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ABSTRACT

Huang, Yen-Ning Ph.D., Purdue University, December 2014. Spatial Marked Point
Processes: Models and Inferences. Major Professor: Hao Zhang and Tonglin Zhang.

A spatial marked point process describes the locations of randomly distributed

events in a region, with a mark attached to each observed point. Nowadays, the

availability of spatiotemporal data is increasing and many spatiotemporal models

are studied with applications in a wide range of disciplines. Spatial marked point

processes are then extended to spatiotemporal marked point processes if time compo-

nent is taken into account. In general, the marks can be quantitative or categorical

variables. Independence between points and marks is a convenient assumption, but

may not be true in practice. Tests for independence between points and marks are

proposed previously, though only a few models have been developed to describe de-

pendence between points and marks. In this dissertation, I focus on quantitative

marks and the objective is to develop models for both spatial and spatiotemporal

marked point processes when points and marks are dependent.

Three approaches to describe dependence between points and marks are studied in

this dissertation, while the first two approaches are for spatial marked point processes

and the last one is for spatiotemporal marked point processes. First, we derive a

covariance function of additive models for marked point processes. This covariance

function carries information of dependence between points and marks, which can be

used in kriging to make predictions of marks at unknown locations. We expect to

obtain better prediction results by using this covariance function when the points and

marks are dependent.

The second approach is to consider intensity-dependent models. We study both

univariate and bivariate intensity marked Log Gaussian Cox processes and apply



x

an empirical Bayesian estimation procedure with implementation of Markov Chain

Monte Carlo methodology for statistical inference. We allow dependence between

marks after conditioning on the intensity which is more flexible than conditional

independence assumption. The influence of adding cross covariance in modeling bi-

variate marks is also explored. The first two approaches are applied to model the

dependence between points and marks of a white oak data.

The last approach is to consider the partially stationary spatiotemporal marked

point process, where the distribution of the spatiotemporal marked process is invariant

under parallel shift of time, but may not be invariant under parallel shift of points

or marks. It can be classified as a location-dependent model. To determine the

potential usefulness of this approach, we illustrate through two typical examples in

natural hazards: a forest wildfire study and an earthquake study. The results show

that the distribution of marks and points is significantly different at local scale. It

is expected that the proposed approach will have wide applications in the study of

natural hazards.
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1. INTRODUCTION AND LITERATURE REVIEW

A point process N = {xi} consists of a set of points in an Euclidean space which rep-

resents the times or locations that events occur. If measurements m(xi) are taken and

associated with points xi, then a marked point process Nm = {xi;m(xi), i = 1, . . . , n}

appears. Marked point processes are applied to many areas of disciplines including

forestry (Stoyan and Penttinen, 2000; Penttinen, Stoyan and Henttonen, 1992), plant

pathology (Liu et al., 2007), and epidemiology (Diggle, 2003; Elliott et al., 2001).

Often marks and points are assumed to be independent (or separable), which as-

sumes the distribution of marks does not depend on points. Under this assumption,

points and marks can be modeled separately. However, the independence assumption

may be violated in practice, and the distribution of marks might be affected by point

locations. Consequently, the intensity-dependent or location-dependent models may

be considered, which can help us learn more about the conditional distribution of

marks given points. Some tests for independence between points and marks have

been proposed before, for example, Schlather, Ribeiro and Diggle (2004) consider the

random-field model to investigate the point pattern and marks separately, and devel-

oped exploratory quantities to detect departures from the random-field model. Guan

(2006) proposes some formal and graphical tests for independence between marks and

points. One of the formal tests uses the mark K function and mark G function, and

the other is nonparametric which uses the idea of permutation. We will apply some

of their methods to our simulations and real data application.

Although testing methods for independence between marks and points are previ-

ously studied, only a few models have been developed for the dependence structure

between points and marks. The intensity-dependent marking strategies for the sta-

tionary log Gaussian Cox process are discussed in Ho and Stoyan (2008) and Diggle,

Menezes and Su (2010). In their settings, the marks are conditionally independent
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given the intensity Λ(xi), and E[m(xi)|Λ(xi)] only depends on Λ(xi). Most of the

work assumes only the mean but not variance depends on the intensity, but Myl-

lymäki and Penttinen (2009) extends the setting where the variance depends on the

intensity as well.

Other than models for spatial point processes, spatiotemporal point processes

are also of interest. It can be extended from spatial point processes by adding the

time component into a model. It has wide applications in many disciplines such as

environment monitoring, disease mapping and functional MRI. We will consider spa-

tiotemporal marked point processes in this dissertation with applications to natural

hazards data.

This dissertation is organized as follows. Later in this chapter, we will give a brief

review of point processes, marked point processes as well as spatiotemporal marked

point processes. We will introduce our study for marked point processes in Chapter

2. In Chapter 3 we will describe the empirical Bayesian modeling of bivariate marked

point processes with simulation studies and application to a white oak dataset. We

propose a location-dependent partial stationarity model in Chapter 4, which includes

simulation studies and applications to forest wildfire data and earthquake data. We

conclude this work by a brief summary of our approaches and provide a discussion

with potential direction of future work.

1.1 Poisson Process and Poisson Cluster Process

A point process in one-dimension can be used to model the arrival times or oc-

curring times for a particular event of interest. When we consider a random pattern

of points in d-dimension (in most applications d = 2 or 3), it is called a spatial point

process. The process can be used to describe occurrences of events in space, e.g.,

locations of trees, earthquakes, the positions of stars in the galaxy, or the locations of

patients diagnosed with a specific disease, etc. The analysis of spatial point processes
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is useful in seismology, forestry, astrostatistics, spatial epidemiology and many other

areas.

Among different models, the Poisson process plays an important role in the study

of point processes. A Poisson process is often used because it is one of the simplest

stochastic processes. In one-dimensional case, one usually studies the arrival time

of the ith event Ti, i = 1, 2, . . . where Ti < Tj for i < j, and also the inter-arrival

time Ti+1 − Ti. One of the properties for Poisson processes is that the inter-arrival

times are independent and exponentially distributed. Furthermore, the number of

arrivals in disjoint time intervals are also independent. If we use N(a, b] to denote

the numbers of arrivals in the time interval (a, b] for 0 < a ≤ b, then we have

N(a, b] ∼ Poisson(λ(b − a)) where λ is the intensity of the process representing the

expected number of arrivals per unit time.

We can extend the one-dimensional process to a two-dimensional process, i.e. the

spatial point process. The occurrence of events in one-dimension has an automatic

order (in time), but there is no order in higher dimensional spaces. Instead of studying

the inter-arrival times or counting the number of events in specific time intervals, for

spatial point processes we consider the number of points in a bounded region D,

denoted as N(D). Below we review the definition of the spatial point process based

on the method of the counting measure (e.g. p. 42 in Daley and Vera-Jones, 2003).

Let N be the point process defined on a complete separable metric space S and

N(D) be the number of points in a Borel set D ⊆ S. If D is bounded, i.e., |D| is

finite, then N(D) < ∞ where |D| denotes the Lebesgue measure of D. A spatial

point process N is derived if S is specified as the Euclidean space Rd. Based on the

approach of the counting measure, the distribution of N is defined as

P [N(D1) = n1, · · · , N(Dk) = nk], (1.1)
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where {D1, · · · , Dk} is a collection of bounded Borel subsets of S. According to the

distribution given by Equation (1.1), the kth order intensity function of N is defined

as

λk(s1, · · · , sk) = lim
|dsi|→0,i=1,··· ,k

{
E[
∏k

i=1N(dsi)]∏k
i=1 |dsi|

}
, (1.2)

where (s1, · · · , sk) are distinct points and dsi is an infinitesimal region containing si.

The first-order intensity λ(s) = λ1(s) can be derived when k = 1. If the first-order

intensity λ(s) is constant, then N is homogeneous; otherwise it is inhomogeneous.

The mean structure of N can be expressed as

µ(D) = E[N(D)] =

∫
D

λ(s)ds,

which represents the expected number of points within D.

Based on the second-order intensity function λ2(s1, s2), the covariance structure

of N can be expressed as

Cov[N(D1), N(D2)] =

∫
D1

∫
D2

[λ2(s1, s2)− λ(s1)λ(s2)]ds2ds1 +

∫
D1∩D2

λ(s)ds

=

∫
D1

∫
D2

[g(s1, s2)− 1]λ(s1)λ(s2)ds2ds1 +

∫
D1∩D2

λ(s)ds,

where g(s1, s2) = λ2(s1, s2)/[λ(s1)λ(s2)] is the pair correlation function.

The spatial Poisson process can be defined if N(Di) follows a Poisson distribution

with mean µ(Di) for every bounded region Di, and N(D1), . . . , N(Dk) are indepen-

dent for any disjoint bounded regions. That is,

Pk[N(D1) = n1, · · · , N(Dk) = nk] =
k∏
i=1

µni(Di)

ni!
e−µ(Di),

where D1, · · · , Dk are disjoint Borel subsets in Rd. If N is Poisson, then g(s1, s2) = 1

for any s1, s2 ∈ S.

We can transform a point process to construct a new one. Common constructions

include clustering, thinning, mapping and superposition (Stoyan et al., 1995). We

will give more details on clustering here since the cluster point process are considered
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in our simulation study in Chapter 4. To generate a cluster process, we replace each

point x in the existing point process N by a random set of finite points Nx, and

the collection of all the clusters forms a cluster point process Nc = ∪x∈NNx. The

original point process N is called the parent process and the cluster Nx for x is

called the offspring process. The clusters for different points are often assumed to be

independent.

Realizations of many spatial point processes can be simulated by R. The plots for

Poisson processes and Poisson cluster processes are displayed on the next page. In

Figure 1.1 and Figure 1.2 there are a few realizations for these two point processes

with different structures and parameters. Figure 1.1 shows three different realizations

of Poisson processes with uniform intensity 50 in the unit square (upper panel), and

three different realizations of Poisson processes with independent bivariate Normal

intensity with center (0, 0) and standard deviation 0.5. In Figure 1.2 there are four

realizations of Poisson cluster processes with uniform intensity 50 for the parent

process and independent bivariate Normal intensity for the offspring process of mean

4 and different standard deviations 0.02, 0.04, 0.06 and 0.08. It is easier to observe the

clusters if we specify smaller standard deviation for the intensity of offspring points.

1.2 Log Gaussian Cox Process (LGCP)

Sometimes the Poisson process is not enough to model point patterns, but it

can be used to construct more complex models. The Cox process is one of those

that is constructed from a Poisson process, which can be used to model clustered or

aggregated point patterns. If the intensity function of a Poisson process is itself a

realization of a random field, a Cox process is derived. It is an extension of Poisson

process which is first introduced by Cox (1955) under the name doubly stochastic

Poisson process, but nowadays is usually called the Cox process. Let λ = {λ(x) : x ∈

R2} be the realization of the underlying random field Λ. The point process is called

a Cox process with intensity surface Λ if given Λ = λ it is an inhomogeneous Poisson
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Figure 1.1. Realizations of Poisson processes with uniform intensity
50 in the unit square (upper panel) and Normal intensity centered at
(0,0) with standard deviation 0.5 (lower panel).

process with intensity function λ. It is expected more points to occur in the areas

with larger Λ. If different processes are chosen for Λ, we can construct different point

processes which makes Cox processes a very flexible tool.

There are a few parametric models for Cox processes. For example, the shot-noise

G Cox process (SNGCP) (Brix, 1999), and the log Gaussian Cox process (LGCP)

which has been introduced in astronomy by Coles and Jones (1991) and in statistics

by Møller et al. (1998). Among the above different models, the LGCP is our main

focus here.

If log Λ = Z is a Gaussian process, then the point process X is called a log

Gaussian Cox process (LGCP). Møller et al. (1998) extend the definition of an LGCP

to multivariate LGCPs, and Brix and Diggle (2001), Brix and Møller (2001) give the

definition of multivariate spatiotemporal LGCPs. In general, we can consider a Cox

process where the intensity function Λ = h(Z) for other non-negative function h,
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Figure 1.2. Realizations of Poisson cluster processes with uniform
intensity 50 in the unit square and Normal intensity for the offspring
points with mean 4 and different standard deviations 0.02, 0.04, 0.06
and 0.08.

but in particular the LGCP where h(Z) = exp(Z) is more convenient. Let µZ and

CZ denotes the mean and covariance of the Gaussian process Z. Figure 1.3 shows

four realizations of log Gaussian Cox processes. Two realizations of homogeneous

LGCP with exponential covariance function are given in the upper panel, and two

realizations of inhomogeneous LGCP with Gaussian and Matérn covariance are given

in the lower panel.
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Figure 1.3. Realizations of LGCPs. Upper left : homogeneous LGCP
with exponential covariance (σ2 = 1, φ = 0.2); upper right : homoge-
neous LGCP with exponential covariance (σ2 = 2, φ = 0.2); lower left
: inhomogeneous LGCP with Gaussian covariance (σ2 = 2, φ = 0.2);
lower right : inhomogeneous LGCP with Matérn covariance (σ2 = 2,
φ = 0.2, ν = 0.6) .

1.3 Marked Point Process (MPP)

For an unmarked point process N = {xi, i = 1, . . . , n}, if we attach additional

information called marks m(xi) to the points, then collectively a marked point process

Nm = {xi;m(xi), i = 1, . . . , n} is derived. The process is defined on the product space

of points and marks. Figure 1.4 shows an example of a marked point pattern with

the locations of 126 pine saplings in a Finnish forest marked by their heights. This
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dataset is from R-library spatstat (Baddeley and Turner, 2005). On the left panel

each circle represents the location of a pine sapling where the radius of circle are

proportional to its height. The right panel shows density estimates of the point

pattern using Gaussian kernel.

Figure 1.4. Finnish Pines marked by their heights

The simplest assumption for a marked point process is that the marks and points

are independent. Under this assumption we can model the point pattern and the

marks separately. Different concepts of independence between marks and points are

discussed before. For an independent marked point process, the marks are inde-

pendent and identically distributed and also independent of the points, or we have a

weakly independent stationary marked point process if the points and marks are both

given by a stationary sequences but the two sequences are independent of each other.

Also the random-field model (Takahata, 1994; Mase, 1996) for unbiased sampling in

geostatistics, which assumes the marks are generated by a random field independent

of the points. Under this definition the independent marked point process is a spe-

cial case of random-field model, but the weakly independent stationary marked point

process may not be a random-field model.

Although different assumptions of independence are studied before, most of the

time the independence assumption between points and marks does not hold in prac-
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tice. There is a natural ordering of the points for a one-dimensional marked point

process, and both the history of point process and history of mark sequence can be

discussed. Cox and Isham (1980) summarize different types of dependence between

points and marks given the history of the marked point process at time t, and also

give comments to a few possibilities they list. Here we focus on spatial marked point

processes so that the dependence structure between points and marks may be differ-

ent from one-dimensional marked point process. In some cases where the mark values

might be affected by the local point density, the intensity-dependent models for the

marks should be considered and we expect to learn more about the mark distribution

given the points.

1.3.1 Test for Independence Between Points and Marks of MPPs

Similar to classical geostatistics, some characteristics such as the mark variogram

(Cressie, 1993) or the mark correlation (Isham, 1985) for the marks in MPPs have

been developed.

So far not many models have been developed for describing the dependence struc-

ture between points and marks, but there are some exploratory analysis and tests for

independence between points and marks proposed before. For example, Schlather,

Ribeiro and Diggle (2004) introduce exploratory quantities E(h) and V (h) for sta-

tionary and isotropic marked point processes to describe the strength and range of

interactions between points and marks. The method is based on

E(h) = E{m(o)|o,h ∈ N, ‖h‖= h)}

and

V (h) = E[{m(o)− E(h)}2|o,h ∈ N, ‖h‖= h)].

These two functions are constant if the marked point process follows the station-

ary random-field model, where their values are the mean and variance of the mark,
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respectively. If they are quite different from constant values it would be a sign in-

dicating that the marked point process deviates from the random-field model. In

R-library spatstat there are functions Emark and Vmark which can generate plots

of E and V for exploratory analysis about mark independence diagnostics. We will

apply these two functions for diagnostics in our simulation and case study in Chapter

3.

There are also some other formal and graphical tests proposed to check for inde-

pendence between marks and points. Guan (2006) uses the mark K function and the

mark G function to test for the independence assumption, as well as a nonparametric

approach based on the idea of permutation. And Guan (2007) proposes another test

for independence between marks and points using a subsampling approach. Zhang

and Zhuang (2014) propose a local odds ratio approach to estimate the localized

dependence structure between marks and points, which can be applied to natural

hazards studies.

In chapter 3, we apply the test using mark K function and the method is briefly

introduced below. Let µ = E{m(x)}. Under the null hypothesis of independence

between marks and points, note that Km(r) = µ ×Kp(r), we estimate µ by a slope

estimator obtained from regressing K̂m(r) on K̂p(r):

µ̂ =

∫ R
0
K̂m(r)dr∫ R

0
K̂p(r)dr

,

where R is an upper bound on the lag vector of observations since the dependence

between marks and points may exist only at a small physical scale. Under the null

hypothesis of independence, the slope estimator µ̂ should be close to the average of

the observed marks, M̄ . We can establish the asymptotic normality of µ̂− M̄ under

some conditions on the underlying process, and therefore come up with a statistic of

the form (µ̂− M̄)2/V̂ar(µ̂− M̄), where the denominator is a consistent estimator of

the true variance. Then we have an approximate size α test that the null hypothesis

of independence will be rejected if the test statistic is greater than the critical value

of Chi-squared distribution with one degree of freedom, given the significance level α.
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1.3.2 Additive Model for MPPs

The additive model for marked point processes can be written as follows (Schlather

et al., 2004):

m(x) = pZ(x) + (1− p)M(x) (1.3)

where Z(x) is a stationary and isotropic Gaussian random field with covariance C(r).

The function M(x) can be some characteristics to describe the intensity of point

processes in different ways. For instance, the number of points of N that fall within

the circle of a given radius centered at x, or the distance from x to its nearest neighbor.

Different values of p correspond to different strength of dependence between marks

and points. We will consider the additive model and derive a covariance function for

the marks in Chapter 2.

1.3.3 Intensity Marked LGCP

Let M = (m(x1), . . . ,m(xn))′. A marked point process [X,M ] is called an

intensity-marked log Gaussian Cox process if the marks depend on the underlying

point process through its (random) intensity {Λ(s)} = exp(Z(s)), where {Z(s)} is a

Gaussian random field with mean µZ and covariance function Cz(r). The intensity-

dependent marking strategies for the stationary log Gaussian Cox process are dis-

cussed by Ho and Stoyan (2008); Diggle, Menezes and Su (2010). In their settings,

the marks are conditionally independent given the intensity, and E[m(xi)|Λ(xi)] is

a function of Λ(xi). Myllymäki and Penttinen (2009) further consider the markings

that allow variance to depend on the intensity, while in most of other work they

assume only the mean but not variance depends on the intensity.

One of the cases considered in Myllymäki and Penttinen (2009) is the Gaussian

intensity-marked Cox process

m(xi)|Λ(xi) ∼ N(a+ bΛ(xi), c
2Λ(xi) + d2).
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With the sign of parameter b, this model can be used to describe positive or negative

dependence between the marks and intensity. They also propose Gamma intensity-

marked Cox process and some mark characteristics are derived.

1.4 Spatiotemporal Process Modeling

The spatial point process can be extended to the spatiotemporal case. Instead of

only locations, the data also include the time component in the spatiotemporal point

process. If a two-dimensional spatial coordinate is used, then it is often represented by

the longitude and latitude. If we use a three-dimensional spatiotemporal coordinate,

then it is often represented by the longitude, latitude, and time. Many theories

of spatial-temporal point processes can be generalized from spatial point processes.

However, the temporal component enables a natural ordering of the points that does

not exist in spatial processes in general.

Now the point process becomes N = {xi = (si, ti), i = 1, . . . , n} where si denotes

the location and ti denotes the time, and N is within a bounded region S×T ∈ R2×R.

We still use N(D) to denote the number of points in a bounded region D ∈ R2 × R.

The spatiotemporal Poisson process can be defined similarly as in Section 1.1, but |D|

becomes the volume of D, the intensity function becomes λ(s, t) for inhomogeneous

spatiotemporal point process, and the mean of N(D) becomes
∫
D
λ(s, t)dsdt.

1.5 Spatiotemporal Marked Point Process (SMPP)

Spatiotemporal marked point processes (SMPPs), which can be extended from

spatiotemporal point processes, have been widely considered in data involving both

the spatiotemporal coordinates of events and the corresponding measurements at-

tached to each point. Methods of MPPs are often used to model different types of

natural hazards located in space and time. Many successful applications of MPPs

can be found in literature, including MPP modeling and prediction of earthquakes

(Holden et al., 2003; Ogata, 1988; Ogata and Katsura, 1993; Vere-Jones, 1995), where
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each earthquake is recorded by a magnitude and a space-time coordinate. MPPs for

forest wildfires have been discussed by Zhang and Zhuang (2014), where each wildfire

is represented by its area burned and space-time coordinate. An SMPP is derived if

time is considered.

The definition of MPPs is well-established and can be found in many textbooks

(e.g. in Daley and Vere-Jones, 2003; Karr, 1991). We also introduced the MPPs in

Section 1.3. The definition for MPPs can be easily generalized to SMPPs. Overall,

an SMPP is a point process defined on the product of space, time, and marks, but the

concept has its own life in applications. Let S be a measurable subset of R2 (or a two-

dimensional sphere S2) andM be a measurable subset of Rq. Then, an SMPP N with

points in S ×R and marks inM is a point process on S ×R×M with the additional

property that the underlying point process (which is derived by ignoring the mark) is

itself a spatiotemporal point process and for any bounded A× B ∈ B(S × R) there

is N(A×B ×M) <∞, where N(A×B ×C) is the number of points in A×B ×C

for A ∈ B(S), B ∈ B(R), and C ∈ B(M), respectively.

Based on the distribution of N , the k-th order intensity function of N (if it exists)

can be defined as

λk[(s1, t1,m1), · · · , (sk, tk,mk)] (1.4)

= lim
|dsi×dti×dmi|→0,i=1,··· ,k

{
E[
∏k

i=1N(dsi × dti × dmi)]∏k
i=1 |dsi × dti × dmi|

}
(1.5)

where (si, ti,mi) are distinct, dsi × dti × dmi is an infinitesimal region containing

(si, ti,mi), and |dsi × dti × dmi| is the Lebesgue measure of dsi × dti × dmi.

In most of applications, main objectives are often to assess the strength of the

mean and interaction between events, which are usually described by the first-order

intensity function and the pair correlation function. Using the first-order intensity

function denoted as λ(s, t,m) = λ1(s, t,m), the mean measure of N can be expressed

as

µ(A×B × C) =

∫
A

∫
B

∫
C

λ(s, t,m)dmdtds,
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for A ∈ B(S), B ∈ B(R), and C ∈ B(M). Using the pair correlation

g[(s1, t1,m1), (s2, t2,m2)] =
λ2[(s1, t1,m1), (s2, t2,m2)]

λ(s1, t1,m1)λ(s2, t2,m2)
(1.6)

we can express the covariance structure of N as

Cov[N(A1 ×B1 × C1), N(A2 ×B2 × C2)] (1.7)

=

∫
A1

∫
B1

∫
C1

∫
A2

∫
B2

∫
C2

{g[(s1, t1,m1), (s2, t2,m2)]− 1}λ(s1, t1,m1) (1.8)

× λ(s2, t2,m2)dm2dt2ds2dm1dt1ds1 + µ[(A1 ∩ A2)× (B1 ∩B2)× (C1 ∩ C2)] (1.9)

(1.10)

for any A1, A2 ∈ B(S), B1, B2 ∈ B(R), and C1, C2 ∈ B(M). If N is a Poisson SMPP,

then g[(s1, t1,m1), (s2, t2,m2)] = 1 for any s1, s2 ∈ S, t1, t2 ∈ R, and m1,m2 ∈ M.

Otherwise, there is either attractions or repulsions among events contained in N ,

which indicates that we cannot ignore the interaction between points.

1.6 Estimation of Intensity Functions

After the introduction of different types of point process, it is of interest to estimate

the first-order intensity of a point process. Below we will review methods of estimation

from nonparametric and parametric approaches.

1.6.1 Nonparametric Approach: Kernel Methods

For a homogeneous point process where the intensity λ(s) = λ is constant, a

natural estimate of the intensity is λ̂ = N(S)/|S| where S denotes the whole study

region. This is actually the maximum likelihood estimate of λ when N is a homo-

geneous Poisson process. In the case of inhomogeneous point processes where the

intensity is not constant, the Berman-Diggle estimator (Berman and Diggle, 1989)

are widely used and can be defined as follows:

λ̂BD(s) =
N(b(s, h)) ∩ A
|b(s, h) ∩ A|
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for s0 ∈ A ⊆ S, where b(s, h) denotes the open ball centered at s with radius h > 0.

This can be considered as a kernel estimate of the intensity function using uniform

kernel.

A a nonparametric kernel estimate of the intensity function λ(s) is defined as

λ̂h(s) =
n∑
i=1

Kh(s− si)/ph(s). (1.11)

(Diggle, 1985). Here Kh is a kernel function with bandwidth h > 0, Kh(s) =

K(s/h)/hd for d-dimensional point process. The kernel function K can be a full

symmetric density function on Rd. The denominator ph(s) =
∫
S Kh(s − s′)ds′ is an

edge correction. Usually this estimator will be sensitive to the choice of bandwidth

h, whereas the choice of kernel function K is of less importance. We need the edge

correction because the points outside the boundary of S are not included in the nu-

merator even if they are within distance h of s. We might get a biased estimator if

we ignore the edge effects especially when h is large.

1.6.2 Parametric Approach: Composite Likelihood Methods

The idea of composite likelihood is developed by Lindsay (1988), which has been

used in different settings when a full maximum likelihood approach is not available

or computationally intensive. Notice that composite likelihoods are referred to as

various names like psudolikelihood (Besag, 1975; Molenberghs and Verbeke, 2005;

Baddeley and Turner, 2000), approximate likelihood (Stein, Chi and Welty, 2004)

or partial likelihood (Cox, 1975). Varin, Reid and Firth (2011) provide a survey on

developments of composite likelihood methods.

Composite likelihood is a product of likelihood components where the components

do not necessarily need to be independent. Each component can be a conditional

or marginal density depending on the context, and therefore the derivative of the

composite log-likelihood is an unbiased estimating equation. When the full maximum

likelihood is not feasible, composite likelihood is a substitution for estimation. The

composite likelihood estimator can be consistent even if the full maximum likelihood
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estimator is not. Composite likelihoods may be viewed as misspecified likelihoods.

They sometimes represent the part of model that we are more confident to model with.

The full joint distribution may not be specified but we can still get a robust estimator

from composite likelihood approach. Some investigations about the robustness of

composite likelihood inference are provided in Lele and Taper (2002), and Wang

and Williamson (2005) through simulation studies. For analysis of longitudinal data

in which missing values are common, it is found that some versions of composite

likelihood are robust to the specification of the missing data structure (Parzen et al.,

2007; Yi, Zeng and Cook, 2009).

The definition of composite likelihood is as follows. Consider n-dimensional ran-

dom variable Y with probability density function f(y; θ), where θ is a p-dimensional

parameter vector. Let Li(θ; y) ∝ f(y ∈ Ai; θ) be the likelihoods of a set of marginal

or conditional events {Ai, i = 1, . . . , n}. The composite likelihood can be written as

the weighted product LC(θ; y) =
n∏
i=1

Li(θ; y)wi , where wi are non-negative weights to

be selected. Equivalently, we can also write down the composite log-likelihood

`C(θ; y) =
n∑
i=1

wi logLi(θ; y).

And the maximum composite likelihood estimator can be found by maximizing `C(θ; y)

as θ̂ = arg maxθ `C(θ; y), which is usually solved by ˙̀
C(θ; y) = 0 where ˙̀

C is the gra-

dient of `C .

If the weights are chosen to be all equal then they can be ignored. The unweighted

composite likelihood approach has been used to estimate parameters of point process

data, see Schoenberg (2005) and Waagepetersen (2007). Guan and Shen (2010) in-

troduced a weighted estimating equation approach for inhomogeneous spatial point

process, where they maximize the weighted likelihood

L(θ) =

{ ∏
x∈N∩S

λ(x; θ)w(x)

}
exp

{
−
∫
S
w(s)λ(s; θ)ds

}
for estimating the parameters θ we assume in the intensity function λ(s; θ). This can

be applied to both Poisson and non-Poisson processes.



18

In particular applications, choosing unequal weights can improve efficiency and the

selection of weights is also worth investigating. We will consider a kernel weighted

composite likelihood approach for analyzing point process data in Chapter 4.
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2. COVARIANCE FUNCTION OF AN ADDITIVE MODEL FOR

MPPS

In general, spatial data are correlated and modeling the covariance structure is a

crucial step in analyzing spatial data. Usually the goal is to make predictions for

the spatial variables of interest at unobserved locations. In geostatistics, kriging is a

commonly used method which is the best linear unbiased predictor that minimizes

the mean squared error. It is proper to make kriging predictions for geostatistical

data where the locations of observations are assumed to be fixed. The objective of

this chapter is to derive a covariance function that can be used in kriging prediction

for MPPs. Here we treat the marks as a realization of an underlying spatial process

without considering the distribution of the point process. This covariance function

contains information of dependence between points and marks, and it has potential to

result in better predictions with a more appropriate interpretation. Using a covariance

function that carries dependence between points and marks to make kriging prediction

can be considered as an intermediate method between geostatistics and marked point

process approach.

The plan of this chapter is as follows. We derive a covariance function for an

additive model for MPPs in Section 2.1, and provide a simulation study in Section

2.2. We apply univariate additive models to a white oak data in Section 2.3. Section

2.4 provides a discussion.



20

2.1 Additive Model for MPPs

To capture the dependence between points and marks of a marked point process

N = {xi;m(xi), i = 1, . . . , n}, we consider the following additive model for marks

(Schlather, Ribeiro and Diggle, 2004)

m(x) = pZ(x) + (1− p)M(x) (2.1)

where Z(x) is a stationary and isotropic Gaussian random field with covariance

CZ(h) = Cov(Z(s + h), Z(s)) = σ2exp(−h/φ). Here we let M(x) to be the num-

ber of points of N that fall in the ball of a given radius r centered at x. A smaller

value of p indicates stronger dependence between points and marks.

By Law of total covariance, we can write the covariance function between marks

at locations x1, x2 as below:

Cov(m(x1),m(x2))

= E(Cov(m(x1),m(x2)|N(A)) + Cov(E(m(x1)|N(A)), E(m(x2)|N(A)))

= p2Cov(Z(x1), Z(x2)) + Cov(µZ + (1− p)M(x1), µZ + (1− p)M(x2))

= p2Cov(Z(x1), Z(x2)) + (1− p)2Cov(M(x1),M(x2)).

(2.2)

where µZ is the mean of Z(x). Some existing covariance function can be specified

to model Cov(Z(x1), Z(x2)) (e.g., exponential covariance), then Cov(m(x1),m(x2))

can be derived explicitly for homogeneous Poisson processes with intensity λ. When

d = ||x1 − x2|| ≤ 2r, we can write M(x1) and M(x2) as the number of points in

disjoint areas A1, A2 and A3, where A2 is the intersection of two balls centered at x1

and x2 with radius r:

M(x1) = N(A1) +N(A2)

M(x2) = N(A2) +N(A3)
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The covariance between M(x1) and M(x2) can be written as

Cov(M(x1),M(x2))

= E(M(x1)M(x2))− E(M(x1))E(M(x2))

= E(N(A2)2)− E(N(A2))2 = Var(N(A2))

= λ(2r2arccos(d/2r)− d/2
√

4r2 − d2),

and the correlation function between M(x1) and M(x2) is

ρ(M(x1),M(x2))

=
Cov(M(x1),M(x2))√

Var(M(x1))Var(M(x2))

=
λ(2r2arccos(d/2r)− d/2

√
4r2 − d2)

λπr2

=
1

πr
(2rarccos(d/2r)− d

√
1− (d/2r)2).

If d > 2r, then the intersection is empty and Cov(m(x1),m(x2)) = p2Cov(Z1(x1), Z2(x2))

because Cov(M(x1),M(x2)) = 0. Figure 2.1 shows plots for this correlation function

with the parameter r set to be 5, 10, 15 and 20.

2.2 Simulation Study

We studied the prediction performance from univariate ordinary kriging, i.e.,

the best linear unbiased prediction (BLUP) when the mean is unknown. The or-

dinary kriging was considered for univariate variable using the covariance function

we proposed in the previous section, and the results were compared to some exist-

ing and commonly used covariance functions like exponential and spherical covari-

ance functions. The marks m(xi), i = 1, 2, . . . , n were considered as the underlying

process which we made predictions at some location x0 using ordinary kriging pre-

dictor m̂(x0) =
∑n

i=1 aim(xi), where the BLUP minimized the mean squared error

E (
∑n

i=1 aim(xi)−m(x0))
2

under the constraint
n∑
i=1

ai = 1. Let V (θ) = Var(M )

be the covariance matrix of the marks with parameters θ, where the parameters
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Figure 2.1. Plots for New correlations with parameter r = 5, 10, 15, 20.
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are to be estimated from data. Existing methods for estimating θ including least

squares based methods, composite likelihood estimation (Curriero and Lele, 1999),

maximum likelihood estimation (Mardia and Marshall, 1984) or Bayesian estima-

tion (Agarwal and Gelfand, 2005). Here we used the weighted least squares esti-

mator (Cressie, 1985) to estimate θ. After we obtained θ̂, the ordinary kriging pre-

dictor is m̂(x0) = µ̂ + V (θ̂)−1k̂(M − 1µ̂), where µ̂ = 1′V (θ̂)−1M/1′V (θ̂)−11 and

k = Cov(M ,m(x0)) = (Cov[m(x1),m(x0)], . . . ,Cov[m(xn),m(x0)])′. We specified

different covariance functions to the mark process and obtained the ordinary krig-

ing predictors. The comparison between the use of different covariance functions was

based on five-fold cross-validation results, mainly the mean squared error (MSE).

Locations of points were generated from homogeneous Poisson process with inten-

sity λ = 100 and 500 within [0, 100]× [0, 100] square. For univariate case from (2.1),

we set φ = 25, 50, 75, σ2 = 50, 100 and p = 0.2, 0.4, 0.6, 0.8. The radius r defined in

M(x) was specified to be 3 and 5. The marks were generated from (2.1) given differ-

ent combinations of parameters. Exponential and spherical covariances were selected

to compare with the newly derived covariance function, while exponential covariance

corresponds to the case when p = 1 in (2.2). We simulated 1000 realizations for each

combination of parameters. The MSE of five-fold cross-validation was calculated for

each of 1000 realizations, and the average of 1000 MSEs for each combination of pa-

rameters was reported in Table 2.1 and Table 2.2. We only displayed the results from

exponential and the new covariance since spherical covariance was outperformed by

the other two. In most of cases, the MSE was smaller when σ2 and r were smaller

for both covariance functions. In general, we got smaller MSE from newly derived

covariance than exponential covariance for p = 0.2, 0.4. When p = 0.6, 0.8, it was

possible to get smaller MSE from either of the two covariance functions. We expected

the newly derived covariance to perform better when p is small, because smaller p

represented higher dependence between the points and marks. From our simulation

results, it was still likely that the newly derived covariance function performed better

in prediction even when p > 0.5.
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2.3 Case Study: White Oak Data

2.3.1 Dataset Description

In this section, we analyzed a data set collected from a 23-year-old limited range

white oak progeny trial in southern Indiana (Harrison-Crawford State Forest). We

considered the point pattern of 334 trees with significant forking or severe defects.

The range of tree height was from 3.5 m to 14.2 m with a mean value of 10.6 m. This

data set actually motivated this work.

2.3.2 Comparison Between Different Covariance Functions

The white oak data should be considered as a point process data, but we treated

the mark itself as the underlying process in geostatistics and do not include the

distribution of points here. Nevertheless, the covariance function derived in Section

2.1 is aiming to capture the dependence between points and marks to some degree, and

we used it to do kriging prediction on the height of white oak data. Five-fold cross-

validation was used to compare the prediction performance of different covariance

structures specified in kriging.

Table 2.3 shows the mean squared error (MSE) from kriging using four different

covariance functions. Exponential covariance corresponds to the case when p = 1

in (2.2), the mark related covariance (Mark) corresponds to the case when p = 0,

and ”New” represents the newly derived covariance where p was a parameter to be

estimated and 0 < p < 1. For this dataset, we got smaller MSE when we used Mark

or New covariance than exponential or spherical covariance. Spherical covariance

resulted in worst prediction performance while New covariance did the best job for

this dataset.
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2.4 Discussion

In this chapter, we have derived a covariance function of additive model for mark

point processes. If we use kriging method instead of point process model to do

analysis, we expect the newly derived covariance function can help to get better

prediction results when the points and marks are dependent. We specify exponential

covariance for CZ(h), which is the first component of this newly derived covariance,

but other choices like Matérn covariance can also be considered. We use weighted

least squares estimator to estimate the parameters in the covariance function, but

other estimation methods as mentioned in Section 2.2 can also be considered.

So far we only consider the univariate additive model for marked point processes.

It is also possible to further consider the bivariate case of additive model:

mi(x) = piZi(x) + (1− pi)M(x), i = 1, 2.

For a simple case where p1 = p2 = p, we have

Cov(m1(x1),m2(x2))

= E(Cov(m1(x1),m2(x2)|N(A)) + Cov(E(m1(x1)|N(A)), E(m2(x2)|N(A)))

= p2Cov(Z1(x1), Z2(x2)) + Cov(µ1 + (1− p)M(x1), µ2 + (1− p)M(x2))

= p2Cov(Z1(x1), Z2(x2)) + (1− p)2Cov(M(x1),M(x2)).

Some existing bivariate cross covariance function can be specified to model

Cov(Z1(x1), Z2(x2)) (e.g., bivariate Matérn cross covariance function), and then we

can derive Cov(m1(x1),m2(x2)) explicitly for homogeneous Poisson processes with

intensity λ. It is of interest to compare the bivariate version of this covariance function

with other existing bivariate covariance, say bivariate Matérn covariance and see how

much difference they will produce.
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Table 2.1

Five-fold cross-validation results from exponential covariance (Exp)
and newly derived covariance (New) for simulated homogeneous Pois-
son process with intensity λ = 100, and other parameters σ2 =
50, 100, φ = 25, 50, 75, r = 3, 5 and p = 0.2, 0.4, 0.6, 0.8.

σ2 φ r Cov p = 0.2 p = 0.4 p = 0.6 p = 0.8

50 25 3 Exp 22.64 29.13 25.77 49.09

New 21.33 28.15 26.89 49.67

5 Exp 46.13 45.89 40.88 61.68

New 45.39 45.07 41.43 61.94

50 3 Exp 28.50 40.54 48.20 55.40

New 26.07 36.85 49.54 49.60

5 Exp 58.48 49.17 57.28 60.11

New 44.43 42.79 54.85 51.14

75 3 Exp 30.37 30.81 33.70 70.83

New 28.63 30.46 28.65 66.81

5 Exp 78.85 58.50 42.40 72.50

New 76.67 54.67 43.80 70.11

100 25 3 Exp 25.71 50.62 47.92 65.43

New 23.55 47.26 48.66 61.30

5 Exp 70.63 59.46 50.16 80.51

New 67.01 56.20 51.99 81.04

50 3 Exp 30.21 43.10 55.11 68.65

New 25.13 37.20 51.22 70.13

5 Exp 63.56 51.35 50.92 73.45

New 60.22 47.25 48.84 75.60

75 3 Exp 33.88 33.95 34.32 79.54

New 28.15 29.37 35.67 80.21

5 Exp 72.59 65.21 50.46 75.79

New 67.65 62.35 51.56 77.85
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Table 2.2

Five-fold cross-validation results from exponential covariance (Exp)
and newly derived covariance (New) for simulated homogeneous Pois-
son process with intensity λ = 500, and other parameters σ2 =
50, 100, φ = 25, 50, 75, r = 3, 5 and p = 0.2, 0.4, 0.6, 0.8.

σ2 φ r Cov p = 0.2 p = 0.4 p = 0.6 p = 0.8

50 25 3 Exp 23.65 26.82 37.25 59.61

New 22.78 25.97 34.39 58.00

5 Exp 65.94 48.80 46.15 56.72

New 59.94 46.99 41.91 53.09

50 3 Exp 28.77 26.26 39.36 44.45

New 24.54 24.29 42.02 42.64

5 Exp 61.62 48.40 45.59 54.50

New 54.94 42.55 44.71 57.53

75 3 Exp 23.15 24.92 30.77 51.17

New 20.49 22.29 33.48 52.80

5 Exp 63.73 41.51 42.45 49.64

New 55.41 39.44 39.16 45.16

100 25 3 Exp 24.98 33.58 57.50 83.10

New 22.63 28.85 60.22 85.24

5 Exp 63.67 53.97 62.42 78.21

New 54.32 48.13 63.25 80.26

50 3 Exp 25.83 33.12 40.89 64.39

New 21.33 32.62 39.56 61.69

5 Exp 64.83 52.42 45.60 69.32

New 63.41 48.81 42.16 74.45

75 3 Exp 24.87 30.51 39.96 75.90

New 22.78 27.09 35.68 76.30

5 Exp 69.40 56.90 43.89 78.37

New 66.17 52.01 45.19 77.29
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Table 2.3

Five-fold cross-validation results of four covariance functions: expo-
nential (Exp), mark related covariance (Mark), the summation of Exp
and Mark (New), and spherical covariance (Sph).

C1 (Exp) C2 (Mark) C3 (New) C4(Sph)

MSE 290.48 285.22 285.10 293.65

MSE (with nugget) 287.21 284.59 284.34 300.18
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3. EMPIRICAL BAYESIAN MODELING OF BIVARIATE MPPS

In this chapter, we consider intensity-dependent models for both univariate and bivari-

ate intensity marked log Gaussian Cox processes. An empirical Bayesian estimation

procedure with implementation of Markov Chain Monte Carlo methodology is applied

for statistical inference.

The structure of this chapter is as follows. In Section 3.1 we describe a more gen-

eral case for univariate density-dependent markings for log Gaussian Cox processes,

and further consider the case of bivariate marks. Details for empirical Bayesian mod-

eling are given in Section 3.2, and simulation results are presented in Section 3.3. We

apply both univariate and bivariate marking models to a white oak data in Section

3.4. Section 3.5 provides a discussion.

3.1 Intensity-Dependent Marked Point Processes

3.1.1 Univariate Marks

We assume the observed point patterns and marks {(xi,mi)} are a partial real-

ization of a marked point process [X,M ] where the marks possibly depend on the

underlying point process through its intensity. We assume that the point process is a

Cox point process so that the random intensity function, denoted by Λ(x), is an ex-

ponential function of a stationary Gaussian process Z(x), namely, Λ(x) = exp(Z(x)).

Furthermore, conditional on the point process, the mark is a Gaussian process whose

mean function is a linear function of the intensity of the the point process while the

covariance function, denoted by C(x), is stationary and has a parametric form. These

assumptions on the covariance function are simply meant to make the inferences man-
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ageable as in geostatistics, and could be weakened (e.g., extending to non-stationary

cases).

Given data (xi,mi), i = 1, . . . , n, write M = (m(x1), . . . ,m(xn))′, Z = (Z(x1), . . . ,

Z(xn))′. Under the assumptions, Z is multivariate normal with a constant mean and

covariance matrix whose (i, j)th element is CZ(|xi − xj|) where CZ is the covariance

function. Given Z, M is multivariate normal with a mean vector

µ = (a+ bΛ(x1), . . . , a+ bΛ(xn))′ (3.1)

where Λ(x) = exp(Z(x)) denotes the intensity function, and the conditional covari-

ance matrix is given by another stationary covariance function. This formulation of

model allows explicit expression of the likelihood function, which is discussed in the

next section.

A similar but different intensity-dependent marked point process is considered in

Myllymäki and Penttinen (2009) where the marks are independent conditional on the

intensity. Specifically,

m(xi)|Λ(xi) ∼ N(a+ bΛ(xi), c
2Λ(xi) + d2). (3.2)

We note this model implies that the correlation between m(xi) and m(xj) is

bounded by the correlation between Λ(xi) and Λ(xj), which is an unnecessary con-

traint imposed on the model. Indeed, applying the following formula

Cov(X, Y ) = E (Cov(X, Y |W )) + Cov(E(X|W ), E(Y |W )),

we get

Cov(m(xi),m(xj)) = b2Cov(Λ(xi),Λ(xj)), i 6= j

Var(m(xi)) = c2EΛ2(xi) + b2Var(Λ(xi)) (3.3)

Then it follows that Corr(m(xi),m(xj)) ≤ Corr(Λ(xi),Λ(xj)) if c 6= 0.

It is not hard to see that our model does not have this constraint. Our model also

extends to the multivariate case straightforwardly, as seen in the next section.
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Finally, we make some comparisons between the marked point process and the

process in geostatistics. The mark m(x) marginally is a stationary process with a

constant mean µm = a+ b exp{µZ + (1/2)CZ(0)} and covariance matrix

Cm(x) = C(x) + b2µ2
m{exp(CZ(x))− 1}

where µZ and CZ denotes the mean and covariance function of the process Z(x), and

C(x) is the conditional covariance function of m(x). Here we used the covariance

function of a lognormal process (Aitchison and Brown, 1957). Given the observed

marks, it is also possible to make prediction for the mark using kriging. We note

some differences between this kriging prediction and those given by our model for the

marked point process.

First of all, in kriging prediction the randomness of locations of events x1, . . . , xn

is not considered and this could lead to inferior result. In the marked point process,

prediction of m(x0) based on the data (x0,mi), i = 1, . . . , n, is given by the conditional

mean

E(m(x0)|xi,mi, i = 1, . . . , n),

which has a smaller mean square error than E(m(x0)|mi, i = 1, . . . , n). The latter is

the kind of prediction used in goestatistics.

3.1.2 Bivariate Marks

In this section, we consider a bivariate marked point process where there are

two marks attached to each point. The two marks both depend on the intensity of

the point process and may be correlated conditional on the intensity. The setting is

similar to univariate case where the point process is assumed to be a Cox point process.

Conditional on intensity, assume the marked point process is bivariate Gaussian with

mean

µ(xi) =

 a1 + b1Λ(xi)

a2 + b2Λ(xi)
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and covariance function is bivariate Matérn

C(h) =

 C11(h) C12(h)

C21(h) C22(h)


where each Cii(h) = Cov(mi(s+ h),mi(s)) = σ2

iM(h|νi, αi) for i = 1, 2 is a marginal

Matérn covariance function (Guttorp and Gneiting ,2006; Matern, 1986) with spatial

correlation at distance h

M(h|ν, α) =
21−ν

Γ(ν)
(αh)νKν(αh). (3.4)

Here σ2 > 0 is the variance parameter, α > 0 is the scale parameter, v > 0 is

the smoothness parameter and Kν is a modified Bessel function. And each cross

covariance function is also a Matérn function

C12(h) = C21(h) = ρ12σ1σ2M(h|ν12, α12)

with correlation coefficient ρ12 (Gneiting, Kleiber and Schlather, 2010). Details for

estimating the covariance parameters and mark-related parameters are given in the

next section.

3.2 Empirical Bayesian Modeling

Parameter estimation for log Gaussian Cox processes is known to be complex.

Møller and Waagepetersen (2004) reviewed some inferential methods and proposed

an empirical Bayesian method. In this section, we extend the empirical Bayesian

method to the intensity-marked log Gaussian Cox process. We will first discuss the

univariate case.

Conditional on the process {Z(s)} (or {Λ(s)}), the joint probability density of

the marks and points can be given explicitly

f(X,M |θM , Z) =

(
n∏
i=1

eZ(xi)

)
fM |Z(m|z)e−

∫
W Λ(s)ds (3.5)

where exp(Z(xi)) = Λ(xi) denotes intensity at location xi and fM |Z(m|z) denotes the

joint parametric density of the conditional mark distribution. For example, for our
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model in the precious section, M |Z ∼ N (µ1,Σ1) where µ1 = (a+ bΛ(x1), ..., a+ bΛ(xn))′

and (Σ1)i,j = Cov(m(xi),m(xj)) = σ2e−h/φ with h = ||xi − xj||.

For a given prior f(θM), the posterior distribution is

f(θM , Z|X,M) ∝ f(θM)f(Z)f(X,M |θM , Z).

The full Bayesian approach will be challenging to implement mainly because that

some parameters in the covariance function are hard to estimate well (Zhang, 2004).

Here we adopted the approach in Møller, Syversveen and Waagepetersen (1998) and

estimate parameters in CZ by a minimum contrast method, that minimizes∫ a0

ε

{ĈZ(r)η − CZ(r)η}2dr (3.6)

with respect to the parameters of CZ(r) using user-specified values 0 ≤ ε < a0 and

η > 0. If we choose Matérn covariance function for CZ(r), then the parameters will

be µZ , φZ and σ2
Z . ĈZ(r) in (3.6) is a non-parametric estimate of covariance function

CZ that is given through a kernel function. We refer to Møller, Syversveen and

Waagepetersen (1998) for details.

In the next two sections, we discuss in more details the choice the prior distribution

and the implementation of MCMC sampling.

For the bivariate marked point process defined previously, the estimation method

extends easily. For example, the conditional density in (3.5) now becomes

f(X,M1,M2|θ, Z) =

(
n∏
i=1

eZ(xi)

)
fM1,M2|Z(m1,m2|z)e−

∫
W Λ(s)ds

where fM1,M2|Z is the conditional density function of (M1,M2) given Z, which is ∼

N (µ2,Σ2). The conditional covariance matrix Σ2 is given by the bivariate covariance

function, which we assumed to be exponential. Therefore, Σ2 can be written as

Σ2 =

 σ2
1 exp(−d/φ1) ρσ1σ2 exp(−d/φ12)

ρσ1σ2 exp(−d/φ12) σ2
2 exp(−d/φ2)


where d is the distance matrix between the observed points {x1, ..., xn}. To ensure Σ2

is a valid covariance matrix, we need the parameters {φ1, φ2, φ12, ρ} to satisfy some
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constraints (Gneiting, Kleiber and Schlather, 2010). The Bayesian estimation of

parameters related to bivariate Matérn covariance matrix is similar to the univariate

model, which is briefly discussed in Section 3.2.2.

3.2.1 Prior Specification

Parameters of prior distribution of the Gaussian random field {Z(s)} are esti-

mated from data using minimum contrast method as mentioned before, and the prior

distributions of the mean parameters a and b are chosen to be normal. The parame-

ters σ2 and φ are known to be estimated with relatively large variances, which can be

justified theoretically under the fixed domain asymptotics (Zhang, 2004). For this rea-

son, we reparametrize (Σ1)i,j = Cov(m(xi),m(xj)) = σ2 exp(−h/φ) = τ 2φ exp(−h/φ)

where τ 2 = σ2/φ, and the estimates for τ 2 will be estimated instead of σ2. We use

Inverse-Gamma prior for τ 2 and fix φ at a few different values.

Similarly, for bivariate marks we set normal priors for a1, b1, a2, b2, Inverse-Gamma

priors for σ2
1 and σ2

2 and uniform priors for the rest four parameters φ1, φ2, φ12, ρ. As

we mention before, there are some constraints for these parameters in order to make

sure Σ2 is a valid covariance matrix. Therefore we consider {φ1, φ2, φ12, ρ} as a set of

parameters and update them simultaneously. Initial values for the four parameters

will be generated following the constraints as well as the proposed new values.

3.2.2 Implementation

For the univariate mark, the parameter vector to be estimated is θM = (a, b, τ 2, φ).

We update the parameters θM and Gaussian random field Z one by one using Metropolis-

Hasting algorithm in the MCMC procedure.

To update a, draw a candidate value a∗ from proposal q1(a∗|a(t)). Accept the

proposal, i.e., let a(t+1) = a∗, with probability

R = min

{
1,
f(θ∗|X,M)q1(a(t)|a∗)
f(θ(t)|X,M)q1(a∗|a(t))

}
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where θ∗ = {a∗, b(t), τ 2(t), φ(t), Z(t)}, and b, τ 2, φ and Z can be updated similarly. Fix-

ing φ at some values is the same as choosing a discrete distribution as the proposal

distribution. For parameters other than φ, we consider the proposal distributions of

following forms:

a∗ ∼ N(a(t), σ2
a),

b∗ ∼ N(b(t), σ2
b ),

τ 2∗ ∼ Unif(max(0, τ 2(t) − δτ2), τ 2(t)
+ δτ2),

Z∗ ∼ N(Z(t), σ2
qz)

(3.7)

The values of σ2
a, σ

2
b , δτ2 and σ2

qz are specified in simulation study and application.

When applying the Metropolis-Hasting algorithm to the bivariate model, we need

to be more careful when updating the parameters for bivariate marks due to the

constraints the parameters have to satisfy. The parameters a1, a2, b1, b2, σ
2
1 and σ2

2

can be updated one by one similar to univariate case, with Normal distributions

as proposal for a1, a2, b1, b2 and uniform proposal for σ2
1 and σ2

2 as follows: a∗i ∼

N(a
(t)
i , σ

2
ai

), b∗i ∼ N(b
(t)
i , σ

2
bi

), σ2∗
i ∼ Unif(max(0, σ2

i
(t) − δσ2

i
), σ2

i
(t)

+ δσ2
i
), for i = 1, 2.

However, for the rest four parameters {φ1, φ2, φ12, ρ} we decide whether to accept

the set of proposal {φ∗1, φ∗2, φ∗12, ρ
∗} or not at the same time. We generate φ∗1, φ

∗
2

from uniform proposals first: φ∗i ∼ Unif(max(0, φi
(t) − δφi), φi

(t) + δφi) for i = 1, 2,

and then generate ρ∗, φ∗12 from uniform proposals satisfying constraints of these four

parameters. By updating the parameters this way we can make sure the covariance

matrix Σ2 is positive definite.

For approximating the integral
∫
W

Λ(s)ds in (3.5), we follow the methods in Myl-

lymäki and Penttinen (2009) which defined a partition of W with equal size rectan-

gular sets and the center points forming a grid are denoted as s1, ..., sk. The integral

is approximated as follows ∫
W

Λ(s)ds ≈ A
k∑
j=1

eZ(sj).
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where A is the size for each rectangular set. The values of {Z(sj)} for j = 1, ..., k are

simulated during MCMC iteration. We get better results if the grid is denser. In the

next section we show the simulation results using 40× 40 grid.

3.3 Simulation Study

The objectives of this section are to demonstrate exploratory mark independence

diagnostics for marked point processes using Emark function in R-library spatstat,

and assess how well our MCMC procedure can estimate the parameters for univari-

ate and bivariate models. We simulate realizations of log Gaussian Cox process in

a [0, 100] × [0, 100] window W using different combinations of parameters. Consider

Gaussian random field {Z(s)} with mean µZ = −3 and the exponential covariance

function with variance σ2
Z = 0.5, 1 and the range parameter φZ = 10. Given these

point processes, the marks were generated from (3.1) where the marks were auto-

correlated conditioning on {Z(s)}, and the covariance function was chosen to be the

exponential Cov(m(xi),m(xj)) = τ 2φ exp(−h/φ), where we chose two combinations

(τ 2, φ) = (4, 2.5) and (2, 5). In addition, we chose a = 80 and b = −10,−5, 5, 10 for

the mean values of marks. Figure 3.1 and Figure 3.2 show the mark independence

diagnostics generated from Emark and Vmark function in R-library spatstat. These

two functions estimate E(r) and V (r), the conditional mean and variance of the mark

attached to a point, given that there exists another point at distance r away. If the

marks are independent with the points then we expect both E(r) and V (r) to be

constant as the horizontal line Eiid(r) and V iid(r), respectively. The other two lines

Êiso(r) and Êtrans(r) (or V̂ iso(r) and V̂ trans(r)) are the estimates of E(r) (or V (r))

for the marked point pattern proposed by Schlather, Ribeiro and Diggle (2004) as

diagnostics for dependence between the marks and the points, with Ripley’s isotropic

correction (Ripley, 1976) and translation correction (Ohser and Stoyan, 1981). The

two functions E(r) and V (r) seem to be non-constant particularly for small r values,

which suggest there exists dependence between the marks and points.
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We set normal priors for the parameters a ∼ N(90, 100) and b ∼ N(3, 100), and

τ 2 ∼ Inverse-Gamma(3, 60). The proposal distributions for a, b and τ 2 were chosen as

in (3.7) with (σ2
a, σ

2
b , δτ2 , σ

2
qz) = (5, 3, 2, 1). The range parameter φ was not estimated

but rather fixed at twice the true values of φ. The main reason for this is to simplify

the computations. However, we will estimate the range parameter in the bivariate

model.

We ran 120,000 iterations of MCMC algorithm and omit the first 20,000 iterations

as burn-in. The results for parameter estimations when σ2
Z = 0.5 using 40× 40 grid

points are given in Table 3.1. We can see when b is positive/negative we tend to

overestimate/underestimate a. Estimates for parameter τ 2 have smaller variances

particularly when the spatial correlation is stronger (i.e., a larger φ). Since the mean of

marks is written as a+bΛ(x) and estimates of {Λ(x)} (or {Z(x)}) is usually very small,

we found that the estimates of b have larger Monte Carlo standard error (MCSE). It

took longer for b to converge than the other parameters. We used mcse.mat function

in R-library mcmcse to calculate MCSE for all parameters and determine when to

stop the MCMC iterations (Flegal and Jones, 2010).

For bivariate marks, we used the same point process simulated in the [0, 100] ×

[0, 100] window. The marks had parameters (a1, a2, σ
2
1, σ

2
2, φ1, φ2, φ12, ρ) = (80, 20,

400, 20, 10, 10, 10, 0.8) and b1 = −5, 5, b2 = −2, 2. Similar to univariate case, we chose

normal priors for parameters a1, b1, a2, b2 as follows: a1 ∼ N(90, 100), b1 ∼ N(3, 100),

a2 ∼ N(30, 100) and b2 ∼ N(1, 100). The priors for σ2
1 and σ2

2 were Inverse-

Gamma(3, 60) and Inverse-Gamma(3, 40) respectively. For φ1, φ2 and φ12 the priors

were all Uniform(5, 30) and the prior for ρ was Uniform(0, 1). The proposals were de-

scribed in Section 3.2.2, with (σ2
a1
, σ2

a2
, σ2

b1
, σ2

b2
, δσ2

1
, δσ2

2
, δφ1 , δφ2) = (5, 3, 2, 1, 10, 10, 2, 2).

We ran 160000 iterations of MCMC algorithm and omitted the first 20000 itera-

tions as burn-in. The results for parameter estimations using 40× 40 grid points are

given in Table 3.2. We still observed that a1, a2 are overestimated when b1, b2 were

positive and underestimated when b1, b2 were negative.
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Estimates for σ2
1, σ

2
2, φ1, φ2 and φ12 were higher than the true values, and the

estimates of ρ were generally smaller than the true value, or even smaller when b1

and b2 have opposite signs. For the range parameters we had better estimates for φ1

than φ2 and φ12. It was difficult to estimate these parameters related to covariance

structure of bivariate marks. However, the estimates of ρ still indicated moderate

correlation between the bivariate marks.
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Figure 3.1. Mark independence diagnostics using Emark function
in R-library spatstat for four intensity marked Log Gaussian Cox
processes generated from model (3.1) with parameters a = 80, b =
−10,−5, 5, 10, (φ, σ2) = (5, 10) and (µZ , φZ , σ

2
Z) = (−3, 0.5, 10).
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Figure 3.2. Mark independence diagnostics using Vmark function
in R-library spatstat for four intensity marked Log Gaussian Cox
processes generated from model (3.1) with parameters a = 80, b =
−10,−5, 5, 10, (φ, σ2) = (5, 10) and (µZ , φZ , σ

2
Z) = (−3, 0.5, 10).

3.4 Case study: White Oak Data

3.4.1 Dataset Description

In this section, we analyzed the same data as in Chapter 2. We only used height

in Chapter 2, here we considered both height and diameter. The range for diameter

is from 2.6 cm to 26.7 cm with mean 12.8 cm. More details about this data can be

found in Section 2.3.
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Table 3.1

Simulation results for univariate mark: posterior mean (MCSE) for
40 × 40 grid points with a = 80 and σ2 = 10.

.

µ̂Z , σ̂
2
Z , φ̂Z â b̂ τ̂ 2

φ = 2.5 b = 5 81.07 (0.06) 7.89 (0.93) 4.45 (0.12)

(τ 2 = 4) b = 10 82.55 (0.03) 8.66 (0.95) 4.94 (0.07)

b = −5 78.29 (0.04) -7.67 (0.91) 5.02 (0.25)

b = −10 77.12 (0.04) -8.61 (0.84) 5.26 (0.23)

-3.54, 0.46, 6.57

(-3.00, 0.50, 10.00)

φ = 5 b = 5 82.08 (0.03) 5.55 (0.79) 1.88 (0.09)

(τ 2 = 2) b = 10 84.33 (0.02) 8.88 (0.61) 1.98 (0.04)

b = −5 78.75 (0.07) -6.47 (0.89) 1.87 (0.07)

b = −10 77.83 (0.06) -8.05 (0.70) 1.95 (0.05)

3.4.2 Check for Independence Between Points and Marks

For exploratory analysis, we first did mark independence diagnostics using the

Emark and Vmark functions in R-library spatstat and the plots for height are given

in Figure 3.3. These functions as well as the edge corrected estimates Êiso(r) and

Êtrans(r) were mentioned in Section 3.3. We observed non-constant mean values

and variances within short range which indicates dependence between points and

height. However, the mean values and variances for diameter did not vary a lot which

may suggest independence between points and diameter. To test the independence

between marks and points more formally, we applied the test using the mark K

function Km(r) proposed by Guan (2006). The mark K function Km(r) is defined

as λ−1E{m(x)×Nr(x)} where λ is the first-order intensity of the point process and

Nr(x) is the number of points within distance r from a randomly chosen point x. Let
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Table 3.2

Simulation results for bivariate marks: posterior mean (MCSE)
for 40 × 40 grid points with (a1, a2, σ

2
1, σ

2
2, φ1, φ2, φ12, ρ) =

(80, 20, 400, 20, 10, 10, 10, 0.8) and b1 = −5, 5, b2 = −2, 2.

.

µ̂Z , σ̂
2
Z , φ̂Z = −3.54, 0.46, 6.57 (-3.00, 0.50, 10.00)

(b1, b2) (5, 2) (5,−2) (−5, 2) (−5,−2)

â1 84.98 (0.17) 83.75 (0.16) 78.65 (0.15) 77.97 (0.15)

b̂1 5.98 (0.65) 4.65 (0.56) -4.75 (0.34) -6.75 (0.47)

â2 22.23 (0.18) 17.90 (0.19) 21.78 (0.14) 16.98 (0.20)

b̂2 2.01 (0.56) -3.24 (0.70) 2.75 (0.43) -3.35 (0.37)

σ̂2
1 502.01 (0.86) 531.98 (0.70) 498.20 (0.79) 485.12 (0.87)

σ̂2
2 29.55 (0.77) 34.31 (0.80) 27.34 (0.82) 28.54 (0.88)

φ̂1 10.39 (0.95) 10.87 (0.98) 12.01 (0.94) 10.77 (0.97)

φ̂2 16.97 (0.99) 14.02 (0.97) 9.11 (0.95) 17.13 (0.98)

φ̂12 15.35 (0.99) 14.57 (0.98) 13.35 (0.97) 16.35(0.99)

ρ̂ 0.72 (0.03) 0.60 (0.04) 0.66 (0.02) 0.73 (0.05)

µ = E{m(x)}, then under the null hypothesis of independence between marks and

points, we should have Km(r) = µ×Kp(r) where Kp(r) = λ−1E{Nr(x)} is the usual

K function for spatial point process. We estimated µ by a slope estimator obtained

from regressing K̂m(r) on K̂p(r):

µ̂ =

∫ R
0
K̂m(r)dr∫ R

0
K̂p(r)dr

where R is an upper bound on the lag vector of observations since the dependence

between points and marks may exist only at a small physical scale. Under the null

hypothesis of independence, the slope estimator µ̂ should be close to the average of

the observed marks, M̄ . The asymptotic normality of µ̂−M̄ can be established under

some conditions on the underlying process, and therefore come up with a statistic of
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the form (µ̂ − M̄)2/V̂ar(µ̂ − M̄). For our dataset we rejected the null hypothesis

of independence between height and points (p-value < 0.001), but failed to reject

independence between diameter and points (p-value=0.154) which was consistent

with our exploratory analysis. Therefore we only applied our univariate model to the

height. Nevertheless, the correlation between height and diameter is high, it is still

reasonable to consider the two variables as dependent bivariate marks.

0 5 10 15 20

95
96

97
98

99
10

0

E

r

E
(r)

Eiso^ (r)

Etrans^ (r)

Eiid(r)

0 5 10 15 20

36
0

38
0

40
0

42
0

44
0

46
0

48
0

V

r

V
(r)

Viso^ (r)

Vtrans^ (r)

Viid(r)

Figure 3.3. Mark independence diagnostics using Emark and Vmark
function in R-library spatstat for the height of white oaks. The unit
for height measurement is meter.
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3.4.3 Empirical Bayesian Estimation

Univariate Marks

Based on the results of the previous section on the diagnostics of mark-points

dependence, we applied the mark-dependent model to the height of white oaks. The

Gaussian random field {Z(s)} was assumed to have mean µZ and a Matérn covariance

function σ2
ZM(r|ν, 1/φZ) with parameters {φZ , σ2

Z , ν}, where M(h|ν, α) was defined in

(3.4). The parameters related to {Z(s)} are estimated using the minimum contrast

(3.6) where η was set to be 1, ε = 12, a0 = 72. We found the estimated values

to be (µ̂Z , σ̂
2
Z , φ̂Z , ν̂) = (−2.61, 0.63, 31.40, 0.5). The estimate of range parameter

φZ indicated the spatial dependence occurs within distance around 31.4 m. These

estimates were used in the prior distribution of Z.

We fixed φ at four values 12, 24, 36, 48, and applied Bayesian model to update

parameters a, b, τ 2 and the Gaussian random field Z. We set normal priors for the

parameters a ∼ N(120, 100) and b ∼ N(3, 100), and τ 2 ∼ Inverse-Gamma(3, 60). The

proposal distributions for a, b and τ 2 were chosen as in (3.7) with (σ2
a, σ

2
b , δτ2 , σ

2
qz) =

(4, 2, 5, 1). We ran 120000 iterations of MCMC and omitted the first 20000 iterations

as burn-in. The posterior means and Monte Carlo standard errors (MCSE) are given

in Table 3.3.

Table 3.3
Posterior mean (MCSE) for univariate mark (height).

(µ̂Z , σ̂
2
Z , φ̂Z)=( -2.61, 0.63, 31.40)

â b̂ τ̂ 2

φ = 12 75.62 (0.03) 35.03 (0.06) 10.01 (0.10)

φ = 24 75.40 (0.08) 33.78 (0.03) 9.92 (0.30)

φ = 36 77.49 (0.18) 34.00 (0.05) 10.43 (0.94)

φ = 48 77.64 (0.27) 35.00 (0.10) 10.55 (0.92)
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We used Bayes Factor (Kass, 1995) to choose the best combination of param-

eters {a, b, φ, τ 2}. Let θk = {ak, bk, φk, τ 2
k}, k = 1, . . . , 4 and each θk corresponds

to the combination where φ1 = 12, φ2 = 24, φ3 = 36 and φ4 = 48. We used the

notation Bij to denote the Bayes Factor for θi against θj when we set equal priori

on them, that is, Bij = f([X,M ]|θi, Zi)/f([X,M ]|θj, Zj). Simple Monte Carlo in-

tegration 1
m

∑m
i=1 f([X,M ]|θ(i)

k , Z
(i)
k ) was used for estimating f̂([X,M ]|θk, Zk), where

θ
(i)
k = {a(i)

k , b
(i)
k , φ

(i)
k , τ

2(i)
k } were samples from the prior distributions of parameters we

obtained from MCMC iterations.

The Bayes Factor provided information about which statistical model was pre-

ferred given the observed data. If Bij > 1 then it means the data in favors of θi

instead of θj. Moreover, follow the interpretation suggested by Jeffreys (1961), we

had decisive evidence against θj if Bij was over 100.

From the summary of Bayes Factors for i < j (Table 3.4), we found evidence that

the data strongly support θ1 = {a1, b1, φ1, τ
2
1 } = {75.62, 35.03, 12.00, 10.01} instead

of others. As a result, θ1 was chosen to be the preferred parameter combination. The

plots of parameter estimates (when φ was set to be 12) verse sample size were created

by estvssamp function in R-library mcmcse in Figure 3.4.

Table 3.4
Bayes Factors for choosing the best combination of parameters {a, b, φ, τ 2}.

k={1,2,3,4}

φ = {12, 24, 36, 48}

B12 = 369 B13 > 400 B14 > 400

B23 > 400 B24 > 400

B34 = 305

The estimated parameters were then used to perform five-fold cross-validation

to compare our approach with kriging prediction. We ignored the point process and

make prediction for the marks using kriging, where the covariance matrix for marginal
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distribution of marks were specified in Section 3.1. The mean absolute error (MAE)

for prediction were used to compare the performance of two approaches. We found

smaller MAE from the marked point process approach (MAE=1.99 meter) than the

kriging prediction (MAE=2.05 meter) for height in our white oak data, indicating the

marked point process approach has better performance on prediction. If the points

and marks are independent, it is possible that kriging will do a fairly good job on

prediction even if we ignore the point process. On the other hand, if the points

and marks are dependent, then using kriging without considering the randomness of

locations in the point process will not be the best way to make prediction.

Bivariate Marks

We applied the bivariate mark-intensity dependent model to the two marks, height

and diameter. The latent Gaussian process Z(x) was the same as in the previous sec-

tion and its parameters were estimated in the same way. The prior distribution of

Z(x) was specified empirically as before. We considered two estimation approaches for

bivariate marks. One is to first estimate the parameters of bivariate marks separately,

which means we applied the method in the previous section to each of the two marks.

We then estimated the parameters in the cross covariance function using bivariate

data. The other one is to estimate their parameters in the bivariate model simulta-

neously. For the second approach we chose normal priors for parameters a1, b1, a2, b2

as follows: N(120, 100),N(3, 100),N(30, 100) and N(1, 100) respectively. The priors

for σ2
1 and σ2

2 were Inverse-Gamma(3, 60) and Inverse-Gamma(3, 40) respectively. For

φ1, φ2 and φ12 the priors were all Uniform(12, 72) and the prior for ρ was Uniform(0, 1).

The proposals were described in Section 3.2.2, with (σ2
a1
, σ2

a2
, σ2

b1
, σ2

b2
, δσ2

1
, δσ2

2
, δφ1 , δφ2) =

(4, 2, 2, 1, 8, 8, 5, 5). Initial vales of φ1, φ2, φ12 and ρ need to be generated following

the constraints of bivariate Matérn covariance function.

Estimates from the two approaches are summarized in Table 3.5. They are com-

pared through five-fold cross-validation. The results show that the dependent model
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Figure 3.4. Plots to show how Monte Carlo estimates for a, b and τ 2

(from left to right) change when sample size increases.

results in a smaller mean absolute error (MAE). Hence the dependent model is pre-

ferred. All the estimates for b are positive which indicates positive dependence be-

tween the intensity and marks regardless of the model choices.

3.5 Discussion

In this chapter we consider the model of univariate and bivariate intensity-dependent

marked LGCP. Here we only use normal for the mark distribution, but other choices

like exponential or gamma distribution introduced by Myllymäki and Penttinen (2009)

are also possible. We update both the intensity and other mark-related parameters in
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Table 3.5

Posterior mean (MCSE) for bivariate marks (height and diameter)
from two approaches. Independent Marks: To assume the two marks
to be independent conditional on the intensity, and estimate their pa-
rameters separately; Dependent Marks: To include cross covariance
between height and diameter and estimate their parameters simulta-
neously.

Height (m) â1 b̂1 MAE

Independent Marks: 75.62 (0.03) 35.03 (0.06) 1.99

Dependent Marks: 78.43 (0.04) 24.47 (0.32) 1.72

Diameter (cm) â2 b̂2 MAE

Independent Marks: 10.37 (0.03) 10.03 (1.21) 4.17

Dependent Marks: 11.27 (0.01) 3.20 (0.23) 3.77

our MCMC algorithm to avoid the kernel estimates of intensity function, since kernel

methods are sensitive to the choice of bandwidth. But the estimates of intensity still

affects parameter b and makes the convergence slower.

An alternative and easier way is to consider marks as covariates to estimate inten-

sity Λ(x) using common LGCP modeling methodology. It may also help to explain

the dependence relationship between marks and points, but it makes more sense to

let the variables like height and diameter to depend on the point process instead of

the other way around since it is reasonable that how the trees grow will be affected

by how dense the nearby trees are.

If we have univariate mark, adding the dependence structure between marks after

conditioning on intensity is more flexible than the conditional independence assump-

tion. Another possible improvement on this model may be to make use of the nearest

neighbor concept and add trees close by to help modeling the marks. However, this

way we have to determine the number of neighbor trees, and we need to estimate

more parameters which will result in longer time to run MCMC iterations.
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For bivariate marks we have height and diameter of trees in our study. These two

variables are highly correlated and consequently, we get better results not to ignore

the relationship between them. Nevertheless, we need to estimate more parameters

from bivariate covariance function than the univariate case, and have to pay attention

to the constraints between parameters to make sure the covariance matrix is positive

definite.

Currently the marks we deal with are quantitative variables, it is also of interest to

consider categorical marks like the species of trees and try to model how the different

species can be dependent on each others. We are also curious about the difference

between using point process and geostatistical methodology. In practice, from the na-

ture of forest data we should consider it as point process since the sampling locations

xi are random, and proceed the analysis using point process methodology. Using

geostatistical methodology we will not be able to describe the dependence between

intensity and marks, but in general we can still apply geostatistical methods to model

and predict the marks regardless of the point process structure. How much difference

the two approaches will generate is still under study. This is worth investigating

both empirically and theoretically as to extend our understanding of the dissimilarity

between point process and geostatistics.
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4. A PARTIALLY STATIONARY MODEL FOR

SPATIOTEMPORAL MARKED POINT PROCESSES

Our objective in this chapter is to develop a model between the stationary and non-

stationary marked point processes that can be used to model dependence between

points and marks. The partially stationary spatiotemporal marked point process is

our focus in this chapter. Before we give definition for partially stationary, we first

introduce definitions for different types of stationary.

A spatiotemporal point process is said to be strong stationary if the joint distri-

bution of N(A1 ×B1), · · · , N(Ak ×Bk) is equal to the joint distribution of N((A1 +

t) × (B1 + t)), · · · , N((Ak + t) × (Bk + t)) for any k ∈ N+ and t ∈ R, where

A1, · · · , Ak ∈ B(S) and B1, · · · , Bk ∈ B(R) are defined in Section 1.5.

Another type of stationary is based on intensity function. A spatiotemporal point

process is said to be first-order stationary in both space and time if its first-order

properties are invariant under translation:

λ(s, t) = λc,

and second-order stationary if its second-order properties are invariant under trans-

lation:

λ2[(s, t), (s′, t′)] = λ2(s− s′, t− t′),

where λ(s, t) and λ2[(s, t), (s′, t′)] denote the first-order intensity and second-order

intensity of the point process, respectively. They are defined as

λ(s, t) = lim
|ds×dt|→0

{
E[N(ds× dt)]
|ds× dt|

}
,

λ2[(s, t), (s′, t′)] = lim
|ds×dt|,|ds′×dt′|→0

{
E[N(ds× dt)N(ds′ × dt′)]
|ds× dt||ds′ × dt′|

}
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A first-order and second-order stationary spatiotemporal marked point process can

be defined similarly as

λ(s, t,m) = λc

and

λ2[(s, t,m), (s′, t′,m′)] = λ2(s− s′, t− t′,m−m′),

which is first-order and second-order stationary in space, time and mark.

Our definition for partially stationary spatiotemporal marked point process is

given as follows. We define a spatiotemporal marked point process N to be partial

stationary if the joint distribution of N(A1 × B1 × C1), · · · , N(Ak × Bk × Ck) is

equal to the joint distribution of N(A1 × (B1 + t)× C1), · · · , N(Ak × (Bk + t)× Ck)

for any k ∈ N+ and t ∈ R, where A1, · · · , Ak ∈ B(S), B1, · · · , Bk ∈ B(R), and

C1, · · · , Ck ∈ B(M) are defined in Section 1.5. Under the assumption of partial

stationarity, it is nonstationary in first-order and partially stationary in second-order.

The distribution of N is only invariant under the parallel shift of the time. If the

distribution of N is invariant under parallel shift in space, time and mark, or only

invariant under parallel shift of space and time, different types of stationarity can

also be defined accordingly.

One of the applications for partially stationary spatiotemporal marked point pro-

cess is to model natural hazards since we expect many natural events to satisfy this

assumption. Natural hazard forecasting with time, location and magnitude has al-

ways been a difficult task. Spatiotemporal marked point processes (SMPPs) are

widely used stochastic models which are appropriate for modeling the occurrence and

magnitude of natural hazards. We consider SMPPs because the location where an

event occurs and the magnitude of the event can be represented by points and marks

in SMPPs. In this chapter, our objective is to develop models for SMPPs that can

describe the patterns of natural hazards and try to identify regions with higher risks

where severe natural hazards are more likely to occur.
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We develop an approach to model the partially stationary SMPPs, and apply our

method to model the patterns of natural hazards. The plan of this chapter is as

follows. The statistical model for partially stationary SMPPs is introduced in Section

4.1. A kernel weighted composite likelihood approach for modeling partially station-

ary SMPPs is given in Section 4.2, and the estimators of parameters in the model are

derived. The asymptotic properties for estimators and selection of bandwidth for the

kernel function are provided in Section 4.3 and 4.4, respectively. Section 4.5 provides

a simulation study for the performance of our approach. The proposed method is

applied to a forest wildfire data and an earthquake data in Section 4.6. A discussion

is given in Section 4.7.

4.1 Statistical Model

In the analysis of SMPP data, the main interest is to model the first-order intensity

function that has generated the SMPP pattern. Let N be a partially stationary

SMPP, then its first-order intensity function does not vary in time indicating that

the first-order intensity function can be expressed as λ(s, t,m) = λ(s,m). Therefore,

in general the first-order intensity function can be written as

λ(s,m) = λ(s, t,m) = f(m|s)λs(s), (4.1)

for all s ∈ S, t ∈ R, and m ∈ M, where λs(s) =
∫
M λ(s,m)dm is the marginal

first-order intensity function of points and f(m|s) is the conditional density function

of marks.

According to how we formulate λ(s, t,m) as in (4.1), we consider a way to model

f(m|s) and λs(s) separately. A local parametric model is considered for f(m|s) and

a nonparametric model for λs(s). In the local parametric model, we assume that

f(m|s) ∈ FΘ = {fθ(m) : θ ∈ Θ ∈ B(Rp)}, where fθ(m) is a parametric density

function which is completely determined by the unknown parameter θ. We assume

that the parameter contained in f(m|s) may depend on s such that f(m|s) can be

expressed as fθ(s)(m) in general, where θ(s) is a p-dimensional multivariate smooth



52

function taking values on Θ for any s ∈ S. In the nonparametric model for λs(s), we

assume that λs(s) is positive and smooth for every s ∈ S. Therefore, the first-order

intensity function of N can be expressed as

λ(s, t,m) = λs(s)fθ(s)(m), (4.2)

for any s ∈ S, t ∈ R, and m ∈M. In this study, the term fθ(s)(m) can be interpreted

as the local parametric component and λs(s) as the nonparametric component.

A special case of the model given by Equation (4.2) is the separable model in

which θ(s) is treated as a constant. Such a model has been investigated by Schoen-

berg (2004) for Poisson SMPPs in a hypotheses testing problem. The assumption

with a constant θ(s) is usually called the independence (or separability) assumption

between points and marks in literature. As we mentioned in Section 1.3, it becomes

quite convenient in modeling, estimation, and prediction in an SMPP if marks and

points are independent. Many commonly used Hawkes models, such as the epidemic-

type aftershock sequences (ETAS) model (Ogata, 1998), may exhibit independence

between marks and points (Schoenberg, 2004). However, the independence assump-

tion is often unrealistic in applications. For instance, the relative positions of trees in

a forest have repercussions on their size owing to their competition for light or nutri-

ent (Schlather, Ribeiro, and Diggle, 2004), indicating that tree sizes and locations of

trees may not be independent. Forest wildfire activities exhibit power-law relation-

ships between frequency and burned area (Malamud, Millington, and Perry, 2005),

which means the burned area and the locations of forest wildfires may not be inde-

pendent either. If the independence assumption is violated, then intensity-dependent

models may be used (Ho and Stoyan, 2008; Malinowski, Schlather and Zhang, 2012;

Myllymäki and Penttinen, 2009). An intensity-dependent model attempts to model

the expected value of marks by treating λs(s) as an explanatory variable. Our study

in Chapter 3 also focused on intensity-dependent models. However, the model we

consider in this chapter is different from intensity-dependent assumption, because

Model (4.2) assumes that the parameters of marks depend on their locations but
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not only their intensity functions. Therefore, Model (4.2) should be classified as a

location-dependent model instead.

The behavior of N can be completely determined by Equation (4.2) if N is a

Poisson SMPP. For any A ∈ B(S) and C ∈ B(M), if B1, · · · , Bk ∈ B(R) are

disjoint, then N(A×B1 × C), · · · , N(A×Bk × C) are independent Poisson random

variables with mean |B1|µ(A× C), · · · , |Bk|µ(A× C), respectively, where

µ(A× C) = µ0(A× [t, t+ 1]× C) =

∫
A

∫
C

λ(s)fθ(s)(m)dmds

for any t ∈ R. Let

Mη(t;A,C) =
N(A× η[0, t]× C)− E[N(A× η[0, t]× C)]

√
η

. (4.3)

Using the theory of empirical distributions (e.g. Chapter 19 of van der Vaart, 1998),

we have

µ−1/2(A× C)Mη(·;A,C)
D→ B([0,∞)) (4.4)

as η →∞, where ηB = {ηt : t ∈ B} for any B ∈ B(R) and B([0,∞)) is the standard

Brownian motion on [0,∞). However, if N is not Poisson, then the asymptotic

distribution given by Equation (4.4) does not hold. Fortunately, a similar conclusion

can be drawn with a few regularity conditions.

The most important regularity condition is the mixing condition, which was first

proposed by Rosenblatt (1956) and then followed by many other authors (e.g. by

Ibragimov, 1962). The mixing condition has later been considered for asymptotic

properties of methods in spatial point processes (Ivanoff, 1982). Different mixing

conditions can be defined, such as strong mixing, uniform strong mixing, ϕ-mixing and

B-mixing. Among various types of mixing conditions, strong mixing is the simplest

to verify. The definition is given below. A homogeneous spatial point process on Rn

is said to be strong mixing if α(ηu, ηv)→ 0 as η → 0, where α(u, v) is defined as

α(u, v) = sup
ρ(E1, E2) ≥ u

d(E1) ≤ v, d(E2) ≤ v

sup
U1 ∈F(E1)

U2 ∈F(E2)

|P (U1 ∩ U2)− P (U1)P (U2)|,
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d(E) = supt,t′∈E |t − t′| is the diameter of E, and ρ(E1, E2) = mint∈E1,t′∈E2 |t − t′| is

the minimum distance between disjoint sets E1, E2 ∈ B(Rn). Here, we modify this

definition for partially stationary SMPPs.

Let PA,C(·) be the distribution of N(A×·×C) for given A ∈ B(S) and C ∈ B(M).

We say N satisfies the partially strong mixing condition (i.e. in time) if

lim
η→∞

sup
A∈B(S),C∈B(M)

αA,C(ηu, ηv) = 0 (4.5)

for any distinct positive u and v, where

αA,C(u, v) = sup
ρ(E1, E2) ≥ u

d(E1) ≤ v, d(E2) ≤ v

sup
U1 ∈F(E1)

U2 ∈F(E2)

|PA,C(U1 ∩ U2)− PA,C(U1)PA,C(U2)|,

Besides the partially strong mixing condition, we also need to consider higher-order

properties in our regularity conditions, which can be summarized by the covariance

function and the cumulant density function. The covariance function of N is well

defined if the covariance structure given by Equation (1.7) is absolutely continuous

with respect to the Lebesgue measure on S × R×M as

Γ((s1, t1,m1), (s2, t2,m2))

={g[(s1, t1,m1), (s2, t2,m2)]− 1}λ(s1, t1,m1)λ(s2, t2,m2)

+ λ(s1, t1,m1)δ(s1,t1,m1)(s2, t2,m2),

(4.6)

where δ(s,t,m) is the point measure at (s, t,m). If N is partially stationary, then Γ(·, ·)

can be expressed as

Γ((s1, t1,m1), (s, t2,m2)) = Γ((s1, 0,m1), (s2, t2 − t1,m2))

=[g((s1, 0,m1), (s2, t2 − t1,m2))− 1]λ(s1,m1)λ(s2,m2)

+ λ(s1,m1)δs1,t1,m1(s2, t2,m2).

(4.7)

Let

ψ(ϕ) = log
[
Ee

∫
Rd logϕ(s,t,m)N(ds×dt×dm)

]
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be the logarithm probability generating function (PGF) of N , where ϕ, 0 ≤ ϕ ≤ 1, is

a function with compact support on S × R ×M. The kth-order factorial cumulant

of N is defined by

C(k)(D1, · · · , Dk) = lim
η↑1

[
∂k

∂a1 · · · ∂ak
ψ

(
η +

k∑
i=1

aiIDi

)]
a1=a2=···=ak=0

, (4.8)

where ID is the indicator function of D ∈ B(S×R×M). If C(k) is absolutely contin-

uous, then its kth-order density function, denoted by Qk((s1, t1,m1), · · · , (sk, tk,mk))

for s1, · · · , sk ∈ S, t1, · · · , tk ∈ R, and m1, · · · ,mk ∈ M, is called the kth-order

factorial cumulant density of N .

Regularity Conditions:

(C1) The SMPP N is partially stationary.

(C2) The SMPP N satisfies the partially strong mixing condition given by (4.5).

(C3) The covariance function of N is continuous and satisfies

0 < ω((s1,m1), (s2,m2)) =

∫
R

Γ((s1, 0,m1), (s2, t,m2))dt <∞

with ∫
x1,x2∈S×M

G(x1,x2)ω(x1,x2)dx1dx2 <∞

for any bounded integrable function G(x1,x2) on (S ×M)2.

(C4) The cumulant Qk satisfies∫
x1,··· ,xk∈S×R×M

|Qk(x1, · · · ,xk)|dx1 · · · dxk−2 < c1, k = 2, 3, 4,

and ∫
x1,··· ,xk∈S×R×M

|Qk(x1, · · · ,xk)|dx1 · · · dxk−1 < c2, k = 2, 3, 4

for some constants c1, c2 ∈ R.
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Theorem 1 If Conditions (C1)–(C4) hold, then τ−1(A,C)Mη(·;A,C)
D→ B([0,∞))

as η →∞ for any A ∈ B(S) and C ∈ B(M), where

τ 2(A,C) =

∫
x1,x2∈A×C

ω(x1,x2)dx1dx2 (4.9)

is positive and finite.

Proof: Let ÑA,C be the process defined as ÑA,C(B) = N(A×B×C) for A ∈ B(S)

and C ∈ B(M). Then, ÑA,C is a strong stationary point process on R with a con-

stant first-order intensity function equal to λ̃A,C =
∫
A

∫
C
λ(s,m)dmds and covariance

function equal to

Γ̃A,C(t) =

∫
s1,s2∈A,m1,m2∈C

Γ((s1, 0,m1), (s2, t,m2))dm2dm1ds2ds1.

Then, τ 2(A,C) =
∫
R Γ̃A,C(t)dt, which is (4.9). Let Q̃k be the k-th cumulant of ÑA,C .

Then, Q̃k(t1, · · · , tk) = Q̃k(0, t2− t1, · · · , tk− t1). If Condition (C4) holds, then there

exist finite c1 and c2 (which may depend on A and C) such that∫
t1,··· ,tk−2∈R

|Q̃k(t1, · · · , tk)|dt1 · · · dtk−2 < c1

and ∫
t1,··· ,tk−1∈R

|Q̃k(t1, · · · , tk)|dt1 · · · dtk−1 < c2

for k = 2, 3, 4. Using Corollary 7.2 of Ivanoff (1982), the final conclusion is drawn. ♦

Corollary 1 Assume Conditions (C1)–(C4) hold. For a continuous bounded non-

negative function G(s,m) on S ×M, let

ZG,η(t) =
XG(η[0, t])− ηtµG

τG
√
η

where

XG(B) =

∫
S×M

G(s,m)N(ds×B × dm),

µG =

∫
S×M

G(s,m)λ(s,m)dsdm,
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and

τ 2
G =

∫
s1,s2∈S,t∈R,m1,m2∈M

ω((s1,m1), (s2,m2))G(s1,m1)G(s2,m2)ds1dm1ds2dm2dt.

Then, ZG,η(·)
D→ B([0,∞)) as η →∞.

Proof: Let A = ds and C = dm in Theorem 1. Then, XG(η[0, t]) = N(ds×η[0, t]×

dm), E[N(ds×η[0, t]×dm)] = tη|ds×dm|, and V [N(ds×η[0, t]×dm)] = tητ 2(ds, dm).

This expression implies that the classical approach to defining an integral on an

Euclidean space using the simple function can be applied (e.g. p. 199 in Billingsley,

1995). Using V [XG(η[0, t])] = tητ 2
G, the conclusion is drawn. ♦

Theorem 1 and Corollary 1 motivate a way to derive estimating equations of θ(s)

and λs(s) based on Equation (4.2), which is introduced in the next section.

4.2 The Kernel Weighted Composite Likelihood (KWCL) Approach

We use the kernel weighted composite likelihood (KWCL) approach to estimate

θ(s) and λs(s) in Model (4.2). The KWCL approach can be treated as an extension

of the local likelihood approach (Loader, 1996; Tibshirani and Hastie, 1987), which

provides a flexible method to estimate local varied parameters. The local likelihood

approach estimates the local varied parameters by a localized version of the loglike-

lihood function. It gives more weights to observations closer to a particular location.

We propose the KWCL approach based on this idea. Here, we use a kernel function

to determine the observations. The bandwidth controls the bias and the variance of

the resulting estimator, which is balanced by its mean square error (MSE) values.

The strategy to select the best bandwidth is discussed in Section 4.4.

As we reviewed in Section 1.6.2, composite likelihood is an inference function

derived by multiplying a collection of component of likelihood functions. Because

each individual component is a conditional or a marginal probability density (or

mass) function, the resulting estimating equation is often unbiased (Varin, Reid, and
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Firth, 2011). Recently, the unweighted composite likelihood approach has been used

in estimation of parameters of point process data (Schoenberg, 2005; Waagepetersen,

2007). Our approach may be considered as an extension of the previous unweighted

composite likelihood approach.

Assume that the first-order intensity function λ(s, t,m) is given in terms of a local

parametric model displayed in (4.2), where θ(s) is a vector of unknown parameters.

Let D ∈ B(S,R,M) be the region in which a realization of N has been observed.

As before, assume S ∈ B(R2) andM∈ B(Rq), where q is a certain positive integer.

Let the observations of N be denoted as (si, ti,mi) ∈ D for i = 1, · · · , n. Based on

Equation (4.2), we can write down the composite likelihood function

Lh(θ(s), λs(s))

=
n∏
i=1

λ(s, ti,mi) exp

(
−
∫

(s′,t,m)∈D
λ(s, t,m)dmdtds′

)
=

n∏
i=1

[λs(s)fθ(s)(mi)] exp

(
−
∫

(s′,t,m)∈D
λs(s)fθ(s)(m)dmdtds′

)
(4.10)

Using kernel K(s) as the weights and then take log, we can also write down the kernel

weighted composite loglikelihood function

`h(θ(s), λs(s)) =
n∑
i=1

Kh(si − s){log[λs(s)] + log[fθ(s)(mi)]}

−
∫

(s′,t,m)∈D
Kh(s

′ − s)λs(s)fθ(s)(m)dmdtds′,

(4.11)

where Kh(s) = K(s/h)/h2 and K(s) is a kernel function on R2. Here we choose K

as a full symmetric density function on R2 satisfying

0 < ξ =

∫
R2

K2(s)ds <∞.

As long as the kernel function K(s) and the bandwidth h have been chosen, θ(s) and

λs(s) can be estimated by maximizing `h(θ(s), λs(s)).

The function `h(θ(s), λs(s)) can be viewed as a limit of the kernel weighted com-

posite loglikelihood for binary variables Yi = I[N(Di) > 0], i = 1, · · · , k, where D is
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partitioned into L small pixels and I(·) is an indicator function. This limit is obtained

as k → ∞ with supi≤k ρ(Di) → 0. In the case of a Poisson SMPP, the composite

loglikelihood function coincides with the loglikelihood function, which indicates that

the KWCL approach reduces to the kernel weighted likelihood (KWL) approach;

otherwise, the two approaches are different.

Observing the right side of (4.11), we find that θ(s) and λs(s) can be treated as

constants after s is chosen. We treat both as unknown parameters in our KWCL

approach. Using the basic theory of the composite likelihood approach, the kernel

weighted composite likelihood estimators (KWCLE) of λs(s) and θ(s) can be derived

by maximizing `h(θ(s), λs(s)) as

(θ̂(s), λ̂s(s)) = arg max
θ(s),λs(s)

`h(θ(s), λs(s)), (4.12)

which are usually solved by

˙̀
h(θ(s), λs(s)) = 0, (4.13)

where ˙̀
h is the gradient of `h. In the following of this paper, we use ˙̀ and ῭ to

represent the gradient vector and the Hessian matrix of `.

A particular interest is the case when fθ(s)(m) is the density of a truncated expo-

nential distribution given by

fθ(s)(m) = θ(s)e−θ(s)(m−m),m ≥ m, θ(s) ∈ R+, (4.14)

as this model is summarized from the famous power-law frequency-size relationship of

natural hazards. For example, in an effort to examine forest fires in the conterminous

USA, Malamud, Millington, and Perry (2005) found that despite the complexities

concerning their initiation and propagation, wildfires exhibit power-law frequency-

area statistics over many orders of magnitude. In summary, the power-law states a

statistically robust fit as y = αx−β, α > 0, where x represents the area burned and

y represents the frequency density. Let m = log(x) and assume the data only con-

tains those with x ≥ em. Then, the power-law relationship can be summarized by a
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probability density function as displayed in (4.14). In addition, the usage of the expo-

nential distribution is consistent with the well-known Gutenberg-Richter relationship

between magnitudes and frequencies for earthquakes (Gutenberg and Richter, 1954).

The power-law relationship has been examined by many similar studies, which in-

clude McCarthy and Gill (1997) for Australia, Ricotta, Avena and Marchetti (1999);

Ricotta et. al (2001) for Italy and Spain, Niklasson and Granstrom (2000) for North-

ern Sweden, Song et. al (2001) for China, Zhang et. al (2003) for Russia, and

Fiorucci, Gaetani and Minciardi (2008) for Italy. These studies suggest that wildfires

exhibit robust power-law relationships between fire frequency and burned area at re-

gional scales. Besides forest wildfire studies, the power-law relationship has also been

confirmed by many authors in earthquake studies (Ogata, 1988).

Let fθ(s)(m) be given by (4.14) and assume D = S× [0, T ]×M withM = [m,∞).

Then, Equation (4.13) becomes

n∑
i=1

Kh(si − s)[
1

θ(s)
− (mi −m)] = 0

and
n∑
i=1

Kh(si − s)

λs(s)
− T

∫
S
Kh(s

′ − s)ds′ = 0.

The KWCLE of θ(s) and λs(s) are

θ̂(s) =

∑n
i=1 Kh(si − s)∑n

i=1 Kh(si − s)(mi −m)
,

λ̂s(s) =

∑n
i=1Kh(si − s)

T
∫
S Kh(s′ − s)ds′

.

(4.15)

The estimators θ̂(s) and λ̂s(s) provided by Equation (4.15) are considered as a

special case of θ̂(s) and λ̂s(s) in Equation (4.13). Both of them are considered in this

article, where the former are used in our simulations and applications displayed in

Sections 4.5 and 4.6, respectively, but the latter are considered more generally in our

asymptotics in Section 4.3.
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4.3 Asymptotics

Denote

˙̀
h,0(θ(s), λs(s)) = ∂`(θ(s), λs(s))/∂λs(s)

and

˙̀
h,j(θ(s), λs(s)) = ∂`(θ(s), λs(s))/∂θj(s)

for θ(s) = (θ1(s), · · · , θp(s)) with j = 1, · · · , p. Using the expression of stochastic

integral, the left side of Equation (4.13) can be expressed as

1

T
˙̀
h,0(θ(s), λs(s))

=
1

T

∫
s′∈S,t∈[0,T ],m∈M

Kh(s
′ − s)

λs(s)
N(ds′ × dt× dm)−

∫
s′∈S

Kh(s
′ − s)ds′

(4.16)

and

1

T
˙̀
h,j(θ(s), λs(s))

=
1

T

∫
s′∈S,t∈[0,T ],m∈M

Kh(s
′ − s)

ḟj,θ(s)(m)

fθ(s)(m)
N(ds′ × dt× dm), j = 1, · · · , p,

(4.17)

where ḟj,θ(s)(m) = ∂fθ(s)(m)/∂θj(s), j = 1, · · · , p. Then, λ̂s(s) can be solved by

˙̀
h,0(θ(s), λs(s)) = 0 and θ̂(s) can be solved by ˙̀

h,j(θ(s), λs(s)) = 0, j = 1, · · · , p,

which implies that (4.16) and (4.17) can be treated as equations of Z-estimation (e.g.

Chapter 5 of van der Vaart (1998)). However, we cannot directly use the conclusions

since dependence is presented on right sides of (4.16) and (4.17). Therefore, it is

necessary to provide rigorous proofs of the asymptotic properties of θ̂(s) and λ̂s(s).

Denote θ0(s) = (θ0,1(s), · · · , θ0,p(s))T and θ(s) = (θ1(s), · · · , θp(s))T . In the follow-

ing, we always use θ0(s) and λs0(s) to represent the true functions of θ(s) and λs(s),

Γ0((s1, t1,m1), (s2, t2,m2)), g0((s1, t1,m1), (s2, t2,m2)), and ω0((s1,m1), (s2,m2)) to

represent the true functions of Γ((s1, t1,m1), (s2, t2,m2)), g((s1, t1,m1), (s2, t2,m2)),

and ω((s1,m1), (s2,m2)), respectively. We use Eλ and Vλ to denote the expected

value and variance of a certain expression, if the first-order intensity function of N

is λ(s, t,m) = λs(s)fθ(s)(m). Then, Eλ0 and Vλ0 are the true expected value and true

variance under λ0(s, t,m) = λs0(s)fθ0(s)(m), respectively.
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The asymptotic properties of λ̂s(s) and θ̂(s) are considered under the case when

the domain increases. We assume S and M are bounded such that N(D) is finite if

T is finite, where D = S × [0, T ]×M. The consistency and asymptotic normality of

λ̂s(s) and θ̂(s) are considered under T → ∞. We also need the following regularity

conditions.

Additional Regularity Conditions:

(C5) Both S and M are connected measurable subset with |∂S| = |∂M| = 0.

(C6) Both λs(s) and θ(s) are twice continuously differentiable in any s ∈ S.

(C7) fθ′(m) is twice continuously differentiable in θ′ ∈ Θ for any m ∈M.

(C8) If fθ′(m) = fθ′′(m) almost surely for all s ∈ S, then θ′ = θ′′, and the inverse of

the Fisher Information matrix I(θ′) = (Iij(θ
′))p×p exists for all θ′ ∈ Θ.

(C9) Θ is compact.

(C10) There exists a function H(m) such that Eθ′ |H(m)| < ∞ and | log fθ′(m) −

log fθ′′(m)| < H(m) for all m ∈M and θ′, θ′′ ∈ Θ.

(C11) The solutions of λs(s) and θ(s) in Equation (4.13) are unique.

(C12) The true function satisfies λs0(s) > 0 at any interior point s ∈ S.

(C13) The true pair correlation function g0((s1, 0,m1), (s2, t,m2)) is continuous on

(S × R×M)2.

Lemma 1 Assume Conditions (C1)–(C8) hold. For any interior point s ∈ S with

λs(s) > 0, let µh(s) = (µh,0(s), · · · , µh,p(s))T with

µh,0(s) =
1

λs(s)

∫
s+hu∈S

K(u)[λs0(s + hu)− λs(s)]du

µh,j(s) =

∫
s+hu∈S,m∈M

K(u)λs0(s + hu)
∂ log fθ(s)(m)

∂θj(s)

× fθ0(s+hu)(m)dudm, j = 1, · · · , p,

(4.18)
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and Σh(s) = (σh,ij(s))(p+1)×(p+1) with

σh,00(s) =
1

λ2
s(s)

∫
s′,s′′∈S,m′,m′′∈M

Kh(s
′ − s)Kh(s

′′ − s)

× ω0((s′,m′), (s′′,m′′))dm′′ds′′dm′ds′,

σh,0i(s) =
1

λs(s)

∫
s′,s′′∈S,m′,m′′∈M

Kh(s
′ − s)Kh(s

′′ − s)ω0((s′,m′), (s′′,m′′))

×
∂ log fθ(s)(m

′)

∂θi(s)
dudm′′ds′dm′,

σh,ij(s) =

∫
s′,s′′∈S,m′,m′′∈M

Kh(s
′ − s)Kh(s

′′ − s)ω0((s′,m′), (s′′,m′′))

×
∂ log fθ(s)(m

′)

∂θi(s)

∂ log fθ(s)(m
′′)

∂θj(s)
ds′′dm′′ds′dm′,

(4.19)

for i, j = 1, · · · , p. If h is fixed, then

√
T [

1

T
˙̀
h(θ(s), λs(s))− µh,0(s)]

D→ N(0,Σh(s)) (4.20)

as T →∞.

Proof: According to Corollary 1, there is

V −
1
2 [ ˙̀

h,0(θ(s), λs(s))]{ ˙̀
h,0(θ(s), λs(s))− E[ ˙̀

h,0(θ(s), λs(s))]} D→ N(0, 1)

as T → ∞. Then, it is enough to compute the expected value and variance of

˙̀
h,0(θ(s), λs(s)). First, we consider the expected value of Equations (4.16) and (4.17)

for a given s ∈M. Straightforwardly,

Eλ0 [
1

T
˙̀
h,0(θ(s), λs(s))]

=

∫
s′∈S,m∈M

Kh(s
′ − s)

λs(s)
[λs0(s′)fθ0(s′)(m)− λs(s)fθ(s)(m)]ds′dm

=

∫
s+hu∈S,m∈M

K(u)

λs(s)
[λs0(s + hu)fθ0(s+hu)(m)− λs(s)fθ(s)(m)]dudm.

and

Eλ0 [
1

T
˙̀
h,j(θ(s), λs(s))]

=

∫
s′∈S,m∈M

Kh(s
′ − s)

∂fθ(s)(m)

∂θj(s)

fθ(s)(m)
λs0(s′)fθ0(s′)(m)ds′dm

=

∫
s+hu∈S,m∈M

K(u)
∂fθ(s)(m)

∂θj(s)

fθ(s)(m)
λs0(s + hu)fθ0(s+hu)(m)ds′dm.
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Then, µh(s) = Eλ0 [T
−1 ˙̀

h,j(θ(s), λs(s))]. Next, we consider the variance-covariance

matrix of Equations (4.16) and (4.17). We have

Vλ0 [
1

T
˙̀
h,0(θ(s), λs(s))]

=
1

T 2λ2
s(s)

∫
s′,s′′∈S,t′,t′′∈[0,T ],m′,m′′∈M

Kh(s
′ − s)Kh(s

′′ − s)

× Γ((s′, 0,m′), (s′′, t′′ − t′,m′′))ds′′dt′′dm′′ds′dt′dm′

=
1

T 2λ2
s(s)

∫
s′,s′′∈S,m′,m′′∈M

Kh(s
′ − s)Kh(s

′′ − s)

×
[∫

t′∈[0,T ],v∈[−t′,T−t′]
Γ0((s′, 0,m′), (s′′, v,m′′))dvdt′

]
dudm′′ds′dm′,

Covλ0 [
1

T
˙̀
h,0(θ(s), λs(s)),

1

T
˙̀
h,i(θ(s), λs(s))]

=
1

T 2λs(s)

∫
s′,s+hu∈S,m′,m′′∈M

Kh(s
′ − s + hu)K(u)

∂ log fθ(s)(m
′)

∂θi(s)

× Γ((s′, 0,m′), (s′′, t′′ − t′,m′′))ds′′dt′′dm′′ds′dt′dm′

=
1

T 2λs(s)

∫
s′,s′′∈S,m′,m′′∈M

Kh(s
′ − s)Kh(s

′′ − s)
∂ log fθ(s)(m

′)

∂θi(s)

×
[∫

t′∈[0,T ],v∈[−t′,T−t′]
Γ0((s′, 0,m′), (s′′, v,m′′))dt′dv

]
ds′′dm′′ds′dm′,

and

Covλ0 [
1

T
˙̀
h,i(θ(s), λs(s)),

1

T
˙̀
h,j(θ(s), λs(s))]

=
1

T 2

∫
s′,s′′∈S,t′,t′′∈[0,T ],m′,m′′∈M

Kh(s
′ − s)Kh(s

′′ − s)
∂ log fθ(s)(m

′)

∂θi(s)

∂ log fθ(s)(m
′)

∂θj(s)

× Γ((s′, 0,m′), (s′′, t′′ − t′,m′′))ds′′dt′′dm′′ds′dt′dm′

=
1

T 2

∫
s′,s′′∈S,m′,m′′∈M

Kh(s
′ − s)Kh(s

′′ − s)
∂ log fθ(s)(m

′)

∂θi(s)

∂ log fθ(s)(m
′′)

∂θj(s)

×
[∫

t′∈[0,T ],v∈[−t′,T−t′]
Γ0((s′, 0,m′), (s′′, v,m′′))dt′dv

]
ds′′dm′′ds′dm′

for i, j = 1, · · · , p. Then, Σh(s) = limT→∞ V [T−1/2 ˙̀
h(θ(s), λs(s))]. The final conclu-

sion is drawn using the Continuous Mapping Theorem. ♦

Theorem 2 (Consistency) Assume Conditions (C1)–(C13) hold. If h → 0 and

Th → ∞ as T → ∞, then θ̂(s)
P→ θ0(s) and λ̂s(s)

P→ λs0(s) for every interior

point s of S.
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Proof: Note that

lim
h→0

µh,0(s) =
1

λs(s)

∫
s+hu∈S,m∈M

K(u)[λs0(s + hu)− λs(s)]dudm =
λs0(s)

λs(s)
− 1

which is zero if and only if λs(s) = λs0(s). As Equation (4.16) induces a closed form

solution

λ̂s(s) =

∫
s′∈S,t∈[0,T ],m∈MKh(s

′ − s)N(ds′ × dt× dm)

T
∫
s+hu∈S K(u)du

,

we conclude λ̂s(s)
P→ λs0(s) if h→ 0 and Th→∞ as T →∞. For the consistency of

θ̂(s) when s is an interior point of S, we consider

lim
h→0

µh,j(s) =

∫
s+hu∈S,m∈M

K(u)λs0(s + hu)
∂ log fθ(s)(m)

∂θj(s)
fθ0(s+hu)(m)dudm

=λs0(s)

∫
m∈M

∂ log fθ(s)(m)

∂θj(s)
fθ0(s)(m)dudm.

According to the property of the Kullback-Leibler information number (e.g. Fer-

guson (1996), p. 112), the above is zero if and only if θ(s) = θ0(s). Therefore,

limh→0 µh,j(s) = 0 for j = 1, · · · , p if and only if θ(s) = θ0(s). Let Ωs = {θ′ :

|θ′ − θ0(s)| ≥ γ} for a certain γ > 0. Since Θ is compact, Ωs is also compact. Let

α = minθ′∈Ωs{|E[T−1 ˙̀
h,j(θ

′, λs0(s))]|}. Then, α > 0 and

P (lim inf
T→∞

inf
θ′∈Ωs

|T−1 ˙̀
h,j(θ

′, λs0(s))| ≥ α) = 1.

Therefore, with probability one there exists a T ′ such that for all T > T ′,

inf
θ′∈Ωs

|T−1 ˙̀
h,j(θ

′, λs0(s))| ≥ α/2.

Then with probability one there is |θ̂(s) − θ0(s)| < γ. Since γ is arbitrary, we have

θ̂(s)
P→ θ0(s), and this is true for any interior s ∈ S. ♦

As long as the consistency is shown, we need to consider the asymptotic normality.

To derive the asymptotic normality, we need two Taylor expansions. The first is

λs0(s + hu) =λs0(s) + hλ̇Ts0(s)u +
h2

2
uT λ̈s0(s)u + o(h2) (4.21)
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where λ̇s0(s) is a two-dimensional gradient vector and λ̈s0(s) is a 2 × 2-dimensional

Hessian matrix. The second is

λs0(s + hu)fθ0(s+hu)(m)

=λs0(s)fθ0(s)(m) + h[λs0(s)ḟTθ0(s)(m)θ̇0(s)Tu + fθ0(s)(m)λ̇Ts0(s)u]

+
h2

2
[λs0(s)uT ḟθ0(s)(m)θ̈0(s)u + λs0(s)uT θ̇0(s)f̈θ0(s)(m)θ̇T0 (s)u

+ 2uT λ̇s0(s)ḟTθ0(s)(m)θ̇T0 (s)u] + o(h2),

(4.22)

where ḟθ0(s)(m) is a p-dimensional gradient vector, f̈θ0(s)(m) is a p × p-dimensional

Hessian matrix, θ̇0(s) is a p× 2-dimensional gradient matrix, and θ̈0(s) is a p× 2× 2-

dimensional Hessian third-order tensor.

Theorem 3 Assume Conditions (C1)–(C13) hold. Let ν(s) = (ν0(s), · · · , νp(s)),

where

ν0(s) =
1

2

∫
R2

K(u)uT λ̈s(s)udu

and

νj(s) =
1

2

∫
u∈R2,m∈M

K(u)[λs0(s)uT ḟθ0(s)(m)θ̈0(s)u + λs0(s)uT θ̇0(s)f̈θ0(s)(m)θ̇T0 (s)u

+ 2uT λ̇s0(s)ḟTθ0(s)(m)θ̇T0 (s)u]dmdu, j = 1, · · · , p.

Let Σ0(s) = (σ0,ij(s))(p+1)×(p+1) for i, j = 0, · · · , p with σ0,00(s) = ξ/λs0(s), σ0,0i(s) =

0, and σ0,ij(s) = ξλs0(s)Iij(θ0(s)) for i, j = 1, · · · , p. If h = cT−1/6 for a constant c

as T →∞, then

h
√
T ˙̀

h(θ0(s), λs0(s))
D→ N(c2ν(s),Σ0(s)/c2). (4.23)

Proof: Consider the bias and the variance of T−1 ˙̀
h(θ0(s), λs0(s)) as T →∞ with

h → 0 and Th → ∞. Let λs(s) = λs0(s) and fθ(s)(s) = fθ0(s)(s) in Equations (4.18)

and (4.19). The first-component of the bias is

ν0(s) = lim
h→0

1

h2

∫
s+hu

K(u)[λs0(s + hu)− λs0(s)]ds

= lim
h→0

1

h2

∫
R2

K(u)[hλ̇Ts0(s)u +
h2

2
uT λ̈s0(s)u]du

=
1

2

∫
R2

K(u)uT λ̈s0(s)udu.
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Since ∫
M
fθ0(s)(m)

∂ log fθ0(s)(m)

∂θj(s)
fθ0(s)(m)dm = 0, j = 1, · · · , p,

the (j + 1)-th component of the bias for j 6= 0 satisfies

νj(s) = lim
h→0

1

h2
µh,j(s).

The limit of Kh(s
′−s+hu) is not zero as h→ 0 if and only if s′ = s, which induces the

expression of the limit as K(u/h)/h2. To derive the variance of T−1 ˙̀
h(θ0(s), λs0(s)),

according to Equation (4.7) there is

ω0((s′,m′), (s′′,m′′))

=[λs0(s′)fθ0(s′)(m
′)][λs0(s′′)fθ0(s′′)(m

′′)]

∫
R
[g0((s′, 0,m′), (s2, t,m2))− 1]dt

+ [λs0(s′)fθ0(s′)(m
′)]δ(s′,m′)(s

′′,m′′).

According to Condition (C13), only the second term is necessary to be considered in

the variance expression of T−1 ˙̀
h(θ0(s), λs0(s)) as h→ 0. Then,

lim
h→0

h2σh,00 = lim
h→0

h2

λ2
s0(s)

∫
s′∈S,m′∈M

K2
h(s′ − s)λs0(s′)fθ0(s′)(m

′)dm′ds

= lim
h→0

1

λ2
s0(s)

∫
s+hu∈S

K2(u)λs0(s + hu)du

=
1

λs0(s)

∫
R2

K2(u)du

=σ0,00.

Using

lim
h→0

h2σh,0i

= lim
h→0

h2

λs0(s)

∫
s′∈S,m′∈M

K2
h(s′ − s)λs0(s′)fθ0(s′)(m

′)
∂ log fθ0(s)(m

′)

∂θ0,i(s)(m′)
dm′ds′

= lim
h→0

1

λs0(s)

∫
s+hu∈S,m′∈M

K2(u)λs0(s + hu)fθ0(s+hu)(m
′)
∂ log fθ0(s)(m

′)

∂θ0,i(s)(m′)
dm′du

=

∫
u∈R2,m′∈M

K2(u)fθ0(s)(m
′)
∂ log fθ0(s)(m

′)

∂θ0,i(s)(m′)
dm′du

= 0,
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and

lim
h→0

h2σh,ij

= lim
h→0

h2

∫
s′∈S,m′∈M

K2
h(s′ − s)λs0(s′)fθ0(s′)(m

′)
∂ log fθ0(s)(m

′)

∂θ0,i(s)(m′)

∂ log fθ0(s)(m
′)

∂θ0,j(s)(m′)
dm′ds′

= λs0(s)

∫
R2

K2(u)[

∫
m′∈M

∂ log fθ0(s)(m
′)

∂θ0,i(s)(m′)

∂ log fθ0(s)(m
′)

∂θ0,j(s)(m′)
dm′]du

= σ0,ij,

for i, j = 1, · · · , p, the expression of νj(s) is derived. To make both limits of bias and

variance exist, we should choose h = cT−1/6. Then

T−
1
3 ˙̀
h(θ0(s), λs0(s)) =

h
√
T

c
[
1

T
˙̀
h(θ0(s), λs0(s))− µh(s)] +

c2

h2
µh(s).

Clearly, the first term of above is a stochastic term with mean zero and the limit of

covariance equal to Σ0(s)/c2 as T → ∞. The second term above is a deterministic

term with the limit equal to c2ν(s) as T →∞. Then, Equation (4.23) is drawn. ♦

Remark: The matrix Σ0(s) can be expressed as

Σ0(s) =

 σ0,00(s) 0

0 ξI(θ0(s))

 ,

where I(θ0(s)) is the Fisher information matrix.

Corollary 2 Assume all the assumptions of Theorem 3 hold. If h = cT−1/6 for a

constant c as T →∞, then

T
1
3

 λ̂s(s)

θ̂(s)

−
 λs0(s)

θ0(s)

 D→ N(c2Σ−1
0 (s)ν(s),Σ−1

0 (s)/c2). (4.24)

Proof: Let Z(s) = (λ̂s(s), θ̂(s))T and z0(s) = (λs0(s), θ0(s))T . Consider the Taylor

expansion

T−
2
3 ˙̀
h(θ̂(s), λ̂s(s))

=T−
2
3 ˙̀
h(θ0(s), λs0(s)) + [

1

T
῭
h(θ0(s), λs0(s))][T

1
3 (Z(s)− z0(s))] + op(1).



69

Then,

T
1
3 (Z(s)− z0(s)) = −[

1

T
῭
h(θ0(s), λs0(s))]−1[T−

2
3 ˙̀
h(θ0(s), λs0(s))] + op(1).

Note that
1

T
῭
h(θ0(s), λs0(s))

P→ Σ0(s)

for all s ∈ S. Equation (4.24) is concluded. ♦

Remark: Corollary (2) recommends the optimal bandwidth in the KWCL ap-

proach is to choose h = cT−1/6 for a certain c as T →∞, which may depend on the

kernel function, the second-order partial derivatives of λs0(s) and fθ0(s)(s), and the

integrated covariance function ω0((s1,m1), (s2,m2)).

4.4 Bandwidth Selection

The most popular criterion to judge the accuracy of a bandwidth h in a kernel-

based method is the mean integrated square error (MISE) (e.g., page 344 of van der

Vaart, 1998). It can be defined as

MISE(f̂) =

∫
Ef (f̂(x)− f(x))2dx

=

∫
varf f̂(x)dx+

∫
(Ef f̂(x)− f(x))2,

which is the sum of an integrated variance term and a bias term. Both terms need to

be small for the MISE to be small.

Since the dimension of estimators in the KWCL approach is greater than one, we

modify the classical MISE criterion and define

MISE(λ̂s(s), θ̂(s)) =

∫
S
E[(λ̂s(s)− λs0(s))2 + ‖θ̂(s)− θ0(s)‖2]ds. (4.25)
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According to Equation (4.24) in Corollary 2, if we choose h = cT−1/6 as T → ∞,

then

lim
T→∞

T
2
3MISE(λ̂s(s), θ̂(s)) =

∫
S
{c4[1TΣ−1

0 (s)ν(s)]2 +
1

c2
1TΣ−1

0 (s)1}ds,

where 1 is the (p+ 1)-dimensional vector with all of its components equal to one. As

the right side of the above equation is maximized when

4c3

∫
S
[1TΣ−1

0 (s)ν(s)]2ds− 2

c3

∫
S

1TΣ−1
0 (s)1ds = 0, (4.26)

we can solve for c:

c =

{ ∫
S 1TΣ−1

0 (s)1ds

2
∫
S [1TΣ−1

0 (s)ν(s)]2ds

} 1
6

. (4.27)

The optimal bandwidth hopt in the KWCL approach is

hopt = cT−1/6 =

{ ∫
S 1TΣ−1

0 (s)1ds

2T
∫
S [1TΣ−1

0 (s)ν(s)]2ds

} 1
6

,

which induces the optimal MISEopt is about

MISEopt ≈
3T−

2
3

2
2
3

[∫
S
[1TΣ−1

0 (s)ν(s)]2ds

] 1
3
[∫
S

1TΣ−1
0 (s)1ds

] 2
3

.

The asymptotic distribution of the KWCLE of λs(s) and θ(s) under the optimal

bandwidth is obtained if (4.27) is used in Corollary 2.

We note that the hopt depends on the length of the observed period T , the ker-

nel function K, the unknown intensity function λs(s0) for points, and the unknown

function θ(s) in fθ(s) for marks, which should be considered in practice.

4.5 Simulation Study

The performance of the KWCLEs of θ(s) and λs(s) was examined by simula-

tion studies. To evaluate the performance of proposed estimators, we generated the

marked point process N from Model (4.2) on S × [0, T ] × M, where S = [0, 1]2

represented the study region of points within the unit square, M = R+ represented
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the possible values of marks, and [0, T ] represented the period of observation. The

length of the observation period was completely determined by T . According to our

asymptotic studies, the KWCLE of θ(s) and λs(s) should be close to the true values

if T is large. Therefore, our study was focused on the behavior of θ̂(s) and λ̂s(s) as T

increased. The marked point process N defined by Model (4.2) was partially station-

ary. Since its first-order intensity function λ(s, t,m) was independent of T , we only

needed to focus on different choices of λs(s) and fθ(s)(m) in our simulation studies.

As long as λs(s) and fθ(s)(m) were determined, the expected number of points within

the study region was given as

κ = E[N([0, 1]2 × [0, T ]× R+)] = T

∫
[0,1]2

λs(s)ds, (4.28)

which indicated that the expected number of points proportionally increased as T

increased.

Note that only the first-order intensity function was described by Model (4.2). The

choice of the second-order intensity function was flexible. In order to evaluate the

impact of the second-order intensity function on the performance of θ̂(s) and λ̂s(s),

we considered two different types of marked point processes: the marked Poisson and

the marked (Neyman-Scott) cluster processes. The definitions of these two processes

can be easily generalized from the classical definitions of the Poisson point and the

(Neyman-Scott) cluster point processes in many textbooks (e.g. p. 13 and p. 179 in

Daley and Vere-Jones, 2003). As different types of second-order intensity functions

were derived using these two processes, the comparison could reflect the influence of

the second-order intensity functions on efficiency of our estimators.

In all of our simulation studies, we used

λs(s) = 400β(sx, a, a)β(sy, a, a) (4.29)

for both the marked Poisson and the marked cluster processes, where s = (sx, sy) ∈

[0, 1]2 and β(z, a, a) was the probability density function (PDF) of Beta(a, a) dis-

tribution. According to this setting, the expected number of points of a unit time
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interval was 400 and the intensity function of Ns was Tλs(s). The parameter T was

chosen to be 2.5, 5, 12.5 and 25 such that we had the expected number of points κ

to be 1000, 2000, 5000 and 10000 respectively. We also used a = 1 and a = 2 for

uniform and non-uniform λs(s), respectively.

After the first-order intensity function was chosen, we generated both the marked

Poisson and the marked cluster processes. For the marked Poisson process, we in-

dependently generated points from [0, 1]2 × [0, T ] with the intensity function Tλs(s),

where λs(s) was given by (4.29). Example of two 3-dimensional Poisson processes (no

cluster) are shown in the upper panel of Figure 4.1, where a = 1 represents uniform

λs(s) and a = 2 represents non-uniform λs(s). For illustration we set the expected

number of points κ to be 250 here. As long as points were derived, we indepen-

dently generated marks from the exponential distribution with the PDF given by

fθ(s)(m) = θ(s)e−θ(s)m, where

θ(s) = e
‖s−s0‖

2

3 (4.30)

with the center s0 = (0.5, 0.5). According to (4.30), the localized parameter θ(s)

attained its minimum value 1 at s0 or maximum value 5.294 at (0, 0), (0, 1), (1, 0),

and (1, 1), respectively. Smaller values of θ(s) corresponded to higher probability of

getting large marks. From this setting, we expected to see more large marks if points

were close to s0; otherwise for points close to the boundary, more small marks were

expected. The evaluation of the exponential distribution for marks was important

since it was resulted from the well-known power-law (Turcotte et. al, 2006) and

Gutenberg-Richter law (Gutenberg and Richter, 1954) for frequency-size relationships

in forest wildfires and earthquakes, respectively.

For the marked cluster process, we first independently generated the parent points

from a Poisson process on [0, 1]2× [0, T ] with the intensity function equal to Tλs(s)/k,

where λs(s) was given by (4.29). After the parent points were derived, we then gen-

erated the offspring points using the definition of the cluster process. We generated

a Poisson number with mean b of offspring points for each parent point, where the
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position of offspring points relative to its parent point was generated from an inde-

pendent bivariate normal distribution with standard deviation σ. In our simulations,

we fixed b = 4 and chose σ = 0.02 or σ = 0.04. Therefore, the expected number

of parent points was κ/b, the expected number of offspring points was κ, and the

intensity function of the offspring points was exactly equal to Tλs(s). Example of

two 3-dimensional Poisson cluster processes are given in the lower panel of Figure 4.1,

where σ = 0.02 and 0.04. For illustration we set the mean number of offspring b to be

2 and the expected number of points κ = 500. The cluster structure can be observed

more easily when we set smaller standard deviation σ to generate the offspring points.

As long as the points in the marked cluster process were derived, we used the same

way as we did for the marked Poisson process to generate the marks.

After points and marks in the marked Poisson or marked cluster process were

derived, we computed the KWCLE θ̂(s) of θ(s) and λ̂s(s) of λs(s) by Equation (4.15).

To apply the equation, we chose m = 0 and used the isotropic Gaussian kernel as

K(s) = φ(sx)φ(sy) =
1√
2π
e−
‖s‖2
2 ,

where φ represented the PDF of N(0, 1). To apply Equation (4.15), we needed to

figure out a method to compute the denominator of λ̂s(s). For the Gaussian kernel,

the answer was clear as we had∫
S
Kh(s

′ − s)ds′ =

∫
[0,1]2

1

h2
φ

(
s′x − sx
h

)
φ

(
s′y − sy

h

)
dsxdsy

=

[
Φ

(
1− sx
h

)
− Φ

(
0− sx
h

)][
Φ

(
1− sy
h

)
− Φ

(
0− sy
h

)]
,

where Φ represented the CDF of N(0, 1).

For comparison, we computed the mean integrated square error (MISE) of θ̂(s)

and λ̂s(s) in each replication of our simulations. To derive the MISEs, we needed to

obtain the mean square error (MSE) of θ̂(s) and λ̂s(s) at each selected s ∈ [0, 1]2.

The MISE of θ̂(s) was defined as

MISE(θ̂(s)) = E

∫
[0,1]2

(
θ̂(s)− θ(s)

)2

ds =

∫
[0,1]2

MSE(θ̂(s))ds.



74

Poisson (a=1)
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Figure 4.1. Realizations of 3D Poisson processes with uniform (a = 1)
and non-uniform intensity (a = 2) in the upper panel and Poisson
cluster processes with standard deviation σ = 0.02 and 0.04 in the
lower panel.
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The MISE of λ̂s(s), denoted by MISE(λ̂s(s)), was defined similarly.

To evaluate the integral contained in the formulae of MISE(θ̂(s)) and MISE(λ̂s(s)),

we evenly selected L = 50× 50 points {s0i : i = 1, · · · , L} in [0, 1]2 and computed

M̂ISE(θ̂(s)) =
1

L

L∑
i=1

[θ̂(s0i)− θ(s0i)]
2

to estimate the MISE of θ̂(s). A similar method was used to estimate the MISE of

λ̂s(s). In our simulations, we chose s0i as points on a lattice defined by {s = (sx, sy) :

sx = 0.01 + 0.02(j − 1), sy = 0.01 + 0.02(k − 1), j, k = 1, · · · , 50}.

We simulated 1000 realizations from the marked Poisson and marked cluster pro-

cesses for each set of selected a and κ. As long as points and marks were generated,

we computed the values of θ̂(s) and λ̂s(s) using different bandwidth h. For each h,

we computed the MISE values of θ̂(s) and λ̂s(s) and the optimal h was determined

by the one with the minimum MISE value. For the selected cases displayed in Table

4.1 and Table 4.2, we found that the optimal h for κ = 1000, 2000, 5000 and 10000

was almost equal to 0.075, 0.060, 0.058 and 0.046 respectively. To compare, we also

displayed the results from different choices of h in the tables. It showed that the MISE

values were significantly enlarged if h moved away from the optimal values. The only

exceptional case was the MISE of λ̂s(s) when a = 1. The interpretation of this case

was easy because the underlying point process Ns was homogeneous when a = 1. In

this case, λs(s) was constant in [0, 1]2 × [0, T ], which indicated that the minimum

MISE value of λ̂s(s) was attained if h was maximized (i.e. equal to infinite). From

the simulations, we found that the optimal h for θ̂(s) and λ̂s(s) might be different.

This would make the determination of the bandwidth more complicated in practice.

Since estimation of θ̂(s) is more important than estimation of λ̂s(s), we should focus

on the best strategy of the bandwidth selection in θ̂(s) in applications.
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4.6 Case Study

We apply our approach to natural hazard data. Natural hazard data often include

the locations and magnitudes of events, which can be considered as points and marks

respectively in a marked point process (Peduzzi and Herold, 2004). We focus our

approach to applications in forest wildfire and earthquake studies. Specifically, the

Alberta Forest wildfire data and the Japan earthquake data will be considered for

illustrative purposes.

4.6.1 Alberta Forest Wildfire Data

The Alberta Forest wildfire data consisted of historical forest wildfire occurrences

in Alberta, Canada, from 1931 to 2012. The Canadian Alberta Forest Service initiated

the modern era of wildfire record keeping in 1931. Over the years, this fire information

has been recorded, stored and made available in different formats. Beginning in 1996,

paper copies of wildfire historical information were no longer retained. The wildfire

historical data were entered at the field level on the Fire Information Resource Eval-

uation System (FIRES), which are available at http://www.srd.alberta.ca/Wildfire.

We collected the historical forest wildfire data from 1996 to 2010 from the website.

The dataset contained forest wildfire activities with area burned greater than or equal

to 0.01 hectares. There were 1954 fires recorded in 2006 which was the highest annual

frequency among 15 years, and 1840 fires in 2010 was the second highest. However,

the total burned area in 1998 (7269.67km2) was the largest among those 1692 fires.

Overall, the largest wildfire occurred at 111.77 longitude west and 55.47 latitude north

with burned area 2388.67km2 in 2002.

We treated the spatiotemporal locations of wildfire occurrences as points and

area burned as marks in our approach. We assumed that the area burned followed an

exponential distribution with parameter θ(s) described by Model (4.14) withm = 0.01

(hectares), which only depended on the spatial locations of events. We used Equation

(4.15) to compute the KWCLE of θ(s) and λs(s), where the spherical distance and the
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Gaussian kernel were used. We investigated multiple choices of h in the computation

of the KWCLE. We found that h = 100km was almost the optimal in our method.

Therefore, we chose h = 100km in the computation of θ̂(s) and λ̂s(s).

Since the study region was irregular and not convex, we should take the edge

effect into account (Berman and Diggle, 1989). The edge effect was interpreted by the

integral term on denominator of λ̂s(s) in Equation (4.15), which must be estimated.

To compute the integral, we randomly sampled 106 points inside and outside of the

study area as base points. For each base point s′, we computed the values of Kh(s
′−s)

for every s′ ∈ S or s′ 6∈ S, respectively. Then, we had∫
S
Kh(s

′ − s)ds′ ≈
∑

s′∈S Kh(s
′ − s)∑

s′ Kh(s′ − s)
.

This equation was used at every s ∈ S for the computation of θ̂(s) and λ̂s(s).

The estimated surfaces of θ(s) and λs(s) from the Gaussian kernel are displayed in

the upper panel of Figure 4.2. We found the estimated values of θ(s) were smaller in

the North, indicating that large fires were more likely to occur in the North than in the

South. The intensity of fires was higher in the South because of the high frequencies

of small fires there. This was generally consistent with earlier findings that the forests

in the North were with higher risks than in the South using the power-law (Jiang et.

al, 2009) and local odds ratio (Zhang and Zhuang, 2014) analyses for fire frequency

and area burned of Canadian forest ecosystems.

4.6.2 Japan Earthquake Data

We can find many sources of earthquake data available online. For instance, the

website of the North California Earthquake Data Center (NCEDC) at

http://www.ncedc.org/anss/catalog-search.html, or the United States National Geo-

physical (USGS) data center at http://earthquake.usgs.gov/research/data/, and there

are still many other websites with information about earthquake activities. They

recorded the date, time, longitude, latitude, and magnitude of earthquakes starting

from thousands of years ago until now.
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We collected the historical earthquake data from the NCEDC website. We focused

on earthquakes in Japan and the ocean area nearby because Japan was one of the

countries in the world with highest risk of earthquakes. Data of earthquakes of

magnitude 4.0 and larger were chosen from the region between latitude 30 to latitude

45 north and longitude 130 to 150 east for the time span 1961 to 2013. This study

region was the area that most earthquakes occurred.

Total there were 29, 032 earthquakes in our dataset. Among those, 405 of them

had magnitude between six and seven, 29 of them had magnitude between seven and

eight, and 4 of them had magnitude higher than eight. There are a few large earth-

quakes which resulted in severe damage. The 1993 Southwest-off Hokkaido earthquake

occurred on July 12, 1993 had a magnitude of 7.6 and caused a total fo 230 fatalities.

The Great Hanshin earthquake (or Kobe earthquake) occurred on January 16, 1995

had a magnitude of 6.8 which made approximately 6437 people lose their lives. The

largest earthquake (Tohoku earthquake) took place in the ocean area near the north-

eastern Japan on March 11, 2011 where the epicentre was at 38.30 latitude north and

142.37 longitude east with a magnitude of 9.1. Over fifteen thousand deaths as well

as much more injuries and missing people were reported by Japanese National Police

Agency. In addition, the earthquake triggered powerful tsunami waves and caused a

nuclear accident of the Fukushima Daiichi Nuclear Power Plant which affected hun-

dreds of thousands of residents. The damage caused by the earthquake and tsunami

were enormous.

We treated the spatiotemporal locations of earthquakes as points and magnitude

as marks. As we did for the Alberta Forest wildfire data, we used the spherical

distance and Gaussian kernel to estimate θ(s) and λs(s). We used the similar method

to determine the bandwidth h and found that h = 100km was almost the optimal one.

The estimated surfaces of θ(s) and λs(s) are displayed in the lower panel of Figure

4.2. We identified some areas that were more dangerous than the rest. The region

between latitude 42 to 45 north and longitude 145 to 150 east had small θ̂(s) and large

λs(s) indicating both the proportion of large earthquakes and the occurrence rates
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Figure 4.2. Contour plots of θ̂(s) (left) and λ̂(s) (right) in the Al-
berta wildfire (the upper panel) and Japan earthquake data (the lower
panel).

were high. Thus, it was considered as a risky area. The Kuril Islands earthquake

occurred in 1994 with magnitude 8.1 was covered in this region. Another risky area

was between latitude 35 to 39 north and longitude 140 to 144 east with moderate θ̂(s)

but almost the largest λs(s). The largest earthquake in Japan occurred in 2011 with

magnitude 9.1 and the Iwate-Miyagi Nairiku earthquake in 2008 with magnitude 6.9

were both covered in this region. The third area we noticed was between latitude 37

to 40 north and longitude 137 to 140 east with a few small θ̂(s). Three earthquakes

in 1983, 2004 and 2007 with magnitudes 7.7, 6.6, and 6.6 were covered in this region.

In summary, there is a notable interest in proper analysis of historical wildfire and

earthquake data. It is important to study their patterns and pay more attention to

the area where serious natural hazards are more likely to occur, and try to lower the

degree and extent of damage caused by these natural hazards beforehand.
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4.7 Discussion

In this chapter, we have proposed a partial stationarity approach to analyze SMPP

data. The approach is developed based on the concept of partially stationary models

for SMPP data. Specifically, if an SMPP is partially stationary, then its intensity

functions of the SMPP does not vary in time, which indicates that the joint distri-

bution of marks and points can only depend on the spatial locations. The model we

consider in this chapter is a local parametric model, which is composed of a local para-

metric component for marks and a nonparametric component for points. To make

conditions of partial stationarity hold, we require that the local parametric and the

nonparametric components depend on the space but not time. The KWCL approach,

which can be understood as an extension of the local likelihood approach, is proposed

to estimate these two components. The KWCL approach may reduce to the KWL

approach if the SMPP is Poisson.

According to the nature of SMPPs, the intensity function of points reflects the

frequency and the distribution of marks reflects the magnitude of occurrences. There-

fore, both are important in applications. For instance, if the intensity function in a

particular region is high, then it is expected to see more event occurrences in the

region. However, the region may not be risky if magnitudes of marks are low. This

indicates that the analysis of the connection between points and marks are more

important than the separate analysis for points or for marks only. Therefore, it is

recommended that one should jointly look at the performance of the estimated sur-

faces for marks (i.e., θ̂(s)) and points (i.e., λ̂(s)) in the study region.

We expect that the proposed approach will find wide applications in natural hazard

studies as many of natural events satisfy the partial stationarity conditions proposed

in this article. A quick answer can be drawn based on the two examples that we

have discussed in Section 4.6. In a usual forest wildfire study, the main interest is

its impact on global climate change and carbon cycle in the atmosphere (Girardin,

2007). Therefore, it is more important to study the overall effect of forest wildfires
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in a study region. However, the main issue in the earthquake study is the impact of

extremely large earthquakes occurred in a study region. The study of extreme large

marks are more important than the study of frequencies of marks. If Model 4.14 is

used, our approach suggests that risk studies should pay more attention to the area

that has small values of θ(s).

There are a few possible extensions to our approach. First, the partially station-

ary model proposed in this article mostly focuses on the first-order intensity function

and only uses simple properties of the second-order intensity function. Therefore, it

is hard to interpret higher-order (i.e. three-order or higher) dependence of the event

occurrences in an SMPP. Second, although we have provided a method to estimate

the distribution of marks and the intensity function of points, we have not considered

any explanatory variables (e.g., in forest wildfire studies, the effects of drought con-

dition and fuel loadings). It will be important to involve explanatory variables in the

analysis. Third, we have only considered the kernel weighted likelihood approach in

estimation of our model. It is possible to have other nonparametric methods, such as

the smoothing spline methods (Gu, 2012), in estimation of our model. To extend our

proposed approach by considering these issues will be important to wide applications

and deserves further investigations.
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Table 4.1

Simulated values of root M̂ISE for θ̂(s) and λ̂(s) using Gaussian ker-
nel for a = 1 and κ = 1000, 2000, 5000, 10000 in the marked Pois-
son process and marked Poisson cluster processes (σ = 0.02, 0.04),
where the bandwidth was chosen as h = w × κ−1/3 with ω =
0.5, 0.75, 1.0, 1.25, 1.5.

Marked PP Marked Poisson Cluster Process

σ = 0.02 σ = 0.04

a E(N) w θ̂ λ̂ θ̂ λ̂ θ̂ λ̂

1 10000 1.50 0.1136 0.0439 0.1128 0.0968 0.1087 0.0922

1.25 0.0980 0.0525 0.0975 0.1121 0.0935 0.1079

1.00 0.0912 0.0649 0.0913 0.1354 0.0888 0.1237

0.75 0.1010 0.0849 0.1022 0.1701 0.1026 0.1490

0.50 0.1428 0.1256 0.1472 0.2285 0.1508 0.1905

5000 1.50 0.1728 0.0730 0.1462 0.1116 0.1427 0.1072

1.25 0.1254 0.0602 0.1252 0.1303 0.1215 0.1231

1.00 0.1123 0.0737 0.1130 0.1579 0.1108 0.1444

0.75 0.1182 0.0966 0.1202 0.2006 0.1191 0.1747

0.50 0.1642 0.1423 0.1700 0.2735 0.1731 0.2244

2000 1.50 0.2018 0.0624 0.2037 0.1372 0.1993 0.1327

1.25 0.1735 0.0727 0.1738 0.1588 0.1709 0.1522

1.00 0.1496 0.0884 0.1518 0.1919 0.1489 0.1790

0.75 0.1469 0.1153 0.1521 0.2467 0.1498 0.2216

0.50 0.1968 0.1683 0.2080 0.3433 0.2099 0.2902

1000 1.50 0.2498 0.0712 0.2516 0.1563 0.2494 0.1545

1.25 0.2150 0.0839 0.2190 0.1832 0.2153 0.1784

1.00 0.1833 0.1017 0.1897 0.2230 0.1876 0.2134

0.75 0.1761 0.1311 0.1834 0.2870 0.1795 0.2627

0.50 0.2278 0.1899 0.2440 0.3998 0.2445 0.3519
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Table 4.2

Simulated values of root M̂ISE for θ̂(s) and λ̂(s) using Gaussian ker-
nel for a = 2 and κ = 1000, 2000, 5000, 10000 in the marked Pois-
son process and marked Poisson cluster processes (σ = 0.02, 0.04),
where the bandwidth was chosen as h = w × κ−1/3 with ω =
0.5, 0.75, 1.0, 1.25, 1.5.

Marked PP Marked Poisson Cluster Process

σ = 0.02 σ = 0.04

a E(N) w θ̂ λ̂ θ̂ λ̂ θ̂ λ̂

2 10000 1.50 0.1964 0.1270 0.1949 0.1544 0.1846 0.1625

1.25 0.1689 0.1059 0.1682 0.1449 0.1573 0.1494

1.00 0.1569 0.0915 0.1577 0.1493 0.1469 0.1442

0.75 0.1989 0.0932 0.1928 0.1711 0.1884 0.1516

0.50 0.4348 0.1244 0.4156 0.2237 0.4276 0.1803

5000 1.50 0.2422 0.1701 0.2429 0.1974 0.2317 0.2059

1.25 0.2088 0.1396 0.2077 0.1808 0.1976 0.1866

1.00 0.1823 0.1172 0.1852 0.1798 0.1739 0.1767

0.75 0.1995 0.1117 0.2045 0.2036 0.2016 0.1856

0.50 0.4199 0.1416 0.4126 0.2677 0.4180 0.2199

2000 1.50 0.3089 0.2458 0.3098 0.2746 0.3035 0.2803

1.25 0.2706 0.2030 0.2733 0.2442 0.2634 0.2512

1.00 0.2299 0.1646 0.2346 0.2315 0.2254 0.2319

0.75 0.2202 0.1453 0.2296 0.2535 0.2220 0.2407

0.50 0.4149 0.1694 0.3701 0.3353 0.4107 0.2892

1000 1.50 0.3601 0.3193 0.3612 0.3499 0.3571 0.3526

1.25 0.3217 0.2652 0.3245 0.3107 0.3164 0.3128

1.00 0.2771 0.2141 0.2832 0.2882 0.2740 0.2902

0.75 0.2472 0.1819 0.2607 0.3008 0.2532 0.2897

0.50 0.3862 0.1972 0.3720 0.3916 0.4048 0.3487
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5. SUMMARY

In the previous chapters, we have introduced different approaches to model depen-

dence between points and marks. In this chapter we give a discussion of current

results and possible future work.

5.1 Discussion

Our first approach is based on a newly derived covariance function of additive

model for spatial mark point processes. When the points and marks are dependent,

we expect the newly derived covariance function will help us to obtain better pre-

diction results when kriging prediction is chosen instead of point process method.

Exponential covariance for CZ(h) is used in this approach. It is the first compo-

nent of the newly derived covariance. We can also consider other commonly used

covariance functions like Matérn covariance. We use weighted least squares estimator

to estimate the parameters in the covariance function, but other more sophisticated

estimation methods as mentioned in Section 2.2 can also be considered.

In the second approach we consider modeling of univariate and bivariate intensity-

dependent marked log Gaussian Cox processes. In this dissertation we only use normal

for the mark distribution, but other choices like exponential or gamma distribution

are also possible. Due to the reason that kernel methods are sensitive to the choice of

bandwidth, we update both the intensity and other mark-related parameters in our

MCMC algorithm to avoid the kernel estimates of intensity function. Nevertheless,

the estimates of intensity still affects parameter b and makes the convergence slower.

The computation time may be reduced if we use common LGCP modeling method-

ology which considers marks as covariates to estimate intensity Λ(x). However, for

forestry data it makes more sense to let the variables like height and diameter to
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depend on the intensity instead of the other way around, since the tree growth char-

acteristics should be affected by how crowed the neighbor trees are as they compete

for nutrients and light.

For both univariate and bivariate marked point processes, it is more flexible to add

the dependence structure between marks than the conditional independence assump-

tion. Especially when we deal with highly correlated bivariate marks, better predic-

tion results are obtained if our model consist of dependence modeling between them.

But this way we need to estimate more parameters from bivariate cross-covariance

function than the univariate case, and have to take care of the constraints between

parameters to make sure the covariance matrix is positive definite.

In the third approach, we consider a partial stationarity approach to model spa-

tiotemporal marked point processes (SMPPs). If an SMPP is partially stationary,

then its intensity functions are constant from time to time, indicating that the joint

distribution of points and marks only depend on the spatial locations. The model we

consider here is a local parametric model, which consists of a nonparametric compo-

nent for points and a local parametric component for marks. The kernel weighted

composite likelihood (KWCL) approach is proposed to estimate these two compo-

nents. It can be thought of as an extension of the local likelihood approach. If the

SMPP follows Poisson distribution, then the KWCL approach is reduced to the kernel

weighted likelihood approach.

The intensity function of points reflects the frequency and the distribution of

marks reflects the magnitude of events in an SMPP. These are both important in

applications. High intensity function in a particular region indicates that it is likely

to observe more events in the region, though we may not need to worry about it if

magnitudes of marks are low. Areas with high intensity as well as high magnitudes

of marks are the risky regions we need to keep an eye on. If Model 4.14 is used, our

approach suggests that the area with small values of θ(s) are more likely for higher

magnitudes of marks to occur. We should jointly look at the estimated surfaces

for marks (i.e., θ̂(s)) and points (i.e., λ̂(s)) in the study region to identify the risky
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places with both high intensity and high magnitudes of marks. The analysis of the

connection between points and marks are more important than the analysis for points

or marks separately.

We expect the proposed approach to be useful in the study of natural hazards.

Severe wildfires and earthquakes result in an increase in the cost of wildfire and

earthquake protection. Usually the impact of extremely large marks are essential in

the study of natural hazards. It is important to model the patterns of large marks

and attempt to reduce the destruction caused by these natural hazards.

5.2 Future Work

We derive a covariance function for univariate additive marked point process, it

is possible to consider the bivariate case of additive model. Furthermore, we can

use different characteristics related to dependence between points and marks in the

additive model. In this dissertation we focus on the number of points within a certain

distance in the additive model. Nearest neighbor distance may be considered in the

additive model as well.

One potential application of the mark-point dependent models is in the study of

extreme events, where the points represent the locations of times of the occurrence of

extreme events and the mark represents the magnitude. We also want to know about

the difference between using point process models and geostatistical methodology.

From the nature of point process data, we should not use geostatistical methodology

since the sampling locations are random. We will not be able to describe the depen-

dence between points and marks or between intensity and marks from geostatistical

analysis. However, we can still apply geostatistical methods to model and predict the

marks without considering the point process structure. It is still unclear how much

difference the two approaches will generate, and this will be interesting to study both

theoretically and in applications.
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For the partially stationary model we propose for spatiotemporal marked point

processes, we mainly focus on first-order intensity for now. It will be interesting

to study and interpret second-order or higher order dependence of the events in an

SMPP. Another possible extension is to include explanatory variable in our model.

For instance, the drought condition in a forest should be important to consider in

wildfire studies. Other than the kernel weighted likelihood approach in our study,

different nonparametric methods such as smoothing spline methods may be applied.

Currently we deal with quantitative marks in spatial or spatiotemporal marked

point processes, it is also of interest to take account of categorical marks like the

species of trees for forestry data, or types of disease in epidemiological data. It is

worth investigating how the different marks can be dependent on each others.
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