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ABSTRACT 

Kammer, Milea Joy. Ph.D., Purdue University, December 2014. Technology, 
Science, and Environmental Impact of a Novel Cu-Ag Core-Shell Solderless 
interconnect System. Major Professor: Carol Handwerker. 
 
 

Tin-based solder is ubiquitous in microelectronics manufacturing and 

plays a critical role in electronic packaging and attachment. While manufacturers 

of consumer electronics have made the transition to the use of lead-free solder, 

there are still a variety of reliability issues associated with these lead-free 

alternatives, particularly for high performance, high reliability applications. 

Because of these performance short-comings, researchers are still searching for 

a material, an alloy, or a unique alternative that can meet the thermal, 

mechanical, and electrical requirements for conventional reflow solder 

applications. In an effort to produce a more reliable alternative, Kim et al. 

proposed the low-temperature (200°C) sintering of copper-silver core-shell 

particles as a viable solderless interconnect technology.  This technology is 

based on the silver atoms from the shell diffusing by surface diffusion to form 

sintered necks between copper particles, and therefore dewetting most of the 

copper surfaces. This study presents a 3-fold, in-depth evaluation of this Cu-Ag 

core-shell lead-free solderless interconnect technology focusing on solder paste  
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development and prototyping, silver thin film stress relaxation and dewetting 

kinetics, and the environmental impacts associated with this new technology.  

First, an evaluation of the starting particle consistency and sintered 

compact mechanical properties determined that a specific core-shell particle 

geometry (1µm average core diameter and 10nm shell thickness) outperformed 

other combinations, exhibiting the highest modulus and yield strengths in 

sintered compacts, of 620 MPa and 40-60 MPa respectively. In particular, yield 

strengths for sintered compacts are similar to those reported for Sn-3.5Ag-

0.75Cu (a commonly used lead-free solder) for the same strain rate. Following 

particle evaluations, the development of a functioning flux formulation was a key 

factor in the creation of a viable drop-in replacement. The processing of the final 

flux/particle paste combination was optimized at a commercial test facility for 

printing on test boards containing a wide variety of pad shapes, sizes, and 

pitches and thus, validated the ability of the Cu-Ag core-shell paste to be a drop-

in replacement for traditional solder paste using conventional manufacturing 

techniques.  

The second study addresses the fundamental mechanisms behind 

interconnect formation. An assessment of the kinetics and microstructure 

evolution during silver thin film dewetting and defect formation provides essential 

materials science knowledge to understand and control the functionality of the 

Cu-Ag core-shell system. From an interrupted annealing study used to quantify 

dewetting kinetics, a range of surface diffusion coefficients were calculated from 

the experimental results, assuming that surface diffusion controlled dewetting. 
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The two order of magnitude range in calculated diffusion coefficient 

demonstrates that the diffusion-limited kinetic models traditionally used to 

quantify hillock and hole growth kinetics during thin film relaxation and dewetting 

do not apply to the dewetting of Ag films. The presence of interface-limited 

kinetics was then validated through the non-uniform growth of individual hillocks 

over time.  

Lastly, an environmental assessment compares the impacts associated 

with the manufacturing and materials for the Cu-Ag core-shell particle system 

and SAC 305, the most commonly used lead-free solder alloy that contains 96.5% 

tin, 3% silver, and 0.5% copper. By comparing the impacts on global warming, 

acidification, eutrophication, ozone depletion, ecotoxicity, smog, carcinogenics, 

non-carcinogenics, and respiratory effects associated with each technology, the 

environmental advantages and disadvantages of each system are clearly 

communicated. By utilizing this information and the versatility of the core-shell 

system, possible methods for reducing impacts of the Cu-Ag core-shell system 

are addressed in order to reduce its environmental footprint.  

This multidimensional assessment provides a comprehensive validation in 

terms of technology, science, and environmental impacts of the Cu-Ag core-shell 

interconnect technology as a viable drop-in replacement for lead-based and lead-

free solders for microelectronic manufacturing. 
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CHAPTER 1. INTRODUCTION AND DISSERTATION STRUCTURE 

1.1 Introduction 

Solder paste is abundant in microelectronics manufacturing and plays a 

critical role in packaging and attachment. Manufacturers of consumer electronics 

have recently made the transition to the use of lead-free solder. However, there 

are still a variety of well-known reliability issues associated with current lead-free 

solders, used in consumer electronic manufacturing. Therefore, researchers are 

still searching for a material, an alloy, or a unique alternative that can meet the 

thermal, mechanical, and electrical needs for conventional die attach and reflow 

solder applications. [1-8] 

This dissertation presents a multidimensional approach in developing and 

assessing a lead-free solderless interconnect technology that is based on the 

use of a Cu-Ag core-shell particle system. The evaluation of the system is 3-fold 

and will focus on solder paste development and prototyping, the fundamental 

science behind the interconnect formation mechanism, and the environmental 

impacts associated with this new technology. This comprehensive evaluation will 

provide a complete assessment of the Cu-Ag core-shell particle system as a 

viable drop-in replacement for traditional solder Pb-free solder paste.
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1.2 Dissertation Structure 

As afore mentioned, this dissertation presents a three tiered approach to 

assessing the viability of the sintering of Cu-Ag core-shell particles as a 

replacement for traditionally used lead-free solders in electronics manufacturing. 

First, the study focuses on the technology development. The creation of a 

functional drop-in replacement solder paste prototype will be presented. 

Evaluation of a variety of particle configurations and the development of a 

functioning flux formulation will be key factors in the creation of a viable 

technology. Second, the study addresses the fundamental mechanism behind 

interconnect formation. An assessment of silver thin film dewetting, orientation 

relationships, and defect formation provides essential materials science to 

understand and control the functionality of the Cu-Ag core-shell system. Lastly, 

an environmental assessment compares the impacts associated with 

manufacturing and materials for both the Cu-Ag core-shell particle system and 

SAC 305, a commonly used lead-free solder alloy that contains 96.5 % tin, 3% 

silver, and 0.5% copper. This assessment defines the benefits associated with 

the proposed lead-free solderless interconnect technology. 

1.3 Overview 

In the last ten years the electronics industry has converted from the 

traditionally used lead-tin solder to lead-free alternatives due to the ROHS 

directive established by the European Union.[9] Due to materials property 

differences between lead-free alternatives and traditional leaded solders, this 
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transition has been accompanied by processing and reliability challenges.[10] 

The lead-free alternatives most frequently used in electronics manufacturing are 

tin-silver-copper (SAC) solder alloys. Several major concerns with this lead-free 

alternative include the 20°C increase in required processing temperature over 

Pb-Sn eutectic, the anisotropic nature of the solidification, and the increased 

differences in thermal expansion between the solder joint and printed circuit 

board (PCB) pads or component leads.[10] 

In an effort to produce a more reliable alternative, Kim et al. proposed the 

use of copper-silver core-shell particles as a sintered solderless interconnect.[11] 

Upon annealing of copper-silver core-shell particles, the silver shells dewet the 

surface of the copper particles and silver atoms diffuse to the particle-particle 

contact regions creating sintered necks between the particles. A schematic 

representation of this interconnect formation process and the structural evolution 

can be seen in Figure 1.  

 

 

Figure 1. A schematic representation of the structure change of the copper-silver 
core-shell system during annealing. Red - copper, Blue - silver 
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Kim et al. used energy filtered transmission electron microscopy (EFTEM) 

to confirm this interconnect formation mechanism as seen in Figure 2. These 

results show that in this silver-coated copper particle system, the surface 

diffusivity of the silver shell is much faster than that of copper at the lower 

processing temperature used (220°C). Their work demonstrates that diffusion is 

the fundamental mechanism by which this core-shell system creates 

mechanically and electrically stable interconnects. However, they did not address 

the development of the particles into a usable system for electronics 

manufacturing. The technology chapter of this dissertation addresses the 

development and fabrication of a functional solder paste from these core-shell 

powders.  
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Figure 2. TEM and EFTEM images of Cu–Ag particles after annealing at 220 °C: 
(A) TEM image, (B) Ag ratio map of area A, (C) Cu elemental map of area A, (D) 
Ag ratio map of white box area within area A. Scale bars: (A), (B), and (C) have 
the same scale of 300 nm and (D) is 100 nm. Reproduced with permission from 

[S. J. Kim, E. A. Stach, and C. A. Handwerker, Fabrication of conductive 
interconnects by Ag migration in Cu–Ag core-shell nanoparticles. Applied 

Physics Letters 96, 144101 (2010).]. Copyright [2010], AIP Publishing LLC. 
 

Along with the development of a prototype solder paste; it is crucial to 

understand the mechanisms by which the silver films dewet the polycrystalline 

copper seeds to form necks. Understanding the fundamental mechanisms will 

allow for optimization of the dewetting process and may result in the ability to 

engineer particle configurations that can meet specific manufacturing needs. The 

science chapter of this dissertation addresses sources of thin film stress, 

mechanisms of thin film stress relaxation and dewetting, and the associated 
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defect structures. In order to better understand dewetting and stress relaxation 

by defect formation in thin silver films, a variety of silver films on silicon 

substrates were studied. While the formation of silver necks between copper 

particles by sintering was seen experimentally by Kim et al., there were many 

areas of film stability and characterization left unaddressed. A better 

understanding of the factors that influence silver thin film dewetting structures 

and kinetics will allow for the possibility of tailoring both the material system 

(particle size, film thickness, polycrystallinity and texture) and annealing 

parameters (time, temperature) to create solder pastes that can meet a variety of 

processing requirements for temperature and dwell time/ process thermal profile 

dictated by different applications. 

 The movement to replace lead-based solders with lead-free was made 

solely based on the elimination of lead, which is known to be toxic. There are, 

however, more dimensions to life cycle impact than human toxicity.  Therefore, 

there is a need to confirm that a potential solder alternative is in-fact more 

environmentally friendly (less harmful to the environment in terms of toxicity, 

acidification, etc.) than the technology it is intended to replace. The impacts of a 

technological transition should be openly evaluated, minimized through potential 

changes in materials and manufacturing and acknowledged when introducing a 

new technology to the public. One way of scientifically quantifying the 

environmental impacts associated with a product and its production is by 

performing a Life Cycle Assessment (LCA).  
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The environmental impact chapter of this dissertation contains a 

comparative LCA of the environmental impacts associated with the materials and 

manufacturing of using the Cu-Ag core-shell technology and a traditional lead-

free solder, SAC305. By comparing the impacts on global warming, acidification, 

eutrophication, ozone depletion, ecotoxicity, smog, carcinogenics, non-

carcinogenics, and respiratory effects associated with each technology. The 

environmental advantages and disadvantages of each system are clearly 

communicated and possible methods for reducing impacts of the Cu-Ag core-

shell system are addressed in order to reduce its environmental footprint.  

The multidimensional assessment presented in this dissertation covers the 

development of a sintering-based solderless core-shell interconnect technology. 

This work provides an evaluation of silver thin film stress relaxation focusing on 

dewetting, and defect formation, the impact of these relaxation processes on the 

performance of the Cu-Ag core-shell technology, and a comparative LCA 

evaluating the environmental advantages and disadvantages of the proposed 

system. This approach allows for a comprehensive understanding of the potential 

for the Cu-Ag core-shell particle system to be implemented as a viable drop-in 

replacement for lead-based and lead-free solders for microelectronic 

manufacturing.



 

 

8 

CHAPTER 2. TECHNOLOGY 

2.1 Technology Introduction 

2.1.1 Solder and Electronics Manufacturing 

 Solder paste has been and continues to be ubiquitous in microelectronics 

manufacturing, playing a critical role in packaging and attachment. Historically, 

Sn-Pb alloys have been used as low melting point, inexpensive, reliable solders 

for component attachment in electronics manufacturing. In 2006, the Restriction 

of Hazardous Substances (RoHS) directive was established by the European 

Union, and restricted the use of Pb in electronics. [9] The result of this restriction 

of Pb was the transition to using a variety of Pb-free Sn-rich solders. Although 

manufacturers of consumer electronics have successfully made the transition to 

the use of lead-free solder for surface mount reflow soldering and wave solder of 

through-hole assemblies, there are still a variety of well-known reliability issues 

associated with current Sn-Ag-Cu (SAC) lead-free solders, widely used in 

consumer electronic manufacturing. Therefore, researchers are still searching for 

a material, an alloy, or a unique alternative technology that can meet the thermal, 

mechanical, and electrical needs for conventional die attach and reflow solder 

applications.[1-8]
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2.1.2 Reflow Soldering 

 Solder is commonly available in a variety of forms including wires, bars, 

and pastes. There are a variety of soldering methods for attaching components 

to printed circuit boards. For example, hand, wave, vapor phase, and reflow 

soldering. As surface mount packaging technology (SMT) became the standard, 

reflow soldering has become one of the most popular techniques for bulk 

soldering. [12] Solder paste is typically used in reflow soldering applications.  

 In the reflow soldering process solder paste is deposited onto the pads of 

a printed circuit board through a screen-printing process. The board and paste 

are then transferred into a pick-and-place machine where the desired 

components are put in place on the tacky solder paste; the tacky solder paste 

temporarily holds components in place on a printed circuit board. Lastly, the 

entire assembly is then passed through a reflow oven typically containing 4 well-

controlled temperature regimes: preheat, thermal soak, reflow, and cooling. This 

controlled heating and cooling process melts the solder alloy, burns off the 

organics contained within the solder paste and permanently attaches the 

component lead to the board pad without overheating components, which can 

cause permanent damage. An example of a typical reflow profile for Sn-Pb solder 

can be seen in Figure 3. The preheat zone determines the thermal ramp rate, 

typically somewhere between 2-3 °C/s. This temperature ramp rate must be well 

controlled in order to minimize component damage from thermal shock. In the 

preheat zone the solvents contained within the solder paste begins to evaporate 

and the thermal ramp rate will be critical in ensuring that evaporation is complete. 
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The thermal soak zone is the regime where activation of many of the flux 

components takes place. In this zone a 60-120 second temperature exposure is 

used to initialize oxide reduction and flux activation. The temperature of the 

thermal soak zone is determined by the components within the flux. The 

temperature must be high enough to reach the activation temperatures for each 

flux component but not too high as to cause the molten metal to splatter as the 

flux components vaporize. After exposure to the thermal soak zone, all 

components, regardless of size or shape, should be relatively the same 

temperature throughout, minimizing differences in thermal behavior across the 

board. The reflow zone, where the maximum temperature is achieved, follows 

the thermal soak zone. The maximum temperature is an important consideration 

in designing a reflow profile and is typically 20-40 °C above the liquidus 

temperature of the solder alloy. However, this value is also limited by the 

components associated with the assembly of interest. Throughout this high 

temperature regime the flux reduces surface tension, promoting wetting of the 

solder metal with the metal leads and pads. In this zone, the actual soldering, or 

metallurgical bonding of component lead to pad occurs. The last temperature 

zone is the cooling zone. In the cooling zone the entire assembly is gradually 

cooled to room temperature. During cooling the solder joints solidify. [13,14] 
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Figure 3. Schematic of the general thermal profile for reflow soldering of Sn-Pb 
solder paste 

 

2.1.3 Solder Paste 

 Solder paste is composed of both metallic particles, often referred to as 

solder balls, and flux which contains rosins, thickener, and solvents. Typical 

solder particles contained within solder paste are on the order of 40 microns. [15] 

The flux component of a solder paste suspends the metal particles in a carrier 

material. The components of solder paste flux provide improved particle, lead, 

and pad reactivity through oxide reduction. The components of the flux also 

determine the solder paste storage shelf life due to the volatile solvents.  

 

2.1.4 Lead-Tin Solder 

 There is a broad range of available compositions for Sn/Pb solders. The 

majority of Sn/Pb solder compositions exhibit a pasty range between the solidus 

and liquidus temperatures as seen in the phase diagram in Figure 4. All 
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compositions are solid at and below 183°C. Lower tin content reduces product 

cost, increases the pasty region, raises the liquidus temperature and decreases 

wettability. Therefore, compositions with greater lead content are more desirable 

for electronic manufacturing applications such as reflow and wave soldering. 

Compositions with a low melting point and short freezing range are ideal. 

Because of this, eutectic 63/37 and 60/40, with its 5-degree freezing range are 

traditionally chosen for these applications. [15,16] 

 

 

Figure 4. Schematic Sn/Pb phase diagram showing compositions and melting 
temperatures for a variety of solder pastes with different compositions. 

 

2.1.5 Lead-Free Alternatives 

2.1.5.1 Solder Alloy-Based Option 

 The electronics industry has evaluated a wide range of potential solder 

alloys to act as a Pb-free alternative over the years. There are a variety of factors 

to consider when evaluating possible alloy compositions including, melting 
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temperatures, wetting properties, thermal expansion, electrical conductivity, 

mechanical behavior under stresses, corrosion, oxidation, manufacturability, and 

cost. [17-20] Of key importance is the processing temperature required to 

undergo traditional surface mount and wave soldering processes. Processing 

temperatures should be lower than 230°C in order to avoid damage to the 

components attached to the PCB. There are broad ranges of Pb-free options 

currently in use including binary, ternary, and even quaternary alloys of a variety 

of metals. Currently, Sn-Ag-Cu (SAC) lead-free solder alloys dominate the 

consumer electronics manufacturing industry. Specifically, Sn-3.0Ag-0.5Cu (SAC 

305), with a reflow temperature of approximately 240 °C, has dominated the 

market to date. 

 

2.1.5.2 Solid Particle-Based Option 

 In the search for lead free alternatives that will meet the current industry 

standards for both processing conditions and performance, many research 

groups have investigated non-solder-based (non-melting) methods of 

interconnect formation. The sintering of particle systems has been proposed as 

alternative method to produce interconnects with higher mechanical stability, 

lower processing temperatures, and more isotropic properties than Pb-free solder 

alloys. Nano-scale particles, mixed metal powders of larger sizes and non-

spherical shapes, and core-shell particle systems have all been proposed as 

viable alternatives. The majority of these alternatives focus on the use of silver 

and copper.  A key advantage for all Ag- and Cu-based technologies is in the 
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reduction of thermal expansion mismatch. Minimization of the thermal expansion 

mismatch within the interconnect system is an important factor in reducing joint 

stress and therefore increasing thermo-mechanical fatigue resistance. The 

thermal expansion coefficient (CTE) of each constituent will be a key factor in 

fatigue due to the thermo-mechanical cycling that an interconnect will undergo 

during electronic use. The CTE’s of Ag and Cu are 18 and 17(10-6/°C) 

respectively. The CTE’s of Ag and Cu are significantly lower than both Pb-Sn 

eutectic solder, ~24 (10-6/K) [21] and SAC 305, ~21 (10-6/K) [22]. The reduced 

thermal expansion mismatch of Cu-Ag technologies leads to increased fatigue 

resistance and thermo-mechanical stability.   

There are a wide variety of commercially available single phase nano-

silver solder systems that function over a broad range of processing 

temperatures (300-960°C), and particle geometries. Similarly, copper 

nanoparticle sintering has been proposed as a interconnect alternative. However, 

the systems’ need for a removable capping layer to mitigate oxidation have led to 

challenges in development of sintered Cu nanoparticle interconnects. Along with 

this complication, the nanoparticle interconnect system can continue to evolve 

after initial joint formation is created due to the diffusion-based formation 

mechanism. Diffusion may continue to occur when the system is exposed to 

subsequent heating during storage or usage and resulting in weakening of joints. 

[23-25] Kim et al. identified low temperature sintering of Cu-Ag core-shell 

particles as a viable interconnect formation method. In this proposed system, the 

fast surface diffusion of the thin silver shell results in sintering of the system 
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creating a network of micrometer or sub-micrometer copper particles connected 

by silver necks. The use of a combination of limited amounts of Ag and Ag 

surface diffusion as the connection formation mechanism results in little 

shrinkage during sintering and produces mechanically stable interconnects that 

are resistant to further coarsening. [11]   

 In light of its promise, the focus of this study is in transforming the concept 

of Cu-Ag core-shell particle sintering into a viable technology by formulating a 

paste that can be dispensed and sintered to form reliable interconnects. Critical 

performance factors include: core-shell particle sintering kinetics, the mechanical 

properties of the porous interconnect system, and paste performance, including 

flux stability, printability/dispensability, and adhesion. Variables under our control 

include core particle size, silver to copper ratio, shell thickness, particle size 

distribution and agglomeration, flux formulation, particle loading, paste fabrication, 

and processing temperature/sintering thermal profile. All of these factors affect 

optimal particle-flux combination for a commercially viable paste. The order of 

optimization required first, synthesis and characterization of the starting core-

shell powders, followed by mechanical characterization of sintered interconnects 

from the powders.  Using powders for which the interconnects showed 

acceptable as-sintered strengths, pastes were formulated using 26 common flux 

constituents (10 solvents, 10 rosins, 5 thickeners, and 1 acid additive) and 

characterized with respect to typical paste characteristics, such as rheology, 

mixability, flux stability, weight loss during annealing, and adhesion to the 

substrate after sintering. Through the experiments presented here, a copper-
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silver core-shell particle system using a typical solder paste particle loading of 

50-volume percent [15] and a 1 µm core-shell particle size is shown to be a 

viable replacement for solder pastes currently deposited via printing or jetting and 

used for reflow soldering and die attach. As a guide to future studies, the effect of 

reducing the core-shell particle size on sintering kinetics was also evaluated in 

order to estimate the particle sizes needed for producing sintered connections at 

lower assembly temperatures and shorter sintering times than reported here. 

 

2.2 Technology Experimental Plan and Characterization 

2.2.1 Physical Properties of Core-Shell Particles 

Three different configurations of Cu-Ag core-shell particles were 

synthesized for this study, (Ames Goldsmith, Glens Falls NY) as seen in Table 1. 

Particle nomenclature used here identifies the average diameter (1µm = 10; 0.5 

µm = 05) and weight percent silver (10wt% = 10; 5wt%=05). (i.e., PAC 1005 

particles have a 1μm average particle diameter and 5 weight percent silver). 

Assuming uniform shell coverage, shell thicknesses were calculated using the 

known volumes, silver assays, and bulk densities. Previous TEM examination of 

similar core-shell particles established that these are reasonable estimates of 

shell thickness. [11] 

 
Table 1. Diameter and weight percent silver for the particle configurations 

Name PAC0505 PAC1005 PAC1010 
Avg. Diameter (μm) 0.5 1 1 

Weight % Ag 5 5 10 
Ag Shell Thickness (nm) 4 9 17 
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The degree of particle agglomeration was assessed from measurements of tap 

density. Particle size distribution, surface area, and silver assay were determined 

using a Microtrac S-3000 laser diffraction analyzer at Ames Goldsmith. The 

particle size distribution measurements were compared with particle sizes and 

distributions obtained by scanning electron microscopy (SEM - FEI XL-40). 

 

2.2.2 Mechanical Properties of Sintered Compacts 

 The mechanical properties of sintered powder compacts of the three 

particle configurations were studied via uniaxial compression tests. 

Approximately 1 g of powder was compressed in a 0.25-inch diameter die using 

a pressure of 70 MPa creating samples with a 1:1 height to diameter ratio. 

Powder compacts were annealed for 20 minutes at 200°C, 225°C, and 250°C in 

a tube furnace with a forming gas (95%N, 5%H) atmosphere. Compression tests 

were performed on two compacts for each processing condition using an MTS 

Sintech 30/D at a head displacement rate of 2 x 10-5 m/s using a flat plate 

compression head, resulting in a strain rate of 3.4 x 10-3 s-1. 

 

2.2.3 Flux Formulation 

The flux component of a solder paste suspends the metal particles in a 

carrier, allowing for the system to be printed and/or jetted. Flux provides 

increased particle, lead, and pad surface reactivity by removing or inhibiting 

formation of surface oxide, promotes particle-particle interactions during flux 

evaporation, and determines storage shelf life. Fluxes were formulated using the 
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rosins, solvents, thickeners and acid activators listed in Table 2. Rosins are used 

to control both rheology and surface activity of particles and substrates. Solvents 

with different vapor pressures control the evaporation of the flux during printing 

and annealing and promote interparticle contact. Thickeners are used to achieve 

the desired rheological properties for paste dispensing and component 

attachment and acid activators promote sintering by increasing the flux activity. 

[26,27] For flux development, solvents and rosin(s) for each composition were 

mixed and heated to between 80-120°C until dissolution occurred and the system 

appeared transparent. The mixture was cooled to ~50 °C. Thickener(s) and 

acid(s) were then added to the 50 °C mixture as it was stirred vigorously.  The 

final flux formulations were allowed to cool to room temperature overnight before 

particle incorporation. The specific flux formulations are described in detail in the 

results and discussion section. 
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Table 2. Flux components investigated 
 

Material Function 
  

Diethylene Glycol Dibutyl Ether Solvent 
Tridecyclalcohol Solvent 

Dipropylene Glycol (DPG) Solvent 
Methyl Ethyl Ketone Solvent 

i-propanol Solvent 
Cellosolve Solvent 

Butyl Cellosolve Solvent 
Terpineol Solvent 

N Methyl Pyrrolidone Solvent 
  

Teckros D85 Rosin 
Teckros D95 Rosin 

Pinecrystal KE-604 Rosin 
Teckros D140 Rosin 

R101 Rosin Ester Rosin 
SL102 Rosin Ester Rosin 

Teckros HX Rosin 
Teckros RL60 Rosin 

Teckros RL Rosin 
  

Troythix XYZ Thickener 
  

Succinic Acid Acid Activator 
Adipic Acid Acid Activator 

Malonic Acid Acid Activator 
 

2.2.4 Paste Formulation 

 Based on the mechanical properties of sintered compacts formed without 

flux, PAC1005 powder was selected as the optimized powder for flux formulation. 

In order to achieve 50-volume percent loading, approximately 2 g of powder and 

0.5 g of flux were combined for the paste formulation trials. Four paste 

development studies were performed with over 50 total flux formulations, with the 

down selection criteria for the first matrix being flux rheology, the second being 
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particle wettability and paste rheology and the second being flux residues and 

weight loss after sintering. The final matrix of 9 pastes were qualitatively 

evaluated using a 5 point scale ease of the mixing, relative adherence to the 

substrate as printed, and relative adherence to the substrate after annealing. 

From these three studies, two paste formulations were identified for quantitative 

manufacturability testing, including paste rheology, printability, and promotion of 

neck formation. 

 

2.2.5 Rheology and Printability  

The fabrication of a viable paste relies heavily on a flux that provides 

shear-thinning paste rheology, a non-corrosive environment for the resulting 

interconnect, and an acceptable shelf life, while also promoting interparticle and 

substrate bonding. The rheological behavior was evaluated using a TA 

Instruments AR-G2 Controlled Stress Rheometer with a plate-on-plate geometry. 

Approximately 0.5 mL of pastes with 53.3 vol% loading was used for the rheology 

measurements.  

Printability of the down-selected pastes was evaluated at Speedline 

Technologies Inc., using an MPM stencil printer, for comparison with commercial 

Pb-free solder pastes. The squeegee speed and pressure were optimized to 

ensure uniform coverage for a variety of pad shapes, sizes, and pitches.  
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2.3 Results and Discussion 

2.3.1 Physical Properties of Core-Shell Particles 

Particle characterization results for the three powders are reported in 

Table 3, and the morphologies of the as-received core-shell particles in Figure 5. 

The data and images for PAC0505 (with a nominal average particle size of 

0.5µm) show that PAC0505 is highly agglomerated. The average PAC0505 

particle size from SEM imaging is 0.69 μm, while the average measured by laser 

diffraction is 1µm with a particle size distribution that is the same as the 1µm 

powders. The difference in average particle size measured by SEM and laser 

diffraction is due to agglomeration. The PAC0505 powder also has a low tap 

density packing factor of 0.38 as compared with packing factors of 0.50, 0.54, 

and 0.6 for PAC1005, PAC1010, and the theoretical packing factor, respectively 

[28]. The theoretical packing factor describes the limiting relative density of equal 

size spheres vibrated in a container to promote packing. The low tap density of 

PAC0505 is another indication of agglomeration.  Surface area measurements 

for PAC0505 showed a slightly lower surface area than estimated based on 

calculations for spherical 0.5µm particles. This difference in surface are is not 

unexpected given the degree of agglomeration, that is, the particle agglomerates.  

Both PAC1005 and PAC1010 showed significantly less agglomeration 

when compared with PAC0505, with a D50 of 1 µm for both powders. The 

surface areas for both PAC1005 and PAC1010 were approximately 50% greater 

than estimated based on calculations for spherical particles with a 1µm average 

diameter. This increase in measured surface area is due to the non-spherical 
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nature of the particles. As seen in Figure 5, all particle formulations contain well-

defined facets as well as concave and convex surface features. The combination 

of rough and faceted surfaces results in surface area measurements well above 

the theoretical values. Overall, PAC1005 and PAC1010 exhibited expected 

properties in terms of particle size distribution, packing, and surface area, 

suggesting minimal agglomeration. 

 

Table 3. Density, surface area, and particle size distribution data for the three 
particle configurations 

 
 PAC0505 PAC1005 PAC1010 

Tap Density (g/cm3) 3.5 4.6 4.9 
Packing Factor (tap density/theoretical 

density) 
0.38 0.51 0.54 

Measured Surface Area (m2/g) 1.16 0.91 0.95 
Calculated Surface Area – Nominal 
diameter, Spherical particles (m2/g) 1.33 0.66 0.66 

D10 (μm) 0.6 0.6 0.6 
D50 (μm) 1 1 1 
D90 (μm) 2.2 1.9 2 

Particle Size from SEM Analysis - Avg. (St 
Dev.) (µm) 0.69 (0.24) 0.74 (0.21) 0.79 (0.22) 

Silver Assay (%) 5.1 5.0 9.6 
  
 
 

 
Figure 5. SEM image of (A) PAC0505, (B) PAC1005, and (C) PAC1010 showing 

faceted, non-spherical particles 
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In each particle configuration, particle pairs were present that appeared to 

have formed necks prior to annealing. These particle pairs resulted from 

agglomeration prior to the Ag coating process, i.e., particle pairs are coated 

forming a single, Ag-coated, dumbbell-shaped particle, as seen in Figure 6a. 

After sintering, the neck morphologies of dumbbell structures are distinguishable 

from neck formation between two individual core-shell particles as seen by 

comparing Figures 6a and 6b, thus allowing for identification of necks formed 

only by the sintering process.  

 

 
Figure 6. SEM images showing the structure differences between (a) a particle-

pair dumbbell and (b) a sintered neck 
 

2.3.2 Sintering of Core-Shell Particles 

In the development of a viable technology, there are many practical 

considerations that must be examined.  For example, processing times should be 

fast enough to be make it acceptable to manufacturers, there should be a 

sufficiently wide process window to enable reliable, reproducible results, and the 

resulting properties of the sintered interconnect should be more than sufficient for 

the intended applications.  These are all controlled by the kinetics of neck 
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formation as a function of particle geometry, particle packing, annealing 

temperature and time.    

 Since the core-shell particles sinter predominantly by Ag surface diffusion 

there is minimal densification, as determined by dimensional measurements 

upon sintering. The extent of neck formation can be estimated using a surface-

diffusion sintering model established by Kuczynski et al. as applying to the 

sintering of Cu-Ag core-shell particles fabricated using these methods with the 

diffusion coefficient from Dannenberg et al. The sintered neck size, x, can be 

determined by Equation 1. [29,30] 

 

     Equation 1 

 

where the surface diffusion coefficient Ds = 4x10-12 (exp (-0.61eV/kT)) m2/s, δs: 

characteristic surface diffusion layer thickness, 0.5 x 10-9m, γs: surface energy, 

1.2 J/m2, molar volume, Vm 1.027 x 10-5m3/mol, [30]: a: particle radius (m), t: time 

(s), R: gas constant, 8.314 J/molK, and T: sintering temperature (K). As originally 

set out by Herring, with self-similar structures assumed in a simple two particle 

model, the time to achieve the same x/a ratio with different particle sizes allows a 

comparison of sintering kinetics when a single mechanism dominates neck 

formation.  The time and particle size dependence of absolute and relative neck 

formation at 200°C by Ag surface diffusion (Eqn. 1) is shown in Figure 7 for 500 

nm and 1 μm diameter particles.  For an annealing time of 60 minutes, a time 

cited by our OEM advisory team as the maximum annealing time to target, the 
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x/a values are 0.287 for 500 nm diameter particles, and 0.18 for 1-μm diameter 

particles.  These calculated values are used later in the analysis of modulus as a 

function of annealing time. 

 

 

 
Figure 7. Calculated neck radius (x) and ratio of neck radius to particle radius 

(x/a) increase over time for 500nm and 1 μm particles annealed at 200°C 
 

There is a limiting case for the extent of neck formation based on physical, 

geometrical constraints that must be explored: is there enough Ag in the particle 

shells to form necks with the expected geometries. The maximum possible neck 

radius formed from Ag can be estimated assuming that all of the silver shell 

diffuses to form sintered necks, the solid core particles touch at a single point 

and a cylindrical neck structure minus the excluded volume of the core particles. 
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Figure 8 details the assumed geometry. (For this simple model, the effect of the 

wetting angle of Ag on Cu is ignored.)  

 

 

Figure 8. Assumed geometry for calculating limiting neck radius for Ag neck 
formation on Cu cre particles. The wetting angle of Ag on Cu is not being 

considered 
 

For a known particle radius and silver shell thickness a geometric 

relationship was developed in order to determine neck radii, detailed in Equation 

2. Equating the volume of the cylindrical neck to the volume of two equivalent 

hemispherical caps and the total volume of silver from the shells, the maximum 

possible neck radius for a simple two-particle geometry for PAC 1005 (500nm 

core radius, 9nm Ag shell thickness) was estimated to be 360 nm. For the case 

of maximum packing of spheres, assuming 12 nearest neighbors, the maximum 

possible neck radius was calculated to be 310 nm and an x/a of 0.6.  These radii 

are more than a factor of three larger than the radii predicted from surface 

diffusion calculations for 60 minutes of annealing at 200°C.  Therefore, silver 
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supply will not limit the extent of neck formation for the targeted maximum 

annealing time of one hour. 

 

          Equation 2 

 

2.3.3 Mechanical Properties of Core-Shell Particle Compacts 

Modulus and yield strength data obtained from compression tests are 

presented in Figure 9.  Modulus and yield strength are directly correlated to the 

number and diameters of necks formed between particles during sintering. 

Higher annealing temperatures resulted in compacts with more neck formation, 

higher moduli and yield strengths. 

 

 

Figure 9. Modulus and yield strength data for the particle formulations 
 

After sintering at 200°C, the maximum compression modulus of 620 MPa 

was obtained for PAC1005, with PAC1005 outperforming both PAC0505 and 

PAC1010. Similarly, PAC1005 exhibited higher yield strengths with values 
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ranging from 40-60 MPa. In terms of suitability for electronic interconnects and 

die attachment, the yield strengths for as-sintered PAC1005 compacts are similar 

to the 40 MPa yield strength reported by Hamasaki et. al. for Sn-3.5Ag-0.75Cu 

for the same strain rate [31]. Of equal importance to joint stability is the maximum 

elastic strain allowable in the joint before yielding. With a significantly lower 

modulus than Cu, Si, or SAC solders and a yield stress of 45 MPa, the maximum 

strain in the joint before yielding is estimated to be 0.07.  In thermal cycle testing 

for a typical ΔT of 180°C, the typical thermal expansion mismatch between glass-

fiber reinforced FR-4 circuit boards and Si is estimated to produce a shear strain 

of 0.003. By comparison, the porous Cu-Ag core-shell sintered particle compacts 

can experience more than an order of magnitude greater strain before yielding 

that expected due to the imposed thermo-mechanical stresses.    

The bulk moduli of copper and silver are 110 GPa and 83 GPa, 

respectively, with 620 MPa as the maximum modulus measured for the porous 

sintered PAC1005 core-shell compacts.  The non-linear dependence of modulus 

on porosity and neck formation in porous powder compacts is well known.  A 

modified form of the elastic modulus for open-cell metal foams, Equation 3, 

appears to be most appropriate for the case of a partially sintered compact at 

early stages of neck formation, in which the effective modulus Ef is determined 

by the bulk modulus, E0, the foam density, ρf, and the theoretical density, ρth. [32]   

 

                   Equation 3
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If the as-sintered geometry is modeled as a 3-D cubic foam of metal 

ligaments of radius x, equal to the neck size, with a fixed spacing of 2a, the 

particle diameter, the effective density as a function of time becomes a function 

of only the neck radius. The calculated effective moduli for the PAC1005 particles 

based on sintering by surface diffusion become 600 MPa, 900 MPa and 1300 

MPa after 60 minutes of sintering at 200°C, 225°C and 250°C, respectively.  The 

overall trends for PAC1005 moduli for different annealing times and temperatures 

are detailed in Figure 10. Mechanical property measurements of PAC1005 

compacts shown in Figure 9 correlate to a 20-minute annealing time. The 

calculated moduli values noted in Figure 10 correspond to the theoretical moduli 

for the experimental results shown in Figure 9. While higher densities and moduli 

were expected for PAC0505 on the basis of the effect of particle size on sintering 

kinetics, the degree of agglomeration and the resulting lower initial density of the 

unsintered PAC0505 compacts likely led to fewer sintered necks and the 

observed poorer overall mechanical behavior.  The reasons underlying the 

poorer mechanical behavior of PAC1010 are not known. 
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Figure 10. Calculated modulus for PAC1005 particles annealed at 200C, 225C, 
and 250C with values for the 20 minutes annealing time that correlates to the 

experimental data reported in Figure 9 
 

Based on modulus and yield strength, PAC1005 was selected as the most 

promising powder for producing mechanically stable interconnects and was used 

for paste and process development.  

 

2.3.4 Flux Formulation 

In contrast to conventional solder pastes used for reflow which contain 

~40 µm [15] particles, the use of 0.5-1 µm particles and the need to produce 

connections via particle-particle contact without melting and coalescence 

complicate paste formulation. In addition, two key stability factors during paste 

storage were identified: phase separation of the constituents and excessive 

drying and hardening.  

Four test matrices covering 35 compositions were assessed and the 

fluxes that did not exhibit phase separation or excessive drying were combined 
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with core-shell particles and evaluated as pastes. As detailed in Table 4, Matrix 1 

evaluated the rheology of fluxes with a variety of rosins and rosin combinations.  

 
Table 4. Matrix 1: Flux formulations 1A-1I focused on determining rosin or rosin 

combinations that provide the best rheology 
 

Component 1A 1B 1C 1D 1E 1F 1G 1H 1I 
Diethylene 

Glycol Dibutyl 
Ether 

22.85 22.85 22.85 22.85 22.86 22.86 22.86 22.86 22.86 

Tridecylalcohol 24.53 24.53 24.53 24.53 24.53 24.53 24.53 24.53 24.53 
Teckros D85 52.62         
Teckros D95  52.62        

Pinecrystal KE-
604   52.62       

Teckros D140     52.62 42.09 42.09   
R101 Rosin 

Ester 
     10.52    

SL102 Rosin 
Ester       10.52   

Teckros HX    52.62    42.09 42.09 
Teckros RL60        10.52  

Teckros RL         10.52 
Viscosity (cps) 
Brookfield RV5 

spindle 5; 
speed 100 

356 436 1024 Very 
Low 

3488 1584 1528 1976 228 

 

Within this first matrix (1A-1I), viscosity was assumed to be a key factor, 

however, this characteristic was determined to be discriminatory due to the ability 

to incorporate other flux agents to modify overall system behavior.  Both single 

and dual rosin formulation properties could be altered with the addition of 

thickeners to increase viscosity, the addition of acid activators would increase 

particle and substrate surface activity and the volatility of the system could be 

more stable by using different solvents.  



32 
 

 

As detailed in Table 5, Matrix 2 (1J-1Q) evaluated the effects of adding 

dipropylene glycol (DPG) solvent, Troythix XYZ thickener, and succinic and 

adipic acid activators using the same base compositions as Matrix 1 (with the 

exception of 1D which was deemed not viable due to its very low viscosity). The 

combination of adipic and succinic acid helps to activate the surfaces of the 

particles, leads, and pads, by removing oxide and increasing the fluxing activity. 

These formulations were also mixed with SAC305 particles to 80 weight percent 

loading and reflowed in order to evaluate general flux performance. All SAC305 

formulations mixed and reflowed well, according to industry standards.  
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Table 5. Matrix 2: Flux formulations 1J-1Q assessed the impact of acid activators 
on promoting oxide reduction and therefore particle interactions using rosin 

formulations from Matrix 1 
 

Component 1J 1K 1L 1M 1N 1O 1P 1Q 
Diethylene 

Glycol Dibutyl 
Ether 

20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 

Tridecylalcohol 22 22 22 22 22 22 22 22 
Teckros D85 47.2        
Teckros D95  47.2       
Pinecrystal 

KE-604 
  47.2      

Teckros D140    47.2 37.75 37.75   
R101 Rosin 

Ester     9.44    

SL102 Rosin 
Ester 

     9.44   

Teckros HX       37.75 37.75 
Teckros RL60       9.44  

Teckros RL        9.44 
Dipropylene 

Glycol (DPG) 1 1 1 1 1 1 1 1 

Succinic Acid 1 1 1 1 1 1 1 1 
Adipic Acid 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 

Troythix XYZ 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8 

Viscosity Medium Medium 
Very 
High 

Very 
High High High Medium High 

Mixed with 
SAC 305 

Mixed 
well 

Mixed 
well 

Mixed 
well 

Mixed 
well 

Mixed 
well 

Mixed 
well 

Mixed 
well 

Mixed 
well 

Reflowed with 
SAC 305 

Reflowed 
well 

Reflowed 
well 

Reflowed 
well 

Reflowed 
well 

Reflowed 
well 

Reflowed 
well 

Reflowed 
well 

Reflowed 
well 

 
 

After evaluation of Matrices 1 and 2, Teckros D85 was selected as the 

rosin for further optimization. The adipic and succinic acid combination was 

determined to be unacceptable because the volume of acid needed to promote 

activity in the high surface area 1µm particle system was deemed to be too large 

and was replaced by a malonic acid activator. 
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Table 6 lists the compositions of Matrix 3 (2A-2I) that evaluated the effects 

of a different set of solvents, and the malonic acid activator with Teckros D85 

rosin. The goal of this matrix was to evaluate pastes with reduced rosin content 

in order to decrease the amount of residual flux after reflow/annealing and to 

produce fluxes with low enough viscosity to promote particle-particle contact 

during heating and high enough viscosity during heating to limit paste slumping 

during heating. Note that only low MEK paste formulations (2F-2I) remained 

stable after mixing, without any apparent phase separation.  

 

Table 6. Matrix 3: Flux formulations 2A-2I focused on reducing the rosin content 
and understanding the effects of the transition to Malonic acid on the rheology, 

and particle loading 
 

Component 2A 2B 2C 2D 2E 2F 2G 2H 2I 
Methyl Ethyl Ketone 34 29 29  34 17 10 10 10 

i-propanol    29   10  5 
N Methyl Pyrrolidone        10 5 

Cellosolve 40 40 35 35  34    
Butyl Cellosolve     30  30 30 30 

Terpineol 10 10 10 10 10 10 20 20 20 
Teckros D85 10 15 20 20 20 20 20 20 20 
Malonic Acid 1 1 1 1 1 1 3.5 3.5 3.5 

Phase Separation Yes Yes Yes Yes Yes No No No No 
 
 

Based on the results from Matrix 3 that suggested using Butyl Cellosolve 

along with low MEK content produced stable fluxes, the design program Stat-

Ease was used to develop a design of experiments matrix (Matrix 4) to evaluate 

the interactions of the components and determine the optimal composition for our 

performance needs, as specified in Matrix 4 (3A-3I), detailed in Table 7. These 
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nine fluxes qualitatively evaluated based on viscosity during the heating and 

cooling stages of flux preparation; all were found to be acceptable 

These final nine flux formulations (3A-3I) were then evaluated based on 

five qualitative levels of three processability parameters: ease of mixing during 

particle incorporation, adhesion to the substrate during paste application, and 

adhesion to the substrate after annealing. The adhesion and mixability for each 

of these formulations were ranked between 1-5 (Good-Bad) and are detailed in 

Table 7.  The mixability rankings were based on apparent ease of incorporation 

for producing pastes with approximately the same particle loading (50 vol%, 88 

wt%). Some fluxes showed poor particle wetting and resulted in separation of flux 

and particles regardless of mixing duration and speed, while other flux 

compositions showed rapid particle wetting and formation of stable, uniform 

pastes.   

Pastes that did not easily wet the surface of the copper substrate and 

required multiple attempts to adhere during paste application were given poor 

adhesion rankings (where lower is better). Pastes that exhibited delamination 

during annealing were assigned a low sintered adhesion ranking. Pastes that 

could not be removed from the substrate with scraping using a spatula after 

annealing were assigned given good adhesion rankings. The rankings in Table 7 

were used to reduce the number of candidate pastes for manufacturability 

assessments. The adherence to the substrate after annealing was more heavily 

weighted due to its importance in creating a stable mechanical and electrical 

connection.  
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These nine pastes were also evaluated for weight loss during annealing. 

Annealing experiments were performed in forming gas (5%H, 95%N) at 205°C 

for 5-60 minutes. The percent flux weight loss was normalized relative to the 

amount of flux in each sample in order to compensate for the slight variations in 

particle loading in the individual paste formulations.  Weight loss for each 

composition after 60 minutes of annealing is detailed in Table 7. Samples that 

experienced delamination during annealing were not evaluated for weight loss 

and are denoted by N/A. The results of these weight loss experiments were 

compared to results from fluxes in previous matrices and the results showed 

similar behavior, ranging from 8-13 percent.  
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Table 7. Matrix 4: Flux formulations 3A-3I focused on determining the impact of 
component interactions as well as promoting sinterability (Mixability and 

adhesion rankings 1-5 Good-Bad) 
 

 3A 3B 3C 3D 3E 3F 3G 3H 3I 
Methyl Ethyl Ketone 10 10 10 10 10 10 10 10 10 

i-propanol 5 7 5 7 5 7 7 6 5 
N Methyl Pyrrolidone 5 3 5 3 5 3 3 4 5 

Butyl Cellosolve 30 32 35 35 32 37 30 33.5 37 
Terpineol 20 20 20 20 20 20 20 20 20 

Teckros D85 20 20 15 15 20 15 20 17.5 15 
Troythix XYZ 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 
Malonic Acid 3.5 1.5 3.5 3.5 1.5 1.5 3.5 2.5 1.5 
Hot Viscosity Low Low Low Low Low Low Low Low Low 
Cold Viscosity High High High High Medium Low Medium Medium Medium 

Flux Density (g/cc) 0.81 1.04 0.76 0.94 0.87 0.9 1.07 0.95 0.88 
Volume Percent 

Particles 
47 54 48 53 50 51 56 53 51 

Paste mixability 2 2 5 1 4 1 3 5 4 
Adhesion before 

annealing 
2 5 3 3 1 5 4 3 1 

Adhesion after annealing 4 4 3 1 5 3 2 1 5 
Weight Loss % 

(60 min) 
7.6 12.3 11.2 12.1 N/A 11.3 11.4 11.7 N/A 

 

Evaluation of the flux burn-off during annealing, along with the mix-ability, 

and adhesion evaluations resulted in the selection of paste formulations 3D and 

3H. These pastes exhibited flux burn off percentages greater than the 10.8% 

average as well as the best ranking adhesions after annealing. Both 

compositions contained 8 components, with five solvents, one rosin, one 

thickener, and an acid activator, as detailed in Table 8. These pastes were 

chosen for further testing that included sinterability, a rheological assessment, 

and printability testing.  
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Table 8. A list of components and ratios for the best performing flux systems, 3D 
and 3H 

 

 Methyl Ethyl 
Ketone i-propanol 

N Methyl 
Pyrollidone 

Butyl 
Cellosolve Terpineol 

Teckros 
D85 

Troythix 
XYZ 

Malonic 
Acid 

3D 10 7 3 35 20 15 6.5 3.5 
3H 10 5 4 33.5 20 17.5 6.5 2.5 

 

2.3.5 Pastes – Particles in Flux 

Using paste formulation 3D, the extent of neck formation during annealing 

was investigated. Figure 11 shows SEM micrographs of neck formation for a 

sample of PAC1005 powder in 3D flux annealed for 5, 30, and 60 minutes. 

Figure 11A shows no visible neck formation and the sample contained residual 

flux as indicated within the white circle. Figure 11B shows a neck connecting two 

particles after 30 minutes of annealing as indicated by the white circle. Figure 

11C depicts a network of particles are connected through neck formation as 

contained within the circle. Figure 11 depicts increased neck formation with 

annealing time. These images are proof of concept and confirm that the 

presence of flux promotes interparticle connection during annealing and that with 

increased annealing time a continuous network of particles and necks is formed.  

 

 

Figure 11. SEM micrographs showing the progression of increased neck 
formation wiht annealing time (A-5min, B-30min, C-60min) 
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2.3.6 Rheology and Printability 

Conventional solder paste shows non-Newtonian, shear-thinning behavior, 

which is essential for successful printing. Rheological data were obtained in order 

to verify the desired shear-thinning properties of the as-fabricated pastes. Plate-

on-plate rheological measurements were performed for flux formulation 3H using 

0.5mL of 53.3 volume percent loading. As shown in Figure 12, the viscosity 

decreases with increasing shear rate validating that paste 3H is shear-thinning.  

 

 

Figure 12. Viscosity vs. shear rate plot for paste formulation 3H showing the 
desired shear-thinning properties 

 

Stencil printing assessment of both the 3D and 3H paste formulations was 

carried out at Speedline Technologies to determine if the Cu-Ag core-shell paste 

formulation could be successfully applied to circuit boards using conventional 

solder paste deposition techniques. Pastes were printed on test boards 

containing a wide variety of pad shapes, sizes, and pitches using an MPM stencil 
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printer manufactured by Speedline Inc. Initial parameters of a 30mm/sec speed 

and 6.8 kgp squeegee pressure, based on traditional lead-free solder pastes, 

resulted in poor coverage for the Cu-Ag core-shell particle pastes. The coverage 

exhibited slumping, dog-ears and incomplete pad fill. The squeegee pressure 

and speed were optimized in order to produce consistent coverage.   

For formulation 3H, flat coverage with no dog-ears was acquired using a 

pressure of 7 kgp and a speed of 25mm/sec, however, there was still visible 

slumping and some incomplete fill. It should be noted that paste 3H dried very 

rapidly and was only capable of running 3 prints before the paste began to slide 

instead of roll behind the squeegee.  

For formulation 3D, 9.5 kgp of pressure and a 30mm/sec speed produced 

pads with good coverage and minimal visible defects after 6 consecutive 

depositions however, similar to paste 3H, it was clear that paste 3D was 

thickening with time. It is important to note that printing tests were run with the 

system hood open in order to be able to observe the behavior of the paste line 

during deposition. Running the printing process in a closed printing system will 

reduce drying. Testing also shows the need to adjust solvent rations in order to 

control evaporation rates during board manufacturing. Images of the smallest 

and largest pads printed with paste formulation 3D can be seen in Figure 13.  
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Figure 13. Images of pads exhibiting good coverage. Left: 01005 pad (0.4 
mmX0.2 mm) Right: 0402 pad (1 mmX0.5 mm) 

 

2.4 Conclusions 

The use of Cu-Ag core-shell nanoparticles was validated as a Pb-free 

interconnect technology.  Upon annealing, the Ag shell dewets the copper 

surface and forms Ag necks between Cu core particles at particle-particle 

contacts creating an electrically, thermally, and mechanically stable, porous 

sintered network. Particle characteristics and paste formulation were optimized 

with respect to sinterability; mechanical strength and processability for typical 

surface mount assembly and reflow technologies. This optimization was carried 

out using three core-shell powder configurations and over fifty flux formulations. 

The combination of 1 µm diameter core-shell particles with 9nm Ag shells, and 

fluxes containing methyl ethyl ketone, isopropanol, methyl pyrrolidone, butyl 

cellosolve, Terpineol, Teckros D85, Troythix XYZ, and malonic acid were 

determined to be the best performing. These pastes exhibited the targeted shear 

thinning behavior and promoted neck formation with acceptable flux residues 

after annealing. Using commercial board assembly equipment, optimization was 
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performed based on squeegee speed and pressure. The two best performing 

pastes showed coverage and paste rheology comparable to commercial Pb-free 

solder pastes validating Cu-Ag core-shell nanoparticles as a Pb-free interconnect 

technology.  
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CHAPTER 3. SCIENCE 

3.1 Science Introduction 

3.1.1 Thin Films 

 Thin films are used for a variety of engineering applications and have 

been broadly implemented to fill a variety of roles in electronics processing. Thin 

films experience a broad range of stresses that can be the result of growth mode, 

deposition process, misfit with the substrate material, and thermal influences. 

Relaxation of these stresses during subsequent heating that may occur during 

device lifetime can result in the formation of a variety of microstructural changes. 

Stress relaxation can result in grain growth, abnormal grain growth, boundary 

grooving, hole formation, dewetting, hillock formation, whisker formation, popped 

grains, sunken grain, voids, bubbles, and delamination. In order to understand 

the formation of defects that result from stress relaxation the causes of film stress 

must first be understood. [33] 

 

3.1.1.1 Growth Modes 

There are several growth modes through which thin film formation can occur. 

These growth modes are Frank – van der Merwe (FV), Volmer – Weber(VW),
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 and Stranski – Krastonov (SK) which refer to layer-by-layer, island growth, and a 

combination of both layer-by-layer and island growth respectively. Figure 14 

shows schematic representations of each of the growth modes described. The 

mode of growth that occurs is dependent on the particular system and set of 

processing parameters. One key influential factor is the lattice mismatch of the 

film and substrate material. Smaller misfits will result in FV growth due to the 

ability of the atoms to arrange themselves into a matrix without the formation of a 

large interface strain. A larger misfit will result in SK growth due the formation of 

large interface strain as the thickness is increased. These various growth modes 

will influence the grain structure of the thin film and therefore the stress relaxation 

mechanisms available to the microstructure. [34]  

 

 

Figure 14. Schematic representations of the three growth modes, (VM) Volmer-
Weber, (FV) Frank - van der Merwe, and (SK) Stranksi – Krastonov 

 

3.1.1.2 Deposition Stresses 

As thin films are deposited they experience a variety of intrinsic stress 

behavior associated with the film formation and thickening process. The intrinsic 
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stress behavior of a metal film begins with the development of compressive 

stresses. These stresses are present prior to the formation of a continuous layer 

of film material. Upon coalescence of the film into a continuous layer, the film 

experiences a rapid decrease in compressive stresses and eventually exhibits a 

tensile stress state during thickening. As film growth progresses and film 

thickness is increased, these tensile stresses can be further accommodated by 

defects in the system, thus reducing the tensile stresses. The resulting stress 

state of metallic thin film system is often a slight compressive stress. A graphical 

representation of the stress progression of metallic thin films can be seen in 

Figure 15. [35] 

 

 

Figure 15. A schematic plot showing the changes in stress that a film 
experiences as its thickness is increased during deposition 

 

Upon reaching a critical thickness, metallic thin films can accommodate 

inherent stresses and strains by the formation of a variety of defects specifically, 
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through the formation of misfit dislocations at the film-substrate interface. Along 

with the intrinsic stresses a film acquires during deposition additional thermal 

stresses may be imposed on the system.[35]  

 

3.1.1.3 Misfit Stresses 

In the case of a thin film on a substrate, some strain will be present due to 

the film-substrate interface. Assuming the film thickness is sufficiently thinner 

than the substrate, the film material will take on the lattice parameter of the 

substrate material. When the film thickness is beyond some critical value 

dislocations form at the interface in order to accommodate for the strain. These 

dislocations that help accommodate for the misfit strain are often referred to at 

misfit dislocations. Equations 4-6 define the misfit strain between the film and 

substrate material. [34,36] 

 

    Equation 4 

 

Overall film strain can then be defined by  

          Equation 5 

 

And the strain per unit area thus becomes  

 

εmf =
as − af( )
as

ε = εmf −
b

s
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       Equation 6 

 

3.1.1.4 Thermal Stresses 

The difference in the CTE between the film and substrate materials can 

have a great influence on the film dewetting. Annealing of a thin film on a 

substrate of much greater thickness will result in expansion or contraction of the 

sample. The value of the CTE determines if the material will expand or contract 

and to what degree this deformation will occur. There are effects that may result 

from differences in CTE between the film and substrate. For an annealed film 

that is well adhered to the substrate surface the dimension of the film will be 

constrained by the in-plane dimensions of the substrate. This constraint will 

induce a stress between the film and substrate affected by the difference in CTE. 

Table 9 contains thermal expansion coefficients for common film and substrate 

materials. [34] 

  

εs = M εmf −
b

s

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

t



48 
 

 

Table 9. List of thermal expansion coefficients [37] 
 

Material CTE (10-6/K) 

Quartz 0.6 

Silicon 3 

YSZ 10 

Gold 14 

Copper 17 

Silver 18 

 

Table 10. List of thermal expansion differences [37] 
 

System CTE Difference 

Silver-Copper 1 

Gold-YSZ 4 

Gold-Silicon 11 

Silver-Silicon 15 

Silver-Quartz 17.4 

 

3.1.2 Dewetting Overview 

The word dewetting is used to describe a broad range of phenomenon in 

literature but in this case we use the term dewetting to define film evolution as a 

result of capillarity. Dewetting is the process a film undergoes in order to evolve 

from its flat-plane non-equilibrium shape to the equilibrium island shape (a 

hemispherical cap for isotropic materials). 
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3.1.2.1 Thermodynamics of Dewetting 

The thermodynamic driving force that causes a system to tend toward the 

lowest energy state, minimizing surface energy, provides the driving force for 

dewetting. In the case of an isotropic thin film the equilibrium shape of the film is 

dependent on the contact angle between the substrate and film materials, as 

determined by the interfacial energy. For a contact angle of θ=0°, a film 

completely wets the substrate, resulting in a continuous flat film at equilibrium. 

For a contact angle of θ=180°, a film is considered non-wetting and in equilibrium 

will form a spherical island atop the substrate. The system geometry of a film on 

a substrate is composed of three distinct interfacial energies that can be related 

by the contact angle between the film and substrate materials. This relationship 

is defined by Young’s equation, Equation 7, derived from the surface tension 

force balance at a film edge, Figure 16. [38]  

 

          Equation 7 

 

 

Figure 16. Figure showing the geometry association with Young's equation 
In the case of a continuous thin film where the contact angle is greater 

than zero, the thin film is not stable. Because the equilibrium shape of the 

material system is dependent on the contact angle, any system where the 

contact angle is greater than zero will be metastable. The inherent driving force 

s = i + f cos
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to minimize interfacial energy leads to the formation of hemispherical caps 

containing the equilibrium contact angle, and thus the term dewetting.  

When a film breaks up, or dewets, it creates a triple phase point between 

the atmosphere, substrate, and film material that contains a local curvature. This 

curvature leads to a difference in chemical potential, providing a driving force for 

diffusion that is dependent on the magnitude of the contact angle. The Gibbs-

Thompson Equation can define the excess chemical potential, [39]  

 

    Equation 8 

 

where μ(s) is the surface chemical potential, μ0 is the chemical potential at a flat 

surface, Ω is the atomic volume, γ is the surface energy and κ(s) is the average 

surface curvature at surface location s. This convention leads to a convex, 

positive, surface having a higher chemical potential than a concave, negative, 

surface. This potential difference leads to atom flux from surface hills (hillocks, 

agglomerations, etc.) to valleys (dewet regions).  

The equilibrium state of any dewetting system can be stable by creating 

either a single island on a substrate containing the equilibrium contact angle or 

an array of smaller islands that each make the equilibrium contact angle with the 

substrate. Srolovitz and Goldiner determined that there is a minimum island 

radius that results in a system more stable than a flat film.[40] This minimum 

radius for which an array of islands is more stable than a flat film for a given film 

thickness, hf is given by 

μ s( ) = μ0 + s( )
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         Equation 9 

 

This result defines the existence of multiple stable islanded geometries for 

a dewetting system. Specifically, geometries ranging from a single large island to 

an array of small islands with radii slightly larger than rmin will be more stable that 

a flat film 

 

3.1.2.2 Nucleation of Holes 

Mullins was the first to study the stability of initially flat films by focusing on 

the influence of thermal grooving.  Mullins evaluation showed that in the case of 

an isotropic continuous solid film, thermal fluctuations that lead to surface 

perturbations were stable regardless of transport mechanism. [41] Thus, thermal 

fluctuations do not result in the formation of substrate-exposed regions, instead 

such perturbations spontaneously decay back to form a flat film. In terms of 

surface area and energetics it makes physical sense that this process is 

metastable, because surface perturbations will result in an increase in surface 

area and energy without the destruction of any. In order for surface fluxuations to 

amplify and result in exposed substrate there must be some energetic advantage 

associated with the film breakup. [41] Thus, using Mullins analysis a pre-existing 

void or formation of a substrate-exposed region is required in order for a film to 

experience spontaneous dewetting.  

rmin =
3sinθw
1− cosθw

h f
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Mullins solid film work only considered the interactions between the film 

and atmosphere, assuming any interactions with the substrate were negligible. 

Vrij performed a similar analysis on dewetting of liquid thin films. Through the 

incorporation of substrate-film interactions Vrij determined that thermal 

fluctuations can penetrate the film thickness leading to the film to spontaneously 

dewet.[42]  

Srolovitz and Safran determined through thermodynamics that for a solid 

thin film, not only must the void be pre-existing in order for spontaneous wetting 

to occur but the void must be larger than some critical radius for dewetting to be 

energetically favorable. In particular, the critical void radius was determined to be 

dependent on the film thickness via  

 

    Equation 10 

 

Grain boundary grooving and penetration at triple junctions are the most 

common mechanisms for hole formation in polycrystalline films. Mullins 

determined that for an isolated grain boundary that both evaporation-

condensation and surface diffusion resulted in an infinite groove deepening with 

time. Specifically, evaporation-condensation has a time dependence of t1/2 while 

surface diffusion has a time dependence of t1/4. [41] Mullins also determined that 

the shape of groove depth profiles were dependent on the transport mechanism. 

As seen in Figure 17 grooves formed by evaporation-condensation smoothly 

decrease from the initial film height, while grooves formed by surface diffusion 

rcrit =
hf
sinθw
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develop a build up of material above the initial film height. These differences in 

depth profiles will be a relevant part of hole and edge retraction discussed in 

another section. [41]  

 

 

Figure 17. Schematics of normalized groove profile shapes caused by (left) 
evaporation-condensation and (right) surface diffusion. Showing the edge build-

up that results from surface diffusion. Adapted from Mullins, W. W. Theory of 
Thermal Grooving. J. Appl. Phys. 28, 333 (1957). [41] 

 

Genin et. al. compared grooving between grain boundaries and triple 

junctions, determining that triple junction grooving occurred much more quickly 

than grooving a boundary between two grains. This result implies that critical void 

formation for dewetting to occur in a polycrystalline film should occur at triple 

junctions in the microstructure. [43] Genin et. al. also determined that forces 

acting on a boundary can greatly influence the depth of the groove. Grooves 

under tension experience more deepening than stress-free grooves while 

grooves under compression experience less deepening than stress-free grooves. 

These results can be easily translated to the amount critical dewetting nuclei 

formed based on the stress state of a thin film. Films under tension should create 

critical nuclei for dewetting quicker than films under compression.  
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Films can also experience spontaneous dewetting nucleated by methods 

other than grain boundary grooving.  Strain instabilities at the film-substrate 

interface, [44] the creation of bubbles in the film [45,46], and void formation at the 

substrate-film interface [45] can lead to dewetting of a system.    

 

3.1.3 Isotropic Dewetting Models 

Once a film has developed a hole, dewetting can begin. There are two 

notable sets of work that propose kinetic models for the dewetting mechanisms 

of a continuous thin film once a void has been formed. First, Brandon and 

Bradshaw developed a model for void growth through surface diffusion causing 

continuous thickening and withdrawal. Second, Jiran and Thompson expanded 

on the same framework noting that void edges did not remain uniform but instead 

experienced non-uniformities that affect the curvature and thus the driving force 

for diffusion. 

 

3.1.3.1 Brandon and Bradshaw 

The goal of the Brandon and Bradshaw research was to acquire data for 

the mobility of atoms in a metallic thin film deposited by evaporation. Brandon 

and Bradshaw used the tendency of a film to dewet to determine the surface self-

diffusion coefficient, Ds, and surface energy, γs. Large grain polycrystalline silver 

films were deposited on both Pyrex and mica through evaporation in vacuum. 

Film thicknesses ranged from 27nm to 1000nm. Samples were annealed at 

temperatures between 175°C – 375°C and the structure of the film was 
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monitored through microscopy. Experimental results were used to develop a 

model for the growth of holes in metallic thin films dependent on the film 

thickness and annealing time. [47]  

The model proposed by Brandon and Bradshaw begins with three 

assumptions (1) a circular void geometry, (2) mass conservation of the material 

that would have filled the void into the thickened edges surrounding the void, and 

(3) a 90° contact angle between the substrate and the thickened film at the void 

edge. 

 

 

Figure 18. A cross-sectional view of a circular void showing a thickened edge as 
described by Brandon and Bradshaw. Adapted from Brandon, R. & Bradshaw, F. 
J. The Mobility of the Surface Atoms of Copper and Silver Evaporated Deposits. 

Royal Aircraft Extablishment 1–162 (1966). 
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Figure 19. Schematic of a hole edge showing the regions of volume change that 
occur during surface diffusion. Adapted from Brandon, R. & Bradshaw, F. J. The 
Mobility of the Surface Atoms of Copper and Silver Evaporated Deposits. Royal 

Aircraft Extablishment 1–162 (1966). 
 

In this model, as the void continues to grow, the edged continue to thicken 

causing a decrease in curvature and thus reducing the driving force for diffusion. 

As the void grows, the diffusion rate continuously decreases and eventually stops. 

Brandon and Bradshaw derived this relationship to be  

     Equation 11 

with,  

     Equation 12 

where r is the void radius, d is the film thickness, Ds is the surface diffusivity, γ is 

the surface energy, v is the number of atoms per area, Ω is the atomic volume 

and k is Boltzman’s constant. The key relationships that can be taken away from 

this are the void growth velocity dependence on time and film thickness. The void 

growth rate is proportional to 2/5 the power of time and -3/5 the power of film 

thickness.[47]  
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3.1.3.2 Jiran and Thompson 

The goal of the Jiran and Thompsons research was motivated by the 

disconnect between the Brandon and Bradshaw model and experimentally 

determined dewetting kinetics and structures. Specifically, voids seen in practice 

are not simply shaped (spherical) but instead grow into complicated shapes and 

the growth rate model does not accurately predict system kinetics. Jiran and 

Thompson deposited thin gold films onto amorphous silicon nitride membranes 

for TEM studies and fused silica for laser light transmission via evaporation in 

vacuum. [48]  

Unlike the model proposed by Brandon and Bradshaw, void edges 

exhibited instability and developed a morphology that was dependent on the local 

film thickness. As Brandon and Bradshaw predicted there was material 

accumulation at the void edges however, the accumulation was not uniform. The 

curvature difference between the thick and thin regions causes a difference in 

driving forces leading to faster void growth in thinner regions. The faster growth 

in thinner regions leads to non-uniform almost fractal-like void formation.  
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Figure 20. Schematic showing the difference in void edge movement between 
regions of thick and thin film edge. Adapted from Jiran, E & Thompson, C.V. 

Capillary Instabilities in thin films. Journal of Elec. Materi. 19, 115-1160 (1990). 
 

Jiran and Thompson went on to develop a model that accounts for the 

non-uniformities in edge thickness and void growth while maintaining Brandon 

and Bradshaw’s assumption that the contact angle of the film edge with the 

substrate is ninety degrees and determined that the growth rate of the void is 

constant with time. The relationship they derived is defined by   
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   Equation 13 

 

where D0 is the pre-exponential for surface diffusivity, γ is surface tension, Ω is 

the atomic volume, h is the film thickness, and Qs is the activation energy for 

surface diffusion.   

Jiran and Thompson’s model predicted the growth rate to be constant and 

proportional to -3 power of film thickness. While Jiran and Thompson’s model 

accounts for the complex structures seen experimentally during dewetting 

experiments it is not clear if the predicted trends can be assumed or adapted to 

any material system. For this reason, several research groups developed their 

own kinetic predictions and equations based on the work of both Brandon and 

Bradshaw and Jiran and Thompson but accounting the specifics of their material 

system and geometries of interest. [48] 

 

3.1.3.3 Other Velocity Predictions 

Mullins showed that the boundary velocity through surface diffusion could 

be described by   

 

        Equation 14 

 

where Vn is the surface normal velocity,  describes the curvature of the 

surface, and . Where Ds is the surface diffusion coefficient, γv is 
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the surface energy per unit area, Ω is an atomic volume, v is the number of 

atoms per unit area, and kT is the thermal energy.[41,46] Srolovitz and Safran 

later adapted this equation and predicted that through surface diffusion boundary 

kinetics asymptotically decays to zero. These results differ from those of Jiran 

and Thompson that predict a constant rate of boundary motion. Srolovitz and 

Safran also predicted, that the film thickness influenced the velocity but in the 

case of surface diffusion the influence is not a simple scale as seen by the works 

of Brandon, Bradshaw, Jiran and Thomspon. Instead for the case of surface 

diffusion there is no perfect scaling as described by  

 

   Equation 15 

 

where V is a constant of the order 10-3. This complex relationship suggests the 

influence of more than one length scale in the system.[46,49]  

Eventually, the features that were once holes grow large enough that they 

impinge on each other creating a collection of islands separated by regions of 

exposed substrate. The initially formed islands are not yet at their equilibrium 

size or shape. Islands larger than the equilibrium size will change diameter with 

velocities defined by their transport mechanism. Based on the assumptions made 

pertaining to dewetting in the systems of interest surface diffusion is the transport 

mechanism of interest.  

Over time the velocity will reduce until motion stops and the islands reach 

their equilibrium shape of a spherical cap in contact with the substrate at the 

ρ
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equilibrium contact angle. Srolovitz and Safran determined the equilibrium island 

radius to be described by 

 

    Equation 16 

 

where Ω is the volume of the material contained in the island, , with θ 

being the equilibrium contact angle as defined by the Young-Dupree equation.[46] 

Lastly, Ghaleb and Perraillon examined the surface diffusion of 1-2 

monolayers of silver deposited on (331) and (110) copper surfaces. Diffusion 

coefficients were determined based on the concentration profiles after annealing 

and results suggested that surface diffusion occurred at different rates on the 

different copper faces. The possibility of anisotropic diffusion in the silver on 

copper system may influence the onset and progression of dewetting. [50] 

 

3.1.4 Polycrystallinity and Anisotropy Influence on Defect Formation 

The descriptions developed by Brandon and Bradshaw and Jiran and 

Thompson are only valid for thin continuous single crystal films that contain no 

grain boundaries, and all relationships defined assume no anisotropy. These 

descriptions simply describe the effect of surface diffusion at the edge of a film 

but do not consider any outside effects. Thin films in engineering applications are 

often polycrystalline with a variety of anisotropy and wetting effects influencing 

the stress relaxation behavior and therefore more factors must be taken into 

consideration. Dewetting is one example of the kind of defect morphologies that 

ρeq = 4Ω πα( )
1
3

α = tan(θ )
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can result from thin film stress relaxation. Thin film relaxation can also manifest in 

the formation of a variety of other heterogeneous defects such as holes, popped 

grains, sunken grains, hillocks, whiskers, surface faceting, delamination, voids, 

and bubbles. In many cases more than one type of defect is found in a single set 

of experimental parameters. Due to the complex interactions of localized film 

thickness, texture, and diffusion paths, deconvoluting the individual impacts can 

be quite complicated. The structure that a film acquires upon stress relaxation, 

for our study this happens through annealing, is dependent on the specifics of 

the materials system and relaxation parameters. Analysis of thin film dewetting 

literature suggests that the amount of time that the sample is allowed to relax, the 

temperature it is exposed to, and film thickness will greatly influence the final 

structure of the film. Along with this, there are several studies where the 

annealing structure is influenced by the formation of hillocks and the presence of 

local texture or orientation relationships. In order to correlate the influence of the 

annealing parameters, sample geometry, and material system to the final dewet 

microstructure we must first examine the literature. The following sections will 

discuss the current state of literature that addresses defect formation models, 

correlations to dewetting, and other effects that may influence the onset and 

progression of these processes.  

As previously mentioned, hillock formation is a known stress relaxation 

mechanism for thin films. Assuming that stress relaxation (or strain minimization) 

is a driving force for dewetting of thin films, the stress relieved by the formation of 

hillocks will reduce the driving force for dewetting to occur. This reduction in 
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driving force will lower the required annealing temperature and time to achieve 

the various stages of dewetting and may inhibit the dewetting process. In many 

of the silver films studied in this work both dewetting and hillock formation occurs. 

Therefore, familiarity with the growth models and structural relationships 

associated with hillock formation will be crucial in developing and understanding 

of silver thin film stress relaxation mechanisms.  

 

3.1.4.1 Hillock Growth - Relevant Literature 

Sarobol et al developed a physics-based model that relates the ability of a 

grain to grow out of the plane of a film to a force balance due to the accretion 

stress at the base of grain and the stress required to overcome grain boundary 

sliding friction. This model assumes that the grain of interest has a surface grain 

geometry with an inverted stepped cone structure and grain boundaries 

containing horizontal and vertical facets. Atoms will build up on the horizontal 

facets perpendicular to the direction of defect growth. This build up will result in a 

shear force along the vertical facets. This shear force will be competing with the 

grain boundary sliding friction. Grain boundary sliding will only occur when the 

shear force due to atomic accretion is greater than the resisting grain boundary 

friction. When grain boundary sliding occurs the grain will rise out of the plane of 

the film until the accretion stress is no longer greater than the sliding friction. The 

mathematical representation of this relationship is defined in Equation 17 r is the 

grain radius, σ is the accretion stress, t is the film thickness, and β is the sliding 

friction. Sarobol et al also extends this model to more complex geometries my 
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manipulating the accretion parameters and starting grain shape. [51] This 

physics-based approach to modeling whisker and hillock growth out of the film 

plane does fundamentally cover growth. However, this model does not include 

considerations of film stress or other factors that are known to influence defect 

formation. 

 

        Equation 17 

 

Kovalenko et al examined the correlation between dewetting and hillock 

formation for thin Fe films on sapphire annealed at 750°C. This group proposed 

that, during the formation of a single hole, a single surface defect grows out of 

the film plane, implying that atomic transport occurs only between these two 

areas. The diffusion path for this scenario is along the film-substrate interface 

and not surface diffusion as is suggested to be the dominant diffusion 

mechanism for dewetting. This work can be added as an extension of the 

Sarobol et al GB sliding limited model of out-of-plane defect formation. In this 

case, atomic diffusion takes place, moving material from the free surface to the 

film-substrate interface resulting in an accretion of atoms at the base of a grain. 

This accretion will result in the movement of the grain out of the plane of the film 

thus forming a popped grain, hillock, or whisker. [52]  
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3.1.4.2 Texture and Preferred Orientation Effects - Relevant Literature 

Galinski et al showed that the minimization of surface energy and the 

minimization of strain density, which are normally autonomous, are the two 

governing factors in hillock evolution and kinetics in thin Pt films on YSZ. It was 

seen that at a critical transition temperature of 973 K, there is an evolution from 

strictly hillock formation to a combination of hillock formation and hole formation 

near hillock bases. Finite element simulations were combined with experimental 

results and indicated a minimization of film free energy occurs due to hillock 

formation and determined that the minimum free energy shape can be used to 

predict hillock aspect ratio. It was also determined that the locations where hole 

formation occurred, at the bases of hillocks, coincided with the location of local 

maximum stress. Galinski et al also noted that the deposition technique greatly 

impacted the chosen pathway of thermal instabilities in thin films. Identical 

thermal treatments of samples prepared by different methods can lead to 

different defect morphology formation when all other parameters are kept 

constant. This is of key importance because it clearly shows that the inherent 

properties of the film (grain boundary energy, localized texture and stress states) 

have a greatest impact on which instability mechanism will dominate and 

therefore the resulting defect morphology. [53]  

 Muller et al examined the dewetting of thin gold films on silicon. A 30nm 

gold film annealed at 600°C formed holes after 10 minutes of exposure. Analysis 

of the data shows a clear progression from holes to dewet structures containing 

finger-like projections. In this case, island formation is not seen. However, in a 
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second study by Muller et al a 30nm gold film was annealed at 900°C for 72 

hours and the system was able to reach the island formation regime. Through the 

use of XRD, the texture change of annealed gold films on silicon was studied. 

Muller et. al. determined that as dewetting occurred the texture of the film 

material increased as the dewetting progresses. The frequency of the (111) 

plane normal orientation increased with increasing annealing time and 

temperature. [54]  

 

3.1.4.3 Other Influencing Factors - Relevant Literature 

 Sauter et al examined the effect of film thickness on hillock formation 

through the study of Au thin films on Si substrates with silicon nitride barrier 

layers. Samples were exposed to three thermal cycles from room temperature to 

500°C and the structures and stress states were examined. Differences in film 

thickness will result in differences in film stress state and therefore different 

relaxation mechanism and defect morphologies. For this materials system, there 

was a critical film thickness of 300nm after which hillock formation occurred. 

Hillock diameter and density were measured and both were determined to 

increase with increasing film thickness. Gold film stress states were determined 

using wafer curvature measurements during cycling. As expected, the stress 

state of the film transitioned from tensile to compressive during heating and 

reverted back to tensile during cooling. For thicker films, the magnitude of the 

compressive biaxial stress was greater. [55] 
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 Syarbaini examined hillock formation and growth during annealing for 

500nm thick gold films on SiO2/Si and SixNy/Si substrates. Annealing took place 

at 500°C in a forming gas atmosphere. Based on rates of change in hillock 

surface area, results of the study suggested that the a combination of lattice and 

grain boundary diffusion were the dominate mechanisms behind hillock growth 

during annealing. However, the visible surface morphology changes (faceting 

and roughening) of hillocks also suggested that surface diffusion was active. This 

study focused on the differences in hillock morphology achieved with different 

annealing parameters. It was noted that the different stress states achieved 

through variations in annealing time and continuous versus interrupted annealing 

studies greatly influenced hillock structure. A variety of possible explanations for 

differences in hillock structure were proposed with the main focus being on the 

variation in stress states between continuous versus interrupted annealing 

studies and the influences these stress states will have on diffusion kinetics and 

defect formation. [56] Understanding the mechanism behind the differences in 

defect structures and densities seen for continuous versus interrupted annealing 

studies may help in understanding the progression of stress relaxation defect 

formation in the silver films studied in this dissertation. 

 

3.1.5 Silver Film Relaxation Literature Review  

The previously mentioned studies have provided insight into the 

processes and relaxation kinetics that take place during thin film relaxation and 

dewetting. However, it is also necessary to understand the state of research on 
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the materials system of interest. This section will focus on results from silver film 

studies.  

 

3.1.5.1 Silver Dewetting 

Sharma and Spitz examined the dewetting of 50nm silver films on quartz 

and found that dewetting occurs to a higher degree with more elevated 

temperature. As previously mentioned, dewetting occurs through atomic diffusion 

and diffusion is faster at higher temperatures. Therefore, dewetting will occur 

faster at higher temperatures with all other variables being equal. However, there 

is minimal literature that quantifies the effect of temperature on expected rates 

from diffusion. Sharma and Spitz studied 500nm silver films on quartz annealed 

at 375°C for 20 hours, and 470°C for 76 minutes. In examining the resulting 

microstructures it is apparent that even with the shorter annealing time the 

sample annealed at 470°C contains more exposed substrate than the sample 

annealed at 375°C. A more comprehensive study could provide insight into the 

dominant diffusion mechanisms behind the onset and progression of Ag thin film 

dewetting. [57] 

 

3.1.5.2 Silver Thickness Effects 

Krishna et al. examined the influence of film thickness on dewetting of 

silver thin films on silicon exposed to irradiation via 10 laser pulses. The 

exposure to the same number of laser pulses was assumed to simulate the effect 

of identical annealing conditions for each sample. The 2 nm sample 
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microstructure contained small silver islands, the 4.5, 7.4, ad 9.5 nm films 

resulted in varying degrees of dewetting all containing finger-like projections and 

the 11.5 and 20 nm microstructures only exhibited the onset of hole formation. 

This study shows the effect that thickness has on the dewetting structure, 

formation, and progression. As thickness is increased but annealing time is held 

constant, the microstructure is not provided with enough energy density (per film 

volume) to promote the same level of stress relaxation and therefore thicker films 

exhibit less change in microstructure for the same annealing parameters. [58] 

 Simrick et al studied the thermal stability of 100 – 820 nm thick silver films 

on YSZ. Annealing temperatures ranged from 250-550°C. As previously defined 

in the literature, dewetting progressed via hole formation and hole opening to 

eventually form isolated islands of film material. The hole size and exposed 

substrate area were tracked over a variety of temperature and thickness 

combinations. The resulting data was used to produce a structure map that can 

predict the predominant structure based on the known time and temperature for a 

specific anneal of the system. Simrick et al also used their experimental hole 

radius data and Brandon and Bradshaw’s surface diffusion model for dewetting 

to back-calculate the effective diffusion coefficient for surface diffusion during 

dewetting of silver thin films on YSZ. Diffusion coefficient values ranged between 

10-9 – 10-5 cm2/s. [59] 
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3.1.5.3 Silver Hillock Formation 

Thurmer et al studied the dewetting behavior of 1nm silver films on silicon 

annealed at 350°C. After 4 hours of annealing the 1nm films dewet to form 

islands. However, along with the traditionally seen progression of hole formation, 

continuous dewetting resulting in a finger-like projections, and island formation, 

the films also exhibited the formation of larger hillock-like features. [60] Similarly, 

Sharma and Spitz saw hillock formation on 500nm silver thin films on quartz 

annealed at 375 C for 20 and 120 hours. [57]  

 

3.1.5.4 Silver Texture and Orientation Effects 

 Similar to the results of Galinski et al on Pt thin films where the minimum 

energy shape influenced the hillock shape, Thurmer et. al. reported hillocks of 

silver that appeared to exhibit preferential growth of certain facets (or orientations) 

during dewetting. The influence of this orientation effect will result in faceted 

island formation. This preferential growth may also influence the kinetics, as 

growth will likely not be limited by diffusion but instead by the availability of 

diffusing atoms to attach to a desired surface or interface. [60]  

 

3.1.6 Implications for Silver on Silicon and Copper  

All of the factors discussed in this introduction will play a role in the 

relaxation behavior of the silver films examined in this research. This section will 

discuss the implications of the key factors that may influence the stress 

relaxation defect formation and progression for silver films on silicon and copper.  
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While there isn’t a vast amount of literature on silver thin film stress 

relaxation behavior, the work that is available suggests that both hillocks and 

solid state dewetting can be formed during relaxation. As previously mentioned 

stress relieved by the formation of hillocks will reduce the driving force for 

dewetting to occur and will therefore influence defect morphology progression.  

It is also important to note that in 2002 Baletto et al reported that silver 

atom attachment behavior on copper can be influenced by the copper surface 

orientation. Specifically, adatoms of silver on copper (111) facets diffuse quicker 

than on (100) facets. [61] This difference in adatom diffusion will influence the 

structure that the film takes during deposition in terms of stress state, local 

microstructure, and local texture of the film. All of these factors will influence the 

stress relaxation defect formation and progression. Due to the anisotropic 

adatom attachment behavior defined by Baletto et al and orientation relationships 

between silver and copper the grain structure of the copper core particles (single 

crystal, polycrystal, textured, etc.) will influence the grain structure of the silver 

shell and thus affect the relaxation defect formation mechanism. Kim et. al. 

examined the interface between the copper seed and silver shell using high 

resolution transmission electron microscopy (HRTEM) and determined there was 

an epitaxial relationship between the copper core and silver shell that appeared 

to be dependent on shell thickness. Thick shells (>15nm) appeared rough and 

displayed a Ag(220)//Cu(220): Ag[-111]//Cu[-111] relationship while thinner 

(~5nm), faceted shells had a Ag(111)//Cu(220) relationship. [11] Figures 21 – 24 

are schematics of what these relationships mean in terms of atomic positions.  
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 For the thick shell relationship of Ag(220)//Cu(220): Ag[-111]//Cu[-111], 

the silver and copper 220 planes are parallel to each other. It is important to 

remember that the (220) plane is referenced because (110) planes do not diffract 

in FCC. The second half of the Ag(220)//Cu(220): Ag[-111]//Cu[-111] relationship 

states that the [Ī11] within the (220) planes of both silver and copper are also 

parallel to each other. A schematic representation of this relationship can be 

seen in Figure 21 and a schematic of the each location in a reference crystal can 

be seen in Figure 22.  

 

 

Figure 21. A schematic representation of the  
Ag(220)//Cu(220): Ag[-111]//Cu[-111] epitaxial relationship in terms of crystal 
structure showing an example of how the silver film may lay atop the copper 

substrate. 
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Figure 22. A schematic representation showing the (220) plane and <-111> 
direction location in an FCC crystal. 

 
 

The second relationship, Ag(111)//Cu(220), describes that the silver (111) 

plane lies parallel the copper (220) (or 110) plane and states that there is no 

directly correlating relationship between any directions in the substrate and film. 

A schematic of this relationship and the associated planes within a reference 

crystal can be seen in Figure 23 and Figure 24.  
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Figure 23. A schematic representation of the different planes and three possible 
orientation for the silver film. 

 

 

 

Figure 24. A schematic representation showing the (220) and (111) planes in an 
FCC crystal. 
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3.2 Experimental  

3.2.1 Experimental Overview 

The goal of this research was quantification of the kinetics and non-

uniformity of dewetting through examination of the progression of microstructural 

changes during solid-state annealing of polycrystalline thin silver films. This 

chapter will focus on three key studies of 50nm silver films on silicon: the effects 

of film non-uniformity on dewetting kinetics during continuous annealing, local 

microstructure evolution during interrupted annealing, and the effect of capping 

layers on local dewetting kinetics and microstructure evolution. From these 

studies the dominant dewetting processes can be analyzed by comparing the 

average behavior with the quantitative local behavior of individual regions, 

including hole growth and coarsening of individual grains.  

In the first study, the degree of non-uniformity in dewetting behavior is 

quantified through measurements of the average exposed substrate area fraction 

and hole densities of an annealed silver film. Possible causes of non-uniform 

relaxation behavior are discussed and the experimental results are compared to 

proposed relationships with differences in film thickness or annealing 

temperature. The surface diffusion coefficient for each identified region is also 

calculated and compared to literature values and expected trends. 

In the second study, the effect of capping layers on local dewetting 

kinetics and microstructure evolution is investigated. Three locations with a 

carbon-based, organic capping layer induced by SEM imaging are tracked. SEM 

and AFM are used to track changes in surface structure and characteristics after 
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anneals of 1, 9, 18, and 36 hours. The average behaviors as well as the local 

changes of each tracked location are quantified with measurements of changes 

in hillock area, hole area, and roughness. The surface diffusion coefficient 

associated with each anneal is then calculated. These results are compared to 

those from the previously defined non-uniformity study as well as literature 

values.  

In the third study, global and local microstructure evolution during a series 

of interrupted annealing experiments is investigated. Six locations are tracked on 

the surface of a 50nm electron beam evaporated thin silver film on a (100) silicon 

substrate. Atomic force microscopy is used to track changes in surface structure 

and characteristics after anneals of 1, 9, 18, and 36 hours. The average 

behaviors as well as the local changes of each tracked location are quantified 

with measurements of changes in hillock area, hole area, and roughness.  

 

3.2.2 Experimental Procedure  

3.2.2.1 Substrate and Film Preparation 

 Single crystal silicon substrates were purchased from MTI Corporation, 

diced into 10mmX10mm squares (with standard wafer thickness), cleaned with 

piranha solution to remove residual organic material and subsequently cleaned 

with acetone, methanol, and ethanol. The native oxide layer was not removed.  

For the first study, 99.99% purity silver was deposited onto (111) silicon at 

a rate of 1 nm per second via thermal evaporation physical vapor deposition 

(TEPVD) using a tungsten basket heater at Purdue University (Lafayette, IN, 
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USA). Substrates were not heated or rotated during deposition. Similarly, 

instrument geometry only allowed for a 2-inch separation between the source 

and sample. Because of this, there were directional deposition effects influencing 

the uniformity of the film thickness and grain structure. Under SEM investigation, 

some regions of the sample surface exhibited what appeared to be solidified 

splatter patterns, suggesting that the Ag source material was boiling. The 

geometry of the thermal evaporation deposition chamber greatly affected the 

quality of film deposited. However, regions that appeared uniform were studied in 

order to determine the effects of non-uniformity on dewetting kinetics.  

For the second study, 99.999% pure silver was deposited onto (100) 

silicon via electron beam physical vapor deposition (EBPVD) at The Technion – 

Israel Institute of Technology (Haifa, Israel) by Dr. Wayne Kaplan and Hadar 

(Bratt) Nahor. The as-deposited sample surfaces produced by EBPVD appeared 

to be more uniform than those from TEPVD.  The 50nm film thickness, as 

determined by the in-situ quartz crystal microbalance, was confirmed via multiple 

Focused Ion Beam (FIB) cross-sections across the surface of the sample. As 

seen in Figure 25, the resolution of the microscope was limited at the 50nm scale 

but measurements show an approximate 60nm thickness, which is within 

reasonable error of the measurements taken. The image contains five different 

regions. The top section of the film is the free surface of the silver film, the large 

bright region below is ion-beam platinum that was used to protect the film surface 

from beam damage during cutting, the thin dark region below the ion-beam 

platinum is electron-beam platinum, the brighter region below the electron beam 
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platinum is the silver thin film, and the large dark region at the bottom of the 

image is the silicon substrate. The tilt corrected measurement of the film 

thickness is, 63.5nm, as labeled on the image.  

 

 

Figure 25. FIB cross-section of a Ag thin film on silicon deposited through 
electron beam evaporation and expected to be 50nm showing the approximate 

measured thickness of 60nm. 
 

3.2.2.2 Annealing 

 Samples were annealed in a tube furnace at 200°C in a forming gas 

(95%N, 5%H) atmosphere at 100 standard cubic centimeters per minute (sccm). 

Thermal stabilization of the furnace was established 2 hours prior to sample 

insertion. Samples were placed face up into ceramic crucibles and loaded into 
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the cold end of the furnace. The end cap was replaced and the tube furnace was 

purged with forming gas for 20 minutes prior to inserting the sample into the hot 

zone using a metal insertion rod. When annealing cycle was completed, the 

crucible was retracted into the cold end using the metal insertion rod and the 

sample/crucible pair was allowed to cool in the tube for 30 minutes under flowing 

forming gas prior to opening the furnace and removing the sample. Samples for 

the film uniformity study were annealed for 2 hours in order to investigate the 

early stage progression of hole formation during dewetting. For the 

microstructural evolution and capping layer effect studies, interrupted annealing 

experiments, a sample was annealed for 1, 1, 9, 18, and 36 hours in order to 

capture the onset and progression of relaxation behavior.  

 

3.2.2.3 Microstructural Characterization 

 In order to evaluate the microstructural evolution of the stress relaxation 

and dewetting structures produced, several regions of the sample surface were 

monitored over time after continuous and interrupted annealing studies.  

 Two microscopy techniques were employed in order to analyze the 

microstructures accompanying silver thin film dewetting and stress relaxation. 

Following the same areas of the sample(s) using an FEI XL-40 Scanning 

Electron Microscope (SEM) and a Veeco Dimension 5000 Atomic Force 

Microscope (AFM), microstructural changes were monitored. All AFM scans were 

taken with Vistaprobes contact mode long cantilever tips with a spring constant of 

0.2 N/m, and a resonant frequency of 12 kHz. Scans were taken in contact mode 
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using scan rates at or below 0.8 Hertz (Hz) and collecting at least 640 samples 

per line.  In the second study, a 200μm square grid array of Vickers hardness 

indents were used as fiduciary marks to aid in repeatedly locating and measuring 

the same regions. Impressions were made with a 25kg load and indents clearly 

depressed not only the film material but the silicon substrate as well. It should be 

noted that the indents did not appear to influence the formation or progression of 

relaxation structures during annealing experiments beyond the indent buildup at 

edges. Therefore all measurements were taken at least 1.5 μm away from 

indents.  Details of the number of areas analyzed are presented below in the 

results section. 

Two microstructure analysis software tools, Nanoscope v140r3sr3 and 

Image J 1.48v Analysis, were used to quantify changes in sample roughness, 

grain size, exposed substrate area, hillock area, film thickness and defect density.  

 

3.2.2.4 Capping Layer 

 During SEM analysis of the films, a carbon-based, organic capping layer 

was deposited on to the silver thin film. The presence of the capping layer was 

validated through a combination X-ray Photoelectron Spectroscopy (XPS) and 

post-annealing SEM analysis. XPS is a microscopy technique used to measure 

the elemental composition of the first 8-10 nm of a sample surface. 

XPS results indicated the presence of Silver (30%), Carbon (33%), 

Oxygen (12%), and Silicon (25%). Based on the assumption that our films are 
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truly uniformly thick, and otherwise defect free, it can be assumed that we have a 

silicone contaminate (poly dimethylsiloxane, PDMS).  

 The presence and effect of the capping layer can be clearly seen in both 

the AFM and SEM after the sample has been annealed and the microstructures 

have begun to progress. AFM/SEM images showing the effect of the capping 

layer on the microstructure can be seen in Figures 26 and 27.   
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Figure 26. AFM scan of a region of silver film that was SEM’d prior to annealing 
showing the impact of the capping layer on the surface morphology. 
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Figure 27. SEM micrograph of a region of silver film that was SEM’d prior to 
annealing (bottom ½ of the image) showing the impact of the capping layer on 
the surface morphology relative to non-capped regions (top ½ of the image). 

 

 The effect of the capping layer on the microstructure, its evolution and 

diffusion kinetics during dewetting of thin silver films is quantified within the scope 

of this dissertation. The results of dewetting with a capping layer are also 

compared to free surface dewetting without a capping layer. 
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3.3 Results and Discussion  

3.3.1 Study 1: Film Non-Uniformity Effects on Dewetting  

 Microstructural characteristics of 50nm thick silver films thermally 

evaporated on (111) silicon were examined after being continuously annealed at 

200°C in a forming gas atmosphere for 2 hours.  

After annealing, grain growth, hole formation, dewetting, coarsening, 

faceting, and localized crystal growth out of the film plane were present to 

different degrees across the film surface. This broad variation in relaxation is 

clearly portrayed in the non-uniformity within and microstructural differences 

between the SEM images in Figure 28. These micrographs were taken at the 

same scale on the surface of the same sample that experienced the same 

annealing profile. From this image, it is apparent that the dewetting behavior is 

non-uniform and there are regions that exhibit drastically different defect 

densities, sizes, etc.  
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Figure 28. SEM micrograph of a 50nm thick silver film thermally evaporated on 
(111) silicon annealed at 200°C in a forming gas atmosphere for 2 hours showing 

the non-uniformity of dewetting behavior across the sample surface. 
 

 Upon closer investigation of the structures seen by SEM, there are 5 

distinct dewetting regions and microstructures present within the overall film. 

Figure 29 shows a representative microstructure from each of these 5 defect 

regions. These five distinct regions re categorized as (1) a low density of small, 

isolated pinholes, (2) a higher frequency of larger holes of approximately the 

same size as the average grain size, (3) a solid state finger-like dewetting with 

multiple grains disappearing to form irregular holes, (4) rougher finger-like 

dewetting combined with hillock formation, or (5) more extensive finger-like 

dewetting with extensive hillock formation, few remaining small grains and with 

similar edge shapes of the irregular holes and the interconnected grains.   
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Figure 29. SEM micrographs showing the range of behavior as defined by five 
distinct regions showing (1) a low density of small, isolated pinholes, (2) a higher 

frequency of larger holes, (3) a solid state finger-like dewetting with multiple 
grains disappearing to form irregular holes, (4) rougher finger-like dewetting 
combined with hillock formation, and (5) extensive finger-like dewetting and 

hillock formation, with remaining small grains and some isolated island formation. 
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 In order to quantify the extent of this variation, the hole density, (or 

number of separate regions where the substrate is exposed when the irregular 

holes connect), and average fraction of exposed substrate area were calculated. 

Measurements were acquired from all images taken within each region and 

averaged over the total area imaged for each region type. The results for 

average hole density and exposed substrate fraction can be seen in Figure 30. 

The extent of exposed substrate area ranges from zero to 30% and the average 

hole density ranges from 0.08 to 0.66 holes/μm2. The plateau in hole density is 

due to holes impinging on each other creating fewer, larger holes in the 

microstructure. Holes in region 5 were so interconnected that it became difficult 

to accurately measure hole densities, therefore region 5 was not considered for 

the hole density evaluation.  

The dewetting literature indicates that, for a film of constant thickness and 

annealing time, hole behavior across the sample surface should be relatively 

uniform. However, this film behaves more like a sample with variable thickness or 

annealing times. With uniform behavior, holes should progress as pin holes at 

triple junctions, followed by opening of the pinholes, formation of side branches 

(finger-like projections), and eventually a 2D interconnected network of exposed 

substrate.  
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Figure 30. Average exposed substrate area fraction and hole density for the five 

distinct dewetting behavior regions. 
 

Since these separate regions formed in a single sample after annealing, 

we hypothesized that the non-uniform behavior occurring within the 5 distinct 

defect regions for this experiment is associated with non-uniformities in the film 
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structure created during deposition. Specifically, an inconsistent film thickness 

would result in regions that exhibit different amounts of exposed substrate and 

different stages of dewetting. Brandon and Bradshaw predicted film thickness 

and annealing time dependences on hole growth rates. The relationships as 

defined by Brandon and Bradshaw (Eqns. 11 and 12) show that void growth rate 

is proportional to 2/5 the power of time and -3/5 the power of film thickness for a 

single annealing temperature. [47] As seen in Figure 31, by comparing the 

apparent increase in exposed substrate area over different regions to the 

Brandon and Bradshaw models for thickness and annealing time dependence we 

can see that the exposed area spread matched both trends relatively well. It 

should be noted that the scale of the x-axis for either of these direct comparisons 

with time or thickness is unknown and therefore the relationships were simply 

scaled to provide data points that approximate the behaviors within the different 

defect regions. 
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Figure 31. Average exposed substrate area in each defect region fitted with 
Brandon and Bradshaw’s predicted dependencies on film thickness and 
annealing time showing that the experimental results fit closely with both. 

 

Recall that this broad range of behavior that is non-uniform across the 

surface of the sample was unexpected. Typically, dewetting is described as a 

global phenomenon that behaves uniformly across a film subjected to consistent 

annealing parameters. However, the above comparison suggests one of three 

things, (1) the diffusion coefficient is constant and the distinct defect regions seen 

within this experiment varied in thickness (decreasing between Regions 1-5), (2) 

the diffusion coefficient is not uniform across the sample surface, or (3) the 

observed microstructure evolution is not controlled by surface diffusion. As 

previously mentioned, the nature of the deposition process used to produce this 
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film may have produced non-uniform films and this comparison suggests that the 

deposition process did in fact produce a range of film thicknesses across the 

sample surface resulting in different dewetting behavior under uniform annealing 

conditions. However, under initial investigation of the as deposited films, no 

differences in the microstructure were visible across the surface of the film. This 

suggests that the variable thickness across the film surface is relatively minimal. 

A quantitative assessment of the expected film thickness based on the dewet 

areas associated with each region was calculated in order to determine the 

plausibility of thickness variation causing the broad range of behaviors in this 

sample.  

Using the relationship Brandon and Bradshaw developed between hole 

radius and time as shown in Equation 18 

 

    Equation 18 

 

where r is the hole radius, h=50nm, T=473.15 K, γ=1.2x10-5 Jcm-2 [62], ω = 

1.7x10-23 cm3 (from FCC lattice parameter), and ν=1.5x1015cm-2 [63]. The effect 

of film thickness or changing diffusion coefficients on the silver surface diffusion 

coefficient can be back calculated using the SEM image data. Assuming a 

uniform diffusion coefficient (correlating to a 50nm film thickness) for each of the 

5 distinct defect regions, the film thickness variation needed to produce the 

structures seen in the SEM images can be calculated from the average hole radii.  
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The calculated thicknesses for each Region, 1-5, were used to better 

understand which region(s) correlate to the desired 50nm thickness. The 

correlating film thickness values and changes are detailed in Table 11. Assuming 

that Region 1 represented a region with 50nm thickness, the film coverage 

ranges from 1.7nm to 50nm. At 1.7nm the film would not be likely to completely 

cover the sample surface. Due to the previously described investigation of the as 

deposited film surface, we know this is not the case and therefore is scenario not 

representative. Similarly, while the thermal evaporation process used is expected 

to be slightly non-uniform due to the experimental set-up, thickness variations 

ranging from 200nm to 1μm are physically unreasonable, especially when 

considering that under initial investigation the sample surface did not exhibit any 

visible variations in starting microstructure.   

 

Table 11. Calculated film thicknesses assuming the diffusion coefficients 
calculated and detailed in Table 11 for Regions 1-5 

 

  Thickness (nm) 
Region 1 50.00 208.23 387.15 689.40 1489.99 
Region 2 12.01 50.00 92.96 165.54 357.78 
Region 3 6.46 26.89 50.00 89.04 192.43 
Region 4 3.63 15.10 28.08 50.00 108.06 
Region 5 1.68 6.99 12.99 23.13 50.00 

 

The second possibility is that the diffusion coefficient is not uniform across 

the sample. Table 12 contains the range of calculated diffusion coefficients 

calculated when assuming each region is 50nm in film thickness, these values  

range from 6.3 x 10-9 to 1 x 10-6 cm2/s. This range in diffusion coefficient data 
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was not expected, as the diffusion coefficient is a constant in the Brandon and 

Bradshaw dewetting model. Historically, this diffusion limited kinetic model has 

been assumed to be representative of the dewetting kinetics for thin silver films. 

However, if the system fit the proposed Brandon and Bradshaw model, the 

calculated diffusion coefficient would remain constant across the sample surface. 

The calculated range in effective diffusion coefficient data indicates that for a 

uniform film thickness and annealing parameters, the diffusion behavior would 

have to vary 3 orders of magnitude across the sample surface in order to 

produce the range of structures seen throughout Regions 1-5. While mild 

changes in diffusion coefficient are likely across a sample surface, as the local 

structure and texture will influence atomic diffusion, a 3 order of magnitude range 

suggests that other factors are influencing the diffusion kinetics.   

 

Table 12. Calculated diffusion coefficients assuming a 50nm thick film for each of 
the representative microstructures from Regions 1-5 

 

 

 

There are limited models of hole and hillock growth kinetics and behavior 

in the literature and a broad range of reported values for surface diffusion 

coefficients in silver ranging from 10-9 – 10-5 m2/s at or near the temperature 

range of interest. It should be noted that there is limited literature available for 
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surface self-diffusion coefficients of Ag, however, the values calculated from 

fitting our experimental data to Brandon and Bradshaw’s proposed model, do fall 

within or near the large, 4 order of magnitude range, found within the literature for 

temperatures on the order of 200-250°C. 

The results of this assessment make it clear that the non-uniformity in 

dewetting behavior for this experiment is not directly related to inconsistencies in 

film thickness. It should be noted that while the diffusion coefficient values 

calculated from this experiment falls within the known value range. This does not 

validate that surface diffusion is the key mechanism behind hole and hillock 

growth kinetics. Other factors are likely influencing the diffusion during relaxation. 

In fact, the broad range of diffusion coefficients calculated for the same 

experimental parameters suggests that Brandon and Bradshaw’s surface 

diffusion limited based model does not address all of the influencing factors on 

dewetting kinetics. Specifically, the presence of interface-limited kinetics has 

been evident though the experiments within the scope of this thesis. The 

influence of interface-limited kinetics could also explain the non-uniform behavior 

present in this and subsequent experiments. Interface-limited kinetics don’t 

proceed in the same uniform way that diffusion-limited kinetics would progress. 

Instead of system progression being limited by the speed that material can arrive 

at a sink, the system progression is limited by the availability of attachment sites 

at the sources or the sinks (at the free surfaces). This factor is likely influencing 

both the hole and hillock growth in the system of interest. The effects of this on 

calculations throughout literature and in determining kinetics for the system of 
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interest will be discussed in more detail in the subsequent sections within this 

chapter of the dissertation.  

 

3.3.1.1 Study 2: Capping Layer Effects on Dewetting 

 In order to investigate local changes in microstructure, holes that 

developed within regions with a capping layer were tracked between each anneal. 

The specific regions followed over time were selected from SEM images after all 

annealing was complete.  

The starting microstructure after film deposition appeared uniform in 

surface structure containing no visible grain boundary grooves or holes. An SEM 

micrograph of the starting film structure can be seen in Figure 32. There are 

some large grains on the order of 1μm surrounded by regions where the grain 

size is indeterminable. There is a visible surface roughness across the film on the 

order of 10nm (quantified via AFM).  
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Figure 32. SEM micrograph showing a representative as-deposited 
microstructure for a 50nm Ag film. 

 

After annealing, the microstructure exhibited grain boundary grooving, 

grain growth, and hole formation. As the interrupted annealing study progresses 

and the sample is annealed for longer times the details of these features (size 

and shape) change. Initial investigation the microstructural evolution was 

evaluated via SEM imaging. 
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3.3.1.1.1 Microstructural Investigation - SEM 

In order to quantify the growth of holes during the series of anneals, the 

holes within each of these grain regions are investigated more closely. Visual 

inspection of the SEM microstructures also revealed the existence of 3 hole 

types: holes present between individual grains (10-50nm in diameter), holes on 

the order of the hillock grain size (250-300nm in diameter) that may or may not 

grow during subsequent anneals, and holes that formed after the 18-hour anneal 

from regions that previously contained visible grains. For the purposes of this 

study, 15 holes on the order of hillock size and 10 holes formed after the 18-hour 

anneal were selected for investigation. All holes were selected based on visibility 

within the 5 annealed microstructures. A representative location showing the 

microstructural progression between the first 1-hour anneal and the 36-hour 

anneal can be seen in Figure 33. From left to right, the image highlights an 

example of a hole formed after the 18 hour anneal, a hole present after 1 hour 

that did not grow with subsequent anneals and a hole present after 1 hour that 

grew with subsequent annealing.  
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Figure 33. SEM micrographs showing changes in three types of holes formed 
during annealing. Left to right: a hole formed after the 18 hour anneal, a hole 

present after 1 hour that did not grow with subsequent anneals and a hole 
present after 1 hour that grew with subsequent annealing. 



99 
 

 

In order to better understand the changes in the microstructure, beyond 

just the formation and growth of holes, magnified regions of a representative 

microstructure after 1, 9, and 18 hour anneals can be seen in Figure 34. In this 

region, it appears that the larger holes present after the 1-hour anneal exhibit 

little to no visible change during annealing. However, there are regions where 

large hoes form after the 18-hour anneal. These regions appear to contain very 

fine grains that may or may not have holes between them that penetrate through 

the thickness of the film. Along with this, there appears to be little to no visible 

grain growth after any of the annealing experiments. This assessment is very 

localized and region specific but as seen in Figure 34 the microstructures of 

interest are complicated and contain a wide variety of grain shapes, grain sizes, 

hole shapes, hole sizes, and other microstructural features such as faceting, 

twinning, grain boundary grooving, and what appears to be single-grain localized 

height increases. However, the details of these changes are difficult to track 

using SEM imaging because the resolution of the details, especially hole and 

boundary details, is dependent on the imaging parameters and contrast. Another 

factor of key here is that some grains appear to be growing out of plane based on 

the contrast (brightness increase). However, this is not a quantifiable 

measurement of any height change. Because of the dependence of SEM 

imaging on contrast resolution and the inability to quantify some of the visible 

changes via SEM, AFM analysis was pursued as a complementary analysis 

technique.  
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Figure 34. SEM micrographs showing the a wide variety of grain shapes, grain 
sizes, hole shapes, hole sizes, and other microstructural features such as 

faceting, twinning, grain boundary grooving, and what appears to be single-grain 
localized height increases that occur and change over the annealing study. 
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3.3.1.1.2 SEM Capping Layer Hole Tracking 

In order to quantify the growth of holes that occurred during annealing in 

the capped regions the ImageJ Particle Analysis tool was used to measure the 

area of exposed substrate for each hole. The change in hole area was tracked 

after each anneal in order to determine size change and rate of change for hole 

growth. An example of the progression of a single hole can be seen in Figure 35. 

It should be noted that these measurements are based on the assumption that 

the contrast difference visible within the SEM microstructures are representative 

of the film depth. This assumes that the darkest image locations have either 

reached the substrate or are deep grain boundary grooves. In order to determine 

the area of a single hole after each anneal, SEM images were cropped, the 

threshold tool was used to eliminate pixels above the threshold (assumed to 

represent the substrate or grain boundary groove), and the particle analysis tool 

was used to trace and measure the area of the holes. It is important to note that 

the imaging parameters for each SEM micrograph will influence the details of the 

stigmation, brightness and contrast for these regions and interest. These factors 

can influence both the depth assessment and shape of features. Therefore, there 

is some human error associated with determining the threshold level for each 

image. This influence of these factors can be seen in the boundaries of the of the 

holes within both the thresholded image and the hole traces.  
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Figure 35. An example of the SEM micrographs, black/white thresholded images, 
and associated hole traces used to track the area change of holes after each 

annealing experiment.  
 

Three regions that were subject to capping layer effects were tracked with 

both AFM and SEM between annealing experiments. Using the progression of 

SEM images over the series of annealing experiments. As previously described, 

individual holes were tracked in order to determine changes in exposed substrate 

over time. The behavior of these individual holes is summarized in Figure 36. 

While only 2 distinct behaviors are visible if holes are tracked from 1-hour to 36-

hour anneals, visual inspection of the SEM microstructures reveals the existence 

of a third hole type: holes that formed between the 9-hour and 18-hour anneals 

from regions that previously contained visible grains. Therefore, there are three 

distinct hole types: holes that remain approximately the same size after 

subsequent anneals, holes that increase in area after the 18 hour anneal, and 
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holes that appear after the 18 hour anneal from regions previously containing 

grains. These different hole types can be clearly seen in the plots of individual 

hole area in Figure 36. 

 

Figure 36. Plot of the hole area change after each annealing experiment for 
holes present after the first anneal and holes that formed after the 18-hour 

anneal showing three distinct behaviors (1) no hole area change, (2) hole area 
increase after the 18-hour anneal, and (3) hole formation after the 18 hour anneal.  

 

As previously mentioned and clearly seen within the hole area tracking 

data, there are some holes that form after the 18-hour anneal (29 total hours of 

annealing) from regions that did not exhibit visible hole formation after prior 

anneals. An example of this hole type can be seen in Figure 37.  This image set 

shows a late forming hole microstructure overlaid over the pre-existing 

microstructure. This pairing and overlay of microstructures after the 1-hour and 
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36-hour anneals shows a representative structure change for one of the late-

forming holes described. 

 

Figure 37. SEM micrographs after the 1-hour and 36-hour anneal for a hole that 
formed late in the annealing progression and the overlay of hole areas showing 

the grains and film material that were removed to form the hole. 
  

3.3.1.1.3 Capped Region Hole Growth Analysis 

Using the same image thresholding technique used to track hole area 

change for individual holes, the overall changes in hole area and hole density for 
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each of the capped regions were assessed from SEM images of the second 1-

hour anneal, 9-hour anneal, 18-hour anneal and 36-hour anneal. The data for 

each location after each anneal can be seen in Figure 38. The hole density for 

Location 1 and Location 2 decrease after every anneal, with the greatest 

decrease for both locations occurring after the 36-hour anneal. This decrease in 

hole density makes physical sense because we expect small holes to grow and 

eventually coalesce to form fewer, larger, holes as annealing progresses.   

 

Figure 38. Plot of hole density after each anneal for Locations 1-3 (capping layer 
regions) showing the decrease in hole density as annealing time increases. 

 

 The hole density changes for capping layer regions were also averaged in 

order to provide a more global assessment of the behavior. The average hole 

densities, as determined by the local densities from Locations 1-3 can be seen in 

Figure 39.  
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Figure 39. Plot of the average hole density after each anneal for Locations 1-3 
(capping layer regions) showing the hole density decreasing with increasing 

annealing time.  
 

Along with the hole density, changes in exposed substrate (or hole) area 

were also quantified. The hole area for each location is detailed in Figure 40. The 

hole area fraction within these regions is expected to increase with increasing 

annealing time. However, the data shows that all locations exhibit a large 

decrease after the 9 hour anneal and two of the studied locations also show an 

area decrease after the 36-hour anneal. While these decreases are not expected, 

they are representative of the images taken. Possible sources of error in the 

assessment technique are described at the end of this section.  
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Figure 40. Plot of hole area fraction after each anneal for Locations 1-3 (capping 
layer regions) showing the overall increase in hole area fraction as annealing 

time increases 
 

 Along with the individual location data, the average hole area fractions 

from these three locations were determined in order to assess the overall 

behavior at a more global level of assessment. As with the individual data, the 

sample appears to experience a large decrease in the hole area fraction after the 

9-hour anneal. But the overall trend of the hole area fraction with annealing time 

is increasing.  
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Figure 41. Plot of the average hole area fraction after each anneal for Locations 
1-3 (capping layer regions) showing the hole area fraction increasing with 

increasing annealing time. 
 

As previously mentioned, the hole growth rate is not expected to be linear, 

instead, Brandon and Bradshaw predicted a hole growth rate that correlates to 

2/5 the power of time. However, this value was also calculated based on 

experiments that did not undergo any diffusion suppression or capping layer 

influences.  

As with the individual hole tracking assessment, it is important to note that 

the imaging parameters for each SEM micrograph will influence the details of the 

stigmation, brightness and contrast for these regions of interest. These factors 

can influence both the depth assessment and shape of features, as well as with 

the operator determining the threshold level for each image. This influence of 
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these factors can be seen in the boundaries of the holes within both the 

thresholded image and the hole traces. Similarly, the goal of each SEM 

assessment was to image the same area. However, there was some slight 

variation in the regions assessed. The influence of the imaging parameters could 

have greatly impacted the assessment. Figure 42 contains the images taken for 

each location after each anneal in order to more clearly depict the possible 

sources of error.  
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Figure 42. SEM micrographs of each location (1-3) after each anneal showing 
the changes in microstructure and the variation in sample area used for each 

assessment. 
 

3.3.1.1.4 Capped Layer Roughness Analysis 

Capped regions were also investigated using AFM in order to better 

quantify the microstructural evolution during the interrupted annealing 
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experiments. Example images from the progression of annealing studies can be 

seen in Figure 43. These images are displayed with the same height scale, 

ranging from -150nm to 150nm, this allows for a comparison of the relative height 

change with increased annealing time. It is apparent that the film area 

surrounding the capped region is developing much taller also larger diameter 

features than within the capped regions. It is also apparent that in the upper right 

hand corner of the capped regions the behavior is different than in the remainder 

of the capped regions. AFM scans of each location were taken at a variety of size 

scales after each anneal. Of key importance here is that all of the AFM scans 

that were used to track the border between the capped and un-capped regions 

were taken in the upper right-hand corner of each location. Therefore, it is 

apparent that the AFM scanning influenced the behavior in these regions. This 

phenomenon is likely due to the tip is removing some of the capping layer during 

scanning and creating diffusion channels for material transport.   
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Figure 43. AFM micrographs of each location (1-3) after each anneal showing 
the changes in structure and feature height. 
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 Using the AFM data, the roughness changes in the regions subject to the 

capping layer effects were investigated. The local averages and overall average 

roughness changes with annealing time are detailed in Figures 44 and 45. The 

roughness measurements are only for the regions that exhibit the fully capped 

behavior (the left ½ of the capped regions). The roughness plots show an 

increase in roughness with annealing time. This behavior is expected as 

relaxation progresses and the microstructures develop holes and hillocks to relax 

stresses. Figure 44 shows the local average roughness for each location after 

each anneal. All locations show an overall increase in roughness. However, 

location 3 shows a decrease in roughness after the 18-hour (29 total hours) 

anneal. This is likely due to the locations selected to average over. Including or 

excluding a single defect would greatly impact the roughness assessment in 

these regions due to the small scale.  
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Figure 44. Plot of roughness within the capped regions after each anneal for 
Locations 1-3 showing the overall increase in roughness with annealing time  

 

 Similarly, the overall averages of the three locations after each anneal 

show a general increase in roughness. This data will later be compared with the 

change in roughness for locations that did not experience the diffusion 

suppression effects of the capping layer. The roughness is still expected to 

increase, however, the rate at which it increases will likely change (increase) 

because of the ability of the system to exploit a wider variety of diffusion paths 

that includes surface diffusion.  
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Figure 45. Plot of the average roughness within the capped regions after each 
anneal for Locations 1-3 showing the roughness increase with increasing 

annealing time.   
 

 For the same three locations, the roughness outside of the capping layer 

regions was also assessed in order to compare the roughness changes with and 

without the capping layer. Figure 46 depicts the local changes in roughness for 

Locations 1-3 outside of the capped region. A comparison of the scales between 

Figure 45 and Figure 47 shows that the average roughness started 

approximately 2X greater and by the final anneal the roughness outside of the 

capped regions were approximately 3.5X greater.   
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Figure 46. Plot of roughness outside of the capped regions after each anneal for 
Locations 1-3 showing the overall increase in roughness with annealing time  

 

The overall averages of the three locations after each anneal still show the 

predicted increase in roughness. However, the rate of roughness change has 

also increased as predicted. By comparing the difference in the final roughness 

values for the capped (~10nm) and non-capped (~37nm) regions, an increase in 

the final roughness for the non-capped regions for the same annealing time is 

clear.  
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Figure 47. Plot of the average roughness outside of the capping layer area after 
each anneal for Locations 1-3 showing the roughness increase with increasing 

annealing time.  
 

 Combining both assessments onto a single plot allows for a direct 

comparison of the effect of the capping layer on film roughness changes with 

annealing. It is clear that the capping layer has impacted the roughness even 

after the 1-hour anneal study. Figure 48 shows both the capped and non-capped 

data for individual locations and averages showing the distinct trends.  
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Figure 48. Comparison of the individual and average roughness changes for the 
capped and uncapped regions contained with Locations 1-3 quantifying the effect 

of the capping layer on roughness changes during annealing. 
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3.3.1.1.5 Capped Layer Surface Diffusion Calculations 

Using Brandon and Bradshaw’s surface diffusion model as described in 

the previous section, the effect of the capping layer on an effective “surface 

diffusion coefficient” for silver can be quantified using the SEM image data. The 

average hole radii after each anneal were determined from the total hole area 

and number of holes. Using the average hole radii for the four investigated 

annealing times, the effective diffusion coefficient, based on the data from each 

experiment, was determined. The measured average hole radius and calculated 

diffusion coefficients for each annealing time are detailed in Table 13.  

 

Table 13. Table showing the range in diffusion coefficients calculated from the 
average holed radii measured from the SEM micrographs after each anneal 

 

 

The effective diffusion coefficient decreases 6.7X from the calculated 

value for 2 total hours of annealing (1.6 x 10-9 cm2/s) to the value for the 65 total 

hours of annealing (2.4 x 10-10 cm2/s). These results are for regions where 

surface diffusion has been suppressed by the presence of a capping layer and 

they still exhibit a factor of 6.7 difference.  

Recall that in the non-uniformity study, assuming a 50nm silver film 

thickness annealed for 2 hours at 200°C, the diffusion coefficient ranged from of 
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6.3 x 10-9 cm2/s to 1 x 10-6 cm2/s. For the capping layer study, a 50nm film 

annealed for 2 hours at 200°C results in a diffusion coefficient of 1.6 x 10-9 cm2/s. 

This comparison shows 4X decrease in the predicted diffusion coefficient for 

regions with the capping layer relative to the smallest diffusion coefficient 

calculated from the non-uniform film study.  These suppressed values will also be 

compared to those from other tracked locations in the bearing analysis section of 

this chapter.  

Clearly, the surface diffusion behavior of silver exhibits drastically non-

uniform behavior for even slight changes in both physical and experimental 

parameters. This result is validated in the literature. As previously mentioned, the 

surface diffusion coefficient data reported in literature ranges over 20 orders of 

magnitude for similar temperature regimes. As with the non-uniformity study, the 

broad range of diffusion coefficients calculated for this capping layer experiment 

with the consistent experimental parameters suggests that Brandon and 

Bradshaw’s surface diffusion limited based model does not address all of the 

influencing factors on dewetting kinetics. 

 

3.3.2 Study 3: Local Microstructure Evolution During Interrupted Annealing 

3.3.2.1 Newly Developed Bearing Analysis Technique - Procedure 

 Using a combination of the bearing analysis function in the NanoScope 

software and the particle analysis tool in Image J, the hillock density, hole density, 

total hillock area, and total hole area for regions examined by AFM were 

determined. Bearing analysis is a method for determining the distribution of 
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features as a function surface height over a sample surface of a specific area. 

The bearing analysis tool was used first to impose a height threshold on the 

collected AFM data selecting (or eliminating) data above or below the threshold 

height. Typical scans for the microstructures examined contain data points 

ranging in height from exposed silicon substrate surface to the peaks of hillocks 

formed during annealing.  

The bearing area percent versus bearing depth plots, as seen in the 

examples in Figures 49-51, were used to determine suitable height thresholds 

between the bulk of the film and holes or hillocks formed during annealing. The 

majority of the scan areas exhibited an S-shaped curve with two visible slope 

changes. Using the changes in slope on the bearing area versus bearing depth 

plot (highlighted in yellow in Figure 49) as a starting point, the depth threshold 

was adjusted for each data set until all defect regions appeared (by eye) to 

contain more than one pixel. This threshold was based on visual assessment of 

each image and was set at each slope change in order to produce black and 

white images that characterize the exposed substrate area and hillock area for 

each location.  
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Figure 49. Bearing area versus depth plot showing the user-controlled adjustable 
threshold and the approximate locations of the cutoffs for both hillocks and holes 
 

 

Figure 50. Bearing area versus depth plot showing an assessment of hole area. 
The area measured for the assessment and the area of pixels that the 

Nanoscope software is shown (the hole area does NOT coincide with the area 
above the chosen threshold). 
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Figure 51. Bearing area versus depth plot showing an assessment of hillock 
area. The area measured for the assessment and the area of pixels that the 
Nanoscope software is shown (the hillock area DOES coincide with the area 

above the chosen threshold). 
 

In order to quantify the variability of microstructure evolution at various 

length scales, a representative and reproducible measurement of the defect area 

is needed, not simply the area above or below the threshold. In order to 

determine the defect areas at various length scales, the defect images resulting 

from the bearing analysis were processed using ImageJ in order to determine the 

area associated with exposed substrate and hillocks for each data set. Area was 

determined through image processing. Images were converted to black and 

white, segmented into 9 equal areas and analyzed using the Particle Analysis 

function in ImageJ, as above. The Particle Analysis function in Image J measures 

the number and area of distinct regions in an image based on specific user-

defined threshold criteria which in our case were set in the bearing analysis and 

reports the number and area within each region. The number of defects present 

in each segment and the area associated with each defect was then logged and 
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totaled. Figure 52 is an example of an AFM image after the bearing analysis for 

hillock area has been completed. The AFM image was cropped in order to 

eliminate input from the fiduciary marks in the data analysis. Any regions of data 

with surface heights above the threshold have been replaced with blue pixels. 

For hillock area measurements these blue pixels are the regions of interest. 

Figure 53 contains the subsequent 9-segment images used for number and area 

analysis.  
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Figure 52. An AFM image after the bearing analysis for hillock area has been 
completed showing regions above the threshold in blue. The blue pixel area is 

the hillock area.  
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Figure 53. An example of a segmented image after the bearing analysis for 
hillock area has been completed (Figure 46) showing the hillock area in black 

and the nine image segments used for analysis.  
 

Similarly, Figure 54 is an example of the same AFM image after the 

bearing analysis for exposed substrate area has been completed. The AFM 

image was once again cropped in order to eliminate data from the fiduciary 

marks. All regions of data with a surface height above the threshold have been 

replaced with blue pixels. In this figure the regions of interest for determining 

exposed substrate area are those regions that are not blue, or that are below the 
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threshold. Figure 55 contains the subsequent 9-segment images used for area 

analysis.  

 

Figure 54. An AFM image after the bearing analysis for hole area has been 
completed showing regions above the threshold in blue. The non-blue pixel area 

is the hole area. 
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Figure 55. An example of a segmented image after the bearing analysis for hole 
area has been completed (Figure 48) showing the hole area in black and the nine 

image segments used for analysis. 
 

 The bearing analysis technique described is highly dependent on user 

judgment for determining the appropriate threshold level. As stated, the levels 

were chosen based on visual interpretation of the S-shaped area vs. depth curve 

and the location that appeared to contain the fewest single-pixel defects (by eye). 

However, the error associated with choosing a threshold +/- 1 can be quantified 

and therefore the error associated with the thresholding decision can be 

quantified.  
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3.3.2.2 Newly Developed Bearing Analysis Technique - Error Assessment 

Using the representative region shown in Figure 56 an error assessment 

was performed. Figure 56 shows the AFM image from the scan, the depth 

histogram showing the distribution of height data from the scan, and the bearing 

area plot showing the percentage of area above each depth. As described above, 

changes in slope associated with the S-shaped bearing area plot were used to 

determine the threshold values for the bearing analysis based on a visual 

assessment of the location where single pixel holes or hillocks were minimized.  
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Figure 56. An example AFM scan, the corresponding depth histogram showing 
the distribution of height data from the scan, and the bearing area plot showing 

the percentage of area above each depth. 
 

In order to determine the error associated with the threshold value choice, 

an assessment of the changes in total defect area and area percent for a one nm 
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change in threshold height were assessed using a representative image. As 

previously described the majority of the scan areas exhibited an S-shaped curve 

with two locations of slope change. These slope changes are representative of 

the transition between the body of the film and the hillocks (above the body) and 

holes (below the body). However, in a few cases, there appeared to be another 

change in slope on the far left-hand side of the bearing area plot. Because of this 

feature being present in several of the scan areas a location containing this third 

slope change is also included in this comparison.  

Figure 57 depicts the hillock and hole bearing analysis images of the 

threshold level selected for representative location as well as the images for +/- 1 

nm. It is difficult to detect physical changes in the images by eye and therefore 

one region of change from each +/- pairing is highlighted. The changes in area 

(blue pixels) are seen in Table 14.  

 

Table 14. The area above the selected threshold height showing the changes in 
area that correspond to 1nm changes in depth  
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Figure 57. A series of AFM scans showing the original scan area, as well as the 
hillock and hole bearing analysis images for the error analysis threshold heights. 

The white boxes correlate to regions of change between the baseline images 
(35nm and -25nm) and the +/- 1nm images showing the small visible changes in 

the structure 
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As previously mentioned, some scans contained a third change in slope. 

Because the hole data are associated with the left-hand side of the plot it may be 

hypothesized that this slope change is associated with the presence of a different 

type or morphology of hole area. However, this is not the case. Examining the 

AFM scans in Figure 57 and comparing visible hole regions within the non-

thresholded image and the 85nm thresholded image, shows that at this slope 

change there are still areas of the substrate that are exposed and not present in 

the data. Therefore, this third slope is not representative of hole formation. This 

slope change correlates to a large area of film being present at the same height. 

In this case, this height is below the height needed to show the representative 

area of exposes substrate. AFM scans have an arbitrary zero location assigned 

based on the scale the user provides and therefore the depth threshold needed 

to show the exposed regions may not correlate directly to the location of the 

substrate.  

By comparing the differences in the hillock and hole area between the +/- 

1nm data it was determined that the error associated with the area 

measurements for both holes and hillocks is on the order of +/- 5 μm2 and a 

0.005 area fraction.  As determined from the 100 μm2 scan areas used for 

assessment. This result gives an associated error of 5%.  

For a few locations, data samples were also acquired from much smaller 

scans, on the order of 10 μm2. For these smaller regions the associated error is 

50% and therefore the resulting data are not useful for characterizing 

microstructure evolution. The impact of this error can be seen when comparing 
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data for the same time and temperature combination gathered from the same 

location at different scales. For location five after the 36-hour anneal, the hole 

density and hole area fraction were calculated from two area scans, a 100 μm2 

area and a 10 μm2 area, as detailed in Table 15. (Details about how these values 

were calculated are in the bearing analysis section of this dissertation.)  

 

Table 15.  The hole area fraction and hole density measured from 100 μm2 and 
10 μm2 scan areas showing the impact of scan area on data collection 

 

 

 

 The effect of this scale effect is even more clearly seen when comparing 

the plots and associated equations for each data set. Figure 58 shows the hole 

area fraction data for a single tracked location after each anneal, the top plot 

shows the results when all locations were scanned at approximately the same 

scale (100 μm2); the bottom plot show the results when the 36 hour data were 

taken from 10 μm2 scans. The plots show that smaller measured area fraction for 

the 10 μm2 scan has impacted the calculated hole growth rate (as determined by 

a linear regression) by decreasing it from 0.0025 to 0.0016 hole μm2 / scan area 

μm2 / hour. This 40% increase in the growth rate change would greatly impact 

the overall averages determined for the data set.  
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Figure 58. The measured hole area fraction data for Location 5 after each 
anneal showing the effect that scan area has on the measured hole growth rate. 
The top plot shows the results when all locations were scanned at approximately 

the same scale (100 μm2); the bottom plot show the results when the 36 hour 
data was taken from 10 μm2 scans.  

 

Similarly, the scan area effects also impact the density data. Figure 59 

shows the hole density data for a single tracked location after each anneal, the 

top plot shows the results when all locations were scanned at approximately the 
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same scale of 100 μm2, whereas the bottom plot shows the results when the 36 

hour data was taken from a 10 μm2 area. The plots show a larger measured hole 

density for the 10 μm2 scan. This increase in apparent hole density is a result of 

the higher resolution of the AFM for smaller scan areas.  

 

 

Figure 59. The measured hole density for Location 5 after each anneal showing 
the effect that scan area has on the data. The top plot shows the results when all 
locations were scanned at approximately the same scale (100 μm2); the bottom 

plot show the results when the 36 hour data was taken from 10 μm2 scans.  
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Because of the error associated with the bearing analysis technique and 

the effects of the scan area on providing representative data, it was determined 

that total scan areas of 30 X 30 μm or greater were necessary for a 

representative assessment of the film structure. This will be key for future studies, 

as this error had not been quantified prior to this investigation.  

 

3.3.2.3 Bearing Analysis of Ag/Si 

An interrupted annealing study was used to track individual locations 

through a series of anneals ranging from 1-36 hours. The structure of the film, 

changes in microstructure, and details about the defect formation between each 

anneal provide insights into how silver films dewet and relax. The experiment 

was conducted on a 50nm silver film on (100) Si substrate that was deposited 

through electron beam evaporation. The first and second anneals were 

conducted for 1 hour each, the third anneal for 9 hours, the fourth for 18 hours, 

and the final anneal was for 36 hours. All annealing took place at 200°C in a 

forming gas atmosphere. The surface morphology evolutions of six areas, 

referred to as Locations 4-9, were tracked after the 2nd 1-hour anneal, the 9-hour 

anneal, the 18-hour anneal, and the 36-hour anneal using AFM. The locations 

were chosen from within the fiduciary grid array as previously defined. These 

locations were centrally located on the sample surface in order minimize any 

edge effects.  

The bearing analysis technique previously described was used to 

determine the average hillock and hole densities, area fractions, and the variation 
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of each of these characteristics at each tracked location after the 1, 9, 18, and 

36-hour anneals (2, 11, 29, and 65 total hours of annealing time). Recall that 

scans from each location, at each time, were segmented into 9 equal areas. The 

measurements of density and area for each of the 9 image segments were also 

averaged in order to determine the density and area for not only each segment 

but also each location. These values were also averaged over the sample 

surface in order to determine global behavior and the standard deviations were 

reported in order to quantify the non-uniformity at each location. It is important to 

note that while great care was taken to scan the same location for each 

assessment in some cases scan areas changed slightly and therefore there is 

some small error associated with variations in the scan areas reported.  

 

3.3.2.3.1 Hillock Assessment 

Figure 60 shows the average hillock density for each location. Within this 

data set, the changes in hillock densities for individual locations after each 

anneal are detailed. Average hillock density values for individual locations ranged 

from approximately 0.6 #/μm2 to 1.9 #/μm2. Dividing the initial scan area into 9 

equal areas for assessment allows for an evaluation of the uniformity of defect 

formation across the sample surface. As described in the first study on the 

uniformity of hole formation in the continuously annealed silver film, relaxation 

behavior is a localized phenomenon therefore variation in the extent of hillock 

and hole formation across the sample surface is expected. The variation in 

hillock density between the 1-hour and 36-hour anneals, as determined by the 
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standard deviation, decreases from 0.3 to 0.06 #/μm2 showing that the hillock 

density becomes more uniform across the sample surface as annealing and 

relaxation progresses. This result suggests that the initial onset of hillock 

formation is non-uniform, however, as hillock growth and coarsening progresses 

the number of hillocks present across the sample surface not only decreases but 

the hillock density also becomes more uniform. Physically, this increase in 

uniformity suggests that initial hillock growth occurs to different extents across 

the surface of the sample. With more hillocks forming in some regions and fewer 

forming in others, However, as annealing time increases the average number of 

hillocks present within a given area become more uniform suggesting that 

eventually, the hillock behavior becomes more globally uniform across the 

sample surface.  
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Figure 60. Plot of hillock density after each anneal for Locations 4-9 showing the 
decrease in hillock density as annealing time increases 

 

A closer investigation of the hillock data shows that 4 of the 6 tracked 

locations (4,7,8,&9) show an increase in the hillock density after the 9-hour 

anneal while 2 of the tracked locations (5&6) show a decrease. It is expected that 

initially the film will form many defect sites to relax stresses and as annealing 

progresses these defect sites will grow and ultimately coarsen. Therefore, it is 

possible that at the local scale, the film within regions 5 & 6 had already formed 

the maximum number of hillocks needed within the section of the film to reduce 

the film stresses associated with deposition, mismatch, or thermal expansion as 

described in the introduction to this chapter. Another possible explanation is that 

the areas tracked were slightly different between anneals and therefore regions 
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with slightly different behavior are being compared at the same location. As 

previously mentioned, great care was taken to scan the same location for each 

assessment however, in some cases scan areas changed slightly and therefore 

there is some error associated with variations in the scan areas reported. After 

the 18-hour anneal, all locations show a decrease in hillock density. This 

decrease is likely due to the continued growth of some hillocks at the expense of 

smaller hillocks (coarsening). If certain, more energetically favorable, hillocks 

grow while other hillocks that initially formed do not, then the bearing analysis 

may no longer account for all of those original hillocks in the hillock assessment. 

If the selected bearing height for the 18 hour anneal was above the selected 

bearing height for the 9 hour anneal then the hillocks present in the 9-hour scan 

that did not grow vertically will not be accounted for in the 18 hour assessment 

This is due to the height difference between the growing hillocks and the bulk of 

the film material being so much greater than the original difference between the 

bulk of the film material and earlier forming hillocks. Similarly, as hillock growth 

occurs, if two hillocks are growing next to each other and the boundary between 

them is not deep enough to fall below the bearing height selected as the 

threshold, the pair of hillocks will appear as a single hillock in the bearing 

analysis assessment. Lastly, all locations except Location 4 exhibit another 

decrease in hillock density after the 36-hour anneal. Location 4 shows an 

increase in hillock density after the 36-hour anneal. 

By averaging the nine local averages from each location presented in 

Figure 60 above, the global change in hillock density over the sample surface 
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was calculated for each annealing time. Figure 61 depicts the change in average 

hillock density with annealing time for the series of interrupted annealing 

experiments.  The average hillock density decreases overall. However, the 

density increases after the 9-hour anneal. This is due to the four locations that 

exhibited the increase in hillock density locally. As previously mentioned, this 

may be due to residual stresses within the film structure that have yet to be 

relaxed and therefore lead to the formation of hillocks. A decrease in hillock 

density is expected, as hillocks formed after early anneals coarsen with 

increased exposure to elevated temperatures, thus decreasing the number of 

hillocks.  

 

Figure 61. Plot of the average hillock density after each anneal for Locations 4-9 
showing the density decreasing with increasing annealing time. 
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 Using the same process of averaging for each location from the 9 image 

segments to determine local changes, followed by averaging over all locations to 

determine global values, the change in hillock area fraction with annealing time 

was assessed. The hillock area fraction was tracked by comparing the total 

projected area associated with hillocks (above the bearing analysis threshold) to 

the total imaged area at each location. The average hillock area fraction for each 

location, as determined by the hillock areas measured within the 9 image 

segments from each AFM scan, can be seen in Figure 62. Hillock area fraction 

increases with increased annealing time, showing that hillocks are either forming 

or growing across the sample surface as annealing and relaxation progresses.  It 

should also be noted that the variation in data, as determined by the standard 

deviation between the results from the 9 image segments, increases with 

annealing time with a change in standard deviation from 0.01 to 0.05 showing 

that hillock area fraction becomes less uniform across the sample surface as 

annealing and relaxation progresses. The hillock area fraction increases for each 

anneal at each location, except for the 36-hour anneal at location 5. At location 5 

there is a slight decrease in the hillock area fraction after the 36-hour anneal. 

However, this decrease of 3% is within the 5-8% error associated with the 

selection of a different bearing depth (+/- 1nm) and therefore is not statistically 

significant.  
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Figure 62. Plot of hillock area fraction after each anneal for Locations 4-9 
showing the increase in hillock area fraction as annealing time increases 

 

By averaging the local means at each location presented in Figure 56 

above, the change in hillock area fraction over the sample surface was calculated. 

Figure 63 depicts the change in average hillock area fraction over annealing time 

for the series of interrupted annealing experiments.  The average hillock area 

fraction increases with annealing time for all anneals. This overall increase in 

hillock area fraction combined with the decrease in hillock density seen in Figure 

57 indicates that as relaxation progresses, hillocks are either coarsening as 

annealing progresses, or a smaller fraction of hillocks continues to grow after 

each anneal while the remainder do not.  
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Figure 63. Plot of the average hillock area fraction after each anneal for 
Locations 4-9 showing the hillock area fraction increasing with increasing 

annealing time. 
 

 In order to better address changes in the distributions of defect sizes as a 

function of annealing time a histogram analysis of the frequency of defects in a 

range of area bins was assessed. In order to accurately compare non-normalized 

data (data that have not been scaled by the scan area) only locations with equal 

scan areas (or scan areas containing data within the known 5% error range) can 

be compared. The data from the 9, 18 and 36-hour anneals at locations eight and 

nine were chosen as representative samples for this assessment.  

At each of these locations, a direct comparison of the number and size of 

defects present is completed by compiling all of the defect data (the number of 

hillocks/holes and hillock/hole area data) for each location after each anneal. The 

bin size for the total data assessments was set by producing 20 equal sized bins 
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that ranges from the smallest and largest data points present between all 12 data 

sets addressed (3 anneals, 2 locations, 2 defect types). Equal binning between 

all data sets allows for a direct comparison. The goal of the histogram 

assessments, detailed in Figures 64 and 65, was to capture the distribution 

changes with annealing time for the smaller defects. It should be noted that the x-

axis on the histogram plots are data ranges. Therefore, the frequency data 

account for any hillocks or holes that are less than or equal to the value listed but 

greater than the value of the previous bin. The frequency values for the 36-hour 

anneal data are labeled at the top of each column in order to make the data in 

the larger area bins visible. Data columns with only one or two data points 

present are too small to see even with the logarithmic scale on the y-axis. 

Comparing the Ag hillock area distribution after annealing for 9, 18 and 36 hours 

at 200°C reveals a broadening trend in distribution with some hillocks growing 

faster than the average. These faster growing hillocks are the clusters of hillocks 

that have achieved areas greater than 2μm2. This type of non-uniform hillock 

growth is not expected for surface diffusion based models of hillock and hole 

growth. However, this local rapid hillock growth has been seen in silver dewetting 

literature and may represent the presence of other limiting factors. Specifically, 

the presence of interface limited growth kinetics would explain the increased 

growth of particular hillock relative to others. This plausible explanation of hillock 

and hole growth kinetics will be discussed in more detail throughout the 

remainder of this dissertation.  
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Figure 64. A histogram of the hillock frequency per hillock area bin for Location 8 
showing a direct comparison of the number and size of defects present after the 

9, 18, and 36-hour anneals and the changes in hillock area distribution. 
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Figure 65. A histogram of the hillock frequency per hillock area bin for Location 9 
showing a direct comparison of the number and size of defects present after the 

9, 18, and 36-hour anneals and the changes in hillock area distribution. 
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Using the histogram data as a starting point, the average total area per bin 

was calculated in order to quantify changes in the distribution of defect sizes. The 

defect area data were sorted and the average defect area associated with each 

bin was determined. This average defect area per bin was then multiplied by the 

frequency of defects within that bin in order to determine the average total area 

per bin. The average total area per bin was then plotted and used to determine 

which area range contained the most defect area for both locations after each 

annealing time. The average total hillock area per bin plots in Figures 66 and 67 

provide more detail into which area range contains the most defect area for both 

locations after each annealing time.  

For Location 8, the bin containing the most hillock area after the 9-hour 

anneal is the 0-0.15μm2 bin. This means that the majority of the hillock area after 

9-hours is comprised of small hillocks with areas within this small range. After the 

18-hour anneal, this peak has shifted slightly, with the maximum falling in the 

0.15-0.3 μm2 bin. However, the peak has also broadened and there are similar 

defect areas falling between 0.15-0.6 μm2. This change in maximum hillock area 

per bin and broadening in the peak clearly show that hillocks are growing. This is 

once again the case after the 36-hour anneal, with the maximum area occuring 

for hillocks with diameters ranging from 0.6-0.75 and an even broader distribution. 
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Figure 66. The average total hillock area per hillock area bin for Location 8 
showing a direct comparison after the 9, 18, and 36-hour anneals and the 

changes in hillock area and size distribution. 
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A similar trend is seen for Location 9 with the bin containing the most hillock 

area after the 9-hour anneal being the 0-0.15μm2 bin. After the 18-hour anneal, 

this peak has shifted slightly, with the maximum falling in the 0.45-0.6 μm2 bin. 

Similarly, this peak has also broadened and there are similar defect areas falling 

between 0.15-0.6 μm2. This is once again the case after the 36-hour anneal, with 

the maximum area occuring for hillocks with diameters ranging from 0.15-0.6 μm2 

and an even broader distribution with similar total areas in bins ranging from 0.15 

-1.35 μm2. This change in maximum hillock area per bin and continuus 

broadening in the peak depicted the hillock growth process taking place during 

subsequent anneals.  
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Figure 67. The average total hillock area per hillock area bin for Location 9 
showing a direct comparison after the 9, 18, and 36-hour anneals and the 

changes in hillock area and size distribution. 
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 In order to more closely address the bulk of the hillock data, which is 

heavily weighted in the smaller area bins, the hillock area data were cropped. 

The range of data present after a nine-hour anneal was used to define the 

cropped data maximum value therefore, these cropped plots only include hillocks 

with projected areas less than or equal to 0.75μm2. This data set will help to 

better capture the microstructural changes relating to the small hillocks present 

after each anneal. For both Location 8 and Location 9, a similar trend of 

distribution broadening is clear when comparing the 9 and 18-hour anneals. 

However, differences in distribution for the small holes present after the 18 and 

36-hour anneals is not as aparent. It is important to note that the smallest area 

bins still see a decrease in frequency after the 36 hour anneal but a distinct 

change in behavior is not visible. This is likely due to the major structural 

changes being the formation of those much larger hillocks that grew faster than 

the average hillock structures within the locations of interest.  
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Figure 68. A cropped histogram of the hillock frequency per hillock area bin for 
Location 8 showing a direct comparison of the number and size of defects 

present after the 9, 18, and 36-hour anneals and the changes in hillock area 
distribution for small hillocks. 
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Figure 69. A cropped histogram of the hillock frequency per hillock area bin for 
Location 9 showing a direct comparison of the number and size of defects 

present after the 9, 18, and 36-hour anneals and the changes in hillock area 
distribution for small hillocks. 
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Again, the average total hillock area per bin plots in Figures 70 and 71 

provide more detail into which area range contains the most defect area for both 

locations after each annealing time. For Location 8, the bin containing the most 

hillock area after the 9-hour anneal is the 0.05-0.75μm2 bin. This means that the 

majority of the hillock area after 9-hours is comprised of small hillocks with areas 

within this range. After the 18-hour anneal, this peak has shifted, with the 

maximum falling in the 0.275-0.3 μm2 bin. However, the area distribution has also 

broadened a great deal. This is once again the case after the 36-hour anneal, 

with the maximum area occuring for hillocks with diameters ranging from 0.625-

0.65 μm2 and an even broader distribution. 
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Figure 70. The cropped average total hillock area per hillock area bin for 
Location 8 showing a direct comparison after the 9, 18, and 36-hour anneals and 

the changes in hillock area and size distribution for small hillocks. 
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A similar trend is seen for Location 9 with the bin containing the most hillock area 

after the 9-hour anneal being the 0.05-0.75μm2 bin. After the 18-hour anneal, this 

peak has shifted a great deal, with the maximum falling in the 0.575-0.6 μm2 bin. 

However, after the 36-hour anneal, the maximum area occurs for hillocks with 

areas ranging from 0.525-0.55 μm2 and an even broader distribution. This 

change in maximum hillock area per bin and continuous broadening in the peak 

depicts the hillock growth process taking place during subsequent anneals. 
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Figure 71. The cropped average total hillock area per hillock area bin for 
Location 9 showing a direct comparison after the 9, 18, and 36-hour anneals and 

the changes in hillock area and size distribution for small hillocks. 
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3.3.2.3.2 Hole Assessment 

Along with tracking changes in hillock characteristics, the formation and 

progression of holes formed during annealing were tracked using the same 

techniques. Figure 72 shows the average hole density for each location, as 

determined by the hole densities within the nine area segments from each AFM 

scan. Average hole density values for individual locations ranged from 

approximately 0.38 #/μm2 to 1.2 #/μm2. The hole density is expected to initially 

increase during annealing. However, as relaxation progresses and holes 

continue to grow they will impinge, thus reducing the hole density. The variation 

in hole density between the 1-hour and 36-hour anneals, as determined by the 

standard deviation, increases from 0.2 to 1.4. This increase shows that the hole 

density becomes less uniform across the sample surface as annealing and 

relaxation progresses. A closer investigation of the hole data shows that 3 of the 

6 tracked locations (6,7,&8) show an increase in the hole density after both the 9-

hour and 18-hour anneals while the other 3 tracked locations (4,5,&9) show an 

initial increase after the 9-hour anneal followed by a decrease after the 18-hour 

anneal. It is expected that initially the film will form many defect sites to relax 

stresses and as annealing progresses these defect sites will grow. Therefore, it is 

possible that at the local scale, the film within regions 5 & 6 had already formed 

the maximum number of hole needed within the section of the film in to reduce 

the stresses associated with deposition, mismatch, or thermal expansion. 

Another possible explanation is that the areas tracked were slightly different 

between anneals and therefore regions with slightly different behavior are being 
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compared at the same location. As previously mentioned, there is some error 

associated with variations in the scan areas reported. After the 36-hour anneal, 

all locations show a decrease in hole density. This decrease is likely due to the 

continued growth and impingement of holes.  

 

 

Figure 72. Plot of hole density after each anneal for Locations 4-9 showing the 
initial increase and overall decrease in hole density with annealing time.  

 

The change in average overall hole density over the sample surface was 

calculated from the means at each location contained above. Figure 73 depicts 

the change in average hole density with annealing time for the series of 

interrupted annealing experiments. As expected, the hole density initially 

increases as they system creates holes at triple junctions in order to relax 

stresses and remove higher energy boundaries. As annealing progresses, the 
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holes continue to grow and impinge reducing the number of distinct regions of 

exposed substrate (or holes).  

 

Figure 73. Plot of the average hole density after each anneal for Locations 4-9. 
 

 As with the hillock assessment that covered both density and area fraction, 

the hole area fraction of each location was tracked by comparing the total area 

associated with holes, as determined by the bearing analysis, to the total imaged 

area at each location. The average hole area fraction for each location, as 

determined by the hillock areas measured within the nine image segments from 

each AFM scan, can be seen in Figure 74. Hole area fraction increases with 

increased annealing time, showing that holes are growing and becoming more 

prevalent across the sample surface as annealing and relaxation progresses.  It 
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should also be noted that the variation in data, as determined by the standard 

deviation, also increases from the 1-hour to 36-hour anneals from 0.01 to 0.04. 

This change in data variation shows that hole area fraction becomes less uniform 

across the sample surface as annealing and relaxation progresses. The hole 

area fraction increases for each anneal at each location, except after the 9-hour 

anneal at location 7. At location 7 there is a slight decrease in the hillock area 

fraction after the 9-hour anneal. This decrease of 10% is only slightly outside of 

the known 5-8% error associated with the selection of a different bearing depth 

(+/- 1nm) and therefore may be a physically representative decrease in hole area. 

However, this could also be due to the slight variations in the areas tracked and 

is likely not representative of the film behavior. 

 

Figure 74. Plot of hole area fraction after each anneal for Locations 4-9 showing 
the overall increase in hole area fraction with annealing time. 
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The change in average overall hole area fraction over the sample surface 

was calculated from the averages at each location. Figure 75 depicts the change 

in average hole area fraction over annealing time for the series of interrupted 

annealing experiments.  On average, the overall hole area fraction increases with 

increased annealing time. This increase in hole area fraction suggests that the 

holes are growing with increased annealing time.  

 

Figure 75. Plot of the average hole area fraction after each anneal for Locations 
4-9 showing the area fraction increasing with increasing annealing time. 

 

It should be noted that this rate of hole area fraction change is equivalent 

to the rate of change for hillock area fraction. The material diffusing away from 

the film to form holes is diffusing toward the diffusional sinks to form hillocks. 

Initially, it wasn’t clear if this area-projection based bearing analysis technique of 

hillock and hole growth would be representative of the overall change because of 
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the different conformations that volumes can take on when forming defects. 

However, the equivalent growth rates for both holes and hillocks in this analysis 

indicate that the data is representative.  

The plots of the previously defined histogram and total area calculations 

for hole growth can be seen in the subsequent images (Figures 76 - 83). 

Comparing the Ag hole area distribution after annealing for 9, 18 and 36 hours at 

200°C reveals a broadening trend in distribution with some holes growing faster 

than the average. These faster growing hole are the clusters of hole that have 

achieved areas greater than 1.5μm2. This type of hole growth is expected as 

annealing and relaxation progresses with increased annealing time.  

It is worth noting that Location 8 has a single hole with an area that between 

4.35-4.5 μm2. This hole is 10X larger than the largest hole present at this location 

after the 9-hout anneal. The formation of these larger defects is expected to 

continue to be present as annealing progresses. But of key importance here is 

that when comparing the local and global data presented for individual location 

hole area fractions and densities, the formation of this large hole did not influence 

the overall averages or global behavior of the film.  
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Figure 76. A histogram of the hole frequency per hole area bin for Location 8 
showing a direct comparison of the number and size of defects present after the 

9, 18, and 36-hour anneals and the changes in hole area distribution. 
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Figure 77. A histogram of the hole frequency per hole area bin for Location 9 
showing a direct comparison of the number and size of defects present after the 

9, 18, and 36-hour anneals and the changes in hole area distribution. 
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The average total hole area per bin plots in Figures 78 and 79 provide more 

detail into which area range contains the most hole area for both locations after 

each annealing time. These plots clearly depict the progression of hole area. For 

Location 8, the bin containing the most hole area after the 9-hour anneal is the 0-

0.15μm2 bin. This means that the majority of the hole area after 9-hours is 

comprised of small holes with areas within this small range. After the 18-hour 

anneal, this peak has shifted slightly, with the maximum falling in the 0.15-0.3 

μm2 bin. However, unlike the progression of hillocks that exhibited a laregly 

braodened distribution with several area bins surrounding the maximum 

containing similar total areas, the hole distribution maintains a distinct peak that 

has broadened relative to the 9-hour anneal but not to the extent seen in the 

hillock progression. After the 36-hour anneal, this peak has once again shifted 

slightly, with the maximum falling in the 0.3-0.45 μm2 bin. However, the peak has 

also braodened and there are similar defect areas falling between 0.45-0.6 μm2. 

This progression and continued broadening of the hole area distribution is 

characterisic of hole growth behavior.  
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Figure 78. The average total hole area per hole area bin for Location 8 showing 
a direct comparison after the 9, 18, and 36-hour anneals and the changes in hole 

area and size distribution. 
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A similar trend is seen for Location 9 with the bin containing the most hole area 

after the 9-hour anneal being the 0-0.15μm2 bin. After the 18-hour anneal, this 

peak has shifted slightly, with the maximum falling in the 0.3-045 μm2 bin. 

Similarly, this peak has also braodened and there are similar defect areas falling 

between 0.15-0.45 μm2. After the 36-hour anneal, the maximum area bin doesn’t 

change but the peak is once again broadened and there are similar total areas 

ranging from 0.3-0.6 μm2. This change in maximum hillock area per bin and 

continuus broadening in the peak depicted the hillock growth process taking 

place during subsequent anneals. 
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Figure 79. The average total hole area per hole area bin for Location 9 showing 
a direct comparison after the 9, 18, and 36-hour anneals and the changes in hole 

area and size distribution. 
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In order to more closely address the bulk of the hole data, which is heavily 

weighted in the smaller area bins, the hole area data was cropped to only include 

hole with areas less than or equal to 0.75μm2. This data set will help to capture 

the microstructural changes relating to the small holes present after each anneal. 

For both Location 8 and Location 9, a similar trend of hole area distribution 

broadening is clear when comparing the anneals. It is important to note that the 

smallest area bins still see a decrease in frequency after the 36 hour anneal but 

a distinct change in behavior is not visible. Unlike the hillock behavior that 

exhibited a drastic decrease in the frequency of the smallest bin of hillocks after 

the 18 hour anneal, the distribution change for hole area appears more gradual. 

However, the same overall trend is present, an increase in larger defects and 

decrease in smaller defects. The freqeuncy of holes with smaller areas can be 

seen in the histrograms of Figure 80 and Figure 81. anneals. 
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Figure 80. A cropped histogram of the hole frequency per hole area bin for 
Location 8 showing a direct comparison of the number and size of defects 
present after the 9, 18, and 36-hour anneals and the changes in hole area 

distribution for small holes. 
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Figure 81. A cropped histogram of the hole frequency per hole area bin for 
Location 9 showing a direct comparison of the number and size of defects 
present after the 9, 18, and 36-hour anneals and the changes in hole area 

distribution for small holes. 
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Once again, the average total hole area per bin plots in Figures 82 and 83 

provide more detail into which area range contains the most hole area for both 

locations after each annealing time. For Location 8, the bin containing the most 

hole area after the 9-hour anneal is the 0.05-0.75μm2 bin. The distribution also 

shows that the majority (if not all) of the hole areas after 9-hours is comprised of 

small holes with areas below 0.35 μm2. After the 18-hour anneal, this peak has 

shifted, with the maximum falling in the 0.175-0.2 μm2  bin. However, the area 

distribution has also braodened a great deal. This is once again the case after 

the 36-hour anneal, with the maximum area occuring for holes with diameters 

ranging from 0.3-0.325 μm2 and an even broader distribution.  
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Figure 82. The cropped average total hole area per hole area bin for Location 8 
showing a direct comparison after the 9, 18, and 36-hour anneals and the 

changes in hole area and size distribution for small holes. 
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A similar trend is seen for Location 9 with the bin containing the most hole 

area after the 9-hour anneal being the 0.05-0.075μm2 bin. After the 18-hour 

anneal, this peak has shifted a great deal, with the maximum falling in the 0.3-

0.325 μm2 bin and the distribution broadening. After the 36-hour anneal, the 

maximum area occurs for holes with areas ranging from 0.55-0.575 μm2 and an 

even broader distribution. This change in maximum hole area per bin and 

continuous broadening in the peak depicts the hole growth process taking place 

during subsequent anneals. occuring for holes with diameters ranging from 0.3-

0.325 μm2 and an even broader distribution.  
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Figure 83. The cropped average total hole area per hole area bin for Location 9 
showing a direct comparison after the 9, 18, and 36-hour anneals and the 

changes in hole area and size distribution for small holes. 
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3.3.2.3.3 Roughness 

 In order to better understand the global surface morphology changes the 

average roughness of each location was tracked using the Roughness analysis 

feature in Nanoscope at each location. Figure 84 shows the arithmetic average 

roughness for each location, as determined by the roughness measured within at 

least 3 AFM scans for each location and time combination.  

 

Figure 84. Plot of roughness changes after each anneal for Locations 1-3 
showing an overall increase in roughness with annealing time and a decrease 

after the 36-hour anneal. 
 

The data shows an overall trend of increased roughness with annealing 

time. Specifically, there is a slight increase in roughness after the 9-hour anneal, 

a drastic increase in roughness after the 18-hour anneal and a slight decrease in 

roughness after the 36-hour anneal. The decrease in roughness for every 
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location after the 36-hour anneal was not expected. However, it is possible that 

the microstructure has become more uniform in its height distribution as 

dewetting has progressed and hillocks growth occurs.  

The average roughness over the sample surface was calculated from the 

averages at each location. Figure 85 depicts the change in roughness over 

annealing time for the series of interrupted annealing experiments. The average 

roughness increased from the 1 to 18-hour anneals. However, after the 36-hour 

anneal the roughness decreased from 37 nm to 28 nm. Similar to the 

assessment done for the roughness data from the regions surrounding the 

capped regions (Locations 1 – 3), a logarithmic fit was used to determine the 

roughness change behavior. The trend line shows and R2 value of 0.6 and a 

roughness rate change of 6.1 ln(time).  

 

Figure 85. Plot of the average roughness after each anneal for Locations 4-9 
showing the roughness rate of change of 6.1 ln(time). 
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 Upon closer investigation, this data trend is similar to the data reported for 

the regions outside of the capped areas from Locations 1-3. A direct comparison 

of the two data sets can be seen in Figure 86.  

 

Figure 86. Comparison of the average roughness changes for the non-capped 
regions in Locations 1-9 (Recall: L1-L3 had data from both capped and non-

capped) showing relatively good agreement but indicating that the capping layer 
likely influenced location kinetics surrounding the capped regions. 

 

 While the logarithmic trend line appears to represent the behavior well, the 

dewetting growth predictions of Brandon and Bradshaw are power-law based 

relationships. Specifically, void growth rate is proportional to 2/5 (0.4) the power 

of time and -3/5 (-0.6) the power of film thickness. Therefore, the roughness data 

trends for capped and non-capped regions were also fitted with power trends. 

The non-capped regions exhibited roughness change behavior with trends 
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proportional to 0.3-0.44 the powder of annealing time. Capped regions exhibited 

suppressed behavior with roughness change trends on the order of 0.16 the 

power of annealing time.  

 

Figure 87. Comparison of the average roughness changes for the capped and 
non-capped regions in Locations 1-9 (Recall: L1-L3 had data from both capped 

and non-capped) quantifying the effect of the capped layer on roughness 
changes. 

 

3.3.2.4 Surface Diffusion Calculation 

 As previously described, Brandon and Bradshaw developed a kinetic 

relationship between the surface diffusion coefficient of silver and the annealing 

time. If we assume that dewetting is controlled by surface diffusion and driven by 
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capillarity for our system, the average surface diffusion coefficient for each 

annealing time can be calculated using Equation 16 using the average hole 

radius measured over all six tracked locations where h=50nm, T=473.15 K, 

γ=1.2x10-5 Jcm-2 [62], ω = 1.7x10-23 cm3 (from FCC lattice parameter), and 

ν=1.5x1015cm-2 [63]. The data can be seen in Table 16.   

 

Table 16. Table showing the range in diffusion coefficients calculated from the 
average holed radii measured from the AFM scans after each anneal 

 

 

The effective diffusion coefficient decreases 2.4X from the calculated 

value for 2 total hours of annealing (4.3 x 10-8 cm2/s) to the value for the 65 total 

hours of annealing (1.8 x 10-8 cm2/s). Performing a 95% confidence interval, it 

was determined that this array of data, while appearing narrow in range, is 

statistically significant. Results at both 39,600 seconds and 7,200 seconds are 

beyond the upper and lower bounds. As predicted, the effective diffusion 

coefficients calculated for non-capped regions are larger than those for the 

capped regions. Specifically, the non-capped regions effective diffusion 

coefficients are nearly a factor of two larger than those for regions with the 

capping layer. A comparison of the diffusion coefficients calculated for the 

capped and non-capped regions can be seen in Figure 88.  
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Figure 88. Comparison of the effective diffusion coefficients calculated for the 
capped and non-capped regions quantifying the effect of the capping layer. 

 

For a direct comparison to recent literature, it can be seen that our 

calculated silver surface diffusion coefficient values are in good agreement with 

the reported measurements from Simrick et al, when extrapolated to our 

experimental temperature. Simrick et al reported a 10-7 cm2/s surface diffusion 

coefficient for a 275°C anneal.  

 As another comparison, recall that in the non-uniformity study, assuming 

a 50nm silver film thickness annealed for 2 hours at 200°C, the diffusion 

coefficient ranged from of 6.3 x 10-9 cm2/s to 1 x 10-6 cm2/s. For the capping layer 

study, a 50nm film annealed for 2 hours at 200°C results in a diffusion coefficient 
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of 1.6 x 10-9 cm2/s. For the non-capped study, a 50nm film annealed for 2 hours 

at 200°C results in a diffusion coefficient of 4.27 x 10-8 cm2/s. This comparison 

shows 27X difference in the predicted diffusion coefficient for regions with and 

without the capping layer.  

As previously mentioned, the non-uniformity present in the first study is 

likely due to non-thickness related effects. Influences from the film and/or 

substrate condition, texture, local behavior, stress state, etc. can all greatly 

influence the formation and progression of dewetting.  

Recall that in the Brandon & Bradshaw dewetting model, the surface 

diffusion coefficient is a constant. As seen within the literature and our 

experimental results, silver surface diffusion exhibits non-uniform behavior for 

even slight changes in both physical and experimental parameters. Of key 

importance for all of the studies presented in this dissertation is that while the 

diffusion coefficient values calculated from these experiments fall within the 

broad data range in literature. This does not verify or indicate that surface 

diffusion is the limiting mechanism behind hole and hillock growth. As previously 

mentioned, the surface diffusion coefficient data reported in literature ranges over 

20 orders of magnitude for similar temperature regimes. The data reported for 

the scope of the experiments presented in this dissertation sees a change of 2 

orders of magnitude. For samples processed similarly and with identical 

annealing parameters. 
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This range in reported diffusion coefficients may be directly related to the 

use of models that assume the wrong kinetic limits. Other factors are likely 

influencing the diffusion during relaxation. Specifically, the presence of interface-

limited kinetics has been evident throughout the literature and the experiments 

within the scope of this thesis.  

The presence of interface-limited kinetics explains the non-uniform 

behavior present in the literature and these experiments. Interface-limited 

kinetics don’t follow the same kinetic models as diffusion-limited kinetics. Instead, 

of system progression being limited by the speed that material can arrive at a 

sink, the system progression is limited by the availability of attachment site at the 

sink (interface). This factor is likely influencing both the hole and hillock growth in 

the system of interest. The effects of this on comparisons, measurements, and 

calculations of diffusion coefficients throughout literature has resulted in the 

broad, 20 order of magnitude range of data for silver surface diffusion coefficients.  

 

3.3.2.5 Location Zero 

 When interface-limited kinetics plays a role in microstructural evolution, 

the growth of holes and hillocks will be non-uniform across time, which is the 

case for our results. This is non-uniformity is due to the limited ability of diffusing 

atoms to find an appropriate interface to attach to. Similarly, if interface-limited 

growth kinetics are present, growth will not depend on traditionally considered 

curvature based chemical potential differences but instead will depend on 

available attachment sites. One tracked location not previously discussed 
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provides even more evidence of the existence of interface-limited kinetics in the 

dewetting of thin silver films.  

 Location Zero was SEM’d to deposit a capping layer prior to the first 1-

hour anneal, SEM’d and AFM’d after the first anneal, and only AFM’d after the 

subsequent 1, 9, 18, and 36-hour anneals in order to monitor structure changes 

surrounding regions with a capping layer. After the first anneal, the AFM scans 

revealed the formation of large hillocks surrounding the capped region, as seen 

in Figure 89.  

 

Figure 89.  AFM scan of Location 0 showing the formation of large hillocks 
surrounding the capped region (box).  

 

 Using the bearing analysis tool, the height thresholds for the highest sets 

of data were captured after each scan, as seen in Figure 90. These images 

clearly show that with continued annealing, the hillocks that formed initially 
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(shown within the white circles) do not remain the highest hillocks within the 

structure. These initially formed hillocks do not grow vertically at the same rate as 

the remainder of the structure or they would maintain their status as the tallest 

features present in the microstructure. Instead, as dewetting progresses and the 

microstructure develops more hillocks and holes, other regions of the sample 

form taller hillocks after the 18 and 36-hour anneals.  

 

Figure 90.  AFM scans from Location 0 showing the highest regions above the 
bearing analysis threshold with blue pixels  
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 The results from Location 0 combined with the non-uniform diffusion over 

time, clearly show the presence of interface-limited kinetics in the dewetting of 

thin silver films. The kinetics of silver thin film dewetting are only sometimes 

limited by surface diffusion and therefore the traditional experiments for 

determining the diffusion coefficient of a system may not provide representative 

data for the silver thin film system. Therefore, a new approach to determining 

dewetting kinetics is needed in order to accurately describe the behaviors seen.  

 

3.3.2.6 Conclusions 

 For the thin film dewettting behavior from these experimental results to fit 

the Brandon & Bradshaw diffusion-limited growth model, the calculated diffusion 

coefficient at each time for a given temperature would be constant. Because the 

values reported here both with and without the addition of a capping layer are not 

constant, the results from this dissertation show the likely presence of interface-

limited kinetics during the dewetting of thin silver films. This hypothesis is further 

validated through the experiments at Location 0 that show if attachment sites for 

growth are blocked by the addition of a capping layer, dewetting progression is 

drastically retarded. Similarly, if surface diffusion was the controlling mechanism 

behind the formation and progression of the microstructural evolution there 

should be visible build up along the hole edge as predicted by Mullins, Brandon 

and Bradshaw, and validated in a variety of thin film dewetting studies on other 

material systems. However, this edge build-up during hole growth and film 

retraction is not seen in the experiments of silver thin films presented in this body 
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of work. This is another key indicator that other rate-limiting mechanisms are 

controlling the dewetting progression in silver thin films.  

 These variations in results from the historically assumed diffusion-limited 

kinetic models for thin film dewetting could directly explain the broad range of 

silver surface self-diffusion coefficients reported in literature. The results of these 

experiments show that the kinetics of silver thin film dewetting may only 

sometimes be limited by surface diffusion. Because of these results, there is a 

need to develop a more physically realistic model to identify the contributions of 

multiple mechanisms to dewetting. In particular, there are times that interface 

(attachment)-limited growth dominates the dewetting kinetics. Therefore, the 

traditional experimental methods for calculating surface diffusion coefficients may 

provide invalid data for the silver thin film system. In the future work section I will 

propose new experimental methods for determining growth kinetics that will 

provide more representative data about the diffusion behavior for thin silver films.  

 

3.3.2.7 Future Work 

As previously mentioned, in order to properly determine the controlling 

mechanism for diffusion kinetics of silver thin film dewetting, new sets of 

experiments are needed. There are a variety of techniques and experiments that 

can assist in minimizing system variables allowing for more accurate 

determination of kinetic behavior.  

First, the effects of imaging methods on the structural progression need to be 

quantified and minimized. In order to address the influence of imaging on system 
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behavior in-situ experiments are necessary. As mentioned, regions within the 

samples studied that were imaged with an electron beam using SEM exhibited 

different kinetic behavior. Specifically, regions imaged prior to and between 

anneals exhibited the presence of a carbon-based organic capping layer and the 

kinetic behavior within these regions was suppressed. These results were 

reproducible in multiple microscopes, on samples produced through both thermal 

evaporation and electron beam evaporation, and for different beam settings. 

Because of the beam effects, atomic force microscopy was used to track 

microstructural changes, in order to minimize the external influences on growth 

kinetics. Atomic force microscopy eliminated the presence of any capping layer. 

However, examination of the final film structure (after all annealing experiments 

were completed) revealed that regions that were tracked with the atomic force 

microscope still exhibited minor differences in structure when compared to 

regions that had never been imaged. Because both scanning electron and atomic 

force microscopy appeared to influence the structural progression of dewetting, 

in-situ experimentation is strongly recommended. Additionally, the use of ultra 

high vacuum imaging equipment will minimize the formation and influence of any 

organics on the film surface allowing for a better representation of the thin film 

growth kinetics. The combination of ultra high vacuum scanning electron 

microscopy and in situ imaging during annealing would allow for direct 

quantification of the onset and progression of dewetting in the silver thin film 

system.   
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Second, the use of controlled geometry structures during annealing will help 

quantify the influence of interface-limited kinetics on the dewetting progression. 

Specifically, tracking the structural progression of isolated regions with different 

orientations during in-situ heating will allow for quantification of the extent of 

interface-limited growth. This could be the tracking of lines, islands, or other 

isolated shapes with distinct orientation differences relative to each other and/or 

the substrate. This type of experiment will allow for determination of specific 

faces (orientations) that grow or shrink at inconstant rates due to interface-limited 

kinetics. Recall that under the traditionally assumed diffusion-limited kinetic 

models, growth of all faces should be constant and uniform. This experimental 

data will be crucial in better predicting the kinetic behavior of silver thin films and 

may allow for kinetic engineering (i.e. designing a film with a particular dominate 

orientation or texture in order to control the kinetic behavior of dewetting).    

Lastly, in order for the results of these experiments to be adapted to the Cu-

Ag core-shell interconnect system defined in Chapter 2; a study of silver thin film 

dewetting behavior on copper is necessary. As previously mentioned, there are 

well-known orientation relationships present between silver and copper. The 

effect of these orientation relationships on dewetting has not yet been quantified. 

However, in introductory experiments performed on 50nm silver thin films 

thermally evaporated on to large grain polycrystalline copper, it was seen that 

dewetting progressed differently on grains of different orientation. These 

preliminary results suggest that orientation relationships will greatly impact the 

dewetting kinetics of the Cu-Ag core-shell system. A comprehensive design of 
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experiments monitoring the dewetting structures and progression of silver thin 

films on a variety of copper orientations would allow for quantification of these 

effects. Similar to the controlled geometry experiments previously discussed, the 

results from orientation relationship experiments would allow for kinetic 

engineering of the Cu-Ag core-shell system. It is possible that the copper core 

could be manufactured with a specific surface orientation prior to silver 

deposition. This could allow for faster, more uniform, or controllable dewetting 

behaviors resulting in differences in the processing and behavior of the final 

interconnect. Factors such as interconnect formation time, formation temperature, 

mechanical strength, or electrical performance could be influenced if the 

structure and kinetics of dewetting could be better controlled.  

In summary, there are a variety of next-step experiments that would allow for 

better quantification of silver thin film dewetting structure and kinetics. 

Understanding the influential variables on dewetting kinetics would allow for 

kinetic engineering of metallic thin films in a variety of applications.  
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CHAPTER 4. ENVIRONMENTAL IMPACT ASSESSMENT 

4.1 Environmental Impact Introduction  

4.1.1 Life Cycle Assessment 

 According to the Environmental Protection Agency, a Life Cycle 

Assessment (LCA) is: “a technique to assess the environmental aspects and 

potential impacts associated with a product, process, or service, by: compiling an 

inventory of relevant energy and material inputs and environmental releases, 

evaluating the potential environmental impacts associated with identified inputs 

and releases, and interpreting the results to help you make a more informed 

decision.” [64] For a comprehensive overview of the Life Cycle Assessment 

technique please reference the LCA101 document, titled “Life Cycle Assessment: 

Principles and Practice”. [65] The importance of life cycle assessment is the 

ability to determine the advantages or disadvantages associated with a proposed 

technological or materials transition prior to its implementation. In this case, we 

can determine the human health and environmental impacts associated with the 

transition of traditionally used lead-free solder to our proposed lead-free 

solderless interconnect technology. 
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4.1.2 Solder Interconnects and Their Alternatives: A Comparison  

The decision to replace Pb-Sn eutectic solder with SAC-based solders 

was made based on the presence of Pb in the former, and the absence of Pb 

in the latter.  The terms of the Restriction of Hazardous Substances (RoHS) 

initiative were drafted in 1999 to be implemented in 2006.  The specific 

materials restrictions were based on human toxicity and concerns about 

contamination of landfills, and limited lead (Pb) < 1000 ppm, cadmium (Cd) < 

100 ppm, Mercury (Hg) < 100 ppm, hexavalent chromium (Cr VI) < 1000 ppm, 

polybrominated biphenyls (PBB): 1000 ppm, and polybrominated diphenyl 

ethers (PBDE) < 1000 ppm.  It was only after this legislation was enacted, 

that a formal LCA of impacts other than toxicity were made for Pb-free solder 

alloys. In 2005, an LCA of Pb-free and Sn-Pb solders by Geibig and Socolof 

illustrated the issues pertaining to the decision to ban Pb in electronics. [66] 

Geibig reported that the SAC-based lead-free alternatives had more negative 

environmental impacts in 10 of the 16 evaluated impact categories when 

compared to Pb-Sn. [66] However, the majority of these impacts are 

environmental in nature and not related to human health, which was the 

motivating factor behind the ban on Pb. In this case, for the EU, a pass-fail 

criterion on the human health related impact factors trumped any impact 

associated with other environmentally focused categories. This illustrates the 

complexity of decision-making based on LCA analysis. There is no single 

metric that is used as a standard in determining a good or bad performance in 

an impact category. In the case of the RoHS initiative, a single metric, human 
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health impacts, was predefined as a pass-fail criterion for assessment. 

However, there is a broad range of impact categories assessed through LCA 

and individuals, manufacturers, and suppliers, often have differing opinions 

about how the impact categories should be weighted. For this reason, it is 

critical to clearly define any weighting or pass-fail criteria used in the 

evaluation a life cycle assessment.  

As seen in table 3-106, from the Gaibig assessment of SnPb and three 

Pb-free alloys, the difference between impact in any given category ranges 

from a factor of 40 to a few percent, and are sensitive to the models, 

boundary conditions and assumptions and input data as clearly articulated in 

the report.  Furthermore, this assessment illustrated that the benefit of going 

Pb-free becomes greater if an alternative process for silver extraction is used. 

This example demonstrates the importance of quantifying the impacts of 

individual life cycle stages as new technologies are being developed rather 

than inadvertently making choices that, while convenient, may create higher 

ultimate impacts.  

The impacts of using a new technology compared with the existing 

solution and other alternatives should be explicitly assessed, minimized 

through possible changes in formulation, and acknowledged when introducing 

a new technology into the electronics. Taking a forward looking approach, the 

research study presented in this Chapter addresses these issues by 

comparing the LCAs for fabrication of the now ubiquitous SAC305 alloy 

powder and circuit board final assembly with fabrication and assembly using 
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the new technology we have been developing based on the sintering of Cu-

Ag core-shell particles. 

 

4.1.3 Comparative LCA of SAC 305 and Cu-Ag Core-Shell Interconnects 

4.1.4 Solder and Alternative Comparison – The Scope  

As with all LCAs, defining the scope and system boundaries is critical in 

determining both the relevance and the accuracy of the comparison.  For 

example, if the system boundaries are too narrow, important aspects of the 

system that influence the environmental impacts may be overlooked, and if 

they are too wide the assessment may be too broad and with too much 

uncertainty to be useful in comparison to other assessments.  

The flow chart in Figure 91 details the processing steps for manufacturing 

both SAC305 and core-shell powders, printed circuit board population, and 

system annealing to produce a functional circuit board. The boxes contained 

within the region labeled “materials” account for the raw materials needed for 

production. The diamonds that follow raw materials input account for each 

processing step needed in order to produce the metal powders associated 

with each technology. The purple rectangles represent three steps necessary 

to produce a populated circuit board for both technologies, including: 

producing a paste out of manufactured powders via flux incorporation, 

deposition of the paste via screen or stencil printing, and board population or 

component attachment. The last two diamonds within the “energy 

consumption” region represent the differences in thermal processing needed 
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to produce a functional PCB from each technology. The system boundaries 

for this LCA are marked within the materials and energy consumption regions 

of Figure 91. The manufacturing steps for producing both SAC 305 and Cu-

Ag core-shell metal powders are not considered for this assessment. A 

discussion about their potential impacts and the proper procedure for 

assessing them will be discussed in the discussion section of this chapter. 

The raw materials and thermal processing for each technology are the key 

system differences considered within the scope for this assessment.  
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Figure 91. A schematic showing the manufacturing processes for both 
SAC305 powder and core-shell technology highlighting the system 

boundaries (Materials for metal production and energy consumption during 
connection formation) 

 
 

The compared functional unit will be the production of mechanically stable 

and conductive interconnects for 360mL of solder paste, enough for 

component attachment on 180 boards, with the appropriate processing 

parameters and heating profiles assessed for each technology. Note that the 
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appropriate comparison is by volume of the selected functional unit, not by 

weight. The densities of the base materials and the interconnect structures 

themselves are different and interconnects require a specific geometry, hence; 

a specific volume is necessary for a functional unit comparison not a weight. 

Due to the difference in thermal profiles required for the two technologies 

increments of 180 boards are useful for a direct comparison. Assembly using 

the core-shell technology requires rapid heating to 205°C, an isothermal 

anneal for 1 hour of annealing, followed by rapid cooling, all in an inert 

atmosphere. For PCB applications, SAC305 solder joints are traditionally 

created through the use of a reflow soldering profile that takes 8-15 minutes 

to solder a circuit board. Based on the oven length, zone dwell times, and 

conveyor speed, a standard reflow oven produces 180 boards an hour. 

Annealing for the core-shell technology will likely be a batch process rather 

than the traditional continuous process of reflow soldering. In order to anneal 

the core-shell technology in a reflow oven, assuming the entire length is 

205°C with a one hour processing time, the length of the furnace would need 

to be at least 4X longer. Therefore, comparing 180 boards manufactured 

through reflow to 180 boards annealed in a large walk-in furnace allows for a 

more realistic direct comparison of the impacts at the industrial scale.  

The reference flows assessed include material processing (metal) and the 

energy required to attach the same number of components to 180 boards 

using 360mL of solder paste. The volume of metal for each paste system is 

equivalent and therefore assumed to be 50 volume percent, an industry 
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standard. [15] The fluxes associated with each paste system were not taken 

included. In this analysis we assumed that the fluxes would be the same, but 

this is not necessarily true.  Based on the Cu-Ag core-shell paste 

development discussed in Chapter 2, the flux formulation necessary to 

produce a viable paste for this solder alternative varies slightly in chemical 

makeup when compared to a traditional SAC 305 solder paste. However, 

there are still many unknowns for core-shell flux development. Note that the 

flux formulations in Chapter 2 were selected based on stability, rheology, 

adhesion, and processability in a circuit board assembly environment, and not 

based on environmental implications for this LCA.  If we were to develop this 

technology further for commercialization, we would need to reevaluate the 

candidate flux formulations, based on LCA considerations.  It is certain that 

some possible flux ingredients, such as thiols, would increase the impacts 

and therefore would need to be included in the assessment before 

formulation would be done. Along with this, in order to compare the core-shell 

flux to SAC 305 we would first need to compare the variety of fluxes currently 

used with SAC305 for reflow applications. However, this assessment may not 

be useful at this early stage of the technology development. 

This assessment does not include the printed circuit board itself nor any of 

the components attached to the system because they are the same for both 

technologies. Similarly, it does not include the solder paste deposition or 

component attachment methods, since we demonstrated in Chapter 2 that the 

core-shell paste may be processed with the same equipment, i.e. in terms of 
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these steps, the core-shell paste is a “drop-in” replacement for SAC305 paste. 

Therefore, as noted in Figure 91, this LCA covers only the fabrication of the 

metal powders and the heating of the populated PCB assemblies with each 

paste type.  

 

4.1.5 Solder and Alternative Comparison – The Inventory 

4.1.5.1 Metal Fabrication Processes 

Solder powders, including SAC305 solder powder, are fabricated through 

a centrifugal atomization process where the input metal is melted, the 

resulting liquid alloy is dispensed through a rotating atomizer in order to 

produce metal droplets, and the droplets solidify into metal powders as they 

cool.  

In contrast, Cu-Ag core-shell particles are produced through chemical 

processing. The copper core particles (500nm-2 um) are fabricated via a 

solution precipitation reaction and the silver film is deposited onto the 

preformed copper cores through an electroless deposition process.  While 

there are many processes for making larger diameter copper powder, the 

processes for forming fine polycrystalline copper particles (<1.5 μm) are more 

limited.  One representative process for manufacturing such fine powders is 

through a reaction between solutions of Copper (I) Chloride (CuCl) and Iron 

(II) – citrate. [67,68] The copper particles are then dispersed in an alkaline 

solution that activates the surfaces for electroless deposition. The activated 

copper particles are immersed in a solution containing a high concentration of 
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silver ions along with a reducing agent and the surfaces of the copper 

particles are coated with a uniform silver film. [69,70,71] A material inventory 

for the fabrication of Cu-Ag core-shell particles using this process can be 

found in Tables 18 and 19.  

 

4.1.5.2 Materials Inventory 

The metals inventory for the processing of 1,328 grams SAC305, the 

amount needed to fabricate 360mL of solder paste for assembly 180 

populated circuit boards, is detailed in Table 17.  

 

Table 17. Material and process inventory for SAC305 particle processing 

Materials Quantity (grams) Reference 
Copper 6.6 Calculated 
Silver 40 Calculated 
Tin 1282 Calculated 

 

The materials inventory for the processing of 1,852 grams of the Cu-Ag 

core-shell particles, the amount needed to fabricate 360mL of solder paste for 

assembly 180 populated circuit boards, is detailed in Table 18. The materials 

inventory to coat 1760 grams of copper seed particles with 5-wt% Ag is 

detailed in Table 19. The quantities listed in the table are based on the molar 

masses of the Eco-Invent Database materials listed and the moles per liter 

provided in the noted references.  
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Table 18. Material and process inventory for the copper core formation of Cu-
Ag core-shell particle technology 

 
Processing 

Material 
Eco-Invent Database 

Material  
Quantity 
(grams) Reference(s) 

Copper (I) chloride 
(CuCl) 

Copper (I) Oxide 163 Calculated from the 
Halaciuga [67] Hydrochloric Acid (HCl) 83 

Trisodium citrate 
dihydrate 

(Na3C6H5O7-2H2O) 
 2.2 Halaciuga [67] 

Iron (II) sulfate 
heptahydrate 

(FeSO4-7H2O) 
Iron (II) sulfate (FeSO4) 322 Halaciuga [67] 

 

Table 19. Material and process inventory for the silver shell of the Cu-Ag 
core-shell interconnect technology 

 
Processing 

Material 
Eco-Invent 

Database Material 
Quantity 
(grams) Reference(s) 

Ammonium sulfate 
((NH4)2SO4) 

Ammonium sulfate 
((NH4)2SO4) 

1284.4 Low from Xu range [70] 

Ammonium 
hydroxide 
(NH3H2O) 

Ammonium in 
solution 330.5 Low from Xu range [70] 

Silver Nitrate 
(AgNO3) 

Silver 92.62 Calculated assuming 
only enough Ag for 

5wt%  Nitric Acid 71.64 

Tartaric Acid 
Potassium Salt 
((C4H4O6KNa) 

 7.29 Xu [70] 

 

4.1.5.3 Interconnect Formation 

The processing method for creating electronic interconnects is different 

for each of the proposed systems. SAC305 solder paste creates connections 

by flux activation, solder melting and wetting of the component leads and 

circuit board pads, and solidification during cooling.  This overall process is 
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known as “solder reflow“, in electronics manufacturing.  As described in 

greater detail in Chapter 2, these process steps are carried out in a well-

controlled multi-zone furnace where the circuit boards are transferred from 

zone to zone on a continuous conveyor belt. This reflow process typically 

takes minutes (8-15min) and a traditional reflow oven can output 

approximately 180 boards in an hour. [15] The Cu-Ag core-shell technology 

requires annealing at 205°C for an hour in an inert atmosphere. [11,72] To 

compare these technologies the Cu-Ag batch furnace must be capable of 

holding 180 boards in order to provide the same hourly production rate.  

 

Table 20. Energy consumption each technology furnace 
 

Solder Type Oven Type Avg. Power Consumption Reference 

SAC305 Reflow 
Oven 10 Average from 

Kazinca [73] 

Core-Shell Inert Gas 
Oven 5* *Approximated 

*NOTE: This value is based on the energy ratings provided for a variety of similar inter gas ovens 

 

4.1.5.4 Assumptions 

 The silver film electro-less deposition process for the sourced core-

shell particles is proprietary and therefore the electro-less deposition method 

was assumed to be comparable to a well documented method from literature, 

i.e., it was assumed that this process is representative of the one used to 

manufacture the Cu-Ag core-shell particles. Furthermore, the literature 

references for the processes for fabricating both the copper core and silver 

shell are for lab-bench scale manufacturing in terms of quantity and 
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production. Therefore, we assume that the scale to industrial manufacturing is 

linear in this case. This is likely an overestimate due to the economy of scale.  

To develop assessments for materials, SimaPro v7.1 and the 

Ecoinvent 2.0 database are used in conjunction with TRACI impact factors. 

Due to lack of material availability in the database, substitution was required 

for some reagents for both the copper seed particle precipitation and silver 

electro-less deposition reactions. These substitutions were either chemically 

similar materials that are expected to be representative of the environmental 

impacts of the original reagent while maintaining the function of the reaction 

system, or a combination of chemicals needed to produce the required 

material, for example, copper chloride and silver nitrate were replaced by the 

components used to manufacture them. 

Silver nitrate is often manufactured by dissolving silver in nitric acid. 

Using the reaction listed below, and an assumption that the amount of silver 

needed is only that needed to produce a 5wt% Ag shell, the amount of nitric 

acid was calculated.  

 

 

Copper chloride is often manufactured by dissolving copper (I) oxide in 

hydrochloric acid. Using the reaction listed below and a simple conversion the 

amount of copper oxide and hydrochloric acid needed to produce the known 

amount of copper chloride needed for the reaction was calculated. 
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Currently, the impacts of tartaric acid potassium sodium salt 

(C4H4O6KNa) and trisodium citrate dihydrate (Na3C6H5O7-2H2O) are not 

included in the assessment of the impacts. However, based on the typical 

uses and toxicology data for both of these constituents, available through the 

National Institute of Health, it can be assumed that their impacts will be 

negligible in comparison to the other raw materials. Tartaric acid potassium 

sodium salts are commonly used for a variety of medicinal and baking 

applications. Specifically, tartaric acid potassium sodium salts are found as 

ingredients in medical laxatives, baking powders, cake mixes, a variety of 

leavening agents, and even in the manufacturing process for hard candy. [74] 

Similarly, trisodium citrate dihydrate (trisodium citrate), is also commonly used 

in a variety of medical and food applications such as a blood anti-coagulant, 

an expectorant, a nutrient to prevent curdling of milk, and even an additive in 

soft drinks. [75] Because of their common use in widely consumed food 

products and ingested in medicines, it can be assumed that the impacts 

associated with tartaric acid potassium sodium salts and trisodium citrate are 

negligible when compared the impacts of the other raw materials, such as 

silver.  

 

4.2 Results and Discussion  

 Using the TRACI impact assessment outputs the environmental impact 

of the materials used in manufacturing both SAC305 and Cu-Ag core-shell 

particles was evaluated. Results on the outputs are detailed in Table 21. The 
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comprehensive analysis of the impacts associated with each constituent is 

available in the Appendix .  

 

Table 21. TRACI Impacts for the materials used to manufacture SAC305 
solder and Cu-Ag core-shell particles. The table also shows the core-shell 

breakdown in terms of core particle precipitation and shell deposition impacts. 
 

Impact Category SAC 305 
Cu-Ag 

core-shell 
total 

Core 
Particle 

Shell 
Deposition 

Global Warming (Kg CO2 eq) 39.4 45.8 0.57 45.2 
Acidification (H+ moles eq) 43.8 35.1 0.93 34.2 
Carcinogenics (Kg benzene eq) 0.1 0.33 0.21 0.12 
Non-Carcinogenics (Kg toluene eq) 2002 2684 186 2497 
Respiratory Effect (Kg PM2.5 eq) 0.34 0.13 0.006 0.12 
Eutrophication (Kg N eq) 0.03 0.04 0.0004 0.03 
Ozone Depletion (Kg CFC-11 eq) 2.89E-06 4.01E-06 1.72E-07 3.84E-06 
Ecotoxicity (Kg 2,4-D eq) 688 922 10.5 911 
Smog (Kg NOx eq) 0.35 0.44 0.003 0.43 

 

 According to our results, the environmental impact of the core-shell 

technology is higher than that for SAC305 for all but two categories, 

acidification and respiratory effect.  

Visual representations of the human health and environmental impact 

data detailed Table 22 can be seen in Figures 92 and 93.  
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Figure 92. Plots of the human health TRACI impacts associated with the 
materials needed for manufacturing of SAC305 and Cu-Ag core-shell 

particles (separated by seed formation and shell formation) 
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Figure 93. Plots of the environmental TRACI impacts associated with the 
materials needed for manufacturing of SAC305 and Cu-Ag core-shell 

particles (separated by seed formation and shell formation) 
 

 The results presented here suggest that the overall environmental 

impact of the material inputs for manufacturing Cu-Ag core-shell solderless 

interconnect system is greater than SAC305. In seven of the nine categories, 

the impacts associated with the materials to fabricate the core-shell 

technology are greater than those of the materials needed for SAC305 

production.  
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 The majority of the impact associated with the core-shell system 

comes from the amount of silver needed for the electroless deposition of the 

silver shell. In six of the nine categories the impacts associated with the silver 

for the shell deposition account for more than 90% of the total core-shell 

impact.  As noted in the assumptions section, it was assumed that the bench-

top processing method found in literature was not only representative of the 

proprietary industrial process used to produce our research materials but 

could also be linearly scaled to mass production.  However, a direct 

comparison of the amount of silver needed for both systems based only on 

weight percent, 40 grams for SAC305 and 93 grams for core-shell, suggests 

that the assumptions made will have little impact on the presented results. Of 

key importance here is that fact that this assumption is based on an equal 

volume of dispensed paste. However, if we consider the details of the final 

interconnect geometry we may be able to reduce the amount of core-shell 

particles needed to produce the same number of interconnects thereby 

reducing the impacts associated with each functional unit. The core-shell 

system creates interconnects through sintering via surface diffusion of the thin 

silver film and therefore little to no densification takes place during annealing. 

For an equivalent interconnect geometry and assuming a particle loading of 

50 volume percent, the total volume of Cu-Ag core-shell powder needed is ½ 

that for an equivalent SAC 305 solder joint. A schematic representation of this 

interconnect geometry assessment is depicted in Figure 94.  
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Figure 94. A schematic representation of the interconnect geometry showing 
that for an equivalent interconnect geometry and assuming a particle loading 
of 50 volume percent, the total volume of Cu-Ag core-shell powder needed is 
½ that for an equivalent SAC 305 solder joint. TOP: SAC 305; BOTTOM: 

Core-Shell; LEFT: Before heating; RIGHT: After heating 
 

As mentioned above, the majority of the impacts associated with the 

core-shell system come from the quantity of silver needed processing. If the 

same interconnect geometry is achievable with half the volume of powder, we 

can halve the impacts associated with the core-shell technology without 

changing the compared functional unit, thus making the core-shell technology 

impacts less than SAC 305 in all categories except for carcinogenic effects 

due to the copper core. This negative impact is associated with the use of 

copper (I) oxide, which was used in conjunction with hydrochloric acid to form 

copper (I) chloride. It is not clear if the use of an alternative method for 

producing copper (I) chloride would reduce these impacts. However, because 
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copper (I) chloride is most commonly produced using the copper (I) oxide and 

hydrochloric acid, it is likely a good representation of the true impacts.  

 The Cu-Ag core-shell technology is versatile in its design and can 

remain functional with a variety of particle sizes and shell thicknesses, thus 

providing other possible routes for reducing the impacts associated with the 

silver content. [72] It should be noted that system performance has not been 

directly evaluated for less than 5wt% Ag, i.e. 10 nm thick shell for a 1 

micrometer spherical Cu core.  However, there is a limiting case for the extent 

of neck formation based on physical, geometrical constraints that can be used 

as proof of concept. As described in Chapter 2 we can calculate if there is 

enough Ag in the particle shells to form necks with the expected geometries. 

The maximum possible neck radius formed from Ag can be estimated 

assuming that all of the silver shell diffuses to form sintered necks, the solid 

core particles touch at a single point and a cylindrical neck structure minus 

the excluded volume of the core particles. By equating the volume of a 

cylindrical neck to the volume of two equivalent hemispherical caps and the 

total volume of silver from the shells, the maximum possible neck radius for a 

simple two-particle geometry for a 2 wt% shell (approximately 3.5nm thick) 

was estimated to be 240 nm. This radius is more than a factor of two larger 

than the radius predicted from surface diffusion calculations for 60 minutes of 

annealing at 200°C.  Therefore, silver supply will not limit the extent of neck 

formation for the proposed equivalent silver weight percent. Similarly, if a 

smaller core particle size is used, the required sintering temperature and/or 
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time can be reduced, however, the total amount of silver will depend upon the 

core size/surface areas and the required shell thickness,    

The impacts associated with the core-shell system using the same 

amount of silver needed for the SAC305 production (resulting in a 2wt% shell) 

is detailed in Figures 95 and 96. This assessment allows for a direct 

comparison of the impacts associated with the non-silver components of each 

system. Because the impacts of the silver were so great it was difficult to 

compare the effects of the chemical production process used in core-shell 

manufacturing versus simple metal alloying for SAC305.  

 

 

Figure 95. Plots of the human health TRACI impacts associated with the 
materials needed for manufacturing of SAC305 and Cu-Ag core-shell 

particles assuming equal amounts of silver for both systems. 
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Figure 96. Plots of the environmental TRACI impacts associated with the 
materials needed for manufacturing of SAC305 and Cu-Ag core-shell 

particles assuming equal amounts of silver for both systems. 
 

 Analyses of the impacts associated with the reduced silver core-shell 

system clearly show that impact of core-shell chemical processing is not 

greater than the impact of the metals needed for SAC305 alloying. This is 

important because it this shows that with a simple geometry change in the 

core-shell system we may be capable of reaching or going beyond the break 

even point in terms of impact for eight of the nine categories. A table detailing 
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the impacts associated with equal silver content system is detailed in the 

Appendix .  

 As previously mentioned, the energy consumption associated with the 

processing methods for producing both SAC305 and the Cu-Ag core-shell 

interconnect technology was not included in the assessment. However, we 

did attempt to extend the scope to include energy consumption associated 

with metallic atomization and solution processing methods. The results of the 

initial assessment will be presented however, it is important to note that in 

order to properly address this component of manufacturing, the functional unit 

needs to be adjusted. As it stands, the functional unit was chosen based on 

the output of a typical reflow oven. The value of 180 boards requires so little 

metal powder relative to the output of the metal processing methods that 

there are likely large errors associated with scaling.  

 

4.3 Conclusion 

 In conclusion, we have shown that the environmental impacts 

associated with the material inputs for manufacturing of copper-silver core-

shell particles containing 5wt% silver are slightly greater in seven of the nine 

TRACI impact categories than SAC305. The increased impact is directly 

related to the amount of silver needed to produce 360mL of solder paste 

containing 5wt% silver shells on 1μm particles versus 3wt% silver in 30μm 

alloyed solder particles. We have also shown that with a reduction in silver 
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content, the core-shell system is capable of being equivalent to or out-

performing SAC305 in eight of the nine TRACI impact categories. 
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APPENDIX 

 

Impact Category Copper Silver Tin SAC 305 TOTAL 
Global Warming 

(kg CO2 eq.) 0.0361 17.5130 21.8551 39.4041 

Acidification 
(H+ moles eq.) 0.1465 14.4026 29.2927 43.8418 

Carcinogenics 
(kg benzene eq.) 0.0019 0.0486 0.0515 0.1019 

Non-Carcinogenics 
(kg toluene eq.) 5.3082 1,060.6642 935.6429 2,001.6153 

Respiratory Effects 
(kg PM2.5 eq.) 0.0009 0.0535 0.2849 0.3394 

Eutophication 
(kg N eq.) 0.0001 0.0145 0.0140 0.0285 

Ozone Depletion 
(kg CFC-11 eq.) 0.0000 0.0000 0.0000 0.0000 

Ecotoxicity 
(kg 2,4-D eq.) 1.6904 390.6382 296.3305 688.6590 

Smog 
(kg NOx eq.) 0.0006 0.1846 0.1674 0.3526 
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Impact Category SAC 305 TOTAL SAC with Cu-Ag Equal Silver content 
Global Warming 

(kg CO2 eq.) 39.4041 17.5130 

Acidification 
(H+ moles eq.) 43.8418 14.4026 

Carcinogenics 
(kg benzene eq.) 0.1019 0.0486 

Non-Carcinogenics 
(kg toluene eq.) 2,001.6153 1060.6642 

Respiratory Effects 
(kg PM2.5 eq.) 0.3394 0.0535 

Eutophication ( 
kg N eq.) 0.0285 0.0145 

Ozone Depletion 
(kg CFC-11 eq.) 0.0000 0.0000 

Ecotoxicity 
(kg 2,4-D eq.) 688.6590 390.6382 

Smog  
(kg NOx eq.) 0.3526 0.1846 

Impact Category Hydrochloric 
Acid 

Copper 
Oxide 

Iron 
Sulphate 

Seed Formation 
Total 

Global Warming 
(kg CO2 eq.) 0.1126 0.3369 0.1229 0.5724 

Acidification 
(H+ moles eq.) 0.0275 0.8729 0.0317 0.9320 

Carcinogenics 
(kg benzene eq.) 0.0004 0.2012 0.0010 0.2026 

Non-Carcinogenics 
(kg toluene eq.) 1.7942 181.9341 2.6880 186.4164 

Respiratory Effects 
(kg PM2.5 eq.) 0.0002 0.0051 0.0002 0.0055 

Eutophication 
(kg N eq.) 0.0000 0.0003 0.0001 0.0004 

Ozone Depletion 
(kg CFC-11 eq.) 0.0000 0.0000 0.0000 0.0000 

Ecotoxicity 
(kg 2,4-D eq.) 0.2839 9.8398 0.3615 10.4852 

Smog 
(kg NOx eq.) 0.0002 0.0030 0.0002 0.0035 
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Impact Category Ammonium 
sulphate Ammonia Nitric acid Silver 

Film 
Deposition 

Total 
Global Warming  

(kg CO2 eq.) 3.5751 0.6979 0.2305 40.7019 45.2053 

Acidification  
(H+ moles eq.) 0.5945 0.1080 0.0392 33.4731 34.2147 

Carcinogenics  
(kg benzene eq.) 0.0108 0.0011 0.0002 0.1129 0.1249 

Non-Carcinogenics  
(kg toluene eq.) 26.7803 4.7233 0.5078 2465.0887 2497.1001 

Respiratory Effects  
(kg PM2.5 eq.) 0.0038 0.0006 0.0001 0.1244 0.1289 

Eutophication  
(kg N eq.) 0.0009 0.0003 0.0001 0.0336 0.0349 

Ozone Depletion  
(kg CFC-11 eq.) 0.0000 0.0000 0.0000 0.0000 0.0000 

Ecotoxicity  
(kg 2,4-D eq.) 3.0448 0.2446 0.0367 907.8819 911.2079 

Smog  
(kg NOx eq.) 0.0054 0.0009 0.0004 0.4290 0.4357 

 

Impact Category Core-Shell 
Total 

Core-Shell 
with SAC 

Equivalent Ag 
SAC 305 
TOTAL 

SAC with 
Cu-Ag Equal 

Silver content 
Global Warming 

(kg CO2 eq.) 45.7777 45.7777 39.4041 17.5130 

Acidification 
(H+ moles eq.) 35.1468 35.1468 43.8418 14.4026 

Carcinogenics 
(kg benzene eq.) 0.3276 0.3276 0.1019 0.0486 

Non-Carcinogenics 
(kg toluene eq.) 2683.5165 2683.5165 2,001.6153 1060.6642 

Respiratory Effects 
(kg PM2.5 eq.) 0.1345 0.1345 0.3394 0.0535 

Eutophication 
(kg N eq.) 0.0353 0.0353 0.0285 0.0145 

Ozone Depletion 
(kg CFC-11 eq.) 0.0000 0.0000 0.0000 0.0000 

Ecotoxicity 
(kg 2,4-D eq.) 921.6931 921.6931 688.6590 390.6382 

Smog 
(kg NOx eq.) 0.4392 0.4392 0.3526 0.1846 
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