
Purdue University
Purdue e-Pubs

Open Access Dissertations Theses and Dissertations

Fall 2014

Automatic translation of non-repetitive OpenMP
to MPI
Fahed Jubair
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations

Part of the Computer Engineering Commons

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Recommended Citation
Jubair, Fahed, "Automatic translation of non-repetitive OpenMP to MPI" (2014). Open Access Dissertations. 302.
https://docs.lib.purdue.edu/open_access_dissertations/302

https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F302&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F302&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/etd?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F302&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F302&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F302&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations/302?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F302&utm_medium=PDF&utm_campaign=PDFCoverPages

Graduate School ETD Form 9
(Revised 12/07)

PURDUE UNIVERSITY
GRADUATE SCHOOL

Thesis/Dissertation Acceptance

This is to certify that the thesis/dissertation prepared

By

Entitled

For the degree of

Is approved by the final examining committee:

 Chair

To the best of my knowledge and as understood by the student in the Research Integrity and
Copyright Disclaimer (Graduate School Form 20), this thesis/dissertation adheres to the provisions of
Purdue University’s “Policy on Integrity in Research” and the use of copyrighted material.

Approved by Major Professor(s): ____________________________________

Approved by:
 Head of the Graduate Program Date

 Fahed Jubair

Automatic Translation of Non-Repetitive OpenMP to MPI

Doctor of Philosophy

RUDOLF EIGENMANN

MILIND KULKARNI

MITHUNA S. THOTTETHODI

SAMUEL P. MIDKIFF

VIJAY S. PAI

RUDOLF EIGENMANN

M. R. Melloch 10-09-2014

AUTOMATIC TRANSLATION OF NON-REPETITIVE OPENMP TO MPI

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Fahed A. Jubair

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

December 2014

Purdue University

West Lafayette, Indiana

ii

To my precious family: my parents Elham and Ahmad, my brother Mohammad,

and my sisters Asma and Hanan.

iii

ACKNOWLEDGMENTS

I would like to show my utmost appreciation to Professor Rudolf Eigenmann for

being an extraordinary advisor throughout the years of getting my PhD degree. I also

would like to thank professor Samuel Midki↵ for his valuable help with my research.

My deepest gratitude to my laboratory mates: Okwan Kwon, Amit Sabne, Putt

Sakdhnagool and Aurangzeb for all the interesting discussions about research and

about life. Lastly, I thank my dear friends Mohammad Hajjat and Jonathan Pullum

for making my life at Purdue more enjoyable.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . vii

LIST OF FIGURES . viii

ABSTRACT . xii

1 INTRODUCTION . 1

1.1 Motivation . 1

1.2 Translation Process Overview . 2

1.3 Challenges . 3

1.4 Specific Contributions . 6

1.5 Dissertation Organization . 8

2 A NEW PRODUCER-CONSUMER ARRAY DATA FLOW ANALYSIS
FOR OPENMP . 9

2.1 The ⇡ Operator . 10

2.1.1 Iteration Space Representation 10

2.1.2 Data Space Representation 11

2.1.3 The ⇡ Operator VS Explicit Static Partitioning 14

2.2 The Analysis Algorithm . 14

2.3 The Compiler Framework . 16

2.4 Delayed Symbolic Evaluation . 17

2.5 Performance Evaluation . 19

2.5.1 Performance Metrics . 19

2.5.2 Experimental Setup . 20

2.5.3 Evaluation of the Producer-Consumer Array Data Flow Anal-
ysis Accuracy . 20

3 EXTENDING THE PRODUCER-CONSUMER ARRAY DATA FLOW ANAL-
YSIS TO NON-REPETITIVE OPENMP 25

v

Page

3.1 Variant-Set Analysis . 28

3.1.1 A Running Example . 28

3.1.2 Approach . 29

3.1.3 The Analysis Algorithm . 30

3.1.4 Implementation . 32

3.2 Region-Based Analysis . 36

3.2.1 A Running Example . 37

3.2.2 Approach . 37

3.2.3 The Analysis Algorithm . 37

3.3 Extending The solution to the Producer-Consumer Array Data Flow
Analysis . 38

3.3.1 Extending Variant-Set Analysis 39

3.3.2 Extending Region-Based Analysis 40

3.4 Performance Evaluation . 40

3.4.1 Performance Metrics . 40

3.4.2 Experimental Setup . 41

3.4.3 Evaluation of the Producer-Consumer Array Data Flow Anal-
ysis Accuracy . 42

4 RUNTIME COMMUNICATION SCHEDULING 44

4.1 Determining Communication Partners 45

4.2 The Scheduling Algorithm . 46

5 PUTTING EVERYTHING TOGETHER: THE OPENMP-TO-MPI TRANS-
LATOR . 48

5.1 Compiler Code Generation . 49

5.2 Runtime Communication Generation 52

5.3 Evaluation of Overall Performance 52

5.3.1 Performance Metrics . 52

5.3.2 Experimental Setup . 53

5.3.3 Evaluation on a Cluster of 64 Cores 54

vi

Page

6 RELATED WORK . 59

6.1 Prior Shared-Address Space Programming Models for Distributed-Address
Space Architectures . 59

6.2 Prior Compiler Frameworks for Array Data Flow Analysis 62

7 EPILOGUE . 65

7.1 Conclusions . 65

7.2 Future Work . 67

7.2.1 Pipeline Parallelism . 67

7.2.2 Runtime Inspection . 68

LIST OF REFERENCES . 72

VITA . 76

vii

LIST OF TABLES

Table Page

2.1 List of ⇡ operators. Block-cyclic partitioning currently is supported con-
servatively as dynamic partitioning. 11

5.1 Benchmark set. 53

viii

LIST OF FIGURES

Figure Page

1.1 An overview of the presented OpenMP to MPI translation process. . . 3

1.2 An example of a non-repetitive OpenMP program. Due to the triangular
access pattern, the accessed array elements for individual instances of the
inner nested loop L1 (i.e., Gen and Kill sets) vary for di↵erent iterations
of the enclosing loop L0. 4

2.1 The internal representation of an OpenMP program. The explicit static
partitioning method explicitly expresses loop partitions; it introduces new
complex loop bounds that are parameterized by the thread number. By
contrast, the ⇡ operator keeps both original iteration spaces and the par-
titioning semantics. 12

2.2 Reaching Definitions analysis. Note that KILLall is across all threads, all
other sets are for the current thread. 15

2.3 Liveness analysis. Note that KILLall is across all threads, all other sets
are for the current thread. 15

2.4 The result of PCDFA at barrier nodes. Delayed Symbolic evaluation avoids
conservative approximation of the intractable subtract operation at barrier
B1. 17

2.5 An example of the function calls used by the ⇡ operator’s compiler to pass
produced and consumed array sections to the runtime tool for a particu-
lar barrier. Function calls only specify one partitioned dimension because
all tested benchmarks have one-dimensional parallelism (no nested paral-
lelism). In the case of explicit static partitioning, the same function calls
are used except that there are no partitioned dim num or partitioning type
fields. The total number of function calls is equal to the total number of
array sections. 21

2.6 Operation accuracy and IR complexity of PCDFA averaged over 8, 16, 32
and 64 threads. 22

ix

Figure Page

2.7 The number of array sections generated by PCDFA, categorized into RSDs
(which have 1 term) and ERSDs (which can have 2 terms or more). With-
out delayed symbolic evaluation, ⇡ operators lead to 33% fewer array sec-
tions, on average, than explicit static partitioning. When applying delayed
symbolic evaluation, the ratio of generated ERSDs (delayed subtract op-
erations) is below 8% with the ⇡ operator and is 26%�39% with explicit
static partitioning. The largest number of terms in an ERSD section is 3
with ⇡ operators and 5 with explicit static partitioning. 23

3.1 Due to the triangular access pattern, the accessed array elements for indi-
vidual instances of the inner nested loop L1 (i.e., Gen and Kill sets) vary
for di↵erent iterations of the enclosing loop L0. 26

3.2 Consider a parallelization transformation where explicit communication is
generated. The access pattern for consumers inside the enclosing loop L0 is
triangular, and for consumers outside the loop is rectangular. Combining
use information for these patterns may lead individual instances of the
loop L1 (where data is produced) to generate excessive communication. 27

3.3 Liveness analysis. 28

3.4 The control Flow Graph (CFG) representation for the example in Fig-
ure 3.1. 29

3.5 Classical Liveness analysis applied to the example in Figure 3.1. In order
to make GEN(e2) and KILL(e2) invariant, they are approximated over all
instances of e2 (gens get overestimated and kills get underestimated). . 29

3.6 A backward dataflow analysis performed using variant-set analysis. i is the
index of the enclosing loop L being currently examined. When traversing
the back-edge of L, the function S (shown in Figure 3.7) is invoked. . . 31

3.7 The function S for backward dataflow analyses (where previously exam-
ined iterations are later executed iterations). The dependency test is
shown in Figure 3.8. 33

3.8 The dependency test solves a system of equations and constraints to
proves/disproves dependence between two array sections sec1 and sec2
in an enclosing loop L such that sec1 occurs before sec2. 34

3.9 Assuming a backward analysis where reads are Gens and writes are Kills,
the enclosing loop L0 has two fixed dataflow patterns with distances 2 and
4. 34

x

Figure Page

3.10 Liveness analysis using variant-set analysis performed for the example in
Figure 3.1, which has a fixed dataflow pattern of distance 1. Fix-point of
L0 occurs at e2, which has the same USE

in

(e2, i) in the second and first
examined iterations. 35

3.11 Liveness analysis performed for the example in Figure 3.2 using variant-set
analysis. Due to the cyclic representation, e3 represents the exit of every
iteration in the enclosing loop L0 (not only the last iteration). As a result,
USE

in

(e4) gets fully exposed to every iteration. This is conservative be-
cause USE

in

(e4) is being partially killed at node e2, i.e., not fully exposed
to earlier iterations. 36

3.12 Liveness analysis performed using region-based analysis for the example
in Figure 3.2. 39

3.13 Maximum volume of use information and communication (per thread)
with our compiler frameworks normalized to the volume obtained with
the PCDFA framework when performed alone, computed as a percentage
(less is better). We show the average percentage over 8, 16, 32 and 64
threads. 43

5.1 The translated SPMD code generated by the compiler system for the
OpenMP example in Figure 3.1. 51

5.2 The speedups of the translated non-repetitive OpenMP to MPI programs
and the hand-coded MPI and UPC programs (when available) on a cluster
of 1, 2, 4 and 8 nodes (or 8, 16, 32 and 64 cores) over OpenMP on 1 node
(8 cores). Measurements for translated programs are shown for both cases:
(i) when PCDFA is performed using variant-set and region-based analysis;
and (ii) when PCDFA is performed alone. 56

5.3 The speedups of the translated repetitive OpenMP to MPI programs and
the hand-coded MPI and UPC programs (when available) on a cluster of
1, 2, 4 and 8 nodes (or 8, 16, 32 and 64 cores) over OpenMP on 1 node
(8 cores). MPI codes for BT and SP run only with a square number of
cores. Measurements for translated programs are shown for both cases:
(i) when PCDFA is performed using variant-set and region-based analysis;
and (ii) when PCDFA is performed alone. They are also shown for the
hybrid translator [11], the current state-of-the-art translator. 57

5.4 The runtime overhead during the execution of the translated LU and MG
benchmarks. Error bars show the ranges of the absolute overhead time in
five runs. Because we use strong scaling (input size is fixed), the overhead
ratio generally increases while increasing the number of nodes. 58

7.1 An example of an OpenMP code taken from NAS LU benchmark. . . . 69

xi

Figure Page

7.2 An early performance evaluation of the translated NAS LU benchmark.
The translated code achieves 53% of the performance of the hand-coded
MPI version of NAS LU. 70

7.3 Threads read array elements of A via the indirection vector ind vec. As a
result, the read Gen set is overestimated. We propose using the runtime
inspection [51] technique to find precise descriptions of which elements
were actually read by which threads. 70

7.4 An early performance evaluation of the translated NAS IS benchmark.
The translated code achieves 65% of the performance of the hand-coded
MPI version of NAS IS. 71

xii

ABSTRACT

Fahed, Jubair A. Ph.D., Purdue University, December 2014. Automatic Translation
of Non-Repetitive OpenMP To MPI. Major Professor: Rudolf Eigenmann .

Cluster platforms with distributed-memory architectures are becoming increas-

ingly available low-cost solutions for high performance computing. Delivering a pro-

ductive programming environment that hides the complexity of clusters and allows

writing e�cient programs is urgently needed. Despite multiple e↵orts to provide

shared memory abstraction, message-passing (MPI) is still the state-of-the-art pro-

gramming model for distributed-memory architectures.

Writing e�cient MPI programs is challenging. In contrast, OpenMP is a shared-

memory programming model that is known for its programming productivity. Re-

searchers introduced automatic source-to-source translation schemes from OpenMP to

MPI so that programmers can use OpenMP while targeting clusters. Those schemes

limited their focus on OpenMP programs with repetitive communication patterns

(where the analysis of communication can be simplified). This dissertation reduces

this limitation and presents a novel OpenMP-to-MPI translation scheme that covers

OpenMP programs with both repetitive and non-repetitive communication patterns.

We target laboratory-size clusters of ten to hundred nodes (commonly found in re-

search laboratories and small enterprises).

The presented translation scheme consists of a compiler and a runtime system.

The compiler analyzes the OpenMP program and converts it into message-passing

form. In the translated code, the compiler provides information about produced and

consumed shared array elements by each thread, information that is collected by

an array data flow analysis. The runtime system uses this information to schedule

communication.

xiii

Limitations in the compiler analysis can lead to excessive communication. To

this end, we present novel compiler algorithms that perform accurate array data flow

analysis for OpenMP programs. This is accomplished by the following contributions:

(i) The ⇡ operator: an abstract representation that exploits high level information

about the partitioning used in parallel loops to improve the accuracy of cross-thread

analysis; (ii) Delayed symbolic evaluation: a compiler algorithm that performs all

operations in the dataflow analysis without conservative approximation; and (iii) The

variant-set and region-based analyses: compiler algorithms that enable the dataflow

analysis to reason about Gen and Kill sets that vary across di↵erent instances of a

loop or statement, a pattern that often exists in non-repetitive programs.

Similarly, limitations in the runtime schemes for communication generation can

lead to high overheads. To this end, we present a new runtime communication scheme

that generates messages for repetitive and non-repetitive communication patterns

with low runtime overheads. This is accomplished by an algebra of the ⇡ operator

that reduces the needed computation to schedule communication.

With our contributions, six non-repetitive and four repetitive OpenMP bench-

marks have been e�ciently scaled to a cluster of 64 cores. In contrast, the state-

of-the-art translator scaled only the four repetitive benchmarks. In addition, our

translation scheme was shown to outperform or perform as well as the state-of-the-

art translator. We also compare the translation scheme with available hand-coded

MPI and Unified Parallel C (UPC) programs.

1

1. INTRODUCTION

1.1 Motivation

The state of the art of programming distributed memory machines – today’s most

common high-performance computing (HPC) platforms – is dire. Despite multiple ef-

forts to provide better programming environments, most software engineers still have

to use the ”assembly language of parallel programming”, MPI [1], to write e�cient

HPC code. MPI requires programmers to explicitly partition data and computation,

and to insert communication messages. The dissertation improves this situation by

allowing programmers to target HPC platforms using a shared-memory abstraction,

as represented by standard OpenMP [2].

Among many approaches to enhance productivity of HPC software, this work is

related most closely to those that create a shared-memory abstraction of the under-

lying machine. For example, High Performance Fortran (HPF) [3] provided a shared

address space plus user directives for data distribution. Despite the creation of sev-

eral industrial HPF compilers, this programming model did not succeed. UPC [4] is a

more recent e↵ort to provide a global address space abstraction. UPC programmers

need to manually confront issues of data distribution and thread-data a�nity to assist

the compiler.

A shared-memory abstraction can also be provided at runtime, such as in Software

Distributed Shared Memory (SDSM) systems. TreadMarks [5] was such a system;

it was used in Intel’s Cluster OpenMP [6] product and in several OpenMP-related

research projects [7–9]. A primary issue is the inherent overhead of page-based coher-

ence mechanisms. Also, in some approaches, OpenMP programs had to be modified

for use in SDSMs.

2

The dissertation presents a programming system that allows standard OpenMP

programs to be translated into e�cient code for distributed memory machines – we

target clusters of 10–100 processors. Those clusters can be commonly found in re-

search laboratories and small enterprises. Similar to HPF and UPC systems, our

approach makes use of an optimizing compiler. Unlike previous OpenMP-to-MPI

translators [10–13], this dissertation takes into consideration programs with non-

repetitive communication patterns. We will also evaluate how close our approach can

come to the performance of hand-coded MPI and UPC programs (when available).

Another important contribution of this dissertation is providing general concepts

for improving accuracy of Array Data Flow Analysis (ADFA). In the literature, many

compiler optimizations and transformations require, or would benefit from, knowledge

about the elements of an array that are accessed within a loop nest. Two examples

of where such information is useful are array privatization [14, 15] and determining

which array elements produced in a parallelized loop need to be communicated to

another process or thread [10,13]. Array Data Flow Analysis (ADFA) has been used

to obtain such information in both sequential and parallel programs. The accuracy

of this analysis is key to the performance of the compiled programs.

1.2 Translation Process Overview

The translation scheme consists of a compiler and a runtime system. The compiler

analyzes the OpenMP program and converts it into an single-program-multiple-data

(SPMD) [16] code, which can be executed on a cluster. During the execution, the

runtime system generates communication using the MPI communication library.

A communication point in the SPMD code is a point where communication may

be necessary during the execution. For each communication point, the compiler

determines (i) an exact description of the most recent produced shared array elements

by each thread in the past; and (ii) an approximate description of the consumed shared

array elements by each thread in the future. The compiler passes these descriptions

3

 #pragma omp parallel for schedule(static)
L1: for (i=1; i<=N; i++)
L2: for (j=1; j<=M; j++)
S1: A[i] [j] = ...

 #pragma omp parallel for schedule(static)
L3: for (i=1; i<=N; i++)
L4: for (j=1; j<=M; j++)
S2: … = A[i + 1] [j] + A[i - 1] [j]
 (a) The OpenMP input. There is an im-

plicit barrier at the end of each parallel
loop.

F1: { lbthrd_id , ubthrd_id } = block_partitioning (1, N, 1) ;

F2: pass_prior_writes (0 , produced_array_elements_summary) ;
F3: pass_future_reads (0 , consumed_array_elements_summary) ;

L1: for (i=lbthrd_id ; i<= ubthrd_id; i++)
L2: for (j=1; j<=M; j++)
S1: A[i] [j] = ...

F4: communication_point (0) ;

L3: for (i=lbthrd_id ; i<= ubthrd_id; i++)
L4: for (j=1; j<=M; j++)
S2: … = A[i + 1] [j] + A[i - 1] [j]

original iteration space

communication point 0

(b) The translated code. Statements F1� F4 are func-
tion calls inserted by the compiler to initiate proper ac-
tions by the runtime system.

Fig. 1.1.: An overview of the presented OpenMP to MPI translation process.

to the runtime system. The runtime system generates communication to satisfy the

inter-thread dependencies between produced and consumed shared data.

Figure 1.1 shows an example of the presented translation scheme. In the translated

code, the compiler inserts the following function calls that initiate proper actions by

the runtime system:

• F1, which partitions the iterations spaces of the parallel loops L1 and L3 using

block partitioning (as stated by OpenMP schedule directives).

• F2 and F3, which pass information about prior written and future read shared

array elements at communication point 0.

• F4, which initiates communication generation at communication point 0.

1.3 Challenges

The translation scheme employs a compiler Array Data Flow Analysis (ADFA)

framework to analyze accessed array elements in the input OpenMP program. The

accuracy of this analysis impacts the performance of our translated programs because

accessed array elements information is used to determine communication sets.

4

L0: for(i = 0; i <= N − 1; i++) {

 #pragma omp parallel for
L1: for (k = i; k <= N; k++)
S1: x [k] = x [k] + x [i] * r ;

 }

Fig. 1.2.: An example of a non-repetitive OpenMP program. Due to the triangular
access pattern, the accessed array elements for individual instances of the inner nested
loop L1 (i.e., Gen and Kill sets) vary for di↵erent iterations of the enclosing loop L0.

Prior approaches [10,11] were proposed that extended classical ADFA to analyze

OpenMP programs. Those approaches have two accuracy issues. The first issue

is assuming that the analyzed program is repetitive. A program is repetitive if all

parallel loops in the program are repetitive. A parallel loop is repetitive if array

elements written and read by a given thread executing the loop are the same for

every repetition (i.e. instance) of the loop. Two common reasons for a parallel loop

being not repetitive are that it is nested within one or more outer sequential loops

and the indices of those outer sequential loops appear in array accesses or the parallel

loop is non-rectangular (e.g., triangular) causing di↵erent elements to be accessed by

each instance of the loop.

For an ADFA, a parallel loop not being repetitive means that the Gen and Kill

sets for di↵erent instances of the loop will be di↵erent (i.e., variant), as shown in

Figure 2.1a. ADFAs that assume repetitive programs are forced to make conservative

assumptions when confronted with non-repetitive parallel loops. Generally, they as-

sume that any element accessed by any thread executing the parallel loop is accessed

by all threads executing the loop, and any array element accessed by any instance of

the loop is accessed by all instances of the loop.

5

The second issue with prior ADFAs is that they have insu�cient knowledge of the

partitioning semantics of parallel loops. They represent parallel loops as sequential

loops whose bounds have a parameterized thread number. We refer to this method

as explicit static partitioning.

Explicit static partitioning loses information about the bounds and the parti-

tioning scheme of the original non-partitioned iteration space. Insu�cient symbolic

information while analyzing cross-thread relationships often forces ADFAs to perform

dataflow operations (intersection, union and subtraction) conservatively, reducing ac-

curacy in the process.

Due to the aforementioned two issues, using previous ADFA frameworks in our

translation scheme leads to inaccurate descriptions about accessed array elements,

which increases the communication volume and lowers performance. This disserta-

tion will introduce compiler algorithms that enable ADFA frameworks to analyze

OpenMP programs while overcoming these sources of inaccuracy. In addition, our

compiler algorithms include general concepts that can be extended to traditional

ADFAs, beyond OpenMP.

The assumption of translated programs having repetitive communication patterns

has also been used to simplify the runtime system by previous OpenMP-to-MPI trans-

lators [10,11]. A repetitive communication has the same communication schedules for

all instances of a particular communication point. Therefore, the runtime overhead of

communication scheduling can be amortized because messages need to be computed

only once at runtime.

Byn contrast to repetitive communication, communicated array elements for non-

repetitive communication patterns vary across di↵erent instances of the communi-

cation points. Therefore, new communication schedules may be needed for every

instance, introducing the problem of potential runtime overhead. This dissertation

will introduce a new runtime communication scheduling scheme to overcome this

problem.

6

1.4 Specific Contributions

The key contribution of this dissertation is a fully automatic source-to-source

translation scheme from OpenMP to MPI. The translation scheme makes it feasible

for programmers to use standard OpenMP for computation-intensive algorithms on

clusters of ten to hundred nodes. We target programs with regular write data accesses

and both repetitive and non-repetitive communication patterns. By contrast, prior

translation schemes only handle programs with repetitive communication patterns.

The translation scheme consists of a compiler and runtime systems that include

the following new concepts (which we introduce to overcome the aforementioned chal-

lenges):

• A compiler producer-consumer array data flow analysis (PCDFA) for OpenMP

programs that accounts for the partitioning semantics.

We present PCDFA, an ADFA that collects reaching definitions and upwardly

exposed uses of shared array elements for each statement in an OpenMP pro-

gram. PCDFA includes the following concepts:

– The ⇡ operator: An abstract representation of partitioned iteration spaces

that captures the partitioning semantics implied by OpenMP directives.

The ⇡ operator retains information about original iteration spaces and the

partitioning scheme across threads that is relevant for accurate dataflow

operations.

– Delayed symbolic evaluation: A compiler algorithm that postpones the

evaluation of a conservative operation occurs during PCDFA’s computa-

tion by representing this operations as an unevaluated expression. Later

in the analysis, postponed unevaluated expressions are either simplified

or evaluated as further symbolic information becomes available. Should a

full compile-time evaluation of some operations not be possible, delayed

symbolic evaluation simplifies and retains these operations as unevaluated

expressions, allowing them to be accurately evaluated at runtime.

7

• Compiler analyses that extend the producer-consumer array data flow analysis

(PCDFA) for programs with non-repetitive parallel loops.

As explained in Section 1.3, classical ADFAs generate conservative array sec-

tion information when analyzing non-repetitive programs. To overcome this,

we present compiler algorithms that allow ADFAs to perform accurately when

confronted with loops or statements that have variant Gen and Kill sets, as

follows:

– The variant-set analysis: A compiler analysis that aims to find accurate

(i.e., not approximate) symbolic expressions of dataflow solutions for each

statement instance within enclosing loops. By properly representing vari-

ant Gen and Kill sets, dataflow operations can be extended to apply while

reasoning about di↵erent instances. A key insight is that a pattern often

holds for variant dataflow sets that allows the desired representation of

dataflow solutions to be computed using a bounded number of instances.

– The region-based analysis: A compiler analysis that prevents conservative

e↵ects from statements outside enclosing loops to preclude variant-set anal-

ysis. This is accomplished by forming enclosing loops in the program into

regions that get analyzed in isolation. Next, each enclosing loop is col-

lapsed into a single node that represents all iterations, and the combined

dataflow solution of all statement instances within the loop will be used

when analyzing the whole program.

• A Runtime communication scheduling scheme that incurs low runtime over-

heads.

We present a runtime communication scheduling scheme that have low run-

time overheads for both repetitive and non-repetitive communication patterns.

By exploiting an algebra of ⇡ operators, our scheme reduces the computation

needed to determine messages.

8

Using the aforementioned contributions, we implement a full automatic source-to-

souce OpenMP-to-MPI translation system and evaluate its performance on a cluster

of 64 cores using ten (six non-repetitive and four repetitive) OpenMP benchmarks.

On average, all ten benchmarks achieve a speedup of 3.8x over OpenMP on 8 cores.

In contrast, a state-of-the-art translator scaled only the four repetitive benchmarks

and obtained an average speedup of 3.3x. Our translation scheme was shown to

outperform a state-of-the-art translator for one repetitive benchmark by 1.44x and

achieve the same performance for the other three repetitive benchmarks. In addition,

we compare against available hand-coded MPI and UPC programs. On average,

the OpenMP-to-MPI translator achieves 54% and 60% of the performance of MPI

and UPC, respectively. This was achieved with no information beyond a standard

OpenMP program is required.

This dissertation targets OpenMP programs that have loop-level parallelism. Han-

dling other forms of parallelism such as task or function parallelism is beyond the

scope of this dissertation.

1.5 Dissertation Organization

This dissertation is organized as follows: Chapter 2 describes the producer-consumer

array data flow analysis (PCDFA). Chapter 3 presents compiler analyses that extend

the producer-consumer array data flow analysis (PCDFA) to non-repetitive OpenMP

programs. Both Chapter 2 and Chapter 3 include an early performance evaluation.

Chapter 4 describes the new communication scheduling scheme.

Chapter 5 puts everything together and describes the fully automated translation

scheme of OpenMP to MPI. We also present an evaluation of overall performance

on a cluster of 64 cores. Note that the performance evaluation presented in earlier

chapters is now being accumulated in Chapter 5.

Chapter 6 surveys related work. In Chapter 7, we conclude the dissertation and

discuss potential future work.

9

2. A NEW PRODUCER-CONSUMER ARRAY DATA

FLOW ANALYSIS FOR OPENMP

Array data flow analysis (ADFA) is a classical method for collecting array section

information in sequential programs. When applying ADFA to parallel OpenMP

programs, array access information needs to be analyzed in loops whose iteration

spaces are partitioned across threads. Insu�cient symbolic information while analyz-

ing cross-thread relationships of array section expressions and limitations in internal

representations often forces ADFAs to perform array section operations (intersection,

union and subtraction) conservatively, reducing accuracy.

In order to use ADFAs with OpenMP programs, previous approaches (such as [10,

11]) proposed expressing the bounds of partitioned parallel loops as symbolic functions

of the thread number. This allows the compiler to view a multi-threaded program as

a serial program with a parameterized thread number. We refer to this method as

explicit static partitioning.

Explicit static partitioning is reasonably accurate for representing array sections

collected within a parallel loop; however, when analyzing array sections collected

across multiple parallel loops, data flow computation tend to introduce inaccuracy

for the aforementioned reasons.

We introduce the ⇡ operator [17], an abstract representation of partitioned itera-

tion spaces that captures the partitioning semantics implied by OpenMP directives.

The ⇡ operator retains the knowledge of original iteration spaces and the partitioning

scheme across threads; this information is lost by explicit partitioning, but is relevant

for accurate array section operations.

Using the ⇡ operator, we present the producer-consumer array data flow analysis

(PCDFA) that collects prior produced and upwardly exposed consumed array sections

10

for an OpenMP program’s statements. PCDFA is essentially a classical ADFA that

takes the memory model semantics of OpenMP into consideration.

In addition, we introduce the concept of delayed symbolic evaluation: If a dataflow

step would yield a conservative result of an operation, the algorithm postpones eval-

uating this operation by representing it as an unevaluated expression. Later in the

analysis, postponed unevaluated expressions are either simplified or evaluated as fur-

ther symbolic information becomes available. Should a full compile-time evaluation of

some operations not be possible, delayed symbolic analysis simplifies and retains them

as unevaluated expressions, allowing them to be accurately evaluated at runtime.

We evaluate the performance of PCDFA by measuring (i)operation accuracy,

which measures the di↵erence between precise evaluation of PCDFA array section

operations and the actual evaluation (which may be approximate and conservative);

and (ii) array section complexity, which measures the number of terms in array sec-

tions’ expressions and delayed operations.

The remainder of this chapter is organized as follows: Section 2.1 introduces the

⇡ operator. Section 2.2 introduces PCDFA’s algorithm. Section 2.3 describes the

compiler framework that performs PCDFA. Section 2.4 describes delayed symbolic

evaluation. Section 2.5 provides an evaluation of the PCDFA framework.

2.1 The ⇡ Operator

The ⇡ operator is an abstract representation that captures the high level semantics

of partitioning while hiding its implementation. We describe how to use the ⇡ operator

for both iteration and data spaces.

2.1.1 Iteration Space Representation

Consider the iteration space (l:u:s), where l, u, and s are, respectively, the lower

bound, upper bound and stride expressions. The ⇡ operator represents partitioning

on this iteration space using the abstract form ⇡
x

(l:u:s), where x is the type of par-

11

Table 2.1: List of ⇡ operators. Block-cyclic partitioning currently is supported con-
servatively as dynamic partitioning.

⇡
b

(l : u : s)
Divide into chunks of approximately equal size and map to
threads in monotonic order (block partitioning)

⇡
c

(l : u : s)
Map elements to threads in round-robin fashion (cyclic par-
titioning)

⇡
m

(l : u : s) Map all elements to the master thread
⇡

s

(l : u : s) Map all elements to a single thread
⇡

d

(l : u : s) Mapping is unknown (dynamic partitioning)

(l : u : s)
A non-partitioned space (all elements are mapped to every
thread)

titioning applied to this iteration space as stated or implied by OpenMP directives

(see Table 2.1). ⇡ operators encapsulate high-level knowledge of partitioning schemes

and hide implementation details about how these schemes are actually computed.

The compiler parses OpenMP schedule directives of parallel loops and represents

their iteration spaces with the appropriate ⇡ operator from Table 2.1. ⇡
s

and ⇡
m

operators represent iteration spaces of loops that are within OpenMP single and

OpenMP master regions, respectively. The ⇡
m

operator also represents the iteration

space of a sequential loop, since loops that do not correspond to a parallel region

execute on the master thread.

Figure 2.1 shows an example of the internal representation by the ⇡ operator and

state-of-the-art explicit static partitioning.

2.1.2 Data Space Representation

In OpenMP, the mapping of array elements onto threads depends on the partition-

ing scheme in iteration spaces and the array subscript functions. Hence, a partitioned

data space of an array access can be represented using an algebra that applies array

subscript functions to ⇡ operators.

12

 #pragma omp parallel for schedule(static)
L1: for (i=1; i<=N; i++)
L2: for (j=0; j<=M; j++)
S1: A[i] [j] = ...

 #pragma omp parallel for schedule(static)
L3: for (i=0; i<=N-1; i++)
L4: for (j=1; j<=M; j++)
S2: … = A[i + 1] [j] + ...

(a) OpenMP input.

L1: πbfor (i=1; i<=N; i++)
L2: for (j=0; j<=M; j++)
S1: A[i] [j] = ...
B1:

L3: πbfor (i=0; i<=N-1; i++)
L4: for (j=1; j<=M; j++)
S2: … = A[i + 1] [j] + ...
B2:

barriers!

(b) The ⇡ operator.

T = omp_get_num_threads ()
p = omp_get_thread_num ()
I0: { l1[p], u1[p] }= block_partition (1, N , 1, T, p)
I1: { l2[p], u2[p] }= block_partition (0, N-1, 1, T, p)

L1: for (i=l1[p]; i<=u1[p]; i++)
L2: for (j=0; j<=M; j++)
S1: A[i] [j] = ...
B1:

L3: for (i=l2[p]; i<=u2[p]; i++)
L4: for (j=1; j<=M; j++)
S2: … = A[i + 1] [j] + ...
B2:

barriers!

original iteration space!

(c) Explicit static partitioning.

Fig. 2.1.: The internal representation of an OpenMP program. The explicit static par-
titioning method explicitly expresses loop partitions; it introduces new complex loop
bounds that are parameterized by the thread number. By contrast, the ⇡ operator
keeps both original iteration spaces and the partitioning semantics.

We first describe the regular section descriptor (RSD) [18], a previously introduced

array section representation that is accurate for array accesses with linear subscripts.

Let A[f1][f2]. . .[fm

] be an m-dimensional array access, where f
j

is the subscript ex-

pression for dimension j, 1 j m. Let A be contained in a loop nest with depth

n, where the outer most loop has the index variable i1 and the innermost loop has

the index variable i
n

. Let array subscript f
j

be a linear function of 0 or 1 indices in

13

i
1

, . . . , i
n

, i.e., subscripts are not coupled. The same index can appear in more than

one dimension. Using RSDs, the array section of A is (l1:u1:s1). . . (lm:u
m

:s
m

), where

the bounds in (l
j

:u
j

:s
j

) are computed from applying array subscript f
j

to the bounds

of corresponding iteration spaces.

We build on the RSD and introduce the ⇡RSD representation, a simple extension

of the RSD representation such that ⇡ operators can represent dimensions that have

partitioned data spaces. For example, ⇡
b

(l1:u1:s1)(l2:u2:s2) has a block-partitioned

data space in the first dimension and a non-partitioned data space in the second

dimension.

A partitioned data space for an array access with a linear subscript function is

computed by the following algebraic property:

a + b⇥ ⇡(l : u : s) = ⇡(a + b⇥ l : a + b⇥ u : b⇥ s)

. For example, consider the read array access A[i+1][j] of statement S2 in Fig-

ure 2.1b. The iteration spaces corresponding to the first and second dimensions

are ⇡
b

(0:N�1:1) and (1:M:1), respectively. Therefore, the read array section of this

access is ⇡
b

(1:N:1)(1:M:1).

A partitioned data space for an array access with a non-linear subscript function

(e.g.,A [B [j]]) is conservatively approximated (using overestimation or underestima-

tion). Note that there are no accuracy constraints for linear subscript functions that

have non-linear bounds. For example, if A[1+i] is being accessed inside a parallel loop

with the partitioned iteration space ⇡
b

(1:B(j):1), then the partitioned data space of

this array access is ⇡
b

(2:1+B(j):1).

In this work, we build on RSDs to represent partitioned data spaces. However,

our new representation (the ⇡ operator) requires no alteration to RSDs’ expressions

or operations. In the implementation, ⇡ operators are essentially notations that are

attached to array section expressions to describe additional information. This abstrac-

14

tion allows the ⇡ operator to be integrated with other array section representations

as well.

2.1.3 The ⇡ Operator VS Explicit Static Partitioning

Compared to explicit static partitioning, the abstract representation provided by ⇡

operators is more concise and enables improved cross-thread analysis of array section

expressions. This is because: (i) it hides the complexity of partitioning and keeps

expressions simple (functions of original data spaces), and (ii) it provides high-level

knowledge about the partitioning semantics.

Consider the written array section in Statement S1 and the read array section in

statement S2 in the OpenMP code of Figure 2.1a. With explicit static partitioning,

the written and the read sections are (l1[p]:u1[p]:1)(0:M:1) and (l2[p]+1:u2[p]+1:1)(1:M:1),

respectively (see Figure 2.1c). Because the number of threads and the thread num-

ber are unknown at compile time, the cross-thread relationships of the parameterized

bounds are also unknown. For example, the result of an intersection operation is un-

known. With the ⇡ operator, the written and the read sections are ⇡
b

(1:N:1)(0:M:1)

and ⇡
b

(1:N:1)(1:M:1), respectively (see Figure 2.1b). Partitioned dimensions in both

sections are shown to be the same. For example, the result of an intersection operation

is ⇡
b

(1:N:1)(1:M:1). We discuss array section operations in Section 2.2.

In general, explicit static partitioning explicitly represents the complex loop par-

titions, which tends to lead to inaccurate cross-thread analysis of array section ex-

pressions and therefore inaccurate array section operations. The ⇡ operator improves

this accuracy.

2.2 The Analysis Algorithm

The producer-consumer array data flow analysis (PCDFA) collects prior produced

and future consumed array section information by each thread for the statements in

an OpenMP program.

15

DEF

in

(e) =
[

x2Pred(e)

DEF

out

(x)

DEF

out

(e) =

(
� , e is barrier node⇣
DEF

in

(e)�KILLall(e)

⌘ S
wGEN(e) , otherwise

Fig. 2.2.: Reaching Definitions analysis. Note that KILLall is across all threads, all
other sets are for the current thread.

USE

out

(e) =
[

x2Succ(e)

USE

in

(x)

USE

in

(e) =
⇣
USE

out

(e)�KILLall(e)

⌘ [
rGEN(e)

Fig. 2.3.: Liveness analysis. Note that KILLall is across all threads, all other sets are
for the current thread.

We first describe the Producer-Consumer Flow Graph (PCFG) [19]. PCFG is a

Control Flow Graph that represents both the control flow and the relevant memory

model semantics of an OpenMP program. In particular, barrier nodes, which denote

points where memory is to be made coherent across threads, are placed at the end

of parallel loops that do not have an OpenMP nowait directive. Each node in the

PCFG corresponds to a program statement or an OpenMP directive.

For a node e in PCFG: (i) Succ(e) and Pred(e) are the sets of successor and

predecessor statements, respectively; (ii) wGEN(e) and rGEN(e) contain the shared

array elements that are written and read, respectively, by a thread in e; and (iii)

KILLall(e) contains the aggregated shared array elements that are written by all

threads in e.

The PCDFA consists of Reaching Definition analysis (Figure 2.2) and Liveness

analysis (Figure 2.3). For every node e in PCFG: (i) Reaching Definition analysis

computes DEF
in

(e) and DEF
out

(e), which are the reaching definitions of shared array

16

elements at the entry and the exit of e, receptively, for a thread; and (ii) Liveness

analysis computes USE
in

(e) and USE
out

(e), which are the upwardly exposed uses of

shared array elements at the entry and the exit of e, respectively, for a thread.

The PCDFA is similar to classical Liveness and Reaching Definition analyses, but

takes the coherence semantics of OpenMP’s memory model into consideration, as

follows: (i) The definitions DEF
in

(e) and DEF
out

(e) are the result of writes that have

occurred since the last barrier (i.e., the most recent produced data since the last global

coherent point), and (ii) KILLall(e) contains the aggregated kills across all threads.

This is because an element killed in a thread is killed in every thread (their copy of

this element becomes invalid).

2.3 The Compiler Framework

We now describe the compiler framework that performs PCDFA while using the

⇡ operator for representing partitioned iteration and data spaces. The compiler uses

a set of array sections (represented with ⇡RSDs) to represent Gen, Kill, use and

definition sets.

First, the compiler computes Gen (wGEN and rGEN) and Kill (KILLall) sets for

each node in PCFG. Then, the compiler performs PCDFA. During PCDFA’s compu-

tation, the analysis needs to perform array section operations (as shown in Figure 2.2

and Figure 2.3). We classify operations into two types: tractable or intractable op-

erations. An operation is tractable if the partitioning semantics of its result can be

described using a known partitioning scheme in Table 2.1. Otherwise, the operation

is intractable.

For example, the intersection operation of ⇡
b

(1:N:1) and (0:N:1) is tractable (can

be statically computed) and the result is ⇡
b

(1:N:1). This is because all partitions

before the intersection operation are the same after performing the operation and

therefore can be described using the ⇡
b

operator with the same original data space.

On the other hand, the intersection operation of ⇡
b

(1:N:1) and (2:N:1) is intractable.

17

B0:

L1: πbfor (i=1; i<=N; i++)
S1: A[i] = ...
B1:

L2: πbfor (i=0; i<=N-1; i++)
S2: A[i] = ...
B2:

L3: πbfor (i=0; i<=N; i++)
S3: … = A[i]
B3:

USEout(B2) = πb(0:N:1) !

USEout(B1) = πb(0:N:1) !

USEout(B0) = πb(0:N:1) !

USEout(B3) = Ф !

conserva*ve!

(a) Without delayed symbolic evaluation.

B0:

L1: πbfor (i=1; i<=N; i++)
S1: A[i] = ...
B1:

L2: πbfor (i=0; i<=N-1; i++)
S2: A[i] = ...
B2:

L3: πbfor (i=0; i<=N; i++)
S3: … = A[i]
B3:

USEout(B2) = πb(0:N:1) !

USEout(B1) = πb(0:N:1) - (0:N-1:1) !

USEout(B0) = πb(0:N:1) - (0:N-1:1) – (1:N:1) = Ф!

USEout(B3) = Ф !

accurate!

(b) With delayed symbolic evaluation.

Fig. 2.4.: The result of PCDFA at barrier nodes. Delayed Symbolic evaluation avoids
conservative approximation of the intractable subtract operation at barrier B1.

This is because there is at least one partition (which has the element 1) that is changed

while performing the intersection operation.

The algorithms for performing union, intersection and subtraction operations for

⇡RSD sections are as described for RSD sections [18]. However, their results are

kept only if they are tractable. Intractable operations would lead to approximation.

Section 2.4 provides an accurate solution for intractable operations.

As discussed earlier, we build on RSDs to represent partitioned data spaces. ⇡

operators require no alteration to RSDs’ expressions or operations. In the implemen-

tation, ⇡ operators are notations that are attached to array section expressions to

abstractly describe partitioning semantics.

2.4 Delayed Symbolic Evaluation

We introduce delayed symbolic evaluation to improve the accuracy of PCDFA’s

computation in the presence of intractable operations. At a dataflow step that has

an intractable operation, the analysis delays this operation to later dataflow steps

by representing it as an unevaluated expression. The key observation is that the

18

unevaluated expressions at later dataflow steps can be simplified (i.e., do not grow in

complexity) because additional symbolic information becomes available.

Subtraction operations are most critical in this context. To represent the unevalu-

ated expression of a subtraction operation, we extend the ⇡RSD representation and in-

troduce the ERSD representation, as follows: ERSD = ⇡RSD1�⇡RSD
2

�. . .�⇡RSD
n

,

where n is the number of terms. During PCDFA’s computation, operations with

ERSD sections get performed or simplified using the mathematical rules of set the-

ory.

The unevaluated expression of an intractable union operation is a set of two sec-

tions. In PCDFA, unevaluated intersections operations are not needed. However,

in general, the unevaluated expression of an intersection operation can also be rep-

resented as a set of sections, i.e., a set can have an implicit union or intersection

operation based on the dataflow equations of the ADFA.

The ERSD representation retains subtracted sections that would otherwise be lost

by conservative approximation. In doing so, ERSDs (i) provide additional symbolic

information at later computation steps, which allow simplification, and (ii) allow

PCDFA to terminate with simplified and unevaluated but accurate expressions of in-

tractable operations. Expressions that remain unevaluated when PCDFA terminates

will be evaluated at runtime with minimal cost.

Consider PCDFA’s computation result for the OpenMP example code in Fig-

ure 2.4. Without delayed symblic evaluation, intractable subtract operations get

approximated. This yields inaccurate array sections at barriers B0 and B1, as shown

in Figure 2.4a. In Figure 2.4b, delayed symbolic evaluation yields accurate array

sections because: (i) the intractable subtract operation at barrier B1 is postponed,

and (ii) the symbolic information at barrier B0 is su�cient to perform the postponed

subtraction operation from B1 accurately.

An important property of PCDFA is that subtracted terms (⇡RSD
2

, . . . , ⇡RSD
n

)

in ERSD expressions are KILLall sets (see Figure 2.3 and Figure 2.2). These sets

19

contain non-partitioned RSD sections that the analysis, in practice, can merge (i.e.,

minimize) into a small number of terms (no more than 3 terms in tested benchmarks).

As a concept, delayed symbolic evaluation is orthogonal to the ⇡ operator and can

be applied with other representations such as explicit static partitioning. However,

the additional complexity of doing so is significantly higher than in the case of ⇡

operators, as will be shown in our performance evaluation.

2.5 Performance Evaluation

We evaluate the performance of PCDFA using both representations, the ⇡ operator

and state-of-the-art explicit static partitioning. We also evaluate the impact of using

delayed symbolic evaluation on each representation.

2.5.1 Performance Metrics

We evaluate using two metrics: operation accuracy and array section complexity.

Operation accuracy describes the di↵erence between precise evaluation of PCDFA

array section operations and the actual evaluation (which may be approximate and

conservative). Array section complexity measures the number of terms in array sec-

tions’ expressions, as well as the number of delayed subtract operations.

To measure PCDFA’s operation accuracy, we compute the volume of the overlap

between prior produced and future consumed (DEF
in

and USE
out

) at barriers (i.e.,

communication volume). The operation accuracy is then given as a percentage of

the ideal volume to this volume. The ideal volume is obtained by a separate runtime

computation of PCDFA, where all operations are kept precise due to available full

knowledge about cross-thread relationships at runtime. We choose communication

volume because its accuracy directly impacts the performance of several optimizations

such as barrier elimination [20] and OpenMP-to-MPI translation [10].

A 100% operation accuracy means that no conservative PCDFA operations were

performed. Note that operation accuracy does not account for the inaccuracy that

20

results from approximating indirect memory accesses or other non-linear subscripts

that cannot be represented accurately by RSDs.

We measure array section complexity by counting the number of array section

terms and delayed subtraction operations. This metric represents the work (i.e., the

overhead) needed to evaluate array section expressions at runtime.

2.5.2 Experimental Setup

We implemented the PCDFA compiler frameworks, including ⇡ operators and

explicit static partitioning, in the Cetus Compiler Infrastructure [21]. We also imple-

mented a runtime tool that receives produced and consumed array sections from the

compiler and determines operation accuracy and array section complexity. Figure 2.5

shows an example of the function calls used by the compiler to pass produced and

consumed array sections to the runtime tool.

We evaluate using four OpenMP benchmarks taken from the NAS Parallel Bench-

marks suite [22]: FT, SP, BT and SP. All functions were automatically inlined by

the Cetus Compiler. FT benchmark was optimized using the owner alignment tech-

nique presented in [11], which was applied before performing PCDFA with all FT

experiments.

2.5.3 Evaluation of the Producer-Consumer Array Data Flow Analysis

Accuracy

Figure 2.6 shows the operation accuracy and the array section complexity for BT,

SP, CG and FT. Without delayed symbolic evaluation, on average, the ⇡ operator

and explicit static partitioning have operation accuracy of 76% and 46%, respectively.

In addition, the ⇡ operator reduces array section complexity by 33%, compared to

explicit static partitioning. When applying delayed symbolic evaluation, both repre-

sentations have 100% operation accuracy, while increasing array section complexity by

1.96x with explicit static partitioning and by no more than 1.1x with the ⇡ operator.

21

pass_def (6, A, 2, 0, BLOCK, 2, N - 1, 1, 0, M, 1)

barrier_id

array_name

num_of_dims

partitioned_dim_num

partitioning_type section_bounds

pass_use (6, A, 2, 0, BLOCK, 2, 1, N, 1, 1, M, 1, 3, N, 1, 3, M, 1)

barrier_id

array_name

num_of_dims

partitioned_dim_num

partitioning_type

first_term_bounds second_term_bounds

num_of_terms

second_dim first_dim

def = πb(2 : N − 1 : 1) (0 : M : 1)
use = πb(1 : N : 1) (1 : M : 1) − (3 : N : 1) (3 : M : 1)

Fig. 2.5.: An example of the function calls used by the ⇡ operator’s compiler to
pass produced and consumed array sections to the runtime tool for a particular bar-
rier. Function calls only specify one partitioned dimension because all tested bench-
marks have one-dimensional parallelism (no nested parallelism). In the case of explicit
static partitioning, the same function calls are used except that there are no parti-
tioned dim num or partitioning type fields. The total number of function calls is equal
to the total number of array sections.

Explicit static partitioning has insu�cient knowledge of cross-thread relationships

during PCDFA’s computation. Without delayed symbolic evaluation, this causes a

large number of conservative subtraction operations and explains the inferior opera-

tion accuracy of explicit static partitioning compared to the ⇡ operator. This holds

for all benchmarks except for CG. CG is a case where subtract operations are less fre-

quent and can be performed accurately with explicit static partitioning. Our solution

obtains the same accuracy for CG but reduces array section complexity to 70%.

Figure 2.7 shows the number of generated array sections by PCDFA for the ⇡

operator and explicit static partitioning. It also shows the impact of delayed sym-

bolic evaluation on both representations. For two benchmarks (FT and SP), using

delayed symbolic evaluation with the ⇡ operator reduced the total number of array

22

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

BT SP CG FT

Explicit Partitioning

π operator

Explicit Partitioning +
Delayed Symbolic Evaluation
π operator + Delayed
Symbolic Evaluation

(a) Operation accuracy (higher is better). 100% means all operations are performed accu-
rately.

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

BT SP CG FT

Explicit Partitioning

π operator

Explicit Partitioning +
Delayed Symbolic Evaluation
π operator + Delayed
Symbolic Evaluation

(b) IR complexity (number of terms and delayed operations) normalized to IR complexity
obtained with explicit static partitioning (lower is better).

Fig. 2.6.: Operation accuracy and IR complexity of PCDFA averaged over 8, 16, 32
and 64 threads.

23

0
50

100
150
200
250
300
350
400

Explicit
Partitioning

π operator Explicit
Partitioning
+ Delayed
Symbolic
Evaluation

π operator +
Delayed

Symbolic
Evaluation

BT

0
50

100
150
200
250
300
350
400

Explicit
Partitioning

π operator Explicit
Partitioning
+ Delayed
Symbolic
Evaluation

π operator +
Delayed

Symbolic
Evaluation

SP

0

10

20

30

40

50

Explicit
Partitioning

π operator Explicit
Partitioning +

Delayed
Symbolic
Evaluation

π operator +
Delayed

Symbolic
Evaluation

CG

0

10

20

30

40

50

Explicit
Partitioning

π operator Explicit
Partitioning +

Delayed
Symbolic
Evaluation

π operator +
Delayed

Symbolic
Evaluation

FT

1 term (RSD) 2 terms 3 terms or more

Fig. 2.7.: The number of array sections generated by PCDFA, categorized into RSDs
(which have 1 term) and ERSDs (which can have 2 terms or more). Without delayed
symbolic evaluation, ⇡ operators lead to 33% fewer array sections, on average, than
explicit static partitioning. When applying delayed symbolic evaluation, the ratio
of generated ERSDs (delayed subtract operations) is below 8% with the ⇡ operator
and is 26%�39% with explicit static partitioning. The largest number of terms in an
ERSD section is 3 with ⇡ operators and 5 with explicit static partitioning.

sections. This is due to the additional symbolic knowledge provided by delayed sym-

bolic evaluation during PCDFA’s computation, which increases accuracy and reduces

the number of array sections. With explicit static partitioning, delayed symbolic eval-

uation has high complexity because of the insu�cient symbolic information during

PCDFA’s computation (i.e., large number of conservative subtract operations were

delayed).

In general, the ⇡ operator is a better representation than explicit static partition-

ing. In addition to being more concise, the ⇡ operator improves operation accuracy

24

and reduces the complexity of computed array sections. Delayed symbolic evalua-

tion is a useful technique for both representations that can eliminate conservative

operations. Its complexity, however, is dependent on the representation.

The ⇡ operator and delayed symbolic evaluation provide general concepts that

can be extended to other parallel programs, beyond OpenMP. To use the ⇡ operator,

user directives or compiler analyses are needed to retrieve high level information

about the partitioning applied to parallel loops. In addition, the abstraction allow ⇡

operators to be implemented as annotations that describe parallel semantics without

the need to alter the implementation of array section representations or operations

by the compiler. To use delayed symbolic evaluation, the compiler needs to represent

unevaluated expressions of delayed operations such that they can be simplified along

the dataflow computation.

25

3. EXTENDING THE PRODUCER-CONSUMER ARRAY

DATA FLOW ANALYSIS TO NON-REPETITIVE

OPENMP

An analysis that determines the array elements accessed by a loop or an instance

of a loop is a classical problem in optimizing compilers targeting both sequential

and parallel programs. Array Data Flow Analysis (ADFA) is a traditional compiler

analysis that has been heavily used for analyzing accessed array elements in sequential

programs, and also have been extended to parallel programs. When analyzing an

instance of a loop (or loop nest), current ADFAs develop dataflow information that

is invariant across all instances of the loop. In programs where di↵erent instances of

the loop read and write di↵erent array elements, the dataflow analysis result, while

valid for all instances, will be conservative for any given instance.

Common cases where the aforementioned weakness of ADFA occurs are in triangu-

lar loop nests or, more generally, where the indices of enclosing loops appear in array

accesses of inner loops. For an example, consider the loop nest in Figure 3.1. Let L1

be the loop where the compiler performs optimizations while taking into considera-

tion accessed array elements in multiple instances. Traditional ADFAs will force Gen

and Kill sets of L1 to be invariant and therefore approximate them over all iterations

of L0. This leads ADFAs to generate conservative result.

In this context, we build on traditional ADFAs and introduce the producer-

consumer array data flow analysis (PCDFA) for analyzing OpenMP programs. Simi-

lar to traditional ADFAs, PCDFA generates conservative array section information in

non-repetitive OpenMP programs 1. This can preclude the performance of our trans-

1An OpenMP program is non-repetitive if it has at least one parallel loop with variant Gen or Kill
sets, otherwise, the program is repetitive

26

L0: for (i = 1; i <= N; i++) {

L1: for (k = i ; k <= N; k++)
S1: x [k] = x [k] + …

 }

Fig. 3.1.: Due to the triangular access pattern, the accessed array elements for indi-
vidual instances of the inner nested loop L1 (i.e., Gen and Kill sets) vary for di↵erent
iterations of the enclosing loop L0.

lation scheme because the accuracy of PCDFA’s result impacts the communication

volume.

In this Chapter, we present algorithms that overcome this weakness in current

ADFAs, and in doing so, improve the accuracy of the information obtained. Our

solution retains the generality of ADFA frameworks but most beneficial for the afore-

mentioned cases.

We divide our solution into two parts. Let an enclosing loop be a loop that

has inner loops with variant Gen and Kill sets. The first part is the variant-set

analysis, which aims to find accurate (i.e., not approximate) symbolic expressions of

dataflow solutions for each statement instance within enclosing loops (we discuss an

exception in the second part of the solution). By properly representing variant Gen

and Kill sets, dataflow operations can be extended to apply while reasoning about

di↵erent instances. A key insight is that a pattern often holds for variant dataflow

sets that allows the desired representation of dataflow solutions to be computed using

a bounded number of instances.

In some cases, conservative e↵ects from statements outside enclosing loops may

cause variant-set analysis to develop conservative information. Figure 3.2 shows an

example of such a case. To overcome this, the second part of our solution is the region-

based analysis, where enclosing loops in the program form regions that get analyzed

27

L0: for(i = 1 ; i <= N ; i++) {

L1: for (k = i ; k <= N; k++)
S1: x [k] = x [k] + …

 }
 /* verification code */
L2: for (k = 1; k <= N; k++)
S2: verify_value (x[k]) ;

Fig. 3.2.: Consider a parallelization transformation where explicit communication is
generated. The access pattern for consumers inside the enclosing loop L0 is triangular,
and for consumers outside the loop is rectangular. Combining use information for
these patterns may lead individual instances of the loop L1 (where data is produced)
to generate excessive communication.

in isolation using variant-set analysis. Next, each enclosing loop is collapsed into a

single node that represents all iterations, and the combined dataflow solution of all

statement instances within the loop will be used when analyzing the whole program.

By contrast to the classical analysis, the region-based analysis computes dataflow

solutions within an enclosing loop for the e↵ects in this loop only while the combined

e↵ect of all iterations is used for dataflow solutions outside the loop. By doing so,

both dataflow solutions inside and outside enclosing loops are accurately determined.

The dataflow solutions produced by region-based analysis can be beneficial for

many compiler transformations. For example, communication inside the enclosing

loop L0 in Figure 3.2 can be generated for producers and consumers inside the loop,

while communication with the outside consumers can be deferred to the last iteration.

In general, region-based analysis cannot be applied when compiler transformations

require dataflow solutions within enclosing loops to account for the full e↵ect of the

program.

Our solution can be applied to traditional ADFAs with sequential programs, and

extended to ADFAs with parallel programs. In this dissertation, we demonstrate the

28

USE
out

(e) =
[

x2Succ(e)

USE
in

(x)

USE
in

(e) =
⇣
USE

out

(e)�KILL(e)
⌘ [

GEN(e)

Fig. 3.3.: Liveness analysis.

utility of our compiler analyses into improving the accuracy of PCDFA and reduc-

ing communication while translating non-repetitive OpenMP programs. By doing so,

our translation scheme e�ciently scales non-repetitive OpenMP programs to clus-

ters. In contrast, prior translation schemes [10–13] only covered the easier-to-analyze

repetitive OpenMP programs (where Gen and Kill sets are invariant).

The remainder of this chapter is organized as follows: Section 3.1 and Section 3.2

present variant-set and region-based analyses, respectively. Section 3.3 extends these

analyses to PCDFA. Section 3.4 evaluates the accuracy impact of using variant-set and

region-based analyses for six non-repetitive and four repetitive OpenMP benchmarks.

3.1 Variant-Set Analysis

We present the variant-set analysis, which performs ADFAs while allowing Gen

and Kill sets that change from iteration to iteration of the enclosing loops.

3.1.1 A Running Example

We use classical Liveness analysis as an example to illustrate our solution. Liveness

analysis determines the upward exposed uses of array elements for each statement in

a sequential program (see Figure 3.3). Figure 3.4 shows the corresponding control

flow graph (CFG). Applying classical analysis to the non-repetitive code example in

Figure 3.1 would result in conservative Use sets information, as shown in Figure 3.5.

29

i = 1

i <= N

i = i + 1

for (k = i ;k <= N;k++)
 x [k] = x [k] + …

Entry node!

Exit node

Initial node!
back-edge of
outer loop L0

For simplicity, assume
inner loop L1 is a single node

e3!

e2!

e1!

e0!

Fig. 3.4.: The control Flow Graph (CFG) representation for the example in Figure 3.1.

i <= N

i = i + 1
USEout(e3) = { (1 : N : 1) } !

 USEin(e2) = { (1 : N : 1) } !

USEin(e3) = { (1 : N : 1) } !

USEout(e2) = { (1 : N : 1) } !

 USEout(e1) = { (1 : N : 1) } !
 USEin(e1) = { (1 : N : 1) } !

e3!

e2!

e1!

i = 1 e0!

GEN(e2)= { (1 : N : 1) }
KILL (e2)= Φ

 USEout(e0) = { (1 : N : 1) } !
 USEin(e0) = { (1 : N : 1) } !

for (k = i; k<=N; k++)
 x [k] = x [k] + …

Fig. 3.5.: Classical Liveness analysis applied to the example in Figure 3.1. In order
to make GEN(e2) and KILL(e2) invariant, they are approximated over all instances
of e2 (gens get overestimated and kills get underestimated).

3.1.2 Approach

Our goal is to find dataflow solutions that are accurate by using variant Gen and

Kill sets. To do so, the key challenges that we address are (i) Representing Gen and

Kill sets accurately for each statement instance (i.e., each iteration in the CFG cycle);

and (ii) Extending dataflow operations so that they can operate on dataflow sets that

30

involve di↵erent instances. We address these challenges using two key insights: (i)

Individual instances of Gen and Kill sets can often be represented using expressions

that are functions of enclosing loop indices; and (ii) The algebraic relationship of

iterations (which form a sequence) can be exploited to perform operations on dataflow

set expressions that contain di↵erent instances.

Our solution is enabled by a pattern that we have found to be common: dataflow

solutions are functions of Gen and Kill sets for only a bounded number of instances.

Using this fixed dataflow pattern, our solution traverses a bounded number of itera-

tions in the CFG cycle representing the enclosing loop and finds dataflow solutions

that are valid for every instance.

3.1.3 The Analysis Algorithm

Figure 3.6 describes the dataflow computation of a backward ADFA performed

using variant-set analysis (forward ADFAs are analogous). The statements within

the enclosing loop L may have variant Gen and Kill sets. During the dataflow com-

putation, the iterations of each enclosing loop L in the CFG are examined; traversing

the back-edge of L indicates that a new iteration is now being examined. In this case,

a special function S is invoked to enable dataflow operations to operate on dataflow

sets from previously examined iterations. Below, we explain the dataflow set repre-

sentation, the function S, and the convergence scheme of variant-set analysis in more

detail. For the presentation, we assume the CFG is traversed backwards starting from

the program exit node.

Dataflow sets use regular section descriptors (RSDs) [18] to represent array

sections. Given a multi-dimensional array access, each dimension is represented using

symbolic lower, upper and stride expressions that can be variant (often functions of

the enclosing loop index) and either linear or non-linear. Our solution is accurate

for linear expressions and handles non-linear expressions conservatively. In addition,

our solution allows symbolic reasoning to be performed for each dimension in RSDs

31

OUT(e , i) =
[

x2Succ(e)

IN⇤(x , i) , where:

IN⇤(x , i) =

8
<

:

S
�
IN(x, i) , L

�
, e! x is a back-edge of

an enclosing loop L
IN(x , i) , otherwise

IN(e , i) =
⇣
OUT(e , i)�KILL(e , i)

⌘ [
GEN(e , i)

Fig. 3.6.: A backward dataflow analysis performed using variant-set analysis. i is
the index of the enclosing loop L being currently examined. When traversing the
back-edge of L, the function S (shown in Figure 3.7) is invoked.

independently. This can be useful where the analysis is conservative for dimensions

with non-linear bounds and accurate for dimensions with linear bounds, achieving an

accurate overall analysis (e.g., two array sections can be shown to be independent

by proving independence for one dimension). This dissertation uses RSDs; however,

other array section representations can also be used with variant-set analysis.

The function S is invoked when a new iteration is being examined. Consider

the two array sections RSD1(i
0) and RSD2(i), where i0 and i are the previously and

currently examined iterations, respectively. Using the algebraic relationship of itera-

tions, function S expresses i0 as a function of i. By doing so, dataflow operations on

RSD1(i
0) and RSD2(i) can be performed in the usual way.

As shown by Figure 3.7, function S expresses each array section in dataflow sets

from the previously examined iteration as expressions of the current iteration. A

special case is when a dependency test (described in Figure 3.8) proves that a par-

ticular array section from the previously examined iteration has array elements that

are independent from the array elements of Kill sets within the enclosing loop L. In

this case, dataflow sets for all previously examined iterations will be fully exposed

32

to the new examined iteration. In cases where the dependency test cannot prove or

disprove dependence (result is unknown), function S produces a conservative result.

Convergence occurs, as in classical ADFA, when a fix-point is reached. The only

di↵erence is that our solution has variant dataflow sets in the enclosing loop L and

thus symbolic expressions need to be compared.

For an enclosing loop L, a fix-point is reached when the aforementioned fixed

dataflow pattern holds. In this pattern, the array elements of Gen sets in a previously

examined iteration i2 are fully covered by the array elements of Kill sets in a later

examined iteration i1 and the distance d between i1 and i2 is constant. In this case,

reaching a fix-point is bounded because dataflow sets are functions of Gen and Kill

sets for the iterations i1, i1 + s, . . . , i2 only, where s is the stride of L. An enclosing

loop can have multiple fixed dataflow patterns (see Figure 3.9). Array elements in

Gen sets that are independent from array elements in Kill sets within the enclosing

loop L are handled as a special case (as shown in Figure 3.7).

In Figure 3.1, the enclosing loop has a fixed dataflow pattern because consumed

array elements in each iteration i + 1 (Gen sets) are fully covered by iteration i

(Kill sets). Fixed dataflow patterns are often found in the algorithms of numerical

applications. All of our tested benchmarks have these patterns except for one program

that we included specifically to exercise this corner case.

Figure 3.10 performs Liveness analysis using variant-set analysis for the example

in Figure 3.1. After the analysis reaches the initial node e0, Use sets are no longer

variant within L0.

3.1.4 Implementation

The function S performs the dependency test given by Figure 3.8. This test

represents a classical dependency test found in automatic parallelizers. In our im-

plementation, we use an existing stand-alone Satisfiability Modulo Theories (SMT)

33

// L is an enclosing loop and i is the iteration being currently examined
// IN (L_entry , i) is the data flow set from the previously examined iteration
S (IN (L_entry , i) , L) {

 (l : u : s) = (lower bound: upper bound: stride) of L’s iteration space
 KILLiteration (i) = kills of all statements in the iteration i
 DFSsubstituted = Φ

 for each section sec(i) in IN (L_entry , i) and sec(i) is variant do

 if dependency_test (sec(i), KILLiteration (i), L) returns true do
 T = sec(substitute i by i + s) // i + s is previously examined iteration
 else // sec is independent -- special case
 all_previous_iterations = { i + s, i + 2 x s, i + 3 x s, … , u }
 T = Uj �#all_previous_iterations sec (substitute i by j)
 end if

 add T to USEsubstituted
 end for
 return USEsubstituted

}

Fig. 3.7.: The function S for backward dataflow analyses (where previously examined
iterations are later executed iterations). The dependency test is shown in Figure 3.8.

solver [23] to perform the dependency test. The analysis sends queries to the SMT

solver with the dependency test parameters.

The SMT solver [23] can also compute integer solutions. In Figure 3.8, d represents

the dependency distance between iterations i1 and i2. Using the distance d, the SMT

solver finds, for a given array section sec(i) in Figure 3.7, the distance to the next

iteration with dependent Kill sets. Therefore, variant-set analysis can skip examining

the d�1 iterations in between (which have independent Kill sets) and instead account

for them when performing the substitution, which now becomes sec(i+s)[· · ·[sec(i+

d⇥ s).

With our implementation, fix-points are reached in our tested benchmarks with

no more than three examined iterations, except for one case. In that case, reach-

ing a fix-point can be unbounded because a fixed dataflow pattern is not present.

When reaching a user-specified number of iterations (a threshold), variant-set analy-

34

// L is an enclosing loop
// i is the loop index of L
// sec1(i) and sec2(i) are array sections
dependency_test (sec2(i) , sec1(i) , L) {

 Let d, p , q be integers
 set i1 = i
 set i2 = i + d x s
 set d ≥ 1 // i2 executes after i1 and i2 ≠ i1
 set d < iteration count of L
 set q � sec1 (substitute i by i1)
 set p � sec2 (substitute i by i2)
 set p = q
 if the system has an integer solution do
 return true // dependent
 else
 return false // independent

}

Fig. 3.8.: The dependency test solves a system of equations and constraints to
proves/disproves dependence between two array sections sec1 and sec2 in an enclosing
loop L such that sec1 occurs before sec2.

L0: for (i = 1; i <= N; i++) {

L1: for (k = 1 ; k <= N; k++)
S1: … = x [i - 2] [k] + x [i - 4] [k]

L2: for (k = 1 ; k <= N; k++)
S2: x [i][k] = …

 }

Fig. 3.9.: Assuming a backward analysis where reads are Gens and writes are Kills,
the enclosing loop L0 has two fixed dataflow patterns with distances 2 and 4.

sis restarts while approximating variant Gen and Kill sets, obtaining the same result

as the classical dataflow analysis.

The function S in Figure 3.7 also has a special case where a union operation

may be performed for an unbounded number of array sections. In some cases, it

35

i <= N

i = i + 1
USEout(e3, i) = Φ !

 USEin(e2, i) = { (i : N : 1)} !

USEin(e3, i) = Φ !
USEout(e2, i) = Φ !

 USEout(e1, i) = { (i : N : 1)} !
 USEin(e1, i) = { (i : N : 1)} !

e3!

e2!

e1!

i = 1 e0!

 GEN(e2, i)= { (i : N : 1)}
 KILL (e2, i)= { (i : N :1) }

for (k = i; k<=N; k++)
 x [k] = x [k] + …

(a) The first examined iteration.

i = i + 1

USEout(e3, i) !
e3!

USEin(e1, i) !

back-edge of L0

previous iteration
current iteration

USEout (e3, i) = S (USEin (e1, i), L0)
Previously examined iteration is i + 1
USEout (e3, i) = { (i + 1 : N : 1) } !

= { (i : N : 1)} !

(b) The substitution function S is
invoked when traversing the back-
edge of L0.

i <= N

i = i + 1

 USEin(e2, i) = { (i : N : 1)} !

e3!

e2!

e1!

i = 1 e0!

GEN (e2, i)= { (i : N : 1) }
KILL (e2, i)= { (i : N :1) }

 USEout(e3, i) = { (i + 1 : N : 1) } !
 USEin(e3, i) = { (i + 1 : N : 1) } !
 USEout(e2, i) = { (i + 1 : N : 1)} !

Fix-point of L0

for (k = i; k<=N; k++)
 x [k] = x [k] + …

 USEin(e0) = { (1 : N : 1) } !
No longer inside the enclosing loop L0

 USEout(e0, i) = { (i : N : 1)} !

(c) The second examined iteration.

Fig. 3.10.: Liveness analysis using variant-set analysis performed for the example in
Figure 3.1, which has a fixed dataflow pattern of distance 1. Fix-point of L0 occurs
at e2, which has the same USE

in

(e2, i) in the second and first examined iterations.

is not possible to simplify this union without approximation. To retain accuracy,

we build on the RSD representation and present the Range Section representation
S

j2rng

RSD(j), which represents the union of multiple sections whose symbolic expres-

sions are represented by the single array section RSD(j) and j iterates over the range

rng =(l : u : s).

During dataflow computation, operations with Range Sections get performed using

of the rules of set theory. Additionally, our implementation takes advantage of the

36

i <= N

i = i + 1

 USEin(e2, i) ={ (1:N:1) } !

e3!

e2!

e1!

i = 1 e0!

GEN(e2, i)= { (i : N : 1)}
KILL (e2, i)= { (i : N :1) }

 USEout(e3, i) = { (1 : N : 1)} !
 USEin(e3, i) = { (1 : N : 1)} !

 USEout(e2, i) = { (1 : N : 1)} !

for (k = 1 ;k <= N;k++)
 verify_value(x[i]) ;

e4!
 USEin(e4) = { (1 : N : 1)} !

USEout(e4) = Φ !

 USEout(e1, i) ={(1:N:1) } !
 USEin(e1, i) ={ (1:N:1) } !

 USEout(e0, i) ={ (1:N:1) } !
 USEin(e0) = { (1 : N : 1)} !

 USEout(e3, i) = USEin(e4) U S (USEin(e1, i), L0)!

for (k = i; k<=N; k++)
 x [k] = x [k] + …

Fig. 3.11.: Liveness analysis performed for the example in Figure 3.2 using variant-set
analysis. Due to the cyclic representation, e3 represents the exit of every iteration in
the enclosing loop L0 (not only the last iteration). As a result, USE

in

(e4) gets fully
exposed to every iteration. This is conservative because USE

in

(e4) is being partially
killed at node e2, i.e., not fully exposed to earlier iterations.

SMT solver. For example, the SMT solver can prove/disprove if all members of a

Range Section are disjoint from a given section. The analysis may approximate the

result of operations on Range Sections to reduce complexity, but this was not needed

in our tested benchmarks.

3.2 Region-Based Analysis

We introduce the region-based analysis, which accounts for the e↵ects of statements

outside enclosing loops.

37

3.2.1 A Running Example

We again use classical Liveness analysis to illustrate our solution. As shown in

Figure 3.11, the conservative e↵ects from the upward exposed uses of the statements

following the enclosing loop L0 reduce the accuracy of variant-set analysis.

3.2.2 Approach

Our approach is to form each enclosing loop in the CFG into a region, which

gets analyzed independently using variant-set analysis. Next, each enclosing loop in

the CFG is collapsed into a single node where Gen and Kill sets are computed by

summarizing the analysis of the enclosing loop. Collapsed nodes are used when ana-

lyzing the whole program. With our approach, computed dataflow solutions within

enclosing loops accurately represent the e↵ects of statements within enclosing loops.

Dataflow solutions outside enclosing loops are computed while accounting for the full

e↵ect of all iterations in enclosing loops. The limitation of our approach is that its

applicability depends on the compiler transformation.

3.2.3 The Analysis Algorithm

Algorithm 1 describes region-based analysis. First, steps 1 and 2 identify enclosing

loops in the CFG and determine their analysis dependence order, as follows: if L1

and L2 are two enclosing loops such that L1 is nested within L2, then L1 is analyzed

before L2. Any two enclosing loops that are not nested can be analyzed in any order.

Second, steps 3 � 22 in Algorithm 1 perform ADFA for each enclosing loop L

according to their analysis dependence order. This is accomplished as follows: (i)

Steps 6 � 9 extract the region of L in the CFG; (ii) Step 10 performs ADFA for L

using variant-set analysis; and (iii) Steps 12� 21 represent the region of L as a single

node x in the CFG. Gen and Kill sets for node x are obtained by summarizing the

analysis of all statements in all iterations of L.

38

Algorithm 1 Region-based analysis. CFG is the control flow graph.

1: loop list a list of all enclosing loops in CFG
2: ordered list sort loop list by their analysis dependence order
3: while ordered list is not empty do
4: L pick and remove head of ordered list
5: (l : u : s) iteration space of L
6: Original Predecessor Set Pred (L initial node)
7: Original Successor Set Succ (L exit node)
8: Pred (L initial node) �
9: Succ (L exit node) �

10: perform ADFA for L using variant-set analysis
11: create node x
12: Pred (x) Original Predecessor Set
13: Succ (x) Original Successor Set
14: KILL

iteration

(i) kills within an iteration i
15: KILL(x)

S
i2rng

KILL
iteration

(i) , rng =(l : u : s)
16: GEN(x) summary of ADFA for all iteration of L
17: represent L region by x in CFG
18: end while
19: perform ADFA for the whole CFG

Finally, step 23 in Algorithm 1 performs ADFA for the entire CFG region, which

now has each enclosing loop represented as a single node.

Figure 3.12 performs Liveness analysis using region-based analysis for the example

in Figure 3.2. GEN(x) represents the upward exposed uses from all iterations in L0

(which can be found at the initial node of L0). KILL(x) represents the union of Kill

sets for all iteration in L0. By contrast to Figure 3.11, USE
in

(e4) is killed by KILL(x).

When extending region-based analysis to other ADFAs, steps 14 � 16 can be

extended to determine the combined e↵ect depending on the ADFA.

3.3 Extending The solution to the Producer-Consumer Array Data Flow

Analysis

We now apply variant-set and region-based analyses to producer-consumer array

data flow analysis (PCDFA). As was presented in Chapter 2, PCDFA collects the

39

i <= N

i = i + 1

 USEin(e2, i) ={ (i : N : 1) } !

e3!

e2!

e1!

i = 1 e0!

GEN (e2, i)= { (i : N : 1)}
Kill (e2, i)= { (i : N :1) }

 USEout(e3, i) = { (i + 1 : N : 1) } !
 USEin(e3, i) = { (i + 1 : N : 1) } !

 USEout(e2, i) = { (i + 1 : N : 1)} !

for (k = 1 ;k <= N;k++)
 verify_value(x[i]) ;

e4! USEin(e4) = { (1 : N : 1)} !

USEout(e4) = Φ !

 USEout(e1, i) ={ (i : N : 1) } !
 USEin(e1, i) ={ (i : N : 1)} !

 USEout(e0, i) ={ (i : N : 1) } !
 USEin(e0) = { (1 : N : 1) } !

for (k = i; k<=N; k++)
 x [k] = x [k] + …

KILL (x) = { (1 : N : 1) } !

node x !

 USEout(x) = { (1 : N : 1)} !

 USEin(x) = { (1 : N : 1)} ! GEN (x) = { (1 : N : 1) } !

Fig. 3.12.: Liveness analysis performed using region-based analysis for the example
in Figure 3.2.

prior reaching definitions and upward exposed uses of shared array elements for each

statement in an OpenMP program.

3.3.1 Extending Variant-Set Analysis

Performing PCDFA using variant-set analysis is as described in Section 3.1. In the

implementation, ⇡ operators are annotations that specify parallelism semantics for

partitioned iteration and data spaces while hiding the complexity of actual partition-

ing. This improves the symbolic reasoning of variant-set analysis because Gen and

Kill sets retain the original bounds of data spaces. As explained in Section 3.1.3, those

bounds can be variant (functions of enclosing loops indices) and therefore variant-set

analysis can reason about di↵erent instances of these sets.

In general, the accuracy of variant-set analysis, when extended to an ADFA,

depends on the power of the symbolic reasoning provided by the underlying ADFA

framework.

40

Our results show that variant-set analysis improves the accuracy of PCDFA for

Use sets in non-repetitive benchmarks and has no negative impact in repetitive bench-

marks. By contrast to uses, definition sets remain the same with variant-set analysis.

This is because definitions are the most recent produced data since the last barrier

present in the current iteration (i.e., functions of the current instance only).

3.3.2 Extending Region-Based Analysis

Performing PCDFA using region-based analysis is as described by Algorithm 1

with a barrier placed at the end of each enclosing loop L. The barrier is needed

to account for synchronization between the summarized definitions of L and the up-

ward exposed uses from the statements outside and following L. This barrier can be

redundant, e.g., the same synchronization between the same definitions and uses al-

ready occurred in the last iteration of L. Our implementation includes an additional

step that eliminates redundant barriers for enclosing loops when redundancy can be

proven.

Our results show that region-based analysis is beneficial for PCDFA with both

repetitive and non-repetitive benchmarks.

3.4 Performance Evaluation

We evaluate the impact of using variant-set and region-based analyses into im-

proving the accuracy of the PCDFA framework.

3.4.1 Performance Metrics

We evaluate the accuracy of PCDFA by measuring the maximum communication

volume per thread. This directly evaluates the impact of using variant-set and region-

based analyses into eliminating communication that was generated due to conservative

array access information by PCDFA alone.

41

3.4.2 Experimental Setup

We evaluate using ten benchmarks: (i) Multi-Grid (MG), Conjugate Gradient

(CG), Fourier Transform (FT), Block Tri-diagonal (BT), and Scalar Penta-diagonal

(SP) (taken from the NAS Parallel Benchmark suite [22]); (ii) LU reduction (taken

from the OmpSCR benchmark suite [24]); (iii) Gram-Schmidt process and Cholesky

decomposition (taken from the PolyBench suite [25]); and (iv) LU v and Gram-

Schmidt v (the same LU and Gram-Schmidt benchmarks but with additional ver-

ification codes as shown in Figure 3.2).

All benchmarks are available in OpenMP, except for the PolyBench benchmarks,

which are sequential (we create OpenMP versions by hand). Verification codes

in LU v and Gram-Schmidt v were also parallelized. All parallel loops are block-

partitioned. NAS benchmarks are also available in MPI. We found UPC versions

available online [26] for MG and CG.

We use CLASS C input data size for all NAS benchmarks. The input size for

Cholesky, LU and LU v is 10000 ⇥ 10000 and the input size for Gram-Schmidt and

Gram-Schmidt v is 5000 ⇥ 5000. The input size is only known at runtime – pa-

rameters that describe input sizes are unknown during the compiler analysis. Tested

benchmarks consist of six non-repetitive benchmarks (MG, LU, LU v, Gram-Schmidt,

Gram-Schmidt v and Cholesky), and four repetitive benchmarks (CG, SP, FT and

BT).

We implement variant-set and region-based analyses using the Cetus Compiler

infrastructure [21]. We use the same runtime tool described in Section 2.5 to measure

performance metrics.

Except for Cholesky, variant-set analysis converged with no more than 3 examined

iterations in all benchmarks. Unlike other benchmarks, Cholesky has an enclosing

loop where a fixed dataflow pattern is not present. This is because Gen sets in

previously examined iterations have array elements that overlap with array elements

of Kill sets in an unbounded number of later examined iterations.

42

3.4.3 Evaluation of the Producer-Consumer Array Data Flow Analysis

Accuracy

Figure 3.13 shows the measurements of use information and communication vol-

umes. Use information measurements show that the reduction in communication is

due to improving accuracy while determining Use sets by our compiler analyses com-

pared to PCDFA alone. Definition information with our analyses remain the same as

the original PCDFA (as explained in Section 3.3.1).

In the case of non-repetitive benchmarks, the percentage of communication

with variant-set analysis is 7% or less, except for Cholesky. When also using region-

based analysis, communication volume is reduced for LU v and Gram-Schmidt v and

the percentage of communication becomes 3% or less. When performing PCDFA

alone for non-repetitive benchmarks, Use sets are conservative due to approximating

variant Gen and Kill sets; Gens are overestimated by assuming all threads read all

data in all instances and Kills are underestimated. By contrast, our analyses generate

variant and accurate Use sets.

In the case of repetitive benchmarks (where Gen and Kill sets are invariant),

variant-set analysis shows no negative impact. When using region-based analysis,

the communication percentage of CG decreases to 52% due to removing the outside

conservative e↵ects while enclosing loop regions are analyzed (as explained in Sec-

tion 3.2). This shows that region-based analysis can also be beneficial for repetitive

benchmarks. For BT and SP, our implementation determines that the inserted bar-

riers by region-based analysis are redundant and therefore are removed (as explained

in Section 3.3.2).

Overall, region-based analysis enables PCDFA to perform accurately for non-

repetitive benchmark and yields no negative impact on repetitive benchmarks. Region-

based analysis is beneficial with both repetitive and non-repetitive benchmarks.

43

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
variant-set
variant-set + region-based

(a) Use information percentage

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
variant-set

variant-set + region-based

(b) Communication percentage.

Fig. 3.13.: Maximum volume of use information and communication (per thread)
with our compiler frameworks normalized to the volume obtained with the PCDFA
framework when performed alone, computed as a percentage (less is better). We show
the average percentage over 8, 16, 32 and 64 threads.

44

4. RUNTIME COMMUNICATION SCHEDULING

The role of the runtime system is to generate MPI communication. At each com-

munication point in the translated program, communication satisfies dependencies

between prior produced shared array elements by a thread and the upward exposed

uses by another thread. We introduce a scheduling scheme that determines shared

array elements that need to be communicated (i.e., communication sets) at runtime.

Prior translation schemes [10, 11] made the simplifying assumption that commu-

nicated array elements are invariant across all instances of communication points.

Using this repetitive communication property, the runtime overhead can be amor-

tized because communication schedules need to be computed only once.

In contrast to repetitive communication patterns, communicated array elements

vary across di↵erent instances of communication points for non-repetitive commu-

nication patterns. Therefore, new communication schedules are needed for every

instance of communication points, introducing the potential problem of high runtime

overheads for communication scheduling.

To reduce runtime overheads, we introduce a new communication scheduling

scheme that exploits an algebra of ⇡ operators to determine communication part-

ners for each thread at a given communication point. In doing so, the work needed to

schedule communication is proportional to the number of communication partners.

In practice, threads communicate with a small subset of other threads. Therefore,

our scheme can schedule communication without incurring high runtime overheads

with both repetitive and non-repetitive communication patterns.

The remainder of this chapter is organized as follows: Section 4.1 describe the

algebra that determines communication partners. Section 4.2 describes the com-

munication scheduling algorithm. We delay evaluating runtime overheads to overall

performance evaluation in Chapter 5.

45

4.1 Determining Communication Partners

As presented in Chapter 2, ⇡ operators provide an abstract representation that

contain information about how shared array elements are partitioned across threads

in array sections (e.g., block partitioning, cyclic partitioning, etc). Because the par-

titioning scheme is known, our idea is to use an algebra of ⇡ operators to determine

the communication range that describes, for each thread at a communication point,

other threads where communication may be needed. These ranges will be then used

for communication scheduling.

First, we describe an example to explain how the aforementioned algebra can

be obtained. Consider a communication point that have the produced array section

⇡
b

(0:99:1) and the consumed array section ⇡
b

(1:100:1), where ⇡
b

is the block par-

titioning operator. Assuming that the total number of threads is 4, let the actual

partitioning of produced data be (0:24:1), (25:49:1), (50:74:1), and (75:99:1), which

are mapped to threads 0, 1, 2, and 3, respectively. Similarly, let the actual parti-

tioning of consumed data be (1:25:1), (26:50:1), (51:75:1), and (76:100:1), which are

mapped to threads 0, 1, 2, and 3, respectively.

In the previous example, block partitioning divides array elements into approxi-

mately even partitions and assign them to threads in one-to-one fashion. Therefore,

there exists an inverse function that determines the thread that corresponds to a

particular array element. Using this function, a thread can determine other threads

that need communication. For example, thread 1 (which has the produced data

partition (25:49:1)) can determine which threads in the block-partitioned consumed

space ⇡
b

(1:100:1) correspond to elements 25 and 49 (the lower and upper bound of

thread 1’s produced data partition). In the example, those threads would be 0 and

1 and therefore the communication range of send messages is [0:1]. Similarly, thread

1 can find the communication range of receive messages by finding which threads in

the block-partitioned produced space ⇡
b

(0:99:1) correspond to the lower and upper

elements of thread 1’s consumed data partition (26:50:1).

46

We now generalize. Consider the partitioned space ⇡
x

(l:u:s), where l, u, and s are,

respectively, the original lower bound, upper bound and stride expressions, and x is

the type of partitioning applied to this space (Table 2.1 shows the list of available

⇡ operators). We introduce the function
x

(l, (l:u:s)), which finds the threads

in ⇡
x

(l:u:s) that correspond to the particular element l. The implementation of
x

depends on the implementation of ⇡
x

, which is obtained by an algebra that takes the

inverse function and the total number of threads into consideration, as explained in

the previous example.

In this dissertation, we use regular section descriptors (RSDs) [18] to represent

array sections. In Chapter 2, we introduced the ⇡RSD representation, which extends

the RSD to allow dimensions with partitioned data spaces to be represented using ⇡

operators. Given two array sections ⇡RSD1 and ⇡RSD2, the function (c, T, ⇡RSD1,

⇡RSD2) determines the communication range for thread c by finding the threads in

⇡RSD2 that correspond to the partition in ⇡RSD1 of thread c (T is the total number

of threads). This function is implemented using the function
x

.

4.2 The Scheduling Algorithm

We now describe Algorithm 2, which determines communication schedules at a

communication point p. First, steps 1� 8 determine communication ranges for send

and receive messages using the function. Next, steps 9 � 22 create messages by

examining communication ranges and finding the common shared array elements

between produced and consumed array sections. Note that the specific array section

produced or consumed by a thread is obtained by applying ⇡ operators in ⇡RSD

sections, which yield normal RSD sections.

The communication volume in Algorithm 2 depends on the accuracy of the ar-

ray section information obtained from the compiler. The runtime system makes no

approximation during communication scheduling. In addition, the runtime system

47

Algorithm 2 Scheduling algorithm for communication generation at a given com-
munication point p.

1: T total number of threads
2: c current thread number
3: ⇡RSD

def

 produced array section at p
4: ⇡RSD

use

 consumed array section at p
5: [R1:R2] (c, T, ⇡RSD

def

, ⇡RSD
use

)
6: [S1:S2] (c, T, ⇡RSD

use

, ⇡RSD
def

)
7: for each thread y 2 [R1 : R2] and y 6= c do
8: RSDc

def

 the specific array section produced by thread c at p
9: RSDy

use

 the specific array section consumed by thread x at p
10: common array elements RSDc

def

\ RSDy

use

11: if common array elements 6= � then
12: create message(sender= c, receiver= y, data= common array elements)
13: end if
14: end for
15: for each thread y 2 [S1 : S2] and y 6= c do
16: RSDc

use

 the specific array section consumed by thread c at p
17: RSDy

def

 the specific array section produced by thread y at p
18: common array elements RSDc

use

\ RSDy

def

19: if common array elements 6= � then
20: create message(sender= y, receiver= c, data= common array elements)
21: end if
22: end for

merges communication schedules such that array elements are not redundantly com-

municated.

The runtime overhead of Algorithm 2 is proportional to the number of threads

in communication ranges. In our tested benchmarks, the dominant communication

pattern is point-to-point, where a thread communicates with a small subset of other

threads. Therefore, communication scheduling overheads are proportional to this

small subset of threads. In the case of all-to-all communication (the less frequent

type in our tested benchmarks), communication ranges are proportional to the total

number of threads.

48

5. PUTTING EVERYTHING TOGETHER: THE

OPENMP-TO-MPI TRANSLATOR

We combine the concepts introduced in earlier chapter and describe a source-to-source

automatic compiler-runtime scheme to translate shared-address programs written in

standard OpenMP to distributed-address programs written in MPI 1. The scheme

covers OpenMP computational programs with regular write data accesses and both

repetitive and non-repetitive communication patterns. By contrast, prior translation

schemes only target programs with repetitive communication patterns.

The translation process starts by the compiler converting the input OpenMP

program into single-program-multiple-data (SPMD) [16] form. The resulting code

represents a node program for each thread that operates on partitioned data. The

SPMD code has function calls inserted by the compiler that contain information

needed by the runtime system to generate communication, which is performed using

the MPI communication library.

Using ten (six non-repetitive and four repetitive) OpenMP benchmarks, we mea-

sure the speedups obtained by scaling these OpenMP benchmarks to a cluster of 64

cores. We also compare against state-of-the-art OpenMP-to-MPI translation system,

and available hand-coded MPI and UPC programs.

The remainder of this chapter is organized as follows: Section 5.1 describes the

translation process by the compiler and Section 5.2 describes communication gener-

ation by the runtime system. Section 5.3 evaluates the performance.

1OpenMP thread corresponds to MPI process

49

5.1 Compiler Code Generation

The compiler starts by parsing the OpenMP directives in the input program to

identify parallel and serial regions and synchronization statements. All omp master

and omp single constructs are conservatively treated as serial regions. To identify

shared variables for each parallel region using a previulsy introduced shared variables

analysis [27]. The compiler rely on internal annotations to keep information about

shared variables.

The compiler also identifies reduction operations. There are two sources of reduc-

tion operations: (i) Explicit omp reduction clauses in the source program; and (ii)

omp critical or omp atomic constructs that are used for reduction operations. A

common practice in OpenMP programs is to code array or scalar reductions using a

critical section where each thread updates the global copy of the shared data using

its own local copy. The compiler identifies such critical sections. All critical sections

in the tested benchmarks are used as reduction operations. Handling general critical

sections is beyond the scope of our translation scheme.

The compiler annotates all reduction operations. When the compiler generates

the final code, all reduction operations are converted into MPI reduce operations,

which are communication routines provided by the MPI library to perform reduction

operations.

The compiler uses the Producer-Consumer Flow Graph (PCFG) [19] to represent

the analyzed OpenMP program. As mentioned in Section 2.2, PCFG is a Control Flow

Graph that represents both the control flow and the relevant memory model semantics

of an OpenMP program. In particular, barrier nodes, which denote points where

memory is to be made coherent across threads, are placed at the end of parallel loops

that do not have an OpenMP nowait directive. Each node in the PCFG corresponds

to a program statement or an OpenMP directive.

Using the producer-consumer array data flow analysis (PCDFA) presented in

Chapter 2, the compiler analyzes prior reaching definitions and upwardly exposed

50

uses of shared array elements for the OpenMP program’s statements. The compiler

uses ⇡ operators to represent partitioned iteration and data spaces. In addition, the

compiler uses delayed symbolic evaluation to ensure that all operations during the

dataflow computation are performed accurately. In Section 2.5, we presented early re-

sults to demonstrate the impact of using ⇡ operators and delayed symbolic evaluation

on the accuracy of PCDFA.

Furthermore, the compiler uses variant-set and region-based analyses presented

in Chapter 3 for optimizing the accuracy of PCDFA in the presence of non-repetitive

loops. The impact of doing so was evaluated in Section 3.4.

As described in Section 1.2, information that describe prior definitions of shared

array elements for each thread at communication points need to be exact. To ensure

correctness, the compiler serializes parallel loops that yield imprecise definitions in-

formation (e.g., a parallel loop that has an irregular write array access). In addition,

the compiler performs both must and may Reaching Definitions analyses and serial-

izes parallel loops where the result of both analyses are not equal. This eliminates

imprecision due to control dependencies. Tested benchmarks in this dissertation

have regular write accesses and therefore were analyzed precisely by the compiler.

Handling irregular write array accesses is beyond the scope of this dissertation (we

describe techniques to handle these accesses in Future Work in Section 7.2).

In contrast to definition information, information about future uses of shared array

elements for each thread at communication points can be approximated. Therefore,

the volume of communication in our translation scheme depends on the accuracy of

use information.

The final step is code generation. The generated SPMD code has the the following

properties:

i. The work of parallel loops is partitioned among processes according the OpenMP

schedule directives (all tested benchmarks use block partitioning).

ii. Serial regions are redundantly executed by all participating processes.

51

L0: for(i = 1; i <= N; i++) {

F1: { lbthrd_id , ubthrd_id } = block_partition (i, N, 1) ;

F2: pass_prior_writes (0, x, 1, 0, BLOCK, i, N, 1)

F3: pass_future_reads (0, x, 1, 0, BLOCK, i + 1, N, 1)

L1: for (k=lbthrd_id ; k<= ubthrd_id; k++)
S1: x [k] = x [k] + …

F4: communication_point (0) ;

 }

communication_id

array_name

num_of_dims

partitioned_dim_num

partitioning_type

section_bounds

iteration space

communication_id

Fig. 5.1.: The translated SPMD code generated by the compiler system for the
OpenMP example in Figure 3.1.

iii. The virtual address space of shared data is replicated on all processes. Shared

data is not physically replicated, only the data actually accessed by a process

is physically allocated on that process.

In the SPMD code, the compiler inserts function calls that initiates the runtime

system to perform the following actions: (i) compute partitioned loops’ bounds; (ii)

generate communication at each communication point; and (iii) obtain information

about prior definitions and future uses of shared array elements that correspond to

each communication point. Figure 5.1 shows the translated code for the OpenMP

example in Figure 2.1a.

In this dissertation, we consider OpenMP programs with loop-level parallelism.

Handling OpenMP programs with omp section and omp task constructs is beyond

the scope of our work.

52

5.2 Runtime Communication Generation

At each communication point, the runtime system uses the communication schedul-

ing scheme presented in Chapter 4 and generates MPI messages. Needed information

about produced and consumed array sections are obtained from the compiler.

As shown in Figure 5.1, new communication schedules are needed for every iter-

ations in the outer sequential loop L0. This because produced and consumed array

sections at communication point p are variant (the inner parallel loop L1 is non-

repetitive). The communication pattern at communication point p is point-to-point.

Using our communication scheduling scheme, the overhead time of communication

scheduling is reduced.

No additional functionality is needed beside communication scheduling at runtime.

In contrast, the state-of-the-art OpenMP-to-MPI translation system [11] relies on a

runtime data flow analysis to obtain 100% operation accuracy. Our translation scheme

obtains this accuracy using delayed symbolic evaluation with no significant runtime

overheads (as shown in Chapter 2).

5.3 Evaluation of Overall Performance

We evaluate our translation system on a cluster of 64 cores. In addition, we

compare with a state-of-the-art translator [11], referred to as the hybrid translator,

which targets repetitive OpenMP benchmarks. We also compare against available

hand-coded MPI [1] and UPC [4] programs.

5.3.1 Performance Metrics

In Chapter 3, performance evaluation showed the impact of variant-set and region-

based analyses into reducing communication. We now evaluate the impact of this

optimization on overall performance. We do so by measuring the speedups of our

53

Table 5.1: Benchmark set.

Benchmark* Suite* Type* Input*Size* Availlable*in*
FT# NAS# Repe**ve# CLASS#C# OpenMP,#MPI,#UPC#
BT# NAS# Repe**ve# CLASS#C# OpenMP,#MPI#
SP# NAS# Repe**ve# CLASS#C# OpenMP,#MPI#
CG# NAS# Repe**ve# CLASS#C# OpenMP,#MPI,#UPC#
MG# NAS# Non8Repe**ve# CLASS#C# OpenMP,#MPI,#UPC#
LU# OmpSCR# Non8Repe**ve# 10000#x#10000# OpenMP#
LU_v# OmpSCR# Non8Repe**ve# 10000#x#10000# OpenMP#
Gram8Schmidt# PolyBench# Non8Repe**ve# 5000#x#5000# Sequen*al#
Gram8Schmidt_v# PolyBench# Non8Repe**ve# 5000#x#5000# Sequen*al#
Cholesky# PolyBench# Non8Repe**ve# 10000#x#10000# Sequen*al#

translated benchmarks on a cluster of 64 cores (8 nodes ⇥ 8 cores). Additionally, we

measure runtime overheads of communication scheduling.

5.3.2 Experimental Setup

The translation process from OpenMP to MPI is fully automatic. We implemented

the full compiler system using the Cetus infrastructure [21]. We also implemented

a runtime system for MPI communication generation. The hybrid translator was

obtained from the author.

We evaluate using the same ten benchmarks used in Section 3.4, which are shown

in Table 5.1. We performed experiments using a community cluster, with available

8-core Intel Xeon-E5 processor and 64 GB of memory per node. Each node runs

eight MPI processes or OpenMP threads. The underlying operating system is Red

Hat Linux kernel 2.6.32. Nodes communicate using a 40 Gbps FDR10 Infiniband

network. The back-end compiler is Intel64 13.1, and the MPI runtime environment

is MVAPICH2 1.9. We compile and execute UPC benchmarks using Berkeley UPC

translator and runtime version 2.18.2.

54

5.3.3 Evaluation on a Cluster of 64 Cores

Figure 5.2 and Figure 5.3 show the speedups of the translated non-repetitive and

repetitive benchmarks on 1, 2, 4 and 8 nodes (or 8, 16, 32 and 64 cores), respectively.

The speedups of available hand-coded MPI and UPC benchmarks are also shown.

In the case of non-repetitive benchmarks, the translated programs achieve,

on average, a speedup of 3.8x on 8 nodes. By comparison, the translated programs

with PCDFA alone is slower than OpenMP programs due to excessive communica-

tion, except for Cholesky, which has a small communication volume. As mentioned

before, translating non-repetitive OpenMP programs with the hybrid translator is

not supported.

MG is the only non-repetitive benchmark with available hand-coded MPI and

UPC versions. On 8 nodes, the speedups of MPI and UPC programs are 5.2x and

4.8x, respectively. This is approximately 2x faster than our translator. The di↵erence

in performance is due to using advanced multidimensional partitioning schemes that

improve scalability as the number of cores increases in both MPI and UPC codes.

Note that the OpenMP code uses one-dimensional parallelism where only one loop is

partitioned in loop nests. The UPC code is also tuned for optimizing thread locality

and communication prefetching.

We also analyze runtime overheads. Figure 5.4 shows the overall runtime overhead

of communication scheduling in all iterations of enclosing loops in LU and MG. As

explained in Chapter 4, the runtime communication scheduler takes advantage of

point-to-point communication (the dominant pattern) to reduce runtime overheads.

Except for Cholesky, runtime overheads in all other non-repetitive benchmarks have

similar behavior (we choose LU and MG as a representatives). Cholesky has all-to-

all communication and therefore the runtime overhead is proportional to the total

number of threads. The average overhead ratio is 19% of the execution time.

In the case of repetitive benchmarks, the translated programs achieve an av-

erage speedup of 3.6x on 8 nodes. Compared to the hybrid translator, our translator

55

is 1.44x faster with CG (due to region-based analysis), and has the same performance

with FT, BT and SP. MPI and UPC codes are approximately 1.8x faster than the

OpenMP-to-MPI translator, on average. MPI codes of BT and SP use advanced

multidimensional partitioning schemes. CG has sparse data access patterns, the al-

gorithms of MPI and UPC codes are optimized by hand to reduce communication. In

the case of FT, MPI code exceeds our translator due to indirect read memory accesses

that caused our translator to generate extra communication. The UPC version of FT

is slower than both MPI and our translator. Unlike other UPC benchmarks, FT was

not optimized by hand for communication prefetching.

Runtime overheads with repetitive benchmarks are negligible. This is because

communicated array elements are invariant for all instances of communication points.

Communication schedules need to be computed only once, and then reused for all

instances.

Overall, variant-set and region-based analyses improve PCDFA’s array access

information accuracy and therefore performance by 8.6x and 1.11x, on average, for

the six non-repetitive and four repetitive benchmarks, respectively. Compared to

OpenMP on 8 cores, all ten benchmarks achieve a speedup of 3.8x, on average. By

comparison, the hybrid translator only scaled the three repetitive benchmarks with

an average speedup of 3.3x. Our translator is faster than the hybrid translator by

11%, on average. The performance of our translated programs came within 54% and

60% of the performance of hand-coded MPI and UPC programs, respectively.

As shown by our results, our work overcomes the weakness in current OpenMP-to-

MPI translation schemes and allows non-repetitive programs to be e�ciently scaled

to clusters. In future work (Section 7.2), we discuss techniques that can be combined

with our work to reduce the gap to hand-coded MPI and UPC programs.

56

0

1

2

3

4

5

6

7

8

1 node 2 nodes 4 nodes 8 nodes

OpenMP-to-MPI

OpenMP-to-MPI (PCDFA alone)

(a) LU

0

1

2

3

4

5

6

7

8

1 node 2 nodes 4 nodes 8 nodes

OpenMP-to-MPI

OpenMP-to-MPI (PCDFA alone)

(b) Gram-Schmidt

0

1

2

3

4

5

6

7

8

1 node 2 nodes 4 nodes 8 nodes

OpenMP-to-MPI

OpenMP-to-MPI (PCDFA alone)

(c) LU v

0

1

2

3

4

5

6

7

8

1 node 2 nodes 4 nodes 8 nodes

OpenMP-to-MPI

OpenMP-to-MPI (PCDFA alone)

(d) Gram-Schmidt v

0

1

2

3

4

5

6

7

8

1 node 2 nodes 4 nodes 8 nodes

OpenMP-to-MPI

OpenMP-to-MPI (PCDFA alone)

(e) Cholesky

0

1

2

3

4

5

6

7

8

1 node 2 nodes 4 nodes 8 nodes

OpenMP-to-MPI

OpenMP-to-MPI (PCDFA alone)

Hand-coded MPI

Hand-optimized UPC

(f) MG

Fig. 5.2.: The speedups of the translated non-repetitive OpenMP to MPI programs
and the hand-coded MPI and UPC programs (when available) on a cluster of 1,
2, 4 and 8 nodes (or 8, 16, 32 and 64 cores) over OpenMP on 1 node (8 cores).
Measurements for translated programs are shown for both cases: (i) when PCDFA
is performed using variant-set and region-based analysis; and (ii) when PCDFA is
performed alone.

57

0

1

2

3

4

5

6

7

8

1 node 2 nodes 4 nodes 8 nodes

OpenMP-to-MPI
OpenMP-to-MPI (PCDFA alone)
OpenMP-to-MPI (hybrid)
Hand-coded MPI
Hand-optimized UPC

(a) FT

0

1

2

3

4

5

6

7

8

9

10

1 node 2 nodes 4 nodes 8 nodes

OpenMP-to-MPI

OpenMP-to-MPI (PCDFA alone)

OpenMP-to-MPI (hybrid)

Hand-coded MPI

Hand-optimized UPC

(b) CG

0

1

2

3

4

5

6

7

8

1 node 2 nodes 4 nodes 8 nodes

OpenMP-to-MPI
OpenMP-to-MPI (PCDFA alone)
OpenMP-to-MPI (hybrid)
Hand-coded MPI

(c) SP

0

1

2

3

4

5

6

7

8

1 node 2 nodes 4 nodes 8 nodes

OpenMP-to-MPI
OpenMP-to-MPI (PCDFA alone)
OpenMP-to-MPI (hybrid)
Hand-coded MPI

(d) BT

Fig. 5.3.: The speedups of the translated repetitive OpenMP to MPI programs and
the hand-coded MPI and UPC programs (when available) on a cluster of 1, 2, 4 and
8 nodes (or 8, 16, 32 and 64 cores) over OpenMP on 1 node (8 cores). MPI codes
for BT and SP run only with a square number of cores. Measurements for translated
programs are shown for both cases: (i) when PCDFA is performed using variant-set
and region-based analysis; and (ii) when PCDFA is performed alone. They are also
shown for the hybrid translator [11], the current state-of-the-art translator.

58

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

1.2%

1.4%

1.6%

1.8%

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 node 2 nodes 4 nodes 8 nodes

O
ve

rh
ea

d
R

at
io

 %
 (l

in
e)

O
ve

rh
ea

d
tim

e
in

 se
co

nd
s (

co
lu

m
ns

)

(a) LU

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 node 2 nodes 4 nodes 8 nodes

O
ve

rh
ea

d
R

at
io

 %
 (

lin
e)

O
ve

rh
ea

d
tim

e
in

 se
co

nd
s (

co
lu

m
ns

)

(b) MG

Fig. 5.4.: The runtime overhead during the execution of the translated LU and MG
benchmarks. Error bars show the ranges of the absolute overhead time in five runs.
Because we use strong scaling (input size is fixed), the overhead ratio generally in-
creases while increasing the number of nodes.

59

6. RELATED WORK

Our work is directly related to approaches that provide a shared memory abstrac-

tion for distributed memory programming. In prior work [28], a manual proof of

general concepts showing the feasibility of automatic translation of OpenMP to MPI

was presented. These concepts were incorporated in [10] by presenting a compiler-

runtime system for automatic translation of OpenMP programs with regular write

data accesses and repetitive communication patterns to MPI. A unique and impor-

tant feature of this dissertation is the ability to also handle OpenMP applications

with non-repetitive communication patterns. We survey other models that provide

shared memory abstraction for distributed memory architectures in Section 6.1.

In addition, this dissertation presented new concepts in the context of Array Data

Flow Analysis (ADFA). In the literature, ADFAs have been used for analyzing array

section information in OpenMP programs, as well as other programming models. We

survey prior ADFA frameworks in more detail in Section 6.2.

6.1 Prior Shared-Address Space Programming Models for Distributed-

Address Space Architectures

High Performance Fortran (HPF) [3] is an early e↵ort for improving the pro-

ductivity of programming with distributed memory architectures. HPF compilers

automatically translate shared memory programs, written in Fortran, to message-

passing programs. This is accomplished using data partitioning directives that are

provided by the programmer and assist the compiler to physically distribute shared

arrays among processes. This distribution will hold for the entire execution.

Many implementations of HPF (such as [29–31]) used the owner computes rule,

where computation is always performed on the process that owns the left hand side

60

of the computation. The owner computes rules assists the compiler while performing

communication optimizations due to available static information about owners.

By contrast to HPF, our approach provides a standard OpenMP programming

interface, where data partitioning directives or the owner computes rule are not re-

quired. Another di↵erence is that data distribution among processes with our ap-

proach may vary during the execution.

Software Distributed Shared Memory (SDSM) systems have also been proposed

to provide a global shared address space abstraction on distributed memory architec-

tures at runtime. TreadMarks [5] is a well-known SDSM system that tracks accesses

to shared data at runtime using page faults mechanisms. In addition, researchers

have proposed compile-time optimizations [7–9] to SDSM systems, where the com-

piler inserts directives to generate prefetch instructions at runtime. Intel’s Cluster

OpenMP [6] was a commercial SDSM system product, but is no longer supported.

All page-based SDSM approaches, while support OpenMP or a similar interface,

have inherent significant overheads and false sharing issues due to the page granularity

of tracking shared accesses at runtime. Our approach does not rely on expensive run-

time mechanisms. Instead, communication sets are determined based on a compiler

analysis of shared array sub-ranges representing the written and read data elements.

Recent SDSM schemes [32–34] proposed a source-to-source translation approach

from OpenMP to Global Arrays (GA). GA [35] provides a virtual shared address space

to programmers that gets supported by a runtime system. Compared to prior SDMS

approaches, the OpenMP-to-GA approach provides a better scalability as communi-

cation is not performed at a page level. Instead, threads update global arrays at the

end of each parallel region by their local writes. Compared to our translation scheme,

this approach still generates excessive communication because it does not account for

an analysis of future read shared array elements.

Other related e↵orts are the Partitioned Global Address space languages such as

UPC [4], Co-array Fortran [36], X10 [37] and Titanium [38]. In general, PGAS models

provide a global shared address space that is logically divided among threads. Pro-

61

grammers specify thread-data a�nity and optimize computation locality by having

threads compute on their local data.

Compared to our programming model, UPC programmers generally hand-tune

their codes by include additional optimizations such as privatizing local shared ac-

cesses or perfecting remote shared data using block transfer (optimizations described

in [39]). The programming productivity of UPC is studied and quantified in [40]. Our

scheme supports standard OpenMP interface, where programmers need not specify

thread-data a�nity or include manual optimizations.

Similar to our approach, other researchers [12,13] have also presented translation

schemes from OpenMP to MPI. In contrast to our work, these schemes do not collect

information about future uses of shared array elements for threads. Instead, they

analyze produced array elements within each parallel loop, which are sent to all nodes

at the end of the loop. While this simplifies the compiler analysis, these translation

schemes generate a lot of unnecessary communication.

Kwon et al. [10] also presented an OpenMP-to-MPI translator that collects both

prior produced and future consumed array elements using an ADFA framework and

targets repetitive OpenMP programs. We consider Kwon’s work to be the state-of-

the-art. We compare against Kwon’s work in Section 5.3 and show that, with the new

introduced contribution in this dissertation, our scheme (i) outperforms or performs

as well as Kwon’s work with repetitive benchmarks; and (ii) e�ciently scales non-

repetitive benchmarks to clusters, which are a new class of programs that was not

handled by Kwon’s work.

A recent approach by Bondhugula [41] was proposed to allow using sequential

programs while targeting distributed memory architectures. In particular, this ap-

proach used the polyhedral model and presented a compiler for automatic translation

of sequential programs into MPI. However, this approach is restricted to programs

with a�ne loop nests. Our approach allows a larger set of applications.

62

6.2 Prior Compiler Frameworks for Array Data Flow Analysis

There is a rich literature on array access analyses and their use in compiling both

parallel and sequential programs. We divide prior work based on the statement-

level internal representation by the compiler, as follows: (i) work that used classical

array data flow analysis (ADFA) frameworks; and (ii) work that used integer linear

programming (ILP) frameworks. With ILP frameworks, a statement in a loop nest is

represented as an individual instance using a matrix representation. By comparison,

ADFA frameworks represent all instances of a statement as a single global instance.

Compared to ADFA frameworks, ILP frameworks provide more powerful symbolic

reasoning. However, they are more complex in their implementation and commonly

more restrictive (only applicable to the subset of programs that have a�ne loop nests).

Our tested benchmarks include cases that do not confirm to this model such as MG

and CG.

Analyzing accessed array elements in programs where di↵erent instances of a loop

read and write di↵erent array elements favors using ILP frameworks. However, this

paper presents concepts that allow ADFA frameworks (a more general and less com-

plex approach) to represent and reason about array elements written or read by

individual instances of a statement. This holds in the presence of recurring patterns

that describe dataflow computation across all instances. Such patterns can be found

in numerical solvers, as shown in our performance evaluation.

Exploiting recurring patterns in loops is a general concept. For example, Haghighat

and Polychronopoulos [42] used this concept during induction variables analysis in

paralellizing compilers. This paper describes the algorithms and the implementation

that enable a similar concept for ADFA.

We first survey some of the prior work on ADFA frameworks. Gu et al. [14]

described a symbolic ADFA framework for sequential programs and demonstrated its

value for array privatization. Granston et al. [43] targeted parallel programs with doall

constructs and presented an ADFA for detecting redundant shared array references.

63

Rus et al. [15] proposed an array single static assignment representation and used

it for a classical ADFA in an automatic parallelization. Li et al. [44] described an

ADFA for parallel programs written with POSIX threads [45] for optimizing thread-

data locality while allocating cores on Chip Multiprocessors platforms. By contrast

to our work, these approaches do not consider variant Gen and Kill sets analyzed

across multiple instances.

In addition, this work has presented delayed symbolic evaluation. While the gen-

eral concept of delaying inaccurate compiler analysis to runtime is not new, to the

best of our knowledge, this concept has not been incorporated in prior ADFA frame-

works. In particular, we claim that postponing performing a conservative operation

that happens at a particular point in the data flow computation is counterintuitive.

Instead of growing in complexity, expressions of postponed operations are simplified

or performed when additional information is available in later analysis steps.

We now survey some of the prior work on ILP frameworks. Collard [46, 47] pre-

sented an early work for array section analysis in explicit parallel programs with

strong or weak memory consistency models by expressing the relative execution order

of threads in its analysis. Our work eliminates the need for expressing the execution

order in the analysis by using a control flow graph that captures the implied execution

order by the memory consistency model of the analyzed program.

The polyhedral model [48] is the current de facto ILP framework. Yuki et al. [49]

used the polyhedral model for analyzing array section information in X10 programs [37]

with finish/asynch parallelism for the purpose of detecting race conditions. Similar

to Collard’s work, this analysis also takes the relative execution order across threads

into account. Our work eliminates the need for considering the execution order for

the aforementioned reason.

Bondhugula [41] used the polyhedral model and presented a compiler for automatic

translation of sequential programs with a�ne loop nests into MPI. The polyhedral

model enabled this work to reason about di↵erent instances of program statements.

Our work is the same but builds on an ADFA. In the implementation, the ADFA

64

framework takes advantage of ILP by sending queries to a stand-alone SMT solver

without the need to expose the complexity of ILP to the compiler internal represen-

tation.

To the best of our knowledge, no ILP frameworks have been presented in the

literature that start from OpenMP as the input program and analyze accessed array

elements while considering the partitioning semantics of iteration and data spaces

across threads.

65

7. EPILOGUE

7.1 Conclusions

The development of high-productivity programming environments that support

the development of e�cient programs on distributed-memory architectures is one

of the most pressing needs in parallel computing today. Many of today’s parallel

computer platforms have a distributed memory architecture, as most likely will future

multi-cores.

Despite many approaches to provide improved programming models, the state of

the art for cluster platforms is to write explicit message-passing programs, using MPI.

This process is tedious, but allows high-performance applications to be developed.

This dissertation showed the feasibility of allowing programmers to write computation-

intensive algorithms in OpenMP while targeting middle-size clusters. This was achieved

by presenting an automatic source-to-source translation scheme of OpenMP to MPI.

OpenMP hides the complexity of data partitioning and explicit communication gen-

eration, allowing our approach to be accessible to the typical programmer.

A key feature of our work is translating OpenMP programs with regular write

memory accesses and both repetitive and non-repetitive communication patterns.

Prior translation schemes only covered OpenMP programs with repetitive communi-

cation patterns.

In order to generate e�cient translated programs, this dissertation presented new

compiler and runtime techniques that overcome limitations in prior work. Our com-

piler included an array data flow analysis framework that accounts for partitioning

semantics of parallel loops using the ⇡ operator, which is an abstract representation

that hides the complexity of partitioning andallows simple array section expressions

during the dataflow computation. The compiler also included delayed symbolic eval-

66

uation, a compiler algorithm that ensures all operations are performed accurately

during the dataflow computation. This is accomplished by representing conservative

operations as simplified unevaluated expressions that get evaluated at runtime.

In addition, this dissertation showed that traditional ADFAs perform conserva-

tively when confronted with loop nests that have variant Gen and Kill sets. Such

issue appears when dealing with programs that have non-repetitive communication

patterns. To overcome this issue, we presented the variant-set analysis, which allows

traditional ADFAs to accurately represent and reason about variant Gen and Kill

sets. Our solution is enabled by a common pattern that bounds the dataflow com-

putation. In addition, we presented the region-based analysis that enables variant-set

analysis to eliminate conservative e↵ects from statements outside loop nests.

This dissertation also presented a runtime communication scheduling scheme that

generates messages with low runtime overheads. By contrast to prior work, our

scheduling scheme handles both repetitive and non-repetitive communication pat-

terns.

With our contributions, we presented a fully automatic OpenMP-to-MPI transla-

tion system and evaluated its performance. On a cluster of 64 cores, our translator

scaled six non-repetitive and four repetitive OpenMP benchmarks and achieved an

average speedup of 3.8x over OpenMP on 8 cores. By comparison, a state-of-the-

art translator only scaled the four repetitive benchmarks and obtained an average

speedup of 3.3x.

We also compared the performance of our translation scheme against available

hand-coded MPI and UPC programs. Those programs were tuned by hand to achieve

high performance. The current performance of our translation scheme came within

54% and 60% of the performance of MPI and UPC programs, respectively.

Overall, this dissertation has advanced the state-of-the-art of cluster programming

by allowing a new class of OpenMP applications to be e�ciently and automatically

scaled to clusters. In doing so, users can use OpenMP for a larger number of ap-

plications while targeting clusters. Performance results show that our approach is

67

within 50�60% of hand-coded distributed memory programs. To bridge this gap, we

identified optimizations that can be combined with our translation scheme in future

work, which we discuss in the next section.

7.2 Future Work

Several compiler analyses have been presented in the literature to promote the

locality of accessed array elements in multi-threaded applications. Such analyses

can be combined with our work to reduce communication. For example, Kwon [50]

presented in his dissertation compiler analyses that adjust iteration spaces of parallel

loops in an OpenMP program such that the e↵ect of using the same threads to

access the same array elements across the entire execution is increased. Using this

analysis with our translation scheme can reduce the array elements that need to be

communicated at barriers.

Another important extension of this work is supporting the translation of OpenMP

programs with nested parallelism. By doing so, the compiler can apply multi-dimensional

partitioning schemes where more than one loop is partitioned in loop nests. Multi-

dimensional partitioning schemes have been used in hand-coded MPI and UPC pro-

grams to improve communication/computation ratio and therefore scalability.

Next, we describe two other extensions for our work and provide early result to

show their feasibility. By doing these two extensions, the remaining benchmarks

(LU and IS) in the NAS Parallel Benchmark suite that were not included in our

performance evaluation can now be translated.

7.2.1 Pipeline Parallelism

Pipeline parallelism is an important technique used by programmers for paral-

lelizing loops with carried dependencies that otherwise are sequential. Figure 7.1a

shows an example of an OpenMP code with pipeline parallelism taken from NAS LU

benchmark.

68

Our translation scheme can be extended to account for loops that have pipeline

parallelism. This is accomplished by MPI blocking communication. As shown by

the translated code in Figure 7.1b, send and receive messages can be used to both

communicate data and force the synchronization implied by the pipeline paralellism

of Figure 7.1a. In order to generate this code automatically, a compiler analysis is

needed to identify the start and end points of the code region being executed using

pipeline parallelism.

By hand, we apply the presented translation scheme for NAS LU benchmark and

combine it with MPI blocking communication. The performance of the translated

program is shown in Figure 7.2. This early result shows the feasibility of the proposed

extension.

7.2.2 Runtime Inspection

Indirect memory accesses are generally not analyzable by compilers. This disser-

tation uses the Regular Section Descriptor representation for array sections, which

represent indirect read memory accesses conservatively. As a result, communication

that is relevant to these accesses may communicate array elements that are not ac-

tually needed. Figure 7.3 shows an example of an indirect read memory access that

we obtain from NAS IS benchmark.

To improve accuracy, we propose using the runtime inspection technique proposed

by Basumallik and Eigenmann [51]. At runtime, the actual array elements consumed

by each thread are found by inspecting the indirection vector (see Figure 7.3). By

providing this information to the runtime communication scheduler, precise commu-

nication sets can be computed.

By hand, we apply our translation scheme for IS and combine it with runtime

inspection. The performance of the translated IS program is shown in Figure 7.4.

This early result shows the feasibility of the proposed extension for the OpenMP-to-

MPI translator.

69

#pragma omp parallel
{
 synch_left () ; // thread x is waiting to be enabled by thread x – 1

 #pragma omp for
 for (j = jst; j <= jend; j++)
 for (i = ist; i <= iend; i++)
 for (m = 0; m < 5; m++)

 v [k][j][i][m] = v [k][j − 1][i][m] +
 v [k][j][i − 1][m] +
 v [k][j][i][m − 1] + …

 synch_right () ; // thread x finishes and enables thread x + 1
}

(a) The synchronization functions synch left and synch right are
coded such that they ensure the loop nest in between (which has
carried dependencies) is executed using pipeline parallelism.

// the current thread is x

 mpi_block_receive (sender= x − 1, receiver= x, data) ;

 for (j = lbx; j <= ubx; j++)
 for (i = ist; i <= iend; i++)
 for (m = 0; m < 5; m++)

 v [k][j][i][m] = v [k][j − 1][i][m] +
 v [k][j][i − 1][m] +
 v [k][j][i][m − 1] + …

 mpi_send (sender= x, receiver= x + 1, data) ;

(b) In the translated code, we propose to use the MPI blocking
communication, which can be used to both communicate data and
force synchronization.

Fig. 7.1.: An example of an OpenMP code taken from NAS LU benchmark.

IS benchmark also has other code versions that have irregular write accesses.

In previous work, Min and Eigenmann [52] used runtime inspection and proposed

advanced communication generation techniques for irregular write accesses in a soft-

ware distributed shared memory system. Those techniques can be integrated with our

translation scheme to handle OpenMP programs with irregular write array accesses.

70

0

1

2

3

4

5

6

7

8

9

10

11

8 cores 16 cores 32 cores 64 cores

Sp
ee

du
p

ov
er

 O
pe

nM
P

on
 8

 c
or

es

OpenMP-to-MPI

Hand-coded MPI

Fig. 7.2.: An early performance evaluation of the translated NAS LU benchmark.
The translated code achieves 53% of the performance of the hand-coded MPI version
of NAS LU.

#pragma omp for
for (i = 0; i <= N; i++)

A[i] = … ; // producers

#pragma omp for
for (i = 1; i <= N-1; i++)

… = A[ind_vec[i]] ; // consumers

Fig. 7.3.: Threads read array elements of A via the indirection vector ind vec. As
a result, the read Gen set is overestimated. We propose using the runtime inspec-
tion [51] technique to find precise descriptions of which elements were actually read
by which threads.

71

0

2

4

6

8

10

12

14

16

18

20

8 cores 16 cores 32 cores 64 cores

Sp
ee

du
p

ov
er

 O
pe

nM
P

on
 8

 c
or

es

OpenMP-to-MPI

Hnad-coded MPI

Fig. 7.4.: An early performance evaluation of the translated NAS IS benchmark. The
translated code achieves 65% of the performance of the hand-coded MPI version of
NAS IS.

LIST OF REFERENCES

72

LIST OF REFERENCES

[1] M. Snir, S. W. Otto, D. W. Walker, J. Dongarra, and S. Huss-Lederman, MPI:
The Complete Reference. Cambridge, MA, USA: MIT Press, 1995.

[2] “OpenMP Application Programming Interface 4.0. Available:
http://openmp.org.”

[3] High Performance Fortran Forum, “High Performance Fortran language specifi-
cation, version 2.0,” tech. rep., 1997.

[4] UPC Consortium, “UPC Language Specifications, version 1.2,” tech. rep.,
Lawrence Berkeley National Laboratory, 2005.

[5] C. Amza, A. L. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony, W. Yu,
and W. Zwaenepoel, “TreadMarks: Shared Memory Computing on Networks of
Workstations,” IEEE Computer, vol. 29, pp. 18–28, Feb. 1996.

[6] J. P. Hoeflinger, “Extending OpenMP to Clusters.” White Paper, 2006.

[7] S. Dwarkadas, A. L. Cox, and W. Zwaenepoel, “An Integrated Compile-
Time/Run-Time Software Distributed Shared M emory System,” in Proc. of
the 7th Symposium on Architectural Support for Progra mming Languages and
Operating Systems (ASPLOS), pp. 186–197, 1996.

[8] S. Min and R. Eigenmann, “Combined Compile-time and Runtime-driven, Pro-
active Data Movement i n Software DSM Systems,” in Proceedings of the 7th
Workshop on Languages, Compilers, and Run-time support for scalable systems,
pp. 1–6, 2004.

[9] P. J. Keleher and C.-W. Tseng, “Enhancing Software DSM for Compiler-
Parallelized Applications,” in Proceedings of the 11th International Symposium
on Parallel Processing (IPPS), (Washington, DC, USA), pp. 490–499, IEEE
Computer Society, 1997.

[10] O. Kwon, F. Jubair, S.-J. Min, H. Bae, R. Eigenmann, and S. Midki↵, “Auto-
matic Scaling of OpenMP Beyond Shared Memory,” in Proceedings of the 24th
International Workshop on Languages and Compilers for Parallel Computing
(LCPC), (Fort Collins, CO, USA), pp. 75–84, 2011.

[11] O. Kwon, F. Jubair, R. Eigenmann, and S. Midki↵, “A Hybrid Approach of
OpenMP for Clusters,” in Proceedings of the 17th ACM SIGPLAN symposium
on Principles and Practice of Parallel Programming (PPoPP), (New Orleans,
Louisiana, USA), pp. 75–84, 2012.

73

[12] A. M. Kouadri-Mostéfaoui, D. Millot, C. Parrot, and F. Silber-Chaussumier,
“Prototyping the Automatic Generation of MPI Code from OpenMP Programs
in GCC,” in International Workshop on GCC Research Opportunities (GROW),
Paphos, Cybrus, 2009.

[13] D. Millot, A. Muller, C. Parrot, and F. Silber-Chaussumier, “STEP: A Dis-
tributed OpenMP for Coarse-grain Parallelism Tool,” in Proceedings of the 4th
International Conference on OpenMP in a New Era of Parallelism (IWOMP),
pp. 83–99, 2008.

[14] J. Gu, Z. Li, and G. Lee, “Symbolic Array Dataflow Analysis for Array Privatiza-
tion and Program Parallelization,” in Proceedings of the ACM/IEEE Conference
on Supercomputing (SC), 1995.

[15] S. Rus, G. He, C. Alias, and L. Rauchwerger, “Region Array SSA,” in Proceedings
of the 15th international conference on Parallel architectures and compilation
techniques (PACT), (Seattle, Washington, USA), 2006.

[16] F. Darema, D. A. George, V. A. Norton, and G. F. Pfister, “A Single-Program-
Multiple-Data Computational Model for Epex/Fortran,” Parallel Computing,
1988.

[17] F. Jubair, O. Kwon, R. Eigenmann, and S. Midki↵, “⇡ Abstraction: Parallelism-
Aware Array Data Flow Analysis for OpenMP,” in Proceedings of the 27th
International Workshop on Languages and Compilers for Parallel Computing
(LCPC), (Hillsboro, OR, USA), 2014.

[18] P. Havlak and K. Kennedy, “An Implementation of Interprocedural Bounded
Regular Section Analysis,” IEEE Transactions on Parallel and Distributed Sys-
tems, pp. 350–360, 1991.

[19] A. Basumallik and R. Eigenmann, “Incorporation of OpenMP Memory Con-
sistency Into Conventional Dataflow Analysis,” in Proceedings of the 4th inter-
national conference on OpenMP in a new era of parallelism (IWOMP), (West
Lafayette, IN, USA), pp. 71–82, 2008.

[20] S. Satoh, K. Kusano, and M. Sato, “Compiler optimization techniques for
openmp programs,” Scientific Programming, pp. 131–142, 2001.

[21] H. Bae, D. Mustafa, J.-W. Lee, Aurangzeb, H. Lin, C. D. R. Eigenmann, and
S. Midki↵, “The Cetus Source-to-Source Compiler Infrastructure: Overview and
Evaluation,” International Journal of Parallel Programming (IJPP), pp. 1–15,
2012.

[22] The NAS Parallel Benchmarks suite version 3.3.

[23] J. Christ, J. Hoenicke, and A. Nutz, “SMTInterpol: An Interpolating SMT
Solver,” in Proceedings of the 19th International Conference on Model Checking
Software (SPIN), (Oxford, UK), pp. 248–254, 2012.

[24] OmpSCR Repository [version 2.0].

[25] The Polyhedral Benchmark suite version 3.2.

[26] UPC NAS Parallel Benchmarks suite version 2.4.

74

[27] S. Min, A. Basumallik, and R. Eigenmann, “Optimizing OpenMP programs
on Software Distributed Shared Memory Sys tems,” International Journal of
Parallel Programming, vol. 31, no. 3, pp. 225–249, 2003.

[28] A. Basumallik and R. Eigenmann, “Towards Automatic Translation of OpenMP
to MPI,” in Proceedings of the 19th Annual International Conference on Super-
computing (ICS), pp. 189–198, 2005.

[29] M. Gupta and P. Banerjee, “PARADIGM: A Compiler for Automatic Data Dis-
tribution on Multicomputers,” in Proceedings of the 7th International Conference
on Supercomputing (ICS), pp. 87–96, 1993.

[30] M. Gupta, S. Midki↵, E. Schonberg, V. Seshadri, D. Shields, K.-Y. Wang, W.-M.
Ching, and T. Ngo, “An HPF Compiler for the IBM SP2,” in Proceedings of the
1995 ACM/IEEE Conference on Supercomputing (SC), 1995.

[31] S. Hiranandani, K. Kennedy, and C.-W. Tseng, “Compiling Fortran D for MIMD
Distributed-memory Machines,” Communications of the ACM, vol. 35, pp. 66–
80, 1992.

[32] L. Huang, B. Chapman, and R. Kendall, “OpenMP for Clusters,” in In The Fifth
European Workshop on OpenMP (EWOMP), pp. 22–26, 2003.

[33] Z. Liu, L. Huang, B. Chapman, and T.-H. Weng, “E�cient Implementation of
OpenMP for Clusters with Implicit Data Distribution,” in Proceedings of the 5th
International Conference on OpenMP Applications and Tools: Shared Memory
Parallel Programming with OpenMP (WOMPAT), pp. 121–136, 2005.

[34] D. Eachempati, L. Huang, and B. Chapman, “Strategies and Implementation
for Translating OpenMP Code for Clusters,” in Proceedings of the Third in-
ternational conference on High Performance Computing and Communications
(HPCC), pp. 420–431, 2007.

[35] J. Nieplocha, R. J. Harrison, and R. J. Littlefield, “Global Arrays: A Nonuniform
Memory Access Programming Model for High-performance Computers,” The
Journal of Supercomputin, vol. 10, pp. 169–189, June 1996.

[36] R. W. Numrich and J. Reid, “Co-array Fortran for Parallel Programming,” SIG-
PLAN Fortran Forum, vol. 17, pp. 1–31, 1998.

[37] P. Charles, C. Grotho↵, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu,
C. von Praun, and V. Sarkar, “X10: An Object-Oriented Approach to Non-
uniform Cluster Computing,” in Proceedings of the 20th annual ACM SIGPLAN
conference on Object-oriented Programming, Systems, Languages, and Applica-
tions (OOPSLA), 2005.

[38] K. A. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit, A. Krishnamurthy,
P. N. Hilfinger, S. L. Graham, D. Gay, P. Colella, and A. Aiken, “Titanium: A
high-performance java dialect,” Concurrency - Practice and Experience, vol. 10,
no. 11-13, pp. 825–836, 1998.

[39] T. A. El-Ghazawi and S. Chauvin, “UPC Benchmarking Issues,” in Proceedings
of the International Conference on Parallel Processing (ICPP), pp. 365–372,
2001.

75

[40] F. Cantonnet, Y. Yao, M. M. Zahran, and T. A. El-Ghazawi, “Productivity Anal-
ysis of the UPC Language,” in In the 18th International Parallel and Distributed
Processing Symposium, 2004.

[41] U. Bondhugula, “Compiling A�ne Loop Nests for Distributed-memory Parallel
Architectures,” in Proceedings of the International Conference on High Perfor-
mance Computing, Networking, Storage and Analysis (SC), pp. 33:1–33:12, 2013.

[42] M. R. Haghighat and C. D. Polychronopoulos, “Symbolic Analysis for Paral-
lelizing Compilers,” ACM Transactions on Programming Languages and Systems
(TOPLAS), pp. 477–518, 1996.

[43] E. D. Granston and A. V. Veidenbaum, “Combining Flow and Dependence Anal-
yses to Expose Redundant Array Accesses,” International Journal of Parallel
Programming (IJPP), pp. 423–470, 1995.

[44] Y. Li, A. Abousamra, R. Melhem, and A. K. Jones, “Compiler-Assisted Data
Distribution for Chip Multiprocessors,” in Proceedings of the 19th international
conference on Parallel architectures and compilation techniques (PACT), (Vi-
enna, Austria), pp. 501–512, 2010.

[45] D. R. Butenhof, Programming with POSIX threads. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 1997.

[46] J.-F. Collard, “Array SSA for Explicitly Parallel Programs,” in Proceedings of
the 5th International Euro-Par Conference on Parallel Processing, pp. 383–390,
1999.

[47] J.-F. Collard and M. Griebl, “Array Dataflow Analysis for Explicitly Parallel
Programs,” in Proceedings of the Second International Euro-Par Conference on
Parallel Processing, pp. 406–413, 1996.

[48] P. Feautrier, “Automatic Parallelization in The Polytope Model,” in The Data
Parallel Programming Model: Foundations, HPF Realization, and Scientific Ap-
plications, (London, UK), pp. 79–103, 1996.

[49] T. Yuki, P. Feautrier, S. Rajopadhye, and V. Saraswat, “Array Dataflow Analysis
for Polyhedral X10 Programs,” in Proceedings of the 18th ACM SIGPLAN sym-
posium on Principles and practice of parallel programming (PPoPP), (Shenzhen,
China), pp. 23–34, 2013.

[50] O. Kwon, Automatic scaling of OpenMP applications beyond shared memory.
PhD thesis, Purdue University, School of Electrical and Computer Engineering,
August 2013.

[51] A. Basumallik and R. Eigenmann, “Optimizing Irregular Shared-memory Ap-
plications for Distributed-memory Systems,” in Proceedings of the Eleventh
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPOPP), pp. 119–128, 2006.

[52] S.-J. Min and R. Eigenmann, “Optimizing Irregular Shared-Memory Applica-
tions for Clusters,” in Proceedings of the ACM International Conference on Su-
percomputing (ICS), pp. 256–265, 2008.

VITA

76

VITA

Fahed Jubair earned his B.Sc. in Computer Engineering from University of Jordan

in August 2006. On August 2007, Fahed joined the graduate school of Electrical and

Computer Engineering at Purdue University where he earned his M.Sc. degree on

May 2009. Starting August 2009, Fahed joined the Paramount research laboratory

where he continued his studies under the supervision of professor Rudolf Eigenmann

and obtained a Ph.D. degree on December 2014. In his research, Fahed worked on

developing compiler and runtime techniques that extend the ease of use of shared-

address space programming, written in OpenMP, to clusters. Fahed was also involved

in the development of Cetus Compiler Infrastructure.

	Purdue University
	Purdue e-Pubs
	Fall 2014

	Automatic translation of non-repetitive OpenMP to MPI
	Fahed Jubair
	Recommended Citation

	Blank Page

