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ABSTRACT

Jain, Rohit Ph.D)., Purdue University, December 2014, Trustworthy Data from Un-
trusted Databases. Major Professor: Sunil K. Prabhakar.

Increazingly, data are subjected to environments which can result in invalid (ma-
licious or inadvertent) modifications to the data. For example, when we host the
database on a third party server, or when there is a threat of insider attack or hacker
attack. Ensuring the frustworthiness of data refrieved from a database is of utmost
importance to users. In this dissertation, we address the question of whether a data
owner can he agsured that the data retrieved from an untrusted server are trustwor-
thy. In particular, we reduce the level of trust necessary in order Lo establish the
trustworthiness of data. Earlier work in this domain is lmited to situations where
there are no updates to the databasze, or all updates are authorized and vetted by
a central trusted entitv, This iz an unreasonable agsumption for a truly dynamic
database, ag would be expected in many business applications, where multiple users
can access (read or write) the data without being vetted by a central server. The
legitimacy of data stored in a database is defined by the faithful execution of only
valid {authorized) operations. Decades of database research has resulted in solutions
Lhat ensure the integrity and consistency of daia through principles such as transac-
tions, concurrency, ACID properties, and access control rules. These solutions have
been developed under the assumption that the threais arise due Lo Tailures (compuier
crashes, disk failures, ete), limitations ol hardware, and the need to enforce access
control rules. However, the semantics of these principles assumes complete trust on
the database server. Consgidering the lack of trust that arises due to the untrusted
environments that databases are subjected to, we need mechanisms to ensure that

the databage operations are executed following these principles. In thiz disserta-
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tion, we revisit some of these principles to understand what we should expect when
a transaction execution follows those principles. We propose mechanisms to verify
that the principles were indeed followed by the untrusted server while executing the

transactions.



1 INTRODUCTION

Diatabagse services are often hosted in an untrusted environment which can lead to
invalid execution of databagse operations. Such possibilities clearly arise when we
employ a third party server to host the databases services, e.q., cloud servers, as we
lack complete conirol over the hardware and the software running at the server. FEven
when the server is trusted, such possibilities can arise due Lo a malicious insider or an
niruder who manages to compromise the server or communication channels. Wilh
the advenl ol Cloud Computing, there is increasing interest to move databasges onto
a cloud platform. Although Cloud Computing holds great promise, the possibility of
malicious activilies raises a number of security and privacy concerns. IU is of utmost
importance to the data owner to ensure that the database operations are executed
faithfully,. Due to the possibilities of malicious activities, there iz a reluctance to
blindly trust the gerver. In this dissertation, we address the question, is if possible fo
reduce the level of trust required in order to trust the data retrieved from the untrusted
server ¥

In most getlings, the server is likely to be honest, 4.0, it would not intentionally
compromise the integrity of the database. However, a server may be improperly con-
figured, or inadvertently left open to hacker attacks. There is also the concern about
the server being attacked by an external or an internal entity that can compromise
the integrity of the data or database operations despite the hest eflorts of the server,
Iven though the service provider iz likely to be honest, it may try to hide its fail-
ure. Currently, users have no recourse but to trust the server blindly or rely on legal
agreements. [Kven with such agreements, it is difficult for a user to discover, let alone
prove, any foul play by the server,

In this dissertation, we consider the following general model. There are three

main entitios involved: Alice, the data owner; Bob, the (untrusied) database server;



Alice

- Clarol
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Figure 1.1.: The various entities involved: The database owner (Alice); The database
server{ Bob); and Authorized users (Carol).

and Carol, the user(s) that access the database hosted on the server. Figure 1.1
shows the various entities involved in this model. Alice (and Carol) is concerned
aboul the trustworthiness of the databage operations and would like to be ensured
that the user operations were executed faithfully by the server. Bob is interested in
hosting the services for Alice {possibly in return for a fee) and will thus make efforts
to ensure that Alice is convinced about the fidelity of the hosting. Bob has complete
control over the hardware and the software that is used to host the database. Bob can
intercept all communication between the users and the server and mayv modify user
requests, or server responses. Note that our assumptions about Bob are minimal,
In most sottings, the server is likely to be at least semi-honest - ie, it will not
maliciously run invalid operations or modily a server response. However, due to poor
implementation, failures, over-commitment of resources, or other reasons, some loss
of data or updates may occur. Given the lack of direct control over the server, Alice
should not assume that Bob is infallible.

Since the data server and users communicate over the Internet, an important

concern is the security and privacy of the data and the database operations, Alice
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needs Lo decide i she wants to encrypt the data and the operation logic. On the one
hand, encryption of the data and the operations would provide security and privacy
from malicious entities. On the other hand, it restricts the range of operations that
can be performed by the server. DEven though providing reasonable solutions for
privacy preserving computation over encrypted data iz an important problem, most
of this dissertation focuses on ensuring integrity of the data and database cperations.
We do not address privacy of data or database operations except to the extent enablod
by storing encrypted data at the server.

The main challenge for ensuring faithiul execution of database operations comes
from the dynamic nature of databases. A typical database is accessed by multiple
ugers independently. Users interact with the database directly using transaciions,
often concurrently. These transactions can read or modify the data without prior
knowledge of the data owner. Past works in this domain put the burden of applyving
upclates to the data on the data owner. This iz an undesirable assumption for a
dynamic databage. We proposes solutions with which authorized users can execute
transactions at the server concurrently without being vetted by the data owner. Users
can ensure Lhat the database operations were executed Tollowing database principles.
This is done by engaging the server in a protocoel that requires the server to declare
the database state(s) on which the transaction was executed and the database state
that the transection produced. Using our selutions, we shilt the necessity for trust
on the database server to the data owner. The data owner stores a gsmall information
which is enough to verily that the database operations were executed Taithiully, This
can be done by a third-party server without the knowledge of the domain logic.

Specifically, this dissertation makes the following contributions:

e We identily the problem of establishing transactional infegrity for databsases
hosted at untrusted zervers. We propose solutions to establish that the usger
transactions were executed faithfully. Our solutions enable the data owner to
detect malicious modifications to the databasze and prove that the modifications

were indeed invalid., Assured provenance of the database and indemnity for the



server from false claims of foul play is provided as well. A proofof-concept
implementation on Oracle is provided., We provide an empirical evaluation of

the solutions.

# Access Control is an important part of databage systems. Mogt authentication
mechanisms fail in the presence of access control rules. We propose solutions
that allow the data owner to enforce access control rules without having to
trust the gerver. With our solutions, database operations can be authenticated
in the presence of access confrol rules, We propose some encryphion schemess to
encrypt the data so that only the anthorized users can read or write the data.
We implemented our selutions on top of Oracle. An empirical evaluation of our

solutions shows the efficiency our solutions.

e In practice, a databasge allows transactions to run at different isolation levels to
improve efficiency. Different isolation levels risk showing the transactions an in-
consistent database state. Ensuring that the transaction execution followed the
semantics of the given isolation level is required to ensure Lhe trustworthiness of
the transaction execution. We revisit the semantics for different izolation levels
to understand requirements for ensuring that a particular transaction wag exe-
cuted at a certain izeolation level and expand our solutions to provide verification
mechanisms for the users to ensure that a given transaction execution followed

the zolation level semantics honestly.

The rest of this dissertation is organized as Iollows. Chapter 2 pregents the related
work done in this area. Chapler 3 presents some preliminary tools that are necessary

for this work and summarizes existing results that form the basis of our solution.

Chapter 4 presents our proposed solutions for ensuring transactional integrity. Our
solutions Lo enable the data owner (o enforee access control rules are discussed in

Chapter 5. Chapter 6 expands our solutions to support different isolation levels.

Finally, Chapter 7 discusses some future work and concludes the dissertation.



2 RELATED WORK

The problem of ensuring authenticity of databasze operations when the database iz
hosted on an untrusted server has been explored by several researchers. In this

chapter, we review these work.

2.1 Authenticity and Integrity of Query Results

Much work hag been done towards ensuring the authenticity and integrity of

P

guery results from an untrusted (e.g., outsourced) database service [1- Ensuring
authenticity and integrity of a query resull. requires verilving two important aspects:
correciness and compleleness. Correctness ol a query result reguires that all data
iterns in the guery resulis do exist in the database. Completeness requires that no
data item is omitled from the query result, 4 e, all data items Uhat should have been
part of the query resull are indeed present in the guery resuli. Some of the ecarlier work
proposed solutions to ensure only correctness of query results [1,8], while later works
considered both correctness and completeness [2,4]. A few of these works [2,4,7,9]
have also considered updates. In most of these works, it is assumed that a single,
central entity executes the updates on the database, while all other entities only read
the data. This is an unreasonable assumption for many applications. Ounly limited

work has been done for the situation where multiple users can update the data [4].

211 Statie Databases

As mentioned before, most of the work done towards ensuring authenticity and
integrity of guery results hag been limited to static database setting, where either no

a7

updates are applied on the database or a single enlity updates the databage. In these
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works, 16 1s assumed that the updates are performed at the data owner’s site and the
correct values of the updated data are therefore known directly to the data owner.
The owner then participates in a protocol with the server to ensure that these new
alues are added to the outsourced database, and the necessary authentication data

gtructures are updated correctly. Thus the data owner bears a significant burden

for each update. [T proposes an authenfication data structure based on skip lists
which allows a user to perform membership gqueries on a datasel, 4e.) users can gquery
the server asking if a particular data itern exists in the database. The proposed
mechanisms allow the user to verify that the query result wag correct. The solution

allow the data owner to insert or delete data items from the database. |2| offers another

example of a single updater solution. It proposes an embedded Merkle tree (EMB
tree) for query correctness and completeness. An EMD tree is an embedded B+tree
gimilar to a Merkle Hash tree. The root hash of the free is made available to users.
With the help of this root hash, users can prove the correctness and completeness of
their query results. Updates are performed only bv the data owner and the updated

root label is then distributed to the users.

2.1.2  Dynamic Databases

A typical database supports a multi-updater model where a large number of au-
thorized users read and write data divectly on the database. In such setting, it is
nfeasible for the database owner to determine the correct updates. Only limited
work has been done towards ensuring authenticily and integrity of query resulls in
a multi-updater model [4|. [4] proposes a solution for ensuring authenticity and in-
tegrity of query results in the multi-updater model. The solutions use BGLS [10]
signature scheme to gign buples to ensure authenticity of dala items. BGLS signature
scheme provides a multi-party signature scheme with which users can sign the data
they generate with their own private keys, To verify the authenticity of a zet of data

items, the signatures of the data items are aggregated together and verifisd in a single



step. When a user updates the data, [4] requires users to sign the new value using
their key. For proving completeness, signature chaing are used. Each tuple is signed
together with the tuple just before and after it in sorted order. The approach has
been shown to be orders of magnitude slower than hashing based schemes [2].
ven though signatures can ensure authenticity of data, the server can still present
the updates in different order, or it may drop an update. As a result, different users
can view different (inconsistent) versions of the databases. To avoid this, [11,12]

propose protocols based on the notion of fork-consisiency. Fork-consistency ensures

that a user’s view of the data is derived by the correct application of updates from
other ugers. If an update from another user wag omitied from a user’s view, the user
will never see any Tuture update from that user. BEventually, users can communicate
among each other to verify if they are able to see each other’s updates. If not, they
have detected a malicious activity, Under the given solutions, the server has no way
> “fix” the malicious activities. Thus, once a malicious activity occurs, the server
cannot hide it in case the users decide to compare each other’s views. This makes
the detection of such malicious events eagier. Ilowever, the proposed work handles
only single read or write operations and the operations that require multiple reads

and writes, e.g., typical databage SQL queries or transactions, are not handled.

2.1.3  Other Data Types

Researchers have also begun lo consider similar problems with respect to generic
data. For example, [13] presents a solution to the problem of ensuring that large files
Lhat have been oulsourced are indeed available Tor download in their eniirety. The
solution provides a means to ensure thal i parts ol such liles become corrupted or
missing, then the user is able to discover this with high probability. [14] presents a
golution to the problem of ensuring correct execution of a CVS server. In this work,
it has been proved that to prove the execution of CVS (which includes both read

and write}, users have to communicate with each other. The need for communication
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arises to ensure the freshness of the data. [15] uses the notion of fork-consistency to

engure integrity of revision control systems.
2.2 Trusted Hardware

Some work has also been done towards ensuring the integrity of databases using

trusted hardware [16-18]. In these systems, trusted hardware (e.g., a secure co-

g

processor) is used to execute queries correctly and with privacy. [16], for example,
provides mechanisms to execute SQL gueries with honesty without having to trust the
server. This is achieved by using server-hosted tamper-proof hardware, A szignificant
advantage of using tamper-proof hardware is that the expressiveness of the SQL
queries (or transactions) are not compromised. However, the tamper-prool hardware
have limited resources compared to commodity computing hardware. Tb execuie a
SQL guery, the user encrypts the query using the trusted hardware’s public key and
sends it to the server. Since the guery is encrypted, only the trusted hardware can
read the query. Since the trusted hardware has limited storage capacity, it stores the
data on the untrusted server hard-disk in an encrypted form. Based on the query, the
trusted hardware reads the appropriate part of the encrypted data from the server
hard-disk, decrypts it and processes the query. Since the trusted hardware has limited
main memory, mechanisms have also been proposed to store the intermediate data
produced during query processing to the untrusted storage in encrvpted form.

18| proposes mechanisms for fine-grained integration of the trusted hardware
(using FPPGAs) and untrusted commodity servers. Fine-grain integration enables a
smaller footprint for the trusted hardware while still leaving room for generic queries.
The proposed solutions encrypt only the necessary parts of the databage. The encryp-
fion scheme can be chosen based on the expected database operations. For example,
a deterministic encryption scheme can be used to encrypt a table column on which a

equi-join iz expected. However, if the encryption scheme does not allow a particular



operation, the trusted hardware can be used Lo decryvpl the data and execute the
operation on the raw dafa.

2.3 Provenance

Much work has been done towards data provenance and tamper-proofing of data

119-23]. While most works focus on storing and querying provenanc 22], some

have considered the problems of privacy and trustworthiness of data provenance [20,

21]. 124, 25] proposge mechanisms to store the provenance of the workflow in a database.

125] allows queries on this provenance to understand the role of each component in
the workflow [26], and to understand the intermediate data.
Due to regulatory requirements, some application require to store provenance

21| defines secure provenance as the one which ensures that authenticity of
provenance, and access conbrol, fe., users can selectively preserve the privacy of

provenance records and only authorized users can access the provenance.

28 propose
golutions for tamper detection of an audit log of the database that records all changes.
This work does not address outsourcing or privacy concerns and assumes that the

databaze owner ig a frusted entity.

2.4 Privacy

Other orthogonal avenues of rezsearch focus include hiding data from outsourced
databasges [20-34], hiding access patterns from the database servers [35], privacy pre-
serving data publishing [36—38], and, private outsourcing of computation [39-43].
14,45] propose solutions to distribute computation tasks across untrusted nodes on a
public network. The proposed solutions ensure privacy of the computation tagk and

data while also ensuring trustworthiness of such computation.

proposes solutions to execute SQL queries over encrypted data. The data

are encrypled belore sending it to the server. The data are partitioned into ordered

buckets Lo support range queries. user queries are rewritten so that the query can
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be executed on the partitioned (encrypted) data. Since the data are encrypted, ex-
pressiveness of SQL is compromised when rewriting the queryv. The remainder of the
query iz executed at the user after decryption of the data. [34] proposes solutions to
alleviate some of these problems. It proposes a collection of SQL-aware encryption
schemes to support various SQL features, e.¢., deterministic AES to support equi-
joins, order-preserving encryption [29] for range queries, homomorphic encryption for
summation, efe.. The data are encrypted in multiple layers. As necessary, the layers
are decrypted by supplving the laver key to the server. By doing so, the data owner
can ensure that the data are encrypted as much as possible while still being able to
execute the gueries. In the worst case, if ifs reguired, the data can be decryptod
completely to support any SQL guery.

Much work has been done towards private outsourcing of computation, where
the data owner does not want to reveal the data [40-43]. [43] provides mechanism
to evaluate a function ' at an untrusted server, without revealing the input or the
output of the function to the untrusted server. [40] proposes a solution to the problem

of computing edit script to convert a string u to another string v

2.5 Access Control

Most, of the solutions proposed for ensuring authenticity and integrity of query
resulbe leak extra information at the time of verification. The extra information is
necessary for the user to be able to verily the correctness and completeness of the
guery result. This is undesirable in the presence of accsss conbrol rules as the exira
nformation required for verification may not be accessible to the user. Some work
has been done towards ensuring correctness and completeness in presence of access

control rules |9,46-49]. While

9 supports one-dimensional range queries and data
updates, [47] supports multi-dimensional range queries and does not handle updates.
Both these solutions do not provide privacy against the server. [48,49] focus on the

access control problems with data authenticity for XML data.
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Much work has been done towards key management |

I. [50-52] propose key

management solutions for access hierarchies. [50] proposes a solution to not only
restrict user access to limited data, but also till limited time. [53,54] consider lazy
revocation model where the user can maintain access to an old version of data when
they are evicted from group. owever, any new value that iz accessible to the group
will not be accessible to the evicted user. This is done by using key derivations which
allows user to derive previous encryption kevs but does not allow user to derive future
keys. When a user is evicted from the group, the data is not re-encrypted immediately
using the new key. All future updates are encrypted using the new key. This saves a

lot of computation and [/0 cost, whenever access control rules are changed.



3 PRELIMINARIES

In this chapter we present some bagic tools that we use for building our solutions,

and also dizcuss existing solutions for ensuring completeness and correctness.

21 lools

We use three data security tools in this chapter: ene-way hash functions

Merkle Trees [56), and digital signatures [H7].

211 One-Way Hashing

A one-way hash function £ takes as input a data item z and produces ag output
the hash of the data item y = A(x). Important requirements for a one-way hash

function are:

e Given a hash value g, and the hash function k., it is inleasible to {ind # such

that hlx) =
o 1t is infeasible to find two different data items, » and y, such that A{x) = Aly).

One-way hash Tunctions ensure thai it is infeasible Lo compule inverse of the
function, i.e. given a desired hash value, it is computationally impossible to find the
input, value. However, verifying that the input value does produce the given hash
value is easy.

There are many well-known and commonly used strong one-way hash functions

such as SHA-256.



3.1.2 Merkle Hash Trees

A Merkle Hash Tree (MHT), or Merkle Tree, is a binary tree with labeled nodes.
Hach leal node represents a data item. We represent the label for node nas ®{n).

n is an internal node with children ryp and 7,440, then

$n) = h{ D) [P i)

o
N
s

N

where 11 s concatenation and b is & one-way function. Labels for leal nodes are

computed using data values depending upon the application, e.¢., in case of a database

relation, a label is calculated as the hash of the tuple represented by that leaf.

3.1.3 Digital Signatures

A digital signature serves to engure the legitimacy of a digital message. In partic-

ular, it gives the following assurances to the recipient:
e Authenticity: the message was created by the given sender,
¢ Non-repudiation. the sender cannot deny having sent the message.
e [nicgrily: the message was nob altered in transit.

Therve are many well known digital signature schemes such ag RBA based digital
gsignature.  In order to sign o message, M| the sender livsh compules the hash of
Lhe message using o public one-way hash Tunction, A, and then encrypls the hash
value using their private key: Sumae-(A{M)). We will refer to the message M, and
the signature 8. (A(M)), together as a signed message, o Senger (M), To verily
the autheniicity and integrity of a signed message, the recipient applics the same
hash function to the message to compute A{M), and decrypts the signature using
the sender’s public kev. If the decrvpted value matches the hash value that they
computed, the recipient is certain that the message was indeed signed and sent by

the sender.
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3.2 Correctness and Completeness

We begin by discussing the use of Merkle Trees to prove correctness. And then
further discuss a variant of it, MB-tree, which we use as o building block for our

overall solution.

3.2.1 Correctness

Correctness requires that all values that are part of a guery resull are indeed p
of the database. In other words, this implies that the values returned are indeed from
the right consistent state of the authentic database, and not manufactured by the
server or an atbacker.

Merkle trees can be used to establish the correctness of query results from an
outsourced database, Initially, when Alice chooses to outsource a database relation,
she computes a Merkle free over the relation. IEach leaf node in the Merkle Tree
represents a tuple in the database relation. The data are then sent to Bob lor servicing
queries. Bob computes the same Merkle tree structure over this data. Alice and Bob
ensure Lhat the hash values of the Merkle tree that they independently computed
match. Once Alice and Bob agree on the state of the initial data and Bob starts
services queries from Alice (and Carol). After this, Alice saves the value of the root
label and can delete the data and the Merkle Tree. Alice distributes the root label
to the users.

Figure 3.1 shows an example of the tree produced. In the figure, the nodes with
labels £, ts,. .., s represent the tuples. Other nodes represent the nodes in the Merkle
Tree. Ttach leaf node (e.q., Hy, Ily) represent a single unique tuple in the database

The correctness of a tuple, ¢;, in the regult of any query iz established as follows:
Alice (or Carol) requests the Verification Object (VO) for tuple ¢;. Consider 5 as
an example. Lot Hys be the label of the leal node that represents L. The VO for 4
consists of all sibling nodes along the path from x to the root of the Merkle tree. In

Figure 3.1, these nodes are shaded and are: Hiz, Hy, Ha. Bob returns to Alice the
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Figure 3.1.: An example Merkle Tree

VO for f5. Alice uses the value of £5 to compute the label 15, She uses this label
and the label I,y from the VO to compute the label of the parent, f1;. Alice further
computes ffy using the previously computed [l; and II; that was present in the VO,
and so on, all the way to the root label. If the computed value of the root label is
same as the one initially computed by Alice before sending the data to the database
server, she is convinced that & must be part of the original table. 1f not, then Alice
has detected a malicious activity.

Note that the hash function has to he public. The label of the root saved by Alice
is known as the proof Of course, it iz also possible for Carol to submit queries and
verity the correctness of each answer similarly. All ghe needs to know is the value of
the root label initially computed by Alice. Since we use one-way hash functions, Bob

cannot cheat the verification process.

2.2.2 Completeness

Completeness requires that all values that should be in the angwer to a query are
indeed present in the answer. In other words, Bob has evaluated the query correctly

and has returned all tuples that are produced ag a result without dropping any oul.
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Table 3.1.: Sample Data Table

| tuplelD | A |
1 23
2 20
3 25
4 485
o £
w7 A0
& 63
7 65
8 70

Note Lhat correctness and completeness together ensures the correctness of a read-only
query.

Asg explained before, a Merkle Tree is a binary tree. Ilowever, it can be eagily
extended to use a B+-tree instead [2]. An MB-tree behaves just like a regular B+-
tree with its nodes extended with child hash values. Similar to the Merkle Tree,
the label of each non-leaf node iz computed by hashing concatenation of labels of its
children. Label of a leaf node is computed by hashing concatenation of hash values
of cach tuple entry in the node.

We use MB-tree to establish the completeness of the results of o query. Figure
3.2 shows an example MB-tree built on sample data in Table 2.1, Consider a range
query which returns tuples £y .. 5. To establish the completeness of tuples satislyving
a range, the VO consists the tuple just before the range (f3) and the tuple just after
the range (fg). VO then includes the path from those two tuples to the root.

To establish correctness, Alice computes the labels for all tuples in the results and
the two surrounding values, i.e., h(ty), h{ty),. .., A{t7). She then computes the labels
of ancestor nodes working her way up the tree. The VO containg the labels of nodes
that she needs to compute the ancestor label and also which tuples belongs to the
game leaf node. IFinally, she compares the computed proof with the proof she stored
carlier Lo determine i the resull sel containg all the tuples thal should have been

returned. I this is the cage, she is assured that all valid tuples were returned to her.



Figure 3.2.: An MB-tree on attribute A of Table 3.1

Alice verifies that &y and #,.; are outside the query range, ensuring that the query

results were indeed complete.

Updates Generated By Alice

The above solutions for correctness and completeness work for single-updater
maodel where all updates to the database are computed al the dala owner site, and
the computed updates are then sent to the server. In order to update the data,
Alice recomputes the Merkle Tree structure keeping the updates in mind and then
gends the updates to Bob. Bob applies the updates to the database and updates the
Merkle tree independently, Alice and Bob compare the updated root labels that they
computed. If they agree on the state of the data after the update, Alice distributes
the updated root label to the uszers, and Bob starts answering the subsequent queries
using the updated data. The verification iz now down against the new proof.

This solution requires that all updates are vetted by the data owner (Alice). Also,
any update to the database needs to be verified before executing any further updates.
[n the next section, when we discuss a more general solulion for updates that are not

generated directly by Alice, we will remove both of these requirements.
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4 TRANSACTIONAL INTEGRITY

A typical relational database is accessed (reads and writes) by multiple users using
tranzactions. The database server iz expected to execute these fransactions ensuring
that the ACID properties are satisfied, Even though two fransactions were executed
concurrently, their aflfect is same as if they were executed one alter the other. In the
scenarios where the database server is not trustworthy, the database owner needs to
ensure that a transaction submitted by a user was exccuted correctly - the transaciion
read Lhe correct and complete data and the generaled updates were applied correctly
and Tuture transactions were executed on the updated data. In the past, most work in
this domain focussed on cases where the users did not update the database (just read
queries). Some later works considered updates from a single entity, where the updates
applied at the data owner’s site and then sent to the server. Some work also considered
updates from multiple sources, however they are applicable to complex systems like
relational databases, which support transactions. In this chapter, we present solutions
that allows the database users to run the transactions on the database. The solutions
allow the users to be able to verily that the transaction was executed honestly by the
database server,

In particular, we provide solutions to force an untrusted (relational) database

server to provide trustworthy data

58|. This is achieved by engaging the server in a
protocol that makes it impossible for it to hide unfaithful execution. A key challenge
for this work ariges from the fact that multiple, independent users can access and
make valid updates to parts of the data using SQL. In order to ensure authenticity,

it 1% neces a5ary to ffuazamee

¢ Correctness: All answers to a query do indeed come from the authentic

databage.
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o Completeness: The query answer contains all relevant tuples (4.¢., no part of

the answer is dropped).

¢ Transactional Integrity: The database always reflects a valid consistent state
— 1.2., the state corresponding to the initial state followed by the correct appli-
cation of all previous valid transactions in the correct order. Furthermore, each

new transaction executes against the latest (or freshest) state.

As mentioned before, correctness and completeness of query results have been
studied in earlier work. In most earlier work it was assumed that the data were
either not modified, or the updates were authenticated by the data owner and then
sent to the database server. Thus, the legitimacy of any data in the database could
be established directly by the data owner. However, in a dynamic database setiing
this is an unacceptable assumption. A typical database supports a large number of
authorized users Lo run transactions direclly on the database. Updates to the data are
computed by execution of these transactions on the database. The database owner or
the users cannot always determine the correct updates produced by each transaction,
The validity of these updates (i.¢., what items are modified, and their new values) is
determined by the faithful execution of a transaction semantics over the latest valid
gtate. Due to the lack of frust on the database server, there iz a need to agsure the
data owner that the user transactions were indeed executed honestly by the server.

Many applications may also require, .¢., due to regulatory compulsions, to keep
the provenance of the operations. This can be particularly important fo check if
malicious activily occurred in the past. In addition to these requirements from the
data owner’s perspective, there is an additional reguirement from the service provider.
The server should be able to prove its innocence il it has [aithiully executed all
Lransactions.

To the best of our knowledge, this problem of ensuring transactional integrity over
an untrusted database server, as critical ag it is for outsourced databages, has not been

addressed in earlier work, Given that the goal of the outsourcing is to alleviate the
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burden on the data owner, satislactory solutions need Lo minimize the overhead and
role of the data owner in establishing the authenticity and integrity of the solutions.
In this regard, existing solutions are inadequate as they require the data owner to
play a gignificant role. In addition, existing solutions also place a significant overhead
on the service provider. While this may work for some applications, many outsourced
databases are expected to have both a large size and high rate of querying and up-
dates. Thus it 18 necessary to explore more eflicient solutions with low overheads Tor

all involved partics. The contributions of this work are:

e [dentification of the problem of ensuring Trangsactional Integrity for databases

hosted on untrusted servers.

e Novel authentication mechanisms that ensure correctness, completeness, and

transactional integrity.

e Solutions that provide indemnity for the server, and also frustworihy provenance

for the database.

e A demonstration of the feasibility of the solution through a prototype in Oracle,

and its evaluation.

The rest of the chapter is organized as follows. Section 4.1 explaing our models
and assumptions. Section 4.2 presents our requirements and proposed protocols. In
Section 4.3 discusses how our solutions can provide assured provenance. A discussion

of the implementation of the solution and empirical evaluation is presented in Section

4.4, Finally, Section 4.5 concludes the chapter.

4.1  Assumptions and Model

We consider the general model as described in Chapter 1. The data owner (Alice)

wants to host the database on the database server (Bob) who is not trusted. The

users (Carol) interact with the database using transaction. These transactions can
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read or update data. users are authorized by Alice and can independently authen-
ticate themselves with the server. As in a typical database, multiple users can run
transactions concurrently. These transactions can modify the data as well.

To ensure the legitimacy of the communication (for example, a transaction ex-
ecution request sent by a user, or transaction results sent by the server) between
different entities, the communication is digitally signed. ISach entity has a public key
for digital signatures. A user’s private key should remain secret else an intruder can
compromise the database.

To ensure that a transaction was executed faithfully, the user or the data owner
can ask the server to provide some extra information. Using this extra information,
the user or the data owner can ensure the transaction was executed faithfully. I
is desired that if Bob makes any invalid changes to the database or the results of
queries, Alice {or Carcl) should be able to discover this and be able to prove his
errcr. Similarly, from the database zerver’s perspective, it iz required that if Bob
does indeed faithfully operate the database then he should be able to establizh his
innocence, ¢.e., Bob is indemnified against invalid claims by Alice or Carol if he
faithfully executes the database.

In a typical database, a transaction can be aborled lor multiple ressons, e.g.,
when the transaction cannot be serializved. When Bob recelves a transaction reguest,
it execules the transaction and decides (o either commit or abort the transaction. For
this work, we assume that the users are not interested in knowing the reasons behind
aborting a transaction, however, expect the Quality of Service agreement to provide
certain guarantees on performance quality. users need not be frusted. In the case
when a particular user(s} is not trusted, Alice will verify the transaction authorized by
the untrusted user, else she can expect the user to verify the transactions submitted
by her. We agsume that the users will not collude with the server.

Bob runs a relational database that supports only Replayable Transactions. A
replavable transaction is one which is deterministic - 4.e., the outeome of the trans-

action (the outputs it generates, the values of its updates and its decision to commit
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or abort) is completely determined by the values that it reads from the database and
its input parameters. In other words, a replavable transaction will produce the same
output and updates when executed on the same consistent state. This assumption is
no different than one that is currently made by database svstems in order to ensure
the well known ACID properties of databases (e.g., the ability for the database to
automatically restart a running transaction if it is deadlocked). IFor this work, we

assume that all transactions are executed at stricd sericlizable isolation level

4.2 Transactional Integrity

As seen in the previous section, solutions for ensuring correctness and completeness
have been proposed in earlier work. In this section we present our solution for ensuring
transactional integrity in a dynamic database where multiple users can independently
run transactions.

Transactional integrity requires that each transaction is run against a consistent
database containing all, and only the changes of all previously committed transac-
tions, in order of their commits. Furthermore, any updates generated by the correct

execution of trangaction are reflected in the updated databasze upon commitment.

4.2.1  Hequirements

To engure the infegrity of the database, each transaction must be authorized
by Alice or Carol. Alice needs to be ensured that the transaction was faithfully
executed by Bob without any tampering of the results. IMurthermore, any subsequent
queries should be answered against Chis resuliing database following the transaction’s

commitment. The problem is diflicult because we must ensure that Bob does not:
e drop a transaction, 2.e.. claims to execute it, but does not;
& add an invalid fransaction not authorized by Carol;

¢ alter the order of execution of transactions: or



Figure 4.1.: A simplified view of database consistency

& alter the data read by or modified by a transaction.

In addition, we also require indemnity for Bob: that ig, if he falthfully executes
all transactions received from Alice or Carol, it is impossible for Alice or Carol to

implicate him, 4.¢.. he must be able Lo prove his innocence.

4.2.2 Key ldea

Databases are complex systems, but they are built to ensure that the following
simple definition of consistency is satisfied [59]. Figure 4.1 shows this graphically. The
initial state of the database (12 Bq) is considered to be a consistent state. The correct
(isolated, atomic) execution of a transaction(7}) over a consistent state( )8, 1) takes
the database to a new consistent state( D F;). Of course, this is only a conceptual no-
tion — in reality multiple transactions execute concurrently and can have various SQL
isolation levels. Thus, in practice, the database s in an inconsistent state represented
by the partial execution of concurrent transactions. However, when a transaction
iz allowed to commit it is certain that its execufion is equivalent to having run in
izolation against the consistent state produced by the execution of all transactions
that have committed earlier (in the order of commits).

Our initial solution focuses on siriel serializability. I a user is willing to run a
transaction with a weaker isolation level, than our solution can be applied with an
appropriately relaxed notion of correctness. Since strict serializability is the most
stringent condition for correctness and completeness (as required by many applica-

tions, e.g., Banking), we limit our discussion fo this case.
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Our solution is bulll upon the Tact that in strict serializable isolation level, each
transaction “gees” a consistent, committed state of the database corresponding to the
gtate produced after completing earlier committed transactions. All its reads are from
this consistent state. If the transaction is able to successfully execute and commit, it
generates a get of updates which must all be installed atomically to produce the next
conslstent state.

Hagsed on Lhis observation, from the conceptual poini of view, the inlegrity and

authenticity of a transaction’s execution can he divided info three sub-components:

e [fstablishing that all values read by the fransaction come from a single consis-
tent state {in particular, one that reflects the updates of all prior committed

transactions, in correct order).

e Faithful execution of the fransaction using these values - defermination of the

correct values of the updates.

e Fstablishing that all updates generated by this execution have been applied to

the database.

Under the agsumption of replayable transactions, Bob does not need to prove the
second point listed above (faithful execution) since this can be verified by a simple
re-execution of the transaction over the same consistent state that was visible to the
transaction when it was run by Bob, We need to establish that a given transac-
tion, 7%, ran against o particular consistent state, DB, ¢ and produced a particular
consistent, state, DJF;. This will be achieved by using MB-tree structure discussed
earlier. Although the database at any time is in flux and contains inconsistent, states
we will only update the MB-tree structures al the time of transaction commitment.
Thus each noew MB-tree reflects the commitment of exaclly one transaction. In other
words, we maintain a one-to-one corregpondence between the conceptual consistent
states and the proof structure — a new version of the structure is generated in one
step only upon the commitment of a transaction. This new structure is computed

from the previous structure by applyving the changes made by exactly one fransaction
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~ the one that has just committed. Bob has to declare this structure at the time of
commitment of a fransaction {(by sending out a signed ccpy of the new root label,
Proof;, bevond his control}, and be able to use this structure when asked to verify
the correct execution of the transaction {(which will alsc involve the structure before

the commitment of the given transaction).

4.2.3 The Protocol

We now discuss our solution for ensuring Transactional Integrity, We discuss the
initialization steps taken by Alice and Bob, the execution of a single transaction by
Carol (similar for Alice), and the verification steps to establish the validity of a given
transaction. For ease of exposition, we discuss only the case of one relation. The
extension to multiple relations is straightforward and omitted due to lack of space.
All signed messages are verified by the recipient — this is not explicitly mentioned in
the discussion below.

While it is certainly feasible for Carol {or Alice) to validate every single transac-
tion, this results in a heavy burden. In practice, we expect that they will randomly
alidate tfransactions with a frequency that reflects their distrust of Bob. In order for
thiz to achieve the goals of this work, it iz essential that they be able to verify any
past transaction without any forewarning to Bob during the execution of the trans-
action. Moreover, the solubion must ensure that once they request the validation of
a transaction, iU is impossible for Bob Lo go back and “lix” any errors or omissions
with respect to the execution of thal transaction. These requirements are met by our

solution.

Initialization

Algorithm 1 describes the initialization step. In the beginning, Alice and Bob

independently compute MEBTL - the MB-tree structure over the initial state of the
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Algorithm 1 Initialization

1: Alice sends the initial database, DBy to Bob

2: Bob computes M BTy, and sends Sp.(Proofy) to Alice.

. Alice independently computes Froofy and verifies what Bob has gent.

. Alice retaing Froofy,. (She may now choose to discard her copy of the database.)

[l

relation. Alice retains only the prool, Proofy. Bob sets up the database with this

initial table and opens shop, ready for processing transactions from Alice and Carol.

Transaction Execution

Algorithm 2 describes this step and Figure 4.2 shows the steps graphically. To
execute a transaction, Carol sends to Bob a signed message containing the identity
of the transaction (as discussed above), all necessary parameters (e.¢., account num-

5
Y
i

bers)

, and a unique transaction sequence number (SID). This sequence number must
e unique for each transaction submitted by Carol {(if there are multiple Carols, i.e.,
multiple authorized users, the number needs to be unique for each such user, not nec-
essarily across all users). Bob verilies the signature to be that of Carol and examines
the message. He rejects a transaction request from Carol if the sequence number is
not. larger than the carlier request from the same user. The sequence numbers prevent,
replay attacks by Bob. That is, Bob will he prevented from re-using a transaction
request to run that transaction multiple times. The details will become clear later in
the section.

Bob then rung the requested transaction. He keeps track of the data items written
by the transaction. If the fransaction successfully commits, Bob installs the updates
produced by the transaction info the current proof structure. Since fransactions are
committed sequentially, let 4 be the ordinal position of this fransaction’s commitment
since the initial outsourcing. This transaction will be identified by Bob as T - ie.,
the 47 transaction to commit. Concurrency control will ensure that this transaction’s

reads were consistent with DB, - the consisient state corresponding to all earlior



Algorithm 2 Transaction Execution

1: Carol generates the unigue transaction seguence number S and  sends
Scaret{transaction, STD) to Bob.

2: Bob records this message affer verifving the signature and execufes the transac-

tion,

If the fransaction successfully commits, DBob computes MDT, and sends

SpaplSID. i, Froof;_y, Proof;, R5et) to Carol. 7 iz the transaction’s commit se-

quence e rurmk er, and RSet is the result set produced by the transaction.

4: Bob also sends to Alice Spa(e, Proofi_, Froof;, Scaea(transaction, STD)).

5. Alice verifies Bob’s signature and then adds Proof; to its chain of @mota after
verifving that Froofi_ 13 at the end of the current chain. Alice also checks that
the SI11) for this user is in increasing order.

g: Carol sends Sega(Froof, 1. Froof;) to Alice.

Alice checks that Proof; 1 and Proof; are contiguous proofs in its chain.

]

1

commitbed transactions. 1 this is not the case, then the transaction will nol he allowed

to comnmit (recall that we are assuming only strict, serializable executions |
it commits, its changes will be included in the next conceptual consistent state, DI
Bob stores the authorization message from Carol along with the transaction’s commit
position, 2.

Bob needs to declare that 7 was applied on D5, and produced DI5;. He does
this by computing the corresponding MB-tree structures M BT, 1 and M B'1;. As part
of the proof of the commitment of 75, he send to Carol a signed message containing
(1} the sequence number submitted by Carol, (i) the transaction’s commit sequence
number, 4, (i1} the label of the root of M BT, 1, i.c., Proof; 1, (iv) the label of the root

of MET;, i.c., Proof;, and (v) RSet, the result set produced by the transaction. He
also sends to Alice a signed message containing (i) the fransaction commit sequence
number, ¢, {ii} Froof;_y, (iii) Proof;, and (iv) the Carol’s transaction request —
Seara(transaction, SID). Note that for a read-only transaction, Bob need not send

anvthing to Alice.

Alice uges the messages from Bob to maintain the sequence of proofs: Proofs,
Proofy, ..., Froof; that Bob claims to be the sequence of consistent states that the

databasgse has gone through, She ensures that Proof; 1 is currently the last value in
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its proof chain. If this iz the case, she adds Froof; to the end of the chain. She
also retaing the latest SID used by each user. She checks to see that the SID hag not
been used by this user sarlier and i in increasing crder for the user. Alice receives
Froof; 1 snd Proof; rom Carol as well, and ensures that Froof; 1 precedes Proof;

in the sequence received from Bob. If not, Alice has detected a problem.

Transaction Verification

Algorithm 3 explains the verification protocol formally. Following the execution
of a transaction, Carol {or Alice) can arbitrarily decide if she wants to verify a given
transaction (current or past). To verify transaction 7}, three requirements need to be

established.
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Firstly, Bob has to show that all values read by the transaction were indeed {rom
DB;_}{Step 2 and 3). To do this, he needs to produce the verification objects for the
reads from M BT, . For now, let us assume that Bob maintains a copy of MB-tree
for each consistent state. We will revisit this issue later and propose a more efficient
golution. Carol uses the Correctness and Completeness mechanisms discussed earlier
to verify the reads against Proof;_,{5tep 4 and 5).

Secondly, Carol needs to know the correct values of all updates generated by
the given (replavable) transaction when run on a database corresponding to DB, 4.
Given a replayable transaction and the values read by the transaction {as declared
by Bob and validated in the previous step), we need to determine the values of its
updates. Given the replayable transaction and the values that it reads, Carol (or
Alice) can determine the values of its output and updates {Step 6).

Thirdly, Carol needs to establizsh that the updates of the transaction were faithfully
recorded in the databage and used for subsequent transactions. To do this, Bob needs
to show that M BT differs from M BT,_, by exactly the modifications of 75, For this,
Bob sends the node values from M DT, which were modified at the time of commit
of transaction 7;. Bob also sends other nodes values required for Carol {o generate
the Proof; (Step 7). Then, Carol can update the partial M BT, ; to include the
changes applied by the transaction and verify the new proof (Step 8). Carol then
ensures that the new proof {Proof;) is indeed what Bob claimed it to be at the time
of transaction commit. This is verified by comparing it with Froof; value obtained
from Alice in Step 4.

Notice that in our solutions, the overhead for Alice is minimal. Alice just maintains
the proof chain and stores the latest SID used by each user. Alice incurs cost of
verification only if she wants to. The users can verify the fransactions independently.
There ig a communication cost for Alice, as both Bob and Carcl updates Alice about

the execution of a transaction. Iowever, it does not stop Bob or Carol from executing

LAs is always the case, il 1) updates a data value and subsequently reads it, it will read the value it
wrote, not the one from DE; ;. This should be taken care of during the transaction verification.
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Algorithm 3 Transaction Verification

1: Carol asks Bob to verify a transaction 7}

2. Bob computes MEBET, | and M BT,

3: Bob sends to Carol the verification objects for all values read by T} baszed on
MEBT, 4.

4: Carol obtaing Proofi_, and Proof; from Alice,

5. Carol verifies the correctness and completeness of 7,5 reads.

6: Clarol determines the outputs and updates for T} (replays T;) given these reads.

7. Bob sends to Carol the verification objects for T3's updates based on M BT,

8 Carol verifies that M BT contains these updates.

turther transactions, hence, the communication can occur at available time rather

than instantly.

4.2.4  Discussion of Correctness

We now show that the proposed protocol meets our requirements. We show how

a failure on the part of Bob will be detected by our protocols.

Lemma 1 [f Bob (or an intruder) maliciously modifics o set of tuples, mSet, afier
transaction 1 (with corresponding proof Proof; ), then Proof; 1 will not authenticate

the malicious version of mSel.

Proof Any tuple value after executing 7} can be authenticated using Proof;, which
is declared by Bob aller execution of 7% I the values in the tuple sel mSel were
modified after T}, Proof; will not authenticate the updated values in mSet, i.e., the
server will not be able to prove that the new values in mSef were indeed part of the
databasge after executing 7;. Thus transaction T, will not read those values (if it
does, the gerver will not be able to authenticate those values). Since the execution
of the transaction depends solely on the data that it reads, the verifier can generate
the updates that the 751 gencerated. Thus the ealeulation of the new proof will not
include the malicious changes to mSet. Hence, Proof; 1 will not authenticate the

changes in mSel. B
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Theorem 4.2.1 [f Bob modifies mSel after ransaction T and i1, is lhe first Irans-

action after T that accesses the tuples in mSet, then verification of Ty, will fail.

Proof [or the verification of T3, the server has to authenticate the tuples that T}

[#2]

reads against Proofi_,. Using lemma 1, we can say that 7y, can not authenticate
the malicious values of mSet. Applying the same lemma again on Ti1, ensures that
1o will not authenticate mSet either, and so on. Ilence, T3, will not authenticate

the values in mSel either. Hence, the verification will fail. |

Theorem 4.2.1 proves that each transaction reads data from a consistent state
which reflects the updates applied by previously commitied transactions. The proof
chain stored at Alice establishes the order of commitment (serialization order) of
the transactions. We now show different. malicious events that may compromise the
trustworthinesg of data, and discuss how our solution ensures that such malicious

events will be detected,

It Bob drops a transaction:

Consider a transaction submitted by Carol that Bob pretends to execute (i.e.,
sends unauthentic responses to Carol, but does not actually execute the transaction).
Bob has to notify Carol that it executed the transaction and her transaction modified
the proof from Proof,_y to Proof; (for some ¢). As part of the protocel, Carol will
zend this information to Alice (Algorithm 2, Step 6). If Bob drops this transaction,
Bob will claim that the next transaction (sent by the same user or some other user
Carolina) moved the proof from Proof, 1 to | ’;r*{.sw'j;;. When Carolina sends this
information to Alice, she will detect that Bob executed two transactions on the same

consistent state, which breaks the consistency of the database,



If Bob executes an unauthorized transaction:

Bob can execcute an unauthorized transaction in two ways: i) Bob could manu-
facture a new transaction and pretend that a user sent it to him; or i) Bob could
replay a transaction that it already executed. To manufacture a new transaction, Bob
has Lo forge a user’s signature as the protocol requires Bob Lo execute only signed
transactions — this iz computationally infeasible.

To prevent a replay of an old valid request, the protocol requires a unique, in-
creasing identifier {SID} as part of the signed request. Hence an attempt to reuse an
old signature will be caught when Alice receives Seupa(transaction, SID) value that

does not show an increase in SID for the given user (Algorithm 2, Step 5).

If Bob does not run the transactions in the claimed sequence:

The chain of proofs maintained by Alice prevents this from happening, Bob
informs Carol of the commit order, 2, for each transaction. The corresponding pair of
proofs, Proof; + and Proof; must validaie this transaction. I Bob does not specily

Lhese correctly, verilication of 7 will {ail.

4.2.5  Indemnity for Bob

We also require that if Bob is honest and faithfully executes all transactions sub-
mitted by Alice and Carol, then he can prove his innocence. This is indeed the case
for this solution.

We first consider Bob’s indemnity from Carol. In order to verify a transaction
submitted by Carol, Bob needs the following from Carol: (i) the request for running
the transaction including the transaction name, its parameters, and a sequence num-
ber, and (ii) Carol’s ability to replay a transaction faithfully. Carol cannot repudiate

her request for running a transaction since she signs the request with all the necessary

information. If Carol does nof. replay a transaction correctly, Bob can check that him-



gell by replaying it and implicate Carol. This is possible because each transaction and
parameters are known to each party, the values read from the databage are known to
Bob and he can verify that they are consistent with the consistent state corresponding
to the proof value he sent to Carol in response to the transaction request. Thus, it is
not possible for Carel to falsely implicate Bob.

Next we consider Bob’s indemnity from Alice. Bob relies on Alice to maintain
the chain of prools and also to check that a given 811 has not been used earlier for a
given user. Alice cannot modify the chain with impunity. If she adds a proof that Bob
has not provided, she would have to produce a signed message from Bob containing
the old and new proofs. She cannof. manufacture such a signed message. Similarly,

she cannot delete any proof { Proof;) from the chain, as she has to produce a signed
message containing (Froofi_y, Proof;y). If Alice claims that an SID value for a
uger is being reused by Bob, she can once again be challenged to produce the prior
mesgage from Bob containing this SID and user pair. If he has never sent her such a
message, she will be unable to produce it.

Thus, Bob iz protected from baseless claims of wrongdoing from either Alice or

Carol, as desired.

4.2.6 History

Recall that we assumed above that Bob maintains a copy of each successive M LT}
corresponding Lo the commit of each transaction. This is expensive and unnecessary.
[nstead, Bob can maintain a base structure and record incremental updates to the
structure after each commit. Alternatively, he can maintain the latest version of the
structure and maintain enough information to work backwards to an earlier version.

To reduce the storage cost, each tuple in the database and each node in MB-tree
is assigned a unique id. Each tuple in the relation is also assigned a version number.
A history stores each value that a tuple or a node takes as the database evolves.

At the start, for each tuple and MDB-tree node, the history stores only one value
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- the value in the database or MB-tree alter the initialization step. [nitially each
tuple value iz assigned version number 0. When a tuple or a node is modified, the
version number i incremented by one and the new value is added to the history along
with the transaction’s sequence number which modified the value. As the databage
evolves, the history stores all the values that a particular tuple or MDB-tree node takes
on consistent states. When a user wants to verify an old fransaction, the databage
server can use the history to generate the values that the server read when executing

this transaction.

4.2.7  EHlliciency

For case of exposition, the protocoel discussed above intentionally omits several
possibilities for gaining efficiency. We now discuss some of the possible optimizations.

As discussed before, in our solutions, the overhead for Alice is minimal. Alice just
maintainsg the proof chain and stores the latest S1D used by each user. In practice,
the size of the proot chain will be gmall compared to the database size. Alice incurs
the cost of verification only if she wanfs to. The users can verifv the fransactions
independently. There is a communication cost for Alice, as both Bob and Carol update
Alice upen the commitment of a transaction. Ilowever, the proposed solution does not
prevent Bob or Carol from executing further transactions before sending updates to
Alice. Hence, transaction processing does not stall while updates are sent. Updates
can be delayed as long as they arrive belore verification is performed.  Similarly,
verilication can be performed at any later time, and is not Hmited Lo immediately
alter transaction execution.

In the above protocol, Bob has to maintain Adslory, which records the values read
and written by all transactions, and the information necessary o generate the MBT
gtructures for any transaction in the past. The size of this information can grow to
be very large. If space iz a problem, we can introduce verification checkpoints. A

verification checkpoint corresponds to a statute of limitations for Alice — ie., we do
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not allow Carol or Alice to verify any transaction beyond a certain time in the past
(¢.g., a month). Thus they have up to one month to challenge any transaction. After
thig point, if the transaction is not challenged, Bob can assume that Alice accepts it

and he can discard any data necessary to verify that transaction.

1.2.8  Analysis

We now analvze some of the overheads introduced by our protocel. We provide
a treatment similar to that in [2] which introduced the MB-tree and serves as a base
cage for us since it provides a solution that meets the requirements of correctness
and completeness, and also allows for centralized updates through Alice. It does
not. provide a solution that meets the Transactional Integrity requirement. In our

solution, the user’s cost of verifyving an update or read is the same as that with an

MEB-tree, as users still verify an update or query against. an MB-tree.

Authentication Structure Construction Time

For a database with n tuples and fanout £, the cost of construction of our data
structures involves calculating hashes for each tuple and each node in the tree. Also,
it requires the cost of writing those nodes to disk. For a tree of height d, the number

of nodes in the tree will be:

o= ——— == O(n) (4.1)

Henee, the cost of construction is ¢

nCh 4+ 2mch + 2mS,.Cra + nS:Cra (4.2)
where &, and 5, are the sizes ol a tree node and a tuple, respectively. Oy s the

cost of computing a hash value, and Oy is the 10 cost for one block. Thus, like an

MB-tree, the construction time is O(n) - linear in the size of the database. This cost
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exceeds that of an MB-tree by m S8, Cio -+ nS U, which represents the overhead of

the history.

Update Time

To ingert or delete a tuple from the tree, the path from the leaf node to the root
has to be updated. Also, the updated values have to be added to the history. Hence,

the cost of an update iz

[
ot

Chy + dCy, + 2d45,Crn (4.

This iz Olog n}.

VO Clongtruction Cost

To construct a VO, the server has to go through the history and find the values
that it read while executing a transaction. If, ', is the cost of finding the value of

a tuple or node which the transaction read, then cost of VO construction is:

2dC, (4.4)

Bince the height of the free i d, the server has to find the rightmost path and the
left most path to construct VO. O}, will increase as the transaction count increases,

gince it increases the history size hence search space.

Storage Overhead

Since our proposed data structure also stores the history of each tuple and free
node, the server keeps an extra copy of the tree and the relation. Thus, in the start

we need twice as much disk space ag that required by an MB-Tree. I'or each update,



the server keeps a copy ol the updated data in history. Thus, alter & updates, the

gtorage cost 1

2?’5«55} -+ 2??2-;5\;7, + ;{d;gﬁ =+ ;{;5; {45}

Thus the overhead for Bob is O(n | klog(n i.e. linear in the size of database
e 7

and updates. On the other hand, Alice has to store the proofl chain {one hash and

one transaction ID per transaction) and the largest SID} values for each user. This

requires a digk space of:

-
.
i
)

—

D] +

S5ID| 4+ |User|)t

"Thus the overhead for Alice is minimal and is linear in the number of transactions
and users.
In the section next, we discuss implementation details and an empirical evaluation

of the proposed sclutions.

4.3 Secure Provenance

Many applications may also require, e.¢., due to regulatory compulsions, to keep
the provenance of updates to the database. This can be particularly important to
check if a melicious activity cccurred in the past. Bince the data is stored and
edited at an untrusted server, ensuring the provenance is trustworthy is important.
Our solution provides sccure provenance of the database. The provenance can be
produced at the database level, or af tuple level which shows how a particular tuple
evolved over time. 1 can be verified that every change in the tuple value was reflectod
correctly in the tuple provenance.

The history also provides a secure provenance ol the data. When a user asks for the
provenance of a tuple, the server responds with a set of provenance records(history).

Each provenance record has three components: the id of the transaction that created



that value; the version of the tuple; and the value of the tuple. Lemma 2 shows
that the existence of any provenance record returned by the server can be verified.
Further, Lemma 3 establizhes that the completensss of the provenance records for a

s !
£

tuple (i.e., no record that should have been in the provenance is missing), can be

verified. Theorem 4.3.1 then proves that the data provenance of a tuple returned by

the server is indeed trustworthy. If not, the user will be able to detect the error.

Lemma 2 Any provenance record returned is indeed an authentic record.

Proof A provenance record includes the transaction that modified the tuple and the

new tuple value. The suthenticity of a provenance record can be ensured by verilving
the transaction that generated that tuple value, |

Lemma 3 Any provenance record that should have been returned is indeed in the

provenance.

Prool Since each tuple value is attached with its version, when the server returns
the provenance of a tuple, < 73,0, 0y =, << Ty, Loy > ... < T, 7,v; >, the version
numbers have to be contiguous, starting with 0. Any missing version number will
mean incompleteness. To ensure that »; 1z indeed the last version of the tuple, the

user can verify that by asking the server to verify the authenticity of »; against the

latest proof {and not necessarily 7.}

1
i

Theoremn 4.3.1 The provenance of a tuple given by the server is correct and com-

plete. If nol, the user can deleci the error.

Prool The theorem is a direct consequence of lemma 2 and lemma 3. B

4.4 Prool-ol-Concept Implementation

To demongtrate the feasibility and evaluate the elliciency of the proposed solution,

we implement our protocols with the MB-Tree in Oracle. Our implementation is built
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on top of Oracle without making any modifications to the internals. All our exper-
iments are run with Snapshot Isolation. Nofe that for the empirical evaluations, we
chose operations which behave the same under Snapshot Isolation and Strict Serial-
wzable isolation level. Thus, our solutions are applicable for this study. The protocols
are implemented in the form of database procedures using P1/SQL. While we expect
that the ability to modify the database internals or to exploit the index system will
fead to a much more eflicient implementation, our current goal is to establish the
feasibility of our approach and to demonsgtrate the case with which our solution can

be adopted for any generic DBMS. Users are implemented using python.

4.4.1 Setup and Implementation Details

We implement the MB-tree in the form of a databage table. Bach tuple in the

MB-tree table represents a node in the tree. A better way to maintain the MB-"Tree
would be to use the B} index trees of the database. However, that will require internal

modifications to the index svetem of the databagse. We leave that for future work.
Table uTable MET stores the MDB-tree for the data in uTable. Fach MB-tree node is
identified by a unique id. Each node stores keys in the range [key_min, key_maz).
level denotes the height of the node from the leaf level, 1.¢., leaf nodes have level 0,
and the root hag the highest level. The keys fisld stores the kevs of the node, and
the children field stores the corresponding child ids and labels. Finally, Label stores
the label of the node. This table is updated at the time of transaciion commit.
Tables wiable History and ufuble M BT History are used to store the history of the
tables wfable and w7able MET respectively, When a tuple is modified in wTable or
wfuble MET, o new tuple is inserted in the corresponding history table to store cur-
rent values. For example, when a new tuple is created in u7uble by a transaciion
with transaction ID #fD), an entry is added to wTablellistory with the value of the
new tuple and transactionlD ag ¢/, At the time of a commit, the fransaction mod-

ifies the MDB-tree to update the proof. The updated node values are inserted into



Table 4.1 Helations and Indexes in the Database

| Table - Attributes | Indexes I

uTable Tuplelld, A, Versiongt A

uTablellistory TransactionID, TuplelD, A, Ver- | (TuplelD, Transac-
sion // tionlTH)

uTableMBT id, level, Label, keys, children, | id, (key_min,
key_min, keyv_max key_max, level)

wlableMB T History Transactionld, id, level, Label, | (TransactionlD, id)
keys, children, kev min, key max

Tranzsaction id, query, finalLabel id

wTable METHistory with transactionID #1D. Updates to the MB-tree are made level
by level, beginning at the leaves and working to the root. Once the root is updated,

the transaction is committed.

Setup

We create a synthetic databasze with one table «Table containing one million tuples
of application data. uTable is composed of a table with two attributes (Tuple/ D) and
A}, The table iz populated with synthetic data with random values of A between

107 and 107 All necessary structures for the protocol are maintained using other
tables. Table 4.1 describes the different tables and indexes used in our prototype. An
MB-tree is created on attribute A {integer). We consider three replayable transactions
implemented as stored procedures, namely Insert, Delefe, and Select. Inseri creates a
new tuple with a given value of attribute A. Delete deletes the tuples which have the
given value of attribute 4 and Select is a range query over attribute A. In practice,
transactions will be more complex than a single insert or delete. Our solution can
handle complex transactions as well. However, for simplicity, we congider only simple
transactions. The experiments were run on an Infel Xeon 2.4GIIz machine with
12GB RAM and a T200RPM disk with a transfer rate of 3Gb/s, running Oracle

11g on Linux. We run Oracle with Snapshot Isolation.  As mentioned before, the
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transactions considered for this evaluation behave similarly under Snapshot [solation
and Strict Serializable. Thus, our solutions are applicable here, We use a standard

block size of 3KI,

449 Hesults

We now present the results of our experiments. To provide a base case for com-
parizon, we compare the performance of our protocol with a regular MB-tree based
protocol [2] where all updates are routed through the data owner. Furthermore, this
golution does not provide indemnity for the server or gecure provenance, We analyze
the costs of construction for the authentication data structures, execution of a trans-
action, and verification of a transaction. We also study how our solution scales with
multiple users concurrently running transactions.

The Tanout Tor the suthentication structure is chosen so as Lo ensure that each tree
node is contained within a single disk block. In cach experiment, fime is measured
in seconds, 10O iz measured ag the number of blocks read or written as reported
by Oracle, and storage usage iz measured in number of file blocks, The reported
times and [0 are the total time and 1O for the entire workload. Each experiment
wag executed 3 times to reduce the error — average values are reported. In the plots,

M BT represents the protocol from [2] where updates are always routed through Alice,

and MET™ vepresents our protocol where updates are sent directly from the users

fo the server. In experiments thal measure the effect of multiple users concurrently
running transactions, we keep the total number of transactions constant. We divide
the workload equally among multiple users.

Clonstruction Cost

First, we consider the overhead of constructing (bulk loading) the proposed data
structure.  For our solution, there is an exira cost for storing the history ol the

database, which increases the storage cost and construction time. Figures 4.3(a)
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and 4.3(b) show the effect of data size on construction time and storage overhead,
respectively. As predicted by our analysis (Eqns. 4.2 and 4.5}, both costs increase
linearly with the size of the database. In addition to the MB-tree, we maintain an
extra copy of the MB-tree and the database table in the history files. Hence, our
solution incurs a 100% storage overhead. The construction time has two components;
time to compute hashes and time for IO (Eqn. 4.2). Our protocol needs twice the
amount of IO as compared to MB-tree. However, the IO cost is superseded by hash
computation. Hence, the construction time is not much higher than maintaining just
an MB-tree.

In past work, the verification of a transaction was only allowed immediately after
the execution of a transaction before any other transactions are executed. Our work
removes this restriction and enables the verification of past transactions. This pro-
vides much greater flexibility and reduces the need to tmmediately verify transactions.

Of course, the added functionality comes at an additional storage cost for the history

tables.
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Figure 4.3.: Construction time and storage overhead



Insert Cost

We now discuss the cost of inserting and deleting tuples. Since both operations
show similar costs, we only present the resulis Tor insertion due to lack of space. For
this experiment no verification is performed. In the first experiment, we study the
performance as the number of fnsert transactions is increased. Figures 4.4(a), 4.4(b)
and 4.4{c) show the results. As expected, with a single user, our protocol incurs a
much higher overhead for storage and 10 for maintaining the history information.
These costs increase linearly with the number of transactions (Eqn. 4.5) Surprisingly,
thizs does not translate into a significant increase in the running time, This represents
the computational overhead of hashing and concatenations which dominate the cost
(see Hgn. 1.3).

A key advantage of our protocol comes to light as we begin to increase the number

of concurrent, users, as seen in Figure 4.4(a) where the running time for our protocol

drops signiflicantly when 5 users run the same number of transactions in total, e,
each user runs one [fth of total number of transactions. In order o better study the

impact of concurrent users, we ran another set of experiments where a varying number
of users ran a total of 1000 Inserttransactions. The results are shown in Figures 4.5(a)
and 4.5(b). As we can see, the MB-tree solution which needs to process all updates
through a single node (Alice) sees no gain in performance, whereas our solution results
in improved performance with greater concurrency (even though it is performing a

much larger amount of 10).

Veriheation Cost,

We now demonstrate the overhead of transaction verification on the system. We

run 1000 Insgert transactions with increasing fractions of fransactions that are verified.
The percentage of transactions that are verified reflects the daba owner’s distrust of

the server. Figure 4.6(a) and 4.6(b) show the results. As the verification percentage

increases, we observe that the execution time of the transactions increases. However,
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disk IO does not increase as rapidly since there is little extra IO for wverification
as compared to running the transaction itself. Verification also takes advantage of
already cached MB-tree nodes.

Figure 4.6{c) shows the effect of the increase in number of users on execution time.
For this experiment, we run 1000 frgert transactions and each transaction is verified.
As before, our prototype scales much better to the increase in the number of users.
This is because verification can be done independent of transaction execution, hence,
verification executes while other transactions are running. Whereas for the case of
just an MB-tree, the verification of a transaction prevents other transactions from

running.
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Search Cost

Now we evaluate the performance of our solution for range queries (Search). This
cost is influenced by both the size of the result (larger results will be more expensive to
verify) and the size of the history that needs to be searched for generating the proof.
We conduct two experiments to study this behavior. In the first experiment, we run
1000 Inserttransactions on the database to populate history. Then, we run 100 Search
transactions with 100% verification for different ranges (thereby with different result
set size). Figures 4.7(a) and 4.7(b) show the results. As the result set size increases,
execution time and the amount of IO increase. For verification, the server has to
return the right and left most paths of the range. Along with this, the server also
has to return which tuples belong to which leaf nodes, as that is crucial information
for the user to be able to verify the result set. Hence, as the result set size increases,
the verification object size increases which results in an increase in verification time.
The performance of our solution is comparable to that of an MB-tree alone.

In the second experiment, we vary the history size by executing varying numbers of
Insert transactions before running a fixed search and verification. Figures 4.8{a) and
4.8(b) show the effect of increase in history size. The z-axis in both graphs represents

number of Insert transactions executed before running the search transactions. As
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Figure 4.6.: Cost of insert and verification

expected, increase in the history size increases the verification time for our solution.
However, it does not increase rapidly. Note that the search time without verification
for our solution and MB-tree was the same, hence we do not report it separately.
Overall, we see that the proposed ideas can be easgily implemented on top of an
existing DBMS. Even with this simple implementation, the overhead for ensuring
transactional integrity is reasonable and actually less than the cost of the state of the

art for ensuring only correctness and completeness.
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4.5 Chapter Summary

In this chapter, we introduced the problem of ensuring the authenticity and in-
tegrity of dynamic transactional database hosted on an untrusted server where the
data owner may not have any direct control over the database. To the best of our
knowledge, this problem has not been identified in earlier work. We develop novel
solutions for this problem. Our protocol makes it possible to detect any failures on

the part of the server to faithfully host a transactional database with multiple inde-



pendent users. Furthermore, the solutions alse provide indemnity for the outsourcing
gerver against false claims of erroneous processing, and provide assured provenance
for the data managed by the untrusted server. These sclutions are the first to address
the problem of transactional integrity of an untrusted database. We demonstrate that
the solutions can be implemented over an existing database system (Oracle) without
making any changes to the internals of the DBMS, Our results show that we are able
to remove the need to trust the server and provide support for independent users at
a cost comparable to earlier work that does not provide cither of these guarantees.

i

fying

We believe that the efficiency of the solutions can be further improved by mc
the infernals and also developing proof structures that have befter disk performance
(e.g., using GiST like indexes). We plan to explore these issues in future work.

The results of this chapter were published in [38,60].



5 ACCLESS CONTROL

Diata privacy izssues are becoming increagingly lmportant. Many regulations now
mandate responsible management of sensitive data, for example, Health Insurance
Portability and Accountability Act (IIIPAA). Database svstems provide mechanisms
to handle such requirements using access control policies. Access control mechanisms
are an important part of a database svstem with which the dals owner limits a user’s
access Lo a subsel of the data. Traditionally, the server is assumed Lo be trustworthy
and the data owner assumes thal the access control policies will be faithiully enforced
by the server. However, when the server is nol trusted, or Lhere is a threat of hacker
attacks, Lhe data owner cannot blindly assume that the access control policies will be
honestly enforced by the server.

A naive approach to ensuring that only the authorized users read the data and
no ingider, attacker or the server can read the data, an encrvption scheme could be
used. Iiven though a simple encryption of the data before transferring it to the server
ensures that only authorized entities who have the private kev can access the data,
it has many drawbacks. HEnerypiion alone does not ensure that the retrieved query
results are trustworthy {e.g., refrieved values are the latest values and not stale}. A
simple encryption cannol enforce access control policies where each entity has access
rights to only a certain part of the database. Another important issue is change in
access control rules. In a typical setting, the database server enforces access control
policies by rewriting user queries to limit access to the authorized subset. When
the data owner wants to revoke or grant a user, access te a certain part of the
data, the data owner does that by informing the server. Most solutions that provide
mechanisms to enforce access control policies using encryption require the data to be
re~encrypted when access control policies are changed., However, thiz is not desired

as 1t incurs significant computation and communication cost. To avoid this, we use
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Lazy Kevocation Model in which when the access control policies are changed, only
the new data values are encrypted using newer set of keys. Previous values in the
database are not re-encrypted. Iowever, under this model, a subset of data could
be encrypted using different kevs, thus key management becomes a non-trivial task.
We employ a scheme such that the user can desire previous kevs used to encrypt the
subset of the data using the latest key. Thus, a user needs only one key to be able to
decrypt data in a particular subset.

In Chapter 4, we proposed solutions to ensuring that an untrusted databage ox-
ecuted transactions honestly, However, these solutions require the server to reveal
extra data from the database for the user to be able to verify trustworthiness of
transaction execution. In the presence of access control rules, these solutions will not
work as the extra information required for verification may not be accesszible to the
uzer. Also, a curious server or a hacker who manages to compromise the server could
read the data stored in plain text.

In this chapter, we provide sclutions that ensure that a data item in the database
hosted on an untrusted server is read and modified only by authorized users, and none
other (including the server). The data enerypted by our solution is still queriable.

Our solution provides mechanisms to verily the trustworthiness ol query results in

the presence of access control rules. For this, we extend our previous work 58], as
discussed in Chapter 4, on ensuring the trustworthiness of data retrieved from an
untrusted database that can be modified by multiple entitics. The contributions of

this work are:
e A novel mechanism to enforce access control rules withoul trusting the server

e Solutions that allow users Lo verily the correctness and completeness of query

resulis in the presence of access control rules

e A demonstration of the feasibility of the solution through a profotype in Oracle,

and its evaluation



The rest of this chapter is organized as [ollows. Section 5.1 deseribes our assump-
tions and our model for this work, Section 5.2 presents our solutions. A discussion of
the implementation of the solution and an empirical evaluation iz presented in Section

. Finally, Section 5.4 concludes this chapter.

51 Preliminaries

In this section, we start with explaining our model and assumptions. Then, we

explain the problem of data leakage in Merkle B+ trees.

51.1 Assumptions and Model

We consider a similar model ag presented in Chapter 4. The data owner, Alice,
hosts the database on an untrusted database server, Bob. Authorized users, Carol,
access Lhis database using transactions. As in the previous model, Alice wants to
ensure that the database server executes the user transactions faithfully, i.e., ( %} a
transaction reads correct and complete data from the latest consistent state, (ii) the
fransaction is executed on this data fo produce updates, (iii) updates produced by
the transaction are applied to the database to produce the next consistent state. For
this work, we focus on strict serializable isolation level. Apart from fransactional
integrity, Alice also wants to enforce access control policies to limit a user’s access to
only a part of the database, Alice alzo wants to ensure that the server, an insider and
a hacker iz not able to read the data. Alice and Carol want to ensure that the query

ezulbs were indeed correct and complete in the presence of access control policies.

We consider the following fine-grained access control policies.

Access Control Policy:  We consider a fine-grained access control policy that ex-
A Conirol Policy: W 1 fine-g [ trol policy that

poses 2 user Lo only a subsel of a database table. The subsel that is accessible to
a uszer iz defined by query ranges {this iz the approach adopted by some commercial

systems like Oracle VPD as well). For example, in the example table, 3.1, the data
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owner could deline the access control policy which restricts a user to only those tu-
ples which has attribute A value in the certain range. Table 5.1 shows one example.
Congider User 2 in the example which iz allowed to access only those tuples which

has attribute A value in the ranges [0, 39] or [35,64]. A user query is rewritten by the

o]

erver g0 as to restrict the user query to the subset of the data accessible to them. Ior

e

example, for the user with the above restrictions, a query that asks for all tuples in

the range |20, 60, 4.e. age a<oo, should return tuples with tuplellds 1,2,3,4, and, 5 in
the absence of access control rules. However, with the access control rules, the query

will be rewritten as tuples in the range H 39] and 55 — 64, i.e., 0a0cA<39)] (B5<A<E0)

s

which returns tuples with tupleiDs 1, 2,32, and, 5, thus ensuring that all and only those
tuples that are in the range defined by the user query and also in ranges authorized
for the user in the access control rules are returned ag query result.

To ensure that the server or a hacker iz not able to read the data, encryption of
data is desired by the data owner. Encryption should disable Bob from being able
to read the data. However, Alice and Carol should still be able to execute queries
and run updates on the encrypted data. An acceptable solution should allow Alice
Lo granl or revoke access to a user ab any point in time, without much work. b
make access control rules easily adaptable, we use Lazy Revocation Model as delined

below.

Lazy Hevocation Model: Under lazy revocation model, the data iz encrypted
such that only authorized users can read a particular data item. This is done by
encrypting the data using a set of kevs. Based on which part of the data is accessible
to a user, the user given some keys so that the user could access (read or write) that
part of the data and no other. If the user’s access iz revoked from that subset, the
data are not re-encrypled immediately. Instead, the new values in that subsel are
encrypled with a new version of the kev so thatl the evicted user can no longer read the

new values in that subset. Since the user had access to Lhe old data before evicetion,
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it can be assumed that the user had cached that data, hence it is not important to
re-encrypt old values,

An acceptable solution should ensure that the users are able to run queries on
the encrypted data while still being able to verify transactional integrity of their
transactions in the presence of access control rules and encryption. Alice should be
able to make changes to the access control policies at any point and the changes
should be enforcible, 4.6, once the access conirol rules have been updated, the future

transactions should follow the new rules, and the users should be able to verify that

the rules are being followed. In our model, we assume that a user and th
not collude. A user can he untrusted otherwise. In the case when a user is untrusted,

the data owner should be able to verily the untrusted user’s transaction by hersell

5.1.2 Data Leakage in MB-free

For this work, we build upon MEB-tree as described previously, To verify correct-
ness and completeness of query result using MB-tfree, the user receiveg Verification
Object. The verification object includes some MDB-tree node labels and two extra
tuples with values just smaller and just higher than the query range in the sorted
order. Consider our previous example table, Table 3.1, Figure 3.2 shows a sample
MB-tree structure built on the attribute A of the table.

For a user quUery Tage acan, bhe result would include g, £y, and {5, Lo verity the
correctness and completeness of the gquery results, the server sends VO 1o the user
which includes the tuples just preceding and just following the query ranges (i.e.,
ty and tg). The VO also includes any node labels that are required to compute the
root label (i.e., h(ty) and Hy). Using VO, the user can generate the Proof. If the
computed prool matches with the proof value computed by Alice, the user is assured

that the query results were correct and complete.



Table b.1.: Sample Access Control Rules

| User | Accessible Ranges |

User 1 40 - 100]
User 2 | |0 30]&[55  64]
User 3 55 100

52  Access Control

As mentioned before, access control rules allow the data owner to restrict a user’s
access to a certain part of the database. The database owner may also want to hide
the data from the server as well using encryption, while still allowing the users to
read and guery the data. The difliculiy introduced by using access control rules is
two fold. Firstly, most existing verification mechanisms do not work in the presence
of access control rules. In Subscetion 521, we extend our solutions (as discussed in

Chapter 4) so that a user could be assured that the partial database table visible to

the user is indeed correct and complete. Sccondly, the data have to be encrypted so
the user sees only the allowed data and the data remain private from the server or an
intruder. The server should still be able to run queries on this data. In Subsection
5.2.2, we propose an encryption scheme o that a data ifem can be acceszed by only
those users who have been authorized by the data owner.

As explained before, we consider a fine-grained access control policy. The access
control policy is defined by exposing the user to a certain subset of the database using
ranges. Table 5.1 shows one such policy delined {or Table 3.1 [or three users. We
divide the domain of the attribute into digioint ranges so thal each range is either
completely accessible by a user, or none of the tuples in the range is accessible by the

user. In particular, we consider the following system for defining access control rules:

RN O
R= ;fz

0 <74 <0k} is a set of ranges on an attribute that partitions the data into &

disjoint subsets. Each user is allowed access (read and write) to a part of the database

table defined by a subset of R, i.e., the user, Carol, can access tuples {¢; | ¢ € Ury |,

where {r;, - ¢ R is the set of ranges accessible to Carol. Table 5.2 shows the digjoint



ranges for the example rules in Table 5.1, Access control rules are rewritten in terms
of the disjoint range set. Table 5.3 shows the rewritten access control rules for Table

5.1

h.2.1 Verification in Presence of Access Control

(ziven a range query, all tuples that satisfy the range query may not be accessible
to the user. In such case, the verification using the regular MB-tree VO will not
work. Also, verification of query results uvsually involves reading extra tuple values
12,4]. These tuples may not be accessible to the verifier due to the access control
rules. In such case, the verifier will not be able to verity a query or a transaction.
Suitable adiustments Lo the authentication data structures are required to enable the
verification of a query in the presence of access control rules.

To solve this problem, we modily the MB-iree as Tollows:

e Fach node, n, is extended with an access control bitmap, B,, in which the i
bit iz “on” if there iz a tuple in the subtree that belongs to the range r;. Leaf
node access conirol bitmap has only one bit “on” corresponding to the range

that the tuple it represents is in. For non-leal nodes, the bitmap is computed

as a binary OR ol the bitmaps of the child nodes. BEquation 5.1 presents il

formally.

—
oIt
f—y

S

= Bl - |1 Periis

¢ Node labels are computed by concatenating both the bitmaps and labels of the

child nodes, as shown in Equation 5.2.

B }"i} h (:B,_Ah.;m_ {h, 25

As an example, congider the access control ranges on attribute A shown in the

Table 5.2, Under these access control ranges, each access control bitmap will have
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Table 5.2.: Access Control Ranges

‘ Label ‘ Range ‘
r | |0, 39)
re | 40, 54]
ry | |55, 61
re | 165, 100]

Table 5.3.: Updated Access Control Rules

H User ‘ Accessible Hanges

User 1 Yo, T, Ty
User 2 71,73
User 3 74,74

four hite, one for cach access control range. Figure 5.1 shows an aungmented MB-tree,
as described above, built on Table 3.1, In the sugmented MB-tree, Ey's value is 0011
as the subfree rooted at this node has tuples in the ranges vy and vy, thus the first
and the sccond bits in the access control bitmap is “on”

The VO now containg the nearcst tuple value just preceding and the nearest tuple
alue just following the query range such that these tuples are accessible to the user.
VO alzo containg all the tree nodes required to prove the correctness of these tuples
and to prove that the tuples that were left out of the query results were indeed
inaccessible to the user.

When User 2, who iz authorized to access ry and ry, executes a range query

Toreaesn, tuple {s and &y will form the query result. Tuple 44 will not be part of

s R

Lhe gquery resull as it is not accessible to the user. To verily the correctness and
completeness of the guery resull, the user has to verily that the missing tuples were
indecd inaccessible to her. The user will also have to verily thatl the nearest tuple just
before the query range was indeed {1 and the nearest tuple just following the query

range {and also accessible to the user) is indeed £,
To prove the completeness of the query regult, the VO of this gquery will include £,

and f-. To prove that the omitted tuples {i.e., t4, ts, and £5) were indeed inaccessible



Figure 5.1 Augmented MB-tree to allow access control

to the user, the VO will also include the bitmaps By and . Using B4, the user can
e convinced that tuples 5, and, £ were indeed inaccessible to her. Similarly, using
5y, the user can be agsured that Tuple £, was inaccessible to her. As in the cagse of
regular MB-tree, the VO will include all other necessary labels reguired to caleulate

the root label.

5.2.2 Hnforcing Privacy for Access Control

In this subsection, we present our solutions to encrypt the database, so that & user
can read/write only the subset of the data that she has been authorized to access.
The server {or any intruder] cannot read the data. As mentioned before, in this work
we consider the {ozy revocation model Under this model, once a range, 1, is removed
from a user’s accessible ranges, the future tuples in r; are encrypted using a new key.
All remaining and future users who can access r; will be distributed the new key.
Any pre-existing tuples in r; are not necessarily re-encrypted with the new key. To
decrypt the data in the range r;, the uzer may need the current or previous keys of

that range. Only the data owner decides which ranges are accessible to the user.

The Key Regression scheme [53] provides a mechanism for versioning encryption

keys for symmetric-key encryption. Given a version ol the key, the user can compute
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all previous versions ol the key. However, [uture versions of the key can not be
derived using the current key. In the start, all data items in an access control range
are encrvpted using the first version of the kev. Ilach user authorized to access the
range is given that key. When a user is evicted from the range, the key is updated
to a newer version. All future data items in the range are now encrypted using the
new version of the key. Since the users cannot generafe the new version of the key,
the evicted user cannot read Tuture tuples in the range. A Key Regression scheme is
defined using four algorithms. Algorithm setup is used by the data owner to setup the
initial state. Algorithm wind is used to generate the next state. Algorithm unwind is
used to derive the previous state, and keyder is used to generate the symmetric key
for a given state. The tuples are encrypled using the symmelric key, We consider a
particular kev regression scheme that uses RSA to generate states

Consider an R5A scheme with private kev < p,¢.d =, public key < N,e >, and
gecurity parameter k&, such that p and ¢ are two A-bit prime numbers, N = pg, and
ed = 1{mode(N) where o(N) = (p — 1}){¢g — 1). For each range r;, a secret random
number 5; € Z}; is selected as the initial state.

Algorithm wind, unwind and keyder are defined in Algorithms 4, 5, and, 6 respec-

Lively.

Algorithm 4 wind (N, e, 4, 5,
nextS; = 57 (mod N)
return nexts;

For cach range, v, in range sel. K, the data owner generates a secret stale S; ©

The data owner sends the initial secret state of each state to all those uzers who are
authorized to access the range. The user stores the current states for each range it has
access to. Using the current state of a range, the user can compute the corresponding
gsvminetric-key to encrypt or decrypt the data in that range. Whenever the data owner

adds of removes a range from a user’s accesgible ranges, the data owner updates the

state corresponding to that range to the next state and all users who still have access



r k]

Algorithm 5 unwind (N, e, ;)

prens; = 5% {mod N)
return prewS;

Algorithm 6 keyder(S;)

K~ SHAL(S;)
return K;

Table §.4.: Bucketized Data Table Based on Table 3.1
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to that range are informed about the new version of the state. IT a tuple in a range
is encrypled using a newer key, the user requests the new state from the data owner.

Due to encryption, the server cannot execute range queries. To be able to execute
range gqueries on daba, we use bucketization Lo divide the data into multiple buckets

Range gueries are then sguitably modified to search data among these bucket ranges.

Bucketization: DBucketization involves partitioning the attribute domain into mul-
tiple equi-width or equi-depth partitions. Attribute values are then converted from
a gpecilic value in the domain to the buckel labels. Table 5.4 is an example of equi-
width bucketization of Table 3.1 where cach partition width is 10, The bucket labels
are ordered, 4., two values in different buckets can be compared. Using equi-width
bucketization reveals the density in each bucket. Egui-depth, on the other hand,

requres EE’(EQHC?’EL Hﬁif.jiiéﬂ‘,t'ﬁ'ii‘-l’]lsﬁ {\-&-"%’H(Eh requies communicabion with the EES()T‘_) when



database is updated frequently. [30,61] show that only limited information can be

deduced due to bucketization.
Asg shown in Table 5.4, the attribute A* represents the bucket labels atter bucke-
tization, and the encrypted tuple value iz kept in a separate attribute. User queries

are rewritten to be executed on A*. For example, a user query for tuples in the range

€

125, 35] is rewritten to return tuples in buckets [20 — 30) and [30,40). Note that the
rewritlen query increases the gquery range. The user receives the tuples and filters
them so that only the tuples that satisfy the original query are present. To verify the
correctness and completeness of query results, our augmented MB-tree can be built
on top of the hucketized field, A*. The verification process will remain the same,
except now tuples will be inserted in the tree according to A*. Since the attribute is
encrypted, the access control ranges have to be defined in terms of A7, rather than
A.

Thus, combining the solutions proposed in Subsections 5.2.1 and 5.2.2, the data
owner and the ugers can be convinced that the data were not maliciously modified,
and the data were accessed by the user that had appropriate authorizations. In casze
Lhe data owner is not interested in privacy against the server or a hacker, our solubion
in Subsection 5.2.1 can still be used alone Lo ensure that the transactional integrity

can be ensured in Uhe presence of access control rules.

5.3 Proof-of-Concept Implementation

To demonstrate the leasibility and evaluate the efliciency of the proposed solutions,

we implement our solutions on top of Oracle. The soluiions are implemented in the
form of database procedures using PL/SQL and no internal modifications were done
on the database. While we expect thal the ability Lo modily the database internals
or to exploit the index svstem will lead to a much more etficient implementation,

our current goal is to establish the feasibility of our approach and to demonstrate



the ease with which our solution can be adopled for any generic DBMS. Users are

implemented using Python.

5.3.1 Setup and Implementation Details

The MDB-tree hag been implemented in the form of a databage table — each node
in the MB-tree is represented by a tuple in the MB-tree table (uTable MBT). 1deally,
the MB-tree should be maintained ag a B+ index trees of the database. However,
that requires infernal modifications to the index svstem of the databagse. We leave
that for future work. [Each MDB-tree node, identified by a unique id, stores uTable
tuples in the range [key min, key max). level denotes the height of the node from
the leal level, e, leal nodes have {ewel = 0, and the rootl has the highest level. The
kews field stores the keys of the node, and the children and childLabeis fields store
the corresponding child ids and labels respectively. Label stores the label of the node,
When access control mechanisms are in place, two more aftributes, accessBitmap
and childAcessBitmaps, are added fo store the access control bitmap of the node
and access control bitmaps of the child nodes respectively.

We create a synthetic databagse with one table «Table containing one million tuples
of application data. uTable is composed of a table with two attributes (Tuplel D
and A). The table is populated with random values of A between —107 and 107
When tuples ave encrypted, the clphertext is stored in attribute ErnecA. Table 5.5
describes the different tables and indexes used in our prototype. An MB-tree is
created on atiribute A (integer). We consider three {ransactions implemented as
stored procedures, namely Inserl, Deleie, and Selecl Insert creates a new fuple with
a given value of atiribute A, Delete deletes the tuples which have a given value of
abtribute A and Select is a range query over attribute A. The experiments were run
on an Intel Xeon 2.4GIIz machine with 12GB RAM and a 7200RPM disk with a
transfer rate of 3Gb/s, running Oracle 11g on Linux. We run Oracle with a strict

gerializable isclation level, We use a standard block size of K1,



5.5.: Relations and Indexes in the Datahase

| Table Attributes ‘ Indexes ‘
uTable TuplelD, A, EncA®, kevVersion® | A
wlableM BT id, level, Label, kevs, children, | id, {(key min,

childLabels, key min,  kev max,

accessBitmap!', childAccess-
Bitmap!

key max, level)

AccessConirolRanges

id, key min. key max

AccessControll{ules

AcessControllRule_id, Use_id




fo]
el

5.3.2 Hesults

We now present the results of our experiments. To provide a base case for com-
parison, we compare the performance of our solutions with a regular MB-tree based

solution

where access control rules are not supported. This solution leaks informa-
tion for transaction verification. Furthermore, this solution does not provide privacy
againgt a malicious gerver. We analyze the costs of construction for the authentication
data structures, execution of a transaction, and verification of a transaction.

The fanout for the authentication structure iz chosen 30 as to ensure that each tree
node is contained within a single disk block. In each experiment, time is measured
in seconds, storage and IO is measured ag the number of blocks read or written as
reported by OracleThe reported times and [O are the total Lime and 10 for the entire
workload, Each experiment was execuled 3 times Lo reduce the error — average values
are reported. In the plots, Normal represents the solution from |2], AC represents
our solubion where access control bitmaps are added Lo the nodes Lo support access
control rules, and AC + Fne represents our solution that encrypts the tuple values and
uses bucketization. AC and AC+ Fnc both allow query verification in the presence of
access control rules, AC+ Ene also provides privacy against the server or an infruder.
When bucketization 1= used, we divide the data inte 1000 buckets, We use 200 access

control ranges.

Clonstruction Cost,

['irst, we consider the overhead of constructing (bulk loading) the proposed data
structures. To support access control rules, our sclution requires augmenting MB-
tree nodes with additional values that store the access control bitmaps., To provide
privacy from the server, key regression is used that allows different versions of the

encryption key, This requires storing additional atiributes to store Uhe ciphertext and

1y

ed when supporting Access Conlrols

fsed when supporting Access Conbrols with Encryplion
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Figure 5.2.: Construction time and storage overhead

the key version. Figures 5.2(a) and 5.2(b) show the effect of data size on construction
time and storage overhead, respectively. As expected, the storage cost is higher
for our solutions. However, the construction time does not change significantly as
the additional computation required for encryption is done by the user, keeping the

computation cost for the server similar to just maintaining the MB-tree.

Insert Cost

We study the performance as the number of Insert transactions is increased. For
this experiment no verification is performed. Figures 5.3(a) and 5.3(b) show the re-
sults. As expected, our solution incurs a higher overhead for 1O as it requires keeping
additional data. These costs increase linearly with the number of transactions. Sur-
prisingly, this does not translate into a significant increase in the running time. This
represents the computational overhead of hashing and concatenations which domi-
nates the cost. Delete operation shows similar costs (not presented due to lack of

space).
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Search Cost

Search cost is influenced by both the size of the result (larger results will be more
expensive to verify) and number of access control rules as that requires verifying that
the tuples that were dropped from the query result were indeed not accessible to the
user. To evaluate the performance of our solution for range queries (Search), we run
100 Search transactions for different ranges (thereby with different result set size) and
verify all transactions. Figures 5.4(a) and 5.4(b) show the results. As the result set
size increases, execution time and the amount of O increase. For the regular MB-tree
solution, the query range is divided into multiple sub-ranges based on access control
rules. Each sub-range that is accessible to the user is returned as query result. For
verification, the server has to return the right and left most paths of each sub-range.
However, in our solution, an access control bitmap is enough to verify that the sub-
range is not accessible. This decreases the VO size and computation cost. As shown
in the figure 5.4(a}), our solution performs slightly better than MB-tree as our solution
requires lesser VO size. As the result set size increases, the verification object size
increases which results in an increase in verification time. The performance of our

solution is comparable to that of an MB-tree alone.
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Verihication Cost

Our solution changes the Verification Objeect significant as our solution does not
require bordering tuples outside the accessible range. However, since Lhe node labels
now include access control bitmaps, it increases the VO gsize. We now demonstrate the
change in VO size in our solutions. To demonstrate the overhead of insert verification,
we run 1000 Ingert transactions and verify them. Average VO size is reported in figure
h.5(a). As expected, the VO size iz higher for cur solutions as it requires additional
information, like access control bitmaps and kev versions.

To demonstrate the overhead of search query verification on the system, we run
1000 Search transactions with varving ranges and varving access control ranges. The
average VO size is reported in Figure 5.5(b). As discussed before, in a normal MB-
tree, to support access control, a query range hag to be divided into multiple sub-
ranges so Lhat the query accesses only the part of the data that are accessible to the
uger. For each sub-range, the VO includes the tuple just before and just following
the sub-range. VO also includes all necessary nodes thal are required to verify that
the bordering tuples indeed existed the database. However, in our solution, this is
not necessary. Kach node contains information if the descendant tuples are accessible
or not. Hence, VO does not always require the bordering tuples. Figure 5.5(b), that
shows the effects of our solution on the VO size validates this, VO gize for AC is
smaller than the normal MB-tree. VO size for AC + Fne is comparable fo MB-tree,
This is due to the ciphertexts.

Owverall, we observe that our solutions are eflicient and provide mechanisms Tor
access control with reasonable overheads and perform better than corrent solutions

in some cases.

5.4  Chapter Summary

In this chapter, we considered the problem of implementing access confrol policies

on an untrusted database server, while ensuring Uhat the query results are trustworthy,
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With our solution, the data owner can be agssured, without having to blindly trust
the server, that the data will be read and modified by only those users that were
authorized by her apriori. Furthermore, the data owner and the users can be assured
of the trustworthiness of the query results without viclating the access control policies.
We demonstrate that the solutions can be implemented over an existing database
system (Oracle) without making any changes to the internals of the DBMS. Our
results show that the solutions do not incur heavy costs and are comparable to current
solutions for query verification (that do not support access control rules).

The results of this chapter were published in [62].



& ISOLATION LEVELS

In Chapter 4, we presented solutions to the problem of ensuring the authenticity
and integrity of transactions executed on a dynamic relational database hosted on
an untrusted server. These solutions assume that the transactions will be executed
al. sirict serializable isolation level. However, many applications prefer to use weaker
isolation levels for betier concurrency. Many object databases and NoSQL databasges

xploit weaker isolation levels Tor better performance as well. Weaker isolation levels
increase transaction throughput, however risk showing transactions a [uzzy or incon-
sistent database state. Most database systems allow users to pick isolation levels on
a per ransaction basic, e, some transactions can execule ab the strictest isolation
level while other concurrent transactions run at weaker isolation levels,

The gemantics for ditferent isolation levels have been defined with the assumption
of trust on the server. These definitions describe how the databasze systems should
be built. Some isolation levels risk showing inconsistent database state, for example
when transactions allow Dirty fiead. When Dirty Ileads are allowed, a fransaction
can read uncommitted data created by another concurrent transaction which may
be temporarily in an inconsistent state. Kven when Dirty Read is not allowed, two
statements in a transaction can read from different consistent states, leading to a
“fuzzy” view of the database. Congidering that the weaker isolation levels risk showing
v Huzzy” database state, from the user’s point of view, it is not clear what they can
expect. In this chapter, we revigit the semantics for different izolation levels without
assuming that the server iz trusted, and clarify their definitions in this setting in terms
of what users should expect when a fransaction iz executed under various isolation
levels, We alzo design mechanisms that allow a user to verify that the transactions

were executed faithfully in accordance with the chosen izclation levels.



In particular, we present solutions thal require an untrusted database server to
prove the trustworthiness of its data and query results. This is done by engaging the
gerver in a cryptographic protocol that forces the server to reveal some key aspects
of the execution of each transaction. Once revealed, the database server has no way
to go back and claim a different execution scenario. A key challenge for this work
arises from the fact that different isolation levels risk showing the transactions an
inconsistent database state. Another key challenge is that multiple, independent users
can read and modify parts of the data concurrently. In order fo ensure trustworthiness
of a transaction execution under a given iesolation level, we need to ensure that the
transaction read correct, and complete data from “valid” consistent states. What
constitutes a valid consistent state depends on the isolation level. We also need
to ensure that the transaction was executed honestly on this data to produce its
outcomes and the updates produced by the transaction were applied correctly to the
database so that subsequent transactions could see them.

To the best of our knowledge, this problem of ensuring transactional integrity over
an untrusted database server under isolation levels other than strict serializable has

not. been addressed in earlier work. In particular, the coniributions of this work are:

e Delinition of isolation levels in terms of verifying faithiul execution of trans-
actions under a given isolation level without the assumption of trust of the

server.

e Mochanisms thal ensure trustworthy execution of transactions on the database

in the presence of different flavors of isolation levels.

e A demonstration of the feasibility of our solutions through a prototype imple-

mentation in Oracle and its evaluation.

The rest of this chapter is organized as follows. Section 6.1 discusses our model and
assumptions. Section 6.2 presents our solutions. A discussion of the implementation
of the solution and empirical evaluation ig presented in Section 6.3, Finally, Section

6.4 summarizes the chapter.
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6.1 Assumptlions and Model

For this work, we relax the model in Chapter 4 further to support iselation levels
weaker than sirict serializable. Similar Lo the models used in the previous chaplers,
the database owner, Alice, authorizes user(s), Carol, to access the data from the
unirusied server. Bob. Users can independently authenticate themselves with the
server. A user can read or write data to the databage using transactions.

Alice and Carol want to engsure that the user transactions were executed faithfully,
— i.e., the transaction execution followed ACID semantics. For each fransaction, the
uzer chooges the izcolation level that the databage server should follow. Multiple con-
current fransactions can run at different izolation levels. For this work, we consider
the Tollowing commonly used isolation levels: Striet Serializable, Snapshol, Repeat-
able Read, and Head Committed. We do not allow Diériy Wile, as that can lead to

an inconsistent state

6.2 Isolation Levels

As discussed belore, we can use MB-trees to ensure the correctness and complete-
ness of the query resulls on a static database. We further discussed our previous
solution which provides mechanisms (o verily transactional integrity of a relational
database under strict serializable isolation level. In this section, we re-examine the
semantics of different types of izolation levels without the assumption of trust on
the database server, and the implications for verifving faithful execution under these
isolation levels.

As in [8], we consider only Replayable Transactions. A replayable transaction is
one whose output is determined solely by the transaction parameters and the data it

reads from the database. In other words, there is no randomness in the fransaction,

or example, i the database has a unigue key constrainl on 4d, and two transactions T1 and 12
execute actions on tuples A, B as follows: (13 T1 writes Alid = 1, (2) T2 writes Bid = 1, (3) T2
writes Add = 2y (4) T2 commits; (5) T1 writes Bid = 2; (8) T1 commits;. In this case, the unique
key consbraint is broken, and Lhe dd.tcabc:me will be In an inconsistent stale
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or dependence on anvibhing except the inpul parameters and values read from the
database.

The ANSI/ISO SQL standard [63] defines isolation levels in terms of three phe-
nomena that may or may not be permitted for a given igolation level. These phe-
nomena are: Dty Read, Non-repectable Read, and Phantom Eead, Most definitions
and implementations of the isolation levels are defined arcund these terms. For this
work, we do not allow Dirty reads - 4.e., a transaction reads only those data items
that are committed and no uncommitted data created by others transactions is vis-
ible. As mentioned before, we also do not allow Dirty Writes as that can lead to an

inconsistent state.

6.2.1 Main Ideas

Different isolation levels can lead to different possible outcomes for Lhe same trans-
action. However, when Dirfy Weites are not allowed, databases ensure that the fol-
lowing simple definition of consistency is satisfied. A database goes through different
conzistent states ag the transactions are executed. IBach consistent state is produced
by a single transaction. Even though multiple transactions are running in parallel,
when these transactions commit, it appears ag if one transaction committed after the
other producing a sequence of congistent states. When a transaction iz executed, it
reads dats from one or more of these congistent states based on the isolation level,
Figure 6.1 shows this graphically. r;(a) represents that transaction 7} read tuple a
from the database. w;(a) represents that the transaction 7; updated tuple a. No-
fice that this is different than sirict serializability. Strict serializability reguires that
it should appear as il one transaction committed alter the other, but also that the
fransaction reads daba from the previous consistent state - iU appears as i all data
read by the transaction came from one consistent state, and when the fransaction

committed, it produced the next consistent state. The initial state of the databage

(DDy) is considered to be a consistent state. The databasge can go through multiple
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Figure 6.1.: A conceptual view of databasge consistent stats

consistent states during the excoution of a transaction (as other concurrent transac-
tions commit). For example, in Figure 6.1, while transaction 75 was being executed,
other transactions committed (7). Also, a fransaction can see multiple consistent
states depending upon the chosen isolation level. Only the correct (isolated, atomic)

5
Y
i

execution of a transaction (7}) takes the database to a new consistent state( D)

when allowed to commit. Of course, thiz iz only a conceptual notion — in reality
multiple transactions excoute concurrently, Thus, in practice, the database is in an
inconsistent state represented by the partial execution of concurrent transactions.
However, when a transaction is allowed to commit it s certain thatl its execution is
equivalent to cach transaction commilting and producing the congistent state in the
order of commits.

Even though it is not stated directly, there iz an implicit assumption that the
transaction will read fresh data. Freshness of data means that the transaction reads
the latest data rather than some stale data which has been modified /deleted. How-
ever, the exact conditions to establish the freshness of data depend upon the given
izsolation level. Since the transactions are executed in an unfrusted environment, we
need to reexamine each isolation level and deline the freshness conditions lor different,
isolation levels.

Based on these observations, establishing the trustworthiness of a transaction

execubion requires the ollowing conditions:
e [fach statement inside the transaction reads committed and fresh data

e The fransaction is executed using these data to produce the updates
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e 'he updates produced by Lhe transaction are applied to the database to produce

the next consistent state

To ensure that the above conditions were satistied, we use two key ideas to develop

our solutions. These ideas are explained below.

Clonsistent State

As mentioned hefore, to verify that a fransaction was executed faithfully under
the chosen isolation level, we need to verify that (1) all data read by the transaction
came from “valid” consistent states (2) all data that should have heen read by the
transaction was indeed read by the transaction and (3) all updates produced by the
transaction were applied correctly to produce a new consistent state. We propose
to represent the consiztent states by the root label of the MB-tree. Although the
database can be in flux at any time, it is assured that when a transaction is allowed
to commit, it appears to have committed in an isolated manner, ¢.¢., conceptually,
the database evolves from one congistent state to another and each consistent state
is produced by a single transaction. We maintain a one-to-one mapping between the
consistent states and the MB-tree representing that state. To achieve this, we update
the MB-tree al the time of transaction commiibmeni. Thus, cach new MB-tree rool

label represents o congistent state produced by a single transaction.

History

To verily the correctness, completeness, and freshness of data read by the trans-
action, we need to know from which consistent state a particular data itemn was read.
For some isolation levels, where the transaction can read data from multiple consis-
tent states, we also need to know if the data item was modified between two congistent
state. Ifor example, under the repeatable read isolation level, we need to verify that
if two statements inside the transaction read the same data item, it must not be

modified between the execution of these two statements, Similarly, a data item that
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is to be updated under the snapshot isolation must not have been updated belween
the gtart and the commit of the fransaction. To achieve this, each tuple and each
MDB-tree node is assigned a unique id. Lach tuple (or object, in the case of object
databases} in the databasze iz also asgigned a version number. The version number
keeps track of how many times the tuple has been modified since it was first created.

To verity the execution of a transaction, the verifier would need to verifv the data
al. previously consistent states, so we keep a history of the tuples and the MB-iree
node values as well. Whenever a tuple of the MB-tree node value is changed, the new
version s stored in the history, This way, when a user wants to verily a transaction,
the database server can look at the history and compute the daba necessary to verify
the authenticity of the daba read or writien by the transaction,

Ag dizscuszed above, the definitions for correctness and completeness of data read
by a transaction depend upon the chosen izolation level. In the next subsections, we
define the correctness and completeness of data for a given izolation level in terms of

congistent states and history.

7.2.2  Strict Serializable

Thiz iz the strictest isolation level. Under this isolation level, even when multi-
ple transactions execute concurrently, when the transactions are allowed to commit,
it is ensured that they arve equivalent to a serial execution. Figure 6.2 shows this

graphically. Read operatation of transaction 75, r5(y), in Figure 6.2 reads some data

7
before ¢;. However, the database ensures that it would appear as if ro(y) was exected
against DB, ¢ (L 1 consistent state produced by ¢q). In more formal terms, the

initial state (12By) is considered to be a consistent state. The correct execution of a
transaction (77) takes the database state from the previous consistent state (DB; 1)
to the next consistent state (D). All reads for T} come from the previous consistent

state DD;_y, and all updates that the transaction produces are applied atomically
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Figure 6.2.: An example of strict zerializable isolation level

to produce the next consistent state D5;. Based on these ideas, the verification of

transactional integrity can be divided into the following parts:

e Verify that the data read by the transaction came from a single consistent state

(D B;) and were correct and complete

e Voerily thal the transaction was executed faithfully using this data to produce

updates

e Verify that the updates produced by the transaction were applied to produce

the next consistent state, DHE; 4

IT we can verily these three parts, we can be assured that the transaction was

faithfully executed at the strict serializable isolation level

6.2.3  Snapshot

Fven though many database systemns (e.g., Oracle) call this form of isolation level
“Gerializable”, it 18 a weaker isolation level than the Strict Serializable izolation level.
At this izolation level, a transaction reads from a single consistent snapshot of the
databaze. Two transactions can execute against the same snapshot. IHowever, when
the transaction is allowed to commit, it is ensured that no two concurrent transactions
wrote to the same data item {(i.e., Dirty Writes are not allowed). Figure 6.3 shows

thiz graphically. Even though ¢, is executed before roly, ), and DF;_, iz the freshest
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Figure 6.3.: An example of snapshot isolation level

state, ro(y, 2) reads from the previous consistent state, DB, 5, from which ro{y) read
data.

Formally, a transaction T} is execuled against a consistent state DE,. [T the trans-
action is allowed to commit, its updates are applied fo produce the new consistent

state DF, Under the strict serialization isolation level, we would have s =4 - 1,
This is not necessary under the snapshot isolation level. However, 7T cannot update
any data item that was created by those transactions that produced the consistent
states between DB, and DE; (excluding DB, and DE;}, as that would require a dirty
write.

For example, in Figure 6.3, 2, starts at DI, and modifies ¥ to %, Since no
other concurrent transaction was modifving v, this is acceptable. If 75 wag to modify
z, alter ¢4, thal is not allowed.

Bagsed on this explanation, Lo verily that a transaciion followed snapshot isolation,

we nead to verify the following:
e ['he data read by the transaction came from a unigue consistent state DB,
e ['he trangsaction was executed [aithiully using this data to produce updates

¢ All updates produced by the transaction were applied on DI;_, to produce the

consistent state [JH,

e ''he data ilems modified by the transaction were not updated in consistent

states between DB, and DB, (excluding DB, and DE;)
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To verily that the data items modified by Uhe (ransaction were not updated belore,
we use the version number of the data items. [or any data that was modified by the
transaction, we ensure that its version number in D55;_, is same as its version in

DE..

6.2.4  Repeatable Read

Repeatable read requires all data items that have been read by the transaction
ghould have the same values if the fransaction reads those data items again, However,
phantom data are allowed. Consider Iigure 6.4, When transaction 75 executes r2(y),
it reads from a consistent state DB; 5. However, its next read ra(y, 2) reads from a
newer consistent stale DH; 1, and reads value of 2z as 7. Repeatable read ensures
that a data item that has been part of a transaction read, should not be modified

until the transaction commits. Formally, we need to verily the following to ensure

that the transaction followed repeatable read:

e The dafa read by a statement in the transaction came from a unigue consistent

state DIy,
e The fransaction was executed faithfully using thiz data to produce updates

e All updates produced by the transaction were applied to produce a congistent

state DFE;

e The data items read by the transaction were not modified by another transaction

between the congistent states it wag read from and DFB;

To verify the fourth condition, we use version of the data items at the time when
it wag read and at the consistent state produced by the transaction commit. This
gtep iz similar to that in snapshot izolation level, except that the initial consistent
state for the data item iz not the initial snapshot but the first consistent state from

which the data item was read.
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Figure 6.4.: An example of repeatable read isolation level

.25 Head Committed

Thizs is a weaker isolation level than the other isolation levels discussed before,
The read committed izolation level defines the behavior at the statement level rather
than the transaction level. The read committed izolation level requires that each
statement inside the transaction should read only committed data. However, different
implementations vary in specifics about whether all data read by a statement comes

from a single consisient state or not. We congider both these Torms here.

Strict Form

This is the most common {orm of read commitied isolation level among popular
relational databases thal use multi-version concurrency control. Under Uhis isolation
level, each statement inside the transaction reads dala [rom a single congistent state,
Two statements in the same transaction can read from different congistent states.
Figure 6.5 shows an example. Transaction 7% issues two ro(y) statements, and they
execute against two different consistent states DE;_o and D15, respectively. Iow-
ever, it iz ensured that each statement is executed against a consistent state that is
at least as fresh ag the previously seen state by the transaction. In IMigure 6.5, the
second ro{y) reads from DI which is fresher than DI, _o.

To verify the faithful execution of a transaction in this isolation level, the verifier

needs to do the lollowing:

e ['or each statement inside the transaction:



Figure 6.5.: An example of stricter read committed isolation level

''''' Verify that the consistent state against which this statement was executed

is not older than the previous consistent stabe seen by the fransaction

— Verily that all the data were read from Lhe congistent state as reported by

bhe server

e ''he transaction was execuled Taithfully using the data read by the statements

to produce updates

e Verily thal all updates produced by this transaction were applied (o produce

the next consistent state

Weaker Form

Some databases use o weaker semantics for Read Commitied isolation level. Even
though the database server is supposed to ensure Lhat Lhe transaction reads only com-
nitted data items, it does not guarantee that all the data items read by a statement
come from a single consistent state. Many databage systems, particularly NoSQL and
object oriented databases like DBAO use this Torm of isolation level

A naive approach for verification could be to just confirm that each data item read
existed in at least one consistent state. However, this does not guarantee freshness
of data which iz an important part of faithful execution of transactions. Consider
Figure 6.6 as an example. T5 statement ro{z,, v, 2, ) should not read xy from DB;_

even though it is a committed value. This iz because a previous statement of 75 has
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Figure 6.6.0 An example of weaker read committed isolation level

already seen DH; . Thus, all future statements must see either DJHE; 5 or newer
states. ro{x, ¥, 2) can see either y or yy, and 2z or 2. However, it must see 7y, as 7y is
present iz all possible consistent states from which ro(z, v, 2} could read. Formally, if
DE, iz the state of the database when the transaction started, DE; is the consistent
state it produces when allowed to commit, and 0757,; is the freshest state seen by the
statement F;, then ri << rj for ¢ < 7, i.e., each statement should read data from a

state which exists on the last seen state or after that.

In particular, verification involves the following steps:

e For cach statement inside the transaction:
Verify that all data items read by the statement existed on and after the
previous consistent stale seen by the transaction

— Verily that all data items that were part of all consistent states between
the previous consistent state and the most recent consistent state were

read by the statement

3

e ''he transaction was exccuted Taithfully using the data read the statements to

produce updates

the next consistent state



6.2.6  The Protocol

We now discuss our solution for ensuring Transactional Integrity under a given
isolation level. Our solutions allow multiple transactions to run concurrently under
different isolation levels. We will discuss the initial steps that Alice (data owner)
and Bob (server) take to setup the database server. Then we discuss the protocol
which engages the user (Carol) and Bob so as to run Carol’s transaction. With this
protocol, Bob commits to the “environment” under which Carol’s transaction was
executed — 4. 2., the congistent states that the transaction read from or committed to.
Finally, we digcuss the verification protocel to establish the integrity of the transaction
execution. Our solutions are independent of the type of database — the solutions are
equally applicable to relational or object databases.

Since multiple transactions could be running in parallel, it is esgential that Carol
or Alice are able to verify any past transaction. Using hisiory, Bob can regenerate
the environment under which a given transaction was executed. However, we need to
ensure that it is impossible for Bob to go back and change his claims. Our transaciion
execution protocol makes Bob commit to a small amount of data sufficient to ensure
that Bob cannot hide any dishonest changes to data or transaction execution.

All communication between the data owner, the users and the servers are signed
by their corresponding kevs so that the users could prove that Bob made a certain
claim and the gerver could prove that a particular transaction was indeed authorized
by a given uszer. [or readability, we do not explicitly state it when describing the

protocols.

Initialization

To allow the server to start serving the transaction requests of authorized users,
Alice sends the initial database (128p) to Bob. Alice and Bob compute the MB-tree
and agree on the initial state of the database (represented by the initial root lahel of

the MB-troe, FProofy. Onece they have agreed on the initial state, Bob can setup the
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Algorithm 7 Initialization

Alice sends the initial consistent state of the database, IDBq, to Bob.

2 Bob and Alice independently compute M BTy, and verify that they agree on
Froofq.
Alice retaing Proof, and discards her copy of the databage.

database and start, accepting transactions from the users. Algorithm 7 describes the

initialization step.

Transaction Execution

When Carol wants to execute a transaction, she sends the transaction, along
with the current timestamp (7'5.) to Bob., The transaction should also specify the
desired izolation level. The current timestamp should be unique to the user, i.e, user
cannot submit two transactions with the same timestamp. Bob must ensure that the
timestamp is larger than all earlier timestamps usged by Carol. The timestamps are
used Tor two purposes. Firstly, they preveni replay alfacks, 4.¢., Lhe server cannol
execule an authorized transaction multiple times. This is because once a user uses a
Limestamp, it cannot be used again for o new trangaction, to run the same transaciion
again, the server hag to use a diflerent timestamp and lake the transaction request

signature (which is computationally impossible). Secondly, they are used to provide
freshness guarantees.

Once Bob is satisfied with the authenticity of the transaction request, Bob executes
the transaction while tracking the updates produced by the transaction (in history)
and the consistent states seen by each transaction statement. If the fransaction is
allowed to commit, Bob applies the updates produced by the transaction and updates
the MB-tree producing the next consistent state. Bob reports these consistent states
to the user. In particular, for each statement inside the transaction, Bob reports the

freshest consistent state scen by the fransaction. Bob also reports the final consistent



Algorithm 8 Transaction Execution

1. Carol sends ransaction, T'S, Lo Bob,

20 Bob records this message alter verilving the signature and 7'5,, and starte exe-
cuting the transaction.

3 While execuling the transaction, Bob keeps track of the Ireshest consistent state
that each statement sees,

4 1T the transaction successfully commits at timestamp 7°5;, Bob computes M BT

5. Bob sends < 4, T'Ss, Proofs, {DB,; for ecach statement R}, TS;, Proof,
ISet = to Carol.

3 Bob sends fransaction, 15,1, Froof,, Proof;, T'5; to Alice

7. Carol sends 4, T'S., Froof., Pwﬁﬁy T'S; to Alice.

& Alice verifies that Carol’s version of commit information is same as Bob’s.

9: Alice verifies that the 75, is unique for the user and adds < Proof;, T°5; > to its

chain of proofs.

state produced by the transaction at the time of commit. Algerithm 8 describes this
step and Iigure 6.7 shows the steps graphically.

Let DB,; be the freshest consistent state scen by a statement in 73, R;. Then
Boh declares the following information to both Alice and Carol: (1) the transaction
commit sequence number, 2.e., %, (2) the timestamp used by Carol, 7'5,, (3) the initial
consistent state Proof,, (4) DB, for all statements Ry, (5) the final consistent state
Proof,, and, (6) RSel, the set of values user expects ag return value.

Alice uses the information from Bobh to update the proof chain. The proof chain
in used to keep frack of different consistent states that the database goes through.
Whenever Alice receives information about a transaction commit from Bob and Carol,
she adds (FProof;, T'S;) to the proof chain. If k transactions have been committed, the
proof chain would have < Proofy, TSy =, <0 Froof,, TS5, >, ..., << Froofy, T5, >,
where Proof; represents the root label of the MB-tree when transaction 7T} committed
and 75, is the timestamp at the time of commit. The prool chain is used by the
transaction verification protocol to establish freshness conditions. Alice also retains
the timestamps used by each user. Alice has to ensure that a timestamp has not been

used by Carol more Lhan once.
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Figure 6.7.: Transaction execution

Transaction Verification

As mentioned before, our solution allows a user to randomly verify any previously
committed transaction. To verify a transaction, the user needs to verify that (1) all
alues read by the transaction came from “valid” consistent states and were correct
and complete, (2) the transaction was executed on this data to produce the updates

(3) the updates were applied on the database to produce a new consistent state.

We elaborate on these parts below. Algorithm 9 explaing the verification protocol
formally.

Firstly, the user needs to verily the trustworthiness of the data read by the trans-
action. Bob has to show that all values read by a transaction statement indeed came
from the consistent state it reported al the time of commit. However, since a transac-

Lion can read from dillerent consistent stales based on the isolation level, Bob needs
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Algorithm 9 Transaction Verification

1: Carol asks Bob to verify a transaction 7}

2 for cach statement, H; in 7 do

3 DBob computes M BT,

4:  DBob sends to Carol the verification objects for all values read by I; based on
MET,;.

5:  Carol verifies the correctness and completeness of I{;’s reads based on the iso-
lation level.

6 end for

7. Carol determines the cutputs and updates for 75 |

i
3
N

replays 7)) given these reads.
£ Bob sends to Carol the verification objects for 7i's updates bagsed on M BT,
O Carol verilies that M BT, contains these updates.

to compute verification objects for the reads of each statement in the transaction
from the corresponding consisteni staite. This can done using history. Carol uses
the Correctness and Completensss mechanisms discussed earlier to verily the reads.
sSpecitic verification requirements for a given isolation level have been discussed in the
previous subsections.

Secondly, Carol needs to compute the updates that the transaction is supposaed
to produce. As mentioned before, we allow only replavable tranzactions. Given the
data read by each statement of the transaction, Carol can replay the transaction to
compute the updates it produced.

Finally, Carol needs to ensure that the updates produced by the fransaction were
faithfully applied to the database to produce a new consistent state. Ior this, Bob
computes the verification object from M DT, for the updates produced by the trans-
actions. Carol uses the verification object Lo ensure that all updates produced by the
transaction were applied to produce DB, and no other updates were applied.

To establish the freshness of the consistent states, we require Alice to perform a
little task as well. When a transaction is committed, Bob and Carol independently
report to Alice about the execution of the transaction. Alice maintains the proof
chain and whenever a new state ig produced by a transaction, the new proof is added

to the chain. To ensure freshness, Alice checks that the first consistent state seen by
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the transaction is al least the Ireshest state at the timestamp when the transaction

was submitted (T'5,). For example, if & transactions had been committed till 75

(Alice can figure this out using the proof chain), Alice ensures that the first consistent

state seen by the transaction, DI, is either DI} or fresher. Other than that, Alice
gtores the latest 15, used by each user. Alice verifies 75, has not been used by the
user before, If it has been, she has detected a replay attack., Notice that the overall

overhead for Alice is minimal.

6.2.7  Discussion

We now present some malicions scenarios, and show how our solutions handle

tham.

Bob executes an unauthorized transaction

“ob cannot manufacture a new transaction reguest as it reguires Bob to create
Carol’s signature. Bob cannot replay a transaction either as we require 'S5, to be

unique.

Bob drops a transaction

a transaction, 77 4, Proof; has to be computed using FPron f;

Alice will be able to

[yl

detect that,

Bob does not run transactions in the claimed sequence

The proof chain maintained by Alice ensures that Bob cannot claim a different

gequence of transaction commitment once the transaction has been committed.
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Bob falsely claims a {ransaction execubion environment

Each statement in the transaction reads data from a particular consistent state
which is determined based on the isolation level. The execution protocol requires Bob
to declare the consistent state from which the statements read data (Step 5). Since
the transactions are replayable, only these consistent states defline the environment
which determines the outcome of the transaction. Thus, Bob cannot claim a different

transaction execution environment once the tranzsaction has been committed,

Multiple transactions run concurrently under ditferent isolation levels

Az mentioned before, databases allow users to pick the izolation level for the trans-
actions and two (or more} concurrent transactions can execute at different isolation
levels, Our solution does not stop users from deing that., This is because the sze-
mantics for trust iz defined bassd on the consistent states and is isolated from other

concurrent transactions.

Delayed transaction execution

Our solution does not stop the server from maliciously delaying a particular trans-
action. We expect that the quality of services agreement belween the data owner and

the service provider will address this issue.

Untrugted users (Carol)

Hven in the presence of untrusted users, no unauthorized changes can be applied to
Lhe dalabase as olher users will be able to detect those changes i verified. However, il
is possible [or Uhe server to maliciously priorvitize or delay a particular user transaction.
Carol can authorize updates that are incorrect, but she would be caught doing so when

the updates are read and veritied by other users.



In the next section, we discuss implementation details and an empirical evaluation
of the proposed sclutions.

§

6.3  Procot-of-Concept Implementation

We have implemented our solutions on top of Oracle. Our proof-of-concept im-
plementation establishes the feasibility of our solutions and demonstrates the ease
with which our solutions can be adopted for a commercial DBMS. In this section, we

discuss our implementation details and present some empirical results,

6.3.1  Setup and Implementation Details

We implement the MB-tree in the form of a table. lach tuple in the MB-tree table
represents a node in the tree. The history of the MB-tree and uszer tables are stored
as a separate table.  Ideally, we would exploit the database’s internal structures,
for example, the index structures, or Oracle’s flashback technologies, however that
requires internal changes Lo the database. We leave that for future work.

The solutions are implemented using java procedures on top of Oracle. The imple-
mentation provides an AP containing the following methods: begin, commit, verify,
insert, delete, update, and search. The implementation allows a transaction to be
created using these methods. It ig required that the dafa i3 accessed using these
methods, and any processing of the data can be done by the franzaction. We con-
gtruct many sample transactions and execute them under different isolation levels
to demonstrate the feasibility of our solutions. Table 6.1 lists different transactions
used in the experimenis. For example, transaction 7'3 perlorms 5 range queries, and
inserts one Luple. users are implemented using Python.

A synithetic user table SampleTuble was created which has two abtributes, an
integer key and o varchar value. Sample Table was populated with one million tuples

with random values of key between 107 and 107, An MB-tree was croated on key.



Tabhle 6.1.: Transactions

Transaction ‘ Description

T1 1 Insert

T2 5 Range Query

T3 5 Hange Query, 1 Ingert
T4 5 Hange Query, 2 Ingert
TH 5 Hange Query, 3 Ingert
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Figure 6.8.: Insert (T1) time and verification overhead vs # of users
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Figure 6.9.: Insert (T1) 1O and verification overhead vs # of users

The experiments were conducted on a machine with Intel Xeon 2.4GHz processor,
12GB RAM and a 7200RPM disk with a transfer rate of 3Gb/s, running linux. Oracle
11g was used with a standard block size of 8KB.

6.3.2 Results

We now present the results of our experiments. As mentioned before, we created

multiple sample transactions using our implemented API. We analyze the cost of
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Figure 6.10.: T3: Execution time and verification overhead vs # of users

running those transactions in terms of the isolation level, concurrency and transaction
verification. We present cost in terms of execution time and IO.

The fanout for the MB-tree is chosen so that each tree node is contained within
a single disk block. Time is reported in seconds and IO is reported as the number of
blocks read or written as reported by Oracle. Each workload ran 100 transactions.
Each experiment was executed three times to reduce the error and the average values
are reported. The reported times and IO are the total time and IO for the entire
work load.

For experiments, we consider three isolation levels: Serializable (snapshot isola-
tion}, Read Committed, and Repeatable Read. Even though Oracle does not support
Repeatable Read directly, it possible to achieve Repeatable Read isolation level. This
is done by using Read Committed isclation level, and locking the tuples read by the
transaction for updates, i.e., by replacing SELECT with SELECT FOR UPDATE

under Read Committed isolation level.

Effect of concurrency

First, we evaluate how our solutions scale with concurrency. For this, we first

consider transactions that perform simple updates {insert, delete, and update). Since
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these operations show similar costs, we present the results for only inserts (transac-
tion T'1). As mentioned before, the decision to verify can be made independently per
transaction. We present results for no verification, and complete verification of all
transactions. Figures 6.8(a) and 6.8(b) show the transaction execution times as the
number of concurrent users is changed. Figure 6.8{a} shows transaction execution
times when the transactions are not verified, and Figure 6.8(b} shows transaction ex-
ecution times when each transaction is verified. The same workload is divided among
the concurrent users, and the time to complete the entire workload is reported. As
we can see, our solutions are not negatively impacted by the increase in concurrency.
Also, verification does not result in significant increase in execution time. Figures
6.9(a) and 6.9(b) further show the amount of IO performed by the database due to
the workload. As we can see, the amount of [O does not change much as the number
of concurrent users increases. Again, verification does not incur a significant increase
in 1O cost either.

Similar results can be seen for T3. Figures 6.10(a) and 6.10(b) show transaction
execution time as number of concurrent users is changed, and Figures 6.11{a) and

6.11(b) show the effect of concurrent users on 10.
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Figure 6.12.: Execution time and verification overhead for different isolation levels

Effect on different types of transactions

Now, we consider more complicated transactions to understand the effect of iso-
lation levels and verification on transaction execution. We consider transactions 72,
13, T4, and 15, each with increasing numbers of write operations. Each range query
picks a random range with approximately 10 tuples. For these experiments, we used

5 concurrent users. Figure 6.12 shows the execution times of these transactions for
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different settings (in terms of isolation levels and with or without verification). The
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Figure 6.13.: 1O Cost and verification overhead for different isolation levels
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Even though weaker isolation

requires verifying data against multiple consistent states, the results show that veri-

fication is not significantly affected by the chosen isclation level. Figure 6.13 shows

the amount of 1O done to execute the workload. As expected, when the transactions

are verified, the amount of IO is higher, however, the overhead is small.
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Owverall, we observe that our solutions can be easily implemented and provide
mechanisms for ensuring trustworthy execution of a transaction under a given isola-

tion level

6.4 Chapter Summary

In this chapter, we extended our solutions for ensuring trustworthiness of a dy-
namic transactional database to support weaker isolation levels than strict serializ-
able. Bince the weaker isolation levels can present a fuzzy database state, we revisited
the weaker izolation levels to formally define which database states a transaction
is expected to see ab a given isolation level. We show that it is possible to ensure
transactional integrity in the presence of weaker isolation levels. With our solutions,
we can guarantee that the semantics of the given isolation level was followed by the
server Taithfully. Users can independently choose an isolation level for each transac-
tion. Hven though other users could be running fransactions concurrent. at different
isclation levels, users can verify that their transactions followed the chosen izolation
level. We implemented these solutions in Oracle. Our implementation shows the eaze
of adopting our solutions in existing, commercial databases without any need for mod-

iftving the database code. Empirical evaluation of the solutions show the feasibility

and efficacy of the solutions.



7 FUTURE WORK AND CONCLUSION

In thiz chapter, we present some future work, and then conclude this dissertation.

7.1 Future Work

This section presents our ongoing and future work in this field.

Aggregate Queries An important part of SQL queries supported by database
systems is agerepate queries. Our current solubions expect that all the data items
that are needed to compute an aggregate guery should be returned as part of the
verification object. This is undesirable as such data can be large in size. One solution
to alleviate this problem is to use the MB-trees to store known aggregate funciion

alues at the internal nodes. For example, for “SUM”, each internal node can be

augmented to store the summation (on an attribute] of all tuples in the subtree.
Thus, to verify the faithfulness of an aggregate query result, we need only O{log(k))

partial sums, rather than all tuples that are used to compute the sum.

Fase of Verification Given that the goal of outsourcing is to alleviate the burden
on the data owner and users, satisfactory selutions need to minimize the overheadd
and role of the data owner and users in establishing the authenticity and integrity
of the solutions. In this regard, existing solutions are inadeguate as they require
the data owner and users to play a significant role. While this may work for some
applications, many outsourced databases are expected to have both a large size and
high rate of querving and updates. Thus it iz necesgary to explore more efficient
solutions with low overheads for all involved parties. One particular cost that users

incur when deploying such systems iz the cost of verification. The current solutions



expect the veriller to setup a partial database and understand SQL semantics to be
able to verify that the database operation was executed faithfully. I'or users with
limited resources, it may not be feasible. One approach to reduce this burden iz to
outsource the verification process to a third party. Another approach would be to
gimplify the expectations of the databage operations in order to be able to verify them

without having to setup a temporary database.

Automatic Detection of Malicious Activity Current solutions expect the data
owner or users bo verify the transactional integrity or query results in order to detect
any malicious activity. We expect the users to verify transactions randomly depending
upon the level trust on the database server. However, if users had a mechanism to
indicate which transaction execulion seems more likely Lo be trustworthy, and which
are not, they would able to pick transactions lor verification more wisely. We propose

the {ollowing two approaches.

¢ Defining transaction boundaries: Most transactiong are simple in nature — it is
clear before actually executing the transaction, which data items are likely to
he read or written by the transaction. Given this information, il the transac-
bion accessed data outside the expected boundary, we can decide to verifv the

transaction with greater likelihood.

o Delining constraints: Bven though transections are executed ab the server, and
it may nol be directly known to the users which daia is read or writlen by their
transactions, they do expect cerlain properties in the data based on the applica-
tion logic or otherwise. For example, il a customer deposits $100 in their bank
account, the bank expects the total cash amount to be $100 higher. Many con-
straints, which are well delined, are already implemented by the database sys-
tems, for example, domain range on attribute values or foreign key constraints.
[However, based on the application logic and the knowledge of transactions ex-
ecuted on the database, the data owner and users can expect that the data

satisfies certaln constraints.
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Combining Privacy DPreserving Compulalion  Even with encryption, a ma-
licious server can infer information based on data access patterns, transaction se-
mantics, ete.. Researchers have proposed solutions to outsource computing without
leaking the input or output, or the computation. Other work in domain include
oblivicus-RAM with hides the data access patterns. However, these solutions cannot
be combined with authentication data structures. Mechanisms that decrease the in-
formation leakage, while still providing assurance to the data owner and users about

the fidelity of the data, would further reduce the reguired trust on the databagse server.

Ellicient Implemeniation Ouwur proolol-concept implementation of the solubions
were developed on top of an existing DBMS (Oracle), without any internal mod-
ifications. This implementation used database tables to store authentication data
structures and used PL/SQL to implement the protocols. We believe that exploiting
the internal structures and using more efficient structures, such as the internal index
structures, will improve the performance significantly. Oracle, for example, offers
mechanisms to keep old values in the database so thal a user could look at an older
state of the database. Hxploiting these mechanisms rather than implementing our

own history structure in the database tables will be helpful.

Automatic Rewrite  To make our solutions eagily deplovable, it is desired that the
transactions are automatically rewritten to use the authentication mechanisms. This
will ensure that any application can use these solutions without having fo rewrite
the application. An ideal system will provide a middleware such that the application
would send the user queries and transactions to the middleware. The middleware can

follow the protocol, and rewrite the user transaction so that the transaction would

be verified in future.
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7.2  Conclusion

siven the complexity and cost of managing data, many organizations are look-
ing towards outsourcing their data management activitics. However, since the data
owner lacks control over the hardware and software running at the server, there is a
reluctance to blindly trust the server. In this dissertation, we identified and solved
important problems that arize when the databasge ig hosted in an untrusted environ-
ment. With our solutions, we reduce the level of trust required in order to trust an
untrusted database to operate the database honestly.

We proposed solutions to assure the data owner and the database users that
the uger transactions were executed honestly. The proposed solutions allow multiple
users to run transactions concurrently without being vetied by a central entity. Our
solutions provide assured provenance ol data. Furihermore, our solutions provide

indemnity for the server against false claims of wrongdoing.  We implemented our
solutions on top ol an existing DBMS (Oracle) without any internal modifications,
thus demonstraiing the ease of deployment. Our empirical evaluaiion shows that
our solutions are comparable to existing solutions without providing transactional
infegrity.

We extended our solutions to suppoert access control rules. Using our solutions,
the data owner can be asgured that the server implemented the access control rules,
and the users can gtill verify transactional integrity in presence of access control rules.
Our solutions provide encryption mechanisms so that only authorized users can read
the data while the server can execute gueries on the encrypted data. Our solutions
allow the data owner to easily update the access confrol rules, while keeping the
overhead for key management small. Our empirical evaluation of the solulions shows
that the overhead of our solutions is minimal.

We Turther extended our solutions to support weaker isolation levels, thus allowing
uzers to pick their izolation level before executing a fransaction. Even though weaker

izolation levels risk showing a fuzzy state, we design our solufions to ensure that
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the user will be able to verify that the transaction execulion is consistent with the
izolation level requirements and guarantees. Our proof-of-concept implementation
allows users to create transactions which can be verified at any point in future. This
allows our solutions to be easily adoptable in existing database applications. Our
empirical evaluation of the solutions show the feasibility and efficacy of the sclutions.

Finally, we presented some of our ongoing and future work in this field. Despite
the significant work already done in this feld, numerous interesting problem remain
to he solved in order to make it practical for databases. Solutions presented in this
digsertation reduce that gap and raised some interesting problems to be sclved vet,
Overall, with our solutions, the data owner need not blindly trust the server. With
our solutions, the data owner or the users can detect any malicious activity on the
databaze, and alzo prove it. We show that our solutions can be easily adopted in an

existing databasze.
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