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School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907 USA 

 

Abstract 

 This study uses high-speed imaging to characterize microchannel slug flow boiling using 

a novel experimental test facility that generates an archetypal flow regime suitable for high-

fidelity characterization of key hydrodynamic and heat transfer parameters.  Vapor and liquid 

phases of the fluorinated dielectric fluid HFE-7100 are independently injected into a T-junction 

to create a saturated two-phase slug flow, thereby eliminating the flow instabilities and flow-

regime transitions that would otherwise result from stochastic generation of vapor bubbles by 

nucleation from a superheated channel wall.  Slug flow boiling is characterized in a heated, 500 

μm-diameter borosilicate glass microchannel.  A thin layer of optically transparent and 

electrically conductive indium tin oxide coated on the outside surface of the microchannel 

provides a uniform heat flux via Joule heating.  High-speed flow visualization images are 

analyzed to quantify the uniformity of the vapor bubbles and liquid slugs generated, as well as 

the growth of vapor bubbles under heat fluxes ranging from 30 W/m2 to 5160 W/m2.  A method 

is demonstrated for measuring liquid film thickness from the visualizations using a ray-tracing 
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procedure to correct for optical distortions.  Characterization of the slug flow boiling regime that 

is generated demonstrates the unique ability of the facility to precisely control and quantify 

hydrodynamic and heat transfer characteristics.  The experimental approach demonstrated in this 

study provides a unique platform for the investigation of microchannel slug flow boiling 

transport under controlled, stable conditions suitable for model validation. 

 

Keywords: flow boiling, heat transfer, microchannel, slug flow, two-phase flow, vapor bubbles 
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Nomenclature 

As inside surface area of the microchannel 

Bo Bond number [(ρl-ρv)gD2/σl] 

D microchannel diameter 

Db vapor bubble diameter 

g gravitational acceleration constant 

Lb vapor bubble length 

Lm microchannel length 

Ls liquid slug length 

L0 initial vapor bubble/liquid slug length 

Pin input power 

Ploss power loss 

Ptotal total power 

q” heat flux 

ReD Reynolds number (VbD/νl) 

tw microchannel wall thickness 

Vb vapor bubble velocity 

x transverse position relative to microchannel centerline 

y axial position relative to T-junction center 

y’ axial position relative to camera field of view 

z vertical position relative to microchannel centerline 

 

Greek Letters 

δ liquid film thickness 

θ angle between normal and incident/refracted light 

νl liquid kinematic viscosity 

ρl liquid density 

ρv vapor density 

σl liquid surface tension 
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1 Introduction 

Two-phase flows are commonly encountered in nuclear, power generation, petroleum, 

and other industries.  In general, two-phase flows can be classified according to whether phase 

change is occurring, which leads to strong differences in the underlying physics.  Flows not 

undergoing phase change involve two different immiscible chemical components, and are 

sometimes referred to as two-component, two-phase flows (e.g., nitrogen-water flow) [1].  

Phase-change flows contain a single component but comprise two different phases separated by 

an interface; steam-water flow is an example of a single-component, two-phase flow.  Phase-

change flows can be either condensing (flow condensation) or evaporating (flow boiling). 

Slug flow is one of the most common two-phase flow regimes in applications at the 

microscale [2-5], ranging from lab-on-a-chip devices in medical and pharmaceutical industries 

[2] to microchannel flow boiling heat sinks for electronics cooling [6, 7].  The slug flow boiling 

regime, schematically illustrated in Fig. 1, is characterized by elongated vapor bubbles that are 

circumferentially confined and partitioned in the streamwise direction by liquid slugs.  A thin 

liquid film separates the vapor bubbles from the channel wall; evaporation in this thin liquid film 

has been shown to be the dominant heat transfer mechanism in slug flow boiling [8].  During 

flow boiling in microchannels, nucleation and departure of vapor bubbles from the channel wall 

almost immediately leads to a slug flow regime for channel sizes below a critical value, due to 

the influence of surface tension and vapor confinement [9].  As a result, the slug flow regime is 

observed across a wide range of operating conditions and is of significant interest. 

The design and optimization of two-phase microchannel cooling systems will likely be 

accomplished using a combination of reduced-order mechanistic models and direct numerical 

simulation of flow boiling.  Several mechanistic slug flow boiling models of increasing 
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complexity have been proposed.  Peles et al. [10] developed a one-dimensional model featuring 

distinct liquid and vapor regions partitioned by an evaporating interface.  Jacobi and Thome [11] 

proposed a ‘two-zone’ model consisting of an evaporating vapor bubble region surrounded 

circumferentially by a thin liquid film, with successive bubbles partitioned by a liquid slug 

region.  A model for the conduction resistance of the thin liquid film was used to describe the 

effective evaporative heat transfer coefficient.  A ‘three-zone’ model was presented by Thome et 

al. [8] by including an additional vapor slug region, where no liquid film exists, and a method for 

prediction of the liquid film thickness.  This model was later adapted by Harirchian and 

Garimella [12] to include a correlation for the liquid film thickness specific to microchannel 

length scales.  While the aforementioned two- and three-zone models were strictly developed for 

circular microchannels, a ‘four-zone’ model was developed by Wang et al. [13] to account for a 

partial dryout region resulting from corner effects in microchannels of rectangular cross-section.  

These modeling efforts have significantly advanced the understanding of the underlying flow 

boiling physics, such as the realization that thin-film evaporation governs microchannel flow 

boiling performance (rather than nucleate boiling) and that cyclic variations in the heat transfer 

coefficient result from the passage of different fluid zones. 

Several recent studies have developed multiphase numerical models for flow boiling that 

account for complex vapor-liquid interfacial transport phenomena [14-18].  For example, Pan et 

al. [17] demonstrated a cost-effective approach for modeling microchannel flow boiling using a 

volume-of-fluid (VOF) approach coupled with a saturated-interface-volume phase change model 

and a moving-reference-frame method that suppresses spurious currents [19].  The growth of 

single, evaporating vapor bubbles flowing in heated microchannels was simulated.  While this 

was an important step toward the ultimate goal of a comprehensive numerical simulation of the 
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complete flow boiling problem, a continuous stream of vapor bubbles is more representative of 

two-phase flows and poses additional challenges for modeling due to the hydrodynamic and 

thermal interaction between successive vapor bubbles [20].  Magnini and Thome [3] 

computationally investigated the hydrodynamics and heat transfer characteristics of 

microchannel slug flow under saturated flow boiling conditions using a continuous stream of 

artificially generated vapor bubbles.  The first vapor bubble entering a fully developed liquid-

phase flow and temperature profile had a significantly higher evaporation rate relative to 

successive vapor bubbles due to the large amount of sensible heat available in the superheated 

liquid regions; time-periodic behavior was observed after approximately five vapor bubbles. 

Despite the recent significant advances in modeling, these state-of-the-art techniques are 

still validated using test problems for which simplistic analytical solutions are available [15, 17, 

18, 21, 22], comparison to temporally and spatially averaged transport quantities that can be 

easily measured experimentally [16], or cross-comparison between the different numerical 

modeling approaches [17].  There is a clear need for high-fidelity benchmark experimental data 

that can be used as a common basis for validation of sophisticated flow boiling models. 

Two-phase flows are traditionally generated in flow boiling experiments by vapor bubble 

nucleation from a heated surface.  This incipience-based approach gives rise to a streamwise 

progression of flow regimes, typically transitioning from bubbly to slug to annular flow.  Large 

stochastic hydrodynamic variations, flow instabilities, and the close proximity of successive 

vapor bubbles that arise from the nucleation process confound the development of a 

comprehensive database of well-conditioned experimental results that is amenable for use in the 

validation of flow boiling models. 
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Recent experimental efforts have explored innovative techniques that control vapor 

bubble generation by avoiding a reliance on spontaneous nucleation.  Bigham and Moghaddam 

[23] demonstrated active nucleation control from a 300 nm-diameter heated cavity.  By varying 

the amplitude and period of a pulsed square wave, different time-periodic flow regimes ranging 

from bubbly to slug to annular were realized in a 120 μm-hydraulic diameter microchannel at 

very low Reynolds numbers.  A method for producing the desired two-phase flow characteristics 

while completely avoiding nucleation has also been proposed.  Scammell and Kim [24] 

fabricated a test facility capable of producing a single vapor bubble of a desired length which 

was then injected into a liquid vertical upflow in an optically opaque, heated 6 mm 

macrochannel.  There is a need for experimental approaches capable of producing a continuous 

stream of vapor bubbles that appropriately emulates the physical behavior of slug flow boiling, 

with successive vapor bubbles separated by liquid slugs.  Such an approach would enable 

characterization of key hydrodynamic and heat transfer parameters under well-defined boundary 

and flow conditions that are commonly encountered in microchannel heat sinks. 

The current study demonstrates an approach for high-fidelity experimental 

characterization of the hydrodynamics and heat transfer in microchannel slug flow boiling.  The 

test facility developed provides the unique capability of actively controlling and generating a 

time-periodic microchannel slug flow boiling regime free of flow-regime transitions and flow 

instabilities.  The experimental facility and the procedure for producing the desired archetypal 

slug flow regime are first described, followed by presentation of the high-speed flow 

visualization and image-processing approaches.  The vapor bubble and liquid slug uniformity 

and the growth of vapor bubbles subjected to varying heat fluxes are quantitatively characterized 

using image analysis techniques. 
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2 Experimental Methods 

2.1 Test Facility 

A constant-pressure reservoir is employed to deliver separate streams of degassed HFE-

7100 vapor and liquid into a T-junction to create a microchannel slug flow.  An open-loop 

system (Fig. 2), driven by the pressure difference between a pressurized reservoir and the 

ambient, is used to generate the flow.  This approach allows controlled, constant flow rates to be 

achieved even at low flow rates.  Vapor is created inside the fixed-volume, stainless steel 

pressurized reservoir by continuously boiling fluid using a submerged, horizontally mounted 

cartridge heater.  Electrical power is supplied to the cartridge heater using an adjustable direct 

current (DC) power supply (XG 150-5.6, Sorenson); the heater is connected to a temperature cut-

off to detect a low fluid level.  The vapor/liquid mixture inside the reservoir is stratified, as 

illustrated schematically in Fig. 2, enabling vapor and liquid to be separately drawn out of the 

reservoir.  The pressure in the reservoir is adjustable using a two-phase, back-pressure regulator 

(EB1ULF1, Equilibar).  The back-pressure regulator uses a pilot line to regulate the reservoir 

pressure by continuously relieving the reservoir of vapor in order to maintain the desired 

pressure. 

Single-phase vapor and single-phase liquid are extracted from the reservoir through two 

separate lines.  Condensation is prevented in the vapor lines using adjustable electrical heating 

jackets, thereby maintaining slightly superheated single-phase vapor.  The local superheat is 

monitored along the vapor delivery line using pressure transducers and T-type thermocouples, 

including at a location immediately upstream of the T-junction, to an accuracy of ± 0.5 kPa and 

± 1 °C, respectively.  The vapor flow rate to the T-junction is controlled using an adjustable 
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vapor control valve.  The single-phase liquid flow is controlled and measured using a liquid flow 

controller (LC-10CCM-D-EPDM, Alicat) to an accuracy of ± 0.2 mL/min.  The liquid mass flow 

rate is determined using the measured volumetric flow rate and density corresponding to the 

liquid temperature measured by the flow controller.  An electrical heating jacket is used to 

preheat the liquid to the desired temperature immediately upstream of the T-junction; the 

subcooling at this location is monitored using a pressure transducer and thermocouple.  A PEEK 

T-junction (MT1PK, Valco) with a 500 μm circular bore is used to combine the vapor and liquid 

fluid streams and create a two-phase flow in the downstream microchannel.  The T-junction bore 

diameter and test section microchannel inside diameter are identical, yielding a smooth flow path 

for the two-phase flow.  The periodic two-phase flow that forms downstream is a result of the 

oscillatory behavior that temporary blocks the liquid and allows the vapor to flow before 

switching and allowing liquid to flow while blocking the vapor, an effect experimentally 

demonstrated by Miyabayashi et al. [25]. 

The circular cross-section test-section microchannel is made of borosilicate glass 

(CV5070, Vitrocom) with a nominal inside diameter of D = 500 μm and a wall thickness of 

tw =100 μm; this microchannel is mounted horizontally.  The microchannel length, 

nondimensionalized by the channel inside diameter, is Lm/D = 200.  The outside surface of the 

microchannel is custom-coated with a nominally 100 nm-thick layer of indium tin oxide (ITO) 

using atomic layer deposition (Ultratech Inc.).  The ITO layer is optically transparent and 

electrically conductive, enabling visualization of the two-phase flow while subjected to a 

uniform Joule heating through the low-thermal conductivity borosilicate glass (1.2 Wm-1K-1).  

Power is supplied to the ITO coating using an adjustable DC power supply (XG 300-2.8, 

Sorenson).  Another PEEK T-junction is used to support the downstream end of the test section 
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microchannel.  The ITO layer is electrically isolated from the flow loop using non-conductive 

PTFE ferrules and PEEK nuts attached at both ends to the PEEK T-junctions.  The pressure drop 

across the upstream and downstream T-junctions and microchannel is taken as the difference 

between the measured liquid/vapor pressure immediately upstream of the mixing T-junction and 

that measured at the downstream T-junction.  Fluid leaving the test section (and also the fluid 

leaving the back-pressure regulator) is collected and passed through a fluid-to-air heat exchanger 

to condense any vapor before discharging the liquid to an open reservoir at ambient pressure. 

All test facility sensor data are obtained at 0.33 Hz using a data acquisition unit (34970A, 

Agilent) with a 20-channel multiplexer module (34901A, Agilent) using a Labview interface.  

Power supplied to the test section is quantified by measuring the voltage drop across and current 

through the ITO microchannel coating; the current is measured using a shunt resistor (6142-1-

1000, Empro Shunts).  The entire experimental facility is mounted on an isolated optical table 

(VIS3672-PG2-325A, Newport) to ensure that external vibrations are not transmitted to the 

components. 

 

2.2 Test Procedure 

Immediately prior to testing, the HFE-7100 fluid is degassed by vigorously boiling the 

liquid in the reservoir using the cartridge heater.  A Graham condenser (5977-12, Ace Glass Inc.) 

condenses the vapor back into the reservoir while non-condensable gases are expelled from the 

system.  An auxiliary pumped loop circulates water through the Graham condenser to promote 

condensation of the vapor and rejects the heat to the ambient environment using a liquid-to-air 

heat exchanger (4210G10SB-F9, Lytron).  While degassing, liquid in the reservoir is 
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continuously circulated through a 7 μm particulate filter (SS-4TF-7, Swagelok) and an organic 

filter (12011, Pall Corporation) to remove any containments from the fluid. 

Experiments were initiated by boiling the liquid in the reservoir with only the back-

pressure regulator line open.  Once the reservoir reaches the pilot line pressure, the back-pressure 

regulator continously relieves fluid from the reservoir to maintain a constant reservoir pressure 

of 134.2 ± 0.1 kPa; this constant vapor pressure is required to maintain constant fluid flow rates.  

The reported uncertainties represent the standard deviation of the values measured over the 

duration of the test. 

The liquid delivery line was then opened and the liquid flow controller was set to deliver 

a volumetric flow rate of 4.06 ± 0.01 mL/min (mass flow rate of 5.68 ± 0.01 kg/min) to the T-

junction.  The liquid preheater was turned on and adjusted to achieve a liquid inlet temperature 

of 60.1 ± 0.1 °C.  This corresponds to a subcooling of 4.8 °C at the inlet absolute pressure 

(113.1 ± 0.6 kPa), ensuring that purely single-phase liquid is delivered to the T-junction.  After 

flow in the liquid delivery line reached steady-state conditions, the vapor line heaters were 

turned on to preheat the vapor lines.  Next, the vapor delivery line was opened.  The vapor line 

heating power and vapor flow rate were iteratively adjusted until the desired downstream slug 

flow regime (vapor bubble lengths of approximately Lb/D = 5) were observed in the visualization 

images at steady-state conditions.  These vapor flow conditions were then held fixed for all 

power inputs to the test section microchannel.  In this study, the average temperature of the vapor 

being delivered to the T-junction was 71.1 ± 0.2 °C.  This corresponds to a superheat of 6.9 °C at 

the inlet absolute pressure (111.1 ± 0.6 kPa), ensuring that purely single-phase vapor is delivered 

to the T-junction.  Note that when the subcooled liquid and superheated vapor combine at the T-

junction, some developing length is required before equilibrium is reached and a saturated two-
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phase flow is established.  The vapor superheat and liquid subcooling were each chosen to be 

small enough such that a saturated two-phase flow is observed to develop within a short distance 

downstream.  In this study, the two-phase flow is characterized at a fixed streamwise location for 

all test conditions, far enough downsteam to ensure that saturated flow boiling conditions exist in 

the region being visualized.  While it would be ideal for the vapor and liquid inlet lines to be 

maintained exactly at saturation, practical operation of the facility requires some respective 

degrees of superheat and subcooling to ensure that only single-phase flows enter the T-junction; 

if the inlet encountered two-phase conditions, the flow periodicity in the test section would be 

entirely disrupted. 

The  power levels applied to the test section microchannel were chosen to yield an 

observable difference in the vapor bubble growth rate over the range.  In this study, 13 different 

input power levels (Ptotal) ranging from 0.32 W to 0.84 W were tested.  Two of the power levels 

(0.32 W and 0.35 W) resulted in condensing flows; the remaining higher power levels (0.40 W to 

0.84 W) resulted in evaporating flows.  Data were collected for the 13 power levels in a 

randomized order.  The pressure at the outlet of the microchannel measured 105.2 ± 0.8 kPa, 

which is slightly elevated relative to the ambient pressure due to the flow resistance through the 

downstream tubing and heat exchanger.  The higher power levels might be expected to result in a 

higher pressure drop across the microchannel (due to a higher evaporation-induced accelerational 

pressure drop); however, the range of power levels considered in this study is relatively small 

and thus minimal pressure drop increase was observed across the range.  A steady-state condition 

was allowed to be reached at each successive power level before flow visualization images were 

obtained using the high-speed camera. 
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2.3 Flow Visualization 

The flow was visualized using a high-speed camera (FASTCAM 1024 PCI, Photron) and 

two alternative lenses: a macro lens (AF Micro-Nikkor, Nikon) and a high-magnification zoom 

lens (VH-Z50L, Keyence).  The camera and lens assembly was positioned using a three-axis 

stage and focused on the microchannel mid-plane.  The microchannel length was uniformly 

backlit using an adjustable, high-intensity LED strip with an integrated light diffuser (BL138, 

Advanced Illumination). 

Images obtained using the macro lens were acquired at 27,000 frames per second with an 

exposure time of 0.037 ms for a duration of 0.74 s at each power level.  An image size of 

1024 × 32 was used to visualize the high-aspect ratio microchannel geometry.  Images collected 

with the macro lens had an image resolution of 32 μm per pixel, as determined using a 

calibration target (59217, Edmund Optics), resulting in an optical magnification of 0.5×.  The 

field of view observed with the macro lens was positioned at 98 < y/D < 162; the beginning of 

the heated region was y/D = 92.  The entire vapor-liquid interface profile of several vapor 

bubbles could be visualized simultaneously within this field of view. 

Images acquired using the high-magnification zoom lens were obtained at an image size 

of 1024 × 512 and resolution of 1.5 μm per pixel (optical magnification of 11.3×).  The frame 

rate was reduced to 2,000 frames per second (with an exposure time of 0.5 ms) to ensure 

adequate backlighting.  The high-magnification lens was used to measure the position of the 

vapor-liquid interface relative to the inside wall of the microchannel (i.e., the liquid film 

thickness). 

 

2.4 Image Analysis 
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Qualitative observations of the vapor-bubble interface were made using the images 

obtained with the macro lens.  The images were analyzed frame-by-frame to characterize the 

vapor bubble and liquid slug lengths.  These lengths were determined from the initial gray-scale 

images using a custom image-processing algorithm, as shown in Fig. 3.  The algorithm subtracts 

the original image (Fig. 3a) from a background image (Fig. 3b) to generate an image of the 

vapor-liquid interface profile with enhanced contrast (Fig. 3c).  A gray-scale intensity histogram 

of the resulting image was generated, which had a bimodal distribution; the minimum point 

between the two peaks was selected as the thresholding value.  The gray-scale image was then 

thresholded to yield a binary image (Fig. 3d).  Vapor bubbles featuring an incomplete vapor-

liquid interface profile were then removed (Fig. 3e).  Finally, the interior of the vapor-liquid 

interface profiles are filled for easier visual study, resulting in a final image that can be used for 

extraction of the vapor bubble and liquid slug lengths (Fig. 3f).  Feature recognition was used to 

track each vapor bubble and liquid slug from frame to frame and identify new vapor bubbles 

entering the camera field of view. 

The length of each vapor bubble was determined from the difference between the furthest 

downstream (i.e., nose) and upstream (i.e., tail) axial locations of the vapor-liquid interface.  The 

liquid slug length was determined from the difference between the tail of a leading vapor bubble 

and the nose of a trailing vapor bubble.  Optical distortions caused by the refraction of light 

passing through the liquid-solid interface and the gas-solid interface (i.e., air-glass) need not be 

corrected when measuring the vapor bubble and liquid slug length because the liquid-solid and 

gas-solid interfaces at the centerline of the microchannel are normal to the camera. 

 

2.5 Liquid Film Thickness 
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Liquid film thickness is an important parameter in the characterization of two-phase 

flows, resulting in significant effort having been directed toward predictive correlations and 

improved measurement techniques [2, 26].  While sophisticated experimental techniques 

involving laser focus displacement meters [27, 28] and optical microscopes paired with pulsed-

laser illumination [29] have been used for high-fidelity characterization of the liquid film 

interface profile, the flow visualizations obtained via high-speed imaging herein can also yield a 

film thickness measurement.  The thickness of the liquid film separating the vapor bubble from 

the inside microchannel wall was quantified using the images obtained with the high-

magnification zoom lens.  The measurement of this liquid film thickness accounts for the optical 

distortions in the images; a schematic diagram illustrating the optical distortions caused by the 

liquid-solid and gas-solid interfaces is shown in Fig. 4.  To illustrate the relationship between the 

image and physical interface locations, a quarter section of the microchannel cross-section is 

shown side-by-side with an image obtained using high-speed imaging, aligned at the channel 

centerline.  Key locations along the interfaces are marked with dots; outward pointing arrows 

indicate the direction normal to the interfaces at these locations.  The dotted lines represent the 

pathlines of light collected by the high-speed camera from the points of interest at the 

microchannel y-z mid-plane; the dashed lines show the x- and z-positions where the light is 

refracted along these pathlines. 

A ray-tracing procedure was used to transform the z-positions of the microchannel inside 

diameter (z5) and the vapor-liquid interface (z6) observed in the image to the actual physical 

positions of these two interfaces in space (z2 and z1, respectively).  The procedure assumes the 

liquid film thickness to be uniform around the microchannel circumference.  The dominance of 

surface tension forces relative to body forces, as indicated by a Bond number of Bo = 0.24 < 1, 
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justifies this assumption.  The vapor-liquid interface intersects the microchannel x-y mid-plane at 

the top of a dark band in the image shown Fig. 4; this vapor-liquid interface was used for the ray-

tracing procedure. This dark region observed below the mid-plane vapor-liquid interface location 

is a result of the light being refracted by a region of the foreground/background interface.  The 

location of the microchannel inside diameter is difficult to observe, but is made detectable using 

image-enhancement techniques.  The relationship between the angle of incidence and refraction 

of the light traversing through the liquid-solid and gas-solid interfaces is given by Snell’s Law: 

nasinθa = nbsinθb, where n is the index of refraction of the medium and θ is the angle between the 

normal and the incident/refracted light.  The refractive indices of HFE-7100 liquid, borosilicate 

glass, and air are 1.27, 1.47, and 1.00, respectively. 

 

3 Results and Discussion 

3.1 Heat Loss Analysis 

A portion of the total power supplied to the ITO coating on the microchannel outer 

surface is lost to the ambient (i.e., not transferred to the flow through the microchannel wall).  

Any energy supplied to (removed from) a saturated two-phase flow would change the vapor 

quality and thus be observed as a streamwise increase (decrease) in the vapor bubble size.  Under 

adiabatic conditions, the size of the vapor bubbles would remain constant.  The heat loss to the 

ambient was quantified by measuring the nondimensional change in vapor bubble length, ΔLb/D, 

over a given period of time, for each of the 13 power levels, to identify the power level at which 

no net evaporation or condensation was occurring.  The nondimensional change in vapor bubble 

length for the 13 different power levels is plotted in Fig. 5 with error bars indicating one standard 

deviation.  A zero net change in nondimensional vapor bubble length, as determined from the 
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linear regression line, occurs at a power input of 0.39 ± 0.01 W.  Because this power input level 

results in no change in the vapor bubble length, it is deemed to be all lost to the ambient.  Hence, 

the power loss to the ambient, Ploss = 0.39 ± 0.01 W; the uncertainty in Ploss was quantified based 

on the uncertainty in the linear regression [30].  For the range of power levels considered in this 

study, a linear relationship between total power and nondimensional change in vapor bubble 

length was observed (R2 = 0.98); hence, the power input to the microchannel, Pin, in each case 

was determined by subtracting the power loss from the total power. 

The heat flux into the fluid is q” = Pin/As, where As is the internal surface area of the 

microchannel.  The uncertainty in Pin has contributions from uncertainties in the heat loss 

determined via linear regression and the total power measurement.  The uncertainty in As has 

contributions from the uncertainties in the microchannel inside diameter (± 4 μm) and the 

distance between the electrical connections on the ITO layer (± 1 mm).  The resultant propagated 

uncertainty in the heat flux increases slightly from 150 to 190 W/m2 over the range of 

evaporating heat fluxes from 30 to 5160 W/m2.  The large relative uncertainty at q” = 30 W/m2 

is attributed to the small difference between the total power and the heat loss at this test 

condition. 

 

3.2 Qualitative Flow Visualizations 

Selected images from high-speed visualization of the test section microchannel at heat 

fluxes of q” = 30 W/m2 and q” = 3520 W/m2 are shown in Fig. 6.  The sequence of frames at 

each heat flux shows the left-most vapor bubble (in the first frame) traverse the length of the 

microchannel until it almost begins to exit the camera field-of-view.  Visualization of the 
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evaporating two-phase slug flow allows several important qualitative features to be identified for 

the inlet conditions of this study: 

i. the vapor bubble nose is hemispherical while the tail is much flatter; 

ii. the liquid film between the vapor bubble and the microchannel wall slightly reduces 

along the length of the vapor bubbles beginning at the nose and progressing toward the 

tail; 

iii. the interface at the trailing edge of the vapor bubble fluctuates in time as a result of the 

recirculation in the wake of the vapor bubble; 

iv. capillary waves are observed on the vapor-liquid interface where the liquid film is 

thinnest; 

v. vapor bubbles elongate in time as they evaporate due to the uniform heat flux 

condition; 

vi. longer vapor bubbles elongate at a faster rate than shorter ones as a result of their 

increased vapor-liquid interfacial surface area; 

vii. vapor bubble growth only occurs in the streamwise direction because the vapor bubbles 

are confined in circumferential extent by the microchannel wall; 

viii. the variation in length between successive vapor bubbles is small, as it is for the liquid 

slugs; 

ix. the initial length of the liquid slugs is slightly larger than the initial length of the vapor 

bubbles; 

x. the length of the liquid slugs does not noticeably change as a function of axial position 

along the microchannel; 
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xi. flow-regime transitions (e.g., slug to annular) and flow instabilties (e.g., flow reversal) 

are not observed; 

xii. there are no instances of vapor bubble coalesence; and 

xiii. there is no nucleation of vapor bubbles from the microchannel wall. 

Qualitative differences between Fig. 6a and 6b due to the different heat fluxes applied 

can also be observed.  The vapor bubbles in Fig. 6a elongate at a much slower rate than those in 

Fig. 6b as a result of the reduced heat flux and the lower associated rate of evaporation.  Also, 

the time required for a vapor bubble in Fig. 6a to translate a given distance downstream is longer 

than in Fig. 6b (note the additional frame in Fig. 6a).  An increased evaporation rate results in an 

increased acceleration of the flow due to volumetric expansion associated with phase change 

from liquid to vapor. 

To further illustrate the controlled nature of the slug flow generation methodology 

developed in this work, alternative images from high-speed visualization of vapor bubbles being 

generated by nucleation from the wall within a heated microchannel and the downstream slug 

flow regime in this case are shown in Fig. 7.  Vast differences in the hydrodynamics are 

observed for this flow regime generated using an approach where preheated single-phase liquid 

entered the heated channel and was allowed to nucleate. 

 

3.3 Quantitative Characterization 

3.3.1 Vapor Bubble and Liquid Slug Uniformity 

The uniformity of the vapor bubble and liquid slug lengths was quantitatively assessed 

from the images obtained for the evaporating flow test cases (i.e., a positive net heat flux to the 

microchannel).  The initial lengths of the vapor bubbles were measured when the entire vapor-
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liquid interface profile first comes into view.  This occurs at a fixed vapor bubble tail location of 

y’/D = 0.06, where y’ is the axial position along the microchannel beginning at the upstream end 

of the camera field-of-view; this ensured that a liquid region could be clearly observed at y’/D = 

0.  Similarily, the initial liquid slug length was measured once the entire liquid slug could be 

observed.  The average initial vapor bubble and liquid slug lengths for each heat flux are shown 

in Fig. 8a.  The error bars represent one standard deviation for all of the vapor bubbles and liquid 

slugs that were analyzed.  Histograms illustrating the lengths of each vapor bubble and liquid 

slug that were observed at a heat flux of q” = 3520 W/m2 are shown in Fig. 8b and 8c, 

respectively.  The histograms indicate a generally normal distribution with no outliers.  The 

average initial length of the liquid slugs (L0/D = 6.8) is longer than the average initial length of 

the vapor bubbles (L0/D = 4.6).  An average of 113 vapor bubbles was observed over the 0.74 s 

aquisition period.  The average standard deviation in the length of the liquid slugs (L0/D = 0.9) is 

smaller than the average standard deviation in the length of the vapor bubbles (L0/D = 1.1).  This 

less consistent vapor bubble length results from minuscule variations in flow conditions (e.g., 

inlet temperatures) that perferentially magnify vapor bubble characteristics relative to the liquid 

slugs because of the high liquid to vapor density and specific heat ratios. 

An ideal slug flow regime for the purpose of validating mechanistic models should 

feature liquid slug lengths that are large enough to prevent vapor bubble coalescence and a 

subsequent transition from slug to annular flow.  Likewise, the liquid slug length must not be so 

long that the flow regime is essentially that of single-phase liquid flow with isolated vapor 

bubbles present.  The ability to produce a slug flow regime that resembles archetypal 

microchannel slug flow by independently injecting vapor and liquid thereby removing a reliance 

on nucleation from the microchannel wall is unique to this test facility and, to the authors’ 
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knowledge, is the only such demonstration in the literature for a single-component, two-phase 

diabatic flow. 

The range in the average initial vapor bubble length across the different heat fluxes is 

relatively small (L0/D = 0.9), being less than one standard deviation in the average vapor bubble 

length.  This small variation confirms that the slightly increased pressure drop across the 

microchannel at the higher heat fluxes does not result in significant changes in the vapor flow 

rate through the vapor flow control valve.  The vapor flow control valve relies on a pressure 

difference upstream and downstream of the control valve, unlike the the liquid flow controller, 

which employs active feedback to regulate the flow rate. 

3.3.2 Local Velocity Evaluation 

The accelerating flow resulting from evaporation yields a unique velocity at each axial 

location and requires the flow characteristics to be quantified locally.  The average vapor bubble 

velocity was computed by determining the velocity of each vapor bubble and then averaging 

across all vapor bubbles at a given heat flux.  The velocity was measured by determining the 

change in axial position and time between the first and last detection point of the vapor bubble in 

the camera field of view; the midpoint between the vapor bubble nose and tail was used as the 

axial detection point.  A corresponding average Reynolds number, ReD = Vb
̅̅ ̅D/νl, was calculated 

using the vapor bubble velocity, following prior practice for microchannel slug flow in the 

literature [28].  The average vapor bubble velocity and Reynolds number for four selected heat 

fluxes are shown in Table 1. 

3.3.3 Film Thickness Quantification 

The liquid film thickenss was measured using the high-magnification zoom lens at the 

heat flux of 3520 W/m2 as described in Section 2.5.  While the thickness of the liquid film is 
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known to depend on the vapor bubble velocity, only minor changes in velocity were observed for 

the different heat fluxes; thus, only one heat flux condition was analyzed.  The ray-tracing 

procedure described in Section 2.5 yielded the physical z-positions of the microchannel inside 

wall and the vapor-liquid interface to be z/D = 0.490 ± 0.008 and z/D = 0.416 ± 0.016, 

respectively; the uncertanities represent a propagation of the image resolution and interface 

location uncertainty (interfaces can be located in the image within ± 1 pixel).  A dimensionless 

liquid film thickness of δ/D = 0.074 ± 0.018 resulted. 

The current approach does not capture the precise axial location at which the film 

thickness is measured along the vapor bubble relative to its nose or tail.  Due to the relatively 

low frame rate used with the high-magnification zoom lens, the nose and tail of the vapor bubble 

blur in the images due to rapid translation of the interface across the field of view in the axial 

direction.  For the average vapor bubble velocity of 0.93 m/s, the vapor-liquid interface translates 

0.93D (30% of the image width) during the 0.5 ms exposure time.  The interface is therefore 

visualized in the middle region of the bubble over which the film thickness is approximately 

constant (along the axial direction); image blur is not observed because the interface appears 

stationary within the exposure time. 

3.3.4 Vapor Bubble Growth 

The growth of individual vapor bubbles provides a measure of the evaporation rate.  A 

Lagrangian approach which tracks the growth of individual vapor bubbles with time was chosen.  

The average nondimensional vapor bubble length versus time is shown in Fig. 9 for four selected 

heat fluxes considered in this study.  The minimum and maximum heat flux levels 

(q” = 30 W/m2 and q” = 5160 W/m2, respectively) and two intermediate heat flux levels 

(q” = 1250 W/m2 and q” = 3520 W/m2) are included; the other intermediate heat fluxes have 
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been left out of Fig. 9 for clarity.  The error bars represent one standard deviation in the 

nondimensional vapor bubble length for all of the vapor bubbles analyzed at a given heat flux.  

The lengths were measured in each frame (at 0.037 ms increments); these high-resolution data 

are shown as lines in Fig. 9.  A nondimensional vapor bubble length of Lb/D = 5 was chosen as a 

common starting length in Fig. 9 because it enabled the most vapor bubbles to be analyzed given 

that the average initial vapor bubble length was slightly less than Lb/D = 5.  For a heat flux of 

q” = 30 W/m2, a small rate of evaporation results in an average elongation of the vapor bubbles 

from Lb/D = 5 to Lb/D = 5.2 in 18 ms.  At the highest heat flux of q” = 5160 W/m2, a much larger 

evaporation rate elongates the vapor bubble to Lb/D = 10.7 over this same period.  The 

intermediate heat flux levels of q” = 1250 W/m2 and q” = 3520 W/m2 resulted in vapor bubble 

lengths elongating to Lb/D = 6.8 and Lb/D = 8.7, respectively.  The vapor bubble growth is 

monotonic with heat flux for all test cases. 

To evaluate the dependence of the growth rate on the vapor bubble length, a second-order 

polynomial trendline was first fit to the vapor bubble length versus time data for each heat flux; 

all trendlines had R2 > 0.99.  The polynomial was differentiated with respect to time to yield the 

time rate of change of the average nondimensional vapor bubble length and then plotted against 

the average nondimensional vapor bubble length (Fig. 10).  As shown, the time rate of change in 

length is higher for higher heat fluxes and increases with increasing vapor bubble length (i.e., 

evaporation rate increases with a larger interfacial area). 

 

4 Conclusions 

An archetypal microchannel slug flow boiling regime was generated by independently 

injecting HFE-7100 vapor and liquid into a T-junction using a novel experimental test facility.  
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This approach does not rely on nucleation from the microchannel wall to generate the vapor 

phase, thereby eliminating flow instabilties, flow-regime transitions, and undesirably close 

proximity of successive vapor bubbles to each other.  The two-phase flow was subjected to a 

constant heat flux ranging from 30 W/m2 to 5160 W/m2.  High-speed flow visualization was used 

to quantitatively characterize the vapor bubble and liquid slug uniformity and vapor bubble 

growth.  High-magnification imaging was demonstrated for quantifying the liquid film thickness 

using a ray-tracing procedure to account for optical distortions.  This study provides a foundation 

for experimental investigation of microchannel slug flow boiling under conditions suitable for 

model validation. 

 

Appendix A. Supplementary Data 

Supplementary data associated with this article can be found in the online version. 
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Fig. 9.  The average growth of vapor bubbles, as indicated by the nondimensional vapor bubble 
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Tables 

Table 1. Average vapor bubble velocity and corresponding average Reynolds number. 

Heat Flux, 

q” [W/m2] 

Average Vapor Bubble 

Velocity, Vb
̅̅ ̅ [m/s] 

Average Reynolds 

Number, ReD [-] 

30 0.89 1650 

1250 0.91 1690 

3520 0.93 1720 

5160 0.94 1740 
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Figures 

 

Fig. 1. Schematic diagram illustrating the slug flow boiling regime. 

 

 

Fig. 2. Schematic diagram of the experimental test facility. 
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Fig. 3. Selected frame showing the (a) original image, (b) background image, (c) gray-scale 

image after background subtraction, (d) binary image after thresholding, (e) binary image after 

removing partial bubble interfaces, and (f) final binary image with vapor bubbles filled in white.  

The flow direction is from left to right. 
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Fig. 4. Schematic diagram illustrating optical distortions caused by the liquid-solid and gas-solid 

interfaces; the relationship between the image obtained and key physical interface locations is 

shown. 

 
Fig. 5. The nondimensional change in vapor bubble length at varying input powers to the ITO 

microchannel coating; heat loss to the ambient is quantified as the intercept with the horizontal 

axis. 
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Fig. 6. Selected images at 3 ms increments obtained from high-speed imaging at heat fluxes of 

(a) q” = 30 W/m2 and (b) q” = 3520 W/m2 (Supplementary Video 1).  The flow direction is from 

left to right. 

 
Fig. 7. High-speed visualization of (a) vapor bubbles nucleating from a heated microchannel wall 

and (b) the resulting downstream slug flow. 
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Fig. 8. The (a) average vapor bubble and liquid slug length for each heat flux and histograms of 

all (b) vapor bubble and (c) liquid slug lengths observed at a heat flux of q" = 3520 W/m2 (gray 

symbols in Fig. 8a). 
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Fig. 9. The average growth of vapor bubbles, as indicated by the nondimensional vapor bubble 

length as a function of time, for four heat flux levels.  The growth is shown from a common 

starting bubble length of Lb/D = 5. 

 

Fig. 10. The time rate of change of the vapor bubble length as a function of the vapor bubble 

length for four heat flux levels. 
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