0 < x < e−µδ

a
(ρc̃(δ)− b)

}
. The continuation region D

has the form

D = {(s, x)|0 < x < x∗}

for some x∗ that satisfies 0 < e−µδ

a
(ρc̃(δ)− b) ≤ x∗

Let v∞(x) denote the value of system when never exercising the flexible option is

optimal given X(0) = x and δ.

v∞(x) = Ex
{∫∞

0
aX(t) + bdt+G(x)

}
=
∫∞
0
a1Ex[X(t)] + b1dt

= − a1
µ−ρx+ b1

ρ

(A.3)

Let v0(x, δ) represent the value of the flexible system when immediate exercise of

the flexible option is optimal given X(0) = x and δ.

v0(x, δ) = Ex
{∫ δ

0
aX(t) + bdt+ e−ρδ c̃(δ) +G(x)

}
=
∫ δ
0
aEx[X(t)] + bdt+ e−ρδ c̃(δ) +G(x)

= ae(µ−ρ)δ−a1
µ−ρ x+ b1−be−ρδ

ρ
+ e−ρδ c̃(δ)

(A.4)

In the case that a < 0 and c̃(δ) ≤ b/ρ, the solution of (A.2) satisfies [128, Theorem

10.4.1], and φ(s, x) = e−ρsψ(x) is a well-known candidate for the solution of (A.2).

By the condition (vii) of [128, Theorem 10.4.1],

Aφ+h1 = −ρe−ρsψ(x)+µxe−ρsψ′(x)+
1

2
σ2x2e−ρsψ′′(x)+e−ρs(ax+b) = 0, ∀(s, x) ∈ D

Equivalently,

−ρψ(x) + µxψ′(x) +
1

2
σ2x2ψ′′(x) + ax+ b = 0, ∀(s, x) ∈ D (A.5)

Let ψ0(x) be the solution of homogeneous ordinary differential equation

−ρψ0(x) + µxψ′0(x) +
1

2
σ2x2ψ′′0(x) = 0
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The general solution of above differential equation, Cauchy-Euler equation, is ψ0(x) =

Λ1x
r1 + Λ2x

r2 , where r1 and r2 are the solutions of the auxiliary equation, u(r) =

−ρ + µr + 1
2
σ2r(r − 1) = 0. Notice that the auxiliary equation has two solutions, r1

and r2, which satisfy r2 < 0 < 1 < r1, because u(0) = −ρ < 0, u(1) = µ − ρ < 0

and limr→∞ u(r) > 0. A function ψ1(x) = λ1x + λ2 is a candidate of the solution

of non-homogeneous equation, −ρψ1(x) + µxψ′1(x) + 1
2
σ2x2ψ′′1(x) + ax + b = 0, with

unknown constants λ1 and λ2.

−ρψ1(x) + µxψ′1(x) + 1
2
σ2x2ψ′′1(x) + ax+ b = 0

{(µ− ρ)λ1 + a}x− ρλ2 + b = 0

Therefore, λ1 = − a
µ−ρ and λ2 = b

ρ
. Because we are considering a < 0 and c̃(δ) ≤ b/ρ,

and the continuation region D = {(s, x)|0 < x < x∗}. Since ψ(x) is bounded near

x = 0, the solution of (A.5) has the following form.

ψ(x) =

 Λ1x
r1 − a

µ−ρx+ b
ρ

0 < x < x∗

F1x+ F2 x∗ ≤ x
(A.6)

By the condition (i) of [128, Theorem 10.4.1], the continuity and smooth pasting

conditions,

Λ1(x
∗)r1 − a

µ− ρ
x∗ +

b

ρ
= F1x

∗ + F2 (A.7)

Λ1r1(x
∗)r1−1 − a

µ− ρ
= F1 (A.8)

By solving above equations,

x∗1(δ) =
r1(µ− ρ)

(a1 − a2)(r1 − 1)

[
b1 − b2
ρ
− c̃(δ)

]
e−µρ, Λ1 =

ae(µ−ρ)δ

r1(µ− ρ)
(x∗1)

1−r1 (A.9)

Notice that s is a time shift parameter [128, Section 10.4]. Since the current value

of the system is calculated by setting s = 0. Then φ(0, x) = ψ(x). When a < 0 and

c̃(δ) ≤ b/ρ, the solution of (A.1) is expressed as the follows by plugging (A.9) into

(A.6).

vc,1(x, δ) =
e−ρδ

r1 − 1

[
b1 − b2
ρ
− c̃(δ)

](
x

x∗1(δ)

)r1
− a1x

µ− ρ
+
b1
ρ
, x∗1 > x (A.10)

v0(x, δ) =
{(a1 − a2)e(µ−ρ)δ − a1}x

µ− ρ
− b1 − b2

ρ
e−ρδ +

b1
ρ

+ e−ρδ c̃(δ), x∗1 ≤ x (A.11)
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In the case that a > 0 and c̃(δ) > b/ρ, the continuation region has the form

D = {(s, x)|x∗ < x} for some x∗ which satisfies x∗ ≤ e−µδ

a
(ρc̃(δ) − b). With the

similar procedure of above, the solution of (A.2) is

ψ(x) =

 F1x+ F2 0 < x < x∗

Λ2x
r2 − a

µ−ρx+ b
ρ

x∗ ≤ x
(A.12)

where

x∗2 =

[
r2(µ− ρ)

a(r2 − 1)

] [
c̃(δ) +

b

ρ

]
e−µδ, Λ2 =

ae(µ−ρ)δ

r2(µ− ρ)
(x∗)1−r2 (A.13)

Therefore, the solution of (A.1) is expressed as the follows.

v0(x, δ) =
{(a1 − a2)e(µ−ρ)δ − a1}x

µ− ρ
− b1 − b2

ρ
e−ρδ +

b1
ρ

+ e−ρδ c̃(δ), x ≤ x∗2 (A.14)

vc,2(x, δ) =
e−ρδ

r2 − 1

[
b1 − b2
ρ
− c̃(δ)

](
x

x∗2(δ)

)r2
− a1x

µ− ρ
+
b1
ρ
, x > x∗2 (A.15)

A.2 Proof of Theorem 3.3.2

Proof Suppose that a1 < a2 and c̃(δ) < (b1−b2)/ρ. If X(0) ≥ x∗1(δ), the operational

value function is v0(X(0), δ) according to Theorem 3.3.1, and the objective function

of design problem is v0(X(0), δ) − C(δ) and continuous. Because c̃(δ) is once differ-

entiable, x∗1(δ) is continuous. Therefore, the level set {δ ∈ [δmin, δmax]|X(0) ≥ x∗1(δ)}

is compact, and P2 has maximizer. If X(0) < x∗1(δ), the object function of design

problem is vc,1(X(0), δ) − C(δ). Because of value matching condition, v0(X(0), δ) =

vc,1(X(0), δ), where X(0) = x∗1(δ). Therefore, vc,1(X(0), δ) − C(δ) is the objective

function at δ = δ̄ as well. Since the level set {δ ∈ [δmin, δmax]|X(0) ≤ x∗1(δ)} is com-

pact, P1 has maximizer.

Let ∆ = {δ ∈ [δmin, δmax]|x∗i (δ) = X(0)}. For δ̄ ∈ ∆, vc,i(X(0), δ̄) = v0(X(0), δ),

because of the value matching condition. With the similar procedure, the design

problem is decomposed into P1 and P2 in (3.13), in the case that a1 > a2 and c̃(δ) >

(b1 − b2)/ρ.
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A.3 Proof of Theorem 3.4.2

Proof To proof the optimization problem (3.15) is decomposable into four maxi-

mization problems (3.23)-(3.26), it is necessary to show that all the feasible areas are

compact, and all objective functions are continuous.

Notice that x∗i (δ, ζ) is continuous on A\{(δ, ζ)|ζ = 1}. Using the L’Hôpital’s rule,

by setting

x∗i (δ, 1) =
ri(µ− ρ)

a(ri − 1)

[
b

ρ
+
∂c̃(δ, ζ)

∂ζ

∣∣∣∣
ζ=1

]
e−µδ (A.16)

, the threshold values, x∗i (δ, ζ) is continuous on A. Since the threshold value has

meanings when it is positive, this setting is required only when b
ρ

+ ∂c̃(δ,ζ)
∂ζ

∣∣∣
ζ=1

< 0.

With this setting, the feasible areas of all the sub-problems are compact, because a

level set of a continuous function on a compact domain is also compact.

To investigate possible singularities, let ∆ = {(δ, ζ) ∈ A|x∗i (δ, ζ) = X(0)}, where

A = [δmin, δmax]× [ζmin, ζmax]. If ζ ∈ [ζmin, 1) and X(0) ≤ x∗2(δ, ζ), the objective func-

tion of design problem is v0(X(0), δ, ζ) − C(δ, ζ). Notice that limζ↑1 v0(X(0), δ, ζ) =

a
ρ−µX(0) + b

ρ
. Therefore the objective function of (3.23) is continuous on A. With

the same procedure, the objective function of (3.26) is also continuous on its feasible

area.

For (3.24), if ζ ∈ [ζmin, 1) and X(0) > x∗2(δ, ζ), the objective function of design

problem is vc,2(X(0), δ, ζ) − C(δ, ζ) and continuous on this open set. Because of

the value matching condition, vc,2(X(0), δ, ζ) is continuous at (δ, ζ) ∈ ∆. If b
ρ

+

∂c̃(δ,ζ)
∂ζ

∣∣∣
ζ=1
≥ 0, A does not contain ζ = 1. Therefore, vc,2(X(0), δ, ζ) is continuous

on the feasible area. On the other hand, if b
ρ

+ ∂c̃(δ,ζ)
∂ζ

∣∣∣
ζ=1

< 0, with the fictitious

threshold value defined at (A.16) limζ↑1 vc,2(X(0), δ, ζ) = a
ρ−µX(0) + b

ρ
. Therefore

vc,2(X(0), δ, ζ) is continuous. The proof for (3.25) is almost identical to this proof.
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A.4 Proof of Theorem 4.3.1

Proof Player P ’s decision problem at the outset of the market share competition is

sup
τP

E
[
J̃P (τP |τD, x0)

]
= sup

τP

Ex0
[∫ ∞

τP

e−ρtKPX(t)dt− e−ρτP IP
]

+ Ex0
[∫ ∞

0

e−ρt(1− π0 −KD)X(t)dt+

∫ τD+δ

0

e−ρtKDX(t)dt

]
Following calculations of expected discount factors are useful to prove this theo-

rems. Let τ be the first hitting time of the stochastic process X(t) given in (4.1) to

a trigger point X∗, i.e., τ = inf{t ≥ 0|X(t) = X∗}.

Ex0
[
e−ρτ

]
=
( x0
X∗

)r1
X∗ > x0 (A.17)

Ex0
[
e−ρτ

]
=
( x0
X∗

)r2
X∗ < x0 (A.18)

Ex0
[∫ τ

0

e−ρtX(t)dt

]
=

(X∗)1−r1

µ− ρ
xr10 −

x0
µ− ρ

X∗ > x0 (A.19)

Ex0
[∫ τ+δ

0

e−ρtX(t)dt

]
=
e(µ−ρ)δ(X∗)1−r1

µ− ρ
xr10 −

x0
µ− ρ

X∗ > x0 (A.20)

The proofs of (A.17) and (A.19) are in [1, Page 315-316]. Because the proof of

(A.18) and (A.20) are similar to the cited proof, the sketch of proof is enough. Let

f(x) := E [e−ρτ ]. Then f(x) satisfies

−ρf(x) + µxf ′(x) +
1

2
σ2x2f ′′(x) = 0, f(X∗) = 1, lim

x→∞
f(x) = 0

Let f(x) := E
[∫ τ+δ

0
e−ρtX(t)dt

]
, then

− ρf(x) + µxf ′(x) +
1

2
σ2x2f ′′(x) + f(x) = 0

f(0) = 0, f(X∗) = E
[∫ δ

0

e−ρtX(t)dt

]
=
e(µ−ρ)δ − 1

µ− ρ
X∗

By solving above ordinary differential equations, (A.18) and (A.20) are obtained.

Notice that Ex0
[∫∞

0
e−ρt(1− π0 −KD)X(t)dt

]
= − (1−π0−KD)x0

µ−ρ . Using (A.20),

Ex0
[∫ τD+δ

0

e−ρtKDX(t)dt

]
= KD

(
e(µ−ρ)δxD

1−r1

µ− ρ
xr10 −

x0
µ− ρ

)
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where xD is the trigger value of Player D to start R&D project. The decision problem,

sup
τP

Ex0
[∫ ∞

τP

e−ρtKPX(t)dt− e−ρτP IP
]

is a special case of Theorem 3.3.1 with a1 = 0, a2 = KP ≥ 0, b1 = b2 = 0, c̃(δ) = −IP
and δ = 0. Therefore,

sup
τP

Ex0
[∫ ∞

τP

e−ρtKPX(t)dt− e−ρτP IP
]

=

 −IP −
KP
µ−ρx0 x0 ≥ x∗P

IP
r1−1

(
x0
x∗P

)r1
x0 < x∗P

(A.21)

where x∗P = r1(µ−ρ)IP
−KP (r1−1)

. By summing up all terms and rearranging them,

sup
τP

E
[
J̃P (τP |τD, x0)

]
=


KDe

(µ−ρ)δx
1−r1
D

µ−ρ xr10 − KP
µ−ρx0 − IP −

1−π0
µ−ρ x0 x0 ≥ x∗P[

IP (x
∗
P )

−r1

r1−1 +
KDe

(µ−ρ)δx
1−r1
D

µ−ρ

]
xr10 − 1−π0

µ−ρ x0 x0 < x∗P
(A.22)

Player D’s decision problem at the beginning of the game is

sup
τD

E
[
J̃D(τD|τP , x0)

]
= sup

τD

Ex0
[∫ ∞

τD+δ

e−ρtKDX(t)dt− e−ρτDID
]

+ Ex0
[∫ ∞

0

e−ρt(π0 −KP )X(t)dt+

∫ τP

0

e−ρtKPX(t)dt

]
Notice that Ex0

[∫∞
0
e−ρt(π0 −KP )X(t)dt

]
= − (π0−KP )x0

µ−ρ . Using (A.19),

Ex0
[∫ τP

0

e−ρtKPX(t)dt

]
= KP

(
xP

1−r1

µ− ρ
xr10 −

x0
µ− ρ

)
where xP is the threshold value of Player P to implement the patent protected tech-

nology. Since

sup
τD

Ex0
[∫ ∞

τD+δ

e−ρtKDX(t)dt− e−ρτDID
]

is a special case of Theorem 3.3.1 with a1 = 0, a2 = KD ≥ 0, b1 = b2 = 0 and

c̃(δ) = −IDeρδ,

sup
τD

Ex0
[∫ ∞

τD+δ

e−ρtKDX(t)dt− e−ρτDID
]

=

 −ID −
KDe

(µ−ρ)δ

µ−ρ x0 x0 ≥ x∗D
ID
r1−1

(
x0
x∗D

)r1
x0 < x∗D

(A.23)
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where x∗D = IDe
−(µ−ρ)δ(µ−ρ)r1
−KD(r1−1) . By summing up all terms and rearranging them,

sup
τD

E
[
J̃D(τD|τP , x0)

]
=


KP (xP )

1−r1

µ−ρ xr10 − KDe
(µ−ρ)δ

µ−ρ x0 − ID − π0
µ−ρx0 x0 ≥ x∗D[

ID(x∗D)−r1

r1−1 + KP (xP )
1−r1

µ−ρ

]
xr10 − π0

µ−ρx0 x0 < x∗D
(A.24)

Because the optimal threshold values, x∗P and x∗D, are independent from the other

player’s behavior, each player has dominant strategy. If x0 ≥ x∗D, then xD = x0,

otherwise xD = x∗D in (A.22). Similarly, if x0 ≥ x∗P , then xP = x0, otherwise xP = x∗P

in (A.24).

A.5 Proof of Theorem 4.3.2

Proof Let f(x) = DF (x)−DL(x) for x ∈ [0, x∗P ].

f(x) =

[
ID

(r1 − 1)(x∗D)r1
+

IP r1
(r1 − 1)(x∗P )r1

]
xr1 +

[
KP +KDe

(µ−ρ)δ

µ− ρ

]
x+ ID

The first order condition, f ′(x) = 0, is satisfied at

(x∗)r1−1 = −
[
KP +KDe

(µ−ρ)δ

µ− ρ

]
· r1 − 1

r1

[
ID

(x∗D)r1
+

IP r1
(x∗P )r1

]
Because f ′′(x) > 0 at x = x∗, if f(x∗) > 0, then DF (x) > DL(x). This condition

is rewritten as (4.11). Figure A.5 represents the structure of terminal payoffs of the

players when the patent provides a large advantage to Player P .

Let xt denote the initial state of the sub-game starting at time t. Unless xt < x∗P ,

either of the players will exercise the option at the outset of the sub-game according

to the open loop equilibrium strategy. Hence, the interest of this proof is the case

that xt < x∗P .

Since DL(x) < DF (x), ∀x < x∗P < x∗D, Player D has no incentive to exercise the

option as the leader when X(s) < x∗D. As proved in Theorem 4.3.1, it is optimal

to exercise the delayed option at the time X(t) = x∗D. Therefore, Gt
D(s) = 0 when

M t(s) < x∗D, and Gt
D(s) = 1 when M t(s) ≥ x∗D. Because the optimality does not

depend on Player P ’s action, qD(s) = 0 when X(s) < x∗D, and qD(s) = 1 when

X(s) ≥ x∗D.
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Figure A.1. Payoffs Comparison with Large Asymmetry

The Player D’s strategy implies that Player P does not fear being preempted in

the region of [0, x∗D). It is obvious that Player P never exercise his or her option for

X(s) < xP , since PL(X(s)) < PF (X(s)). Define P xt
L (xs) be the player P ’s payoff as

the leader of the sub-game that starts with initial state xt ∈ [xP , x
∗
P ) and ends when

X(t) = xs. Suppose that xs > xt. Then,

P xt
L (xs) = Ext

 ∫∞t e−ρu(1− π0)X(u)du+
∫∞
τP
e−ρuKPX(u)du

−
∫∞
τ∗D+δ

e−ρuKDX(u)du


=

(
xt
xs

)r1 [
− IDr1
r1 − 1

(
xs
x∗D

)r1
− KP

µ− ρ
xs − IP

]
− 1− π0

µ− ρ
xt
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where τP = inf{s ≥ t|X(u) ≥ xs} and τ ∗D = inf{s ≥ t|X(u) ≥ x∗D}. Using the first

and the second order conditions, P xt
L (xs) is maximized at

x∗s =
r1IP (µ− ρ)

KP (1− r1)
= x∗P (A.25)

If xP < xs < xt,

P xt
L (xs) =

(
xt
xs

)r2 [
− IDr1
r1 − 1

(
xs
x∗D

)r1
− KP

µ− ρ
xs − IP

]
− 1− π0

µ− ρ
xt

≤ P xt
L (xt)

Therefore, without preemption threat from Player D, it is optimal for Player P

to exercise the option when X(s) hits x∗P . This results are summarized as Theorem

4.3.2 with respect to the simple strategy,.

A.6 Proof of Theorem 4.3.3

Proof Figure A.6 illustrates the terminal payoff structure when Player P retains

a small advantage from procuring the patent. Let xt denote the initial state of the

sub-game starting at time t, which satisfies xt < x∗P . Suppose that xt ∈ [0, xD) and

M t(s) ≤ xD for s ≥ t. It is obvious that Gt
D(s) = 0 and qD(s) = 0, because being

the follower yields higher payoff than being the leader for Player D. With the same

reason, if xt ∈ (x̄D, x
∗
D),mt(s) > x̄D and M t(s) ≤ x∗P , Gt

D(s) = 0 and qD(s) = 0. For

Player P , if xt ∈ [0, xP ) and M t(s) < xP , Gt
P (s) = 0 and qP (s) = 0.

For max (xP , xD) ≤ xt ≤ x̄D, it is optimal for both of the players to exercise the

option immediately with positive intensities [151, Chapter 12]. Thus Gt
P (s) = 1 and

Gxt
D (s) = 1. Since both players have positive Gt

i(s), they play the game with intensity

functions. Given qP (xt) and qD(xt), the probability that Player P becomes the leader

is given as

P(Leader=P )(xt) =
qP (xt)(1− qD(xt))

qP (xt) + qD(xt)− qP (xt)qD(xt)



99

𝑥𝑥

𝑥𝑥𝐷𝐷∗𝑥𝑥𝑃𝑃∗

−𝐼𝐼𝑃𝑃

𝑉𝑉𝑃𝑃

𝑥𝑥

𝑉𝑉𝐷𝐷

−𝐼𝐼𝐷𝐷

𝑥̅𝑥∗

𝑃𝑃𝑀𝑀 𝑥𝑥
𝑃𝑃𝐿𝐿 𝑥𝑥
𝑃𝑃𝐹𝐹 𝑥𝑥

𝐷𝐷𝑀𝑀 𝑥𝑥
𝐷𝐷𝐿𝐿 𝑥𝑥
𝐷𝐷𝐹𝐹 𝑥𝑥

𝑥𝑥𝐷𝐷 𝑥̅𝑥𝐷𝐷𝑥𝑥𝑃𝑃

Figure A.2. Payoffs Comparison with Small Asymmetry

Similarly,

P(Leader=D)(xt) =
qD(xt)(1− qP (xt))

qP (xt) + qD(xt)− qP (xt)qD(xt)

P(Simultaneous Investment)(xt) =
qD(xt)qP (xt)

qP (xt) + qD(xt)− qP (xt)qD(xt)

The value of each player is expressed as

VP (xt, qP , qD) =
{qP (1− qD)}PL(xt) + {qD(1− qP )}PF (xt) + {qDqP}PM(xt)

qP + qD − qP qD

VD(xt, qP , qD) =
{qD(1− qP )}DL(xt) + {qP (1− qD)}DF (xt) + {qDqP}DM(xt)

qP + qD − qP qD
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By taking the first derivative,

∂

∂qP
VP (xt, qP , qD) > 0, if qD(xt) <

PL(xt)− PF (xt)

PL(xt)− PM(xt)

∂

∂qP
VP (xt, qP , qD) < 0, if qD(xt) >

PL(xt)− PF (xt)

PL(xt)− PM(xt)

∂

∂qD
VD(xt, qP , qD) > 0, if qP (xt) <

DL(xt)−DF (xt)

DL(xt)−DM(xt)

∂

∂qD
VD(xt, qP , qD) < 0, if qP (xt) >

DL(xt)−DF (xt)

DL(xt)−DM(xt)

Figure A.3 shows the best response functions q∗P and q∗D. Therefore the equilibrium

𝑞𝑞𝑃𝑃 𝑥𝑥𝑡𝑡

𝑞𝑞𝐷𝐷 𝑥𝑥𝑡𝑡

𝐷𝐷𝐿𝐿 𝑥𝑥𝑡𝑡 − 𝐷𝐷𝐹𝐹 𝑥𝑥𝑡𝑡
𝐷𝐷𝐿𝐿 𝑥𝑥𝑡𝑡 − 𝐷𝐷𝑀𝑀 𝑥𝑥𝑡𝑡

𝑃𝑃𝐿𝐿 𝑥𝑥𝑡𝑡 − 𝑃𝑃𝐹𝐹 𝑥𝑥𝑡𝑡
𝑃𝑃𝐿𝐿 𝑥𝑥𝑡𝑡 − 𝑃𝑃𝑀𝑀 𝑥𝑥𝑡𝑡

𝑞𝑞𝑃𝑃∗ 𝑥𝑥𝑡𝑡
𝑞𝑞𝐷𝐷∗ 𝑥𝑥𝑡𝑡

Figure A.3. Best Response Intensity Functions

is obtained at

qP (xt) =
DL(xt)−DF (xt)

DL(xt)−DM(xt)

qD(xt) =
PL(xt)−DF (xt)

PL(xt)− PM(xt)

Consider the case that xP < xt < xD. Player P does not fear to be preempted by

Player D as long as M(s) ≤ xD. As shown in A.5, it is optimal for Player P to wait
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until X(s) hits x∗P given no preemption threat from Player D. However, Player D has

incentive to exercise its option when X(s) ≥ xD because qD(X(s)) > 0. Therefore,

Player P is able to postpone the implementation until xD − ε for arbitrary small

ε > 0.

Suppose that xD < xt < xP . As long as M(s) ≤ xP , Player D is not afraid of

being preempted by Player P . Let Dxt
L (xs) represent Player D’s payoff as the leader of

the sub-game that starts with initial state xt and is terminated when X(t) = xs ≥ xt.

Dxt
L (xs) =

∫ ∞
0

e−ρtπ0X(t)dt−
∫ ∞
τP

e−ρtKPX(t)dt+

∫ ∞
τD+δ

e−ρtKDX(t)dt

=


(
xt
xs

)r1 [
− IP r1
r1−1

(
xs
x∗P

)r1
− KDe

(µ−ρ)δ

µ−ρ xs − ID
]
− π0

µ−ρxt xs ≥ xt(
xt
xs

)r2 [
− IP r1
r1−1

(
xs
x∗P

)r1
− KDe

(µ−ρ)δ

µ−ρ xs − ID
]
− π0

µ−ρxt xs ≤ xt

Remark that if xD ≤ xs ≤ xt, D
xt
L (xt) ≥ Dxt

L (xs), and d/dxsD
xt
L (xs) > 0,∀xs ∈

(xt, x
∗
D). Therefore, it is optimal for Player D to exercise the delayed option at

xP − ε, due to Player P ’s preemption threat in X(s) ≥ xP .

When x̄D < x0 < x∗P , Player P is not afraid of being preempted, because Player D

has no incentive to be the leader in this region. Therefore Player P can maximize his

or her payoff by waiting until X(t) hits the optimal threshold value x∗P . However, if

Player P does not exercise the option until X(t) becomes less or equal to x̄D, Player

D has incentive to move first, and it is not desirable to Player P . Hence, Player P

exercises his or her option right before X(t) ≤ x̄D.
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A.7 Proof of Theorem 4.4.1

Proof Based on the performance function (4.21), Player P ’s decision problem is

sup
τP

E [JP (τP |τD, x0)]

= sup
τP

E
[∫ ∞

τP

e−ρtKPX(t)dt− e−ρτP IP
]

+ E

[∫ ∞
0

e−ρt(1− π0 −KD)X(t)dt+

∫ τD+δ(γ)

0

e−ρtKDX(t)dt

]
As shown in A.21,

sup
τP

E
[∫ ∞

τP

e−ρtKPX(t)dt− e−ρτP IP
]

=

 −IP −
KP
µ−ρx0 x0 ≥ x∗P

IP
r1−1

(
x0
x∗P

)r1
x0 < x∗P

where x∗P = − r1(µ−ρ)IP
(r1−1)KP

.

Player D’s decision problem is

sup
τD

E [JD(τD|τP , x0)]

= sup
τD

E

[∫ ∞
τD+δ(γ)

e−ρtKPX(t)dt−
∫ τD+δ(γ)

τD

e−ρtcdt

]

+ E
[∫ ∞

0

e−ρt(1− π0 −KP )X(t)dt+

∫ τP

0

e−ρtKPX(t)dt

]
Focusing on the relevant part,

sup
τD

E

[∫ ∞
τD+δ(γ)

e−ρtKPX(t)dt−
∫ τD+δ(γ)

τD

e−ρtcdt

]

= E
[
e−ρτDE

{∫ ∞
0

e−ρtKDX(t)− e−(ρ+γ)tKDX(t)− e−(ρ+γ)tcdt
∣∣∣∣X(τD)

}]
=

(
x0

X(τD)

)r1 [ γKD

(µ− ρ)(µ− ρ− γ)
X(τD)− c

ρ+ γ

]
Using the first and second order conditions,

x∗D =
cr1(µ− ρ)(µ− ρ− γ)

γKD(r1 − 1)(ρ+ γ)
(A.26)
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APPENDIX B

SUPPLEMENTARY CALCULATIONS AND NUMERICAL

RESULTS

B.1 Calculation of Terminal Payoffs with Fixed R&D Period and Cost

When both players exercise their options simultaneously,

PM(x) = Ex
[∫ ∞

0

e−ρt(1− π0 +KP )X(t)dt−
∫ ∞
δ

e−ρtKDX(t)dt− IP
]

= −1− π0 +KP

µ− ρ
x+

KD

µ− ρ
xe(µ−ρ)δ − IP

=

[
KDe

(µ−ρ)δ −KP

µ− ρ

]
x− IP −

1− π0
µ− ρ

DM(x) = Ex
[∫ ∞

0

e−ρt(π0 −KP )X(t)dt+

∫ ∞
δ

e−ρtKDX(t)dt− ID
]

= −π0 −KP

µ− ρ
x− KD

µ− ρ
xe(µ−ρ)δ − ID

=

[
KP −KDe

(µ−ρ)δ

µ− ρ

]
x− ID −

π0
µ− ρ

x

The first derivatives of PM(x) and DM(x) are positive constants because of the as-

sumptions 0 ≤ π0 ≤ 1, 0 ≤ KD ≤ 1 − π0 and 0 ≤ KP ≤ π0. Therefore PM(x) and

DM(x) are upward straight lines with respect to x.

Suppose that Player P introduces a new product, when X(t) = x, before Player

D launches the R&D project. Then the Player D’s decision problem becomes

DF (x) = sup
τD

Ex
[∫ ∞

0

e−ρt(π0 −KP )X(t)− e−ρτDID +

∫ ∞
τD+δ

e−ρtKDX(t)dt

]
= sup

τD

Ex
[∫ ∞

τD+δ

e−ρtKDX(t)dt− e−ρτDID
]
− π0 −KP

µ− ρ
x

=

 −ID −
KDe

(µ−ρ)δ

µ−ρ x− π0−KP
µ−ρ x x ≥ x∗D

ID
r1−1

(
x
x∗D

)r1
− π0−KP

µ−ρ x x < x∗D
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where x∗D = IDe
−(µ−ρ)δ(µ−ρ)r1
−KD(r1−1) . The last equality holds by (A.23), and DF (x) = DM(x)

when x ≥ x∗D. Consider the first and the second derivatives of DF (x).

d

dx
DF (x) =

IDr1
r1 − 1

(x∗D)−r1xr1−1 − π0 −KP

µ− ρ
d2

dx2
DF (x) =

IDr1(r1 − 1)

r1 − 1
(x∗D)−r1xr1−1

These derivatives are positive for x ∈ [0, x∗D), because r1 > 1, µ − ρ < 0,ID > 0 and

0 ≤ KP ≤ π0. Therefore DF (x) is an increasing and convex function with respect to

x.

If Player P exercises his or her option when X(t) = x ≥ x∗D, Player D will starts

R&D project immediately. Therefore, PL(x) = PM(x) for x ≥ x∗D. Given x < x∗D,

PL(x) is

PL(x) = Ex
[∫ ∞

0

e−ρt(1− π0 +KP )X(t)dt− IP −
∫ ∞
τD+δ

e−ρtKDX(t)dt

]
= Ex

[∫ ∞
0

e−ρt(1− π0 +KP −KD)X(t)dt− IP +

∫ τD+δ

0

e−ρtKDX(t)dt

]
= −1− π0 +KP −KD

µ− ρ
− IP +

KDe
(µ−ρ)δ

µ− ρ
x∗D

(
x

x∗D

)r1
− KD

µ− ρ
x

= − IDr1
r1 − 1

(
x

x∗D

)r1
− KP

µ− ρ
x− IP −

1− π0
µ− ρ

x

The second last equality is obtained by applying (A.20), and plugging x∗D into the

second last line yields the last line. Notice that d2

dx2
PL(x) = −ID(r1)

2(x∗D)−r1xr1−2 for

0 ≤ x < x∗D because x∗P > 0 and ID > 0. Hence, PL(x) is concave for x < x∗D.

The other terminal values are expressed as the followings.

PF (x) = sup
τP

Ex
 ∫∞0 e−ρt(1− π0)X(t)dt−

∫∞
δ
e−ρtKDX(t)dt

−IP e−ρτP +
∫∞
τP
e−ρtKPX(t)dt


DL(x) = Ex

[∫ ∞
0

e−ρtπ0X(t)dt+

∫ ∞
δ

e−ρtKDX(t)dt− ID −
∫ ∞
τP

e−ρtKPX(t)dt

]
With similar procedure, (4.4), (4.7) and their properties are obtained.
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B.2 Calculation of Terminal Payoffs with Stochastic R&D Period and

Cost

PM(x) = E

[∫ ∞
0

e−ρt(1− π0 +KP −KD)X(t)dt− IP +

∫ δ(γ)

0

e−ρtKDX(t)dt

]

= −1− π0 +KP

µ− ρ
x0 − IP +

KD

µ− ρ
x0 + E

[∫ ∞
0

e−(ρ+γ)tKDX(t)dt

]
=

[
−1− π0 +KP

µ− ρ
− γKD

(µ− ρ− γ)(µ− ρ)

]
x0 − IP

dPM(x)

dx
= −1− π0 +KP

µ− ρ
− γKD

(µ− ρ− γ)(µ− ρ)

= −−(µ− ρ)(1− π0 +KP ) + γ(1− π0 +KP −KD)

(µ− ρ)(µ− ρ− γ)
> 0

Therefore PM(x) is a straight line with positive slope. For PL(x), if τD = 0, PL(x) =

PM(x). Otherwise,

PL(x) = E

[∫ ∞
0

e−ρt(1− π0 +KP )X(t)dt− IP −
∫ ∞
τ∗D+δ(γ)

e−ρtKDX(t)dt

]

= −1− π0 +KP −KD

µ− ρ
x− IP +

KDx
∗
D

µ− ρ

(
x

x∗D

)r1
− KD

µ− ρ
x

+ e−ρτ
∗
DE

[∫ δ(γ)

0

e−ρtKDX(t)dt

∣∣∣∣∣x∗D
]

= − cr1
(r1 − 1)(ρ+ γ)

(
x

x∗D

)r1
− 1− π0 +KP

µ− ρ
x− IP

The derivatives of PL(x) for x ∈ [0, x∗D] are

dPL(x)

dx
= − cr1

(r1)(ρ+ γ)

(
x0
x∗D

)r1
− 1− π0 +KP

µ− ρ
x0 − IP

d2PL(x)

dx2
= − cr1

ρ+ γ
r1(x

∗
D)r1xr1−2 < 0

Therefore, PL(x) is concave ∀x ∈ [0, x∗D].

PF (x) = sup
τP

E
[∫ ∞

τP

KPX(t)dt− e−ρτP IP
]

+ E
[∫ ∞

0

e−ρt(1− π0)X(t)dt−
∫ ∞
δ(γ)

e−ρtKDX(t)dt

]
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Using Theorem 3.3.1, with a1 = b1 = b2 = 0, a2 = KP and δ = 0, the supremum is

calculated as

sup
τP

E
[∫ ∞

τP

KPX(t)dt− e−ρτP IP
]

=


−KP
µ−ρ x0 − IP x∗P ≤ x0
IP
r1−1

(
x0
x∗P

)r1
x0 < x∗P

where x∗P = − r1(µ−ρ)IP
KP (r1−1)

. By taking expectation and summing up the rest of the terms,

PF (x) =

 PM(x) x ≥ x∗P
IP
r1−1

(
x0
x∗P

)r1
− γKD

(µ−ρ)(µ−ρ−γ)x−
1−π0
µ−ρ x x < x∗P

The derivatives of PF (x) for x ∈ [0, x∗P ] are

dPF (x)

dx
=

r1IP
(r1 − 1)x

(
x

x∗P

)r1
− γKD

(µ− ρ)(µ− ρ− γ)
− 1− π0

µ− ρ
> 0

d2PF (x)

dx2
=
r1IP
x2

(
x

x∗P

)r1
> 0

Therefore, PF (x) is increasing and convex ∀x ∈ [0, x∗P ]. Player D’s payoffs and their

properties can be found with similar procedures from the following equations.

DM(x) = E

[∫ ∞
0

e−ρt(π0 −KP )X(t)dt+

∫ ∞
δ(γ)

e−ρtKDX(t)dt−
∫ δ(γ)

0

e−ρtcdt

]

DL(x) = E

 ∫∞0 e−ρtπ0X(t)dt+
∫∞
δ(γ)

e−ρtKDX(t)dt

−
∫ δ(γ)
0

e−ρtcdt−
∫∞
τ∗P
e−ρtKPX(t)


DF (x) = E

[∫ ∞
0

e−ρt(π0 −KP )X(t)dt+

∫ ∞
τ∗D+δ(γ)

e−ρtKDX(t)dt−
∫ τ∗D+δ(γ)

τ∗D

e−ρtcdt

]

B.3 Numerical Results

Followings are the critical number for replicating the illustrative example in Sec-

tion 3.3.3.



107

Table B.1
Numerical Results of the Illustrative Example

x∗max 1.125

x∗min 0.983

δ̄ 4.375

δ∗1 2.906

δ∗2 4.375

V ∗ 32.602

x̄ 1.137
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