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ABSTRACT

Hoehn, Ross Douglas. Ph.D., Purdue University, December 2014. Quantum Mechan-
ics in Complex Systems. Major Professor: Sabre Kais.

This document should be considered in its separation; there are three distinct

topics contained within and three distinct chapters within the body of works. In a

similar fashion, this abstract should be considered in three parts. Firstly, we explored

the existance of multiply-charged atomic ions by having developed a new set of di-

mensional scaling equations as well as a series of relativistic augmentations to the

standard dimensional scaling procedure and to the self-consistant field calculations.

Secondly, we propose a novel method of predicting drug efficacy in hopes to facilitate

the discovery of new small molecule therapuetics by modeling the agonist-protein

system as being similar to the process of Inelastic Electron Tunneling Spectroscopy.

Finally, we facilitate the instruction in basic quantum mechanical topics through the

use of quantum games; this method of approach allows for the generation of excerises

with the intent of conveying the fundimental concepts within a first year quantum

mechanics classroom. Furthermore, no to be mentioned within the body of the text,

yet presented in appendix form, certain works modeling the proliferation of cells

types within the confines of man-made lattices for the purpose of facilitating artifical

vascular transplants.

In Chapter 2, we present a theoretical framework which describes multiply-charged

atomic ions, their stability within super-intense laser fields,also lay corrections to the

systems due to relativistic effects. Dimensional scaling calculations with relativistic
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corrections for systems: H, H−, H2−, He, He−, He2−, He3− within super-intense laser

fields were completed. Also completed were three-dimensional self consistent field

calculations to verify the dimensionally scaled quantities. With the aforementioned

methods the system’s ability to stably bind ’additional’ electrons through the devel-

opment of multiple isolated regions of high potential energy leading to nodes of high

electron density is shown. These nodes are spaced far enough from each other to min-

imized the electronic repulsion of the electrons, while still providing adequate enough

attraction so as to bind the excess elections into orbitals. We have found that even

with relativistic considerations these species are stably bound within the field. It was

also found that performing the dimensional scaling calculations for systems within

the confines of laser fields to be a much simpler and more cost-effective method than

the supporting D=3 SCF method. The dimensional scaling method is general and

can be extended to include relativistic corrections to describe the stability of simple

molecular systems in super-intense laser fields.

Chapter 3, we deliniate the model, and aspects therein, of inelastic electron tun-

neling and map this model to the protein enviornment. G protein-coupled receptors

(GPCRs) constitute a large family of receptors that sense molecules outside of a cell

and activate signal transduction pathways inside the cell. Modeling how an agonist

activates such a receptor is important for understanding a wide variety of physio-

logical processes and it is of tremendous value for pharmacology and drug design.

Inelastic electron tunneling spectroscopy (IETS) has been proposed as the mecha-

nism by which olfactory GPCRs are activated by an encapsulated agonist. In this

note we apply this notion to GPCRs within the mammalian nervous system using ab

initio quantum chemical modeling. We found that non-endogenous agonists of the

serotonin receptor share a singular IET spectral aspect both amongst each other and

with the serotonin molecule: a peak that scales in intensity with the known agonist

activities. We propose an experiential validation of this model by utilizing lysergic

acid dimethylamide (DAM-57), an ergot derivative, and its isotopologues in which
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hydrogen atoms are replaced by deuterium. If validated our theory may provide new

avenues for guided drug design and better in silico prediction of ecacies.

Our final chapter, explores methods which may be explored to assist in the early

instruction in quantum mechanics. The learning of quantum mechanics is contingent

upon an understanding of the physical significance of the mathematics that one must

perform. Concepts such as normalization, superposition, interference, probability

amplitude and entanglement can prove challenging for the beginning student. This

paper outlines several class exercises that use a non-classical version of tic-tac-toe to

instruct several topics in an undergraduate quantum mechanics course. Quantum tic-

tac-toe (QTTT) is a quantum analogue of classical tic-tac-toe (CTTT) benefiting from

the use of superposition in movement, qualitative (and later quantitative) displays

of entanglement and state collapse due to observation. QTTT can be used for the

benefit of the students understanding in several other topics with the aid of proper

discussion.
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1. INTRODUCTION

1.1 Dimensional Scaling

Many Body interactions are something which has troubled computational method-

ologies within quantum mechanics since inception; throughout the years the physical

and chemical communities have made great advances in the field of electronic struc-

ture theory to help account for these electron-electron interaction through variational

practices such as the Hartree Fock Method or Density Functional Theory. The alter-

native method to the aforementioned is a Dimensional Scaling treatment pioneered

by Herschbach [1], discussed in[2, 3, 4, 5, 6], and is briefly introduced here for the

central force problem[2]. We shall firstly note that the overall procedures is given in

four general steps; these being:

1. Formulate the problem to a general dimensionality, a D-dimensional form.

2. Transform the D-dimensional form to a suitably scaled space which allows for

the removal of major dimensional dependency associated with the quantity of

concern.

3. Evaluate the newly scaled quantity at several special dimensions (namely, D →
∞, D → 1, D → 2). At these dimensions computation of the quantity becomes

very easy.

4. Obtain an approximate value for the D=3 system by repeating the dimensional

evaluations and relating these special D values to D=3 solutions. This is com-

plete in many cases by some form of interpolation or extrapolation.
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Moving on to the central force example, the time-independent Schrodinger Equation

for the simple central force problem in D-dimensions:

[−1

2
∇2
D + V (r)]ΨD = εDΨD. (1.1)

If we were to employ polar coordinates to the above we would require:

r ≡ [
D∑

k=1

x2
k]

1
2 (1.2a)

∇2
D =

1

rD−1

∂

∂r
(rD−1 ∂

∂r
)− L2

D−1

r2
. (1.2b)

Where Eq.(1.2a) gives the definition of the radial coordinate in a generic D-scaled

space, and Eq.(1.2b) is the polar Laplacian in this D-scaled space, L2
D is the term

which retains all angular dependencies. These angular and radial terms shall be dealt

with in a divide and conquer treatment reminiscent to the radial and angular terms of

the Rigid Rotor/Harmonic Oscillator approximations for the simple diatomic. We first

write the wave function in D-dimensions to be the product: ΨD = rlY(ΩD−1), where

all radial dependencies are in the rl term and the D-1 remaining angular dimensions

are described through Y(ΩD−1). Now solving the angular terms for the form Eq.(1.3),

and the recognizing that the V(r) term in Eq.(1.1) can be set to equal magnitude as

the εD term, thus making Eq.(1.1) reduce to the Laplace equation shown in Eq.(1.4).

L2
D−1Y(ΩD−1) = CY(ΩD−1) (1.3)

∇2
Dr

lY(ΩD−1) = 0 (1.4a)

{l(l +D − 2)− C}rl−2Y(ΩD−1) (1.4b)

This means: C=l(l+D− 2); and the Hamiltonian Operator in Eq.(1.1) is now of the

form:

ĤD = −1

2
KD−1(r) +

l(l + d− 2)

2r2
+ V (r). (1.5)

In the above, KD−1(r) is the single non-angular term from the polar Laplacian in

Eq.(1.2b). We may now pass the system through a unit Jacobian, making: JD|ΨD|2 =
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ΦD, JD is the radial part of the unit Jacobian and is of the form: r(D−1). This would

mean, ΨD = r−
1
2

(D−1)ΦD. All leading to the form of KD−1 seen here:

KD−1(r)=r−
1
2

(D−1){∂
2ΦD

∂r2
−D−1

2

D−3

2

ΦD

r2
} (1.6)

Reassembling all the above, and placing them appropriately back into Eq.(1.1), one

shall -after menial simplification- get:

{−1

2

∂2

∂r2
+

Λ(Λ + 1)

2r2
+ V (r)}ΦD = εDΦD. (1.7)

Eq.(1.7) is the radial, D-scaled form of Eq. (1.1), where the only dimensional depen-

dencies lay within the Λ terms as: Λ = l + 1
2
(D − 3). This procedure allows for the

generation of a simple minimization problem for the hydrogen atom and delivers the

ground state energy to be a.u. (Hartree), which is in great agreement with other,

more standard, computational approaches.

The dimensional scaling approach has been shown to work well for a number of

problems and under various degrees of complexity in small quantum systems. The

procedure did well in its infancy to describe simple 3-body problems[7, 8] as well

as harmonic oscillators[9]. Small quantum mechanical systems such as 2-electron

molecules[10], homo- and hetero-nuclear diatomics[11, 12] and their ions[13] as well

as a hydride[14] have all been completed. Chemical binding[15] as well as bound

systems under quasistationary conditions[16] have been completed, including systems

acting without the imposition of the Born-Oppenheimer Approximation[17, 18]. Non-

quantum mechanical problems have also been approached, such as the derivation of

the Virial coefficients[19] and random walks[20, 21]. Finally, this procedure has also

been used to find appropriate functionals for density functional theory[22, 23]. The

generation of stable, multiply-charged atomic ions via exposure to super-intense laser

fields is a topic which challenges preconceived notions for ionic atoms and is, there-

fore, of fundamental importance in atomic and molecular physics[24, 25, 26]. Over

the past decades, advancements in spectroscopic methods have yielded verification of

mono-charged Calcium and Strontium atomic anions[27, 28] and various gas-phase
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poly-charged molecular ions[29, 30, 31] . However without the large charge volume

which is provided by the heavy atoms -above- or small molecules it is unlikely that

species would be able to bind more than one excess electron; this can be noted by

the relative stability of O−2 in the liquid-phase, yet it’s instability within the gas-

phase[29].Theoretical works have developed an absolute upper-limit to the number

of electrons which may be bound to a atomic center[32]: Nc ≥ 2Z, with Nc being

the number of electrons and Z being the Coulomb charge of the nucleus. Within

the context of Lieb’s frameworks, Hydrogen would therefore be disallowed any excess

electrons beyond that which yields the Hydride state, thusly H2− is unstable[33, 34].

Supporting theoretical works have come later[35, 36] -some including implementation

of finite-sized scaling[36]- and have conclusively determined at gas-phase, dianionic

atoms are unstable. It has been shown that stable, multiply-charged atomic ions

may be developed within extremely strong laser fields on the order of 1016 W/cm2

and above[37, 38]. Within the field, the electron density - still being bound to the

nucleus - has been found to be nodal in nature as the Coulomb potential splinters

under the influence of the field into distinct, localized regions whose positions are

governed by the field parameters of the laser. This phenomenon is most easily -

and best- discussed within the context of the Krammers Henneberger (KH) refer-

ence frame, electron centric frame, where the electron is treated as the stationary

body and the nucleus traverses the path of the applied field; in this context the local

nodes of electron density are located at the turning points on the path of the nucleus.

These are the location at which the angular velocity of the nucleus decreases and

thus spends more time in a local area - thus generating a greater pull in that area.

Within these nodal regions, the bound electrons maintain a great enough distance

from one and another to minimize their Coulomb repulsion while also giving each a

center with which to bind. In this field, the electrons which intuition tells us would be

completely ionized- are capable of stably binding into multiply-charged atomic ions.

The field strength allows one to manipulate the location and pull of the nodal centers

, thus generating a method of control over the potential and therefore establishing
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the ability to push the electrons into and past their most stable state by means of

manipulating laser parameters, frequency and intensity. The contained theoretical

works are concerned with High-Frequency Floqeut Theory (HFFT) which allows for

a time-independent treatment of the coupling of the static Coulomb potential with

a time-varying electromagnetic field. This is possible by exploiting highly oscillatory

fields in which the electrons would be prohibited from coupling with the periodic na-

ture of the field due to extremely short periods (large frequencies) of oscillation, thus

the system’s electrons would feel a period average of the applied potential coupled

with the static Coulomb potential, again this is best discussed within the KH frame.

This time-average allows generation of the aforementioned nodal structure and there-

fore permits the stability of the subsequent states and allows the system to forgo

autoionization. The above discussed methodology was introduced to atomic systems

by Pont et al[39], van Duijin et al[40], and was used again by Wei et al[38, 41, 42, 37]

to describe non-relativistic, multiply-charged atomic ions. Herein we shall propose

a framework utilizing HFFT as a backbone for applying relativistic corrections to

atomic ions in a time-independent manner. Consideration within the non-relativisitic

cases lies no longer with both the mass and the magnetic coupling, but with the time

dependent electric field coupling with the system’s Coulomb potential; this work was

performed by Wei et al[38, 41, 42, 37] and produced stably bound multiply-charged

ions for small atomic centers utilizing the field parameter (α0), discussed later, and

finding detachment energies on orders of 0.1eV to 1.0 eV. The enclosed works, here,

expound upon this by adding the necessary relativistic corrections to the previous

framework. A free electron within an oscillating electric field shall undergo oscilla-

tory motions which are governed by a coupling to the field; the electron is said to

be ’quivering’ with a motion defined by a trajectory, ~α0(t), and a quiver amplitude,

α0. A bound electron within the same situation shall feel a new potential which is a

stacking of the applied field and the Coulomb potential of the central charge; the total

potential for the system is said to be a Coulomb potential dressed by the laser, de-

noted as a dressed potential, Vdres. Mass -as a fundamental- is conceptualized in two
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different manners within physics, these being the rest mass and the relativistic mass.

Rest mass, or invariant mass, is for a specific body a constant, measurable quantity

denoted m0. In opposition to the rest mass is the variant quantity: relativistic mass,

mr. The relativistic mass depends upon the velocity of the observer. The variant

nature of mr is a correction to the rest mass which accounts for a non-zero kinetic

energy for the measured system. This means that the relativistic mass increases in

magnitude as the velocity of the system increases, and shall reach infinite mass as

the system reaches the speed of light. We are now called to introduce the concept of

ponderomotive energy, Up; this being the cycle average kinetic energy of a quivering

electron, i.e. electron undergoing oscillatory motion due to an external field and also

qualifying under the dipole approximation. This is quantity discussed in context of

such systems by Joachain, Dörr and Klystra[43]. An evolved form of this statement

is used within these works:

mr = mdressed = me(1 + 2
UP
mec2

)
1
2 (1.8a)

= me(1 + 2q)
1
2 . (1.8b)

As can be seen, the quantity q begins to shift the mass and becomes the dominant

factor within the expression as it approaches unity[44]. The form of Eq. (2.3b) was

found by Brown and Kibble[45] and later verified by Eberly and Sleeper[46] via the

Hamilton-Jacobi equation.

Three dimensional calculations which describe our systems were executed as a

mean of verifying the simpler Dimensional Scaling approach discussed later. The

methodology consisted of unrestricted Hartree-Fock (UHF) utilizing the Pople-Nesbot

equations -which allow for the accommodation of basis sets- to complete calculations

for a series of total electron counts, N, per single value of the field intensity parameter,

α0. The orbital centers were selected to satisfy the above curve and to coincide with

the ”hottest” locations displayed within the contour plots of potential energy. A

basis set was selected which allowed for significant description of both polarized and

diffuse phenomenon residing on small centers. Overlap and kinetic integrals were
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performed with variations on the integrals described by McMurchie and Davidson

in their seminal paper here[47]. Numerical integration methods were appropriate for

the more challenging, non-analytic potential integrals. For this reason two-centered

intregral includes the cost of shifting the coordinate-origin to the center of the product

Gaussian as defined by[48]. The four-centered integrals needed for the self-consistency

were generated by exploiting the axillary function defined by Boyes[49].

1.2 IETS

Quantum activity within biological systems and information theory applied therein

have drawn much recent attention [50, 51, 52, 54, 55]. Examples of systems that ex-

ploit such phenomenon are: quantum coherence and entanglement in photosynthetic

complexes [56, 57, 53, 58, 59, 60, 61, 62, 63, 64], quantum mutations [65, 66], infor-

mation theory and thermodynamics of cancers [67, 68],the avian magnetic compass

[69, 70, 71, 72], tunneling behavior in the antioxidant breakdown of catechols present

in green tea [73], enzymatic action[74], olfaction[75], and genetic coding [76]. G

Protein-Coupled Receptors (GPCR) are the target for the greatest portion of modern

therapeutic small molecule medications[77]. Predictability of pharmacological efficacy

for new drugs prior to a complex total synthesis can be aided by pharmacophore mod-

eling, crystal structure or a homology model. The theory of protein/agonist binding

has been described through variants of the Lock and Key model, originally proposed

by Fischer[78] and the extensions thereof[79]. Although this theory has provided

insight into changes of free energy associated with the formation of the activated

complex, it has not manifested sufficient capacity for the prediction ligand activity

or a mechanism by which the agonist activates the system.

1.2.1 Olfaction and Luca

The Lock and Key description has essentially been the model by which odorant

activation in sensory proteins has been thought to occur. This model lacks - as it
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did with generic protein agonist binding - the predictive ability desired by the per-

fumery community [80]. In support of this theory a complex system was devised to

explain how many unique atomistic signals from distinct receptor proteins are col-

lected and decoded by the olfactory bulb and transformed into a single signal that

can be properly interpreted [81, 82, 83]. Other models that have been put forward

to account for odorant binding and prediction include those of Dyson and Wright

[84], who first proposed a vibrational theory of olfaction and based their works upon

the odorant activating several receptors, each of which detect a certain portion of

the total stimulant pattern of the molecule. It is the collective detected pattern that

yields the specific response associated with the odorant. The theory was expanded

upon to include scents generated through the blend of two or more molecules [85]

and explanations of chiral behaviors in olfaction [86]. Early models attempting to ac-

count for predictability of agonist classification beyond shape were those of odorant

binding[87, 84]; these works proposed a vibrational theory of activation and effect.

Vibrational theories were eventually disregarded for reasons that include a lack of

conceived mechanism and the inability of the protein (which is vibrating) to detect

the continuum of thermally-activated, classical vibrations of the odorant. Several

studies have been conducted to determine which molecular facets are considered,

neutral or unnoticed by the olfactory system, including configurational isomerism

[81], steroisomerism [88, 89, 90, 91], isotopisms [92], odor blending [93] and structural

analogies [75]. A recently suggested a theory of olfactory activation consisting of

a physical mechanism closely resembling Inelastic Electron Tunneling Spectroscopy

(IETS) [75, 94, 80]. Turin contends that the earlier vibrational theory of olfaction was

valid, yet lacked a specific physical mechanism of action. As the system lacked the

necessary radiation source for photo-absorption mechanisms and the proper mech-

anism should require consideration of all normal modes within the molecule, the

physical mechanism that most closely resembles the considerations of the proposed

system is Inelastic Electron Tunneling Spectroscopy (IETS). Within his works, Turin

demonstrated the viability of his theory across several classes of odorants with several
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examples per class. The theory was examined and the plausibility of the time scales of

the phenomenon has since been verified through consideration of Marcus theory gov-

erning rates and kinetic viability [95].Electron tunneling rates for the olfaction system

have been calculated and support the theory [97]. Furthermore, eigenvalue spectral

analysis of odorant molecules has shown a high correlation between the vibrations

and odorant classification [96]. Experiments have been performed using Drosophila

melanogaster, the common fruit fly, in an effort to give merit to Turin’s theory. D.

melanogaster displayed, in both trained and untrained simulations, a sensitivity to the

deuteration of several compounds[92, 98]. One compound used within this set of ex-

periments was acetophenone (ACP). It was found that untrained flies were attracted

to ACP in preference to unscented air. Progressive dueteration of the hydrogens of

ACP yielded compounds which were found to be progressively more aversive to the

flies. Observations of D. melanogaster ’s ability to discern between specific isotope

analogues provides a degree of evidential support consistent with Turin’s theory of

mechanical excitation.

1.2.2 History of IETS

Inelastic Electron Tunneling Spectroscopy is a well-founded experimental method

utilizing a simplistic laboratory set-up that can deliver the vibrational spectra of

an analyte. The mechanism of action is semi-classical and not optical, particular

selection rules are derivable with IETS [99] but in general this method allows for

forbidden transitions, thus all vibrational modes are addressable[100]. The method

is implemented by the application of a potential across a two-plate junction with a

spatial separation between the plates. High energy electrons from the valence band of

one plate will tunnel across the junction into the conduction band of the other. When

the tunneling process occurs in the absence of analyte molecules, the process is elastic

in nature and electron energy is maintained throughout the process, thus the electrons

energy must be respective of the energy between the valence and conductance band.
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1.2.3 Measurements

The IETS mechanism relies on a field driven electron transfer across an insulat-

ing gap situated between two conductive metal plates. The driving field promotes

electrons to tunnel from the donor site on one side of the gap to the acceptor site

on the other side, this being the elastic process. As the intensity of the driving field

is increased, the electrons may donate a quanta of energy to a molecule situated

within the gap along their path, this being the inelastic process. As the interaction is

between the electron and a single atom of the molecule, the contribution to the con-

ductivity found through this calculation must be repeated and summed over all atoms

within the molecule. This secondary conductive path promotes an enhancement to

the current across the gap. The donated quanta of energy is equal to a quanta ac-

cepted by the molecules vibrational or electronic transitions. There exist several other

mechanisms by which electrons are conveyed across the gap including elastic transfer,

inelastic transfer, 2nd order elastic transfer as well as subsequent and less contributing

modes of transport including modes displaying photon emission[101, 102]. Theoret-

ical descriptions of this mechanism were introduced by Kirtley et al[103] and later

elucidated by Phillips and Adkins[104]. As the electrons tunnel through the barrier

they may undergo several processes including: elastic transfer, inelastic transfer, 2nd

order elastic transfer and subsequent less contributing modes of transfer. The in-

elastic modes of transport are facilitated through interaction between the tunneling

electron and a deposited molecule within the gap[102]; the tunneling electron do-

nates of quanta of energy to the deposited molecule. In the case where there are

a non-continuum of acceptor and donor energy levels, the donation of energy from

the electron to the molecule must obey Fermis Golden Rule. The quanta of energy

is typically in the range of vibrations for IETS, although electronic excitations have

also been achieved experimentally[105]. The electronic interaction between the ligand

and the molecule treats each atom of the molecule separately; each atom is assigned a

partial charge, Z, and sits at its equilibrium positions, R, it vibrates with a displace-

ment u. The interaction potential is that of an electron and single dipole. Depositing
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an analyte molecule onto the electron source plate, as the tunneling electrons enter

the gap they may interact with the deposited analyte molecules; in doing so they

are effectively given a springboard, shortening their tunneling path. This interaction

comes at a cost of energy; the electron will lose energy to the analyte molecule, where

the amount of lost energy is equal to that of a vibrational mode of the molecule. This

process may be seen in Figure 3.1. This method has been well described theoretically

[106, 107, 108] and expanded to include such considerations as molecular orientation

[109] and short-ranged higher harmonics [110]. Here we shall review aspects of the

theoretical description of the elastic process a seen in [103, 104].

The most fundamental expression describing electromagnetic ineractions between

an electron and a charged dipole is[111]:

V =
zi (−zj) e2

4πε0

1

|rj − ri|
+
zizje

2

4πε0

1

|rj + pj − ri|
(1.9)

Where ri is the location of the electron providing a field zie
2 and rj is location of

a single side of the dipole where both ends provide a field with the magnitude zje
2;

the second term describes the remaining, oppositely charged side of the dipole at a

distance pj from rj. This is typically repressed through a Tayler Series expansion

concerning the denomenator.

After the series expansion, the point dipole approximation is typically employed;

this approximation states that the distance between the charge and the dipole is

much greater than the displacement between the dipole termini. Under the point

dipole approximation all but the leading terms of the expansion drop due to minimal

contribution. It is important to note that is has been suggested that the spatial

dimensions of the activation site within this class of proteins is to be on the order

of 15Å [97]. This suggested dimension of, when compared to order of magnitude of

the normal mode displacement vector, does not meet the criteria for the point dipole

approximation.

Inelastic electron tunneling, a method for obtaining information about the vibra-

tional modes of a molecule, does not rely on the interactions between the molecular

dipole and the field of the electron [104, 103]. The interaction potential, Eq. 3.4,
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Figure 1.1. Cartoon displaying the competing processes during IETS
where V is potential energy and Fe is the Fermi Level. Path A is
radiative [101, 99], requiring the tunneling electron to spontaneously
lose energy to meet the energy of the conductive band. Path B shows
the electron losing energy via a non-radiative process; it is implicit
that the energy lost is to a normal mode of a deposited molecule
within the gap - such is our case.
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Figure 1.2. Detection of IETS mechanism within laboratory exper-
iments. i shows the relationship between applied potential and the
current across the gaps. ii the current’s derivative with respect to the
applied field. iii the current’s impulse with respect to applied field,
note that this is the quantity used in an experimental IETS apperatus.
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describes the interaction between an electron and a single oscillating dipole, repre-

senting a single vibrating atom within the molecule; this interaction depends neither

upon the polarizability of the system nor the change in net dipole. The single-dipole

nature of the potential requires a summation over the atoms within the molecule

to account for each independent electron-atom interaction. The coherent motion of

two atoms with a molecule may allow for the generation of a phase factor that helps

account for the roughly equal intensities of IR- and Raman-associated modes within

IETS.

1.2.4 Map to Proteins

In 1991 a class of genes was discovered that encodes for proteins responsible for

olfaction[113]. These proteins are a specific subtype of G-Protein Coupled Recep-

tor (GPCR). GPCRs are prevalent throughout living organisms, with roles that in-

clude the synaptic recognition of neurotransmitters within the central nervous system.

GPCRs can have many more functions in physiology, yet the principle concern of this

paper is an examination of the viability of Turin’s theory in cases involving protein-

agonist binding within the CNS and as a predictor of intrinsic efficacy as defined

within [114]. Herein we will examine the IETS spectra of chemical species that are

known endogenous agonists, as well as some synthetic agonists for serotonin (5-HT)

type receptors (specifically the 5-HT2A subtype). The 5-HT2A receptor is specifically

cited as a receptor whose activation is associated with human hallucinogenic responses

[115, 116]. The serotonin molecule has been adequately vibrationally studied, with a

wealth of docking studies to determine its agonist acceptability in light of the Lock

and Key model, yet this receptor has yet to be crystallized in an activated state, an

advance that would yield important information for future calculations and theory

development [117]. A small examination of the viability of the theory in the case of

antagonist molecules is also undertaken here, as well as a proposed set of molecules

that could be employed in the experimental validation of this (general) expansion of
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the theory. The activation of G-Protein Coupled Receptors (GPCRs) governs many

physiological activities examples of which include: olfaction[118], central nervous sys-

tem regulation[119] and maintaining circadian rhythm[120]. Roughly half of all mod-

ern small molecule therapeutics target this class of proteins[112] and roughly 50% of

all human encoded GPCR genes encode for olfaction alone[121]. Understanding the

mechanism by which GPCRs are activated is paramount to applications within both

the pharmaceutical and the flavor/scent industries. The theory of protein/agonist

binding has been described through variants of the Lock and Key model, originally

proposed by Fischer[78] and the extensions thereof[79]. Although this theory has

provided insight into changes of free energy associated with the formation of the ac-

tivated complex, it has not manifested sufficient capacity for the prediction ligand

activity or a mechanism by which the agonist activates the system. We focus on

an initial examination of the viability of the vibrational theory of protein activation

in cases involving protein-agonist binding within the central nervous system and as

a predictor of intrinsic efficacy as defined within [114]. Activation of the 5-HT1A

and 5-HT2A receptors is implicated as being associated with human hallucinogenic

responses [115, 116]. Specifically discussing the activation of olfactory proteins under

the odotope theory, the volatile odorant molecule is hypothetically capable of main-

taining something akin to its optimized geometry within the activation site[122]. This

is due to the fact that only certain sections of the molecule are being determined at

once suggestive of a soft or partial docking; it could be rationalized that the molecule

only loosely enters and is never fully enveloped by the activation site. This rational-

ization would be countered by docking studies of the OR1A1, OR1A2 and OR1G1

human olfactory receptors that do show envelopment of the ligands which dock with

the protein[123, 124].

Full ligand envelopment can lead to geometric alterations of the ligand during

the docking as the protein-agonist complex reaches its energy minimum states. The

alteration of ligand geometry can lead to attenuations in both the modal displace-

ments and the partial charges, which for our example system can roughly generate a
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10% alteration by displacement or a 5% alteration by partial charge (where partial

charge was calculated through NBO analysis) in the tunneling intensity if the molec-

ular geometry group is maintained. Moreover, these attenuations alter the potential

interaction between the electron and the dipole through the dot product present in

several terms of the non-approximated interaction potential Eq. 3.19 (line 1) as well

as the standard interaction potential Eq. 3.4.

Orientation effects within IETS intensity calculations have been described as being

of such importance as to practically be a selection rule for this type of vibrational

characterization [103, 99, 109]. Interaction potentials used within early formulations

of IETS calculations rely on the coupling strength of the electron within the donor

site to atomic harmonic oscillators, and did not include any dynamic interactions

within the system. More dynamic formulations exist to deal with that rather minuet

contribution of inelastic tunneling contributions to the current through molecular

junctions, such as greens functions approaches. It should be noted that in these

cases the inelastic contribution is to the molecular conductance and is attributed to

vibronic alteration of electronic levels within the molecule this second-order coupling

(electron-vibrational state-electronic state) is why the inelastic contribution is minute

in these cases [125]. Application of the IETS model for the protein environment

requires mapping several aspects of the IETS methodology to the biological system.

The two-plate setup of the tunneling junction represent the walls of the receptor site;

more explicitly, under electron transfer the valance and conductance bands within

the juncture become specific HOMOs and LUMOs of the residues making the walls

of the receptor. This dictates that energy transition detectable by the protein should

be the energy difference between electronic levels of residue side-chains or any bound

cofactors such as a metal ion. This alteration of IETS also localizes the source of

tunneling electrons to a single residue side-chain; the implication is that electrons

are not capable of uniformly tunneling through the molecule. This lack of uniformity

suggests that the act of tunneling is localized to regions of the agonist molecule

and that not all local oscillators of a specific mode fully contribute to the current
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enhancement. Secondly, unlike the experimental IETS procedure, the analyte is not

deposited upon a surface, being encapsulated by the active site. There is no externally

applied potential within the receptor site which would have allowed for the scanning

of energies; yet, it has been suggested that an ionic cofactor, likely a calcium ion,

could provide this driving field. The implication of this is that the receptor is set to

test the vibrational-assisted enhancement to the electron tunneling rate at a specific

energy. The electrostatic interactions which govern docking orientation would be a

means of orienting the endogenous agonists in such a way that the tunneling junction

is appropriately aligned for maximized electron transfer across the atoms responsible

for the inelastic contribution. Non-endogenous agonists would align with residues

in a manner which may place energetically appropriate modes in proximity of the

tunneling junction, thus allow for the activation of the receptor.

1.3 Quantum Tic-Tac-Toe

A students first excursion into quantum mechanics can be both overwhelming and

daunting, even to an upper division science student. Understanding such concepts as

wave functions, overlap integrals and probability amplitudes are vital in mastering

the subsequent material within the course. A typical first semester course in quantum

mechanics focuses on the Schrdinger Picture and Equation[126, 127, 128]. Herein we

present an outline covering several exercises using Quantum Tic-Tac-Toe (QTTT),

presented originally by Allen Goff[129, 130, 131], as a means of introducing and en-

forcing early topics in an introductory quantum mechanics course. The exercises

presented here allow for introduction and discussion of: probability amplitude, prob-

ability density, normalization, overlap, the inner product, and separability of states.

QTTT can be used as an approachable, fun and intuitive means of introducing these

topics. It is the hope of the authors that this tool could act as a companion through-

out instruction; after the students have been taught the game, the instructor can use

it as a stepping stone to new topics and as an avenue for intuitive exercises. For an
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introduction to the game, please see these papers[132, 129, 130, 131]. Other quantum

games exist[133, 134, 135] and their introduction into the classroom as teaching tools

and metaphors is strongly encouraged and will be pursued in future works by this

author. We have generated instructor-guided inquiry exercises[136, 137] as if the class-

room was broken-up into groups of two students per group. We present specific board

examples as a means of discussion and instructional guidance examples, as introduc-

tory courses have been shown to benefit from strong instructor guidance[138]. A more

natural exercise would be allowing the students (post-instruction on the rules and

teaching a specific phenomenon) to play the game and come across these phenomenon

on their own in an inductive learning style similar to a lab exercise[139, 140, 141, 142].

QTTT could also be used as a continuing-themed homework exercise as it can be used

to exemplify many of the introductory topics in quantum mechanics. In this manner

these exercises are akin to lab exercises in that they exploit elements of inductive

learning[139, 140, 141, 142] and guided inquiry[136, 137]. Classical Mechanics whose

approach was developed based on Newtons new mathematics was contemporane-

ously formulated alongside calculus. Both topics moved from academic investigation

into high school classrooms, and in the case of Newtonian Mechanics earlier still.

Quantum mechanics, developed in the twentieth century, was required to adequately

describe such experimental phenomena as black-body radiation, the photoelectric ef-

fect, and the atomic spectrum of hydrogen. The development of quantum mechanics

has led to description of phenomena such as the superposition principle, the ability

of an unobserved quantum object to exist in a superposition of multiple states simul-

taneously; entanglement, spooky action at a distance where the state of one system

affects that of another without a direct observable relationship connecting them; and

interference, as matter exists in both particle and wave form within quantum theory

matter interactions present wave phenomenon such as diffraction and the properties

of constructive and destructive matter-wave addition. Just as a rudimentary under-

standing, at minimum, of classical mechanics became necessary for so many fields,

an introduction into the concepts of quantum mechanics is of growing importance.
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Furthermore, computational chemistry methods are of vital importance in areas such

as materials science and drug design due to their predictive capacities, which may aid

researchers in the prevention of generating failed targets. During the advent of quan-

tum mechanics two schools of thought began to emerge: the Schrdinger Picture and

the Heisenberg Picture[143]. The numerical results and physical significance taken

from these schools are the same, they differ in where the time-dependency is exhibited

(operators vs states). From the Heisenberg picture, Born and Heisenberg generated

the matrix methods that are prevalent in modern computation chemistry[144, 145];

methods such as: Hartree-Fock method, Density Functional Theory, and Configura-

tion Interaction methods.

Discussion of basis-set methods is something that is normally avoided in under-

graduate level courses. This paper provides discussion and exercises by which topics

in matrix methods can be approached in undergraduate level courses or as an early

assessment or introduction to computational methods in a graduate level course.

We also briefly discuss density matrices so that we may introduce entanglement and

concurrence to the students. We have chosen to introduce entanglement as it has

proved to be a vital element in the future studies of quantum computing[146, 147]

and quantum biology[148, 149].

Topics which we later broach within the terms of quantum games include all of

the following. The fundamental quantity within the Schrdinger picture of quantum

mechanics, the wave function, Ψ(x). Ψ(x), describing the total system energy of a

particle[150]. Dependent topics such as probability amplitude, sign symmetry and

probability density follow. The handling of inner product spaces, normalization and

overlap of spatial wave functions. We also present the matrix formulations which are

typically avoided until later in a students pursuit of quantum mechanics[128], due

to the preferable Anschaulichkeitof the Schrodinger equation)[143]. Topics such as

Hilbert spaces, basis functions, change of basis and vector spanning, although rel-

egated to later in the students career, are extensively used in quantum chemistry

methods[151, 126, 127, 152]. Separability and entanglement are approached through
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the inseparability of wave functions [153, 154, 155]. We also introduce the measure-

ment of concurrence, yielding a quantitative measurement of pair-wise entanglement

of particles within our system; the method was developed by Wooters[156, 157]. The

calculation of concurrence is a brief five-step process[155]:

1. Construction of a Density Matrix: ρ = |ψ〉 〈ψ|.

2. Construction of a Flipped Density Matrix: ρ̃.

3. Product Matrix: ρρ̃.

4. Determine the Eigenvalues of ρρ̃: λ1, λ2, λ3 . . .

5. Calculate Concurrence: C = max[0,
√
λ1 −

√
λ2 −

√
λ3 − . . .]

Instruction in the concepts discussed above hinges on the design of the Classical

Tic-Tac-Toe board and how it relates to the Quantum Tic-Tac-Toe board. Both are

square and are divided into nine square subspaces. These subspaces will be referred

to as principal squares and will each carry a number to denote the particular square

being referenced. The numbering pattern of the principal squares on the board is

shown in Figure 4.1. A complete discussing the game play will be undertaken in the

chapter concerning this material and requires such a sufficient amount of concepts,

vocabulary and rules that we shall terminate introduction here.

1.4 The Organization of the Thesis

This whole thesis is divided into three research directions: Dimensional Scaling

for the search for multiply-charged ions; Inelastic Electron Tunneling Spectroscopy

as a possible, novel mechanism for protein activation; and the use of Quantum Tic-

Tac-Toe as a method of instructing an introductory quantum mechanics audience.

Chapters 2-4 each focus, respectively, on a single of the aforementioned topics. Works

were completed on cellular regeneration, these are presented within the attached
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Figure 1.3. The layout of the game board for either classical or quan-
tum Tic-Tac-Toe. This figure also displays the enumeration scheme
that is used throughout this paper.
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Appendices, as well as the patent documents pertaining to the Protein Activation

project.

In Chapter 2, we progress through the dimensional scaling procedure. We begin

by emphasizing the importance of the search for multi-charged ions within the gas

phase, both dressed and undressed (in terms of an externally applied electromagnetic

field). Some discussion is given to the known limits of excess charges to such species.

After an introduction of several of the possible relativistic corrections applied to the

system, we perform a particle in a box example using the pseudo-potential introduced

through a relativistic ally inspired field trajectory. Following this, a description of

both the 3-dimensional methods and the D-dimensional methods employed; this all

followed by a presentation of results and a discussion of the lack of need to conduct

the calculations for circular and elliptically polarized light.

Chapter 3 covers a suggested method of protein activation through the application

of an inelastic method of tunneling for an electron through the docked agonist. We

provide an introduction to this topic through a literature review of similar theories

as well as previous theories surrounding this topic. A discussion of Inelastic Electron

Tunneling Spectroscopy (IETS) is undertaken and several facets of the computation

are discussed. A mapping between the proposed problem and method are discussed.

We move on to introduce the spectral imagine method employed in the search for

appropriate spectral signatures in probing this possible mechanism. We finally divulge

results which are suggestive of this mechanism for two classes of serotonin agonists

and propose an experiment which may be used to evaluate this theory.

Chapter 4 introduces a selection of material which can be covered in the standard

first and second semester quantum mechanics course. We begin through a minor

discussion to frame the importance of developing new methods and perspectives in

which to frame introductory quantum mechanical instruction. We present the design

of the game and quickly begin to define the topics inherent to the game which may

be used to facilitate instruction. Section-by-section, thereafter, we present an array

of topics and how to approach these topics within the confines of the game.
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There are two Appendices provided. The first is, almost, a chapter unto itself con-

cerning information surrounding a pair of cellular regeneration projects performed.

These projects were time consuming, yet did not fall into the prevue of this thesis

and as such were added as an Appendix. The second Appendix is material submitted

to the United States Patent Office concerning the findings presented within Chapter

3 of this thesis. This material was generate by myself and the Purdue University Of-

fice of Technology Commercialization within the Purdue Research Foundation. This

material lead to a provisional patent encompassing the material; the designation for

the patent is PN: 62/037,457. This thesis is concluded with my Vita as well as a

collection of my publications but in print and in submission.
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2. RELATIVISITIC CORRECTIONS TO DIMENSIONAL SCALING

2.1 Introduction

The generation of stable, multiply-charged atomic ions via exposure to super-

intense laser fields is a topic which challenges preconceived notions for ionic atoms

and is, therefore, of fundamental importance in atomic and molecular physics[1, 2,

3]. Over the past decades, advancements in spectroscopic methods have yielded

verification of mono-charged Calcium and Strontium atomic anions[4, 5] and various

gas-phase poly-charged molecular ions[6, 7, 8] . However without the large charge

volume which is provided by the heavy atoms -above- or small molecules it is unlikely

that species would be able to bind more than one excess electron; this can be noted

by the relative stability of O−2 in the liquid-phase, yet it’s instability within the gas-

phase[6].Theoretical works have developed an absolute upper-limit to the number of

electrons which may be bound to a atomic center[9]: Nc ≥ 2Z, with Nc being the

number of electrons and Z being the Coulomb charge of the nucleus. Within the

context of Lieb’s frameworks, Hydrogen would therefore be disallowed any excess

electrons beyond that which yields the Hydride state, thusly H2− is unstable[10, 11].

Supporting theoretical works have come later[12, 13] -some including implementation

of finite-sized scaling[13]- and have conclusively determined at gas-phase, dianionic

atoms are unstable.

It has been shown that stable, multiply-charged atomic ions may be developed

within extremely strong laser fields on the order of 1016 W/cm2 and above[14, 15].

Within the field, the electron density - still being bound to the nucleus - has been

found to be nodal in nature as the Coulomb potential splinters under the influence

of the field into distinct, localized regions whose positions are governed by the field
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parameters of the laser. This phenomenon is most easily - and best- discussed within

the context of the Krammers Henneberger (KH) reference frame, electron centric

frame, where the electron is treated as the stationary body and the nucleus traverses

the path of the applied field; in this context the local nodes of electron density are

located at the turning points on the path of the nucleus. These are the location at

which the angular velocity of the nucleus decreases and thus spends more time in a

local area - thus generating a greater pull in that area. Within these nodal regions, the

bound electrons maintain a great enough distance from one and another to minimize

their Coulomb repulsion while also giving each a center with which to bind. In this

field, the electrons -which intuition tells us would be completely ionized- are capable

of stably binding into multiply-charged atomic ions. The field strength allows one to

manipulate the location and pull of the nodal centers , thus generating a method of

control over the potential and therefore establishing the ability to push the electrons

into and past their most stable state by means of manipulating laser parameters,

frequency and intensity.

The contained theoretical works are concerned with High-Frequency Floqeut The-

ory (HFFT) which allows for a time-independent treatment of the coupling of the

static Coulomb potential with a time-varying electromagnetic field. This is possible

by exploiting highly oscillatory fields in which the electrons would be prohibited from

coupling with the periodic nature of the field due to extremely short periods (large

frequencies) of oscillation, thus the system’s electrons would feel a period average of

the applied potential coupled with the static Coulomb potential, again this is best

discussed within the KH frame. This time-average allows generation of the aforemen-

tioned nodal structure and therefore permits the stability of the subsequent states

and allows the system to forgo autoionization. The above discussed methodology was

introduced to atomic systems by Pont et al[16], van Duijin et al[17], and was used

again by Wei et al[15, 18, 19, 14] to describe non-relativistic, multiply-charged atomic

ions. Herein we shall propose a framework utilizing HFFT as a backbone for applying

relativistic corrections to atomic ions in a time-independent manner.
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The procedure enclosed is not only a search for the stability of multiply-charged

ions, but also that in concert with an explicit utilization and validation of the Di-

mensional Scaling procedure and the fourth-fold installment in such works. Mul-

tiple electrons in bound state configurations under either either the Dirac or Klein-

Gordon equations are both open questions in Dimensional Scaling, and thus we resort

such augmentations to the Time Independent Schrodinger Equation at the large-

dimensional limit as most relativistic effects can be appended to the Schrodinger

Equation through first-order Perturbation Theory.

Also, Kaminski had proposed a relativistic Kramers-Henneberger frame based on

the three-dimensional Dirac equation[20], which however, is rather impractical for

numerical purposes as the electron momenta appear in the argument of the potential

of the KH-transformed Hamiltonian. Krstic also discussed the relativistic corrections

starting from Dirac equation and showed the same orbital corrections as used in our

work[21], although we present it in a phenomenological way. Protopapas et al.[22]

discussed the relativistic mass shift effects from Klein-Gordon equation in stabilization

with respect to the non-relativistic prediction and demonstrated in KH frame the

feasibility of using the the relativistic effective mass.

To derive the atom-intense laser interaction directly from Dirac equation is a de-

manding work both theoretically and numerically; and, as of yet, the use of such

method in a search for stable multiply-charged ions is open. The most sensible way

is to start from Schoedinger equation by including the relativistic corrections in a

perturbative way. Physically, the main relativistic corrections in atom-laser interac-

tions include the magnetic component of the laser field, the relativistic mass shift, the

invalidity of the dipole approximation and spin and retardation effects. The effects

of retardation, the dipole approximation and spin have been shown by Latinne to be

small in general[23].
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2.2 Non-Relativistic Methodology

Consideration within the non-relativisitic cases lies no longer with both the mass

and the magnetic coupling, but with the time dependent electric field coupling with

the system’s Coulomb potential; this work was performed by Wei et al[15, 18, 19, 14]

and produced stably bound multiply-charged ions for small atomic centers utilizing

the field parameter (α0), discussed later, and finding detachment energies on orders

of 0.1eV to 1.0 eV. The enclosed works, here, expound upon this by adding the

necessary relativistic corrections to the previous framework. A free electron within

an oscillating electric field shall undergo oscillatory motions which are governed by a

coupling to the field; the electron is said to be ’quivering’ with a motion defined by

a trajectory, ~α0(t), and a quiver amplitude, α0. A bound electron within the same

situation shall feel a new potential which is a stacking of the applied field and the

Coulomb potential of the central charge; the total potential for the system is said to

be a Coulomb potential dressed by the laser, denoted as a dressed potential, Vdres.

Under the auspices of HFFT, introduced above and here[16], by applying a highly

oscillatory laser field with an extremely short period the electrons will lack the ability

to oscillate synchronously with the the applied field. In this manner, the potential

felt by the electrons is a period average of the oscillatory field, this new potential is

a dressed potential under the HFFT approximation, V HFFT
dres . In all cases addressed

within this paper the laser-coordinates are: laser fired in y-direction, electronic com-

ponent linearly polarized in the z-direction, and the magnetic component in the x-

direction

The situation of the dressed potential,V HFFT
dres , is a time independent problem as

the field has been period averaged, due to this the full Hamiltonian can be treated

within the Time Independent Schrodinger Equation (TISE):

εiΨi = ĤΨi =
−~2

2me

∇2Ψi + V HFFT
dres Ψi. (2.1)

Accurate solutions to the equation are difficult for systems of more than one elec-

tron due to many-body interactions, but approximate solutions can be obtained in a
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self-consistent method (SCF) through Hartree-Fock (RHF/UHF), Density Functional

Theory (DFT), or post-Hartree-Fock Methods.

2.2.1 The Relativistic Mass Gauge

Mass -as a fundamental- is conceptualized in two different manners within physics,

these being the rest mass and the relativistic mass. Rest mass, or invariant mass, is

for a specific body a constant, measurable quantity denoted m0. In opposition to the

rest mass is the variant quantity: relativistic mass, mr. The relativistic mass depends

upon the velocity of the observer. The variant nature of mr is a correction to the

rest mass which accounts for a non-zero kinetic energy for the measured system. This

means that the relativistic mass increases in magnitude as the velocity of the system

increases, and shall reach infinite mass as the system reaches the speed of light.

This portrayal of the mass shall be implemented within the Time Independent

Schrodinger Equation (TISE) for the enclosed work, we shall now need to express

alterations to the rest mass in terms of the system’s laser parameters.

We are now called to introduce the concept of ponderomotive energy, Up; this

being the cycle average kinetic energy of a quivering electron, i.e. electron undergo-

ing oscillatory motion due to an external field and also qualifying under the dipole

approximation. This is quantity discussed in context of such systems by Joachain,

Dörr and Klystra[24].

UP =
e2E 2

0

4meω2
(2.2)

In the above, E0 is the peak strength of the electric field, ω is the angular frequency of

the applied field and both e and me retain their conventional meanings: of magnitude

of electron charge and electron mass, respectively. This quantity aides in the evolution

of the rest mass to the relativistic mass as:

mr = mdressed = me(1 + 2
UP
mec2

)
1
2 (2.3a)

= me(1 + 2q)
1
2 . (2.3b)
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As can be seen, the quantity q begins to shift the mass and becomes the dominant

factor within the expression as it approaches unity[25]. The form of Eq. (2.3b) was

found by Brown and Kibble[26] and later verified by Eberly and Sleeper[27] via the

Hamilton-Jacobi equation.

Below we shall discuss the above mass concept as it applies to the TISE for one

electron (which can then be generalized to N electrons), these lines shall be discussed

stepwise.

Eq.(1) → −~2

2me(1 + 2q)
1
2

∇2Ψi + VΨi (2.4)

→ −~2

2me(1 + 2 e
2α2ω2

4m2
ec

2 )
1
2

∇2Ψi + VΨi (2.5)

→ −~2

2(1+2.66×10−5α2ω2)
1
2

∇2Ψi+VΨi (2.6)

The first line, Eq. (2.4), shows the form of the TISE as it appears accounting for

the mass gauge, which is tuned by the quantity q. Secondly, we have introduced and

employed the field coefficient, α = E0

ω2 , as a means of defining q in terms of known laser

parameters. Lastly, we express all quantities in ~=me=1 units (atomic units), this

allows us to maintain the relativistic alterations as a unitless multiplier, Eq. (3.6).

As the multiplier which transforms invariant mass to relativistic mass is a unitless

quantity, the resultant energies from the final line, Eq. (3.6), shall be in Hartree

EH , as they would if one ignored the mass gauge entirely. In all cases considered

within this paper the potential function, V, shall be dressed under HFFT , making

V=V HFFT
dres

2.2.2 Trajectory Corrections

High-Frequency Floquet Theory (HFFT) was first introduced to similar systems

by Pont et al[16], relies on the frequency of the externally applied electromagnetic

field to be so quickly oscillating so as even the electrons are incapable of coupling their

motions to the field. In this manner the D-dimensional dressed Coulomb potential
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-which is in essence a time-dependent problem is simplified to a time-independent

problem:

V HFFT
dres =

Z

2π

2π∫

0




d(ωt)√
D∑
i

(xi + αi)2



. (2.7)

To apply the above period average to a system one must develop an interest in the tra-

jectory, ~α(t), of the laser’s path as it’s components are required in the above averaging

as αi along with the ith Cartesian component, xi. Earlier works[14, 15, 18, 19] have

concentrated upon non-relativistic systems, and thus the laser trajectory is equiva-

lent to the path taken by a free electron undergoing influence by a time-dependent

external electric field (or laser field where no magneto-coupling is considered); the up

and down oscillatory motion of the electric field governs the trajectory of the electron,

seen in Eq.(2.8), where the polarization is as discussed in §A.

~α(t) = 〈αx, αy, αz〉 (2.8a)

= 〈0, 0, α0cos(ωt)〉. (2.8b)

Now concerning ourselves with the electronic-magnetic coupling within relativistic

regimes; this shall be described analogously to the non-relativistic case above by the

path taken by a free electron in an electromagnetic field now with the electronic-

magneto coupling accounted. Within a plane-wave laser field, the electron classical

trajectory can be obtained analytically. For a linearly polarized laser field, the non-

zero field components can be written as:

Ez = E0cosη, (2.9)

cBx = E0cosη, (2.10)

where η = ωt− ky is the phase of the field. By using Newton-Lorentz equation,

d~P

dt
= −e( ~E + ~v × ~B), (2.11)
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we have,

d~P

dt
= {dPx

dt
,
dPy
dt

,
dPz
dt
}

= {−eE0βxcosη, 0,−eE0(1− βz)cosη}
(2.12)

mec
2dγ

dt
= −eE0 cos η · vx, (2.13)

where γ =

√
1 + ~P 2/(m2

ec
2) is the Lorentz factor. For an electron initially at rest,

from Eqs.(2.12-2.13), we obtain:

~P = {Px, Py, Pz}

= { e2E2
0

2mecω2
sin2η, 0,−eE0

ω
sinη}

(2.14)

From the above an electron’s trajectory can be acquired,

~α = {− c

8ω
Q2

0sin(2η), 0,
c

ω
Q0cosη}. (2.15)

Where Q0 = eE0/(meωc) and electron drift motion has been neglected. Within dipole

approximation,

~α = {0,− c

8ω
Q2

0sin(2ωt),
c

ω
Q0cos(ωt)}, (2.16)

which means:

d2~α

dt2
= {α̈x, α̈y, α̈z}

= {1

2
cωQ2

0sin(2ωt), 0,−cωQ0cos(ωt)}.
(2.17)

Eq. (2.17) tells us that we can approximately take the above relativistic trajectory

as an equivalent one for the electron moving in the following effective electric fields,

~E={ωmec

2e
Q2

0sin(2ωt), 0,−ωmec

e
Q0cos(ωt)}, (2.18)

which will be used in HK theory. In atomic units, the trajectory can be written as,

~α = {−α2
0αfsin(2ωt), 0, α0cos(ωt)} (2.19)

By comparing with the non-relativistic trajectory, we have an extra oscillation mo-

tion along the laser propagation direction, which comes from the magnetic coupling,
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also intorduced is the fine structure constant which mediates the magnetic-electronic

coupling term, αf . This results in the famous figure-8 motion. To illustrate the effects

of this correction in HK effective potential, we will first take a 1-D box potential as

an example in the following section.

It should be noted that the KH expansion[28] committed to allow for this above

expressions was developed by Gilary et al[29]. In our previous work[15] it was see

that the higher order terms, those with the leading ω−2, provided additional stability

such that a system with a bound state under the dis-inclusion of the higher ordered

terms would still be bound under the inclusion of said terms. The total value of the

potential scales with respect to α0 in a similar manner and thus the same arguments

contained within the above reference hold here. Inclusion of the mass gauge provides

a small alteration to the system, but in a destabilizing manner; thus bound states

and their limitations under the methods of this paper are of a more conservative

estimation.

2.2.3 1-D Particle in a Box

For simplicity, we take the 1-D box potential as follows,

V (z) =





π, |z| ≤ 1,

0, elsewhere.
(2.20)

Then the HK effective potential can be acquired analytically by the following inte-

gration.

Veff (z) =
1

2π

∫ 2π

0

V (z + α0cos(Ω))dΩ. (2.21)

When 0 ≤ α0 ≤ 1
2
,

Veff (z) =





arcos
[
− z+1

α0

]
,−α0 ≤ z ≤ −1 + α0,

arcos
[
z−1
α0

]
, 1− α0 ≤ z ≤ 1 + α0,

π, −1− α0 ≤ z ≤ 1− α0,

0, elsewhere.

(2.22)
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When α0 ≥ 1
2
,

Veff (z) =





arcos
[
− z+1

α0

]
,−α0 ≤ z ≤ 1− α0,

arcos
[
z−1
α0

]
, 1− α0 ≤ z ≤ −1 + α0,

arcos
[
z−1
α0

]
,−1 + α0 ≤ z ≤ 1 + α0,

0, elsewhere.

(2.23)

Fig.2.1 shows how the box potential is modified by the external laser field. It

is clear to see that as the laser intensity increases above certain value, the original

potential will evolve into a double well. Moreover, the two wells will become more

separate and more shallow if α0 is further increased. This indicates two important

features for the ground state in this potential. Firstly, the electrons will become less

bound or the potential might have higher ground state energy. Secondly, if we have

two electrons in this effective potential, they will have more space in which to avoid

each other, which means the electron repulsion energy will tend to be smaller for

un-paired electrons. Hence the final ground state energy for multi-electron systems

should depend upon the competition of these two factors.

Once we introduce the relativistic corrections to the electron trajectory, the effec-

tive potential along z-axis will becomes:

Veff(z)=
1

2π

∫ 2π

0

dΩ

(√
(z+α0cosΩ)2+(x+ α2

0α
2sin22Ω)

2
+ y2

)−1

, (2.24)

in which the integral will be calculated numerically. From Fig.(2.2),it is interesting

to note that, when α0 is large enough, for example α0 = 10 as in Fig.2.2(b), the

effective potential will have three local minima. Qualitatively, this should result

from the relativistic figure-8 motions, which helps the electron maintain a position

nearer the orbit center for a greater period of time. Another characteristic is that

the three separate minima become much shallower for higher laser intensity. These

drastic changes over the effective potential will be expected to have influences over

the many-electron states bound by the potential. It seems that the relativistic effect

provides us another way to engineer the potential. Based upon the observations

over Eq.(2.24), we can even think about using lasers with different colors superposed
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Figure 2.1. Non-relativistic effective potential for a 1D particle in a
box under different laser intensity, measured by α0.
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Figure 2.2. Relativistic corrections to the effective potential for different laser fields.
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together to have more freedoms modifying the effective potentials. Fig. 2.3 shows us

one example with two alternating electric fields as follows,

~α(t) = α0cos(ωt)êx + α1sin(4ωt)êz. (2.25)

2.2.4 Dressed Atomic Potential under Consideration

Beginning with the spherically symmetric Coulomb potential, the applied external

fields shall morphologically alter this potential to conform to the trajectory discussed

in § B. In doing this there are three main regimes in which the potential may exist:

firstly, the spherical; secondly, the pseudo-linear; and finally, the parametric. The

potential only exists within the spherical regime when there is no applied external

field, as the field begins to evolve the coupling of the external field and the Coulomb

potential becomes apparent with the electric field component dominating; this creates

a regime where the system maintains an almost linear behavior as if there were no

relativistic correction to the trajectory. Distortion of the pure linear nature exists

but is a small effect compared to the primary electric effect.

As the intensity of applied field increases the magnitude of the magnetic field

begins to compensate for the dampening effect of the fine structure constant, αf ; as

this takes place, the magnetic contributions to the field coupling begin to dominate the

system, whose character now exhibits the hourglass figure of the parametric regime.

Figure 2.4 shows a series of contour plots of the potential energy plotted in the x-

z directions for a series of field intensities, α0; the behavior of the system and it’s

development through the previously discussed regimes should be obvious. A three-

dimensional plot of the potential energy surface for α0 = 100 is also enclosed as Fig.

2.5, this plot only considers displacements in the spatial x-z directions for reasons

introduced in § A, where the vertical axis describes the magnitude of the potential

energy at this x-z location.

This potential is ideal for attempting to develop mutliply-charged ionic system

from small nuclei, as it maintains a potential well at the center of the systems along
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Figure 2.3. Effective potential for two alternating electric fields su-
perposed along êx and êz, respectively, with different colors.
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with four other locations along the parametric trajectory; this allows bound electrons

to attach to the individual potential wells while maintaining a large enough distance

from each other to minimize electron-electron repulsions.

2.3 Methodology for D=3 Calculations

Three dimensional calculations which describe our systems were executed as a

mean of verifying the simpler Dimensional Scaling approach discussed later. The

methodology consisted of unrestricted Hartree-Fock (UHF) utilizing the Pople-Nesbot

equations -which allow for the accommodation of basis sets- to complete calculations

for a series of total electron counts, N, per single value of the field intensity parameter,

α0. The calculations were dependent both upon appropriate choice of basis set and

upon the locations selected as the centers for these basis sets; for the determinations of

the locations of probable electron density we deferred both to ’exact’ locations of the

electrons from the limit D→ ∞ calculations and to contour plots of the potentials

for a given field intensity value, see Figure 2.4 for an example. Upon discerning

from the above information the locations of the psuedo-centers within the system-

space, a basis set was selected which could describe these nodes. There exist, at

minimum, 5 distinct nodes of electron density within the system, these being at the

center coexisting with the origin of our coordinates systems- and at four psuedo-

centers residing upon the parametric curve described by the relativistic trajectory

used within the HFFT Potential.




x

y

z





=





−(
α2
0

αf
)sin(2t)

0

α0cos(t)





(2.26)

The orbital centers were selected to satisfy the above curve and to coincide with the

”hottest” locations displayed within the contour plots of potential energy. A basis

set was selected which allowed for significant description of both polarized and diffuse

phenomenon residing on small centers. The centers of potential electron density which
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Figure 2.4. Contour Plots of Dressed Potential for (clockwise) α0=0,
25, 100, 50. Note both the shift in regime as α0 grows and the key
below the plots for the interpretation of the intensity of the contours.
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Figure 2.5. Three Dimensional Plots of the Potential Energy, V HFFT
dres ,

as a function of x and z coordinates for the case α0=100. Left and
Right of above are two different angles of same surface.
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do not reside at origin were described by basis sets optimized to describe the atom of

the nucleus at the system’s origin, i.e. all five centers on hydrogen use a hydrogen-

fit basis set. Overlap and kinetic integrals were performed with variations on the

integrals described by McMurchie and Davidson in their seminal paper here[30]. Nu-

merical integration methods were appropriate for the more challenging, non-analytic

potential integrals. A global adaptive method was applied to the system which per-

forms admirably with Gaussian functions placed at the coordinate origin; but as the

method relies on sampling points within the equation-space to find non-zero areas

of the function, Gaussians placed distances away from the origin were sometimes so

small relative to the distance from origin as to be invisible. For this reason two-

centered intregral includes the cost of shifting the coordinate-origin to the center of

the product Gaussian as defined by[31]:

φGF1s (αA, r−RA)×φGF1s (αB, r−RB)

= exp{−(αA(r−RA) + αB(r−RB))}

= exp{−αaαB(αA+αB)−1|RA−RB|2}×

φGF1s (αA+αB, r −RP ).

(2.27)

In this way the chosen method of numerical integration was capable of adequately

describing the three-dimensional potential energy integrals. Single electron cases were

verified prior to enacting the self-consistentt field calculations, as the energies of the

single electron system may be revealed as the eigenvalues of the canonically orthog-

onalized Hcore matrix alone, Hcore
µ,ν =Tµ,ν+Vµ,ν . The four-centered integrals needed

for the self-consistency were generated by exploiting the axillary function defined

by Boyes[32]. The calculations for the mutli-electron energies were performed self-

consistently with a convergence set to six decimals of accuracy, as chemical accuracy

is define as 1.6mEH , this set limit should suffice.

A plot of the square of the linear combination of atomic orbitals which comprised

the set describing the appropriate eigenvalue yields semblance to the wave function of

the system, whose probability density(|Ψ|2) is shown in Figure 2.6 for H− and for He−,

a two and a three electron case. It should be noted, as the D=3, UHF calculations
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Figure 2.6. Top: Probability distribution for H−, a two electron sys-
tem. Bottom: Probability distribution for He−, a three electron sys-
tem
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were employed to verify the results of the Dimensional Scaling approach, that the

locations of electron density shown in the aforementioned probability density plots

speak to the validity of the Dimensional Scaling approach as the locations of the delta

functions, see discussion provided in Results Section, which describe the seemingly

stationary locations of the electrons in the limit of D → ∞ calculations are very

near those locations of highest probability density for finding elections given by the

D=3 calculations. Three-dimensional verification was performed for both the H− and

He− species, as the regions of high potential energy become very delocalized for the

remaining high-field species. Aside from the high level of delocalization prohibiting

the species from being described sufficiently with an appropriate number of Gaussians,

the potential also spans a region of space on the order of 100 Bohr radii, yet optimized

Gaussian basis sets for atomic centers span an order of 1-10 Bohr radii; this prohibits

overlap for these species forcing the use of more and more Gaussians. This acts

prohibitively as the matricies required for UHF calculations are n×n, where n scales

as the number of centers by the number of basis contractions; this obviously limits

the achievable intensities applied to systems which can be calculated in this manner,

especially on stand alone machines.

2.4 Dimensional Scaling: Calculations and Considerations

2.4.1 Methodology

Many Body interactions are something which has troubled computational method-

ologies within quantum mechanics since inception; throughout the years the physical

and chemical communities have made great advances in the field of electronic struc-

ture theory to help account for these electron-electron interaction through variational

practices such as the Hartree Fock Method or Density Functional Theory. The alter-

native method to the aforementioned is a Dimensional Scaling treatment pioneered

by Herschbach [33], discussed in[34, 35, 36, 37, 38], and is briefly introduced here for
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the central force problem[34]. Given the TISE for the simple central force problem

in D-dimensions:

[−1

2
∇2
D + V (r)]ΨD = εDΨD. (2.28)

If we were to employ polar coordinates to the above we would require:

r ≡ [
D∑

k=1

x2
k]

1
2 (2.29a)

∇2
D =

1

rD−1

∂

∂r
(rD−1 ∂

∂r
)− L2

D−1

r2
. (2.29b)

Where Eq.(2.29a) gives the definition of the radial coordinate in a generic D-scaled

space, and Eq.(2.29b) is the polar Laplacian in this D-scaled space, L2
D is the term

which retains all angular dependencies. These angular and radial terms shall be dealt

with in an divide and conquer treatment reminiscent to the radial and angular terms of

the Rigid Rotor/Harmonic Oscillator approximations for the simple diatomic. We first

write the wave function in D-dimensions to be the product: ΨD = rlY(ΩD−1), where

all radial dependencies are in the rl term and the D-1 remaining angular dimensions

are described through Y(ΩD−1). Now solving the angular terms for the form Eq.(2.30),

and the recognizing that the V(r) term in Eq.(2.28) can be set to equal magnitude

as the εD term, thus making Eq.(2.28) reduce to the Laplace equation shown in

Eq.(2.31).

L2
D−1Y(ΩD−1) = CY(ΩD−1) (2.30)

∇2
Dr

lY(ΩD−1) = 0 (2.31a)

{l(l +D − 2)− C}rl−2Y(ΩD−1) (2.31b)

This means: C=l(l + D − 2); and the Hamiltonian Operator in Eq.(2.28) is now of

the form:

ĤD = −1

2
KD−1(r) +

l(l + d− 2)

2r2
+ V (r). (2.32)

In the above, KD−1(r) is the single non-angular term from the polar Laplacian in

Eq.(2.29b). We may now pass the system through a unit Jacobian, making: JD|ΨD|2 =
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ΦD, JD is the radial part of the unit Jacobian and is of the form: r(D−1). This would

mean, ΨD = r−
1
2

(D−1)ΦD. All leading to the form of KD−1 seen here:

KD−1(r)=r−
1
2

(D−1){∂
2ΦD

∂r2
−D−1

2

D−3

2

ΦD

r2
} (2.33)

Reassembling all the above, and placing them appropriately back into Eq.(2.28),

one shall -after menial simplification- get:

{−1

2

∂2

∂r2
+

Λ(Λ + 1)

2r2
+ V (r)}ΦD = εDΦD. (2.34)

Eq.(2.34) is the radial, D-scaled form of Eq. (2.28), where the only dimensional

dependencies lay within the Λ terms as: Λ = l + 1
2
(D − 3). The above leads to the

minimization problem defined by the Hamiltonian discussed in §B.

2.4.2 Planar Infinite-D Hamiltonian

Prior works published[19, 14] have also described systems both by infinite dimen-

sional limit and then verified with three dimensional self consistent methods. The

dimensional scaled Hamiltonian presented in previous works was diatomic in nature

and of the form[39]:

HDA =
1

2

N∑

i=1

1

ρ2
i

+
N∑

i=1

V (ρi, zi)

+
N∑

i=1

N−1∑

j=i+1

1√
(zi−zj)2+ρ2

i+ρ
2
j

(2.35)

and relied on previous works in which D-scaled Hamiltonians for diatomic systems

were constucted, these diatomic Hamiltonians are also of the form above, and denoted

HDA.

Hamiltonians of this form are applicable to the previous works as those non-

relativistic systems,this is due to the consideration in absence of the second degree of

symmetry breaking in the linear potential systems.

The diatomic-based Hamiltonian performed well on linear systems, but when at-

tempting to use the above described Hamiltonian on a relativistically corrected tra-

jectory, it was found that the equation behaved erratically with a smoothly evolving
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Figure 2.7. Plots of both moecular energies and binding energy for
(clockwise): HDA with non-relativistic trajectory; HDA, relativistic
trajectory; HP , relativistic trajectory; and HP with non-relativistic
trajectory. All may be read as Yellow:Binding Energy; Blue:Hydrogen
Energy; Purple:H− Energy
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intensity as seen in Figure 2.7, and was in disagreement with the early 3-D calcula-

tions. Although this Hamiltonian does not work well, overall it was found to be in

good agreement while the potential was in the spherical and pseudo-linear regimes,

failing only as the system approached and entered the parametric regime.

As dimensionally scaled Hamiltonians are not unique in nature, they are not

singular in form. We relied on arguments based on the breaking of spherical and then

cylindrical symmetries to generate the followed assumed Hamiltonian for systems with

broken radial and cylindrical symmetries, yet maintaining three orthogonal planes of

symmetry.

As the dimensional-scaled, single electron central force problem yields as it’s

Hamiltonian HCF ,

HCF =
1

2 r2
+ V (r). (2.36)

One can see from above the spherical nature of all terms within the Hamiltonian, as

the potential is radial. This equation predicts the ground state Hydrogen energy to be

at −1
2
EH , exactly where it should be, and predicts the inter-atomic distance between

the electron and the proton to be 1 in units of RBohr. If one were to alter the above

potential to conform with either the relativistic or non-relativistic cases discussed in

this paper, the energies obtained would possess no physical significance and would

overall behave similarly to the diatomic equation with the relativistic trajectory. The

addition of multiple electrons to the spherical symmetric problem yields :

HCF =
1

2

N∑

i=1

1

r2
i

+
N∑

i=1

V (ri)

+
N∑

i=1

N−1∑

j=i+1

1√
ri + rj

.

(2.37)
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Now we examine the diatomic case shown in Eq. (2.35). This equation has been

designed to allow for potential which are of a cylindrical nature, as it must for a

diatomic system. Reevaluating the equation in Cartesian coordinates yields:

HDA =
1

2

N∑

i=1

1

x2
i + y2

i

+
N∑

i=1

V (xi, yi, zi)

+
N∑

i=1

N−1∑

j=i+1

1√
(zi−zj)2+x2

i+x
2
j+y

2
i+y

2
j

.

(2.38)

Reevaluation of the spherically symmetrical case in Cartesian coordinates gives:

HCF =
1

2

N∑

i=1

1

x2
i + y2

i + z2
i

+
N∑

i=1

V (xi, yi, zi)

+
N∑

i=1

N−1∑

j=i+1

1√
x2
i + x2

j + y2
i + y2

j + z2
i + z2

j

.

(2.39)

As can been seen from the above, the orthogonal coordinate which is being cleaved

from spherical symmetry has been removed from the kinetic evaluation and have been

treated as a difference in the electron-electron term. Continuing to use Cartesian

coordinates, as it is this coordinate system which makes the relations apparent, we

can move to an equation where the x-coordinate is now allowed to deviate from

radial symmetry. This again would remove the symmetry breaking coordinate from

the kinetic term and utilize it as a difference in the electron-electron term. This

Hamiltonian is shown in Eq. (2.40). It’s energies completely agree with those of

the the radial and cylindrical cases, and by allowing this symmetry breaking in the

x-coordinate can be use for the potential discussed in Section II §E.

This Planar Hamiltonian, HP :

HP =
1

2

N∑

i=1

1

y2
i

+
N∑

i=1

V (xi, yi, zi)

+
N∑

i=1

N−1∑

j=i+1

1√
(zi−zj)2+(xi−xj)2+y2

i+y
2
j

(2.40)

was found to allow -but not require- the breaking of symmetry, as it was applied to

the previously discussed linear systems and had extremely good agreement, shown
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in Figure 2.7. The relation between the Cartesian coordinates used in the above

and the geometry of the system is shown in Figure 2.8 When applied to our system,

containing the corrected trajectory, this new Hamiltonian performs both smoothing

with smoothly evolving trajectories- as seen in Figure 2.11. This planar Dimensional

Scaled Hamiltonian was capable of adequate description of the system in all three of

the regimes discussed earlier. We also verified the findings of the HP by calculation of

the energy of the hydrogen atom and scaling with the field intensity while comparing

these calculations with UHF SCF calcuations, Fig. 2.10.

2.5 Results and Discussion

We shall concern ourselves with a discussion of the binding energies (B.E.) for

the following species: H−, H−2, He−, He−2, He−3; where the B.E. is the negative of

the detachment energy for a single ’excess’ electron shown in Eq. (2.41), where N

signifies the number of electrons for a species.

B.E. = EH(N)− EH(N − 1) (2.41)

Figure 2.9 Displays the binding energies for the two species, Z=1 and Z=2. From

this figure we can see a clear maximum binding energy for the H− species (top left) at,

roughly, α0 = 10; this energy shows a stability of the second electron of 0.047 Hartree

(1.28 eV). Also shown in Figure 2.9 the B.E. curve for H2− (top right), showing a stable

binding of 0.00012 Hartree (0.0033eV). This, the B.E. of H2−, reaches it’s minimal

value asymptotically with increasing α0 implying the addition of any further electrons

will not be allowed; this fact was verified by performing the requisite minimization,

and if the mass gauge was not applied to the system the number of allowed additional

electrons would increase unrealistically and seemingly without bound as the laser

intensity is increased.

The middle, left plot in Figure 2.9 shows the binding of a third electron to Helium

at α0 equals, roughly, 10 again; the binding energy for this species at it’s greatest

magnitude is extrapolated to be 0.057 Hartree (1.55 eV). The second ’additional’
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Figure 2.8. The above displays the relationship between the system’s
geometry with respect to the electrons and the coordinates use in Eq.
(2.40)
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Figure 2.9. Above are plots of the binding energies of, from left to
right and top to bottom: H−, H−2, He−, He−2 and He−3.



63

Figure 2.10. Energies for the hydrogen atom energies scaling with the
applied field intensity, α. The blue curve are the findings using HP

while the purple are those points generated with UHF SCF calcula-
tions.
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Figure 2.11. Plots of binding energy comparisons for (clock-
wise):comparison plot of HDA versus HP , non-relativistic trajectory;
HP with relativistic trajectory m0 and mr, differences value of Hydro-
gen energy between use of m0 and mr; and a comparison of relativistic
trajectory (both m0 and mr) with non-relativistic trajectory both us-
ing HP .



65

electron to Helium (middle right) is most stable at α0=90, with a B.E. of 0.007

Hartree (0.19 eV). The fifth and final electron which can stable bind to a Z=2 center

(bottom center) is, similarly to the H2− species, a terminal binding who reaches an

asymptotic stability with increasing alpha, the B.E. is 0.0004 Hartree (0.011 eV).

Of the two relativistic corrections accounted for in the above framework, the

trajectory is the paramount addition. An examination of Figures 2.11 and 2.7 shall

be required for the subsequent discussions. The introduction of the planar Large-D

Hamiltonian, HP , for the systems was a boom which aligns itself in agreement with

the previous works -see Figure 2.11 a and compare plots a and c in Figure 2.7- and

yet out preforms the previous equation when this relativistic trajectory is introduced,

to see this compared plots b and c in Figure 2.7.

By comparing plots a and d of Figure 2.7 it can be seen that the raw energies

and the binding energies between the non-relativistic trajectory (plotted with HDA)

and the relativistic trajectory are not extreme. This can be verified and more clearly

seen by examination of Figure 2.11 c, wherein both the non-relativistic and relativis-

tic binding energies are shown; although the energies become quite different with

increasing α0, the field intensity which yields the most stable binding energy is same

and the most stable binding energy deviates only in the thousandth of a Hartree.

Consideration of the mass gauge for this system provides a very slight correction

within the values of α0 examined here; where although these values of α0 indicate

laser field strengths on the order of atomic units and greater (in competition with

the Coulomb potential of the center) they are in no way strong enough to generate

quivering electron masses, mr, which deviate significantly from the invariant mass,

m0. Due to this, the deviation of the binding energies due to consideration of mr over

m0 is also slightly less than breath-taking, this can be seen in Figure 2.11b and again

impressed by examination of the deviation of the raw energies of Hydrogen in Figure

2.11d. To be gleaned from this is that within the examined field strengths, mr devi-

ates very little from m0, but more significant is the fact that the overall consideration

of relativistic effects does destabilize the system, but not by an appreciable amount.
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Table 2.1
The below table displays the differences present when relativistic con-
siderations are undertaken for these multiply-charge ions. The Non-
Relativistic values were taken from[14].
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Figure 2.12. Plots of binding energy for the H− (left) and He− (right)
systems. Top, Non-Normalized plots of the calculation data showing
agreement between the methods. Bottom, -B.E./B.E.max to emphasis
the qualitative simularity between the methods as they share minima
for the B.E. curves.
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Figure 2.13 helps emphasis the differences between the corrected and non-corrected

systems. The top level of the figure is the probability density, |ψ|2, of corrected (left)

and non-corrected (right), the density in the outer orbital centers is lower due to a

more diffuse spread of probability density at these locations compared to the non-

corrected. The mid-level of the plot is the negative probability density, superimposed

on the probability density function is the trajectory of the system which it describes.

Below all else is a contour plot of each system, again emphasis is merited on the

more diffuse spread in the corrected system due to the evolution of the parametric

trajectory as opposed to the linear oscillating trajectory of the non-corrected system.

Figure 2.12 shows a plot of the B.E. For the H− (left) and He− (right) systems

from both the SCF (blue) and D-Scaled (red) methods. The lower B.E. plots in

Fig. 2.12 have been normalized to the minimum value to show the tight agreement

between the qualitative assessment of the scaling procedure and the SCF method. The

Dimensionally Scaled minimization problem bore ’exact’ position of the electrons as

(x1, y1, z1;α0)=(4.1660 × 10−10, 5.4461, -12.2387; 20) for the Z=1, N=1 system and

(x1, y1, z1;x2, y2, z2;α0) = (6.4472× 10−8, 5.0386, 16.5852; −6.4472× 10−8, 5.0386, -

16.5852; 20) for the Z=1, N=2 system; these localized electron positions are similarly

predictable as they attempt to bind to regoins where the angular velocity of the

nucleus is lowest in the KH Frame; these locations would most notable be the π
4
’s

the trajectory. With a single electron the central point of the parametric curve, set a

origin in our calculations, binds the electron strongly; as more electrons are introduced

they are situated at locations which minimize the electron-electron repulsion of the

system. A Mulliken population analysis of the systems shows that the orbitals about

the central charge typically possess a smaller number of electrons, except in the N=3

(and assumably the N=5 case); the results of such population assessments can be

seen in Table 2.2. In this way we are able to verify not only the energetic behavior

of the D-Scaled Hamiltonian but its treatment of the electrons in space.
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Figure 2.13. Top Row: Plots of the Probabiltiy Distribution for the
corrected (left) and non-corrected (right) H− system, directly below
is a superimposition of the trajectory upon the the probabilty density
function plot to emphasis their relation. Bottom Row: Contour Plots
of the H− system, both corrected (left) and non-corrected (right),
note the different scales on the vertical (z) axis and the more diffuse
behavior of the corrected system.
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Table 2.2
Results of Mulliken Population Analysis, note that there are four outer
orbitals the table contains one of the four values.

Species Inner Oribital Outer Orbital Total Electron

Population Population (each) Count (N)

H 0.01645 0.24576 1

H− 0.000524 0.49987 2

He 0.000432 0.499892 2

He− 1.00001 0.499999 3
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2.6 Comments on Elliptical and Circular Polarizations

Within the above concern was only given to the relativistically corrected linear po-

larized light, this is because similar corrections placed on elliptical polarized light yield

no new -or interesting- phenomenon. Following similar mathematics as to achieve an

analogous relativisticly considered trajectory would consider the electronic coupling

as before and consider a minor weighted coupling to the magnetic field, as in the

linear case before. An elliptically polarized laser fired in the y-direction with the

electronic major (minor) axis oriented in the x(z)-direction yields the trajectories

~α ~E,Elliptical(t) = {ε1cos(φ), 0, ε2sin(φ)} (2.42)

~α ~B,Elliptical(t) = {−β2sin(φ), 0, β1cos(φ)}. (2.43)

Within Eqs. (2.42-2.43) the amplitude in each the major and minor axis is denoted

by the subscript 1 and 2, respectively, and the ε and β are the coefficients of the

electronic and magnetic components. The trajectory generated by both the above

biases applied to free particle merely generates a new ellipse with a major and minor

amplitude mediated between those of the above and tilted by an angle respective to

the coefficients.

~α = {ε1cos(t)− β2sin(t), 0, ε2sin(φ) + β1cos(φ)}. (2.44)

This can be seen graphically in Fig. 2.14 which displays the individual electronic and

magnetic trajectories and then in Fig. 2.15 which displays the combined trajectory

which would be followed by a free particle traveling within this electromagnetic field.

If this scheme is applied to a circularly polarized field the same mathematics will

appear but the coefficients within the trajectories will be reduced to ε1 = ε2 = ε and

β1 = β2 = β. This will yield the same uninteresting phenomenon, but merely present

it as the mediate of two circles with no change in the orientation angle as there is no

unique point of reference on a circle.
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Figure 2.14. The electronic elliptical contribution can be seen as the
function whose major axis lies in the z-direction (vertical) and the
magnetic contribution has an orthogonal orientation.
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2.7 Conclusion

It has been shown that even under conditions of relativity multiply-charge atomic

ions should still be achievable within the confines of an intense laser field. The stabil-

ity of several atomic-anions has been found and discussed, some ions are on the order

of an entire electron volt more stable than the ionized system. The importance of the

general dimensional scaling procedure was verified not only via the energetics, but

with a comparison of the ’exact’ locations of the electrons as predicted by Dimensional

Scaling as they compare to the probability densities from the standard SCF proce-

dure. These species were found to be stable and should, therefore, be experimentally

realizable. Stability of simple molecular systems in super-intense laser fields have

been previous discussed here[40, 41, 42]. This dimensionally scaled framework with

relativistic corrections yields itself easily to a description of molecules and molecular

ions within the confines of super-intense laser fields, which shall be undertaken next.
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Figure 2.15. Within the above plot, the total trajectory can be seem,
the amplitude of the major and minor axises are mediated in value
between those from the electronic and magnetic components and the
orientation is set off by an angle whose value respects the same coef-
ficients as the relative amplitudes.
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3. DRUG EFFICACY PREDICTION BY QUANTUM PROCESSES

3.1 Introduction

Attention has recently been given to a theory governing the activation of G-Protein

Coupled Receptors (GPCRs) within the olfactory cavity by means of an electron

transfer process across the activation site of the protein. This theory prescribes similar

mechanisms to those governing Inelastic Electron Tunneling Spectroscopy (IETS), a

method of spectroscopic determination based on molecular vibrational and electronic

transitions. This theory has been used to reassert odorant compounds within their

known odor classes; agreement was established, possibly bolstering the applicability

of this theory. There are several facets within the framework of IETS theory that

should be further considered and included in future works within this topic. Herein

we elucidate several considerations and to what degree these influence calculations:

dimensions of the activation site, orientation effects of the odorant within the site,

modulation of the geometry of docked ligands, and the importance of both Infrared

and Raman active modes.

Prediction of the behaviors of a bound agonist within the active site of a protein

is of major interest in fields surrounding taste/scent, pharmaceuticals and of drug

design. Inelastic Electron Tunneling Spectroscopy (IETS) has been proposed as a

mechanism by which olfactory G-Protein Coupled Receptors (GPCRs) are activated

by an encapsulated agonist. Herein we apply this notion to GPCRs within the mam-

malian nervous system. We have noted that non-endogenous agonists of the Serotonin

receptor share a singular IET spectral aspect both amongst each other and also with

the serotonin molecule; this peak roughly scales in intensity with the known activities

of known agonist activity. We conclude by proposing an experiential validation of this
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model by utilizing Lysergic Acid Dimethylamide (DAM-57), an ergot derivative, and

its isotopologues. If validated this theory may provide new avenues for guided drug

design and better in silico prediction of efficacies.

Quantum activity within biological systems is a topic that has drawn a great deal

of attention recently[1, 2, 3]. Examples of systems that exploit such phenomenon are:

the avian magnetic compass [5, 6, 7], quantum mutations [9, 10], entanglement in

photosynthetic complexes [13, 14, 15, 16, 17], tunneling behavior in the antioxidant

breakdown of catechols present in green tea [18], enzymatic action[19], olfaction[20],

and genetic coding [21].

The activation of GPCRs govern many physiological activities examples of which

include olfaction, central nervous system regulation and maintaining circadian rhythm.

Roughly half of all modern small molecule therapeutics target this class of proteins

and 50% of all human encoded GPCR genes encode for olfaction alone. Understanding

the mechanism by which activation of this class of proteins is achieved is paramount

to applications within both the pharmaceutical and the flavor/scent industries. G

Protein-Coupled Receptors (GPCR) are the target for the greatest portion of modern

therapeutic small molecule medications[22]. Predictability of pharmacological effi-

cacy for new drugs prior to a complex total synthesis can be aided by pharmacore

modeling or with either crystal structure or a homology model. The theory of pro-

tein/agonist binding has been described through variants of the Lock and Key model,

originally proposed by Fischer[23] and the extensions thereof[24]. Although this the-

ory has provided insight into changes of free energy associated with the formation

of the activated complex, it has not manifested sufficient capacity for the prediction

ligand activity or a mechanism by which the agonist activates the system.

Early models attempting to account for odorant binding and the prediction of odor

classification include those of Dyson[25] and Wright [26], who proposed a vibrational

theory of olfaction. These theories were expanded upon to include scents generated

through the blend of two or more molecules [27] and explanations of chiral behav-

iors in olfaction [28]. Vibrational theories were eventually disregarded for reasons
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that include a lack of conceived mechanism and the inability of the protein (which

is vibrating) to detect the continuum of thermally-activated, classical vibrations of

the odorant. Recently, Turin suggested a theory of olfactory activation consisting of

a physical mechanism closely resembling Inelastic Electron Tunneling Spectroscopy

(IETS) [20, 29, 30]. Turin demonstrated the viability of his theory across several

classes of odorants with several examples per class. The plausibility of time scales

associated with this process was verified through Marcus theory[31]. Electron tun-

neling rates for the olfaction system have been calculated and support the theory

[32]. Furthermore, eigenvalue spectral analysis of odorant molecules has shown a

high correlation between the vibrations and odorant classification [33].

Genes encoding Olfactory Receptor (OR) proteins, a specific subtype of GPCR,

were discovered in the early 1990’s[34]. GPCRs are prevalent throughout living or-

ganisms and have many functions in physiology; with roles that include the synap-

tic recognition of neurotransmitters within the central nervous system (CNS). The

primary focus of this paper is an initial examination of the viability of a recently

proposed vibrational theory of protein activation in cases involving protein-agonist

binding within the CNS and as a predictor of intrinsic efficacy as defined within [35].

Activation of the 5-HT1A and 5-HT2A receptors is implicated as being associated

with human hallucinogenic responses [36, 37]. A recent resurgence of interest for

a vibrational-based theory of protein activation has occurred, featuring IETS as its

possible means of detecting the vibrational modes of the bound ligand. The IETS

mechanism relies on a field driven electron transfer across an insulating gap situated

between two conductive metal plates. The driving field promotes electrons to tunnel

from the donor site on one side of the gap to the acceptor site on the other side; this

is the elastic process. As the intensity of the driving field is increased, the electrons

may donate a quanta of energy to a molecule situated within the gap along their path.

This exchange of energy must be equal to a quanta accepted by the molecules vibra-

tional or electronic transitions. This secondary mechanism provides a new path which

enhances the current across the gap. There exist several other mechanisms by which
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electrons are conveyed across the gap including elastic transfer, inelastic transfer, 2nd

order elastic transfer as well as subsequent and less contributing modes of transport.

The theoretical description of this mechanism was introduced by Scalapino, Hansma

and Kirtley and later elucidated by Phillips and Adkins.

As a means to exemplify the effects of several factors on the measurable IETS

intensities, we have selected as our example system the formate ion. This ionic system

is both small and simple enough to allow for easily observed emphasis of effects of the

IETS mechanism discussed within this paper as it possesses a very tractable number

of vibrational modes and a simple geometry. This example also has the added benefit

of being a classical example within the IETS theory and experimental literature.

We will then present a qualitative discussion of the relationship between the IETS

model and the protein-agonist complex. Following this, we will discuss the IETS of

several 5-HT1A and 5-HT2A agonists, and how these correlate with efficacy of these

molecules. We conclude with a proposed set of molecules that could be employed in

a experimental validation of the vibrational theory’s applicability in the CNS.

3.2 Inelastic Electron Tunneling Mechanics

Inelastic Electron Tunneling Spectroscopy is a well-founded experimental method

utilizing a simplistic laboratory set-up that can deliver the vibrational spectra of

an analyte. The mechanism of action is semi-classical and not optical, particular

selection rules are derivable with IETS [63] but in general this method allows for

forbidden transitions, thus all vibrational modes are addressable[64]. The method

is implemented by the application of a potential across a two-plate junction with a

spatial separation between the plates. High energy electrons from the valence band of

one plate will tunnel across the junction into the conduction band of the other. When

the tunneling process occurs in the absence of analyte molecules, the process is elastic

in nature and electron energy is maintained throughout the process, thus the elec-

trons energy must be respective of the energy between the valence and conductance
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band/ Depositing an analyte molecule onto the electron source plate, as the tunneling

electrons enter the gap they may interact with the deposited analyte molecules; in

doing so they are effectively given a springboard, shortening their tunneling path.

This interaction comes at a cost of energy; the electron will lose energy to the analyte

molecule, where the amount of lost energy is equal to that of a vibrational mode of

the molecule. This process may be seen in Figure 3.1. This method has been well

described theoretically [66, 67, 38] and expanded to include such considerations as

molecular orientation [68] and short-ranged higher harmonics [69].

Here we shall review the theoretical description of the elastic process a seen in

[40, 39]. Calculations of Inelastic Electron Tunneling rates have been performed in

various ways throughout the literature. Typically the Barden Transfer Hamiltonian

method is employed to allow for the calculation of the elastic contribution from the

tunneling wavefuntions across the barrier sides. The WKB approximation is used

to describe the wavefunction of the tunneling electrons from each side; the following

are the evanescent wavefunctions describing an electron traversing a gap of length d

defined by two conductive plates of area L2:

ϕ1 =

(
A

L

)
eik‖·re−α0z (3.1)

ϕ2 =

(
A

L

)
eik
′
‖·re−α0(d−z) (3.2)

From the above it should be noted that L is the dimension of the square plate. kparallel

and k′‖ are the momentum parallel to the surfaces. Similarly, A is a collection of con-

stants forming the normalization for our system, α0 is the decay rate of the evanescent

wave in the zth direction and assuming cylindrical symmetry the wave vectors in the x̂

and ŷ directions are identical and are combined into the radial wave vector k||, noting

that this is the wave vector components parallel to the plate surface. The anatomy

of this system is given in Figure 3.2. As a reference, a cartoon description of the

formate ion within the gap is given in Figure 3.3a and the experimentally resolved

spectra for this system is in Figure 3.3b.
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Figure 3.1. Cartoon displaying the competing processes during IETS
where V is potential energy and Fe is the Fermi Level. Path A is
radiative [65, 63], requiring the tunneling electron to spontaneously
lose energy to meet the energy of the conductive band. Path B shows
the electron losing energy via a non-radiative process; it is implicit
that the energy lost is to a normal mode of a deposited molecule
within the gap - such is our case.
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Figure 3.2. A cartoon displaying the physical relations and signifi-
cance of variables within the problem. e− is the tunneling electron
with vector displacement of ~r and Ze is the partial charge associated
with a molecular mode with displacement ~R, and d is the distance
between the two plates.



85

Figure 3.3. a) A cartoon schematic of the formate ion within its gap,
distance parameters d and a are shown within the figure for clarity.
b) The IETS spectra of the formate ion taken from[cite], provided as
reference.
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As the electrons tunnel through the barrier they may undergo several processes

including: elastic transfer, inelastic transfer, 2nd order elastic transfer and subsequent

less contributing modes of transfer. The inelastic modes of transport are facilitated

through interaction between the tunneling electron and a deposited molecule within

the gap; the tunneling electron donates of quanta of energy to the deposited molecule.

The donation of energy from the electron to the molecule must obey Fermis Golden

Rule:

Tirightarrowf =
2π

~

∣∣∣
〈
ϕ2

∣∣∣Û
∣∣∣ϕ1

〉∣∣∣
2

δ (Ef − Ei ± ~ω) (3.3)

Where Ti→f is the probability of an electron transferring from state i to state f ,

with the stationary state wavefunctions ϕi and ϕf ; Û is the interaction potential to

be discussed and δ is the Kronecker delta function depending on the energies of the

states and the quanta absorbed by the deposited molecule. The quanta of energy is

typically in the range of vibrations for IETS, although electronic excitations have also

been achieved experimentally. The electronic interaction between the ligand and the

molecule treats each atom of the molecule separately; each atom is assigned a partial

charge, Z, and sits at its equilibrium positions, R, it vibrates with displacement u.

The interaction potential is that of an electron and single dipole:

Û (r, θ, z) =

(
Ze2

4πε0εr

)
u · (R− r)(
|R− r|3

) (3.4)

As the interaction is between the electron and a single atom of the molecule, the

contribution to the conductivity found through this calculation must be repeated and

summed over all atoms within the molecule. We shall use the wave functions in Eq.

3.4 to attain the average value of the current for the system, via the elastic current

operator, M̂e. To determine the contribution to the conductivity of any mode of

transport, one must first calculate the tunneling matrix element. In the case of the

elastic mode the tunneling matrix element, Me, is calculated as the overlap of the

wavefunctions from the donor and acceptor sites over the volume of the gap since this

mechanism does not require interaction with the deposited molecule. The calculation
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of the tunneling matrix element for the inelastic transport to the contribution utilizes

the both donor and acceptor wavefunctions and the interaction potential:

< ψi|M̂e|ψf >= Me =

(
A2

L2

) L∫

0

dSeiq·r
(
~2α0

m

)
e−α0d (3.5)

=

(
A2~2α0

m

)
· e−α0d , (3.6)

where q is the difference between k′‖ and k||. The inelastic process for a single specified

normal mode is governed by the following interaction potential:

U(r′) =
Zee

2

4πε0εr
· u · (R− r)

(|R− r|)3
, (3.7)

where all symbols retain their standard definitions, including εr being the permittivity

of the generic real media, r and R are made clear by Figure 3.2 and u is the vector

representing the displacement of the atom within the molecule with partial charge Ze.

This potential allows us to calculate the inelastic contributions in a manner similarly

to the above:

Min =

(
A2

L2

)
e−α0deiq·R

∫ ∞

0

∫ 2π

0

∫ d

0

reiq·rU(r, θ, z)dzdθdr . (3.8)

Where the integral in Equation 3.8 can be performed analytically for cases where the

vector directions of u are either parallel or perpendicular to the plate surfaces. For

u along the z direction (parallel to gap):

M z
in = M0

1

qd

(
e−qα0 − e−q(d−α0)

)
; (3.9)

and for u parallel to the plates:

Mx
in = iM0

1

qd

{(
1− e−qα0

)
+
(
1− e−q(d−α0)

)}
. (3.10)

Where, in both the above, the quantity M0 is given by:

M0 = eiq·R−α0d

(
A2Ze2ud

L22ε0εr

)
. (3.11)

The decay constants for each of ψi and ψf should conform with the statement:

Ec − E =
~2

2m
(α2 − k2

||) (3.12)
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where E is the energy of the tunneling electron, Ec is the energy of the conductive

band and m is the mass of the electron (effective mass is typically used). The above

yields two unique decay constants consistent with the difference in electron energies

at the conduction band and during tunneling. With these two unique decay constants

we must append a factor of

e(αi+αf )d/2e(αi−αf )z (3.13)

to our matrix elements due to the difference in α’s. Carrying this factor through we

note there is a depletion of tunneling probability equivalent to:

e−q
2/4(α0d); (3.14)

and finally placing this into an expression for the relative conductivities associated

with the inelastic and elastic processes, ∆σ
σe

, and finally including a 2-D density of

states representative of the plate surface areas:

∆σ

σe
=

{
1

Me

}2 ∫ ∞

0

(M z
in)2 e−q

2/4(α0/d)

(
qL2

2π

)
dq. (3.15)

The above allows us to make the statement:

∆σ

σe
∝ Z2

eu
2
z, (3.16)

as those quantities on the R.H.S. of Eq. 3.15 are the only quantities dependent on

molecular characteristics and thus are featured in Eq. 3.16. As the elastic tunneling

process occurs with or without the presence of the analyte molecules, the experimental

observable is the ratio between the known elastic contribution, σe = M2
e , to the

current at a given applied potential (found through a zeroing process with a non-

deposited gap) and the deposited gap current at the same potential; this ratio quantity

is denoted as ∆σ
σe

. Armed with the above, the IETS intensity for a given active mode

j can be approximated by[20, 38]:

Ij =
N∑

i=1

Ii,j =
N∑

i=1

q2
i (∆xi,j)

2, (3.17)

where the sum is over all atoms within the molecule, qi is the partial charge of

atom i, and ∆xi,j is the Cartesian displacement of atom i in mode j. This is a
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simplification through elimination of all constants within the calculation, it is taken

as arbitrary units but is proportional to the strict calculation through multiplication

of a constant. Figure 3.4 is provided as a useful reference for subsequent sections;

it gives the normal modes of the formate ion for association with the intensities and

spectra below. Within this figure, the displacements in a.u., the directional unit

vector and the frequency in cm−1 are all given; oxygens are depicted in red, carbon

in black and hydrogen in grey.

3.2.1 Point Dipole Approximation

The most fundamental expression for the interaction between an electron and a

charged dipole is given here:

V =
zi (−zj) e2

4πε0

1

|rj − ri|
+
zizje

2

4πε0

1

|rj + pj − ri|
(3.18)

Where ri is the location of the electron providing a field zie
2 and rj is location of

a single side of the dipole where both ends provide a field with the magnitude zje
2;

the second term describes the remaining, oppositely charged side of the dipole at a

distance pj from the other end. Recollection of the terms yields the expression in Eq.

8a, and a subsequent Taylor series expansion for the denominator yields Eq. 3.19 line

2.

V =
−zizje2

4πε0

(
1
rij
− 1√

r2ij+2~rji~pj+p2j

)
(3.19a)

=∼= zjzie
24πε0rji

(
frac12

~rji·~pj
r2ji

+ 1
2

p2j
r2ji
− 3

8

(
2~rji·~pj
r2ji

+
p2j
r2ji

)2
)

(3.19b)

After the series expansion, the point dipole approximation is typically employed;

this approximation states that the distance between the charge and the dipole is much

greater than the displacement between the dipole termini, rji � pj. Under the point
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Figure 3.4. A display of the normal modes associated with the formate
ion. Also included are a unit vector indicator as to the direction of
displacement and the magnitude is shown beside it. Distances are
in a.u. Frequencies are also displayed in cm−1 beneath the mode to
which it belongs.
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dipole approximation all but the leading terms of Eq. 3.19 line 1 drop due to minimal

contribution, seen in Eq. 3.20.

V ≈ zje

4πε0

~rji · ~µj
r3
ji

=
zjzie

2

4πε0

~rji · ~uj
r3
ji

(3.20)

It is important to note that the spatial dimensions of the activation site within this

class of proteins has been suggested to be roughly 15Å. The suggested dimensions

of the active site, when compared to that of the displacement vector, does not meet

the criteria for the point dipole approximation. Considering at the system is possibly

inappropriate for application of the point dipole approximation, comparing the nu-

merical values for the tunneling matrix elements as calculated by Eq. 3.8 using the

interaction potential Eq. 3.4 and the more complete form of the interaction potential

in Eq. 3.19 line 1. Figure 3.5 shows the relative error associated with using the point

dipole approximation with the spatial scale of the active site; it should be noted that

the error associated with this misuse of the approximated potential is peaked in the

range of the active site length scale. As the point dipole approximation eliminates

terms which are dependent upon the projection, rji ·pj, there exists an angular depen-

dence on the magnitude of the tunneling matrix element. This angular dependence

can be observed in Figure 3.5, and is due to the projector in terms eliminated during

application of the point dipole approximation; the magnitude of the relative error is

proportional to the cosine of the angle, and then we observe an oscillatory component

to the θ dependence.

3.2.2 Polarizability

As a method for obtaining information about the vibrational modes of a molecule,

IETS does not rely on the interactions between the molecular dipole and the field of

the electron. The interaction potential, Eq. 3.4, is that between an electron and a

single oscillating dipole, representative of a vibrating atom within the molecule. This

interaction does not depend upon the polarizability of the system nor the change in
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Figure 3.5. The percent relative error between variations of the inter-
action potential given in Eq. 3.4 and Eq. 3.19a. This was completed
for several values of θ to emphasize the angular dependence stemming
from projection operations in terms eliminated through approxima-
tion.
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net dipole. The single-dipole nature of the potential requires a summation over the

atoms within the molecule to account for all possible interactions.

The ratio given in Eq. 3.16 is characteristic of the enhancement to the conductivity

due to single atom motions. If this were the only responsible contribution to 1st order

inelastic conduction than the symmetric modes, corresponding to Raman transitions,

would not appear in IETS, yet they do and with roughly the same magnitude as

Infrared active modes.

∆σ

σe
∝
∫ ∞

0

MAMBe
−q2d4α0F (qb) qdq = IAB (a, d)ZAZBuAuB (3.21)

The above describes the contribution to the conductivity enhancement due to the

coherent motion of two atoms. Eq. 3.21 contains a phase factor, F (qb), which is

generated through the addition of matrix elements. The advent of this phase factor

comes from the addition of the eiq·R terms seen within Eq. 3.8. If the two atoms are

identical and their distance from the nearest barrier is the same, the form of the phase

factor becomes:
(
u1 + u2e

iq·b). In the case that the displacements of each atoms are

of equal magnitude and the same direction, u1 = u2 (IR active), the phase factor

becomes cos2 (q · b2). In the case of Raman active modes, u1 = −u2, the phase factor

simplifies to sin2 (q · b2).

It has been shown through experiment that both IR and Raman modes are active

within IETS and scale roughly equally. Yet some works within this field authors have

chosen to couple the oscillating dipole associated with an entire molecular mode, this

would generate the intensities associated with the infrared vibrations of the molecule

but not contributions associated with Raman active modes.

Figure 3.6 shows the effects of including intensity contributions of the Raman

active modes (standard IETS), blue plot. Beside the blue plot, we have provided the

intensity expected if the coupling mechanism were to be only with the molecular dipole

moment. The two plots are scaled to each other for convenience of comparison. It is

clear to note, by comparison between the blue plot of Figure 3.6 and the experimental
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plot given in Figure 3.3, that the inclusion of Raman mode associated intensities has

delivered a better approximation to experiment.

3.2.3 Orientation

When considering the charge-dipole interaction potentials it is clear that the lead-

ing (point-dipole) term as well as any subsequent terms rely on the projection of the

harmonic displacement vector for a specific atomic oscillator (j),uj, onto the charge-

dipole vector, rji. This projection is of paramount importance within the calculation

of the coupling within these systems as it effectively modulates the power of the

denominator.

Orientation effects within IETS intensity calculations have been described as be-

ing of such importance as to practically be a selection rule for this type of vibrational

characterization. Interaction potentials used within early formulations of IETS cal-

culations has relied on the coupling strength of the electron within the donor site to

atomic harmonic oscillators, and did not include any dynamic interactions within the

system. More dynamic formulations exist to deal with that rather minuet contribution

of inelastic tunneling contributions to the current through molecular junctions, such

as greens functions approaches. It should be noted that in these cases the inelastic

contribution is to the molecular conductance and is attributed to vibronic alteration of

electronic levels within the molecule this second-order coupling (electron-vibrational

state-electronic state) is why the inelastic contribution is minute in these cases.

In maintaining the simplicity of static calculations, one cannot ignore the con-

tributions to the interaction potential from the vector projection. To emphasize the

importance of this interaction we have plotted the IETS of the formate ion; in Figure

3.7a you can see the three angular parameters. The red rotation about the red (z)

axis does not alter the spectrum of the formate ion as the calculations set the origin

of the tunneling junction along this axis and thus this rotation does not alter the pro-

jection of the electron onto any molecular modes, merely which component possesses
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Figure 3.6. The blue line shows the IETS of the formate ion; the
maroon line shows the spectra where the interaction potential given
Eq. 3.4 is replaced by the interaction potential between the electron
and the molecular dipole. The two plots have been scaled so to be
comparable.
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the projection; it should be clearly stated that this is a facet of the formate ion, not

of IETS. Rotation about the green (y) and blue (x) axes will alter the projections,

the effects can be seen in Figure 3.7b for rotation about the x-axis and Figure 3.7c for

rotation about the y-axis. Furthermore, without having calculated these orientation

effects one can never achieve modes where the rate of inelastic tunneling is lower than

the rate of the elastic process.

3.2.4 Docking Geometry

Specifically discussing the activation of olfactory proteins under the odotope the-

ory, the volatile odorant molecule is hypothetically capable of maintaining something

akin to its optimized geometry within the activation site. This fact is due to the fact

that only certain sections of the molecule are being determined at once, it could be

rationalized that the molecule only loosely enters and is never fully enveloped by the

activation site. This rationalization would be countered by docking studies of the

OR1A1, OR1A2 and OR1G1 human olfactory receptors that do show envelopment

of the ligands which dock with the protein.

Full ligand envelopment can lead to geometric alterations of the ligand during

the docking. The alteration of ligand geometry can lead to attenuations in both

the modal displacements and the partial charges, which for our example system can

roughly generate a 10% by displacement or a 5% by partial charge (where partial

charge was calculated through NBO analysis) alteration in the IETS intensity if the

molecular geometry group is maintained. Moreover, these attenuations alter the

potential interaction between the electron and the dipole through the dot product

present in several terms of the non-approximated interaction potential Eq. 8a as well

as the standard interaction potential Eq. 3.4.

Figure 3.8a shows the geometry and alignment within the gap of the formate ion

as well as variations on the bond angles. Fig. 3.8ai is the optimized for of the ion,

Fig. 3.8aii is has altered both O-C-H bond angles equally (maintaining both σ planes)
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Figure 3.7. Effects of orientation of the molecule within the gap.
Rotational axes are noted in Subfigure (a). Subfigure (b) and (c)
show the IETS for the formate ion as it is rotated by the X- and
Y-axis, respectively.
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and Fig. 6aiii has altered only one of the O-C-H bond angles (maintaining only the

σ plane bisecting all bonds). The alterations in the frequencies, displacements and

partial charges are shown in Table 3.3. Figure 3.8b gives the IETS for the variations

of the formate ion. For obvious reasons the frequencies are slightly displaced, and the

introduction of asymmetry in the oxygen pairs movement eliminates much of their

non-canceling contribution.

3.3 Mapping the Models

Application of the IETS model for the protein environment requires mapping sev-

eral aspects of the IETS methodology to the biological system. The two-plate setup

of the tunneling junction represent the walls of the receptor site; more explicitly, un-

der electron transfer the valance and conductance bands within the juncture become

specific HOMOs and LUMOs of the residues making the walls of the receptor. This

dictates that energy transition detectable by the protein should be the energy dif-

ference between electronic levels of residue side-chains. This alteration of IETS also

localizes the source of tunneling electrons to a single residue side-chain; the implica-

tion is that electrons are not capable of uniformly tunneling through the molecule.

This lack of uniformity suggests that the act of tunneling is localized to regions of

the agonist molecule and that not all local oscillators of a specific mode contribute

to the current enhancement.

Secondly unlike the experimental IETS procedure, the analyte is not deposited

upon anything within the activation site; the agonist is encapsulated by the active

site. There is no externally applied potential within the receptor site which would

have allowed for the scanning of energies; yet, it has been suggested that an ionic

cofactor, likely a calcium ion, could provide this driving field. The implication of

this is that the receptor is set to test the vibrational-assisted enhancement to the

electron tunneling rate at a specific energy. The electrostatic interactions which

govern docking orientation would be a means of orienting the endogenous agonists in
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Figure 3.8. Effects of alterations of the geometry of a system on
the IETS. Subfigure (a) shows cartoons of the geometries of concern:
optimized geometry, symmetric alteration and asymmetric alteration,
respectively. Subfigure (b) shows the IETS of the formate ion variants
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Table 3.1
Numerical Values for calculations of the geometric alterations and
optimized geometry variants of the formate ions. This table contains
displacements of the first three modes
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Table 3.2
Numerical Values for calculations of the geometric alterations and
optimized geometry variants of the formate ions. This table contains
displacements of the final three modes
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Table 3.3
Numerical Values for calculations of the geometric alterations and
optimized geometry variants of the formate ions. This table contains
the partial charges of all atoms for each geometric arrangement
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such a way that the tunneling junction is appropriately aligned for maximized electron

transfer. Non-endogenous agonists would align with residues in a manner which may

place energetically appropriate modes in proximity of the tunneling junction, thus

activating the receptor.

3.4 Results

Generation of tunneling spectra is completed through the procedure described in

[20, 38], and expressed in Eq. 3.17 within the Appendix. This procedure was adapted

from earlier IETS literature[39, 40] and similarly uses arbitrary units for the tunnel-

ing intensity. Our spectral procedure was validated by comparison of the spectra of

the formate ion, which is prevalent throught experimental and theoretical literature

in IETS. These arbitrary units are proportional to the conductance enhancement, as

well as the enhancement to the Coulombic interaction probability during tunneling.

Necessary information for implementing Eq. 3.17 was collected through quantum

chemical calculations. Computations were performed using Density Functional the-

ory at 6-311G level of theory; expanded psuedopotential correlation consistent 5-zeta

basis was used for large atoms where necessary. DFT was chosen both due to its

high accuracy in transition dipole frequencies and to avoid encroaching error associ-

ated with dissimilarity between analyte and parameter molecules in semi-empirical

methods. Vibrational calculations utilize reduced modal displacements; proportional

to the Cartesian displacement through
√
µ, µ is the mode’s reduced mass. Natural

bond order calculations yield the partial charges, qi in Eq 3.17. Scaled Kronecker

delta functions are plotted at the absorbance frequency of the mode; these functions

were convolved with Gaussian functions possessing a FWHM of 25 cm−1, representing

a very narrow thermal distribution. 25cm−1 was selected to be conservative and yet

allow for peak additions while avoiding over estimations of peak breadth.

An examination of the edrogenous agonist, 5-HT, is given in Figure 3.9. The main

spectral features are (quantities are in cm−1): the OH stretch at 3700; NH2 bend at



104

1700; coherent ring motions appear at both 1500 and 1150; and indole bending at

530. For reasons discussed below, we will focus our discussion on tunneling in the

1500 cm−1 region. Working within Turins theory, this implies that these motions

assist in the turnneling and that the tunneling source and sink are in proximity to

these motions. Docking studies of homology modeled 5-HT2A show that the moieties

discussed above are local to F339, F340, S159 and L229 residues [41, 42, 43, 44],

meaning that one of these residues assist in the tunneling.

Assessment of vibrational bands for 2A agonists that could be associated with

protein activation under Turins vibrational theory is of primary import. Also agonists

of a particular protein would share a single IET feature associated with the electron

transfer. We selected several known 5-HT2A agonists and generated the IETS for each.

LSD, was selected as it possesses a high potential for activation of serotonin receptors

within the cortical interneurons[45]. DOI (2,5-dimethoxy-4-Iodo-amphetamine) was

selected due to its high selective for the 2A-subtype receptor [46]. The remaining

selected molecules are members of the 2C-X (4-X-2,5-dimethoxyphenethylamine) class

of psychedelic phenethylamines. All compounds selected are known hallucinogens

[47, 48, 49] some first characterized by Alexander Shulgin in the compendia works

PiHKAL and TiHKAL[50, 51].

Figure 3.10 shows the IETS of the selected molecules (above the axis). The

selection of candidate peaks was performed using a spectral similarity index (SI),

similar to that used for comparison of mass spectra [52], over the entire spectra and

then over local regions. The SI is calculated by:

SI = 1−
√
|ai − bi|
N

(3.22)

Where N is a normalization constant (the numerator performed for spectra b); bi is

the value of the spectra being analyzed at discrete location i and a is the spectra being

compared against. LSD, as the most potent agonist, was selected as the reference

spectra for SI calculations. The SIs associated with each of the IETS are given in Table

A.1; the SI is given for the overall spectrum and followed by regional SI’s calculated
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Figure 3.9. IETS of Serotonin to be compared throughout the discus-
sion. Here the abscissa has units of wavenumber and the ordinate has
units proportional to tunneling probability; this convension holds for
all following IET Spectrum.
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Figure 3.10. The IETS of several known 5-HT2A agonists and the
square of the tunneling PDF reflected below the energy axes. The
Spectral Similarity index of each plot given in the inlay.
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for spans of 1000cm−1 with 500cm−1 steps, to emphasize the possible region associated

with acitvation the final column shows the SI of each compound for 1500±100cm−1.

Regions with large ranges of no intensity have SI’s inflated by this spectral facet, these

regions have been disincluded within the table. When disincluding these regions,

the SI for the region spanning 1000-2000cm−1 shows enhanced values, and includes

the peak at 1500cm−1. The final column of the table gives the SI for a 100cm−1

region about this peak to emphasis this heavily shared spectral feature. As a means

of reducing the minor aspects within the tunneling PDF, we choose to square the

function to exaggerate those energy ranges which exhibit large tunneling amplitudes

within the spectra,shown in Figure 3.10 below the energy axis. Application of the SI

to the square of the spectra showed similar results (not shown), yet with the expected

enhancement of the SI values. The only universally shared spectral aspect were the

peaks at 1500cm−1.

In the next few sections we have selected DOC (2,5-dimethoxy-4-C-amphetamines)

as a prototypical molecule for discussion, this selection was based on its fairly tractable

number of modes, simple geometry, symmetry and similarities to other agonists. En-

ergy regions associated with an assisted electron transfer would benefit from a large

density of vibrational states; implying a greater number of possible states to interact

with in this energy range. Figure 3.11 shows both the IETS and scaled density of

states for DOC; the spectral feature at 1500cm−1 exhibits an enhanced number of

vibrational states.

In §3.5 we propose an isotopolgue series for DAM-57; the series is of variants

are dueterated functional groups altering the character in the 1500cm−1 region. We

verified that isotopologues of other atoms do not to alter tunneling character in this

region. Figure 3.12 shows the isotope effects within several groups of the molecule.

Fig. 3.12 a) shows the effects of replacing the oxygens with 18O’s, this results in

little alteration near 1500cm−1; substitution of the halide has similar results, with

differences appearing at much lower energies. Fig. 3.12 b) displays the effects of

dueterating the hydrogens on the methoxys, this show a large attenuation of the
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Table 3.4
Table contains the SI indexes for several 5-HT2A agonists. The proce-
dure was applied to the total spectra, and several sections of 1000cm−1

which march with an overlaping pattern and shifted by 500cm−1. The
region of interest is also performed with a calculated SI for the region
of 1500±100cm−1
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Figure 3.11. The IETS of DOC (Blue) is plotting alongside a scaled,
discrete density of states for the vibrational modes of DOC. The scal-
ing factor is given in the inlay. Note the enhanced number of states
associated with 1500cm−1 region



110

tunneling intensity; finally, Fig. 3.12 c) shows the effect of selectively dueterating

different functional groups.

The integral of the tunneling probability was taken for 1500 ± 35cm−1 and com-

pared to known EC50 data for compounds shown to activate 5-HT2A. The effective

concentrations of several phenethylamines were taken from [53] and compared to the

local integrals of the tunneling PDF. This comparison exposes a possible correlation

to the inverse of the EC50 data. Results for the 1500cm−1 region are shown in Figures

3.13 and 3.14 for the DOI class and 2C-X class molecules computed, respectively. Fig-

ures 3.13a and 3.14a give the IETS for each molecule, Fig. 3.13b and 3.14b compare

the integral values to the known EC50s.

As tunneling is a highly local process were the interaction potential falls-off as

r−3 for non-parallel displacements. Modes not local to the electron donor/acceptor

sites cannot contribute to the electron transfer responsible for protein activation.

Particular modes in 2C-T-2 and in Aleph-2 reside within the thioether (roughly 5

angstrom from the ring system); due to the non-locality of these oscillators, tunneling

probability should be examined after removing these contributions from the spectra.

Figures 3.13a and 3.14a present the IETS of 2C-T-2 and Aleph-2 both considering

and disregarding these contributions; excess contribution to the integral due to these

modes shown in orange of Fig. 3.13b and 3.14b. After the correction for non-local

motion, the integrals are in fair agreement with the inverse EC50.

3.5 Experiment

Experimental evidence surounding Turn’s theory has been contentious; earlier

findings suggest that both the lake whitefish and the American cockroach can identify

isotopologues of amino acids and pheromones, respectively [54, 55]. Recent experi-

ments using the common fruit fly present both naive bias to and potential for trained

aversion towards isotopologues of acetophenone [56], and reposte [57]. Human testing

of the vibrational theory of olfaction has been camped with the recent works show-
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Figure 3.12. Plots of the isotoplogues of oxygen with the DOC
molecules. The isotope exchanges has no effect on the region in ques-
tion.
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Figure 3.13. (a) The tunneling spectra of several DOX class agonists
as well as their structures. (b) The inverse of the median effective
concentration for the DOX class agonists plotted against the tunneling
probability within the region in question.
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Figure 3.14. (a) The tunneling spectra of several 2C-X class agonists
as well as their structures. (b) The inverse of the median effective
concentration for the 2C-X class agonists plotted against the tunneling
probability within the region in question.
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ing that naive human subjects cannot discern between dueterated acetophenone[58];

while another study[59] confirmed the first, while suggesting that human subjects

can discern between dueterated variants of musk odorants. This theory has led to

works with the intent to possibly identify the characteristic vibrations associated with

particular odors[60].

For the benefit of possibly validating this theory we propose a series of isotopo-

logues for the ergine derivative DAM-57 (N,N-dimethyllysergamide). DAM-57 is a

mild halucenogen with activity at the 5-HT2A receptor; this implies that the above

discussed peak for the 2C-X, DOX and Azapirones families should be the prospec-

tive active peak for DAM-57. Any predictability afforded in the following discussion

should also analogously apply if one were to perform this experiment with LSD, as it

is the diethyl amide analogue of DAM-57. Figure 3.15 shows the tunneling spectra for

various isotope labeled DAM-57 variants. Each spectra is accompanied by a molec-

ular structure conveying which of the hydrogen have undergone isotope exchange;

the possible energy region responsible for serotonin-class activation is highlighted in

yellow.

Using 1500 cm−1 as a central point, and recalling the applied FWHM was 25cm−1,

the peaks contributing to the tunneling intensity at 1500 cm−1 are those modes res-

onating at 1500 ±50 cm−1. Modes within that range have motions associated with

(in order of contribution): stretching of the amide methyl hydrogen; stretching of

the phenyl and indole hydrogens; and bending of the methyl hydrogen of the tertiary

amine.

Discussing the series of spectra we will begin with the dueteration of the three

phenyl hydrogens (DAM-57-i); this dueteration yields a marginal attenuation in the

intensity of the 1500 cm−1 peak, implying a small overall change in the tunneling

probability in this energy regime. DAM-57-ii displays a reduction in the 3700 cm−1

region; this peak being caused by the N-H stretch shifts its weight to 2700 cm−1.

The deuteration of the indole amine results in almost no change of character near

the active region. Pro-deuteration of the hydrogen on a single amide methyl (DAM-
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Figure 3.15. IETS of several deuterium-isotopologues of DAM-57.
Yellow highlights have been given to the energy region which is as-
sumed to be the active energy region for inelastic tunneling transfer.
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57-iii) significantly decreases the tunneling intensity in the 1500 cm−1 region. Con-

tinued deuteration of the amide system (DAM-57-vi), reduces the peak to roughly

one-half the intensity of pro-protium DAM-57. DAM-57-vi and DAM-57-v, moiety

co-deuteration scenarios, present very small alterations of the peak intensity when

compared to DAM-57-iii and DAM-57-vi

Under Turins vibrational theory, a conclusion which may be drawn from the iso-

topologues of DAM-57 is that the dueteration of the amide side chains should dampen

the activity of the molecule within the CNS. This conclusion is supported by a pair

of facts concerning the relative activity between DAM-57 and LSD. The flexible ethyl

amide of LSD has been found to be essential to its high activity [37, 61, 36, 62], and

that the methyl analogue (DAM-57) is far less potent. Also, the tunneling probability

within the 1600 cm−1 region is very depleted compared to that of LSD. Utilizing these

facts, it could be predicted that further depletion of the tunneling probability within

this region should continue to diminish the molecules ability to activate the receptor.

The intensity of the tunneling spectra is roughly is more than one-third smaller, and

the probability density of tunneling is roughly tenthed this implies an extreme loss

of activity associated with deuteration of the amide side-chains.

3.6 Conclusions

The feasibility of tunneling electrons being the mechanism behind the activation of

has been the subject of recent works. The mechanism by which the electron interacts

with a bound ligand has been proposed as being IETS; for future works in this

direction it is important to consider a more complete description of the IETS model

including considerations of the angular dependence between the mode and tunneling

vector, alterations in the ligand geometry due to docking and the importance of

choosing an appropriate interaction potential considering the confines of the activation

site. These facets of the full static IETS calculations have been explored here and

these authors iterate their importance. Future works should not only consider the
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aspects discussed within this paper, as these aspects are mandatory consideration,

but could also explore mode coupling of residue chains within the activation site itself

or thermal line broadening at biological temperatures.

We have reapplied Turins vibrational theory for activation of olfactory receptors

to general GCPRs and have focused on the 5-HT1A and 5-HT2A receptor. We first

examined the IETS of a series of isotopologues used within an experiment to validate

the vibrational theory of olfaction, and showed possible alterations in the tunneling

probabilities which could account for the behaviors observed within the experiment.

We initially identified possible characteristic peaks through evaluation of a spectral

similarity index of several known potent partial agonists of the 5-HT2A receptor,

as data on hydrogen isotopologues for endogenous neurotransmitters are rare. We

present a comparison of the rate of tunneling within an energy range, and compare

these probabilities to the EC50 data for these compounds with good agreement. A

brief discussion of the theoretical implications of the locality of the atomic oscillators

to the electron donor-acceptor sites and the density of states of the agonist are pro-

vided. We conclude by proposing an experiment comprised of a series of isotopologues

which could determine the viability of Turins vibrational theory within the GPCRs

of the CNS.
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4. TEACHING QUANTUM MECHANICS THROUGH QUANTUM GAMES

4.1 Introduction

Classical Mechanics whose approach was developed based on Newtons new math-

ematics was contemporaneously formulated alongside calculus. Both topics moved

from academic investigation into high school classrooms, and in the case of Newtonian

Mechanics earlier still. Quantum mechanics, developed in the twentieth century, was

required to adequately describe such experimental phenomena as black-body radia-

tion, the photoelectric effect, and the atomic spectrum of hydrogen. The development

of quantum mechanics has led to description of phenomena such as the superposition

principle, the ability of an unobserved quantum object to exist in a superposition

of multiple states simultaneously; entanglement, spooky action at a distance where

the state of one system affects that of another without a direct observable relation-

ship connecting them; and interference, as matter exists in both particle and wave

form within quantum theory matter interactions present wave phenomenon such as

diffraction and the properties of constructive and destructive matter-wave addition.

Just as a rudimentary understanding, at minimum, of classical mechanics became

necessary for so many fields, an introduction into the concepts of quantum mechanics

is of growing importance.

A students first excursion into quantum mechanics can be both overwhelming and

daunting, even to an upper division science student. Understanding such concepts as

wave functions, overlap integrals and probability amplitudes are vital in mastering

the subsequent material within the course. A typical first semester course in quantum

mechanics focuses on the Schrdinger Picture and Equation[1, 2, 3]. Herein we present

an outline covering several exercises using QTTT, presented by Allen Goff[4, 5, 6], as
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a means of introducing and enforcing early topics in an introductory quantum me-

chanics course. The exercises presented here allow for introduction and discussion of:

probability amplitude, probability density, normalization, overlap, the inner product,

and separability of states. It is the belief of the authors that QTTT can be used as

an approachable, fun and intuitive means of introducing these topics. It is the hope

of the authors that this tool could act as a companion throughout instruction; after

the students have been taught the game, the instructor can use it as a stepping stone

to new topics and as an avenue for intuitive exercises.

The exercise enclosed, as well as other similar exercises, have been used to assist

the understanding of various audiences in anything from a brief understanding of

concepts necessary to quantum computing to furthering a students understanding

of topics in their quantum mechanics classroom. Much of this material was used to

introduce high school science teachers to topics contained within a seminar the authors

had given in quantum computing technology. The bulk of the material was used

as supplemental material and assignments in an undergraduate quantum mechanics

classroom to great avail with students who did not grasp some early concepts within

the course.

Furthermore, computational chemistry methods are of vital importance in areas

such as materials science and drug design due to their predictive capacities, which may

aid researchers in the prevention of generating failed targets. During the advent of

quantum mechanics two schools of thought began to emerge: the Schrdinger Picture

and the Heisenberg Picture[7]. The numerical results and physical significance taken

from these schools are the same, they differ in where the time-dependency is exhibited

(operators vs states). From the Heisenberg picture, Born and Heisenberg generated

the matrix methods that are prevalent in modern computation chemistry[8, 9]; meth-

ods such as: Hartree-Fock method, Density Functional Theory, and Configuration

Interaction methods.

Discussion of basis-set methods is something that is normally avoided in under-

graduate level courses. This paper provides discussion and exercises by which topics
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in matrix methods can be approached in undergraduate level courses or as an early

assessment or introduction to computational methods in a graduate level course. This

paper is the second in a series[10]; for an introduction to the game, please see these

papers[10, 4, 5, 6].

We also briefly discuss density matrices so that we may introduce entanglement

and concurrence to the students. We have chosen to introduce entanglement as it has

proved to be a vital element in the future studies of quantum computing[11, 12] and

quantum biology[13, 14].

4.2 Physical Concepts and Game Play

4.2.1 Board

The CTTT board is square and is divided into nine square subspaces. These

subspaces will be referred to as principal squares and will each carry a number to

denote the particular square being referenced. The numbering pattern of the principal

squares on the board is shown in Figure 4.1. Prior to discussing the game play,

some vocabulary and concepts should be introduced. The following four elements are

underlying physical concepts that are necessary for game play and thus their use is

weaved within the description of the game.

� ”Spooky Marker” : Named after Einsteins reference to entanglement and hidden

variable interactions as spooky action at a distance [15]. This is a direct conse-

quence to the system being completely described through a finite number of basis

functions of an observable. A coupled pair of electrons exist within a 0-spin state;

that is to say that the wavefunction of the pair is of the form: ψ = 1√
2

(|↑↓〉+ |↓↑〉).
If one observes the state of a single electron within the pair, well say its in the

up-state, that observer incidentally knows the state of the other spin within the

pair. Like CTTT markers, the Spooky Marker represents a single move of a single
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Figure 4.1. The layout of the game board for either classical or quan-
tum Tic-Tac-Toe. This figure also displays the enumeration scheme
that is used throughout this paper.
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player during one turn, yet a Spooky Marker exists within two separate principal

squares simultaneously.

� ”Superposition” : As players have placed a pair of Spooky Markers that represents

their move for that turn, this move can be said to exist as a superposition of the

states (board positions) in which it may exist. This harkens back to the concept

of the Bloch sphere, Fig 4.2, in which a given spin may exist within the up-sping

state or the down-spin state as well as any state generated by a weighted linearly

combination of these two. If Alice places Spooky Markers for her first move into

Squares 1 and 5, then the state of that move is the superposition of the two states:

Square 1 and Square 5. All player moves within QTTT are superposition moves.

A typical teaching example of this is the superposition of spins separated through

observation in the Stern-Gerlach[16, 17, 18] experiments, which are typically dis-

cussed in introductory quantum mechanics courses. A further example, to which

the students may have already been exposed, is the superposition of ammonia

states by tunneling; the students may have discussed this already in their organic

chemistry course with reference to nitrogen inversions[19] and the topic can be

expounded through a discussion of the MASER problem[20].

� ”Cyclic Entanglement” : Entanglement is the correlation between parts of a sys-

tem - induced through an interaction and maintained in separation - which is

independent of factors such as position and momentum[21]. In QTTT this would

consist of a group of Spooky Markers whose board positions are all self-referencing;

as an example: Alices first move (X1) exists in both Squares 1 and Square 5; Bobs

first move (O2) exists both within Square 5 and Square 7; and Alices second move

(X3) is within both Square 7 and Square 1. In this way the possible states of these

moves are dependent upon each other in a similar fashion as to the spin states

of paired electrons. The cyclic reference here is that X1 shares Principal Square

1 with X3, X3 shares principal square 7 with O2 and finally O2 shares principal
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square 5 with X1; this can be represented by: X1
1−→X3

7−→O2
5−→X1 . This series

of moves is shown in Figure 4.3 and will be made clearer in the sample game.

� ”State Collapse” : A quantum system may exist in a superposition of several states.

Only one subordinate state is observed when the state of the system is measured. An

example of this would be a doublet spin system; the state of the single electron would

be a superposition of up-spin and down-spin yet when observed a single electron will

present only either an up-spin or a down-spin state. When a state collapse occurs

through observation within the game Spooky Markers collapse into CTTT marks.

4.2.2 General Structure of the Game

The general structure of the game is similar to that of CTTT. The few caveats

and expansions to the rules can be most easily fleshed-out through an example game.

Game play begins as Alice places her first pair of Spooky Markers on the board; any

such move within the game will be denoted by |ψηi 〉j, where η represents the player to

whom the marker belongs and will thus take on the vales X or O, i denotes the turn

when this marker was placed and j is the location on the board where the marker was

placed. She places her markers in principal squares 1 and 5. This means that her first

move,
∣∣ψX1

〉
, is a super position with the form:

∣∣ψX1
〉

= 1√
2

(∣∣ϕX1
〉

1
+
∣∣ϕX1

〉
5

)
. Let us

now have Bob place his markers in principal squares 5 and 7; unlike the classical tic-

tac-toe game, the placement of a Spooky Marker in QTTT does not prevent either

player from placing subsequent markers in a particular square. Alice retorts with

markers in principal squares 7 and 1. With this last move our game board is now

consistent with that in Figure 4.3. It can now be seen that the state of each of

the Spooky Markers is a linear combination of the two squares that it occupies and

each position within this linear combination is a position within a linear combination

describing another Spooky Marker. In Figure 4.3 it can now be seen that we have

generated a Cyclic Entanglement between markers placed for ψX1 , ψO2 and ψX3 through

their possible states (Squares 1, 5 and 7).
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Figure 4.2. The Bloch Sphere represented pictographically. Where a
spin can be described through a superpostion, linear-combination, of
the two observable states Spin-up and Spin-down.



130

As a cyclic entanglement has been generated it is time for a player to make an

observation on the system that will cause a state collapse of our Spooky Markers into

Classical Markers. As Alices last move was that which sealed the cyclic entanglement

it will be Bob’s right to decide in which way the states will collapse; this reciprocation

of closure and observation was developed in hope to generate a fair game, although

it was an ad hoc rule implemented for the sake of fair game play (a more quantum

mechanically accurate rule would be flipping a coin to decide the collapse). When

an observation is made on the system the states of the markers involved with the

cyclic entanglement will collapse. Unlike a Spooky Marker, when a Classical Marker

occupies a board position no other marker (neither classical nor quantum) may occupy

that position.

The two possible pathways that an observation could take are also shown in

Figure 4.3. We will first state completely the logic of the upper path and then

that of the lower path. If Bob chooses that Alice’s most recent move,
∣∣ψX3

〉
=

1√
2

(∣∣ψX3
〉

1
+
∣∣ψX3

〉
7

)
, should be observed in Square 7 this would imply that the only

state that
∣∣ψO2

〉
= 1√

2

(∣∣ψO2
〉

5
+
∣∣ψO2

〉
7

)
could take is that of Square 5 and thus the

only state
∣∣ψX1

〉
= 1√

2

(∣∣ψX1
〉

1
+
∣∣ψX1

〉
5

)
can manifest is that of Square 1; all this due

to the fact that this observation turns these Spooky Markers into Classical Markers

and thus exclusively occupy their site.

If Bob had chosen the other path, ψX3 would collapse in Square 1 forcing ψX1 in

Square 1 and finally ψO2 in Square 5. The lower board is that which would occur

if Bob chose to observe ψX3 in Square 1. It should also be noted that if a situation

arises consistent with Figure 4.4 there exist a pair (or more) or Spooky Markers that

are entangled with the cycle without both of its states being enveloped by the cycle.

In these cases the observation will also effect a collapse upon the ”dangling” marker;

the subsequent collapse of dangling markers can also be seen in Figure 4.4.

Game play will continue in this manner until one of the players has generated a

three-in-a-row consisting of only Classical Markers. It is possible that two players will

simultaneously win the game through the same observation. When this occurs the
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Figure 4.3. The effect of measurement on the system of cyclic entan-
glement can yield, at minimum, a pair of classical states corresponding
to the state in which X3 was observed.
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Figure 4.4. The measurement on a specific board can have observable
ramifications even for game pieces that are not members of the cyclic
entanglement; these pieces are referred to as dangling markers.
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player with the most recent Spooky Makers generating one of their winning Classical

Markers, loses; which is, in a way, to say first in, first out. When playing a volley of

games Goff does propose that the winning player during a simultaneous victory be

awarded 1 point and the loser 1
2

point.

4.2.3 Exercises

We present the following work as an instructor-guided inquiry exercise[22, 23] as

if the classroom was broken-up into groups of two students per group. We present

specific board examples as a means of discussion and instructional guidance ex-

amples, as introductory courses have been shown to benefit from strong instruc-

tor guidance[24]. A more natural exercise would be allowing the students (post-

instruction on the rules and teaching a specific phenomenon) to play the game and

come across these phenomenon on their own in an inductive learning style similar

to a lab exercise[25, 26, 27, 28]. QTTT could also be used as a continuing-themed

homework exercise as it can be used to exemplify many of the introductory topics in

quantum mechanics.

It was found that introducing the game rules and running a small example game

can take up to 15 minutes, whereas the average time to play a single game is roughly 4

minutes. In the experience of these authors, the use of quantum tic-tac-toe lowers the

level of fear associated with introducing these early concepts, as it both builds student

confidence and gives them a foothold on the material through a familiar mechanic.

Students took to the game enthusiastically, and divorced of the quantum mechanical

concepts learning the game rules comes quickly. The most difficult part in learning

the game is recognizing the closed loops; it is suggested that the instructor select

a student to act as a representative for all the students as the class plays against

the instructor for a game; this method seems to reveal the present thought processes

of the students which can benefit instruction. These authors also found that the

notions to be discussed within the following sections of this paper benefitted from
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introduction through QTTT as they are, at times, the canaries in the coal mine for

student understanding of quantum mechanics.

We will maintain the use of Alice as Player X and Bob as Player O, which is

appropriate as the assumed groups are of two players. Player names, Alice and Bob,

were purposefully chosen as discussion of pairs entangled particles uses the notation

particles A and B; from this notation observers at each end of the system are often

referred to as Alice (for A) and Bob (for B)[21].

Herein we will provide a series of example exercises focusing on the matrix methods

commonly used within computational chemistry. The exercises presented here are not

encompassing, and thus this paper is meant to inspire the instructor to use the tools

of CTTT and QTTT in any way applicable to their classroom. Introduction of the

game to audience with undergraduate-level of understanding in science has taken

roughly 15 minutes; extending this topic to a graduate level course should take less

time. The average length of time to play a single game is 4 minutes. Students seem

to take to the game enthusiastically. Instruction in the topics below have not been

tested using quantum games, unlike those in the previous paper; but benefit to both

concept and clarity is expected.

Again, these exercises are intended to be used in inquiry-based, classroom and

take-home capacities. These authors have found that assigning these types of prob-

lems after a degree of strong instructional guidance and discussion of topics is best[24].

These methods allows the student to explore these new topics after a framework has

been laid, which affords an exploration with confidence due to the students pre-

existing intuition for several aspects of both CTTT and QTTT. In this manner

these exercises are akin to lab exercises in that they exploit elements of inductive

learning[25, 26, 27, 28] and guided inquiry[22, 23].
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4.3 Probability Amplitude, Sign Symmetry and Probability Density

The fundamental quantity within the Schrdinger picture of quantum mechanics is

the wave function, Ψ(x). Ψ(x) are the solutions to the second order differential wave

equation describing the total system energy of a particle[29]. The use of either QTTT

or CTTT does not lend itself to the introduction of the Schrdinger Equation as there

are no intuitive nor appropriate methods for the student to connect game play to

energy. Yet use of QTTT has proven beneficial in the explanation and discussion of

several properties of the wavefunction, especially topics such as normalization and

sign symmetry of the probability amplitude.

Wave functions, as stated by the first postulate of quantum mechanics[1], show

how the state of their system evolves in time. The use of Gaussian-type functions in

the description of moves lends itself immediately as a means of emphasizing the sign

invariance of the probability density. We will begin by defining:

gηi (x, y) = αe
(x−µxi )2+(y−µyi )

2

2α2 (4.1)

Where i denotes the board space in which the Gaussian function resides (i ∈ [1, 9]),

alpha is the normalization constant of the function, η denotes which players move is

described by the Gaussian, µ is the full width at half max of the Gaussian function and

x[0,i] is the center of the board square i. Defining each board square to be of unit length

then: µxi ∈ (0.5, 1.5, 2.5); µyi ∈ (0.5, 1.5, 2.5); σ = 0.2; and α = 1
σ
√

2π
. In this scheme

the center of the 5th board square would be:(µx5 , µ
y
5) = (1.5, 1.5). By using Gaussian

functions to represent the wavefunction describing a players move, we afforded an

opportunity to teach the Gaussian integrals that are vital in quantum chemistry[30]

while exploiting the ease of the integral forms[31]. Students seem to take to this

introduction to the use of Gaussian functions more so than a typical introduction in

atomic or molecular calculations. This may be due to the less intimidating or esoteric

application.

One could assign to Alice a normalized wave function that is a Gaussian-type

function for her pieces with a negative (-) leading sign and to Bob a Gaussian-type
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Figure 4.5. Board (a) shows a series of classical markers; by their
nature of classical markers any wave function describing one is linearly
independent with any other markers wave function. Board (b) shows
a series of Spooky Markers. The wave function describing this series
of moves reveals that these partials are linearly independent with each
other.
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wave function with positive (+) leading sign. Beginning a classical game of TTT,

allow both Alice and Bob to make their first move. Both players will recognize that

the X and O represent game pieces, yet they have opposing signs. This will frame

a discussion of the sign invariance of the wave function. During this discussion,

these authors have found it appropriate to emphasize that it is the magnitude of

the functions displacement from zero that is of significance and draw an analogue to

waves in fluids while pointing out that the Laplacian term of the Schrdinger Equation

is used to describe fluid waves as well.

As these probability amplitudes can differ in both sign and complexity (real vs.

imaginary), it is here that these authors have introduced the magnitude (in fact,

the squared magnitude) to the students as the valuable and physically interpretable

quantity. As the function is possibly complex, one should remind the student that

magnitude of a general complex number is given by: |z| =
√
z · z∗ and that the wave

function acts in a similar fashion. We may now introduce the probability density,

|Ψ|2, of the system as the physical quantity.

In both the quantum and classical analogues of tic-tac-toe, the system could either

be described through a series of single player’s moves, |ψηi 〉, or the total state of the

board, Ψ . In terms of the classical game each move represents a complete particle on

the board. These single particles each inhabit a principal square within the board, in

this manner any function describing a specific particle would be linearly independent

of a function describing another. This example can be seen in Figure 4.5(a); this

linearly independent set of moves can be described through the following function for

the total state of the board:

Ψ =
∣∣ψX1

〉
1

∣∣ψO2
〉

5

∣∣ψX3
〉

9
(4.2)
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Similarly, a Spooky Marker represents a single particle that exists in two different

board square simultaneously and the moves seen in Figure 4.5(b) can be described

through a total board wave function:

Ψ =
∣∣ψX1

〉 ∣∣ψO2
〉 ∣∣ψX3

〉

=
1√
8

(∣∣ϕX1
〉

1
+
∣∣ϕX1

〉
2

) (∣∣ϕO2
〉

5
+
∣∣ϕO2
〉

6

) (∣∣ϕX3
〉

7
+
∣∣ϕX3

〉
9

) (4.3)

We reserve explaining the factor of 1√
8

to the student until later.

Our decision to use Gaussian functions lends itself to instruction of these intro-

ductory concepts through CTTT alone; this allows the instructor to choose to reserve

the use of QTTT for times when it is more comprehendible to the student and more

necessary for the course material. The instructor can choose to show that a classical

game piece is representable by a Gaussian function that can be of either sign. Both

signs equally represent a particle and lead to a properly signed (+) probability den-

sity for the system. At this point it is also at the instructors discretion to employ

imaginary exponents in the Gaussian functions to show a properly signed magnitude

for the probability density, and proving the need for taking the complex conjugate of

the wave function.

4.4 The Inner Product, Normalization and Overlap

Extending the discussions framed within the previous section allows for the intro-

duction of the inner product whose general form is:

〈Ψ (τ̃)|Ψ (τ̃)〉 =

∫ Ωe

Ψ∗ (τ̃) Ψ (τ̃) dτ̃ , (4.4)

where τ̃ refers to all coordinates within the function, and Ωe is the bounds of the

space defined by a specific problem. The inner product may be exercised within the

confines of the game in ways that exemplify its two early uses: the normalization and

the overlap.

Many early students beginning their studies in quantum mechanics find that the

first hurdle to their understanding is normalization. We have used this game and
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presented methods to successfully introduce this topic to students who are struggling

in their undergraduate quantum mechanics course; the authors feel that the student

benefits from the initial removal of the concept from atomic and molecular systems.

This allows the student to understand the concept intuitively, learn the mathematical

statement and then transplant all of this back into quantum mechanics. Starting

with the boards expressed in Figure 4.6, we have used a series of exercises to test the

students comprehension of normalization.

Students, from experience, recognize that when a classical marker is placed in a

square of the game board the marker is completely contained within that space, and

does not exist within any other space on the board. In an effort to prove that which

the student already knows we can perform the following inner product using the wave

function for just the X in Figure 4.6(a):

〈
ψX (τ̃)

∣∣ψX (τ̃)
〉

5,5
=

∫ Ωe

(g5 (x, y))∗ g5 (x, y) dxdy (4.5)

The inner product will be evaluated three times for Figure 4.6(a). For the first

evaluation of Eq. 4.4 we shall define Ωe = ΩBoard; in this instance the students intu-

ition that the marker is somewhere within the board is verified through the value of

the integral being 1; thus permitting the student to solve for α by following intuition.

We can further impress upon the student this point by the reevaluation of Eq. 4.4

with Ωe = Ω5 and then again with Ωe = Ω9. The first of these evaluations again leads

the student to accept that the marker is exactly where they think it should be, in

square 5. The later of these two exercises merely shows the student that the marker

that is not in square 9 is, in fact, not in square 9.

Shifting focus to evaluations of Eq. 4.3 on the board shown in Figure 4.6(a); we

can now generate the linear combination, ψX1 = 1√
2

(∣∣ϕX1
〉

1
+
∣∣ϕX1

〉
4

)
, and describing

the state of Spooky Marker in a manner consistent with Eq. 4.3. Reverting to Dirac
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notation and the students intuition we can complete the following simplifications and

evaluations with Ωe = ΩBoard:

〈
ψX1
∣∣ψX1

〉
=

1√
4

(〈
ϕX1
∣∣
1

+
〈
ϕX1
∣∣
4

) (∣∣ϕX1
〉

1
+
∣∣ϕX1

〉
4

)

=
1

2

(〈
ϕX1
∣∣ϕX1

〉
1,1

+
〈
ϕX1
∣∣ϕX1

〉
1,4

+
〈
ϕX1
∣∣ϕX1

〉
4,1

+
〈
ϕX1
∣∣ϕX1

〉
4,4

)

=
1

2
(1 + 0 + 0 + 1) = 1

(4.6)

The students by now have recognized that a Spooky Marker has the same weight

as a classical marker in the totality of the board. These authors also chose to commit

the inner product of the Spooky Marker in Figure 4.6 with Ωe = Ω4, revealing that

Square 4 contains half of the Spooky Marker.

In a similar fashion the instructor can impress both the meaning and mechanism

of the overlap integral onto the student through exercises definable on game boards.

Here, the use of the Spooky Marker in this exercise is highlighted as they are ca-

pable of overlapping with other Spooky Markers. The provided board and marker

combinations in Figure 4.6 hold the potential for a variety of exercises for the student.

4.5 Hilbert Space and Basis Functions

The matrix formulation is typically avoided in early quantum mechanics courses

geared towards undergraduate students[3], where preference is given to the Schrdinger

equation due to the Anschaulichkeit of the latter (which has historically been the pri-

mary positive aspect of this formulation)[7]. Although matrix formulations have been

relegated to graduate-level courses, they are extensively used in quantum chemistry

methods[30, 1, 2, 32].

We have begun by introducing the game briefly and then we define a clear and

finite set of basis vectors spanning the space of the game board. This set can be

used as a means of formulating a vector describing any particular move within the

game. Noting as a sensible preliminary to further discussion that the basis that spans
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Figure 4.6. Boards that can be used during class exercises. (a) is
a board giving a brief pair of exercises that can be used to enforce
the concept of normalization as the student integrates the board over
each of the markers and then the pair of Spooky Markers. (b) is a
board yielding several exercises that can be used as a means of both
enforcing the concept of overlap and allow the student to numerically
evaluation the overlap integral of Gaussian-type functions.
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Figure 4.7. Boards displaying several possible exercises. Board A is
a brief series of exercises for the expansion of moves in terms of basis
functions. Board B yields several possible exercises for the topics of
normalization and overlap.
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and describes the spaces on board is the set of nine basis vectors conforming to the

completeness relation:
9∑

i

|ϕi〉 〈ϕi| = I9 (4.7)

by noting that |ϕi〉 is the ith dimensional principle Cartesian vector where each di-

mension in the vector is representative of a principal square on the board. Each

player’s move can be described as a column vector constructed of weighted basis

vectors spanning the totality of possible (finite) states within the board:

|ψ〉 =
9∑

i=1

vi |ϕi〉 (4.8)

In this manner, the move X1 shown in Figure 4.7(a) can be described in the

aforementioned manner and is given by either of the following equivalent statements:

ψX1 =
1√
2




1

0

0

0

0

0

0

0

0




+0




0

1

0

0

0

0

0

0

0




+0




0

0

1

0

0

0

0

0

0




+
1√
2




0

0

0

1

0

0

0

0

0




+0




0

0

0

0

1

0

0

0

0




+0




0

0

0

0

0

1

0

0

0




+0




0

0

0

0

0

0

1

0

0




+0




0

0

0

0

0

0

0

1

0




+0




0

0

0

0

0

0

0

0

1




=
1√
2
s1 + 0s2 + 0s3 +

1√
2
s4 + 0s5 + 0s6 + 0s7 + 0s8 + 0s9

(4.9)

Noting that the coefficients provide weight to each basis vector we may now represent

the probability amplitude of a particle in a board space defined by the basis vector

(si).

We can now easily show students the importance of normalization in a method

apart from the use of integrals. In this manner the student is exposed to the material
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from several vantages (as they have seen the overlap integral method in earlier courses

and coursework), this allows the student to achieve a full perspective and decide which

picture they find most insightful. The student need only to recognize that a single

classical move represents a single particle placed within the board, thus the following

statement makes the connection between common sense and quantum mechanics:

9∑

i=1

|vi|2 = 1 (4.10)

where the evaluation, at this point, can be shown to the student as the dot product

of two vectors(in this case is X1 from Figure 4.7):

〈
ψX1
∣∣ψX1

〉
=
(

1√
2

0 0 1√
2

0 0 0 0 0
)




1√
2

0

0

1√
2

0

0

0

0

0




(4.11)

Just as the mathematics of normalization and overlap are nearly identical in the

Schrdinger picture, so it is in the Heisenberg picture. The act of describing the

overlap integral of two moves in vector notation can be performed for the pair of
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Spooky Marker moves seen in Figure 4.7(b) and yields the same solution as the use

of the Gaussian functions presented in[10]:

〈
ψX1
∣∣ψO2

〉
=
(

0 0 0 0 0 0 1√
2

1√
2

0
)




0

0

0

0

0

0

0

1√
2

1√
2




(4.12)

We have now shown the student how to describe a move, normalization and overlap

integral within the matrix formulation; now we may guide our discussions into the

direction of observables in quantum mechanics.

4.6 Change of Basis, Projectors and Observations

The student - now being able to describe both the board and the individual moves

in terms of vector spaces - is prepared to start making observations within those

spaces. We should first introduce the concept of change of basis. To the student

the phrase, there are two sides to every story, may be trite but is exemplary in the

description of basis for a vector space. The phrase merely implores the listener to

look at the problem in another perspective this is the fundamental concept in change

of basis.

We have until now described our vectors through a weighted sum of Cartesian basis

vectors (which will be shorthanded by the s-basis for site-basis). At this point let us

introduce a new basis by which to describe our system. Victory in both classical and

quantum versions Tic-Tac-Toe can be obtained through generating a 3-in-a-row on
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any of the three vertical columns defined by the board. We shall define a normalized

set of spanning vectors starting with a 3-in-a-row in each of the columns:




1√
3

0 0 1√
2

0 0 − 1√
6

0 0

0 1√
3

0 0 1√
2

0 0 − 1√
6

0

0 0 1√
3

0 0 1√
2

0 0 − 1√
6

1√
3

0 0 − 1√
2

0 0 − 1√
6

0 0

0 1√
3

0 0 − 1√
2

0 0 − 1√
6

0

0 0 1√
3

0 0 − 1√
2

0 0 − 1√
6

1√
3

0 0 0 0 0
√

2
3

0 0

0 1√
3

0 0 0 0 0
√

2
3

0

0 0 1√
3

0 0 0 0 0
√

2
3




, (4.13)

that will be referred to as the Victory basis (v-basis). V-basis was defined by gen-

erating the vector describing the three-in-a-row along the columns of a board; the

subsequent vectors can be solved for analytically or by any canonical othogonaliza-

tion method. The v-basis is not the only other basis that could be defined that spans

our board, so we would encourage the reader to form any basis that is appropriate

for their class.

We are capable of constructing a matrix from these basis that will allow for vectors

from one basis to be transformed to the other basis[33]. The creation of such a matrix

(P ) is a simple matter of defining the target basis vectors, B′, in terms of the source

basis, B, and constructing a matrix from these definitions. Consider a pair of basis

sets, B and B′, each spanning the space of a problem and consisting of vectors u and

w in basis B as well as u′ and w′ in B′:

u =


 a

b


 andw =


 c

d


 , (4.14)

where the vector elements are found from:

u = au′ + bw′andw = cu′ + dw′. (4.15)
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Figure 4.8. A board presenting possible exercises that may be used to
introduce the mathematics of observations of moves in several different
basis.
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These allow the construction of our P matrix:

P =


 a c

b d


 . (4.16)

whose properties are such that: Pv = v′. Following this standard method, we can

define a P ′ matrix allowing the translation from site basis to victory basis. This

matrix is identical to that of Eq. 4.13.

We can now use the column vectors of the P‘ matrix to start making observations

on our system. We will begin by defining a projection operator, Ξ̂ = |v〉 〈v|. Using

the first column vector of our P matrix to generate P ′ and then employ that operator

within
〈
ψ
∣∣∣Ξ̂
∣∣∣ψ
〉

. We will make our observation on the three moves shown in Figure

4.8. Starting with the classical marker, we can see that our observation of its state

made with the projector defined from the first vector of the victory basis would be:

〈
ψX
∣∣v1

〉 〈
v1

∣∣ψX
〉

=
1

3
. (4.17)

The value of 1
3

for the observation is due to the weight of the Spooky Marker

within the vector space of v1 being 1
3
; when summing over all the spanning vectors of

the basis the student is able to recover the total density of the Marker, 1. Completing

the same act for the Spooky Markers of
〈
ψX1
∣∣, we get the numerical value of 2

3
because

the Spooky Marker pair has greater weight within v1 than has the classical Marker

of Figure 4.8.

When we complete the final example in Figure 4.8, that of
〈
ψO2
∣∣, we can see the

observation is 1
6
, which is to say half that of the previous two measurements because

this time the particles are only half within the space of the measurement, v1. The

sum over all the vectors within the basis yields a density of 1, but the sum over v1, v2

and v3 yield 1
2
; this value is due to only have of the superposition defining the state

being within the region of the basis defined by these vectors.

As we have now made a measurement, we may begin defining a density matrix

for our system and show the student how they can make their first measurement of

entanglement.
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4.7 Separability and Entanglement

If an instructor wishes to introduce the concept of entanglement within the course,

as we did, they may do so by introducing the most fundamental necessity for entan-

glement: inseparability of wave functions[34, 35, 36]. To this end, a series of moves

can be shown to the student, such as those seen in Figure 4.9. As the game hinges

on the generation of the entangled cycles through generation of inseparable states

through marker placement, this is a great opportunity to forge into this topic.

It can be shown that the moves in Figure 4.9 are linearly independent as the series

of moves fails to generate a state whose collapse into classicality is forbidden. This is

clarified by example, observe Figure 4.9(a); this series of moves can be described by

the following expression for the wave function of the board (Ψ):

Ψ = ψX1 ψ
O
2

=
1√
2

(∣∣ϕX1
〉

1
+
∣∣ϕX1

〉
5

) 1√
2

(∣∣ϕO2
〉

6
+
∣∣ϕO2
〉

9

)

=
1√
4

(∣∣ϕX1
〉

1

∣∣ϕO2
〉

6
+
∣∣ϕX1

〉
1

∣∣ϕO2
〉

9
+
∣∣ϕX1

〉
5

∣∣ϕO2
〉

6
+
∣∣ϕX1

〉
5

∣∣ϕO2
〉

9

)
(4.18)

Here we pointed out to the students that the density of Particle X is not cohabi-

tating with any fraction of the density of Particle O; this indicates that the classically

collapsed state of Particle X has no effect on the classically collapsed state of Particle

O. The expanded total state expression seen in equality 3 of Eq. 4.6 can be recol-

lected back into equality 2 - this state function can be said to display the property of

separability imbued on systems comprised of states that are linearly independent of

each other. This linear independence is forfeit if density fractions of the two particles

share the same state (or position on the board), as seen in Figure 4.9(b) and whose

functional description is here:

Ψ 6= ψX1 ψ
O
2

=
1√
3

(∣∣ϕX1
〉

1

∣∣ϕO2
〉

5
+
∣∣ϕX1

〉
1

∣∣ϕO2
〉

9
+
∣∣ϕX1

〉
5

∣∣ϕO2
〉

9

) (4.19)

It is clearly noted that the expanded form of the states describing the board in Eq.

4.18 does not include states that are forbidden on the board, noted by the loss of the
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∣∣ϕX1
〉

5

∣∣ϕO2
〉

5
state which is classically forbidden. Due to the loss of this mathematical

state the expression cannot be recollected as a product of the two individual moves

- this is referred to as inseparability of functions and is a fundamental property for

systems who possess and exhibit entanglement. Similarly, individual electrons can be

in the |↑〉 state or the |↓〉 state; yet when in a coupled pair the electron system can

only be in the |↑↓〉 state or the |↓↑〉 state , noting the loss of the |↑↑〉 state and the

|↓↓〉 state.

4.8 Density Matrix and Concurrence

Now, let us begin to show the student how one can make a measurement of

entanglement. Entanglement is the correlation between parts of a system - induced

through an interaction and maintained in separation - which is independent of factors

such as position and momentum[21]. Entanglement was introduced by Schrdinger[34,

35] and was the focus of the famous EPR paper[15]. We will do this by measuring

the concurrence, which gives us a measurement of pair-wise entanglement of particles

within our system; the method was developed by Wooters[37, 38]. The calculation of

concurrence is a brief five-step process[36]:

1. Construction of a Density Matrix: ρ = |ψ〉 〈ψ|.

2. Construction of a Flipped Density Matrix: ρ̃.

3. Product Matrix: ρρ̃.

4. Determine the Eigenvalues of ρρ̃: λ1, λ2, λ3 . . .

5. Calculate Concurrence: C = max[0,
√
λ1 −

√
λ2 −

√
λ3 − . . .]

Let us start by generating a density matrix for our system; this is typically done

by generating and subsequently diagonalizing the Hamiltonian matrix for the system,

but we have no energies associated with our board or moves so we will choose marker

location as our observable. Let us construct an observation matrix,O, by using the
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Figure 4.9. Board (a) shows a pair of moves placed in such a way
were the overall wave function of the board is separable; this can be
shown through an expansion of the product of the wave functions
for each Spooky Marker and then the subsequent concretion back to
the original product, completed in discussion. Board (b) displays a
pair of moves whose total board wave function is inseparable, there
exist members of the product expansion who are exclusionary to other
members, seen in discussion.
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site basis for the board and a projector,
∣∣ψX1

〉 〈
ψX1
∣∣, described by the Spooky Markers

seen in Figure 4.7(a):

∣∣ψX1
〉

=




1√
2

0

0

1√
2

0

0

0

0

0




(4.20)

Oi,j =
〈
ψi
∣∣ψX1

〉 〈
ψX1
∣∣ψj
〉

=
〈
si
∣∣ψX1

〉 〈
ψX1
∣∣sj
〉 (4.21)

This allows us to generate a general observation matrix over the space of the board,

not unlike a Hamiltonian matrix generated with a finite basis set.

This matrix, O, will be of the form:

O =




1
2

0 0 1
2

0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

1
2

0 0 1
2

0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0




(4.22)

Now we may construct a density matrix from the above. We will first diagonalize

the O matrix and select the state of the system we will use for the generation of

the density matrix. We will use the first eigenvectors of the system, the vector
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corresponding to the eigenvalue of 1. This vector may be seen in Eq. 4.23 as it is

being used to generate the density matrix:

ρ = |O1〉 〈O1| =

∣∣∣∣∣∣∣∣∣∣∣∣

1
2

0

0

1√
2

〉〈
1
2

0

0

1√
2

∣∣∣∣∣∣∣∣∣∣∣∣

(4.23)

In generating ρ, we can note that most of the space in which this system lives is

superfluous and thus we can reduce the space of our calculations into a 4×4 region;

this simplification yields a ρ:

ρ =




1
2

0 0 1
2

0 0 0 0

0 0 0 0

1
2

0 0 1
2




(4.24)

From the above we may now start to generate the spin-flip density matrix, ρ̃, for this

state of the system. The generation of ρ̃ is completed by:

ρ̃ = (σy ⊗ σy) ρ (σy ⊗ σy) (4.25)

where ρ is the density matrix discussed above and the σy is the yth Pauli spin matrix.

The use of the Kronecker product ( ⊗ ) on the series of Pauli spin matrices is to

generate a rotation matrix in the same dimensions of the system. As our ρ is a 4×4

matrix, the Kronecker product of two Pauli spin matrices is sufficient to generate a

four dimensional rotation matrix for our system. Following the above procedural step

our ρ̃ happens to, again, generate:

ρ̃ =




1
2

0 0 1
2

0 0 0 0

0 0 0 0

1
2

0 0 1
2




(4.26)



154

Armed with both ρ and ρ̃ we can now complete the fourth procedural step: finding

the Eigenvalues of the ρρ̃ matrix-product:

ρρ̃ =




1
2

0 0 1
2

0 0 0 0

0 0 0 0

1
2

0 0 1
2




(4.27)

with Eigenvalues 1, 0, 0, 0 . Using these Eigenvalues within the expression for con-

currence: C = max
[
0,
√

1−
√

0−
√

0−
√

0
]
. This would yield a concurrence of 1;

this is the maximum value that the concurrence can yield for pair-wise entanglement.

The value implies that the two parts of the Spooky Marker are maximally entan-

gled. This is a sensible finding as these markers are entangled (as per the rules) and

unencumbered by interaction with other markers.

4.9 Conclusions

In summary we have presented a series of exercises that may be used during in-

troductory quantum mechanics and physics courses. These exercises have through

the experience of these authors aided students in their understanding of quantum

mechanics by providing a degree of intuition to the mathematics of the topic. This

intuition provided by both classical and quantum versions of a childrens game with

which most student have had some experience has, to the authors experience, ben-

efited the instruction simple topics within the course, especially normalization and

simple statements described through the use of wavefunctions. Furthermore. By ex-

ploiting the game we have found this method lowers the degree of fear some students

possess toward quantum mechanics. It is the hope of these authors that utilizing such

intuitive examples may become as widely accepted as has the use of the Particle in

a Box problem. These authors also hope that the armory of quantum games used

in the classroom will be expanded to include other versions of tic-tac-toe[39] and

furthered to a larger variety of games[6, 40]. For use by the students or practice for
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the instructor a playable online version that includes an AI player can be found at

http://www.paradigmpuzzles.com/QT3Play.htm.

We have herein presented an introduction to the possible uses of both classical and

quantum Tic-Tac-Toe as a means of instruction in the matrix methods of quantum

chemistry. These authors have also found that a brief introduction in quantum en-

tanglement is beneficial to students and have presented a brief series of exercise using

QTTT as a means of intruding entanglement. It is the experience of these authors

that students can benefit from their previous experience in CTTT in the teaching

of quantum mechanical topics. Students also further their knowledge of these topics

through learning and exercising with QTTT. Other quantum games exist[39, 40, 41]

and their introduction into the classroom as teaching tools and metaphors is encour-

aged.
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APPENDIX A. MODELING OF CELLULAR REGENERATION VIA

ATOMATON MODEL

A.1 Abstract

Cellular agent-based models are a technique that can be easily adapted to de-

scribe nuances of a particular cell type. Within we have concentrated on the cellular

particularities of the human Endothelial Cell, explicitly the effects both of anchor-

age dependency and of heightened scaffold binding on the total confluence time of

a system. By expansion of a discrete, homogeneous, asynchronous cellular model to

account for several states per cell (phases within a cell’s life); we accommodate and

track dependencies of confluence time and population dynamics on these factors. In-

creasing the total motility time, analogous to weakening the binding between lattice

and cell, affects the system in unique ways from increasing the average cellular veloc-

ity; each degree of freedom allows for control over the time length the system achieves

logistic growth and confluence. These additional factors may allow for greater con-

trol over behaviors of the system. Examinations of system’s dependence on both seed

state velocity and binding are also enclosed.

A.2 Introduction

Guided tissue regeneration for the purpose of implantation, or strictly in vivo

growth, is an exciting multidisciplinary field which joins cell biology, immunology,

material science and biotechnology engineering [1, 2]. Both in vivo and in vitro studies

have been conducted towards such ends; these studies include cartilage, vascular

tissues [3, 4] and many others. Chief in these studies is not only concern for the
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particularities of the specific cell type and the cell’s physics [5], but the behavior of

the scaffold due both to the material properties and the structural organization of the

material [6, 7, 8]. Cells interact with the scaffolding in several ways including pore

induced motility limitations (both statistical and steric) and these behaviors govern

the biophysical properties of the final tissue [9, 10, 11].

Scaffolds provide several degrees of freedom affording the manipulation of ge-

ometry, post-implant properties and proliferation behavior during incubation; this

being exemplified in the scaffold’s deterministic influence on cellular specialization

[11]. Prospective scaffolding types include both biological (fibrin, collagen, chitosan)

[12, 13, 14] and synthetic (polyactic acid, polyglycolic acid, and poly-lactic-glycolic

acid, etc.)[15, 16, 17] scaffolding materials; each, of course, possessing unique char-

acteristics. These materials can be functionally tailored for specific cell attachments

through biomedical surface modifications and through addition of growth factors both

of which can provide improvements and guidance to system behavior [18, 19, 20]. Cell-

scaffold interactions such as guided migration and adhesion can have profound effects

on the rate of formation of an implantable tissue [21, 22, 23].

As in vitro (worse yet in vivo) studies do take time, as well as ample consider-

ation and cost, it is natural to attempt to simulate the behavior of systems prior

to synthesis or bioreactor application, in this capacity in silico studies can prove to

be an invaluable first step in a study. On this front there are several theoretical

methods being used on cellular systems, including: continuum models based both on

Fisch-Kolmogorov equation and mass conservation statements [24, 25, 26, 27, 28, 29];

Finite Element solutions to Continuity equations [30]; Control Network models [31];

and discrete automaton models [32, 33, 34, 35]. Other models incorporate aspects

of both discrete -for cell behavior- and continuum models -nutrient/waste handling-

these being hybrid models [36, 37]. Models have been developed to simulate spe-

cific instances in cellular biology such as stem cell differentiation [38], interactions

within heterogeneous cell populations [39], and a great many concentrating on tumor

growth [40, 41], invasion [42] and their relation to angiogenesis [43]. As a means
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of simulation, the discrete cellular automaton/agent model was used in our work to

capture the global consequences of highly specific cellular activities. Cellular automa-

ton/agent models have been used to model vaccine populations [32], endothelial cells

[34, 35], epidermal wound closures [21], etc. Such a model has been shown adequate

in description of real systems [44] and has been shown capable of describing special-

ized cellular behaviors [45]. Discrete models for proliferation and mobility can be

designed to explicitly exemplify the behavior and consequences of that behavior in

specific cells types. This gives the agent-based models some definite advantages over

continuity models in adequately describing specific behaviors of particular cell types.

It is the ability to address individual cells which gives discrete models advantage in

the generation of simulations describing the creation of endothelial monolayers.

Human vascular structure is comprised of three tissue layers surrounding the trans-

port tube(lumen) these layers are: tunica intima, inner most layer of endothelial cells;

tunica media, populated with smooth muscle cells that maintain blood pressure by

dilating the vessel; and tunica adventitia which is a region dominated by matrix and

fibroblastic cells. This structure can be seen in Fig. A.1. Human Endothelial Cells

form highly confluent monolayers comprising the inner most strata of the compos-

ite vascular structure [46]; the endothelium is responsible for regulating the passage

of waste and nutrients between the blood stream on one side and the surrounding

tissues on the opposing side [47, 48] chiefly benefiting from vascular Smooth Muscle

Cells (v-SMCs) and fibroblast cells [49]. A further responsibility of this monolayer

is to release of heparan sulfate [35], which acts as a cofactor in the inhibition of the

cascading coagulation of blood and reduces turbulent forces. Defective endothelium

can lead to thrombosis [50, 51] and proliferation of smooth muscles cells through the

endothelium and into the lumen, leading to atherosclerosis [52].

H-ECs exhibit the properties of contact inhibition and anchorage dependency,

where Anchorage dependent cells require specific binding to surfaces; this effect mod-

ulates the proliferation, motility and effects cellular apoptosis [53]. Contact inhibition

describes the tendencies of cells to inhibit the division and motility of neighboring
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cells in a confluent structure [9, 45, 54]. It is this behavior which governs the density

at which the continued proliferation of the colony cease sand incorporates a density

dependent change in cell size; cells in highly confluent regions take on more regu-

lar geometry to allow for a more confluent packing [9, 55, 56]. Bonding of cells to

extracellular matrix can alter the proliferation and the migration behavior of a macro-

cluster of cells [57, 58] through contact guidance, exemplified in the proliferation and

motility of carcinoma cells along collagen connective tissues [53].

A.3 Algorithm

As the cellular automata/agent model is amply defined in other publications [34,

35], and expanded [37, 9, 36], we shall emphasize the modifications built into our

model a final time while briefly describing the algorithmic procedure. Allowing for a

two-phase life cycle we have achieved the following: collapsing all motility into a single

phase; all division into a single phase; and introduced parameter which functionally

behaves like binding coefficients. The inclusion of blackout helps account for the

further effects in short-ranged, foot-lengthening locomotion behavior of cells on a

surface [59] and aides in maintaining physiological consistency in an asynchronous

model. We address motility as the central means by which to model EC growth during

cellular random walks [60]; herein we concentrate on the effects of cellular anchoring

onto scaffold sites and thus generate differential motility and division behaviors due

to the effects of anchorage dependent behaviors. Each free space within the system

which can be unoccupied, or occupied by a cell or agent, this being consistent with

the procedure presented in previous works [45, 35, 44]. Within our model, there are

two possible states for the occupied automaton: occupied by a mobile phase cell, or

occupied by a stationary phase cell. The occupancy - and state information shall be

stored within a state vector which will be uniquely assigned to each agent and stored

within a master list. The elements of the site vector will at least convey position,
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ν1 = (xsite; ysite; zsite), site index, ν2 = isite, occupancy status, ν3 = 1, 2 if occupied,

else ν3 = 0.

If ν3 = 0, the information required for the automaton is position and index. If ν3

is 1, the site contains a mobile cell and has the state vector:

νsiteMobile = |positionsite; indexsite; 1; cv;mτ ; pτ ; θd〉 ; (A.1)

the values of the fourth through seventh components are: cv, the value of the cellular

speed; pτ , the persistence time, is the amount of time a particular type of cell spends

traveling in a single direction before pausing or turning in the absence of interaction

from other cells; mτ , the total motility time, is the total amount of time an anchorage

dependent cell spends in the Mobile Phase while still in the presence of a scaffold; θd

is the discrete vectorized direction which the cell is traveling along the matrix. The

Stationary Phase vector would be:

νsiteStationary = |positionsite; indexsite; 2; dτ 〉 ; (A.2)

where dτ is the time prior to cell’s next division. It should be noted that both newly

placed daughter cells will enter life in the Mobile Phase.

The values associated with the physiological constants used within our simulations

are presented in Table A.1. Observed quantities are used as the average value about

which to construct either a Poisson or a Gamma distribution and then we select values

about the average conforming to the distribution’s cumulative distribution function

(exampled by Poisson):

F (x|λ) = e−λ
bxc∑

i=0

λi

i!
. (A.3)

Where λ is the mean parameter controlling the shape of the distribution, and x is

the variable of the distribution. Random numbers for cell velocity, motility time, etc.

are constructed for individual automaton around the experimentally observed value.

These values are set normal to the average velocity so that all constants reference

uniform time-steps:
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cnorm = c ∗ (cv)
−1 , (A.4)

where cv is the average value of the cellular velocity which all system time steps

are set in reference, c represents any other time-based average value used within our

calculations and cnorm is the time-step adapted version of c.

Randomly selected values allow for the creation of a diverse population of cells

each with unique associated quantities. Using statistical values bears the caveat that

simulation data is accurate only in a statistical nature i.e. any derived quantities

are averages themselves and should take on experimental values as the samples sets

approaches the large number limit. The time step size is .5h, as this allows several

steps in a persistent direction, and a length of evolution time prior to changes in the

phase of the cell-cycle; similar size time step justifiably employed in [45]. All evolu-

tions are completed in an asynchronous manner - this allows for use of the previously

mentioned Black-out List for the description of anchorage dependent locomotion and

helps guarantee a more stable mathematical solution as well as allowing for unique

differences in singular automaton to take greater part in the system’s evolution. The

system is designed to enforce a Moore neighborhood for the cells, and confluence is

reached when no neighboring locations are vacant. Once the value of each cell has

been updated for time-step t, t = t + 1. This shall be repeated until confluence is

reached; confluence is checked for at the end of each time-step. The initialization,

and algorithmic structure for the system can be seen in Figure A.2.

The probabilities associated with direction-of-travel are found via Markov chain

analysis and provided within Table A.2 [61, 49, 62]; these values are slightly aug-

mented from the reference values to generate symmetry under counter-rotation - as

an anisotropy was not introduced into our system. There exists an elevated chance

that the cell enters into the θd = 0 state - this is a pausing, or waiting, state. Figure

A.3 displays a device conveying the appropriate unit vectors for cellular locomotion

with origin being the cell’s present position. As the pτ counter reaches zero for a

Mobile Phase cell they prepare to turn, it must be verified that the cell’s progression
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Table A.1
Table contains constants of motion for cells used within calculations,
also includes references for values.
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towards its new site does not cross the path of a cell which has already begun to

move. These motile-cell paths are held within the blackout list. If the cell does not

cross the path of other cells it evolves normally; if it crosses paths or the target site

is occupied then the mobile cell of interest undergoes collision.

To be modeled is a two-dimensional region of scaffold-binding surface on which

h-ECs can migrate and proliferate. The algorithm begins by defining and then dis-

secting the entire 2-D solution space by a regular, rectangular grid; intersections on

the gridded solution space define the geometry of the l×l lattice, where the side length

l is equal to a cellular radius, rc. Thus for a cell whose rc = 30 µmeter, a 10×10

mesh would be equivalent to a 300×300 micron2 area of lattice. Periodic boundaries

conditions were imposed to emulate the mechanics of an infinite lattice. Four seeding

conditions will be employed: random spraying, motile centroid (MC), stationary cen-

troid (SC), and wound closure. The random seeding and wound healing conditions

are well known. Both the translational seeding cases relay on the conveyance of a

preformed confluent colony of a predefined size (relative to the solution space) to be

transferred into the solution-space; these conditions vary only in the state which the

cells are transferred as: mobile phase for cellular translation, and stationary for cell

plus lattice translation.

The overall algorithm can, alternatively, be described through a series of steps

organized within a list structure, such as:

� From master list, a random vector is selected (master list contains only the indicies

for every agent), this vector is passed to the subsequent decision structure.

� If the cell is found to be in the Stationary Phase (v3 = 2), this biologically signifes

that it is bound to a location within the Extracellular Matrix (ECM); coming with

this loss of mobility, the cell experiences an accelerated division rate.

– If dτ is greater than zero, the cell must wait before it is capable of division - thus

dt+1
τ = dtτ − 1.
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Figure A.3. A schematic representation of the directional states
within Markov Chain Analysis with their vector and θd state des-
ignations.



170

Table A.2
Table containing all of the initial to final state turning probabilities.
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– If dτ≤0, the cell is prepared to divide; in this case, all possible locations for a

daughter cell are scouted for availability.

– If several acceptable daughter locations are found, one is selected at random;

if no daughter locations are available, the cell does not divide and the division

counter is reset to account for contact inhibition.

� The cell is in the Mobile Phase of its life-cycle, v3 = 1.

– If pτ = 0, the cell would initiate the turning procedure. The probability for

each possible vector state of the cv relative to the present state is found through

Markov Chain Analysis

* When turning the vector is re-comprised it’s a assigned a new value for each pτ

, cv and θd (direction) each selected randomly from the Poisson distribution.

– pτ 6= 0, this cell is in the Mobile Phase and is moving. We call both the cv and

the θd values of the particular agent to construct a vector describing the motion

of the cell, moved to trial location.

* All motile-cell paths are held within a passing list blackout. If the motile vector

doesn’t cross any member of blackout and trail location’s v3 = 0, then the cell

is allowed to update its position while pt+1
τ = ptτ − 1 and mt+1

τ = mt
τ − 1.

� The initial randomly selected index is removed from master, and another is ran-

domly selected.

A.4 Results and Discussion

Herein we have modeled and discussed the dependence on surface binding of pro-

liferation as a means of simulating the behavior of anchorage-dependent cells within
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the confines of a scaffolding. Figure A.4 displays the systematic evolution toward con-

fluence and dependence on extension of the overall motility time (length of time in the

motile-phase) in an initially random .32 percent seeded scenario. In the limiting case

where the cell’s motile-phase life time is set to zero, the system experiences similar

growth to the exponential/logarithmic growth curves, displaying the contact depen-

dence as asymptotic growth near the ends of both the logistic and setting phases. As

the total motility time increases, the behavior trends to a general decrease in motility

stemming from the management of division times due to by anchorage-dependency;

similarly, increases in motility on the proliferation behavior have been shown [34].

Discussion of Figure A.4 should include mention of first derivatives of the emerging

cell count curves for the system - within the high motility time case. The rate of

new cell generation levels-off near confluence as contact-inhibition inhibits division;

whereas the leveling behavior of the system near initialization is due to motility and

division times acting to delay growth prior to the first wave of daughter cells. Note

should be given to cases where the scaffold binding is weak, here the system spends

extended time with relatively high mobility and doesn’t attain to any extent the

behaviors associated with the anchored cells exemplified here by divisions.

Figure A.4 displays the dependence of confluence on both the initial geometry of

the system and on the average cell speed. The geometric dependence is most obvious

when noting the initially stationary; this difference is generated in the system’s initial

seeding, as the advantage of a quick initial division affects total confluence time.

Figure A.4c shows the effects of altering the cells average velocity at constant motility

time; the difference between runs is small, yet the same characteristic behaviors such

as changing of motility time are present.

Dependence of confluence time on the seeding geometry is shown in Figure A.5a;

the number of cells which are attempting to undergo division. The behavior to note

here is that the stationary centroid case has an elevated number of cells attempting

division at a very early time which supports the inferences made from the confluence

times. The behaviors of the remaining geometries are seemingly identical. In both
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Figure A.4. Figures showing the dependency of the confluence be-
havior on several variables: (a) initial seeding geometry, (b) motility
parameters, (c) velocity parameters. Note, the definite impact pa-
rameter and geometric alterations have upon both the logistic and
setting phases of colony growth. This comes about as the motility
time increase dampens the effect of the initial division within the
system causing, for smaller µτ an earlier logistic phase and setting
phase on-set. The difference in the geometric confluence behaviors
was highlighted for emphasis.
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Figure A.5. Initial seeding geometry is varied in Subfigures a, b, and
c. The behaviors are: (a) attempted divisions within the system, (b)
cells which are in the Mobile Phase, and (c) cells which are in the Sta-
tionary Phase. It should be made clear that the number of cells which
could possibly attempt division within the system is upper bound by
the number of cells within the Stationary Phase, thus the relation-
ship shown in Figures a, b and c. It is important to note that (a)
is attempted divisions, and should be compared to the correspond-
ing confluence plot for perspective. In Subfigures d, e and f motility
time is varied and labeled are the lowest and highest values of µτ , the
values in between increase in increments of 2. These behaviors are:
(d) attempted divisions within the system, (e) cells which are in the
Mobile Phase and (f) cells which are in the Stationary Phase.
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Figure A.5b and c there is a reciprocal behavior in the number of cells in each phase

which is due to the initial seeding conditions; seen in a high initial population in the

Mobile (Stationary) Phase for the random and mobile centroid (stationary case).

The behavior during the evolution of the system with varying µτ is shown in Figure

A.5. Figure A.5d shows division attempts, note that the smaller µτ is the larger the

number of cells attempting division. Smallerµτ increases the rate of cells beginning

division. The system undergoes beats in population dynamics due to variations in

constants while the system size is small. As evolution time increases the statistical

nature of the parameter selection begins to wash-out this beating due to random

value selection off of already random values causing a broadening and dampening of

division. The overall decline in the number of cells in the Mobile Phase is due to the

lack of available space within the scaffold at later times in the evolution forcing a

sedentary behavior in all cells due to contact inhibition.

Figure A.6 Row 1 shows the number of collisions undergone by cells within the

system and Row 2 the effective velocity of the average cell within the system; the effec-

tive velocity is the average cell velocity considering colliding, waiting and stationary

cells; the average effective velocity is computed as:

ceff. =

∑Nmob.
i

√
(xf − xi)2 + (yf − yi)2 + (zf − zi)2

NT (t)
; (A.5)

where Nmob is the number of cells in the Mobile Phase and NT (t) is the total

number of cells within the system at time t. The effective velocity of cells falls off as

confluence is reached due to a lessening of available space within the system. After

the first beat in population increase the majority of differences between initial seeding

conditions becomes minimal. Figure A.6c and d, the number of collisions in the mobile

centroid case are initially elevated for steric reasons; the systematic µτ dependence

is clearly comprehensible as the less mobile the cells within the system the fewer

collisions in which each cell may participate. Figure A.6e shows behaviors which are

similar to the aforementioned µτ dependence, as the cell travels faster it is capable of

colliding more often. The overall shape of the curves speaks to anchorage dependence
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within the system - as the cells become more packed there is less space in which to

move. Figure A.6b shows the effects of seeding condition on effective velocity; the

random seeding trial has the least initial steric restraint which presents itself in a

large initial effective velocity, whereas the initial effective velocity of the stationary

centroid case is zero. Figure A.6d and f show the effect of motility time and cell speed

on the effective velocity; the less mobile the cells within the system, the smaller the

effective velocity. With an increasing µτ the number of cells within the Mobile Phase

is increased, this increase manifests itself in a larger effective velocity; the variation

of cell velocity alone does not affect the rate at which population is increased within

the system and this is manifest is the same limiting confluence time for all velocities,

subfigure f.

The simulations of the four initial conditions were was devised with a specific

purpose in application. Implantation of non-motile phase cells would be analogous

to placing a small cutting of already confluently occupied scaffold and allowing the

resident cells to proliferate onto and through a new matrix; whereas the motile-

phase implantation would be caused by the growth of a colony in media without

the presence of a binding surface, and then incorporating the colony as a whole

onto the artificial scaffolding. The random seeding distribution is seeding of the

matrix by randomly ”spraying” cultured cells onto the scaffolding. Wound closure

models the closure of a wound within a vessel where the wound is considered infinitely

long, but finitely wide - thus presence of walls yield cells required to heal (as this

simulation does not incorporate the processes of generating basement membrane,

the healing time frame is unrealistic without consideration of the application of an

artificial basement membrane which could stint the healing vessel). The stationary

and motile runs reach 90% confluence in an average time of roughly 66 hours and

74.5 hours, respectively. That the stationary centroid condition primes the cells in

the Stationary Phase means that the system will divide sooner than the other runs.

The wound closing scenario reached 90% confluence at 72 hours; and the random

seeding case reached 90% coverage in roughly 73 hours. Results did not scale with
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Figure A.6. Plots of effective behaviors displaying influence of: Row
1, different initial seeding conditions; Row 2, different values of µτ ;
and Row 3, different values of cv. Plots (a), (c) and (e) show the
number of collisions within the system; Plots (b), (d) and (f) are
of the effective average velocity of the cells. Note, (a) shows the
depletion of collision count near the setting phase as more cells are
being influenced by contact inhibition and becoming stationary. In (b)
the drastic difference in initial effective velocity between the seeding
cases at constant cv. (d) and (f) displays the overall trending behavior
is uniform in all cases, just varying time-scales. (e) shows the limiting
dependence of the system behavior on cv as the velocity approaches
the motility parameter.
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system size, as periodic boundary conditions were employed under constant initial

seeding density.

Geometric dependence can be further noted from Figure A.7 as the behavior of

the stationary centroid evolution (first column) behaves exactly as Barrandon and

Green[63] and later studies[45] have shown. The megacolony, stationary centroid,

retains resemblance to its initial geometry as the system evolves and as only cells on

the colony’s perimeter experience increased proliferation due to superior mobility; this

behavior was found, along with the increased proliferation, in response to exposure

to growth factors which are known to increase motility. That the stationary centroid

case exhibits megacolony behavior to a greater extent than mobile centroid; this

establishes the importance of anchorage-induced behaviors and the inclusion of their

mechanics within models. The random seeding and wound closing cases, in Figure

A.7, are presented as a qualitative validation of statistical behaviors of these systems.

Geometric dependencies in applicable cases can be observed in Figures Fig:allheal

and A.4a. In Figure A.4a one should note that total confluence time depends on initial

system geometry [37, 44] yet this is a more minor factor than the cell velocity and

total motility time. As the stationary centroid case displays an increased division rate;

thus generation of a greater number of cells within a less populated region guarantees

a decreased rate of collision during diffusion. The mobile centroid case allows cells

to diffuse prior to any division-action, this allows a more diffuse environment and

minimizes negative effects associated with contact-inhibition. The random seeding

case is examined due both to its prevalence in implementation and comparability.

The additional time taken to achieve confluence in this case is a coupling of the worse

traits of each the mobile centroid and stationary centroid cases. As the cells begin

life in the mobile phase they have additional time prior to first division, yet with

an initially random distribution the cells have an increasing likelihood of collision as

their motion is not pseudo-uniform as in the mobile centroid case. With the total

density of the system is placed in only a single direction with respect to the motion
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Figure A.7. Four simulations under our model, starting left: Sta-
tionary Centroid; Motile Centroid; Random Seeding; Wound Closing.
The first row is the initial seeding condition, the second is the system
at 20 % coverage and subsequent rows are at increments of 10 % more
coverage.
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of any individual cell, the centroid cases retain an increase in proliferation with the

stationary, again, higher than the mobile due to the initial division.

A.5 Conclusions

We have expanded basic cellular automaton/agent models to accommodate for

migration and proliferation of h-ECs within an infinite lattice by allowing a secondary

state that determines division while a primary state determines motility. Increasing

the total motility time, analogous to weakening the binding between lattice and cell,

affects the system in specific and unique ways from increasing the average cellular

velocity. Including have positive control over the confluence time of the system,

whereas the cellular velocity does not allow for this degree of control. We have

examined initial seeding cases where cells were placed with various geometries and

in various phases of a cells life-cycle; these seeding states have little effect over the

confluence time when compared to lattice binding. Through our expansion to the

base model we have more adequately simulated anchorage dependent growth through

description of binding affinities of cells to their lattice and this scheme allows for a

greater degree of control and specificity in simulations and tissue growth.

A.6 Present and Future Directions

A.6.1 Indtroduction

Hypoxia is indicted as a major problem associated with disorders such as COPD,

sleep apnea, hypertension and thromboembolisms. Many of the aforementioned dis-

orders have associations with vascular thickening as well as both covert and overt

cardiovascular diseases. Hypoxia in vascular settings triggers a complex signaling

process whose end results include neovascularization, angiogenesis and clotting in-

duced by insufficient secretion of heparin-sulfate into the lumen. Hypoxia instigates
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a series of vascular-cell responses which promote re-oxygenation through extending

transit networks and allow for anaerobic metabolisms forming lactic acid. The hy-

poxic response has also been found to promote carcinomas through hypoxia-induced

apoptosis of vascular cells and to cause cerebral edema due to vascular leakage within

the brain.

The hypoxic response is a cascade of gene expression, including that for: HIF-1,

cGMP, ET-1, PDGF-B, HO-1 and smooth muscle cell-derived carbon monoxide in

vascular cells. These signals can control specific cellular activities, such as Endothelin-

1 acting as a mitogen for VSMCs, whose overall effects include angiogenesis, edema

and Arteriosclerosis or CO contributing to the manufacturing of cGMP which modu-

lates the coagulant function in Edothelial Cells. Hypoxia also triggers up-regulation

of the A2B adenosine receptor phenotype; this up-regulation is accompanied by a

down-regulation of the A2A phenotype gene expression and an increase in VEGF

concentration. This adenosine signaling pathway was shown to be independent of

HIF-1; although HIF-1 does not mediate expression of the A2B phenotype, it has

been shown to promote angiogenesis by reducing cellular adhesion and up-regulating

VEGF in both Bovine coronary artery and aortic smooth muscle cells.

As mentioned the end results of these hypoxic reactions in vascular cells is the

creation of new vessel branches, the generation of new capillary beds as well as the

thickening of existing vessels. Exploiting this increase in both proliferation and motil-

ity expressed during hypoxia could be of great benefit in the successful generation

of engineered tissues for patient transplant in a timely manner. Engineering for the

manufacturing of viable transplant tissues is making strides in the generation of bone,

skin and vascular tissue culture and generation. It is towards expediting the manu-

facturing of viable transplant tissue that motivates this work.
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A.6.2 Algorithm

These authors have generated a multi-state and multi-layered hybrid simulation

of smooth muscle cells within a blood vessel. The hybrid nature of this simulation is

the combining of a continuous set of differential equations defining the fluid dynam-

ics within the system as well as a discrete cellular automaton model encompassing

the behaviors and expressing the evolution of the smooth muscle cells within the

fluid fields. We describe the behaviors of the SMC through a series of varying au-

tomaton states such as hypoxic, apoptotic-altered and normoxic. The multi-layered

fluid dynamics includes reaction-diffusion mechanics of O2, VEGF, and Endothelin-1.

The constructed simulations follow the path presented in the algorithmic diagrams;

Figure A.8 shows the overall simulation, whereas Figure A.9 shows the Automaton

calculations for cell behaviors.

The smooth muscle cells being described within our simulations can exist with

sets of states describing mobile and proliferating healthy cells, cells which are packed

in a confluent manner and mobile and proliferating hypoxic cells. The automaton cell

states include all of the aforementioned SMC states with the additional accessible

state of being unoccupied. The SMC cells within the simulation will be periodically

exposed to durations of hypoxia lasting roughly for 0, 6, 9, 12, 18 and 24 hours.

It has been shown that SMC exposed to short duration of hypoxia have expressed

lower times to confluence, yet those exposed to chronic hypoxia (periods of roughly

48 hours) have decreased cell populations. Experiments are shown in Table A.3

A.6.2.1. Fluid Dynamics

Herein we have developed a 3-D hybrid model which couples a continuous variable

differential fluid dynamic system coupled to a discrete cellular automaton model. The

fluid mechanics is described through the diffusion equation:

∂c

∂t
= ∇ · J +R(ρ, c) + S(ρ, c) +DΩ(c), (A.6)
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Figure A.8. A schematic representation of the overall algorithm used
during the second phase of simulations.
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Figure A.9. A schematic representation of the cell specific portion of
the algorithm used during the second phase of simulations.
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Table A.3
Table containing experimental run data concerning the levels of hy-
poxia and duration of hypoxia to which cells are exposed.
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This equation is appended with terms describing local source (S) and sink (R) behav-

iors as well as the boundary condition D on surface Ω. J is the flux of the diffusive

material, given by local density gradient:

J = (−D · ∇c). (A.7)

Within this work we will be neglecting any remaining drift velocity within the fluid

bulk from the luminal flow, otherwise we would require the use of the Smoluchowski

Equation; this approximation is likely as the ability for the material to enter into the

scaffold requires a high relative velocity in the direction perpendicular to luminal flow

and assuming the simulation takes place under dynamic equilibrium.

Equation A.6 will be moved to curvilinear coordinates to conform to the cylindrical

geometry of the vascular system. This form is shown here:

∂c

∂t
= D

(
1

r

∂

∂r

(
r
∂c

∂r

)
+

1

r2

∂2c

∂ϕ2
+
∂2z

∂z2

)
+

(
∂D

∂r

∂c

∂r
+

1

r2

∂D

∂ϕ

∂c

∂ϕ
+
∂D

∂z

∂c

∂z

)

−R(ρ, c) + S(ρ, c) +DΩ(c).

(A.8)

This differential equation will be solved in a discrete manner over a curvilinear grid

defining the geometry of the vessel. As terms within Equation A.8 require knowledge

of the cell density, ρ, we will approximate the local cell density by γ:

γ(r, ϕ, z) =





1, if cell at(r, ϕ, z)

0, if not cell at(r, ϕ, z)

. (A.9)

The time discretization is completed through a forward-differences method to

prevent density leakage in the reverse-time direction, whereas for the spatial degrees

central differencing was selected. Boundary conditions for the system were selected

to recreate conditions with the vessel; the inner and outer conditions in the radial

direction are dirichlet in nature, and the angular conditions are periodic to simulate

a complete vessel. The boundary conditions in the z-direction depend on the seeding



187

conditions used in the simulation; for a uniform random seeding the z-directional

boundary conditions are periodic and during a localizing seeding simulation this

boundary condition is taken to be dirichlet.

The vascular system is geometrically modeled as a cylinder possessing an inner

diameter and an outer diameter and a length; the diameters can define the thickness

of the vessel wall and the diameter of the lumen. A regular grid dividing the solution

space in the radial, angular and length directions is used to generate solutions to the

diffusion equations governing each of the molecular signals and oxygen via a finite

difference scheme.

The cells within the vessel have a constant diameter, dcell, and pack in a confluent

manner as the simulation completes; this means that the distance between the cells

in the angular degree of freedom is defined by a fixed difference in circumference, ∆c.

The fluid mechanics is solved on a regular curvilinear grid, and therefore employs a

specific ∆ϕ for all radii. These two grids do not align computational points, as seen

in Figure A.10. This misalignment means that the locations of the cells acting as the

sources/sinks of Equation A.9 do not agree with the computational points on which

Equation A.8 is solved, so we must redistribute the effect of the source/sink amongst

the nearest computational points. As ∆r and ∆z do not suffer from the misalignment

as does ∆ϕ, we have redistributed the sources/sinks along the ϕ-direction through a

linear fit of the form:

Si = Sk
ϕi − ϕk

∆ϕ
;Sj = Sk (1− Si) . (A.10)

The above describes the redistribution of a source/sink, S, within the automaton

space at k, where ks coordinates place it between computational points i and j in the

ϕdegree of freedom at the same r and z ordinates; this procedure does not chance

the r and z coordinates for the above mentioned reason. This allows the two grids to

agree for the computations required within the hybrid calculation. Examples of the

fluid grid are given in Fig. A.11, where (a) is a 15◦ second of a vascular region defining
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Figure A.10. A schematic representation of disagreement between the
fluid dynamic computational grid and the cellular automaton grid.
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the solution space, (b) displays the mesh interactions representing fluid computational

points and (c) shows fluid diffusion within the mesh system from a single source point.

A.6.3 Cellular Automatons

Cellular automatons are a discrete model first developed by Ulam and Von Neu-

mann at Los Alamos National Laboratory. The facets of CA models include: a

discrete grid which is finite in any number of direction, each cell within the grid may

exist within a finite number of states, each cell has a defined number of neighbor cells,

all cells evolve generationally in time according to sets of pre-defined rules. Typically

the rules for updating cells is uniform among the entire populous; these authors have

opted to employ a series of possible states with non-uniform evolutionary constants

and rules as this best describes the situation existing within the evolving seeded

lattice.

Within this model we have opted for the use of the full three dimensional Von Neu-

mann neighborhood consisting of the 26 neighboring automaton. The time-evolution

was performed in an asynchronous manner as this is representative of the natural

evolution of the system. This asynchronous evolution will be performed by ran-

domly selecting a single occupied automaton at a time for evolution, and cycling

through all automata per time-step. The vector directions are assigned through a

three-dimensional Markov turner, seen in Figure. A.12.

The automaton grid is initialized with only its index, coordinates and unoccupied

state designation. An initial seeding probability of .79% was selected consistent with

other works; this seeding probability was employed through a random selection algo-

rithm over all automata thus generating the initial conditions for a random seeding

event. A wound-healing scenario is also employed were a confluent seeding layer is

placed on the z = 0 boundary of the modeling space, the number of seeded layers

will conform to the ceiling-round of .79% occupancy. The simulation will begin at

the start of a normoxic term within the periodic oxygenation cycle, and as such all
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Figure A.11. Visualizations of the solution space for the vascular
system. a) the solution space with grid-skeleton. b) computational
mesh points for fluid mechanics. c) visualization of fluid diffusion
within mesh environment.
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Figure A.12. An example of a three dimensional Markov Turner for
the vector definitions within a descrete automaton system.
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constants within the automaton vector will be randomly selected through a Gamma

Distribution constructed about the average value determined in experiment.
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Determination Of The Activation Strength Of Drug Molecules 

 

TECHNICAL FIELD 

 

[0001] The present disclosure generally relates to the determination of the activation strength of 

drug molecules, and in particular to a method for predicting activation strength of drug 

molecules with G-Protein Coupled Receptors (GCPRs). 

 

BACKGROUND 

 

[0002] This section introduces aspects that may help facilitate a better understanding of the 

disclosure. Accordingly, these statements are to be read in this light and are not to be understood 

as admissions about what is or is not prior art. 

[0003] G-Protein Coupled Receptors (GCPRs) are the target for the greatest portion of modern 

therapeutic small molecule medications.  Activation of GPCRs govern many physiological 

activities, examples of which include olfaction, central nervous system regulation, and 

maintaining circadian rhythm.  Roughly half of all modern small molecule therapeutics target 

this class of proteins and 50% of all human encoded GPCR genes encode for olfaction alone.  

Understanding the mechanism by which activation of this class of proteins is achieved is 

paramount to applications within both the pharmaceutical and the flavor/scent industries. 

[0004] Current methods by which the relative activation strength of drug molecules with GCPRs 

is predicted involve docking studies, which show the binding of the drug with the protein.  

However, such methods do not provide insight into the mechanism, nor does it provide the 
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ability of the drug to activate the receptor.  There is thus an unmet need for methods of 

predicting the relative strength of drug molecules.  Such methods are particularly useful for 

purpose of predictive ability in silico drug discovery. 
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DETAILED DESCRIPTION 

 

[0005] For the purposes of promoting an understanding of the principles of the present 

disclosure, reference will now be made to the embodiments illustrated in the drawings, and 

specific language will be used to describe the same.  It will nevertheless be understood that no 

limitation of the scope of this disclosure is thereby intended.   

[0006] Predictability of pharmacological efficacy for new drugs prior to a complex total 

synthesis may be aided by pharmacore modeling or with either crystal structure or a homology 

model.  The theory of protein/agonist binding has been described through variants of the Lock 

and Key model, originally proposed by Fisher and the extensions thereof.  Although this theory 

has provided insight into changes of free energy associated with the formation of the activated 

complex, it has not manifested sufficient capacity for the prediction of ligand activity or a 

mechanism by which the agonist activates the system. 

[0007] A recent resurgence of interest for a vibrational-based theory of protein activation has 

occurred, featuring inelastic electron tunneling spectroscopy (IETS) as its possible means of 

detecting the vibrational modes of the bound ligand.  The IETS mechanism relies on a field 

driven electron transfer across an insulating gap situated between two conductive metal plates.  

The driving field promotes electrons to tunnel from the donor site on one side of the gap to the 

acceptor site on the other side; this is the elastic process.  As the intensity of the driving field is 

increased, the electrons may donate a quanta of energy to a molecule situated within the gap 

along their path.  This exchange of energy must be equal to a quanta accepted by the molecule’s 

vibrational or electronic transitions.  This secondary mechanism provides a new path which 
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enhances the current across the gap.  There exist several other mechanisms by which electrons 

are conveyed across the gap including elastic transfer, inelastic transfer, 2nd order elastic transfer 

as well as subsequent and less contributing modes of transport.  The theoretical description of 

this mechanism was introduced by Lambe, Jaklevic Scalapino, Hansma and Kirtley and later 

elucidated by Phillips and Adkins (References [39], [34] – [36], [1], and [50], respectively). 

[0008] Calculations of Inelastic Electron Tunneling rates have been performed in various ways 

throughout the literature.  Typically the Barden Transfer Hamiltonian method is employed to 

allow for the calculation of the elastic contribution from the tunneling wavefuntions across the 

barrier sides.  The WKB approximation is used to describe the wavefunction of the tunneling 

electrons from each side; the following Equations 1 and 2 are the evanescent wavefunctions 

describing an electron traversing a gap of length d defined by two conductive plates of area L2: 

�� = �� �� �	
�‖∙�	���� (1) �� = �� �� �	
�‖� ∙�	�������� (2) 

 

where ��is the decay constant of the tunneling electron in the ��� direction, �‖ and �‖�  are the 

momentum parallel to the surfaces and A is the normalization constant. 

[0009] Referring to FIG. 1a, a cartoon description of the formate ion within the gap is presented.  

Still referring to FIG. 1a, the distance parameters a and d are shown for clarity, where d 

represents the total length of the gap and a is the distance between the nearest wall and a 

particular atom. The experimentally resolved spectra for this system is presented in FIG. 1b. 

[0010] As the electrons tunnel through the barrier they may undergo several processes including: 

elastic transfer, inelastic transfer, 2nd order elastic transfer and subsequent less contributing 

modes of transfer.  The inelastic modes of transport are facilitated through interaction between 
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the tunneling electron and a deposited molecule within the gap; the tunneling electron donates of 

quanta of energy to the deposited molecule.  The donation of energy from the electron to the 

molecule must obey Fermi’s Golden Rule, according to Equation 3: 

�
→! = 2#ℏ %&�!%'(%�
)%�*�+! − +
 ± ℏ.�  
(3) 

 

where �
→! is the probability of an electron transferring from state / to state 0, with the stationary 

state wavefunctions �
 and �!; '( is the interaction potential to be discussed and * is the 

Kronecker delta function depending on the energies of the states and the quanta absorbed by the 

deposited molecule.  The quantum of energy is typically in the range of vibrations for IETS, 

although electronic excitations have also been achieved experimentally.   

[0011] The electronic interaction between the ligand and the molecule treats each atom of the 

molecule separately; each atom is assigned a partial charge, Z, and sits at its equilibrium 

positions, R, it vibrates with displacement u.  The interaction potential is that of an electron and 

single dipole and is given by Equation 4: 

'(�1, 3, �� = 4 5		�4#	8�8�9: ∙ �; − 1��|; − 1|�= . (4) 

 

[0012] As the interaction is between the electron and a single atom of the molecule, the 

contribution to the conductivity found through this calculation must be repeated and summed 

over all atoms within the molecule. 

[0013] To determine the contribution to the conductivity of any mode of transport, the tunneling 

matrix element is calculated.  In the case of the elastic mode the tunneling matrix element, ?@, is 

calculated as the overlap of the wavefunctions from the donor and acceptor sites over the volume 

of the gap since this mechanism does not require interaction with the deposited molecule.  The 

207



66840-01 

6 

 

calculation of the tunneling matrix element for the inelastic transport to the contribution utilizes 

both the donor and acceptor wavefunctions and the interaction potential is given by Equation 5: 

?
A = B�� ��� C 	����	
D∙EF F F 	
D∙�'(�1, 3, ��1	G�	G3	G1�
�

�H
�

I
� . (5) 

 

[0014] Within Equation 5, q is the change in parallel momentum defined as  J = 	�‖� − �‖. 
[0015] These tunneling matrix elements act as probability factors in the calculation of the 

conductivity.  IETS’s enhancement in the current is related to alterations in the conductivity 

through the additional transport paths associated with the inelastic transport utilizing the atomic 

oscillators.  The calculation of the ratio between inelastic contribution and the elastic 

contribution for a single atomic interaction with the electron can be calculated through Equation 

6: 

∆LL@ =	 M 1?@O
�F ?P�	Q

RS�DT� U��V
W
XY ��2#

I
� J ∝ 		F ?P�	Q

RS�DT� U��V
W
XY	J	GJ = 	 [P�\, G�5P�:P�.I

�  
(6) 

 

[0016] The l.h.s. (left-hand side) of the proportionality is the integral form proposed by Phillips 

and Adkins.  Whereas the r.h.s. (right-hand side) is a simplification through elimination of all 

constants within the calculation, it is taken as arbitrary units but is proportional to the strict 

calculation through multiplication of a constant. 

[0017] FIG. 2 provides a display of the normal modes of the formate ion for association with the 

intensities and spectra below.  Also included within FIG. 2 is a unit vector indicator as to the 

direction and magnitude of displacement, given in a.u., and frequency in cm-1 (frequencies are 

displayed beneath the mode to which it belongs). 
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[0018] Point Dipole Approximation: 

[0019] The most fundamental expression for the interaction between an electron and a charged 

dipole is given by Equation 7: 

] = �
�−�̂ �	�4#_� 1%1̂ − 1
% +
�
�̂ 	�4#_� 1%1̂ + a^ − 1
% (7) 

 

where 1
 is the location of the electron providing a field �
	� and 1̂  is location of a single side of 

the dipole where both ends provide a field with the magnitude �̂ 	�; the second term describes 

the remaining, oppositely charged side of the dipole at a distance a^ from the other end.  

Recollection of the terms yields the expression in Equation 8a, and a subsequent Taylor series 

expansion for the denominator yields Equation 8b. 

] = −�
�̂ 	�4#_� Q
S11̂ 
 − 1

b1̂ 
� + 21ĉ 
 ∙ ac^ + a�̂W
Y (8a) 

																									≅ �̂ �
	�4#_�1̂ 
 B12 1ĉ 
 ∙ ac^1̂ 
� + 12a
�̂
1̂ 
� − 384

21ĉ 
 ∙ ac^1̂ 
� + a�̂1̂ 
�9
�C (8b) 

 

[0020] After the series expansion, the point dipole approximation is typically employed; this 

approximation states that the distance between the charge and the dipole is much greater than the 

displacement between the dipole termini, 1̂ 
 ≫ a^.  Under the point dipole approximation, all but 

the leading terms of Equation 8a drop due to minimal contribution, as seen in Equation 9. 

] ≈ �
	4#_� 1ĉ 
 ∙ ic^1̂ 
= = �̂ �
	�4#_� 1ĉ 
 ∙ :jĉ1̂ 
=  (9) 

 

[0021] It is important to note that the spatial dimensions of the activation site within this class of 

proteins has been suggested to be roughly 15Å.  The suggested dimensions of the active site, 
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when compared to that of the displacement vector, do not meet the criteria for the point dipole 

approximation.  Considering at the system is possibly inappropriate for application of the point 

dipole approximation, comparing the numerical values for the tunneling matrix elements as 

calculated by Equation 5 using the interaction potential Equation 4 and the more complete form 

of the interaction potential in Equation 8a.  FIG. 3 shows the relative error associated with using 

the point dipole approximation with the spatial scale of the active site (i.e., the percent relative 

error between variations of the interaction potentials given in Equation 4 and Equation 8a; this 

was completed for several values of θ to emphasize the angular dependence stemming from 

projection operations in terms eliminated through approximation).  It should be noted that the 

error associated with this misuse of the approximated potential is peaked in the range of the 

active site length scale.  As the point dipole approximation eliminates terms which are dependent 

upon the projection, 1̂ 
 ∙ a^, there exists an angular dependence on the magnitude of the 

tunneling matrix element.  This angular dependence can be observed in FIG. 3, and is due to the 

projector in terms eliminated during application of the point dipole approximation; the 

magnitude of the relative error is proportional to the cosine of the angle, and then we observe an 

oscillatory component to the θ dependence. 

[0022] Polarizability 

[0023] As a method for obtaining information about the vibrational modes of a molecule, IETS 

does not rely on the interactions between the molecular dipole and the field of the electron.  The 

interaction potential, Equation 4, is that between an electron and a single oscillating dipole, 

representative of a vibrating atom within the molecule.  This interaction does not depend upon 

the polarizability of the system nor the change in net dipole.  The single-dipole nature of the 
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potential requires a summation over the atoms within the molecule to account for all possible 

interactions. 

[0024] The ratio given in Equation 6 is characteristic of the enhancement to the conductivity due 

to single atom motions.  If this were the only responsible contribution to 1st order inelastic 

conduction than the symmetric modes, corresponding to Raman transitions, would not appear in 

IETS, yet they do and with roughly the same magnitude as Infrared active modes. 

∆LL@ 	 ∝ 	F ?P?k	Q
RS�DT� U��V

W
XYl�Jm�I

� 	J	GJ = 	 [Pk�\, G�5P5k:P:k 
(10) 

 

[0025] The above describes the contribution to the conductivity enhancement due to the coherent 

motion of two atoms.  Equation 10 contains a phase factor, l�Jm�, which is generated through 

the addition of matrix elements.  The advent of this phase factor comes from the addition of the 

	
D∙E terms seen within Equation 5.  If the two atoms are identical and their distance from the 

nearest barrier is the same, the form of the phase factor becomes: �:� + :�	
D∙n�.  In the case 

that the displacements of each atoms are of equal magnitude and the same direction, :� = :� (IR 

active), the phase factor becomes  cos� BJ ∙ m 2� C.  In the case of Raman active modes, :� =
−:�, the phase factor simplifies to sin� BJ ∙ m 2� C. 

[0026] It has been shown through experiment that both IR and Raman modes are active within 

IETS and scale roughly equally.  Yet some works within this field authors have chosen to couple 

the oscillating dipole associated with an entire molecular mode, this would generate the 
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intensities associated with the infrared vibrations of the molecule but not contributions associated 

with Raman active modes. 

[0027] FIG. 4 shows the effects of including intensity contributions of the Raman active modes 

(standard IETS) (labeled “oscillating atomic dipole plot” in FIG. 4).  Specifically, the oscillating 

atomic dipole plot line in FIG. 4 shows the IETS of the formate ion.  The molecular dipole plot 

line in FIG. 4 shows the spectra where the interaction potential given in Equation 4 is replaced 

by the interaction potential between the electron and the molecular dipoles.  Beside the 

oscillating atomic dipole plot, the intensity expected if the coupling mechanism were to be only 

with the molecular dipole moment is provided.  The two plots are scaled in reference to each 

other for convenience of comparison within FIG. 4. It noteworthy that, by comparison between 

the oscillating atomic dipole plot of FIG. 4 and the experimental plot given in FIG. 1b, the 

inclusion of Raman mode associated intensities has delivered a better approximation to 

experiment. 

[0028] Orientation 

[0029] When considering the charge-dipole interaction potentials it is clear that the leading 

(point-dipole) term as well as any subsequent terms rely on the projection of the harmonic 

displacement vector for a specific atomic oscillator (j), :̂ , onto the charge-dipole vector, 1̂ 
.  
This projection is of paramount importance within the calculation of the coupling within these 

systems as it effectively modulates the power of the denominator. 

[0030] Orientation effects within IETS intensity calculations have been described as being of 

such importance as to practically be a selection rule for this type of vibrational characterization.  

Interaction potentials used within early formulations of IETS calculations has relied on the 

coupling strength of the electron within the donor site to atomic harmonic oscillators, and did not 
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include any dynamic interactions within the system.  More dynamic formulations exist to deal 

with that rather minute contribution of inelastic tunneling contributions to the current through 

molecular junctions, such as greens functions approaches.  It should be noted that in these cases 

the inelastic contribution is to the molecular conductance and is attributed to vibronic alteration 

of electronic levels within the molecule – this second-order coupling (electron-vibrational state-

electronic state) is why the inelastic contribution is minute in these cases. 

[0031] In maintaining the simplicity of static calculations, one cannot ignore the contributions to 

the interaction potential from the vector projection.  To emphasize the importance of this 

interaction the IETS of the formate ion is plotted; in FIG. 5a the three angular parameters are 

shown.  The rotation about the z axis does not alter the spectrum of the formate ion as the 

calculations set the origin of the tunneling junction along this axis and thus this rotation does not 

alter the projection of the electron onto any molecular modes, merely which component 

possesses the projection; it should be clearly stated that this is a facet of the formate ion, not of 

IETS.  Rotation about the y and x axes will alter the projections; the effects can be seen in FIG. 

5b for rotation about the x-axis and FIG. 5c for rotation about the y-axis.  Furthermore, without 

having calculated these orientation effects one can never achieve modes where the rate of 

inelastic tunneling is lower than the rate of the elastic process. 

[0032] Docking Geometry 

[0033] Specifically discussing the activation of olfactory proteins under the odotope theory, the 

volatile odorant molecule is hypothetically capable of maintaining something akin to its 

optimized geometry within the activation site.  This is due to the fact that only certain sections of 

the molecule are being determined at once, it may be rationalized that the molecule only loosely 

enters and is never fully enveloped by the activation site.  This rationalization is countered by 

213



66840-01 

12 

 

docking studies of the OR1A1, OR1A2 and OR1G1 human olfactory receptors that do show 

envelopment of the ligands which dock with the protein. 

[0034] Full ligand envelopment may lead to geometric alterations of the ligand during the 

docking.  The alteration of ligand geometry may lead to attenuations in both the modal 

displacements and the partial charges, which for our example system can roughly generate a 10% 

by displacement or a 5% by partial charge (where partial charge was calculated through NBO 

analysis) alteration in the IETS intensity if the molecular geometry group is maintained.  

Moreover, these attenuations alter the potential interaction between the electron and the dipole 

through the dot product present in several terms of the non-approximated interaction potential 

Eq. 8a as well as the standard interaction potential Eq. 4. 

[0035] FIGS. 6ai – 6aiii shows the geometry and alignment within the gap of the formate ion as 

well as variations on the bond angles.  FIG. 6ai is the optimized for of the ion, FIG. 6aii is has 

altered both O-C-H bond angles equally (maintaining both σ planes) and FIG. 6aiii has altered 

only one of the O-C-H bond angles (maintaining only the σ plane bisecting all bonds).  The 

alterations in the frequencies, displacements and partial charges are shown in Table 1.  FIG. 6b 

gives the IETS for the variations of the formate ion.  The frequencies are slightly displaced, and 

the introduction of asymmetry in the oxygen pair’s movement eliminates much of their non-

canceling contribution. 
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Table 1.  Numerical Values for calculations of the geometric alterations and optimized geometry 
variants of the formate ions. 

 

[0036] The feasibility of tunneling electrons being the mechanism behind the activation of has 

been the subject of recent works.  The mechanism by which the electron interacts with a bound 

ligand has been proposed as being IETS; it is important to consider a more complete description 

of the IETS model including considerations of the angular dependence between the mode and 

tunneling vector, alterations in the ligand geometry due to docking and the importance of 

choosing an appropriate interaction potential considering the confines of the activation site.  

These facets of the full static IETS calculations have been explored.   

[0037] Application of the IETS model for the protein environment requires mapping aspects of 

the IETS methodology to the biological system.  The two-plate setup of the tunneling junction 

represents the walls of the receptor site.  More explicitly, under electron transfer the valence and 

conductance bands within the juncture become specific highest occupied molecular orbitals 

(HOMOs) and lowest unoccupied molecular orbital (LUMOs) of the residues making the walls 

of the receptor.  Energy transition detectable by the protein should be the energy difference 

between electronic levels of residue side-chains.  Such alteration of IETS also localizes the 

source of tunneling electrons to a single residue side-chain.  The implication is that electrons are 
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not capable of uniformly tunneling through the molecule.  This lack of uniformity indicates the 

act of tunneling is localized to regions of the agonist molecule and that not all local oscillators of 

a specific mode contribute to the current enhancement. 

[0038] Unlike experimental IETS procedure, the analyte is not deposited upon anything within 

the activation site.  The agonist is encapsulated by the active site.  There is no externally applied 

potential within the receptor site which would allow for the scanning of energies.  Yet, an ionic 

cofactor, likely a calcium ion, may provide this driving field.  The implication of this is that the 

receptor is set to test the vibrational-assisted enhancement to the electron tunneling rate at a 

specific energy.  The electrostatic interactions which govern docking orientation would be a 

means of orienting the endogenous agonists in such a way that the tunneling junction is 

appropriately aligned for maximized electron transfer.  Non-endogenous agonists would align 

with residues in a manner which may place energetically appropriate modes in proximity of the 

tunneling junction, thus activating the receptor. 

[0039] Generation of tunneling spectra is completed through the procedure expressed in 

Equation 11, which represents the approximation of the IETS intensity (I) for a given active 

mode j: 

[̂ = ∑ [
,^u
v� = ∑ J
��∆w
,^��u
v�   (11) 

where the sum is over all atoms within the molecule, qi, is the partial charge of atom i, and ∆xi,j is 

the Cartesian displacement of atom i in mode j. 

[0040] This procedure has been adapted from procedures reported in earlier IETS literature 

(Kirtley; Phillips) and similarly uses arbitrary units for the tunneling intensity.  The herein 

disclosed spectral procedure was validated by comparison of the spectra of the formate ion, 

which is prevalent through experimental and theoretical literature in IETS.  These arbitrary units 
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are proportional to the conductance enhancement, as well as the enhancement to the Coulombic 

interaction probability during tunneling.  Necessary information for implementing Equation 15 

was collected through quantum chemical calculations.  Computations were performed using 

Density Functional theory (DFT) at 6-311G level of theory.  Expanded pseudopotential 

correlation consistent 5-zeta basis was sued for large atoms where necessary.  DFT was chosen 

both due to its high accuracy in transition dipole frequencies and to avoid encroaching error 

associated with dissimilarity between analyte and parameter molecules in semi-empirical 

methods.  Vibrational calculations utilize reduced modal displacements; proportional to the 

Cartesian displacement through √i, µ  is the mode’s reduced mass.  Natural bond order 

calculations yield the partial charges, qi in Equation 11.  Scaled Kronecker delta functions are 

plotted at the absorbance frequency of the mode.  These functions were convolved with Gaussian 

functions possessing a full-width at half maximum (FWHM) of 25 cm-1, representing a very 

narrow thermal distribution.  A FWHM of 25 cm-1 was selected in the interests of being 

conservative and yet not allowing for peak additions while avoiding over estimations of peak 

breadth. 

[0041] Referring to FIG. 7, an examination of the endogenous agonist, 5-HT, is shown.  

Specifically, FIG. 7 shows the IETS spectrum of serotonin.  In FIG. 7, the abscissa has units of 

wave number and the ordinate has units proportional to tunneling probability.  Such convention 

is used for all IETS spectra disclosed herein.  Referring still to FIG. 7, the main spectral features 

are:  the OH stretch at 3700 cm-1; NH2 bend at 1700 cm-1; coherent ring motions appearing at 

both 1500 cm-1 and 1150 cm-1; and indole bending at 530 cm-1.  For reasons discussed below the 

herein disclosure is focused on tunneling in the 1500 cm-1 region.  Working within Turins theory, 

this implies that these motions assist in the tunneling and that the tunneling source and sink are 
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in proximity to these motions.  Docking studies of homology modeled 5-HT2A show the moieties 

discussed above are local to F339, F340, S159, and L229 residues, i.e., that one of these residues 

assists in the tunneling. 

[0042] Assessment of vibrational bands for 2A agonists that may be associated with protein 

activation under Turins vibrational theory is of primary import.  Also, agonists of a particular 

protein share a single IET feature associated with the electron transfer.  Herein, we have selected 

several known 5-HT2A agonists and generated the IETS for each.  LSD was selected as it 

possesses a high potential for activation of serotonin receptors within the cortical interneurons.  

DOI (2,5-dimethoxy-4-Iodo-amphetamine) was selected due to its high selectivity for the 2A-

subtype of the serotonin receptor class.  The remaining selected molecules are members of the 

2C-X (4-X-2,5-dimethoxyphenethylamine) class of psychedelic phenethylamines.  All 

compounds selected are known hallucinogens. 

[0043] Referring to FIG. 8, an IETS of the selected molecules (above the abscissa) is shown.  

The selection of candidate peaks was performed using a spectral similarity index (SI) similar to 

that used for comparison of mass spectra, over the entire spectra and then over local regions.  

The SI is calculated according to Equation 12: 

   y[ = 1 − b|z{�n{|u      (12) 

where, N is a normalization constant (the numerator performed for spectra b); bi is the is the 

value of the spectra being analyzed at discrete location i and a is the spectra being compared 

against.  LSD, as the most potent agonist, was selected as the reference spectra for SI 

calculations.  The SIs associated with each of the IETS are shown in Table 2.   
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Table 2.  SI index for several 5-HT2A agonists. 

 

[0044] Referring to Table 2, the SI is given for the overall spectrum and followed by regional 

SI’s calculated for spans of 1000 cm-1 with 500 cm-1 steps; to emphasize the possible region 

associated with activation, the final column shows the SI of each compound for 1500±100 cm-1.  

Regions with large ranges of no intensity have SI’s inflated by this spectral facet (these regions 

have been omitted from the table).when omitting these regions, the SI for the region spanning 

1000 – 2000 cm-1 shows enhanced values, and includes the peak at 1500 cm-1.  The final column 

of the table gives the SI for a 100 cm-1 region about this peak to emphasize this heavily shared 

spectral feature.  As a means of reducing minor aspects within the tunneling PDF, the function as 

squared to exaggerate those energy ranges which exhibit large tunneling amplitudes within the 

spectra (as shown in FIG. 8 below the energy axis).  Application of the SI to the square of the 

spectra showed similar results (not shown), yet with the expected enhancement of the SI values.  

The only universally shared spectral aspect were the shared peaks at 1500 cm-1. 

[0045] For purposes of this disclosure, DOC (2,5-dimethoxy-4-C-amphetamines) was selected as 

a prototypical molecule, based on its fairly tractable number of modes, simple geometry, 
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symmetry , and similarities to other agonists.  Energy regions associated with an assisted electron 

transfer would benefit form a large density of vibrational states, implying a greater number of 

possible states to interact with in this energy range.  FIG. 9 shows both the IETS and scaled 

density states for DOC.  Specifically, referring to FIG. 9, the IETS of DOC is plotted alongside a 

scaled, discrete density of states for the vibrational modes of DOC.  The scaling factor is 10 (this 

scaling factor should be interpreted as a means of lowering the number of modes “step function” 

(DOS plot) to a readable height with the IETS; that is, the ordinate value of 1 should be 

interpreted as 10 on the DOS plot). Referring still to FIG. 9, the spectral feature at 1500 cm-1 

exhibits an enhanced number of vibrational states.   

[0046] An isotopoluge series is utilized for DAM-57.  The series is of variants of deuterated 

functional groups altering the character in the 1500 cm-1 region.  It was verified that 

isotopologues of other atoms do not alter tunneling character in this region.  FIGs. 10a -10c show 

the isotope effects within several groups of the molecule.  FIG. 10a shows the effects of 

replacing the oxygens with 18O’s, which results in littler alteration near 1500 cm-1.  Substitution 

of the halide has similar results, with differences appearing at much lower energies.  Referring to 

FIG. 10b, the effects of deuterating the hydrogens on the methoxys is shown.  Referring still to 

FIG. 10b, a large attenuation of the tunneling intensity is observed.  FIG. 10c shows the effect of 

selectively deuterating different functional groups. 

[0047] The integral of the tunneling probability was taken for 1500 ± 35 cm-1 and compared to 

known EC50 data for compounds shown to activate 5-HT2A.  The effective concentrations of 

several phenethylamines were taken from Reference number [7] (see References section below) 

and compared to the local integrals of the tunneling PDF.  This comparison exposes a possible 

correlation to the inverse of the EC50 data.  Results for the 1500 cm-1 region are shown in FIGs. 
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11a – 11b and 12a – 12b for the DOI class and 2C-X class molecules computed, respectively.  

FIGs. 11a and 12a give the IETS for each molecule, while FIGs. 11b and 12b compare the 

integral values to the known EC50s. 

[0048] Tunneling is a highly local process, where the interaction potential falls off as r-3 for non-

parallel displacements.  Modes that are not local to the electron donor/acceptor sites cannot 

contribute to the electron transfer responsible for protein activation.  Particular modes in 2C-T-2 

and in Aleph-2 reside within the thioether (roughly 5 angstrom from the ring system); due to the 

non-locality of these oscillators, tunneling probability should be examined after removing these 

contributions from the spectra.  FIGs. 11a and 12a present the IETS of 2C-T-2 and Aleph-2, both 

considering and disregarding these contributions.  Excess contribution to the integral due to these 

modes is shown in FIGs. 11b and 12b.  After correction for non-local motion, the integrals are in 

fair agreement with the inverse EC50. 

[0049] FIG. 13 is a high-level diagram showing the components of an exemplary data-

processing system for analyzing data and performing other analyses described herein, and related 

components.  The system includes a processor 386, a peripheral system 320, a user interface 

system 330, and a data storage system 340. The peripheral system 320, the user interface system 

330 and the data storage system 340 are communicatively connected to the processor 386.  

Processor 386 can be communicatively connected to network 350 (shown in phantom), e.g., the 

Internet or a leased line. 

[0050] In one embodiment for implementation of the herein described process, for a molecule of 

interest, the inputted information includes:  the exact location of each atom in the molecule; the 

energy it would take to excite a harmonic mode of the molecule; the vector displacement of each 

atom within the molecule; and the particle charge.  Such information can be obtained by a 
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structural optimization and normal mode analysis.  It should be noted that the units of the 

information obtained from the structural optimization and normal mode analysis may need to be 

modified such that their units are in agreement for further calculations (for example, 

displacement vector information may need to be converted to Cartesian coordinates).   

[0051] For each mode, the results from the structural optimization and normal mode analysis 

(specifically, the magnitude of displacement along any unit vector and partial charge) are 

inputted into Equation 15 to approximate the IETS intensity for each atom in a particular 

molecule and for each active mode (for example, if there is only one normal mode and three 

atoms in the molecule, the computation will be conducted three times for that normal mode).  

The result is a number respective of the intensity at the peak, which will relay in fundamental 

terms the transfer rate of electrons using this molecule at a particular normal mode. Scaled 

Kronecker delta functions are then plotted at the absorbance frequency of the mode.  These 

scaled Kronecker delta functions are convolved with Gaussian functions possessing a full-width 

at half maximum (FWHM) of 25 cm-1, representing a very narrow thermal distribution.  Spectral 

Index (SI) calculations are then performed.  The spectra amongst selected molecules are then 

compared, and regions where there is no flatlining at zero, resulting in an SI of about 1 (for 

purposes of the examples shown herein, these regions occurred at about 1800cm-1 to about 

2000cm-1) are removed to thereby lower the deviation and achieve a higher indexing score.  The 

resulting spectral plots thus allow for determining the relative ability for activation of G-Protein 

Coupled Receptors of families of agonists. 

[0052] Additional disclosure is found in Appendix-A, Appendix-B, Appendix-C, Appendix-D, 

Appendix-E, and Appendix-F filed herewith, entirety of which are incorporated herein by 

reference into the present disclosure. 
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[0053] Those skilled in the art will recognize that numerous modifications can be made to the 

specific implementations described above.  The implementations should not be limited to the 

particular limitations described.  Other implementations may be possible.   
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Claims: 

1. A method for determining the relative ability for activation of G-Protein Coupled 

Receptors of families of agonists as shown and described in the specification. 

2. A system for determining the relative ability for activation of G-Protein Coupled 

Receptors of families of agonists as shown and described in the specification. 

3. A method for determining the relative activation strength of drug molecules with G-

Protein Coupled Receptors (GCPR) using a processor, comprising: 

structurally optimizing a set of key information regarding a molecule of interest; 

subjecting the set of key information regarding the molecule to a normal mode analysis; 

receiving the output from the normal mode analysis; 

approximating the intensity of the inelastic electron tunneling spectroscopy for the 

molecule of interest;  

plotting scaled Kronecker delta functions based on the intensity of the inelastic electron 

tunneling spectroscopy for the molecule of interest; 

convolving the scaled Kronecker delta function plots with Gaussian distributions; 

performing spectral index calculations on the newly convolved Gaussian distribution 

plots; and 

comparing the plots of spectral index calculations with at least one additional molecule of 

interest to thereby determine the relative ability for activation of G-Protein Coupled 

Receptors of families of agonists. 

4. The method of claim 3, the key information regarding a molecule of interest comprises:  

the exact location of each atom in the molecule; the energy it would take to excite a harmonic 
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mode of the molecule; the vector displacement of each atom within the molecule; and the 

particle charge. 

5. The method of claim 5, further comprising removing flatline regions in the plots of 

spectral index calculations. 

 

228



VITA



229

VITA

Ross Hoehn was born in Corydon, Indiana, United State of America to Cinda

and Steve Hoehn in 1984. He graduated Corydon Central High School with honors

and entered Purdue University in 2003 for Psychology. He obtained a Bachelors

degree in Honors Chemistry with ACS Accredits and minor emphasis in Classics and

Philosophy 2008. He took a year after graduation to explore the idea of graduate

school in chemistry by taking several classes as well as performing research as a

Dreyfus Scholar under the tutelage of Prof. Emt. Jurgen Honig. Ross was admitted

to Purdue University in 2009 were he joined the Kais group. He expects to receive a

PhD in Physical Chemistry in December 2014.



PUBLICATIONS



Vol. 119 (2011) ACTA PHYSICA POLONICA A No. 3

Analysis of Irreversible Processes across Narrow Junctions

J.M. Honig∗ and R. Hoehn
Department of Chemistry, Purdue University, West Lafayette, Indiana, 47907, USA

(Received November 17, 2010)

The rectification of the second law of thermodynamics is used to directly relate irreversible heat and work
transfers to reversible processes. This permits the construction of thermodynamic functions of state that include
entropy contributions due to irreversible processes. A general expression is set up to determine the entropy changes
in terms of experimentally accessible parameters when a system is interacting with its surroundings via quasistatic
irreversible operations. The procedure is used to determine the entropy changes across a narrow junction in terms
of pressure and temperature differences between the system and its surroundings, including cyclic processes.
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1. Introduction

This article deals with the thermodynamic analysis of
irreversible processes across a narrow interface which sep-
arates a system from its surroundings (reservoir), the
combination forming an isolated unit. We first develop
the required fundamental relations that are scattered in
the literature and then show how they are applied in spe-
cific situations.

At the outset we clarify what is meant by intensive
variables that generate irreversible changes. Reference is
made to Fig. 1 which illustrates the temperature profile
for the compound system under conditions described be-
low. Similar considerations apply to all other intensive
variables of interest. The reservoir is assumed to be so
large that under all operating conditions its temperature,
T0, remains constant and uniform over almost its en-
tire extension. The temperature then changes across the
small interfacial region, which is a poor thermal conduc-
tor, to its value T of the system. In conformity with stan-
dard operating procedures we assume all processes in the
reservoir to proceed reversibly. All irreversible changes
within the system are assumed to proceed sufficiently
slowly that its temperature T is uniformly variable over
almost the entire extension of the system. Such oper-
ations will be termed quasistatic irreversible processes
(QSIPs). The system and surroundings are separated by
a narrow interface over which the temperature changes
from T0 to T . There is no restriction on the difference
between T and T0.

The present approach, dealing with entropy changes
in irreversible processes, is an extension of earlier work
[1–7], and is complementary to the standard theory of ir-

∗ corresponding author; e-mail: jmh@purdue.edu

Fig. 1. Sketch of temperature profile for the combined
system and reservoir at different temperatures T and T0.
The temperature in each phase remains essentially con-
stant over almost the entire region; the gradient in tem-
perature develops over only a small region l at the in-
terface.

reversible thermodynamics (e.g., [8–10]) that emphasizes
the relation between fluxes and forces.

2. Fundamentals

We first provide a fundamental analysis of irreversible
phenomena that is used below. Consider an infinitesimal
step in a process that is carried out first reversibly (a)
and then irreversibly (b). For the compound unit the en-
tropy change in the two cases is given by

dS + daS0 = 0 (1)
and

dS + dbS0 > 0 , (2)

where the zero subscript refers to the surroundings, and
where the entropy change in the system is identical in
the two cases, since S is a function of state of the sys-
tem. The use of inequalities is awkward; hence, it is

(323)
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apposite to introduce an entropy deficit function đθ > 0
that converts Eq. (2) to an equality

dS + dbS0 − đθ = 0 . (3)

Let us note that đθ is the sum of the entropy changes in
the system plus surroundings kept under different con-
ditions; it represents the total entropy change of the
universe resulting from the execution of the irreversible
process.

We next set dS = đrQ/T , where đrQ is the element of
heat reversibly absorbed (or released) by the system at
temperature T . Since all processes in the reservoir take
place reversibly we designate the response of the reservoir
as dbS0 = đQ0/T0 = −điQ/T0. The second equality is
obtained because of the isolation of the compound sys-
tem; heat gained (lost) by the system is lost (gained) by
the reservoir.

3. Heat transfer

When dS and dbS0 in Eq. (3) are replaced as described
above one may relate the heat transferred irreversibly to
the heat transferred reversibly as follows:

điQ = (T0/T )đrQ− T0đθ < (T0/T )đrQ . (4)

This relation was previously derived in Ref. [11]. The in-
equality may be tightened by noting that it must hold for
any value T < T0 when heat is absorbed by the system
and for any T > T0 when heat is released; in either case
the limiting temperature is T = T0. One thus arrives at
the string of inequalities

điQ < đrQ < (T0/T )đrQ , (5)

which either becomes more positive or less negative from
left to right. The result điQ < đrQ is simply a reformu-
lation of the famous Clausius inequality.

It is expedient to rewrite Eq. (4) in the form

điQ = đrQ+ (T0/T − 1)đrQ− T0đθ . (6)

Because of the Clausius inequality the last two terms
in (6) must be negative. This sets up a lower bound
on đθ:

đθ > [(T0 − T )/T0T ]đrQ = [(T0 − T )/T0]dS > 0 , (7)

which is positive because the quantity in square brackets
has the same sign as dS or đrQ, all being positive or
negative according as heat is incrementally introduced
into or withdrawn from the system. The quantities on
the right in principle are experimentally accessible.

4. Work performance

Information on work performance is accessed through
the first law of thermodynamics in the form

dE = đrQ+ đrW = điQ+ điW , (8)

where E is the energy of the system and W indicates the
work performance. On substituting from (6) one obtains

a relation between work performed reversibly and irre-
versibly as

điW = đrW − (T0/T − 1)đrQ+ T0đθ

= đrW − (T0 − T )dS + T0đθ , (9)

where the last two terms are opposite in sign to those
in Eq. (6). It then follows that điW > đrW , known as
the Gouy–Stodola theorem.

Equation (9) may be rewritten in the form

đθ = (điW − đrW )/T0 + (1− T/T0)dS . (10)

This provides one avenue for determining the incremental
contribution of an irreversible process to the entropy of
the universe. The quantities on the right are accessible
by measurement or calculation. The special cases đθ =
(1 − T/T0)dS as well as đθ = (điW − đrW )/T0 were
derived by independent methods in Refs. [12] and [13],
respectively.

Here we concentrate on an alternative formulation that
provides similar information in terms of the physical
properties of the system and its surroundings, as we now
show.

5. Functions of state

The energy differential for the surroundings takes the
customary form

dE0 = T0dS0 − P0dV0 + Σiµ0idn0i , (11)

where P0 is the prevailing pressure, V0 — the volume,
µ0i — the chemical potential of species i, and n0i — the
mole number of species i, all referred to the surround-
ings, functioning reversibly. We now set dE = −dE0

and dn0i = −dni, where the nonsubscripted quanti-
ties refer to the system. We further assume that any
volume change of the system is precisely compensated
for by the volume change in the surroundings, so that
dV0 = −dV . Lastly, we introduce Eq. (3) by setting
dS0 ≡ dbS0 = −dS + đθ. This leads to the fundamental
expression for the energy of the system in the form

dE = T0dS − P0dV + Σiµ0idni − T0đθ , (12)

thereby generalizing the conventional relation for the en-
ergy differential, so that it may be applied to QSIP
processes. This relation was established earlier by
Kestin [12], using a different technique. One should note
that even for irreversible processes of the system all inten-
sive variables refer to the properties of the surroundings.

For future use it is expedient to rewrite Eq. (12) as

dE = (T0 − T )dS − (P0 − P )dV + Σi(µ0i − µi)dni

+ T dS − P dV + Σiµidni − T0đθ , (13)

from which we subtract the same energy differential, dE,
for the same step executed reversibly,

dE = T dS − P dV + Σiµidni . (14)

This permits us to solve for
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đθ = (1/T0)[(T0 − T )dS − (P0 − P )dV

+Σi(µ0i − µi)dni] . (15)

We have thereby expressed the contribution of the in-
finitesimal step to the entropy generated in executing a
QSI process. Equation (15) is consistent with Eq. (3).

For further progress it is expedient to introduce T ,
P , and ni as control variables, thereby eliminating the
entropy and volume differentials. This is accomplished
by specifying S = S(T, P, ni) and V = V (T, P, ni) and
then taking differentials

dS =
∂S

∂T
dT +

∂S

∂P
dP +

∑

i

∂S

∂ni
dni

=
CP,n

T
dT − ∂V

∂T
dP +

∑

i

S̄idni , (16)

where we have inserted the heat capacity CP,n at constant
pressure and composition, the relevant Maxwell relation,
and the partial molal entropy, S̄i. We obtain similarly

dV =
∂V

∂T
dT +

∂V

∂P
dP +

∑

i

V̄idni . (17)

When these relations are substituted in (15) we generate
the fundamental working equation

dθ =

[(
1− T

T0

)
CP

T
− 1

T0
(P0 − P )

∂V

∂T

]
dT

−
[(

1− T

T0

)
∂V

∂T
+

1

T0
(P0 − P )

∂V

∂P

]
dP

+
∑

i

[(
1− T

T0

)
S̄i −

1

T0
(P0 − P ) V̄i

+
1

T0
(µ0i − µi)

]
dni . (18)

6. Special cases

In the above we have specified the incremental contri-
bution to the entropy associated with irreversible qua-
sistatic processes taking place across the interface, in
terms of temperature, pressure, and composition of the
system as the proper control variables. To obtain the
total contribution we must now specify how each of the
nonsubscripted variables changes with time t in the over-
all process, and then integrate the rather formidable ex-
pression. For illustrative purposes we therefore introduce
a number of reasonable simplifications and special cases
that show how to implement the calculation.

We assume that the reservoir is of such huge size that
all its variables do not change appreciably during the
interaction with the system; then the subscripted quan-
tities are constant. We next specialize to the case of a
one-component system at constant composition, which
eliminates the third line of Eq. (18). We further divide
the calculations into two groups: (a) Systems consisting

of an ideal gas, for which V = nRT/P and CP = 5nR/2,
where n is the number of moles of material in the system
and R is the gas constant. (b) Condensed phases, where
we simulate the modest changes of V with T and P by
replacing ∂V/∂T with αnṼ0, and ∂V/∂P , with — βnṼ0.
Here α is the isobaric coefficient of thermal expansion,
β is the isothermal coefficient of compression, and Ṽ0 is
a suitably averaged molar volume over the temperature
and pressure range of interest. All three of these quan-
tities are assumed to be constant. Lastly, to be definite,
we set T ≤ T0 and P ≤ P0, so that, as the interaction is
turned on, the temperature and pressure of the system
rises. The volume of the system adjusts in conformity
with the equation of state of the material.

(a) For ideal gases the calculation may be subdivided
into two categories: integrals that are independent of
path, and line integrals that involve more than one vari-
able. In the former case the time dependence is irrele-
vant. On substituting in (18) for CP , determining the
volume derivatives, and integrating the differentials that
involve only one independent variable (T or P ) between
limits i and f we obtain

θai =
5

2
nR ln

Tf

Ti
− 3

2
nR ln

1

T0
(Tf − Ti)− nR ln

Pf

Pi
.

(19)
Here the first and last terms are those encountered for the
reversible alteration of temperature and pressure of an
ideal gas.

To handle the remainder it is necessary to introduce
time as a parameter in the interval 0 ≤ t ≤ τ and to deal
with the line integrals in the form

θad ≡ θT + θP = −P0

T0
nR

∫ τ

0

1

P (t)

dT

dt
dt

+
P0

T0
nR

∫ τ

0

T (t)

P 2(t)

dP

dt
dt . (20)

We now take up two special examples:
Case 1. We set P = Pi e

kP t, T = Ti e
kT t, 0 ≤ t ≤ τ ,

where kP , kT are time constants, so chosen that at time
τ the system has reached the final values Tf and Pf . On
inserting these functions into (20) the integrations are
straightforward, though lengthy. We obtain

θT = −P0

T0

Ti

Pi
nR

1

1− kP /kT

(
Tf/Ti

Pf/Pi
− 1

)
,

θP =
P0

T0

Ti

Pi
nR

1

kT /kP − 1

(
Tf/Ti

Pf/Pi
− 1

)
,

kP
kT

=
ln(Pf/Pi)

ln(Tf/Ti)
, (21)

which are combined to yield

θ = nR
P0Ti

PiT0

(
1− PiTf

PfTi

)
= nR

P0

T0

(
Ti

Pi
− Tf

Pf

)
, (22)

to which we adjoin Eq. (19). According to Eq. (3), the
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resulting expression specifies the entropy increase in the
universe arising from the irreversible QSIP interactions
between the ideal gas in the system and in the reservoir.
Let us note that in addition to the properties of the reser-
voir only initial and final values of the temperature and
pressure of the system appear in the above results.
Case 2. We next take up the particular time depen-

dence P = Pi e
kP t, T = Ti(1+kT t), 0 ≤ t ≤ τ . Obviously,

there is no change in handling the one-variable integrals.
Proceeding in the same manner with the path-dependent
integrals we obtain the expressions

θT = nR
P0Ti

PiT0

kT
kP

(
Pi

Pf
− 1

)
,

θP = nR
P0Ti

PiT0

[(
1− Pi

Pf

)
+

kT
kP

(
1− Pi

Pf
+

Pi

Pf
ln

Pi

Pf

)]
,

kT
kP

=
Tf/Ti − 1

ln(Pf/Pi)
, (23)

which clearly differ from Eq. (21). Nevertheless, on sum-
ming these expressions one again recovers Eq. (22) iden-
tically. This demonstrates that while the contributions
to θP and to θT differ for the two cases their sum is in-
dependent of the choice for the time variation of T and
of P . This fact may be rationalized by noting that in the
QSIP approximation there is no reference to the path
that leads from the initial to the final state. This holds
true as long as relaxation effects are ignored. The reader
may also verify our finding that a choice in which both
P and T vary linearly with time produces yet a different
set of θP and θT integrals that again sum to Eq. (22).
Thus, Eqs. (19) and (22) are the final results of interest
for the ideal gas.

(b) For the condensed phase we replace the partial
derivatives of V in Eq. (18), using the equation of state
for condensed phases in the form

V = V0 +

∫
(∂V/∂T ) dT +

∫
(∂V/∂P ) dP

= V0(1 + αT − βP ) , (24)

where we later retain the correction terms only to first
order in α and β. We then utilize the caloric equation of
state for the enthalpy H of the condensed phase in the
form

(∂H/∂T ) = V − T (∂V/∂T ) = V0(1− βP ) , (25a)

which yields the integrated form as

H = H0 + V0P − (1/2)βV0P
2. (25b)

Here H0 = 3nRT is the arbitrary function of integration
for the condensed phase. Accordingly, the heat capacity
to first order of smallness is given by CP = 3nR.

We now return to the first line of Eq. (18) and first
single out those differentials that involve only one in-
dependent variable. On performing that integration we
obtain

θbi = nC̃P ln
Tf

Ti
− n

C̃P

T0
(Tf − Ti)−

P0

T0
αnṼ (Tf − Ti)

− αnṼ (Pf − Pi) +
P0

T0
βnṼ (Pf − Pi)

− βnṼ

2T0
(P 2

f − P 2
i ). (26)

To the above we adjoin the line integrals

θbd =
αnṼ

T0

[∫ τ

0

P (t)
dT

dt
dt+

∫ τ

0

T (t)
dP

dt
dt

]
. (27)

As was the case earlier, we verified that these also do not
depend on the chosen time dependence; we thus adopted
Case 1, above, to carry out the integrations to find θP
and θT , which are summed to yield

θbl =
αnṼ

T0
(PfTf − PiTi) . (28)

The final result in the present case involves the sum
of Eqs. (26) and (28). The only terms not referring to
the expansion properties of the condensed phase are the
first two in (26), which depend solely on the tempera-
tures of the system and of the surroundings. Normally,
the remaining terms are small compared to those just
mentioned.

7. Cyclic processes

Up to now we have assumed a monotonic variation of
temperature and pressure with time. Also of interest is
a cyclic process in which the intensive variables of the
system are changed in the sequence Ti → Tf → Ti and
Pi → Pf → Pi. For this purpose we attach to the system
a reservoir at temperature T1 < Ti and pressure P1 < Pi,
while retaining the original reservoir at temperature T0 >
Tf and pressure P0 > Pf . While the system interacts with
reservoir 0, reservoir 1 remains sealed off, and vice versa.

(a) In considering the case of the ideal gas the interac-
tion with reservoir for the return process is handled by
reversing the indices i and f and replacing subscript 0 by
subscript 1 in (19) and (22). When these newly gener-
ated expressions are added to (19) and (22) one obtains
for the cyclic process

θc =
3

2
nR

(
1

T1
− 1

T0

)
(Tf − Ti) + nR

(
Ti

Pi
− Tf

Pf

)

×
(
P0

T0
− P1

T1

)
=

3

2
nR

(
1

T1
− 1

T0

)
(Tf − Ti)

+ nR

(
1

ci
− 1

cf

)
(c0 − c1) , (29)

where c is the concentration of the gas phase. Thus, the
second term drops out if the gas concentrations in the
two reservoirs are rendered identical. In any case, the
principal contribution is shown by the first term in (29),
which agrees with the result cited in another deriva-
tion [7] where temperature and volume were taken as
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the independent variables. If the process had been car-
ried out reversibly there would have been no change in
entropy in the system.

(b) For the condensed phase a similar operation involv-
ing (26) and (28) leads to the result

θC = −
[
nc̃P

(
1

T0
− 1

T1

)
+ αnṼ

(
P0

T0
− P1

T1

)]

× (Tf − Ti) + αnṼ

(
1

T0
− 1

T1

)
(PfTf − PiTi)

+βnṼ

(
P0

T0
− P1

T1

)
(Pf − Pi)−

β

2
nṼ

(
1

T0
− 1

T1

)

× (P 2
f − P 2

i ) . (30)

Under ordinary laboratory conditions the quantities that
involve βṼ and αṼ will be small relative to C̃P and,
in zero order approximation, may be ignored. Then the
principal contribution to the entropy change of the con-
densed phase undergoing a cyclic process is given by

θc = nC̃P (Tf − Ti)

(
1

T1
− 1

T0

)
. (31)

8. Discussion

By eliminating the commonly used inequalities associ-
ated with the second law of thermodynamics we were able
to relate differential elements of heat and work transfer
carried out irreversibly to those executed reversibly. This
permitted us to determine the differential form of the en-
tropy associated with the irreversible transfer of heat and
work across a thin boundary separating a reservoir from
a system. The control variables governing the dependent
variable were temperature, pressure, and composition.
To apply these quantities to irreversible processes it was
assumed that the latter occurred sufficiently slowly that
in the system T , P , and ni could be altered uniformly
over most of the physical extension of the system, but no
limits were set between the difference of these quantities
and the corresponding fixed ones of the reservoir.

As examples we considered ideal gases as well as con-
densed phases. When integrating we distinguished be-
tween integrals that involve either one or two variables.
In the latter set we examined two cases with different
time rates of change of temperature and pressure at con-
stant compositions. As expected, the corresponding in-

tegrals depend on the chosen path, but their sum is in-
dependent of the selection for the time variations of the
independent variables. We also examined cyclic processes
to note the net entropy increase in the universe upon ir-
reversibly cycling the ideal gas or condensed phase.

These derivations should serve as a prototype for an
analysis of irreversible phenomena. The present ap-
proach complements the standard theory of irreversible
processes, in which emphasis is placed on the specifica-
tion of fluxes, such as transport of entropy and matter,
in response to external forces either within a system or
across boundaries.
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Abstract: A novel method for determining the entropy associated with irreversible processes has been provided, differing 

from the conventional theory of irreversible thermodynamics. It permits the direct relation of heat and work transfers in ir-

reversible processes to those in reversible changes, in terms of measurable properties. The same technique is applied to 

the construction of thermodynamic state functions that are no longer limited to reversible phenomena. The results are then 

used to construct line integrals for the contribution of irreversible processes to the entropy associated with the flow of 

heat, work, and matter across a junction. Specific examples are provided to illustrate the procedure; they relate to changes 

of temperature and volume and to cycling of systems interacting with a reservoir via a thin barrier. 

Keywords: Irreversible process/phenomenon, irreversible function of state, quasistatic irreversible processes. 

INTRODUCTION 

The proper formulation of entropy changes during irre-
versible processes has been the subject of numerous investi-
gations ever since the formulation of entropy as a function of 
state. It nevertheless seems appropriate to introduce an un-
conventional methodology through detailed calculations in-
volving the irreversible exchange of heat and work for a sys-
tem interacting with a reservoir through a thin intervening 
barrier. This problem is also of intrinsic interest. For this 
purpose we first derive fundamental information that is 
somewhat scattered in the literature, in which the commonly 
used inequalities in the second law are replaced with equali-
ties. We then apply these concepts to determine the increase 
in entropy during the irreversible processes in the above-
mentioned compound system. Several conclusions of interest 
are drawn. The present article represents an extension of 
earlier work in this area [1-5]. 

At the outset we introduce two basic assumptions. The 
object under study is an isolated compound unit consisting of 
a system anchored to its surroundings as sketched in Fig. (1), 
which shows the temperature profile in both parts of the unit. 
Corresponding profiles exist for the pressure and the chemi-
cal potentials. Processes in both sections are presumed to 
occur sufficiently slowly that one may assign uniform values 
T0, P0, μ0 to the temperature, pressure, and chemical potential 
over almost all the region in the surroundings, and corre-
sponding values T, P, μ over most of the region within the 
system. The changeover between the two sets of intensive 
variables is thus limited to a thin boundary region consisting 
of a poor thermal conductor imbedded in a slowly moving 
piston that also permits a slow diffusion of matter across its 
interface. The present situation is thus the exact opposite of 
the irreversible processes considered in the standard theory 
of irreversible thermodynamics, where T, P, and μ are locally 
functions of position within the system, and thereby relate to  
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the flow of heat, work, and matter through the system as a 
whole. By contrast, in the present case attention is directed to 
the transfer of these entities across an interface. 

The second restriction involves the commonly employed 
assumption that all processes in the surroundings (reservoirs) 
take place reversibly, whether the processes in the system 
occur reversibly or not. In the absence of this assumption the 
analysis becomes far more complex. Procedures carried out 
subject to the above qualifications are termed Quasistatic 
Irreversible Processes (QSIPs). 

BASICS 

To set up the fundamental expressions, consider an in-
finitesimal step in an interactive process - involving the sys-
tem and the reservoir - that is carried out reversibly (r) and 
irreversibly (i). Since the entropy, S, is a function of state, 
the infinitesimal change dS of the system is the same for 
both processes. However, the entropy change of the reservoir 
differs in the two cases, which we designate as dS0

(a)
 and 

dS0
(b)

, respectively. Since entropy is conserved in the re-
versible operation, we set 

dS + dS0
(a)

 = 0           (1a) 

On the other hand, when executing the same process ir-
reversibly, the entropy of the compound system can only 
increase, so that  

dS + dS0
(b)

 > 0           (1b) 

It is now apposite to introduce an entropy deficit function 
 > 0 which converts Eq. (1b) into an equality:  

dS + dS0
(b)

 -  = 0          (1c) 

While this may appear to be simply a bookkeeping opera-
tion it has important implications: a trivial rearrangement of 
the above equation leads to 

dSu  dS + dS0
(b)

 =          (1d) 

where Su represents the entropy of the universe, here the 
compound system. Eq. (1d) shows that the deficit function is 
equivalent to the entropy increase of the universe resulting 
from the execution of any (infinitesimal) irreversible proc-
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ess. Note that dS represents the differential entropy change 
for the system characterized by intensive variables which 
differ from those which relate to the surroundings.  

We now set dS = rQ/T and dS0
(b)

 = rQ0/T0 = - iQ/T0, 
where Q signifies the heat transfer into the system and T is 
its operating temperature. The second relation applies be-
cause of heat conservation in the isolated compound system. 
When these expressions are entered in (1c) one obtains the 
fundamental result 

iQ = (T0/T) rQ – T0  < (T0/T) rQ        (2a) 

The central equality duplicates the expression derived by 
a different method in Ref. [6].  

The constraint on the right may be tightened by noting 
that the inequality must be satisfied for any value of T  T0 
(T  T0) when heat flows from the system (reservoir) into the 
reservoir (system). In particular, it must apply to the limiting 
case T  T0. We thereby obtain the string of inequalities 

iQ < rQ < (T0/T) rQ          (2b) 

which are self evident for positive values of rQ, where T0/T 
> 1. Note that in the limiting case discussed above, the quan-
tity  in Eq. (2a) does not necessarily vanish [7]. For exam-
ple, the reversible heating of a sample may trigger chemical 
processes totally within the system that cannot be controlled 
from the outside. However, in the absence of such processes, 

rQ, is the sole applicable variable.  

For heat outflows, with T0/T < 1, the inequalities (2b) still 
hold; the quantities become progressively less negative from 
left to right. One should observe that the statement iQ < rQ 
is a reformulation of the well-known Clausius inequality. 

Eq. (2a) may also be recast in the familiar form as 

dS = iQ/T0 +  > iQ/T0          (2c) 

Note that it is the experimentally well established tem-
perature of the reservoir that enters the above relations. Eq. 
(2a) may be rewritten as 

iQ = rQ + (T0/T - 1) rQ – T0         (2d) 

which directly relates the two types of heat exchange proc-
esses. 

LOWER BOUNDS ON THE DEFICIT FUNCTION 

In the introduction of the deficit function we had origi-
nally set  > 0. A greater positive lower bound may be im-

posed by employing the condition iQ < rQ. Thus, the sum 
of the last two terms in Eq. (2d) must be negative. This im-
poses the requirement: 

 > [(T0 – T)/T0T] rQ = [(T0 – T)/T0]dS          (3) 

The right hand side is always positive. For if T0 > T (T0 < 
T), heat flows from the surroundings (system) into the sys-
tem (surroundings), so that rQ and dS are both positive 
(negative). In either case the right hand side is positive, thus 
establishing a positive lower bound that involves experimen-
tally accessible operating conditions. 

INEQUALITIES RELATING TO WORK PERFORM-
ANCE 

Information relating to work becomes available via the 
First Law in the form 

dE = rQ + rW = iQ + iW          (4) 

where E is the energy of the system and iW is the element 
of work performed in an infinitesimal step of an irreversible 
process. Eq. (4) holds because E is a function of state. Now 
introduce Eq. (2d) and solve for 

iW = rW - (T0/T - 1) rQ + T0  = rW - (T0 - T) dS + T0  
              (5) 

where the last two terms differ in sign from those of Eq. 
(2d), so that iW > rW. The irreversible performance of 
work always exceeds that which is required when the same 
step is executed reversibly, in accord with intuitive reason-
ing. The above equation is a reformulation of the Gouy-
Stodola theorem. 

SPECIFICATION OF THE DEFICIT FUNCTION 

To be of use the deficit function must be specified in 
terms of experimentally accessible quantities. This may be 
achieved in two ways. The first method involves solving Eq. 
(5) for : 

 = ( iW - rW)/T0 + (1 – T/T0)dS         (6a) 

The total performance of work, based on an integration 
of iW, may be determined experimentally and the integrated 
value of rW may be obtained by calculation. The determina-
tion of entropy through calorimetric measurements is also 
well established. Thus, in principle,  may be found by per-
forming the required integrations. Details concerning this 
methodology are left to a future publication. We briefly note 
that in the absence of work Eq. (6a) reduces to  

 

 

 

 

 

 

 

 

Fig. (1). Sketch of a temperature profile for the combined system and reserervoir at different temperatures T and T0. The temperature in each 

phase remains essentially constant over almost the entire region; the gradient in temperature develops over only a small region l at the inter-

face. 
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 = (1/T -1/T0) rQ          (6b) 

which is derived by different means in Ref. [8]. If work is 
processed without heat transfer one obtains the relation ob-
tained by a different approach in Ref. [9] below Eq. (3.53), 
namely 

 = ( iW - rW)/T0          (6c) 

FUNCTIONS OF STATE FOR IRREVERSIBLE 
PROCESSES 

For future use we now set up the differential form for the 
energy, E0, of the surroundings, as appropriate to processes 
that take place reversibly 

dE0 = T0dS0 - P0dV0 + iμ0idn0i          (7a) 

where P0 is the pressure, V0 the volume, μ0i the chemical po-
tential of species i, and n0i its mole number, all referred to 
the surroundings. For the closed entity (system + surround-
ings) energy and material is conserved, whence dE = - dE0 
and dn0i = - dni, where the nonsubscripted quantities refer to 
the system. If the volume of the compound unit is held fixed 
as well, we may set dV0 = - dV. Lastly, we use Eq. (1d) and 
replace dS0 in Eq. (7a) with dS0

(b)
 = - dS + , which is ap-

propriate to irreversible processes in the system. This leads 
to the expression for the energy of the system in the form 

dE = T0dS - P0dV + iμ0idni – T0          (7b) 

This relation, involving different arguments, was derived 
by Kestin [8]. Note that it is the intensive variables of the 
reservoir, different from those of the system, which appear in 
the above relationship, which applies even to irreversible 
phenomena. All extensive variables also remain well de-
fined. Conditions of the type introduced here were termed 
QSIPs. 

It is expedient to rewrite the above in the equivalent form 

dE = (T0 –T)dS - (P0 –P)dV + i(μ0i - μi)dni  

+ TdS - PdV + iμidni - T0         (7c) 

which explicitly introduces the intensive variables of the 
system proper. The irreversibilities are subsumed in the last 
term on the right. The reversible execution of the same step, 
while retaining the same intensive variables of the system, 
leads to the customary expression for the same differential 
energy: 

dE = TdS - PdV + iμidni          (7d) 

Since E is a function of state we may subtract (7d) from 
(7c) to obtain 

 = (1/ T0) (T0 – T)dS - (P0 – P)dV + i(μ0i – μi)dni     (7e) 

which determines the incremental deficit function in terms of 
independent variables that are experimentally accessible, 
namely: S, V, and ni. Eq. (7e) is consistent with Eq. (1d); 
when integrated, it relates the entropy increase in the uni-
verse to the transfer of entropy (heat), mechanical work, and 
matter across the interface that connects the system to its 
surroundings when QSI processes take place. While correct, 
the above formulation involves S as the independent vari-
able, which is not readily controlled experimentally. An al-
ternate approach is thus desirable. 

Toward this end we introduce the Helmholtz free energy 
A = E – TS, with the differential form dA = dE – TdS – SdT. 
When Eq. (7c) is inserted we obtain. 

dA = (T0 –T)dS - (P0 –P)dV + i(μ0i - μi)dni - SdT - PdV  
+ iμidni -T0             (8a) 

However, the appropriate control variables for the func-
tion, A = A(T,V,{ni}), should be temperature, volume, and 
composition. Accordingly, we reexpress the entropy in terms 
of these independent variables as S = S(T,V,{ni}), with  

dS = ( S/ T)V,
in dT + ( S/ V)T,

in dV + i( S/ ni)T,V,
jin dni 

            (8b) 

We next set ( S/ T)V = 
inVC ,.
/T, where 

inVC ,
 is the heat 

capacity at constant volume and composition, introduce the 

relevant Maxwell relation ( S/ V)T = ( P/ T)V, and set 

( )
ijn,V,Tii n/SŜ . Eq. (8a) then reads  

dA = (T0 – T)[(CV,
in /T) dT + ( P/ T)V,

in  dV + i iŜ dni]  

 - (P0 – P) dV + i(μ0i – μi) dni - SdT - PdV + i μidni - T0  
            (8c) 

which is the desired expression for an infinitesimal change in 
Helmholtz free energy in QSIPs. 

Since A is a function of state, we now subtract from the 
above the standard expression for operations under reversi-
ble conditions,  

dA = - SdT - PdV + iμidni          (8d) 

to obtain 

T0  = (T0 – T)[(CV,
in /T)dT + ( P/ T)V,

in dV + i iŜ dni] 
- (P0 – P)dV + i(μ0i – μi)dni         (8e)  

which relates the differential of the deficit function to tem-
perature, volume, and composition of the system as the ap-
propriate control variables. 

The integral formulation requires that we specify how 
each of the variables changes with time t. We assume that 
the reservoir is so huge and well mixed that all of its inten-
sive variables remain fixed, so that we set 
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      (9) 

where the integrals are taken between the initial time, ti = 0, 
and the final time, tf = , as lower and upper limits respec-
tively.  

SPECIAL CASES 

To illustrate how Eq. (9) is used we now introduce sev-
eral simplifying, but reasonable, qualifications. First, we 
already assumed that the reservoir is so huge that none of its 
intensive properties is significantly altered in any inter-
change with the system; then T0, P0, and 0i remain essen-
tially constant. Second, we restrict consideration to a one - 
component system of fixed composition, which eliminates 
the third and fifth integrals in (9). Third, for definiteness 
assume that the system is initially in a state with Ti < T0 and 
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Pi < P0. Then as the interaction between the system and its 
surroundings is turned on, T and P both increase. The latter 
requirement is satisfied by fulfilling the sufficient condition 
that the volume of the system should diminish during the 
interaction. Thus, T and V become the control variables, 
while P adjusts in accordance with the relevant equation of 
state of the system. The volume is subject to direct control 
by the experimenter. Then, during the interaction, the tem-
perature of the system is allowed to increase by heat conduc-
tion from its initial value Ti to its final value Tf < T0, and its 
volume is manipulated to decrease from Vi to Vf, such at the 
end of the process the prevailing pressure has increased from 
Pi to Pf < P0 . As will be seen, in the approximation used be-
low, we do not need to specify the path by which T and V are 
altered; what is important are the specifications of the initial 
and final states. Fourth, this process also requires forcing an 
increase in volume of the reservoir to keep the total volume 
of the compound system constant, as required in setting up 
Eq. (7b). Fifth, for illustrative purposes, let the system and 
reservoir consist of a gas which satisfies the Berthelot equa-
tion of state [9], 
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where a and b are both constants and all other symbols retain 
their conventional significance; the expansion applies as 
long as nb << V. 

We now proceed to use Eq. (9) as follows: Introduce the 
caloric equation of state for the energy E and Eq. (10) to 
determine  

( ) TVanPTPTVE 22 /2// ==        (11) 

and integrate. The arbitrary function of temperature is speci-

fied by 2/3nRT , so that 

E = 3nRT / 2 2n2a / VT; CV,n

= 3nR / 2 + 2n2a / VT2 ...
          (12) 

where CV,n is the heat capacity at constant volume and com-
position. Now substitute Eqs. (10) – (12) in (8e). At constant 
composition, changes in temperature and volume of the sys-
tem produce an infinitesimal change in entropy given by: 
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For subsequent ease of handling we next set up contribu-
tions under separate headings. (i) We first consider integrals 
that involve either T or V as the sole integration variable for 
transitioning the system from its initial state (Ti,Vi) to its fi-
nal state (Tf,Vf). The corresponding contribution to the en-
tropy is specified by: 
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(ii) For possible later use we separately study the entropy 
increase of the reservoir whose volume increases reversibly 
from V0 to V0 + (Vi – Vf) at fixed T0, P0, which matches the 
volume change of the system, thereby preserving the overall 
volume. For this purpose we adopt the basic relation 
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where we had expanded the denominator for small values of 

fi VV  relative to V0,i; also we set 000 /Vnc as the con-

centration variable for the reservoir. 

(iii) It remains to work with two types of line integrals in 
Eq. (13) which simultaneously involve both T and V in the 
integrand. The first deals with temperature changes that ac-
company heat transfers 
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and the second relates to volume changes which are pro-
duced by work exchange, 
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 For their evaluation one must introduce time, t, as a 
parameter and specify the time dependence of both T and V. 
We consider two cases at random in conformity with the 
earlier discussion. Changes in volume and heat flows are 
adjusted to lead to the following time dependences: 
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of time into (14c) and set dT = (dT/dt)dt to carry out the in-

tegrations, which are lengthy though straightforward. One 

finds that 
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Proceeding similarly with (14d), using dV = (dV/dt)dt 
one obtains 

= 1
)/21(

1
2

22

f

i

f

i

VTiii
V

T

T

V

V

kkTTV

an  

+
)/1(

2

0 VT kkT
1

f

i

f

i

T

T

V

V       (15b) 

238



Irreversible Processes The Open Chemical Engineering Journal, 2011, Volume 5    5 

If the denominators such as (kV/kT – 1)
-1

 or (2kT/kV – 1)
-1 

approach zero their multipliers in square brackets do like-
wise since under these conditions Vf  Vi, Tf  Ti; 
l’Hôpital’s rule then shows that the respective products ap-
proach zero, as anticipated. 

If in its final state the system is equilibrated with its sur-
roundings, then Tf = T0; one then also requires that Vf satisfy 
Eq. (10) with Pf = P0.  

Case 2: We consider the time dependence of the volume 

),1/( tkVV Vi +=  with the same temperature dependence as 
before. The upper limit for kV  is determined by the choice 
for the final volume, Vf. Eqs. (14a) and (14b) are the same as 
before. On substituting the assumed time dependence for 
temperature into Eq. (14c) one obtains 
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Proceeding similarly with Eq. (14d) one finds 
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both of which clearly differ from Case 1.  

Nevertheless, despite the differences between the two 
cases, the total entropy change associated with step (iii) for 
the above integrals (on elimination of the kT /kV ratios, and 
summing Eqs. (15a) and (15b) or Eqs. (16a) and (16b)), is 
exactly the same, namely. 
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This finding may be rationalized by noting that we had 
selected Tf /Ti and Vf /Vi at the outset for the two cases; in turn 
this required an adjustment of kT, kV, and  to meet this par-
ticular choice. The processes were selected to occur at rates 
sufficiently slow that the uniformity of temperature and pres-
sure was maintained over almost all the volume of the sys-
tem. Thus, the final results involve only the initial and final 
temperatures and volumes of the system; the temperature of 
the reservoir; the amount of material in the system and reser-
voir; the parameters appropriate to the Berthelot equation of 
state; and fundamental constants. In the QSIP approxima-
tion, with the assumed uniformly changing properties, no 
reference is made to pathways by which the system changes 
from its initial to its final configuration. What Eqs. (15) and 
(16) do show is a difference in the contributions of heat and 
work to T and V respectively, but they sum to the same 
final result. Further, if Vf = Vi, Tf = Ti the above equations 

show, as they should, that there is no entropy change in the 
system and surroundings. We have examined other changes 
of control variables with time and again obtain results fully 
in accordance with the above findings. 

The total entropy change of the compound system under 
the assumed conditions is the sum of Eqs. (14a) and (17); the 
entropy change of the reservoir responding to the irreversible 
processes is given by (14b). 

For an ideal gas as a working substance Eq. (17) drops 
out and Eq. (14a) simplifies to 
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Here the first and third terms agree with the entropy 
change accruing to the system under reversible operations.  

CYCLIC PROCESSES  

So far we have considered only monotonic changes in T 
and V. Also of interest is the execution of a circular process 
in which the initial state of the system is restored. To explore 
this situation we attach to the system a second reservoir at 
temperature T1 < Ti, pressure P1 < Pi, that initially remains 
sealed off while the interaction between the system and the 
first reservoir proceeds as shown above. After the end point 
Tf and Vf has been reached the first reservoir is sealed off and 
the interaction between the system and the second reservoir 
is initiated and maintained until the initial state of the system 
has been restored. 

Assume again that the reservoirs and system are com-
prised of a Berthelot gas; then, for the return path the sub-
scripts f and i in Eqs. (14a) must be interchanged and the 
subscript 0 must be replaced by 1. On adding this modified 
equation to (14a) for the forward process, one obtains (in the 
approximation nb << V) the net contribution associated with 
(i) the path-independent integrals as: 
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We proceed similarly (ii) with the same index alterations 
to Eq. (14b) to deal with the entropy contribution for the 
volume change of reservoir 1 in the reverse process. We also 
again expand P1 /T1 and add the resultant to Eq. (14b) to ob-
tain  

2 = a(Vi Vf )
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2
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2
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as the overall change in entropy of the two reservoirs. 

(iii) Lastly, we must evaluate the line integrals. To handle 

the exchange between the system and reservoir 1 we must 

repeat the mathematical operations that led to Eqs. (15), but 

with ,)(
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i
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T
eTtT = .0 t  It turns out that 

we then recover Eq. (17) with the indices once more inter-

changed. When this resultant is added to (17) we obtain 
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The total entropy change during the cyclic process is the 
sum of (19a), and (19c). 

The major contribution to the entropy changes in the cy-
clic process of the compound system is in the form 
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In fact, if matters are arranged such that c0 = c1, Eq. (19d) 
is the only contribution. In a strictly reversible process the 
total entropy change would add up to zero. 

Eqs. (19a) and (19c) specify the increase in entropy of 
the compound unit when the system is cycled through the 
changes Ti  Tf  Ti and Vi  Vf Vi. The results depend 
on the difference between the initial and final temperatures 
and volumes of the system, the temperatures of the hot and 
cold reservoir, the concentration of the gases in the reser-
voirs, the number of moles of gas in the system, and on the 
parameters of the Berthelot equation of state. Remarkably, 
the major contribution, Eq. (19d), is independent of the con-
stitution of the gas phases, and depends only on the indicated 
temperatures. 

CONCLUSIONS
 

By generalizing the standard thermodynamic theory per-
taining to irreversible phenomena it is possible to determine 
changes in the state of a system during an irreversible trans-
fer of heat or irreversible execution of work in terms of 
measurable quantities. The theory was extended to set up 
thermodynamic functions of state when irreversible changes 
take place, as shown by Eqs. (7c) and (8c). One can then 
specify the entropy associated with QSI processes across the 
boundary of a system attached to a reservoir, as shown by 
Eq. (9), in terms of changes in temperature, volume, and 
composition. The theory is applicable to QSIPs no matter 
how big the initial difference between the intensive proper-
ties of the reservoir and the system. Whenever two or more 
of the independent variables are simultaneously changed the 
relevant integrals require the specification of the time de-
pendence of T, V and n. Specific examples have been pro-
vided to show how to determine the contributions of irre-
versible processes to the entropy when different kinds of 
changes in temperature and volume are maintained across a 
thin boundary between a system and its surroundings at fixed 
composition. As is verified by explicit calculations, or by 
general considerations, in the QSIP approximation the total 
entropy change associated with the irreversible processes 
does not depend on the chosen pathway. The entropy change 
in QSIPs, as specified by temperature and volume as inde-

pendent variables, are specified by Eqs. (14a,b) and (17). 
Also investigated was the entropy change in the universe 
when the system executes a cyclic change, as specified by 
Eqs. (19a,b,c) .  

This analysis should serve as a prototype study of irre-
versible phenomena under specified initial assumptions. It 
complements the standard theory of irreversible processes, in 
which emphasis is placed on the specification of fluxes, such 
as transport of entropy and matter, in response to external 
forces either within a system or across boundaries. 
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NOTES: 

1. The notation is now somewhat confusing. What is 
meant by iQ in the limiting case is actually a reversi-
ble heat transfer while additional irreversible proc-
esses are triggered totally within the system; rQ rep-
resents the reversible transfer in the absence of such 
additional events. 

2. Actually, it is only necessary to demand that the vol-
ume change of the surroundings be exactly the nega-
tive of that of the system. This allows the surround-
ings to assume other volume changes not associated 
with the irreversible process of the system. 
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We present a theoretical framework which describes multiply charged atomic ions, their stability
within super-intense laser fields, and also lay corrections to the systems due to relativistic effects. Di-
mensional scaling calculations with relativistic corrections for systems: H, H−, H2 −, He, He−, He2 −,
He3 − within super-intense laser fields were completed. Also completed were three-dimensional self
consistent field calculations to verify the dimensionally scaled quantities. With the aforementioned
methods the system’s ability to stably bind “additional” electrons through the development of
multiple isolated regions of high potential energy leading to nodes of high electron density is shown.
These nodes are spaced far enough from each other to minimize the electronic repulsion of the
electrons, while still providing adequate enough attraction so as to bind the excess electrons into or-
bitals. We have found that even with relativistic considerations these species are stably bound within
the field. It was also found that performing the dimensional scaling calculations for systems within
the confines of laser fields to be a much simpler and more cost-effective method than the supporting
D = 3 SCF method. The dimensional scaling method is general and can be extended to include rela-
tivistic corrections to describe the stability of simple molecular systems in super-intense laser fields.
© 2012 American Institute of Physics. [doi:10.1063/1.3673317]

I. INTRODUCTION

The generation of stable, multiply charged atomic
ions via exposure to super-intense laser fields is a topic
which challenges preconceived notions for ionic atoms
and is, therefore, of fundamental importance in atomic and
molecular physics.1–3 Over the past decades, advancements
in spectroscopic methods have yielded verification of mono-
charged calcium and strontium atomic anions4, 5 and various
gas-phase poly-charged molecular ions.6–8 However, without
the large charge volume which is provided by the heavy
atoms—above—or small molecules it is unlikely that species
would be able to bind more than one excess electron; this can
be noted by the relative stability of O−2 in the liquid-phase,
yet it is instable within the gas-phase.6 Theoretical works
have developed an absolute upper-limit to the number of
electrons which may be bound to a atomic center:9 Nc

≥ 2Z, with Nc being the number of electrons and Z being the
Coulomb charge of the nucleus. Within the context of Lieb’s
frameworks, hydrogen would therefore be disallowed any
excess electrons beyond that which yields the hydride state,
thusly H2 − is unstable.10, 11 Supporting theoretical works
have come later12, 13—some including implementation of
finite-sized scaling13—and have conclusively determined at
gas-phase that dianionic atoms are unstable.

It has been shown that stable, multiply charged atomic
ions may be developed within extremely strong laser fields on
the order of 1016 W/cm2 and above.14, 15 Within the field, the
electron density—still being bound to the nucleus—has been

a)Electronic mail: kais@purdue.edu.

found to be nodal in nature as the Coulomb potential splinters
under the influence of the field into distinct, localized regions
whose positions are governed by the field parameters of the
laser. This phenomenon is most easily—and best—discussed
within the context of the Krammers Henneberger (KH) ref-
erence frame, electron centric frame, where the electron is
treated as the stationary body and the nucleus traverses the
path of the applied field; in this context the local nodes of elec-
tron density are located at the turning points on the path of the
nucleus. These are the location at which the angular velocity
of the nucleus decreases and thus spends more time in a local
area—thus generating a greater pull in that area. Within these
nodal regions, the bound electrons maintain a great enough
distance from one another to minimize their Coulomb repul-
sion while also giving each a center with which to bind. In this
field, the electrons—which intuition tells us would be com-
pletely ionized—are capable of stably binding into multiply
charged atomic ions. The field strength allows one to manipu-
late the location and pull of the nodal centers, thus generating
a method of control over the potential, and therefore establish-
ing the ability to push the electrons into and past their most
stable state by means of manipulating laser parameters, fre-
quency, and intensity.

The contained theoretical works are concerned with high-
frequency Floqeut theory (HFFT) which allows for a time-
independent treatment of the coupling of the static Coulomb
potential with a time-varying electromagnetic field. This is
possible by exploiting highly oscillatory fields in which the
electrons would be prohibited from coupling with the peri-
odic nature of the field due to extremely short periods (large
frequencies) of oscillation, thus the system’s electrons would

0021-9606/2012/136(3)/034114/14/$30.00 © 2012 American Institute of Physics136, 034114-1
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feel a period average of the applied potential coupled with
the static Coulomb potential, again this is best discussed
within the KH frame. This time-average allows generation
of the aforementioned nodal structure, and therefore permits
the stability of the subsequent states and allows the system
to forgo autoionization. The above discussed methodology
was introduced to atomic systems by Pont et al.,16 van Dui-
jin et al.,17 and was used again by Wei et al.14, 15, 18, 19 to de-
scribe non-relativistic, multiply charged atomic ions. Herein,
we shall propose a framework utilizing HFFT as a backbone
for applying relativistic corrections to atomic ions in a time-
independent manner.

The procedure enclosed is not only a search for the sta-
bility of multiply charged ions, but also that in concert with
an explicit utilization and validation of the dimensional scal-
ing procedure and the fourthfold installment in such works.
Multiple electrons in bound state configurations under either
the Dirac or Klein-Gordon equations are both open questions
in dimensional scaling, and thus we resort such augmenta-
tions to the time independent Schrodinger equation (TISE) at
the large-dimensional limit as most relativistic effects can be
appended to the Schrodinger equation through first-order per-
turbation theory.

Also, Kamminski had proposed a relativistic Kramers-
Henneberger frame based on the three-dimensional Dirac
equation,20 which however, is rather impractical for numerical
purposes as the electron momenta appear in the argument of
the potential of the KH-transformed Hamiltonian. Krstic also
discussed the relativistic corrections starting from Dirac equa-
tion and showed the same orbital corrections as used in our
work,21 although we present it in a phenomenological way.
Protopapas et al.22 discussed the relativistic mass shift effects
from Klein-Gordon equation in stabilization with respect to
the non-relativistic prediction and demonstrated in KH frame
the feasibility of using the relativistic effective mass.

To derive the atom-intense laser interaction directly from
Dirac equation is a demanding work both theoretically and
numerically; and, as of yet, the use of such method in search
for stable multiply charged ions is open. The most sensible
way is to start from Schoedinger equation by including the
relativistic corrections in a perturbative way. Physically, the
main relativistic corrections in atom-laser interactions include
the magnetic component of the laser field, the relativistic mass
shift, the invalidity of the dipole approximation and spin and
retardation effects. The effects of retardation, the dipole ap-
proximation and spin, have been shown by Latinne to be small
in general.23

II. RELATIVISTIC CORRECTIONS

A. Non-relativistic methodology

Consideration within the non-relativistic cases lies no
longer with both the mass and the magnetic coupling, but
with the time dependent electric field coupling with the sys-
tem’s Coulomb potential; this work was performed by Wei
et al.14, 15, 18, 19 and produced stably bound multiply charged
ions for small atomic centers utilizing the field parameter
(α0), discussed later, and finding detachment energies on or-

ders of 0.1 eV to 1.0 eV. The enclosed works, here, expound
upon this by adding the necessary relativistic corrections to
the previous framework. A free electron within an oscillat-
ing electric field shall undergo oscillatory motions which are
governed by a coupling to the field; the electron is said to be
“quivering” with a motion defined by a trajectory, �α0(t), and
a quiver amplitude, α0. A bound electron within the same sit-
uation shall feel a new potential, which is a stacking of the
applied field and the Coulomb potential of the central charge;
the total potential for the system is said to be a Coulomb po-
tential dressed by the laser, denoted as a dressed potential,
Vdres.

Under the auspices of HFFT, introduced above and
here,16 by applying a highly oscillatory laser field with an
extremely short period the electrons will lack the ability to
oscillate synchronously with the applied field. In this manner,
the potential felt by the electrons is a period average of the
oscillatory field, this new potential is a dressed potential un-
der the HFFT approximation, V HFFT

dres . In all cases addressed
within this paper the laser-coordinates are: laser fired in y-
direction, electronic component linearly polarized in the z-
direction, and the magnetic component in the x-direction.

The situation of the dressed potential,V HFFT
dres , is a time in-

dependent problem as the field has been period averaged, due
to this the full Hamiltonian can be treated within the time in-
dependent Schrodinger equation:

εi�i = Ĥ�i = −¯2

2me

∇2�i + V HFFT
dres �i. (1)

Accurate solutions to the equation are difficult for systems of
more than one electron due to many-body interactions, but
approximate solutions can be obtained in a self-consistent
method (SCF) through Hartree-Fock (RHF/UHF), density
functional theory (DFT), or post-Hartree-Fock methods.

B. The relativistic mass gauge

Mass—as a fundamental—is conceptualized in two dif-
ferent manners within physics, these being the rest mass and
the relativistic mass. Rest mass, or invariant mass, is for a
specific body, a constant, measurable quantity denoted m0. In
opposition to the rest mass is the variant quantity: relativistic
mass, mr. The relativistic mass depends upon the velocity of
the observer. The variant nature of mr is a correction to the
rest mass which accounts for a non-zero kinetic energy for
the measured system. This means that the relativistic mass in-
creases in magnitude as the velocity of the system increases,
and shall reach infinite mass as the system reaches the speed
of light.

This portrayal of the mass shall be implemented within
the TISE for the enclosed work. We shall now need to express
alterations to the rest mass in terms of the system’s laser pa-
rameters.

We are now called to introduce the concept of pondero-
motive energy, Up; this being the cycle average kinetic energy
of a quivering electron, i.e., electron undergoing oscillatory
motion due to an external field and also qualifying under the
dipole approximation. This is quantity discussed in context of
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such systems by Joachain, Dörr, and Klystra:24

UP = e2E 2
0

4meω2
. (2)

In the above, E0 is the peak strength of the electric field, ω is
the angular frequency of the applied field and both e and me

retain their conventional meanings: of magnitude of electron
charge and electron mass, respectively. This quantity aides in
the evolution of the rest mass to the relativistic mass as:

mr = mdressed = me

(
1 + 2

UP

mec2

) 1
2

(3a)

= me(1 + 2q)
1
2 . (3b)

As can be seen, the quantity q begins to shift the mass
and becomes the dominant factor within the expression as it
approaches unity.25 The form of Eq. (3b) was found by Brown
and Kibble26 and later verified by Eberly and Sleeper27 via the
Hamilton-Jacobi equation.

Below we shall discuss the above mass concept as it ap-
plies to the TISE for one electron (which can then be gener-
alized to N electrons), these lines shall be discussed stepwise:

Eq. (1) → −¯2

2me(1 + 2q)
1
2

∇2�i + V �i, (4)

→ −¯2

2me

(
1 + 2 e2α2ω2

4m2
ec

2

) 1
2

∇2�i + V �i, (5)

→ −¯2

2(1 + 2.66 × 10−5α2ω2)
1
2

∇2�i + V �i. (6)

The first line, Eq. (4), shows the form of the TISE as it appears
accounting for the mass gauge, which is tuned by the quantity
q. Second, we have introduced and employed the field coeffi-
cient, α = E0/ω

2, as a means of defining q in terms of known
laser parameters. Last, we express all quantities in ¯ = me

= 1 units (atomic units), this allows us to maintain the rela-
tivistic alterations as a unitless multiplier, Eq. (6). As the mul-
tiplier which transforms invariant mass to relativistic mass is
a unitless quantity, the resultant energies from the final line,
Eq. (6), shall be in Hartree EH, as they would be if one ig-
nored the mass gauge entirely. In all cases considered within
this paper the potential function, V, shall be dressed under
HFFT , making V = V HFFT

dres

C. Trajectory corrections

High-frequency Floquet theory was first introduced to
similar systems by Pont et al.,16 it relies on the frequency
of the externally applied electromagnetic field so quickly
oscillating such that even the electrons are incapable of
coupling their motions to the field. In this manner the
D-dimensional dressed Coulomb potential—which is
in essence a time-dependent problem is simplified to a
time-independent problem:

V HFFT
dres = Z

2π

∫ 2π

0

⎛
⎝ d(ωt)√∑D

i (xi + αi)2

⎞
⎠ . (7)

To apply the above period average to a system one must
develop an interest in the trajectory, �α(t), of the laser’s
path as it’s components are required in the above averaging
as αi along with the ith Cartesian component, xi. Earlier
works14, 15, 18, 19 have concentrated upon non-relativistic
systems, and thus the laser trajectory is equivalent to the
path taken by a free electron undergoing influence by a
time-dependent external electric field (or laser field where
no magneto-coupling is considered); the up and down
oscillatory motion of the electric field governs the trajectory
of the electron, seen in Eq. (8), where the polarization is as
discussed in Sec. II A:

�α(t) = 〈αx, αy, αz〉 (8a)

= 〈0, 0, α0 cos(ωt)〉. (8b)

Now concerning ourselves with the electronic-magnetic
coupling within relativistic regimes, this shall be described
analogously for the non-relativistic case above by the path
taken by a free electron in an electromagnetic field with the
electronic-magneto coupling accounted. Within a plane-wave
laser field, the electron classical trajectory can be obtained
analytically. For a linearly polarized laser field, the non-zero
field components can be written as

Ez = E0 cos η, (9)

cBx = E0 cos η, (10)

where η = ωt − ky is the phase of the field. By using Newton-
Lorentz equation,

d �P
dt

= −e( �E + �v × �B), (11)

we have,

d �P
dt

=
{

dPx

dt
,
dPy

dt
,
dPz

dt

}
= {−eE0βx cos η, 0,−eE0(1 − βz) cos η} (12)

mec
2 dγ

dt
= −eE0 cos η · vx, (13)

where γ =
√

1 + �P 2/(m2
ec

2) is the Lorentz factor. For an
electron initially at rest, from Eqs. (12) and (13), we obtain:

�P = {Px, Py, Pz} =
{

e2E2
0

2mecω2
sin2 η, 0,−eE0

ω
sin η

}
.

(14)

From the above, an electron’s trajectory can be acquired,

�α =
{
− c

8ω
Q2

0 sin(2η), 0,
c

ω
Q0 cos η

}
, (15)

where Q0 = eE0/(meωc) and electron drift motion has been
neglected. Within dipole approximation,

�α =
{

0,− c

8ω
Q2

0 sin(2ωt),
c

ω
Q0 cos(ωt)

}
, (16)
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which means

d2 �α
dt2

= {α̈x, α̈y, α̈z}

=
{

1

2
cωQ2

0 sin(2ωt), 0,−cωQ0 cos(ωt)

}
. (17)

Equation (17) tells us that we can approximately take the
above relativistic trajectory as an equivalent one for the elec-
tron moving in the following effective electric fields,

�E =
{

ωmec

2e
Q2

0 sin(2ωt), 0,−ωmec

e
Q0 cos(ωt)

}
, (18)

which will be used in HK theory. In atomic units, the trajec-
tory can be written as,

�α = {−α2
0αf sin(2ωt), 0, α0 cos(ωt)

}
. (19)

By comparing with the non-relativistic trajectory, we have an
extra oscillation motion along the laser propagation direction,
which comes from the magnetic coupling, also introduced
is the fine structure constant which mediates the magnetic-
electronic coupling term, αf. This results in the famous figure-
8 motion. To illustrate the effects of this correction in HK ef-
fective potential, we will first take a 1D box potential as an
example in Sec. II D.

It should be noted that the KH expansion28 committed
to allow for this above expressions was developed by Gilary
et al.29 In our previous work15 it was seen that the higher order
terms, those with the leading ω−2, provided additional stabil-
ity such that a system with a bound state under the disinclu-
sion of the higher ordered terms would still be bound under
the inclusion of said terms. The total value of the potential
scales with respect to α0 in a similar manner and thus the
same arguments contained within the above reference hold
here. Inclusion of the mass gauge provides a small alteration
to the system, but in a destabilizing manner; thus bound states
and their limitations under the methods of this paper are of a
more conservative estimation.

D. 1D particle in a box

For simplicity, we take the 1D box potential as follows:

V (z) =
{

π, |z| ≤ 1,

0, elsewhere.
(20)

Then the HK effective potential can be acquired analytically
by the following integration:

Veff(z) = 1

2π

∫ 2π

0
V (z + α0 cos(
))d
. (21)

When 0 ≤ α0 ≤ 1
2 ,

Veff(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ar cos

[
−z + 1

α0

]
, −α0 ≤ z ≤ −1 + α0,

ar cos

[
z − 1

α0

]
, 1 − α0 ≤ z ≤ 1 + α0,

π, −1 − α0 ≤ z ≤ 1 − α0,

0, elsewhere.
(22)
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FIG. 1. Non-relativistic effective potential for a 1D particle in a box under
different laser intensity, measured by α0.

When α0 ≥ 1
2 ,

Veff(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ar cos

[
−z + 1

α0

]
, −α0 ≤ z ≤ 1 − α0,

ar cos

[
z − 1

α0

]
, 1 − α0 ≤ z ≤ −1 + α0,

ar cos

[
z − 1

α0

]
, −1 + α0 ≤ z ≤ 1 + α0,

0, elsewhere.
(23)

Figure 1 shows how the box potential is modified by the
external laser field. It is clear to see that as the laser inten-
sity increases above certain value, the original potential will
evolve into a double well. Moreover, the two wells will be-
come more separate and more shallow if α0 is further in-
creased. This indicates two important features for the ground
state in this potential. First, the electrons will become less
bound or the potential might have higher ground state energy.
Second, if we have two electrons in this effective potential,
they will have more space in which to avoid each other, which
means the electron repulsion energy will tend to be smaller for
un-paired electrons. Hence, the final ground state energy for
multi-electron systems should depend upon the competition
of these two factors.

Once we introduce the relativistic corrections to the elec-
tron trajectory, the effective potential along z-axis will be-
come:

Veff(z) = 1

2π

∫ 2π

0
d


(√
(z + α0 cos 
)2 + α2

0α
2 sin2 2


)
,

(24)

in which the integral will be calculated numerically. From
Fig. 2, it is interesting to note that, when α0 is large enough,
for example α0 = 10 as in Fig. 2(b), the effective potential
will have three local minima. Qualitatively, this should result
from the relativistic figure-8 motions, which helps the elec-
tron maintain a position nearer the orbit center for a greater
period of time. Another characteristic is that the three sepa-
rate minima become much shallower for higher laser inten-
sity. These drastic changes over the effective potential will
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FIG. 2. Relativistic corrections to the effective potential for different laser
fields.

be expected to have influences over the many-electron states
bound by the potential. It seems that the relativistic effect pro-
vides us another way to engineer the potential. Based upon
the observations over Eq. (24), we can even think about using
lasers with different colors superposed together to have more
freedom modifying the effective potentials. Figure 3 shows us
one example with two alternating electric fields as follows:

�α(t) = α0 cos(ωt)êx + α1 sin(4ωt)êz. (25)

E. Potential under consideration

Beginning with the spherically symmetric Coulomb po-
tential, the applied external fields shall morphologically al-
ter this potential to conform to the trajectory discussed in
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FIG. 3. Effective potential for two alternating electric fields superposed
along êx and êz, respectively, with different colors.

Sec. II B. In doing this, there are three main regimes in
which the potential may exist: first, the spherical; second, the
pseudo-linear; and finally, the parametric. The potential only
exists within the spherical regime when there is no applied
external field, as the field begins to evolve the coupling of the
external field and the Coulomb potential becomes apparent
with the electric field component dominating; this creates a
regime where the system maintains an almost linear behav-
ior as if there were no relativistic corrections to the trajectory.
Distortion of the pure linear nature exists but has a small ef-
fect compared to the primary electric effect.

As the intensity of applied field increases the magnitude
of the magnetic field begins to compensate for the dampening
effect of the fine structure constant, αf; as this takes place, the
magnetic contributions to the field coupling begin to domi-
nate the system, whose character now exhibits the hourglass
figure of the parametric regime. Figure 4 shows a series of

FIG. 4. Contour plots of dressed potential for (clockwise) α0 = 0, 25, 100,
50. Note both the shift in regime as α0 grows and the key below the plots for
the interpretation of the intensity of the contours.
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FIG. 5. Three dimensional plots of the potential energy, V HFFT
dres , as a function of x and z coordinates for the case α0 = 100. Left and right of above are two

different angles of the same surface.

contour plots of the potential energy plotted in the x-z di-
rections for a series of field intensities, α0; the behavior of
the system and it’s development through the previously dis-
cussed regimes should be obvious. A three-dimensional plot
of the potential energy surface for α0 = 100 is also enclosed as
Fig. 5, this plot only considers displacements in the spatial x-z
directions for reasons introduced in Sec. II A, where the ver-
tical axis describes the magnitude of the potential energy at
this x-z location.

This potential is ideal for attempting to develop multi-
ply charged ionic system from small nuclei, as it maintains
a potential well at the center of the system along with four
other locations along the parametric trajectory; this allows
bound electrons to attach to the individual potential wells
while maintaining a large enough distance from each other
to minimize electron-electron repulsions.

III. METHODOLOGY FOR D = 3 CALCULATIONS

Three-dimensional calculations which describe our sys-
tems were executed as a means of verifying the simpler di-
mensional scaling approach discussed later. The methodol-
ogy consisted of unrestricted Hartree-Fock (UHF) utilizing
the Pople-Nesbot equations—which allow for the accommo-
dation of basis sets—to complete calculations for a series
of total electron counts, N, per single value of the field in-
tensity parameter, α0. The calculations were dependent both
upon appropriate choice of basis set and upon the locations
selected as the centers for these basis sets; for the determina-
tion of the locations of probable electron density we deferred
both to “exact” locations of the electrons from the limit D
→ ∞ calculations and to contour plots of the potentials for
a given field intensity value, see Fig. 4 for example. Upon
discerning from the above information the locations of the
pseudo-centers within the system-space, a basis set was se-
lected which could describe these nodes. There exist, at min-
imum, 5 distinct nodes of electron density within the system,
these being at the center coexisting with the origin of our co-
ordinate systems—and at four pseudo-centers residing upon
the parametric curve described by the relativistic trajectory

used within the HFFT potential:

⎧⎪⎨
⎪⎩

x

y

z

⎫⎪⎬
⎪⎭ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−
(

α2
0

αf

)
sin(2t)

0

α0cos (t)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (26)

The orbital centers were selected to satisfy the above curve
and to coincide with the “hottest” locations displayed within
the contour plots of potential energy. A basis set was selected,
which allowed for significant description of both polarized
and diffused phenomenon residing on small centers. The cen-
ters of potential electron density which do not reside at ori-
gin were described by basis sets optimized to describe the
atom of the nucleus at the system’s origin, i.e., all five cen-
ters on hydrogen use a hydrogen-fit basis set. Overlap and
kinetic integrals were performed with variations on the inte-
grals described by McMurchie and Davidson in their seminal
paper here.30 Numerical integration methods were appropri-
ate for the more challenging, non-analytic potential integrals.
A global adaptive method was applied to the system which
performs admirably with Gaussian functions placed at the co-
ordinate origin; but as the method relies on sampling points
within the equation-space to find non-zero areas of the func-
tion, Gaussians placed distances away from the origin were
sometimes so small relative to the distance from origin so as
to be invisible. For this reason two-centered integral includes
the cost of shifting the coordinate-origin to the center of the
product Gaussian as defined by31

φGF
1s (αA, r − RA) × φGF

1s (αB, r − RB)

= exp{−(αA(r − RA) + αB(r − RB))}
= exp{−αaαB(αA + αB)−1|RA − RB |2}

×φGF
1s (αA + αB, r − RP ). (27)

In this way the chosen method of numerical integration was
capable of adequately describing the three-dimensional po-
tential energy integrals. Single electron cases were verified
prior to enacting the self-consistent field calculations, as the
energies of the single electron system may be revealed as
the eigenvalues of the canonically orthogonalized Hcore ma-
trix alone, Hcore

μ,ν =Tμ, ν + Vμ, ν . The four-centered integrals
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FIG. 6. Plots of both molecular energies and binding energy for (clockwise):
HDA with non-relativistic trajectory; HDA, relativistic trajectory; HP , rela-
tivistic trajectory; and HP with non-relativistic trajectory. All may be read as
yellow: Binding energy; blue: Hydrogen energy; purple: H− energy.

needed for the self-consistency were generated by exploiting
the axillary function defined by Boyes.32 The calculations for
the multi-electron energies were performed self-consistently
with a convergence set to six decimals of accuracy, as chem-
ical accuracy is defined as 1.6 mEH, this set limit should
suffice.

A plot of the square of the linear combination of atomic
orbitals which comprised the set describing the appropriate
eigenvalue yields semblance to the wave function of the sys-
tem, whose probability density(|�|2) is shown in Fig. 6 for
H− and for He−, a two and a three electron case. It should
be noted, as the D = 3, UHF calculations were employed to
verify the results of the dimensional scaling approach, that
the locations of electron density shown in the aforementioned
probability density plots speak to the validity of the dimen-
sional scaling approach as the locations of the delta functions,
see discussion provided in Sec. V, which describe the seem-
ingly stationary locations of the electrons in the limit of D
→ ∞ calculations that are very near to those locations which
are of highest probability density to find electrons given by
the D = 3 calculations. Three-dimensional verification was
performed for both the H− and He− species, as the regions of
high potential energy become very delocalized for the remain-
ing high-field species. Aside from the high level of delocaliza-
tion prohibiting the species from being described sufficiently
with an appropriate number of Gaussians, the potential also
spans a region of space on the order of 100 Bohr radii, yet
optimized Gaussian basis sets for atomic centers span an or-
der of 1–10 Bohr radii; this prohibits overlap of these species
forcing the use of more and more Gaussians. This acts pro-
hibitively as the matrices required for UHF calculations are
n × n, where n scales as the number of centers by the num-
ber of basis contractions; this obviously limits the achievable

intensities applied to systems which can be calculated in this
manner, especially on stand alone machines.

IV. DIMENSIONAL SCALING: CALCULATIONS
AND CONSIDERATIONS

A. Methodology

Many body interactions are something which has
troubled computational methodologies within quantum
mechanics since inception; throughout the years the physical
and chemical communities have made great advances in the
field of electronic structure theory to help account for these
electron-electron interaction through variational practices
such as the Hartree Fock method or density functional
theory. The alternative method to the aforementioned is a
dimensional scaling treatment pioneered by Herschbach,33

discussed in Refs. 34–38, and is briefly introduced here for
the central force problem.34 Given the TISE for the simple
central force problem in D-dimensions:[

−1

2
∇2

D + V (r)

]
�D = εD�D. (28)

If we were to employ polar coordinates to the above, we
would require

r ≡
[

D∑
k=1

x2
k

] 1
2

(29a)

∇2
D = 1

rD−1

∂

∂r

(
rD−1 ∂

∂r

)
− L2

D−1

r2
, (29b)

where Eq. (29a) gives the definition of the radial coordinate
in a generic D-scaled space, and Eq. (29b) is the polar Lapla-
cian in this D-scaled space, L2

D is the term which retains all
angular dependencies. These angular and radial terms shall
be dealt with in a divide and conquer treatment reminiscent
to the radial and angular terms of the rigid rotor/harmonic
oscillator approximations for the simple diatomic. We first
write the wave function in D-dimensions to be the product:
�D = r l Y(
D−1), where all radial dependencies are in the
rl term and the D−1 remaining angular dimensions are de-
scribed through Y(
D−1). Now solving the angular terms for
the form Eq. (30), and the recognizing that the V(r) term in
Eq. (28) can be set to equal magnitude as the εD term, thus
making Eq. (28) reduce to the Laplace equation shown in
Eq. (31):

L2
D−1Y(
D−1) = CY(
D−1), (30)

∇2
Dr l Y(
D−1) = 0, (31a)

{l (l + D − 2) − C}r l −2Y(
D−1). (31b)

This means: C=l (l + D − 2); and the Hamiltonian oper-
ator in Eq. (28) is now of the form

ĤD = −1

2
KD−1(r) + l (l + D − 2)

2r2
+ V (r). (32)
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In the above, KD−1(r) is the single non-angular term from the
polar Laplacian in Eq. (29b). We may now pass the system
through a unit Jacobian, making: JD|�D|2 = �D, where JD is
the radial part of the unit Jacobian and is of the form: r(D−1).
This would mean, �D = r− 1

2 (D−1)�D. All leading to the form
of KD−1 as seen here:

KD−1(r) = r− 1
2 (D−1)

{
∂2�D

∂r2
− D − 1

2

D − 3

2

�D

r2

}
. (33)

Reassembling all the above, and placing them ap-
propriately back into Eq. (28), one shall—after menial
simplification—get:{

−1

2

∂2

∂r2
+ �(� + 1)

2r2
+ V (r)

}
�D = εD�D. (34)

Equation (34) is the radial, D-scaled form of Eq. (28),
where the only dimensional dependencies lay within the �

terms as: � = l + 1/2(D − 3). The above leads to the min-
imization problem defined by the Hamiltonian discussed in
Sec. II B.

B. Planar infinite-D Hamiltonian

Prior works published14, 19 have also described systems
both by infinite dimensional limit and then verified with three-
dimensional self consistent methods. The dimensional scaled
Hamiltonian presented in previous works was diatomic in na-
ture and of the form39

HDA = 1

2

N∑
i=1

1

ρ2
i

+
N∑

i=1

V (ρi, zi)

+
N∑

i=1

N−1∑
j=i+1

1√
(zi − zj )2 + ρ2

i + ρ2
j

(35)

and relied on previous works in which D-scaled Hamiltonians
for diatomic systems were constructed, these diatomic
Hamiltonians are also of the form above, and denoted HDA.

Hamiltonians of this form are applicable to the previous
works as those non-relativistic systems, this is due to the con-
sideration in absence of the second degree of symmetry break-
ing in the linear potential systems.

The diatomic-based Hamiltonian performed well on lin-
ear systems, but when attempting to use the above described
Hamiltonian on a relativistically corrected trajectory, it was
found that the equation behaved erratically with a smoothly
evolving intensity as seen in Fig. 7, and was in disagreement
with the early 3D calculations. Although this Hamiltonian
does not work well, overall it was found to be in good agree-
ment while the potential was in the spherical and pseudo-
linear regimes, failing only as the system approached and en-
tered the parametric regime.

As dimensionally scaled Hamiltonians are not unique in
nature, they are not singular in form. We relied on arguments
based on the breaking of spherical and then cylindrical sym-
metries to generate the following assumed Hamiltonian for
systems with broken radial and cylindrical symmetries, yet
maintaining three orthogonal planes of symmetry.

As the dimensional-scaled, single electron central force
problem yields as it is Hamiltonian HCF ,

HCF = 1

2 r2
+ V (r). (36)

One can see from above the spherical nature of all terms
within the Hamiltonian, as the potential is radial. This
equation predicts the ground state hydrogen energy to be
at −1/2EH , exactly where it should be, and predicts the
inter-atomic distance between the electron and the proton to
be 1 in unit of RBohr. If one were to alter the above potential
to conform with either the relativistic or non-relativistic cases
discussed in this paper, the energies obtained would possess
no physical significance and would overall behave similarly
to the diatomic equation with the relativistic trajectory. The
addition of multiple electrons to the spherical symmetric
problem yields

HCF = 1

2

N∑
i=1

1

r2
i

+
N∑

i=1

V (ri) +
N∑

i=1

N−1∑
j=i+1

1√
ri + rj

. (37)

Now we examine the diatomic case shown in Eq. (35). This
equation has been designed to allow for potential which are
of a cylindrical nature, as it must for a diatomic system.
Reevaluating the equation in Cartesian coordinates yields

HDA = 1

2

N∑
i=1

1

x2
i + y2

i

+
N∑

i=1

V (xi, yi, zi)

+
N∑

i=1

N−1∑
j=i+1

1√
(zi − zj )2 + x2

i + x2
j + y2

i + y2
j

.

(38)

Reevaluation of the spherically symmetrical case in Cartesian
coordinates gives

HCF = 1

2

N∑
i=1

1

x2
i + y2

i + z2
i

+
N∑

i=1

V (xi, yi, zi)

+
N∑

i=1

N−1∑
j=i+1

1√
x2

i + x2
j + y2

i + y2
j + z2

i + z2
j

.

(39)

As can be seen from the above, the orthogonal coordinate
which is being cleaved from spherical symmetry has been
removed from the kinetic evaluation and have been treated as
a difference in the electron-electron term. Continuing to use
Cartesian coordinates, as it is this coordinate system which
makes the relations apparent, we can move to an equation
where the x-coordinate is now allowed to deviate from radial
symmetry. This again would remove the symmetry breaking
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FIG. 7. Top: Probability distribution for H−, a two electron system. Bottom: Probability distribution for He−, a three electron system.

coordinate from the kinetic term and utilize it as a difference
in the electron-electron term. This Hamiltonian is shown in
Eq. (40). It’s energies completely agree with those of the ra-
dial and cylindrical cases, and by allowing this symmetry to
break in the x-coordinate can be used for the potential dis-
cussed in Sec. II E.

This planar Hamiltonian, HP :

HP = 1

2

N∑
i=1

1

y2
i

+
N∑

i=1

V (xi, yi, zi) +
N∑

i=1

N−1∑
j=i+1

× 1√
(zi − zj )2 + (xi − xj )2 + y2

i + y2
j

(40)

was found to allow—but not require—the breaking of sym-
metry, as it was applied to the previously discussed linear sys-
tems and had extremely good agreement, as shown in Fig. 7.
The relation between the Cartesian coordinates used in the
above and the geometry of the system is shown in Fig. 8.
When applied to our system, containing the corrected trajec-
tory, this new Hamiltonian performs both smoothings with

smoothly evolving trajectories—as seen in Fig. 9. This pla-
nar dimensional scaled Hamiltonian was capable of adequate
description of the system in all three of the regimes discussed
earlier.

V. RESULTS AND DISCUSSION

We shall concern ourselves with a discussion of the bind-
ing energies (B.E.) for the following species: H−, H−2, He−,
He−2, He−3; where the B.E. is the negative of the detachment
energy for a single “excess” electron shown in Eq. (41), where
N signifies the number of electrons for a species:

B.E. = EH (N) − EH (N − 1). (41)

Figure 10 displays the binding energies for the two species,
Z = 1 and Z = 2. From this figure we can see a clear maxi-
mum binding energy for the H− species (top left) at, roughly,
α0 = 10; this energy shows a stability of the second elec-
tron of 0.047 Hartree (1.28 eV). Also shown in Fig. 10 the
B.E. curve for H2 − (top right), showing a stable binding of
0.00012 Hartree (0.0033 eV). This, the B.E. of H2 −, reaches
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FIG. 8. The above displays the relationship between the system’s geometry with respect to the electrons and the coordinates use in Eq. (40).

FIG. 9. Above are plots of the binding energies of, from left to right and top to bottom: H−, H−2, He−, He−2, and He−3.
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FIG. 10. Plots of binding energy comparisons for (clockwise): comparison plot of HDA versus HP , non-relativistic trajectory; HP with relativistic trajectory
m0 and mr, differences value of Hydrogen energy between use of m0 and mr; and a comparison of relativistic trajectory (both m0 and mr) with non-relativistic
trajectory both using HP .

it’s minimal value asymptotically with increasing α0 imply-
ing the addition of any further electrons will not be allowed;
this fact was verified by performing the requisite minimiza-
tion, and if the mass gauge was not applied to the system the
number of allowed additional electrons would increase unre-

alistically and seemingly without bound as the laser intensity
is increased.

The middle left plot in Fig. 10 shows the binding of a
third electron to Helium at α0 equalling, roughly, 10 again;
the binding energy for this species at it’s greatest magnitude

FIG. 11. Plots of binding energy for the H− (left) and He− (right) systems. Top, Non-normalized plots of the calculation data showing agreement between the
methods. Bottom, -B.E./B.E.max to emphasis the qualitative similarity between the methods as they share minima for the B.E. curves.
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FIG. 12. Top row: Plots of the probabiltiy distribution for the corrected (left) and non-corrected (right) H− system, directly below is a superimposition of
the trajectory upon the probability density function plot to emphasis their relation. Bottom row: Contour plots of the H− system, both corrected (left) and
non-corrected (right), note the different scales on the vertical (z) axis and the more diffuse behavior of the corrected system.

is extrapolated to be 0.057 Hartree (1.55 eV). The second “ad-
ditional” electron to Helium (middle right) is most stable at α0

= 90, with a B.E. of 0.007 Hartree (0.19 eV). The fifth and
final electron which can stably bind to a Z = 2 center (bottom
center) is, similarly to the H2 − species, a terminal binding
that reaches an asymptotic stability with increasing alpha, the
B.E. is 0.0004 Hartree (0.011 eV). Table II contains the maxi-
mum binding energies and their respective intensities for each
system described within this work; it contains also, the non-
relativistic binding energies and intensities as comparison.

Of the two relativistic corrections accounted for in the
above framework, the trajectory is the paramount addition.
An examination of Figs. 9 and 7 shall be required for the sub-
sequent discussions. The introduction of the planar large-D
Hamiltonian, HP , for the systems was a boom which aligns
itself in agreement with the previous works—see Fig. 9(a) and
compare plots a and c in Fig. 7— and yet out performs the pre-

vious equation when this relativistic trajectory is introduced,
to see this compare plots b and c in Fig. 7.

By comparing plots a and d of Fig. 7 it can be seen
that the raw energies and the binding energies between
the non-relativistic trajectory (plotted with HDA) and the
relativistic trajectory are not extreme. This can be verified

TABLE I. Results of Mulliken population analysis, note that there are four
outer orbitals the table contains one of the four values.

Inner oribital Outer orbital Total electron
Species population population (each) count (N)

H 0.01645 0.24576 1
H− 0.000524 0.49987 2
He 0.000432 0.499892 2
He− 1.00001 0.499999 3

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.210.146.176 On: Wed, 11 Dec 2013 19:46:27

252



034114-13 D-Scaling with relativistic corrections J. Chem. Phys. 136, 034114 (2012)

TABLE II. Differences present when relativistic considerations are undertaken for these multiply charged ions. The non-relativistic values were taken from
Ref. 14.

and more clearly seen by examination of Fig. 9(c), wherein
both the non-relativistic and relativistic binding energies are
shown; although the energies become quite different with in-
creasing α0, the field intensity which yields the most stable
binding energy is same and the most stable binding energy
deviates only in the thousandth of a Hartree. Consideration of
the mass gauge for this system provides a very slight correc-
tion within the values of α0 examined here; where although
these values of α0 indicate laser field strengths on the order
of atomic units and greater (in competition with the Coulomb
potential of the center), they are in no way strong enough to
generate quivering electron masses, mr, which deviate signifi-
cantly from the invariant mass, m0. The deviation of the bind-
ing energies due to the consideration of mr over m0 is also
slightly less than breath-taking, this can be seen in Fig. 9(b)
and again impressed by the examination of the deviation of
the raw energies of hydrogen in Fig. 9(d). To be gleaned from
this is that within the examined field strengths, mr deviates
very little from m0, but more significant is the fact that the
overall consideration of relativistic effects does destabilize the
system, but not by an appreciable amount.

Figure 11 helps emphasise the differences between the
corrected and non-corrected systems. The top level of the fig-
ure is the probability density, |ψ |2, of corrected (left) and non-
corrected (right), the density in the outer orbital centers is
lower due to a more diffused spread of probability density at
these locations compared to the non-corrected. The mid-level
of the plot is the negative probability density, superimposed
on the probability density function is the trajectory of the sys-
tem which it describes. Below all else is a contour plot of each
system, again emphasis is merited on the more diffuse spread
in the corrected system due to the evolution of the parametric
trajectory as opposed to the linear oscillating trajectory of the
non-corrected system.

Figure 12 shows a plot of the B.E. For the H− (left) and
He− (right) systems from both the SCF (blue) and D-Scaled
(red) methods. The lower B.E. plots in Fig. 12 have been
normalized to the minimum value to show the tight agreement
between the qualitative assessment of the scaling procedure
and the SCF method. The Dimensionally Scaled minimiza-
tion problem bore “exact” position of the electrons as (x1, y1,
z1; α0) = (4.1660 × 10−10, 5.4461, −12.2387; 20) for the Z
= 1, N = 1 system and (x1, y1, z1; x2, y2, z2; α0) = (6.4472
× 10−8, 5.0386, 16.5852; −6.4472 × 10−8, 5.0386,
−16.5852; 20) for the Z = 1, N = 2 system; these localized

electron positions are similarly predictable as they attempt
to bind to regions where the angular velocity of the nucleus
is lowest in the KH frame; these locations would be most
notable at the π

4 ’s trajectory. With a single electron the central
point of the parametric curve, sets a origin in our calculations,
binds the electron strongly; as more electrons are introduced
they are situated at locations which minimize the electron-
electron repulsion of the system. A Mulliken population
analysis of the system shows that the orbitals about the
central charge typically possess a smaller number of elec-
trons, except in the N = 3 (and assumably the N=5 case);
the results of such population assessments can be seen in
Table I. In this way we are able to verify not only the ener-
getic behavior of the D-scaled Hamiltonian but its treatment
of the electrons in space.

VI. CONCLUSION

It has been shown that even under conditions of relativity
multiply charge atomic ions should still be achievable within
the confines of an intense laser field. The stability of several
atomic-anions has been found and discussed, some ions are on
the order of an entire electron volt and are more stable than the
ionized system. The importance of the general dimensional
scaling procedure was verified not only via the energetics,
but with a comparison of the “exact” locations of the elec-
trons as predicted by the dimensional scaling as they compare
to the probability densities from the standard SCF procedure.
These species were found to be stable and should, therefore,
be experimentally realizable. Stability of simple molecular
systems in super-intense laser fields have been previously dis-
cussed here.40–42 This dimensionally scaled framework with
relativistic corrections yields itself easily to a description of
molecules and molecular ions within the confines of super-
intense laser fields, which shall be undertaken next.
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FIG. 13. The electronic elliptical contribution can be seen as the function
whose major axis lies in the z-direction (vertical) and the magnetic contribu-
tion has an orthogonal orientation.

APPENDIX: BRIEF NOTES ON THESE RELATIVISTIC
CORRECTIONS WITH ELLIPTICAL AND CIRCULAR
POLARIZATIONS

1. Elliptical and circular polarizations

Within the above, concern was only given to the relativis-
tically corrected linear polarized light, this is because simi-
lar corrections placed on elliptical polarized light yielded no
new—or interesting—phenomenon. Following similar math-
ematics as to achieve an analogous relativistically considered
trajectory would consider the electronic coupling as before
and consider a minor weighted coupling to the magnetic field,
as in the linear case before. An elliptically polarized laser fired
in the y-direction with the electronic major (minor) axis ori-
ented in the x(z)-direction yields the trajectories

�α �E,Elliptical(t) = {ε1 cos(φ), 0, ε2 sin(φ)}, (A1)

�α �B,Elliptical(t) = {−β2 sin(φ), 0, β1 cos(φ)}. (A2)

Within Eqs. (A1) and (A2) the amplitude in each, the major
and minor axis is denoted by the subscript 1 and 2, respec-
tively, and the ε and β are the coefficients of the electronic
and magnetic components. The trajectory generated by both
the above biases applied to free particle merely generates a
new ellipse with a major and minor amplitude mediated be-
tween those of the above and tilted by an angle respective to
the coefficients:

�α = {ε1 cos(t) − β2 sin(t), 0, ε2 sin(φ) + β1 cos(φ)}. (A3)

This can be seen graphically in Fig. 13 which displays the
individual electronic and magnetic trajectories and then in
Fig. 14 which displays the combined trajectory which would

FIG. 14. Within the above plot, the total trajectory can be seen, the amplitude
of the major and minor axes are mediated in value between those from the
electronic and magnetic components and the orientation is set off by an angle
whose value respects the same coefficients as the relative amplitudes.

be followed by a free particle traveling within this electro-
magnetic field.

If this scheme is applied to a circularly polarized field
the same mathematics will appear but the coefficients within
the trajectories will be reduced to ε1 = ε2 = ε and β1 = β2

= β. This will yield the same uninteresting phenomenon, but
merely present it as the mediate of two circles with no change
in the orientation angle as there is no unique point of reference
on a circle.
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Abstract
In this paper, a detailed numerical comparison of the high-harmonic generation (HHG) from
free electrons in intense laser fields in both classical and semi-classical frameworks has been
presented. These two frameworks have been widely used in the literature. It has been found
that the HHG spectra display distinct quantitative differences for high-energy electrons. In
some special situations, qualitative differences appear. Even if the radiation reaction is
included in the electron classical dynamics, no consistent result can be obtained. Hence it
should be of critical importance to submit the present HHG theory for high-precision
experimental tests, which can help us not only to justify the present theories, but also to check
the QED predictions in the high-intensity regime.

(Some figures may appear in colour only in the online journal)

1. Introduction

High-harmonic generation (HHG) plays an important role in
generating coherent light sources in the UV, EUV, XUV or
x-ray frequency regime [1, 2]. The traditional way to achieve
high harmonics mainly focuses upon the interaction between
atomic vapours and intense laser fields [3, 4]. However, due
to the saturation and cutoff effects in atomic systems, much
work has been recently carried out on HHG from solid-density
plasma [5, 6]. With this method it is now possible to produce
harmonics as high as the 3200th order with multi-keV photon
energy by using intense high-contrast-ratio lasers [7, 8].
Moreover, these harmonics can be coherent in phase, which
is a very important condition for the generation of ultra-short
attosecond light pulses [9]. Another similar technique for
HHG, which was put forward as early as the 1960s [10], is

based upon free electron interactions with intense laser fields
in vacuum. Compared with harmonic generation from plasma,
this method is much simpler in experimental setup since no
control of plasma-related processes is involved. Its problem
lies in the requirements of high-intensity laser fields (I &
1018 W cm−2) and high-energy electrons (E ∼ MeV–GeV).
The former is necessary for the nonlinear electron dynamics to
appear and the latter is necessary for the electron to overcome
the ponderomotive barrier in order to reach the focus of
the laser beam. It is not easy to meet both requirements at
the same time in an experiment. Hence the corresponding
experimental work progresses slowly [11–15]. Until now, the
highest order of the observed harmonic is four, produced on
SLAC [12]. Two recent experimental developments deserve
our attention. First, the laser intensity has reached as high
as 1022 W cm−2 [16]. Second, the electron acceleration by
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plasmas has made enormous progress [17–19]. It is now
possible to produce a high-quality electron beam of GeV
energy with a tabletop laser system [18, 20, 21]. These
developments provide us with great opportunities to study the
HHG from free electrons with an all-optical system. It is the
anticipation of these opportunities that motivates us to check
the related underlying theories in more details.

There are two main theoretical methods to deal with the
HHG by free electrons in the literature. One is to obtain the
harmonic spectrum from the electron’s classical trajectory
acquired by solving the Lorentz equation [22–24]. For
high-intensity lasers, this process is the so-called nonlinear
Thomson scattering (NTS). The other is to treat the HHG as
a spontaneous emission of one photon from the Volkov state
of an electron in a classical plane-wave laser field [25–30].
This is the well-known nonlinear Compton scattering (NCS).
We refer the reader to the review [37] for an overview of the
literature relevant for the interaction between the quantum
systems and intense laser fields. Although both methods
have been widely used to describe the HHG spectrum,
they are basically derived from two different theoretical
frameworks with different approximations. For example, the
recoil effect is absent from the NTS. The NCS is in essence
only a first-order result in the Furry picture [31], which is
semi-classical since the strong field is treated classically.
Hence it should be of great interest to make a detailed
comparison between the results from these two methods in
order to pave the way for the future developments of both the
basic theories and the related experiments.

Actually, the comparisons have already been made in
several published papers and some qualitative conclusions
have been established [32–37]. For example, in Goreslavski’s
work [32], the classical energy and angular distribution
of radiation have been derived by taking the classical
limit of quantum results in the case of circularly polarized
monochromatic radiation. The applicability of the classical
limit for weak fields and for very intense fields has
been discussed. Recently, Heinzl also made the quantum
calculations and obtained the Thomson limit for the
particular conditions relevant to experiments planned at
the Forschungszentrum Dresden-Rossendorf (FZD) [34].
However, on the whole, a complete quantitative analysis of
the two theories is still lacking, especially from the viewpoint
of HHG with radiation reaction effect included in the classical
framework.

In section 2, we shall briefly review the basic formulae
of HHG in both the classical and semi-classical frameworks.
Then in section 3, the detailed numerical comparisons are
presented and discussed. In section 4, the influences of the
classical radiation reaction effect on the scattering will be
displayed. Finally, section 5 is devoted to the summaries.

2. Review of the HHG theory of free electrons in
plane wavefields

The configuration of the electron–laser interaction is shown
in figure 1. The plane wavefield is described by a vector

Figure 1. The configuration of the laser–electron interaction. The
electron is moving in the x–z plane with incident four-momentum
pin = mcγ0 (1, β0). θ0 is the crossing angle between β0 and the
z-axis. The laser propagates along the positive z-axis. The scattering
angle of the emitted photon k′ is denoted by θb. The azimuthal
dependence of the interaction has not been considered in this paper.

potential A,

A = A0[δ cosφex + (1− δ2)1/2 sinφey], (1)

with the phase factor φ = kµxµ, in which xµ is the space–time
coordinate and kµ = ω0nµk /c with nk = (1, ek) to be a unit four
vector. ω0 represents the laser circular frequency. The electron
is moving in the x–z plane with the initial four-momentum
pin = mcγ0(1, β0), in which β0 = β0(cos θ0ez + sin θ0ex) is
the electron initial speed in the unit of c with θ0 the crossing
angle between β0 and ex. The laser intensity can be easily
estimated by a dimensionless parameter Q = eA0/(mc2),
which is called the laser intensity parameter here. In the
nonrelativistic regime, the characteristic velocity and energy
for an electron moving in such an electromagnetic field are
v ∼ eA0/(mc) and E ∼ e2A2

0/(mc2), so relativistic treatment
is necessary if v ∼ c and E ∼ mc2 are satisfied. That is to say,
the motion of the electron will become relativistic for Q ∼ 1.
In the optical regime (h̄ω ≈ 1 eV), the corresponding laser
intensity is about 1018 W cm−2 for Q ∼ 1, which has been
achieved in the last decade.

2.1. Harmonic generation based upon nonlinear Thomson
scattering in classical theory

In classical physics, the radiated energy from the free elec-
trons per unit solid angle d� and per unit frequency interval
dω can be obtained with the following expression [38]:

dP2

dω d�
=

e2ω2

4π2c
lim

T→∞

1
T

∣∣∣∣∫ ∞
−∞

ek′ × (ek′ × β)eik′x dt
∣∣∣∣2 , (2)

where ek′ denotes the direction of the emitted photon, and
k′u = ωnu

k′/c with nk′ = (1, ek′). β is acquired by solving the
Lorentz equation,

mc
duµ

ds
= −

e
c

Fµνuν, (3)

in which Fµν = ∂µAν − ∂νAµ is the electromagnetic tensor.
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In case of the plane wavefield described by equation (1),
equation (3) can be solved analytically as follows [39, 40]:

uµ = uµin − aµ +
a · uin

k · uin
kµ −

a2

2k · uin
kµ, (4)

xµ = xµin +
1

k · uin

[
uµinφ −

∫ φ

0
aµ dφ′

+
1

k · uin

∫ φ

0
[2(a · uin)− a2

]kµ dφ′
]
, (5)

where aµ = eAµ/(mc2), u = γ (1, β), uin = γ0 (1, β0).
Substituting equation (4) into (2), we can get the angular
distribution of the nth-order harmonic power,

dPNTS
n

d�
= αh̄ωn

ωn

2π
mc

q0
in

mc
pin · nk

(∣∣Jn
∣∣2 − ∣∣ek′ · Jn

∣∣2), (6)

where q0
in denotes the zeroth component of qµin with the

frequency being

ωNTS
n =

nω0pin · nk

pinnk′ + nk · n′k
Q2m2c2

4pin·nk

, (7)

in which α is the fine structure constant and q = p +
e2A2

0
4c2(pin·nk)

k. Jn = (Jn,x, Jn,y, Jn,z) is a vector of the following
form:

Jn,x = uin,xG0
n

(
B1
ωn

ω0
,B2

ωn

ω0
, ϕ

)
+

Q
2
δG1

n

(
B1
ωn

ω0
,B2

ωn

ω0
, ϕ

)
, (8)

Jn,y =
Q
2i
(1− δ2)1/2G2

n

(
B1
ωn

ω0
,B2

ωn

ω0
, ϕ

)
, (9)

Jn,z =

(
uin,z +

Q2

4(nkuin)

)
G0

n

(
B1
ωn

ω0
,B2

ωn

ω0
, ϕ

)
+

Q
2(nkuin)

ui,xδG1
n

(
B1
ωn

ω0
,B2

ωn

ω0
, ϕ

)
+

Q2

2(nkuin)
(1− δ2)1/2G3

n

(
B1
ωn

ω0
,B2

ωn

ω0
, ϕ

)
, (10)

where

B1 =

√
B2

3 + B2
4, (11)

B2 = −
Q2(nk · nk′)

4(nk · uin)2

(
δ2
−

1
2

)
, (12)

B3 =
Q

nk · uin
δ

[
(ek′ · ex)−

(nk · nk′)(pin · ex)

nk · pin

]
, (13)

B4 =
Q

nk · uin
(1− δ2)1/2(ek′ · ey), (14)

ϕ = arctan
B4

B3
. (15)

The generalized Bessel function in equations (8)–(10) is
defined as

G0
s (α, β, ϕ) =

∑
n

J2n−s(α)Jn(β)ei(s−2n)ϕ,

G1
s (α, β, ϕ) =

1
2

(
G0

s+1(α, β, ϕ)+ G0
s−1(α, β, ϕ)

)
,

G2
s (α, β, ϕ) =

1
2i

(
G0

s+1(α, β, ϕ)− G0
s−1(α, β, ϕ)

)
,

G3
s (α, β, ϕ) =

1
2

(
G0

s+2(α, β, ϕ)+ G0
s−2(α, β, ϕ)

)
.

(16)

2.2. Harmonic generation based upon nonlinear Compton
scattering in semi-classical theory

By solving the Dirac equation with the external plane-wave
laser field as shown in equation (1), we can get the Volkov
state as [41]

ψp,r =

√
mc
q0

(
1+

e/k/A
2p · k

)
ur(p)eiS, (17)

where ur(p) is the free Dirac spinor and

S = −
qx
h̄
−

e2A2
0

8h̄c2 (2δ
2
− 1) sin(2k · x)

+
eA0

h̄cp · k

[
δ(p · ex) sin(k · x)

− (1− δ2)1/2(p · ey) cos(k · x)
]

(18)

in which p is the four-momentum of the electron and q is
the quasi-momentum mentioned before. The scattering matrix
can be calculated by considering the first-order Feynman
diagram based upon the Volkov state,

Sfi = −
ie
h̄c

∫
dx4 ψ̄pf,rf/Acψpin,rin (19)

where the subscript f denotes the electron in the final state and

Ac,µ =

√
2π h̄
ω

cεc,µeik·x is the quantized electromagnetic field.

εc is the polarization four vector satisfying ε2
c = −1.

With Sfi, the differential rate for emitting a single photon
of frequency ω can be written as

dW = lim
T→∞

1
2T

∑
rin,rf,εc

∣∣Sfi
∣∣2 d3qf

(2π h̄)3
d3k′

(2π)3
(20)

from which the differential power scattered per unit solid
angle of the nth-order harmonic is obtained,

dPNCS
n

d�
= αh̄ωn

ωn

2π
mc

q0
in

mc
pin · nk

Mn(χ1, χ2, ϑ)

m2c2 (21)

in which the dimensionless function Mn(χ1, χ2, ϑ) is
expressed as

Mn =

[
pin · pf − 2m2c2

−
e2A2

0
2c2

]∣∣G0
n
∣∣2

+
e2A2

0
2c2

[
pin · k
pf · k

+
pf · k
pin · k

]
×
(
δ2∣∣G1

n
∣∣2 + (1− δ2)

∣∣G2
n
∣∣2)
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Figure 2. Relative differences of the fundamental harmonic frequency between NTS and NCS under different conditions. (a) Q = 1 with
the incident electron energies being γ0 = 50, 80 and 120. (b) γ0 = 50 with the laser intensities being Q = 0.01, 1 and 5.

− (1− δ2)
e2A2

0
2c2 Re

(
G0

n ∗ G3
n
)

+
eA0

c
k(pin + pf)

[
δ

(
pin · ex

k · pin
−

pf · ex

k · pf

)
× Re

(
G0

n ∗ G1
n
)
+ (1− δ2)1/2

×

(
pin · ey

k · pin
−

pf · ey

k · pf

)
Re
(
G0

n ∗ G2
n
)]
, (22)

where

χ1 = χ
2
3 + χ

2
4 , (23)

χ2 =
Qm2c2

8h̄
(2δ − 1)

(
1

k · pin
−

1
k · pf

)
, (24)

χ3 = Qmcδ

(
pf · ex

h̄k · pf
−

pin · ex

h̄k · pf

)
, (25)

χ4 = Qmc(1− δ2)1/2

(
pf · ey

h̄k · pin
−

pin · ey

h̄k · pin

)
, (26)

ϑ = arctan
χ2

χ1
. (27)

The generalized Bessel functions are the same as those in the
classical calculations except that the arguments become χ1,
χ2 and ϑ .

The expression for the nth harmonic frequency is

ωNCS
n =

nω0pin · nk

pin · nk′ + nk · n′k
[
nh̄k + Q2m2c2/(4pin · nk)

] . (28)

3. Comparison of the classical and semi-classical
results

In this section we shall compare the result from NTS with
those of the NSC with emphasis placed upon effects in
the strong field regime. In our opinion, the comparison is
more complete and rigorous than that of the previous work.
There are two main reasons: first, we achieve the classical

results by direct calculation in the framework of classical
electrodynamics rather than just taking the classical limit (i.e.,
h̄ → 0). We think this is a formal way because not every
quantum process has its classical correspondence. Second,
the comparison is made by considering a large parameter
space rather than a few special cases. So it may be beneficial
to recognize the discrepancy between results of NTS and
NSC under the conditions for a certain experiment. The laser
frequency involved in all the numerical calculations is chosen
to be ω0 = 1.17 eV (Nd laser).

3.1. Frequency shift

From equations (7) and (28), we could define the relative
difference of the harmonic frequency for NTS and NCS,

ξn =
ωNTS

n − ωNCS
n

ωNTS
n

=
nh̄ω

nh̄ω + Q2mc
4pin·nk

mc2 +
pin·nk′
nk·nk′c

. (29)

It is easy to see that ξn depends upon several factors, such as
the harmonic order n, laser intensity Q, electron initial energy
γ0 and interaction configurations among the electrons and
incident and outgoing photons. Although ξn does not represent
direct measurable quantities in experiment, it does offer
information about how large the discrepancy of harmonic
frequency is between NTS and NCS under certain conditions.
So how these factors influence ξn is definitely of potential
importance to a clear-cut experimental verification of HHG
theories.

For simplicity, we shall first consider the head-on
collisions with θ0 = 180◦. Figure 2 shows the results for
the fundamental harmonic (n = 1) as a function of the
emitting angle θb. We should mention here that the electron
energy is 0.511 MeV for γ0 = 1. It is obvious that the
relative difference increases with the emitting angle θb.
The maximum difference occurs in the electron running
direction (θb = θ0 = 180◦), or the backscattering direction
if viewed along the laser propagation direction. Moreover,
the relative difference becomes larger when increasing the
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Figure 3. Variations of the relative differences between the NTS
and NCS frequency of the fundamental harmonic with the laser
intensity for different incident electron energies: Ein = 50 MeV
(black solid line), 1 GeV (red dashed line), 5 GeV (blue dotted line),
50 GeV (purple dash–dotted line). θb = 180◦.

electron energy. This is consistent with our usual physical
intuition since high-energy electrons will greatly upshift the
frequency of the counter-propagating laser by the Doppler
effect. This means that the quantum recoil of the emitted
photons will begin to influence the electron motion, which
has not been considered in the classical framework. With
the same logic, we can explain the decrease of ξ1 when
increasing the laser intensity as seen from figure 2(b), since
the electrons are more decelerated by the light pressure of a
stronger counter-propagating laser field. It should be noted
that the photon recoil will be less significant with the increase
of the laser intensity in a head-on configuration for the reason
that the energy of the radiated photon will be small in a strong
laser field (see equation (7)).

Figure 3 gives the scaling of ξ1 against Q at θb = 180◦

for different electron energies, from which we can observe
two extreme situations.

(i) When the electron energy reaches 50 GeV under
low-intensity lasers, ξ1 is almost as high as 60%. This
is a truly quantum regime. The corresponding frequency
might be so upshifted that even the Dirac sea might be
excited, as happened in the SLAC experiment [42] (Ein =
46.6 eV, Q = 0.4, ξ1 ≈ 43%).

(ii) With extra-intense lasers, for example if Q ≈ 100 (I ≈
1022 W cm−2), the electron will be so heavily decelerated
that ξ1 is reduced by nearly three orders of magnitude
compared with the case when Q� 1. Hence, for head-on
collisions with extra-intense lasers, there should not be
much difference in the shift of fundamental frequency
from NTS and NCS, especially if the electron energy is
not extremely high.

It should be emphasized that the large relative frequency
difference for high-energy electrons is mainly in the
backscattering direction. In this direction, equation (29) can

Figure 4. Variations of the relative differences between the NTS
and NCS frequencies of the fundamental harmonic with the incident
electron energy for different laser intensities: Q = 0.01 (black solid
line), Q = 0.5 (red dashed line), Q = 1 (blue dotted line), Q = 5
(indigo dash–dotted line). θb = 180◦.

Figure 5. Variations of the relative differences between the NTS
and NCS frequencies of the fundamental harmonic against different
incident angles of the electron. (a) θ0 = 180◦. (b) 145◦. (c) 90◦.

be simplified as

ξ1(θb = π) =
h̄ω

h̄ω + γ0(1− β0)
(

1+ Q2

4 mc2
) , (30)

from which scaling with the initial electron energy is more
transparent, as depicted in figure 4.

Next, for a non-head-on collision, i.e. θ0 6= π , the relative
difference peak will occur at θb = θ0 or in the electron running
direction. Away from the direction of θ0, it decreases rapidly
as shown in figure 5. The explanation is the same as for the
above head-on collision case.

As to the radiation of higher-order harmonics, we shall
only focus on head-on collisions, since these are typical
configurations in which to expect a large relative difference

5
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Figure 6. Angular dependence of the relative differences between the NTS and NCS frequencies of high-order harmonics with
n = 100, 200, 500, 1000, and 5000 for (a) Q = 1 and (b) Q = 10.

between NTS and NCS. Figure 6 presents the angular
distribution of ξn for different n. It is interesting to note that
ξn covers a much larger angular range than ξ1. For higher n,
this feature is more obvious, although the maximum relative
difference still occurs in the backscattering direction (θb =

180◦). In the case with Q = 1, for n starting at 100, we already
have a relative frequency shift of more than 70%. Even if a
higher-intensity laser is used, for example Q = 10 as shown
in figure 6(b), not much reduction has been found. This is
because higher-order harmonics have a larger recoil effect.
This effect can lead to a totally different scaling relationship
of ωn against n. In NTS,

lim
n→∞

ωNCS
n ∼ n. (31)

But in NCS, ωn will saturate, i.e.

lim
n→∞

ωNCS
n =

nk · pin

h̄k · nb
∼ constant. (32)

Hence, the larger relative difference will always come from
higher-order harmonics. Even for the superintense fields
(Q � 1), it is always significant so long as the order of the
harmonic meets the condition

n & Q2m2c2

(nk · pin)(nb · h̄k)
. (33)

But to have a larger relative difference does not guarantee its
observability in experiments, since we also need to consider
the corresponding radiation energy or transition probability,
which will be the topic of section 3.2.

3.2. Harmonic spectrum

From equations (11)–(15) and (23)–(27), it is easy to see that

lim
h̄→0

χ1 = B1
ωNTC

n

ω0
, (34)

lim
h̄→0

χ2 = B2
ωNTC

n

ω0
, (35)

lim
h̄→0

ϑ = ϕ. (36)

It can also be proved from equations (8)–(10) and (22) that

lim
h̄→0

Mn(χ1, χ2, ϑ)

m2c2 =
∣∣Jn
∣∣2 − ∣∣ek′ · Jn

∣∣2, (37)

as given in Avetissian’s book [43]. So the classical harmonic
spectrum can be taken as a limit of the semi-classical one
by taking h̄ → 0. As a tractable example, for a circularly
polarized plane wave with δ = 1/

√
2 in equations (6) and (21),

we can obtain

dPNTS
n

d�
= α

h̄
(
ωNTS

n
)2

8π
mc

q0
i

ωNTS
n

nω0

mc
pi · nk

×

{
−4J2

n

(
B1
ωNTS

n

ω0

)
+ Q2

[
J2

n+1

(
B1
ωNTS

n

ω0

)

+ J2
n−1

(
B1
ωNTS

n

ω0

)
− 2J2

n

(
B1
ωNTS

n

ω0

)]}
(38)

dPNCS
n

d�
= α

h̄
(
ωNCS

n
)2

8π
mc

q0
in

ωNCS
n

nω0

mc
pin · nk

{
− 4J2

n(χ1)

+ Q2
[

1+
h̄(k · k′)2

2 (pin · k) (pf · k)

] [
J2

n+1(χ1)

+ J2
n−1(χ1)− 2J2

n(χ1)
] }

. (39)

It is obvious, by using equation (34), that the above two
equations give the same results. In addition, if the quantum
effect is small, we can neglect the difference in the variables
of the Bessel function in equations (38)–(39) and acquire the
following simplified expression:

dPNTS
n

d�

/
dPNCS

n

d�
=

(
ωNTS

n

ωNCS
n

)3

. (40)

From section 3.1, we already know ωNTS
n > ωNCS

n . Hence one
can expect that the ratio of the radiation energies from NTS
and NCS should be much larger than the ratio of the harmonic
frequencies, which means that the quantum effect will be more
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Figure 7. Angular dependence of the relative differences between the NTS and NCS radiation power of the fundamental harmonic under
different electron incident energies (a) and laser intensities (b).

Figure 8. Angular distribution of the harmonic radiation power from NTS (solid line) and NCS (dotted line) for different laser intensities.
(a) Q = 5. (b) Q = 10. The electron energy is 1 GeV.

prominent in studying the energy spectrum. To measure the
relative difference of the power distribution, we introduce the
following parameter:

ζn =

(
dPNTS

n

d�
−

dPNCS
n

d�

)/
dPNTS

n

d�
, (41)

which is similar to the definition in equation (29) for the
frequency shift.

First, let us consider the situation with circular polarized
laser fields. The dependence of ζn upon the emission angle of
the fundamental harmonic is shown in figure 7, which shows
almost the same variations as the frequency shift in figure 2,
but with much larger values. This tells once again that the
angular distribution of the power is a much better index with
which to measure the relative differences between NTS and
NCS.

Compared with the fundamental harmonic, the high-order
harmonic (n > 1) shows a different pattern of angular
distribution as displayed in figure 8. One notes that there is

no high-order harmonic radiation around the backscattering
direction (θb = 180◦) in both the classical and semi-classical
framework. It is called a ‘dead cone’ in the work of
Heinzl [34] since no scattered photons will be detected within
the cone. The size of the dead cone increases with harmonic
order and laser intensity. Away from the dead zone, there is an
angle with maximum radiation, whose position is dependent
upon n. The higher is n, the more the peak will move
away from the backscattering direction. In addition, from
the comparisons between figures 8(a) and (b), we can also
see that, as the laser intensity increases, the radiated energy
tends to move from lower harmonics to higher harmonics. So
stronger laser fields will result in higher harmonic generations,
which is easy to understand and is consistent with former
results [44]. For example, when Q is increased from 5 to 10,
the peak power of n = 100 has already been bigger than that
of n = 1. As to ζn, it increases with n, but decreases with Q
as can be observed from figures 9(a) and (b). For example, if
Q is increased from 5 to 100, ζn will decreased by almost two
orders of magnitude. This is also due to the deceleration effect

7
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Figure 9. The relative difference between angular distribution of the high-harmonic radiations from NTS and NCS under different laser
intensities. (a) Q = 1. (b) Q = 100. The electron energy is 1 GeV.

Figure 10. Relative difference between the total power from
high-order harmonic radiation under different laser intensities. The
electron energy is 5 GeV.

of the electron during head-on collisions, as discussed in the
study of the frequency shift.

Figure 10 demonstrates the variations of relative
difference of the total power ζT against the harmonic order
for different laser intensities. ζn is defined as follows:

ζ
(1)
T =

(∫
dPNTS

n

d�
d�−

∫
dPNCS

n

d�
d�

)/∫
dPNTS

n

d�
. (42)

From figure 10, one may see that ζT decreases with the laser
intensity just as the radiation does in a definite emitting angle.
But it should be noted that, as Q . 1, the radiation ζT increases
much faster with the harmonic order than Q = 5. This again
implicates that the large relative difference of the total power
always comes from the case of not-so-strong field intensity
and high-order harmonic radiation.

As to the other laser polarizations, we find that the
difference of the power distribution is almost the same as that
of the circularly polarization whatever the laser intensity and
incident electron energy. The only exception occurs in the case
of linear polarization with δ = 1. In this situation, there is a

special direction where no classical emission in fundamental
frequency exists as shown in figure 11, in which there is an
obvious dip around θb = 179.97◦. From equation (6), we find
that this happens when J is parallel to ek′ . This is in sharp
contrast to the NCS result, which is smooth in this direction.

4. The comparison of the radiation damping and
quantum recoil

A basic difference between NTS and NCS is the recoil effect
of the emitted photons. It is natural to get this effect in the
quantum theory, but there is a lot of controversy on how to
include it in the classical electron dynamics. In 1938 [45],
Dirac put forward the following Lorentz–Abraham–Dirac
(LAD) equation [46, 45], which is one of the most
controversial equations in the history of physics [47]:

mc
duα

ds
=

e
c

FµυUυ +
2e2

3c3

(
d2uµ

ds2 − uµuυ
d2uυ
ds2

)
, (43)

where ds =
√

dxµ dxµ refers to the four-dimensional distance
and Fµυ = ∂µAυ − ∂υAµ is the electromagnetic field tensor.
The LAD formula on a point charge suffers from two
notorious defects: runaways and preacceleration. In the past
seven decades, many new proposals have been put forward,
trying to overcome the inherent difficulties, such as the
equations from Landau–Lifshitz (LL) [48], Caldirola [49],
Mo–Papas [50], Eliezer [51] and Caldirola–Yaghjian [52].
But each time a promising idea appears, there will be
some objections. For example, Rohrlich [53, 54] has
presented a revised LAD equation, which involves much
discussion [55–57]. Later, O’Connell [58] claimed that their
equation is actually for structured particles. Then in 1990,
Herrera [59] gave another radiation reaction equation. Hence
the problem is still open.

If the damping force is much smaller than the Lorentz
force, from the first-order perturbation of the LAD equation,

8
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Figure 11. (a) Comparisons between the angular distribution of the radiation power for fundamental harmonic frequency from NTS (black)
and NCS (red) under circularly (dashed line) or linearly polarized laser fields. The inset is the enlargement of the details. (b) The same as (a)
but for the comparison of the relative differences. In both cases, the electron energy is 1 GeV and the laser intensity is Q = 5.

we can get the Landau–Lifshitz (LL) equation [48],

mc
duµ

ds
=

e
c

Fµυuυ + gµ

gµ =
2e2

3c

[
e
c2 uλ∂λFµυ +

e2

mc4 FµυFυλuλ

−
e2

mc4 (Fυρuυ)(Fρλuλ)uµ
]
.

(44)

which does not admit runaways or preacceleration and can be
analytically solved for a plane wavefield [60]. Recently it has
been shown that LL can also be obtained with no reference to
the size of the particle [61]. So it is not clear which is superior
between LDA and LL. To check this problem, Griffiths [62]
has compared the LL and LAD results as the limiting cases of
a spherical shell of finite size, but no definite answer has yet
been acquired.

Generally, for a tightly focused intense laser beam,
the LAD or LL equations can only be solved numerically,
especially in a so-called radiation-dominated regime [63, 64].
In this paper, we shall use the LL equation to determine the
trajectory of the accelerated electron.

For a circularly polarized plane wave, the four-vector
potential can be written as

Aµ = aµ1ψ1(φ)+ aµ2ψ2(φ), (45)

with

a1 = (0, 1, 0, 0), a2 = (0, 0, 1, 0), (46)

ψ1 =
A0
√

2
cosφ, ψ2 =

A0
√

2
sinφ. (47)

The solution of the LL equation can be obtained as
follows [60]:

uµ(φ) =
1
h

[
uµ0 +

kµ

280
(h2
− 1)+

1
80

(
fµυ1 I1 + fµυ2 I2

)
u0,υ

+
kµ

280

(
q2

1I2
1 + q2

2I2
2
)]
, (48)

where

80 = k · u0 fµυj = kµaυj − kυaµj
(j = 1, 2)

h(φ) = 1+
80Q2e2

3mc2 φ

I1(φ) =

[
1+

280e2

3mc2 Q2φ

]
cosφ −

280e2

3mc2 (Q
2
+ 1) sinφ,

I2(φ) =

[
1+

280e2

3mc2 Q2φ

]
sinφ −

280e2

3mc2 (Q
2
+ 1) cosφ.

(49)

Here we assume the interaction is switched on and off
adiabatically and neglect the edge effect. By substituting
the above equations into equation (2), the energy radiated
per unit solid angle d� per unit frequency dω can be
calculated. Unlike the case without radiation reaction, no
explicit analytical results can be found. So we still need to
resort to numerical calculations.

First, we shall consider an electron initially at rest in a
strong circularly polarized plane wave with Q = 100. During
the numerical calculations, the time interval corresponding to
a phase change of1φ = 300π will be used for the interaction
since the electron motion is highly damped.

According to section 2, the relative differences of
the frequency spectra between the classical results without
radiation reactions and the semi-classical results will be less
than 10−6 in such a strong laser field. But in figure 12, as we
plot the differential spectrum of the fundamental harmonic
with different emitting angles, it is easy to see that there
is an obvious downshift in the spectrum from the result in
equation (7). The difference becomes larger with the increase
of the emitting angle. This shift can be attributed to the strong
radiation reaction effect. It is expected that this shift will be
enhanced by increasing the laser field intensity, which does
not occur for the NCS under the same condition. Besides the
frequency shift, the broadening of the spectrum is another
feature of the influence from the classical damping effect.
For the emitting angle of θb = 3.5◦, we can observe about
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Figure 12. Differential spectrum from NTS (black), NCS (blue) and
NTS with radiation damping (red) for a plane laser field with
different emitting angles. (a) θb = 0◦. (b) 1.41◦. (c) 1.88◦. (d) 2.82◦.
The electron is initially at rest in a plane wavefield and the laser
intensity is Q = 100.

2% downshift and broadening of the fundamental frequency.
This could be observed with high-precision measurements in
experiments.

Next we consider a Gaussian laser pulse described by the
following vector potential:

A = A0 exp
(
−
φ2

τ 2

) (
cosφex + sinφey

)
(50)

with τ being the dimensionless pulse length normalized by
1/ω0. Figure 13 presents the differential spectrum for the
classical damped, undamped and semi-classical cases with
τ = 50 cycles (the corresponding pulse duration is 177 fs) and
Q = 100. It is apparent that similar downshift and broadening
of the fundamental harmonic also happen as in the plane
wavefield. The downshift of the spectrum also increases with
the duration of the pulse as well as the laser intensity. To
further illustrate the difference between the quantum recoil
and classical radiation reaction, we shall consider head-on
collision for an relativistic electron with a Gaussian radiation
pulse. In figure 14, the differential spectra of the fundamental
harmonic for emitting angles θb = π are represented, the
two plots corresponding to (a) γ0 = 100 (Ein = 50 MeV),
Q = 20, and (b) γ0 = 2000 (Ein = 1 GeV), Q = 0.5. The pulse
duration is τ = 50 cycles as the previous case. In figure 14(a),
the frequency downshift is clear and the radiation intensity
is largely suppressed by the radiation reaction (this can be
explained by the energy lost for the electron) while the effect
of the quantum recoil seems to be negligible. For a lower
laser intensity and increased electron energy in figure 14(b),
the discrepancy between the quantum and classical results
becomes large as we expect in section 3. At the same time the
classical radiation damping does not have a dramatic impact

Figure 13. The same as in figure 12 but for a pulsed laser field with
τ = 50 cycles. The emitting angles are (a) θb = 0◦, (b) 1.88◦,
(c) 2.82◦and (d) 3.76◦.

on the differential spectrum for a small damping force in such
a weak field.

Finally, we need to emphasize here that the NTS and
the NCS come from two different frameworks. Both have
been used in studying the HHG from free electrons. In
most cases, they coincide with each other very well, but
distinct quantitative differences exist and in some situations
a qualitative difference appears. Even if we include the
classical recoil effect embodied in the radiation reactions in
the classical framework, no quantitatively consistent result
has been found in the considered cases. Here several possible
reasons for the inconsistency can be put forward. First, the
present semi-classical theory based upon NCS is not enough
and we need more higher-order corrections. Second, the LL
equation has not covered the full story of the radiation reaction
effect and needs more improvement. Third, the recoil effect
from classical radiation reaction is basically of a different
nature from the semi-classical one and an extra radiation
reaction force obtained from QED is required for a complete
classical theory. But this last reason brings about another deep
physical question, namely, what is the essence of classical
radiation reactions? Does the classical radiation reaction have
quantum correspondence and if so what is it? To delve into
these questions and problems is already out of the scope of
this paper. It is hoped that future high-precision strong-field
experiments could give us more data to justify which theory
is nearer the truth.

5. Summary

In this paper, based upon NTS, NCS and LL equations,
we have performed a detailed numerical investigation of the
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Figure 14. Differential spectrum from NTS (black dashed line), NCS (blue dash–dotted line) and NTS with radiation damping (red solid
line) for the electron head-on collision with a pulsed laser field. The pulse duration is τ = 50 cycles and the emitting angle is θb = 180◦.
The initial energy of the electron and the peak intensity of the pulse are (a) γ0 = 100,Q = 20, and (b) γ0 = 2000,Q = 0.5.

differences between the classical and semi-classical results
for free electron high-harmonic generations in intense laser
fields. The focus is mainly upon the differences between the
frequency and the angular power distribution of the harmonic
radiation in a plane wave or a pulsed laser field. To maximize
the differences, only the head-on collision is considered. The
conclusions can be summarized as follows.

(i) The frequency differences in NTS and NCS will increase
with the electron energy. For GeV electrons, the relative
frequency difference in the backscattering direction for
the fundamental harmonic can be as high as 40–50% in a
laser field with Q ∼ 1.

(ii) For stronger laser intensity (Q & 1), the importance of the
higher-order harmonic radiation begins to emerge. If we
take Q = 5 and n = 500, the relative frequency difference
can reach 10%.

(iii) Generally, as the laser intensity is increased, more
radiation energy will go to higher-order harmonics. The
relative differences in both the frequency and radiation
energy tend to increase with harmonic order, yet decrease
with the laser intensity. This implies that the most
prominent differences appear around Q ∼ 1–10 for
GeV-energy electrons, which is readily in reach of the
present experimental technology.

(iv) The differences are independent of the field polarizations
except for a linearly polarized laser, which shows a dip
in the relative angular distribution of radiation power for
the fundamental harmonic along the direction just a little
away from the backscattering direction. The width of the
dip is smaller than 0.1◦, which would be a big challenge
for a high-precision experimental test.

(v) With the classical radiation reactions included by using
the LL equation, NTS demonstrates bigger differences
from NCS in both the shift and the widening of
the fundamental frequency. Moreover, these differences
depend upon the pulse length. Hence it is utterly desirable
to check more deeply the underlying physics in the

classical and quantum recoil effects. According to the
recent study [36], it has been identified that the quantum
radiation reaction corresponds to the consecutive photon
recoils in multiple incoherent single-photon emissions by
the laser-driven electron. So the single-photon emission
may not include the radiation reaction. Hence it is utterly
desirable to check more deeply the underlying physics in
the classical and quantum recoil effects in order to get
a consistent physical picture and elucidate the present
theories for free electron harmonic generation in strong
laser fields.
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In this paper, the spontaneous bremsstrahlung emission from an electron scattered by two fixed nuclei

in an intense laser field is investigated in detail based upon the Volkov state and the Dirac-Volkov

propagator. It has been found that the fundamental harmonic spectrum from the electron radiation

exhibits distinctive fringes, which is dependent not only upon the internucleus distance and

orientation but also upon the initial energy of the electron and the laser intensity. By analyzing the

differential cross section, we are able to explain these effects in terms of interference among

the electron scattering by the nuclei. These results could have promising applications in probing

the atomic or molecular dressed potentials in intense laser fields. VC 2013 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4822317]

I. INTRODUCTION

High-order harmonic generation (HHG)1–4 is a process

in which high-order harmonics of the fundamental laser fre-

quency are coherently radiated when an intense laser pulse is

focused into an atomic or molecular gas. This process is not

only used to generate UV or XUV lights but also be applied

to explore molecular structures, recently. The first break-

through was the discovery of a double-slit-type interference

effect from the simplest diatomic molecules Hþ2 and H2.5–8

The experimental confirmation was first realized for aligned

CO2 in 2005.9,10 The next major development was the so-

called molecular orbital tomography proposed by Itatani

et al. in 2004.11 Namely, once the HHG spectra and phases

are known for various orientation of molecular axis, a 2D

projection of the initial electron orbital can be reconstructed

through a tomographic algorithm. Now, the work has been

generalized to include orbital symmetry influences upon

HHG and quantum tomography with 2D calculations.12

In all the above-mentioned works, the HHG originates

from the electrons bound by the atoms or molecules and the

calculation usually involves the time-dependent Schrodinger

equation (TDSE) with dipole approximation. But when the

field is so strong that the ponderomotive energy of the free

electron reaches the same order of the rest energy of the elec-

tron, there will be a different picture. Namely, the dipole

approximation may not be a good choice and the TDSE

should be replaced by the Dirac equation. Moreover, some

electrons may be ionized to be free particles, whose dynam-

ics will be predominated by the intense laser fields instead of

the Coulomb potentials. Now, the principle process is the

so-called laser-assisted bremsstrahlung, which has been stud-

ied previously by several authors. In the early works, the

analytic expression for the radiation spectrum of laser-

assisted bremsstrahlung in a plane monochromatic has been

derived by Karapetyan and Fedorov for nonrelativistic

regime.13 Within the framework of the Born approximation,

Roshchupkin14,15 has developed a general relativistic expres-

sion for the amplitude of the scattering of an electron by a

nucleus in an external field with arbitrary intensity.

Recently, the numerical evaluation of the laser-assisted

bremsstrahlung process has been carried out for both circu-

larly polarized and linearly polarized laser field.16,17

Motivated by the molecule HHG in non-relativistic

case, in this paper, we will consider an electron scattering by

two nuclei in strong laser fields. This model differs from

one-nucleus case mentioned above by providing more than

one center for the electron scattering, which will allow for

dynamics, for example, the emission spectra of the electron

may depend on the internuclear distance and orientation, just

as in the situation of molecule HHG. This model could pro-

vide us a method to explore some special potentials, which

exists only in intense laser fields, such as the dressed

Kramer-Henneberg potential in high-frequency laser fields,

which plays an important role in guaranteeing the existence

of multiply charged negative ions in the fields.

The notations used in this paper are as follows. The

four-vector product is denoted by a � b ¼ a0b0 � ab. For the

Feynman dagger, we use the following notation: =A ¼ c � A.

The Dirac adjoint is denoted by the standard notation �u
¼ u

†

c0 for a bispinor u and �F ¼ c0F
†

c0 for a matrix F.

The outline of this paper is as follows. First, we will

introduce the laser-assisted bremsstrahlung model and derive

a)Author to whom correspondence should be addressed. Electronic mail:
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the theoretical expression for the cross section of the emis-

sion in Sec. II. Then, the numerical estimation of the cross

section and the corresponding analyses will be provided in

Sec. III. Concluding remarks are reserved for Sec. IV.

II. THEORETICAL DERIVATION OF THE
BREMSSTRAHLUNG CROSS SECTION

Consider two nuclei with charge number Z fixed in the

x-z plane with an internucleus distance R0 in a strong laser

field. We assume that, in the laboratory frame of reference,

the laser can be described by a plane wave propagating in

the positive direction of the z-axis with a vector potential Al

Al ¼ A0½dcos/�1
l þ ð1� d2Þ1=2

sin /�2
l�: (1)

The approximation is acceptable if the number of laser

photons is large enough so that an arbitrary amount of energy

and momentum can be taken from or emitted into the field

without changing it. The plane wave depends only on the

phase factor / ¼ k � x, in which x is the position vector,

and kl ¼ x0

c ð1; 0; 0; 1Þ the four wave vector with x0

denoting the laser frequency. The laser is circularly polarized

for d ¼ 1=
ffiffiffi
2
p

and linearly polarized for d ¼ 0, 61. We

define two polarization vectors �1, �2, satisfying �i � k ¼ 0;
�i � �j ¼ dij (i, j ¼ 1, 2). The laser intensity can be easily

described by a dimensionless parameter Q ¼ eA0=ðmc2Þ,
which is usually called laser intensity parameter. It should be

mentioned that in the nonrelativistic regime, the characteris-

tic velocity and energy for an electron moving in such an

electromagnetic field is v � eA0=ðmcÞ and E � e2A2
0=ðmc2Þ,

so a relativistic treatment is necessary if v � c and E � mc2

is satisfied, which means the motion of the electron will

become relativistic when Q � 1.

The angle between the orientation of two nuclei and the

laser propagation direction is denoted by #. For convenience

of calculation, here we set the origin of the coordinate at the

middle of two nuclei. So we can easily introduce a vector

R ¼ R0ðsin#ex þ cos#ezÞ=2 to describe the location of the

two nuclei.

Now we begin to derive the differential cross section of

the electron-nucleus bremsstrahlung. Consider the scattering

geometry that an incoming electron moving along the nega-

tive z-axis has a head-on collision of the laser photons while

scattering by two nuclei. The configuration is shown in

Fig. 1. The whole process can be described by two Feynman

diagrams displayed in Fig. 2. In the first one, the initial elec-

tron first interacts with two nuclei and then emits a brems-

strahlung photon. The situation is reversed in the second

diagram. In Feynman diagrams, the electron is denoted by a

zigzag line on top of a straight line since it is dressed by a

strong laser. Also, here the free electron propagator is

replaced by the Dirac-Volkov propagator.18

Actually, the electron will interact with three external

fields during the process, namely, the laser field described by

Eq. (1), the Coulomb field of two nuclei, and the field of the

emitted bremsstrahlung photon. As usual, we treat the laser-

electron interaction exactly and nonperturbatively by using

Volkov states as the initial and final wave functions

wp;r ¼
ffiffiffiffiffiffiffiffiffiffi
mc

P0V

r
fpðxÞurðpÞ; (2)

fpðxÞ ¼
�

1þ e=k=A

2p � k

�
eiS; (3)

S ¼ �P � x
�h
� e2A2

0

8�hc2ðp � kÞ ð2d2 � 1Þsin 2/þ eA0

�hcðp � kÞ
� ½dðp � �1Þsin /� ð1� d2Þ1=2ðp � �2Þcos /�: (4)

Here, p is the four-momentum of the electron outside

the field, and P ¼ pþ e2A2
0

4c2ðp�kÞ is the corresponding laser-

dressed four-momentum, ur(p) the free Dirac spinor.

Here, we employ a box normalization with a normalized

volume V.

The interaction with the emitted radiation and Coulomb

field is taken to the first perturbation, in which the interaction

between electron and nuclei is considered under Born

approximation: vi=c� aZ. Here, a is fine structure constant

and vi is the initial velocity of the electron. As to the

Coulomb field of the nuclei, we use a Yukawa potential with

a screen length l0 instead of the conventional Coulomb

potential to avoid possible singularity at resonance. The

four-vector potential of the two fixed nuclei can be written as

Al
YðrÞ ¼ �

Zedl0

jr � Rj e
jr�Rj=l0 � Zedl0

jr þ Rj e
jrþRj=l0 : (5)

The corresponding Fourier transform is

FIG. 1. The scattering geometry: The incoming electron with laser-dressed

four momentum Pi counterpropagates with the laser, while scattering by

two fixed nuclei. # is an angle between internucleus axis and the laser propa-

gating direction. The final electron with Pf and the bremsstrahlung photon

with k0 are projected onto the xz plane in this figure; so, only the polar angles

hf and h0 are displayed. The azimuthal angles are denoted by Xf and X0,
respectively.

FIG. 2. Feynman diagrams describing laser-assisted bremsstrahlung. The

laser-dressed electron and laser-dressed electron propagator are denoted by a

zigzag line on top of the straight line. The Coulomb field photon is drawn as

a dashed line, and the bremsstrahlung photon as a wavy line.

124904-2 Li et al. J. Appl. Phys. 114, 124904 (2013)
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Al
YðqÞ ¼ �

4pZe

q2 þ l2
0

ðeiqR þ e�iqRÞ: (6)

As we can see, the Fourier transform of the potential depends

on the inter-distance and the orientation of the two nuclei.

This is the origin of the interference effect on the radiation

spectrum. The four-vector potential of the emitted brems-

strahlung photon has the form

Al
c ðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p�h=x0

p
c�c

leik0x: (7)

The wave vector of the emitted photon with polarization is

described by k0 ¼ x0
c ð1;ek0 Þ; ek0 ¼ cosu0 sinh0exþ sinu0 sinh0ey

þcosh0ez. So, the transition amplitude of an electron scattering

by two fixed nuclei in a strong laser field can be specified by

the following expression:

Sf i ¼ �
e2

�h2c2

ð
dx4dy4 �wpf ;rf

ðxÞ½=AcðxÞiGðx� yÞ=AYðyÞ

þ =AYðxÞiGðx� yÞ=AcðyÞ�wpi;ri
ðyÞ: (8)

Here, iGðx� yÞ is the laser-dressed propagator of the

electron, which can be written as

iGðx� yÞ ¼ �
ð

dp4

ð2p�hÞ3ð2piÞ
fpðxÞ

=pþ mc

p2 � m2c2
�fpðyÞ: (9)

Since we are not interested in investigating polarization or

spin properties, we average over the spin of the incoming elec-

tron, and sum over the spin and polarization of the final electron.

The differential cross section is calculated with the formula

d~r ¼ 1

2JT

X
ri;rf ;ec

jSf ij2
Vd3Pf

ð2p�hÞ3
d3k0

ð2pÞ3
: (10)

Here, T is the long observation time and J ¼ c
V

Pi

P0
i

stands

for the incoming particle flux. We have d3Pf ¼ jPf j2dXf

¼ jPf j2sinhf dhf duf ; d3k0 ¼ x02
c2 dX0 ¼ x02

c2 sinh0dh0du0, where

X0 and Xf are solid angle for the emitted photon and electron,

respectively. Finally, we can derive the expression of the av-

erage differential cross section for emission or absorption of

n photons as (for details, see Appendix)

d~r
dx0dX0dXf

¼ aðZaÞ2

8p2c2

X
n;ec

jPf j
jPij
jeiqR þ e�iqRj2

� x0

ðq2 þ l2
0Þ

2
Tr½ �Rfi;nðpf þ mcÞRfi;nðpi þ mcÞ�; (11)

where

Rfi;n ¼
X

s

M�n�sð=�c; g
1
P;Pf

; g2
P;Pf
Þ i

=p� mc

� �M�sðc0; g1
P;Pi

; g2
P;Pi
Þ

þ
X

s0
M�n�s0 ðc0; g1

P
0
;Pf
; g2

P
0
;Pf
Þ i

=p0 � mc

� �M�s0 ð=�c; g
1

P
0
;Pi
; g2

P
0
;Pi
Þ; (12)

with the argument defined as

g1
p1;p2
¼ eA0

�hc
d

�
p2 � �1

k � p2

� p1 � �1

k � p1

�
;

g2
p1;p2
¼ � eA0

�hc
ð1� d2Þ1=2

�
p2 � �1

k � p2

� p1 � �1

k � p1

�
: (13)

The four-momentum transfer onto the Coulomb field by

two fixed nuclei is denoted by ql ¼ ð0; qÞ, and the two laser-

dressed four-momenta of the virtual electrons in the

Feynman diagrams by P;P0. They are given by the energy-

momentum conserving relation during the scattering process

P ¼ pf � ðnþ sÞ�hk þ �hk0;

P0 ¼ pi � s�hk � �hk0;

�hq ¼ pf � pi þ �hk0 � n�hk:

(14)

M is a 4 � 4 matrix with five arguments

MsðF; g1
p1;p2

; g2
p1;p2
Þ

¼
�
=Fþ e2A0

2

8c2

=k=F=k

ðpi � kÞðp2 � kÞ

�
G0

s ða; b;uÞ

þ eA0

2c
d

�
=�1=k=F

ðp1 � kÞ
þ =F=k=�1

ðp2 � kÞ

�
G1

s ða; b;uÞ

þ eA0

2c
ð1� d2Þ1=2

�
=�2=k=F

ðp1 � kÞ
þ =F=k=�2

ðp2 � kÞ

�
G2

s ða; b;uÞ

þ
�

d2 � 1

2

�
e2A0

2

4c2

=k=F=k

ðpi � kÞðp2 � kÞ
G3

s ða; b;uÞ: (15)

The generalized Bessel functions are given by

G0
s ða; b;uÞ ¼

X
n

J2n�sðaÞJnðbÞeiðs�2nÞu;

G1
s ða; b;uÞ ¼

1

2
ðG0

sþ1ða; b;uÞ þ G0
s�1ða; b;uÞÞ;

G2
s ða; b;uÞ ¼

1

2i
ðG0

sþ1ða; b;uÞ � G0
s�1ða; b;uÞÞ;

G3
s ða; b;uÞ ¼

1

2
ðG0

sþ2ða; b;uÞ þ G0
s�2ða; b;uÞÞ:

(16)

With the corresponding argument,

a ¼
h
ðg1

p1;p2
Þ2 þ ðg2

p1;p2
Þ2
i1=2

;

b ¼ Qm2c2

8�h
ð2d� 1Þ

�
1

k � p1

� 1

k � p2

�

u ¼ arctan

�
�

g2
p1;p2

g1
p1;p2

�
:

(17)

The differential cross section in Eq. (11) is evaluated for

both the direction of the final electron and the bremsstrah-

lung photon. Here, we are more interested in the influence by

the internuclear distance and orientation on the bremsstrah-

lung photon spectrum, so we integrate the differential cross

section over the solid angle Xf of the outgoing electron and

obtain a cross section differential only in the direction of the

emitted bremsstrahlung photon and its energy

124904-3 Li et al. J. Appl. Phys. 114, 124904 (2013)

 [This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to ] IP:

128.211.178.4 On: Mon, 27 Jan 2014 17:29:54

269



dr
dx0dX0

¼
ð

d~r
dx0dX0dXf

dXf : (18)

It is well known that the resonance occurs when the in-

termediate electron falls within the mass shell.14–17 That is

because the lower order processes (here refers to the nonlin-

ear Compton scattering) are allowed in the field of a light

wave. Although the resonance is a characteristic feature of

the second-order process like bremsstrahlung, but it will not

draw much of our attention here since the cross section (18)

at resonance will not be affected by the internuclear distance

or orientation, for which the screening length need not be

discussed here. More details will be given in Sec. III.

III. NUMERICAL RESULTS

In this section, we will present some examples of the

cross section in Eq. (18) for different internuclear distance or

orientation. We consider the internuclear distance of two

fixed proton (Z ¼ 1) is about several atom units. To observe

the effect of the Coulomb field of two fixed nuclei on the

spectra, we have to choose the laser frequency in an X-rays

order: the wavelength is 0.2 nm. The intensity of the laser is

Q ¼ 17.8 and circularly polarized. First, we consider the

electron has an initial energy of Ei ¼ 5 MeV and the orienta-

tion of the two nuclei is parallel to the direction of laser

propagation. The cross section of the fundamental harmonic

for scattering angle h0 ¼ 1
�

is shown in Fig. 3. The most re-

markable feature of the spectrum is that there are minima at

some frequencies for large internuclear distance.

The mechanism behind this phenomenon is two-centre

interference during the scattering process, which is described

by the term fðq;RÞ ¼ jeiqR þ e�iqRj2 � cos2ðq � RÞ in the

cross section. So when the momentum transfer from the

Coulomb field is so large that q � R � 1, the differential cross

section in Eq. (11) will be suppressed for some special con-

dition. Since most of the contribution to the integrand (18)

comes from a small cone in the forward direction of the

ingoing electron (hf ¼ p), the positions of the minima found

in the spectra are largely determined by the parameter

fðq;RÞ in the backscattering direction. This can be confirmed

in Fig. 4, which plots fðq;RÞ as a function of harmonic

frequency for emission angle hf ¼ p. The positions of the

minima in the spectra are almost coincident with those of

fðq;RÞ, which can be expected for the condition

R0 � cos#=2 ¼ 2pðlþ 1

2
Þ=jqj; l ¼ ð1; 2; 3; :::Þ: (19)

That is interesting because we can deduce the internu-

cleus distance by estimating the momentum transfer through

the conservation relationship (14). It is obvious that fðq;RÞ
is at its peak at the resonances regardless of the internuclear

distance. This can be explained by considering that the

momentum transfer onto the nucleus is almost zero when the

resonance condition is satisfied (i.e., the intermediate elec-

tron becomes real). That is to say, the resonance peak of the

spectrum carries little information about the internuclear dis-

tance or orientation, for which we will not pay much atten-

tion to the phenomenon of resonance.

The dependence of the differential cross section in

Eq. (18) on the electron emission angle hf at frequency x0

¼ 0:955x0 is plotted in Fig. 5. It is located close to one of

the minima in the spectrum. We observe a clear suppression

of the emission at small angle around the direction of the

ingoing electron for R0 ¼ 1 nm, which result in the minimum

of the spectrum. As can be expected from Eq. (19), if we

increase the angle between the orientation of the two nuclei

and the direction of the laser propagation, the two-centre in-

terference will be less effective. Finally, we even could not

find a pronounced minimum in the spectrum when the inter-

nucleus orientation is perpendicular to the direction of the

laser propagation (# ¼ p
2
). In order to corroborate this idea,

we plot the full cross section for # ¼ p=2 in comparison

with that of # ¼ 0 for the same internucleus distance in

FIG. 3. The cross section for the fundamental harmonic at h0 ¼ 1
�
. Here, we

consider an electron with initial energy 5 MeV head-collide with a circularly

polarized laser with intensity parameter Q ¼ 17.8 and is scattered by two

fixed nuclei. The internucleus distance is 1 nm for the full line, 0.152 nm for

the dotted line, and 0.1 nm for the dashed line.

FIG. 4. The relation between the parameter fðq;RÞ and the bremsstrahlung

photo frequency x0 at hf ¼ p for absorbing 1 photon in the whole process

(n ¼ 1). The parameter of the electron and laser is the same with Fig. 3. The

internucleus distance is 1 nm for the full line, 0.152 nm for the dotted line,

and 0.1 nm for the dashed line.

124904-4 Li et al. J. Appl. Phys. 114, 124904 (2013)
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Fig. 6. The explanation for this phenomenon is that the mo-

mentum transfer from the Coulomb field q is mainly in the

backscattering direction according to the conservation rela-

tionship (14), thus q � R 	 0. We can conclude that the more

projection of the internucleus distance onto the laser propa-

gating direction, the more oscillation occurs for the parame-

ter fðq;RÞ, which leads to the appearance of the minima in

spectrum. The initial velocity of the ingoing electron also

has a large effect on this two-centre interference phenom-

enon. That is because it will influence the momentum trans-

fer from the Coulomb field to the electron. Here, we still set

(# ¼ 0) to maximize the two-centre interference. To have a

clear idea of the relation between the initial velocity vi and

the momentum transfer from the Coulomb field on the inter-

nucleus orientation q4, we shall calculate the derivative

dq4=dvi for fundamental harmonics. From the conservation

relationship, we have (here we set �h ¼ m ¼ c ¼ 1)

dq4

dvi
¼

1� 1þ Q2=2

ðp0
i Þ

2

1� 1þ Q2=2

ðp0
i þ DxÞ2

2
6664

3
7775

1=2

cosðhf � pÞ � 1: (20)

Here, Dx ¼ x0 � x0. For hf 	 p, we could learn there

will be more momentum transfer for smaller initial velocity

based on Eq. (19). Remembering the interference is in con-

nection with the term fðq;RÞ � cos2ðq � RÞ, so we expect

there will be more minima on the spectrum for “slow” elec-

tron but still satisfying the Born approximation, as can be

seen from Fig. 7. Here, we compare the spectrum for initial

electron energy Ei ¼ 3.5 MeV with that of Ei ¼ 5 MeV. The

locations of the minima on the spectrum are different and the

interval is smaller for Ei ¼ 3.5 MeV, which confirms our

opinion. For the same reason, we expect this will also happen

with the increasing laser intensity since the electron is more

decelerated by the light pressure of a counterpropagating

laser.

It has to be mentioned that the parameter (Q ¼ 17.8 with

a wavelength of 0.2 nm) we choose in the paper will corre-

spond to an X-ray laser with intensity up to I ¼ 1028 W/cm2,

which, according to an optimistic view,19 could be reached

with future upgrades of the FLASH facility in Hamburg.

On the other hand, considering a neodymium laser with a

frequency of 1.17 eV and Q ¼ 17.8 (corresponding to an in-

tensity I ¼ 1028W=cm2), the clear interference effect of laser-

assisted bremsstrahlung emission also could be found when

q � R � 1 is satisfied. That is to say, the corresponding inter-

nucleus distance has to be on an order of micrometer

(R � 10�6m) according to our calculation. Moreover, it is

true that the interference modulations may be also found in

the Bethe-Heitler cross section generated by the electron scat-

tering in multi-center potentials in the absence of a laser field.
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FIG. 5. The differential cross section as a function of the electron emission

angle hf for the fundamental harmonic for absorbing 1 photon in the whole

process (n ¼ 1). The parameter of the electron and laser is the same with

Fig. 3. The internucleus distance is 1 nm for the full line and 0.1 nm for the

dashed line.

FIG. 6. The cross section for the fundamental harmonic at h0 ¼ 1
�
. The pa-

rameter of the electron and laser is the same with Fig. 3. The internucleus

distance is 1 nm and the orientation is (# ¼ 0) for the full line and (# ¼ p=2)

for the dashed line.

FIG. 7. The cross section for the fundamental harmonic at h0 ¼ 1
�
. The pa-

rameter of the electron and laser is the same with Fig. 3 except that the ini-

tial energy of the electron reduces to 3.5 MeV for the dotted-dashed line and

5 MeV for the full line. The internucleus distance is 1 nm.
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Considering the appearance of the resonances, we may expect

a great difference between the interference modulations of the

laser-free spectrum from those of the laser-assisted spectrum

we found in this paper (i.e., there will not be minima located

symmetrically on each side of the resonance in the laser-free

spectrum). Further discussion of the detail about the differen-

ces between the two spectrums is beyond the topic of this pa-

per. Furthermore, it is possible to modulate the intensity and

the interference diagram of the electron radiation spectrum by

controlling the laser field in an actual experiment, for which

we think the laser field is helpful in observing a clear interfer-

ence effect in the spectrum.

IV. CONCLUSION

In this paper, we have investigated the scattering of an

electron by the screened Coulomb field of two fixed nuclei

in a highly intense laser field and then emit a bremsstrah-

lung photon. As a result, we found that the spectrum may

exhibit minima away from the resonant frequency. This

may be explained by the interference between contribu-

tions from two fixed nuclei. It was shown that the positions

of the interference minima are characteristic of both the

internuclear distance and orientation for given laser and

electron. On the other hand, the laser intensity and wave-

length and the initial electron energy are also responsible

for the observed minima. It is shown that the interference

effect is remarkable for slow electrons counter-propagating

with the laser field. That is due to the large momentum

transfer from the Coulomb field. This interference effect is

very general in highly intense laser field in which the drift

motion of the electron cannot be neglected. Choosing

proper laser wavelength, one can obtain information about

the molecule structure by detecting the corresponding pho-

ton spectrum.

Finally, we must point out that the idea discussed in

this paper about the two-center potential can be generalized

to more complex potentials to find its important practical

applications. For example, the existence of multiply

charged negative ions in intense high-frequency laser fields

has been studied theoretically for a long time.20 Recently,

by including relativistic corrections, the ions have been

found to be able to bind more electrons.21 How to detect

these exotic ions existing only in intense laser fields has

posed a great challenge to present experimentalists. Our

next work will focus upon analyzing the characteristics of

the radiation spectrum when the free electrons are injected

upon the negative ions inside the laser fields, for these ions

have a very special dressed potential structure just like a

many-atom molecule.
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APPENDIX A: DERIVATION OF EQ. (11)

Considering expressions (2), (3), (4), and (9), the transi-

tion amplitude of an electron scattering (8) reads as

Sf i ¼ �
e2c

�h2c2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2c2

P0
i P

0
f V

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p�h=x0

p
Tf i:

Here,

Tf i ¼ T
ð1Þ
f i þ T

ð2Þ
f i ;

T
ð1Þ
f i ¼

ð
dx4dy4urf

ðpf Þ½�fpf
ðxÞ=�cfpðxÞ�iSðx� yÞ

� ½�fpðyÞ=AYðyÞfpi
ðyÞ�uri

ðpiÞeik0x;

iSðx� yÞ ¼ � 1

2pi

ð
d4p

ð2p�hÞ3
1

=p� mc
: (A1)

T
ð2Þ
f i can be obtained from T1

f i by interchanging: x! y;
=�c ! =AY .

With the definition of fp(x) in Eq. (3), it follows the

relation

�fpf
ðxÞ=�cfpðxÞ ¼

X
s1

Ms1
ð=�c; g

1
P;Pf

; g2
P;Pf
Þ

� eiðPf�Pþs1�hkÞx=�h;

�fpðyÞ=AYðyÞfpi
ðyÞ ¼

X
s2

Ms2
ð=AYðyÞ; g1

P;Pi
; g2

P;Pi
Þ

� eiðPi�Pþs2�hkÞy=�h: (A2)

During the calculation, the following expression will be

useful

expðiasinðkx�uÞ� ibsin2kxÞ¼
X

s

G0
s ða;b;uÞeiskx;

cosðkxÞexpðiasinðkx�uÞ� ibsin2kxÞ¼
X

s

G1
s ða;b;uÞeiskx;

sinðkxÞexpðiasinðkx�uÞ� ibsin2kxÞ¼
X

s

G2
s ða;b;uÞeiskx;

sinð2kxÞexpðiasinðkx�uÞ� ibsin2kxÞ¼
X

s

G3
s ða;b;uÞeiskx:

(A3)

All integrations can be taken in the expression of T
ð1Þ
f i ,

leaving the energy-conserving delta function: dðPf �P
þs1�hk þ �hk0Þ and dðPi �Pþ s2�hk þ �hqÞ, which leads to

the energy-momentum conserving relation (14). Finally, the

expression for T
ð1Þ
f i reads

T
ð1Þ
f i ¼ ð�h2Þ

X
s;n

A0
YðqÞurf

ðpf ÞM�n�sð=�c; g
1
P;Pf

; g2
P;Pf
Þ

� i

=p� mc
�M�sðc0; g1

P;Pi
; g2

P;Pi
Þuri
ðpiÞ

� dðP0
f �P0 � n�hk0 � �hk

00Þ: (A4)

The expression of T
ð2Þ
f i is similar to that of T

ð2Þ
f i by substi-

tutions as follows:
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P! P0; =�c ! c0:

Taking the square of the transition amplitude Sfi, we will

finally have expression (11).
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ABSTRACT: The state-dependent spectroscopy of α-methylbenzyl
radical (α-MeBz) has been studied under jet-cooled conditions.
Two-color resonant two-photon ionization (2C-R2PI), laser-
induced fluorescence, and dispersed fluorescence spectra were
obtained for the D0−D1 electronic transition of this prototypical
resonance-stabilized radical in which the methyl group is imme-
diately adjacent to the primary radical site. Extensive Franck−
Condon activity in hindered rotor levels was observed in the
excitation spectrum, reflecting a reorientation of the methyl group
upon electronic excitation. Dispersed fluorescence spectra from
the set of internal rotor levels are combined with the excitation
spectrum to obtain a global fit of the barrier heights and angular
change of the methyl group in both D0 and D1 states. The best-fit
methyl rotor potential in the ground electronic state (D0) is a flat-topped 3-fold potential (V3″ = 151 cm−1, V6″ = 34 cm−1) while
the D1 state has a lower barrier (V3′ = 72 cm−1, V6′ = 15 cm−1) with Δφ = ± π/3, π, consistent with a reorientation of the methyl
group upon electronic excitation. The ground state results are compared with calculations carried out at the DFT B3LYP level of
theory using the 6-311+G(d,p) basis set, and a variety of excited state calculations are carried out to compare against experiment.
The preferred geometry of the methyl rotor in the ground state is anti, which switches to syn in the D1 state and in the cation.
The calculations uncover a subtle combination of effects that contribute to the shift in orientation and change in barrier in the
excited state relative to ground state. Steric interaction favors the anti conformation, while hyperconjugation is greater in the syn
orientation. The presence of a second excited state close by D1 is postulated to influence the methyl rotor properties. A resonant
ion-dip infrared (RIDIR) spectrum in the alkyl and aromatic CH stretch regions was also recorded, probing in a complementary
way the state-dependent conformation of α-MeBz. Using a scheme in which infrared depletion occurs between excitation and
ionization steps of the 2C-R2PI process, analogous infrared spectra in D1 were also obtained, probing the response of the CH
stretch fundamentals to electronic excitation. A reduced-dimension Wilson G-matrix model was implemented to simulate and
interpret the observed infrared results. Finally, photoionization efficiency scans were carried out to determine the adiabatic
ionization threshold of α-MeBz (IP = 6.835 ± 0.002 eV) and provide thresholds for ionization out of specific internal rotor levels,
which report on the methyl rotor barrier in the cation state.

I. INTRODUCTION

Combustion processes involve a myriad of complex reaction
pathways that connect smaller precursors to larger polyaromatic
hydrocarbons (PAHs), many of which are still poorly char-
acterized. In particular, resonance-stabilized radicals (RSRs)
play an important role in combustion due to their high relative
concentrations and effects on reaction kinetics and product
distributions. The prototypical aromatic RSR is the benzyl
radical, which has a rich history of theoretical and experimental
studies.1−8 One of the important aspects of the electronic
spectroscopy of benzyl radical is its prominent vibronic
coupling due to closely lying electronic states. Other studies
have investigated the implications of substitution on the benzyl

radical ring or radical site, and observed significant changes in
the electronic state behavior.4,9−11

Methyl substituents are known to serve as sensitive probes of
local electronic structure, responding to changes in electronic
state with changes to the orientation and barrier height of the
methyl group.12−14 Furthermore, the chemical dynamics of
methylated compounds are affected in higher energy environ-
ments as a result of the accelerated onset of intramolecular
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vibrational redistribution (IVR) due to the higher density of
accessible vibrational states at a given energy.15,16 Substituting
a methyl group at different sites on the benzyl radical ring,
Lin and co-workers10 observed strikingly different barriers to
internal rotation among the ortho-, meta-, and para- isomers
in the ground and excited states due to influences from their
electronic structures which are different from the benzyl radical
as evidenced in the excitation spectra. Additionally, Lee et al.11

observed vibronic emission from discharge products of several
precursors, one of which they ascribed to the α-methylbenzyl
radical (α-MeBz) arising from the cleavage of the Cα-CH3 or
Cα-H bond in isopropylbenzene or ethylbenzene, respectively.
In a typical mixture of gasoline, ethylbenzene comprises 1.7−

2.5% of the total,17 while styrene is also known to be ubiquitous
in combustible fuels, making it a target of considerable interest.18−22

Whether by H-atom abstraction of ethylbenzene or H-atom
addition to styrene, α-MeBz may be generated, pointing to its
potential importance as a key resonance-stabilized intermediate
from which larger PAHs can be made.

Motivated by the fact that benzyl-type radicals are involved
in the principal pathways of formation and destruction of
fused-ring aromatics, there have been several recent efforts to
characterize related resonance-stabilized radicals suspected to
promote PAH formation, including phenylpropargyl, phenyl-
allyl, benzylallenyl, naphthylmethyl, and hydronaphthyl radi-
cals.23−28 In each of these cases, vibronic spectroscopy has
played a significant role in this characterization, with ground to
first excited state transitions occurring in the middle of the
visible region (∼450−550 nm).
The present study of α-MeBz radical represents another

contribution to this growing foundation of spectroscopic char-
acterization of benzyl-like RSRs, this one a simple derivative in
which the methyl group is substituted in place of hydrogen on
the benzylic carbon. This placement of the methyl group gives
the α-MeBz radical fundamental interest due to the position of
the methyl group immediately adjacent to a primary radical site
which belongs to the extended π-network of the benzyl radical
motif. Simpler alkyl radicals such as the ethyl radical have been
studied in detail29−33 where the methyl group interacts through
hyperconjugation with the radical π-orbital, but these systems
typically do not possess easily accessible excited electronic
states. However, α-MeBz affords the opportunity to examine
the hindered rotation of a methyl group with electronic state
specificity, which is made more interesting because of the
vibronic coupling known to be pervasive in the spectroscopy of
the benzyl radical.
In this paper, we describe the results of a detailed spec-

troscopic analysis of α-MeBz radical. We report vibronic spectra
and rotational band contour analysis of the D0−D1 transition of
α-MeBz, paying special attention to the effect that methyl
substitution on the benzyl radical site has on the electronic
states and the extent of vibronic coupling. The extensive
internal rotor structure identified in the 2C-R2PI and dispersed
fluorescence spectra are analyzed to determine the potentials

for methyl internal rotation in the D0 and D1 states, providing
insight into the properties of a methyl group attached directly
to the primary radical site. Finally, the repercussions that hyper-
conjugation and steric interactions impose on the alkyl stretch
vibrations of the methyl group, and their response to electronic
excitation, are studied using infrared depletion spectroscopy.

II. METHODS

A. Experimental Section. The experimental apparatus
used for the work carried out at Purdue has been described
in detail elsewhere.34 Briefly, the samples used in the experi-
ments were either isopropylbenzene (99%, Sigma Aldrich) or
1-phenylethanol (98%, Sigma Aldrich), which were heated to
338 K, entrained in an Ar buffer gas with a stagnation pressure
of approximately 2 bar, and subsequently introduced into a
reaction channel (2 mm ID × 15 mm long) via a pulsed valve
(R.M. Jordan, 800 μm orifice). Timing an electric discharge to
intersect the gas pulse just prior to expansion, discharge prod-
ucts such as α-MeBz were generated and collisionally cooled
upon expansion into a vacuum chamber. For two-color, resonant
two-photon ionization (2C-R2PI), the tunable output of a
Nd:YAG pumped dye laser operating in the 425−465 nm
region was set perpendicular to the free-jet expansion and
provided the resonant photon source. The doubled output of
another Nd:YAG pumped dye laser fixed at 235 nm counter-
propagated the preceding laser and subsequently ionized
α-MeBz. Radical ions produced were accelerated in a Wiley−
McLaren type time-of-flight mass spectrometer,35 and detected
by a microchannel plate ion detector. Finally, the ion signal was
amplified 25 times, averaged by a boxcar gated integrator
(Stanford Research System, model SR250), and then recorded
on a personal computer.
Rotational band contours (RBCs) were taken by scanning

the resonant photon at a higher resolution (0.04 cm−1) over
individual bands to gather rotational constants and transition
dipole moment directions. The excited-state lifetime of the
radical was measured by incrementally increasing the temporal
separation between the resonant and ionizing lasers and ob-
serving the eventual decay in ion signal. Furthermore, the
adiabatic ionization threshold of the radical was experimentally
determined using two-color, photoionization efficiency (PIE)
scans. To do this, the resonant photon laser was fixed on the
D0−D1 origin of the radical and the ionizing laser was scanned
over the threshold for ionization out of the intermediate level.
Thresholds for ionization out of hindered rotor or vibronic
levels in the D1 state were determined similarly, providing data
on the internal rotor levels of the cation.
Laser-induced fluorescence/dispersed fluorescence (LIF/

DFL) studies of α-MeBz were undertaken using a vacuum
chamber in the laboratory in Cambridge. The radical of interest
was produced in a pulsed discharge of ethylbenzene (Sigma-
Aldrich, 99%) seeded in Ar (1% with stagnation pressure
7 bar). The discharge source is similar to that previously
described.36 Optimal LIF signal was obtained with a voltage of
1 kV applied to the outer electrode (farthest from the valve
orifice) through a ballast resistance of 10 kΩ. The chamber base
pressure was 2 × 10−7 Torr, and typical operating pressure was
3 × 10−5 Torr. Supersonically cooled α-MeBz radicals were
interrogated several centimeters downstream of the discharge
orifice by the tunable output of a Nd:YAG-pumped dye laser
(typical pulse energy 5 mJ, line width 0.4 cm−1) operated in the
range 450−460 nm.
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Fluorescence was imaged using f-number-matched optics
onto the entrance slit of a 1m monochromator equipped with a
1200 lines/mm grating and a photomultiplier tube (PMT) at
the exit. Signal from the PMT was amplified 25 times and
passed to an oscilloscope and personal computer for gated
integration of the decay profile using custom software. For LIF
excitation scans, the monochromator slits were opened fully to
give a bandpass of approximately 120 cm−1, and the laser and
monochromator were simultaneously scanned with the latter at
a constant Stokes shift of approximately 600 cm−1, which was
revealed in a survey DFL spectrum to be a region of strong
Franck−Condon activity. Simultaneous scanning of the
monochromator bandpass in this manner facilitated selective
detection of α-MeBz with limited spectral interference from the
numerous benzylic radical discharge products that absorb
throughout this region, including benzyl radical, 1-phenyl-
propargyl radical, and an OH-containing species (indicated
in the inset in Figure 1) formed from residual water

contamination in the sample line (this species will be the
subject of a future article from the Harvard-Smithsonian group).
Subsequently, the α-MeBz origin and nearby internal rotor

transitions were studied in detail by DFL, with particular atten-
tion paid to ground state vibrational energies below 300 cm−1,
corresponding primarily to internal rotor levels. Because of the
small energy intervals in the excited state, DFL spectra from
these levels were particularly prone to collisional de-excitation
in the jet, manifesting as a “copy” of the origin DFL spectrum
appearing in emission spectra from higher levels, and a
characteristic rising and falling fluorescence decay profile. To
mitigate this effect, it was necessary to reduce the stagnation
pressure to 2 bar, and use a nozzle-laser distance equivalent to
approximately 200 nozzle diameters. Fluorescence lifetimes
were also monitored for all features appearing in the DFL
spectra, and were determined, by comparison with the origin
decay profile (which is immune to such effects), to be un-
affected by collisional de-excitation, with the exception of two
weak bands designated with asterisks in Figure 5. For DFL
scans, the monochromator slits were set to 0.25 mm, yielding a
bandpass of approximately 15 cm−1 at full width at half-
maximum (fwhm). Wavelength calibration of the monochro-
mator was performed using a mercury lamp.
State-selected infrared spectra of the α-MeBz radical were ob-

tained using resonant ion-dip infrared spectroscopy (RIDIRS),

requiring a three-laser arrangement.23 First, D0-RIDIRS was
taken with the output of a Nd:YAG pumped LaserVision
OPO/OPA system acting as the holeburning laser, which was
spatially overlapped with and temporally preceded (Δt =
200 ns) the origin-resonant probe and ionizing lasers, which
operate at twice the repetition rate. As the infrared laser is
tuned across the alkyl and aromatic CH stretch regions (2800−
3150 cm−1), whenever its wavelength is resonant with an IR
active vibration, depletion of the ground-state population
occurs, leading to a decrease in ion signal, which is detected as
the difference in ion signal produced by the IR laser using active
baseline subtraction. Therefore, an infrared spectrum is
recorded by plotting the ion depletion signal as a function of
infrared wavelength, which yields the ground-state IR spectrum
of the radical of interest. Similarly, D1-RIDIRS was taken using
the same scheme with the exception that the infrared laser
is temporally placed between the resonant and ionizing lasers
and subsequently scanned to deplete the population that was
initially excited into a well-defined vibronic state. In order to
observe depletion in the excited state, the infrared laser is
scanned, and when it becomes resonant with an IR transition,
excited state levels are reached, which are less readily ionized,
likely through enhanced internal conversion to D0.

B. Computational. As an aid to the analysis of the experi-
mental spectra, ab initio calculations using the Gaussian09 suite
of programs37 at the B3LYP/6-311+G(d,p) level of theory38,39

were used to determine the optimized ground-state geometry
and harmonic vibrational frequencies. The predicted ground-
state CH stretch frequencies with respect to the methyl rotor
torsional angle coordinate (φ = [∠ = 1,α,β,H]) were generated
by incrementing the dihedral angle by 5°. Additionally, Natural
Bond Order40,41 (NBO) calculations were performed for the
D0 electronic state for different methyl group orientations to
describe the intramolecular donor/acceptor electrostatic
interactions.
Excited state calculations on α-MeBz and benzyl radicals

were carried out with a variety of correlated single-reference
excited state methods within the equation of motion coupled
cluster (EOM-CC) family42−44 using the Q-Chem45 electronic
structure package. Excited state properties (vertical excitation
energies, transition dipole moment (TDM) components, oscillator
strengths, and the D1−D2 energy splitting) for the benzyl radical
and α-MeBz were determined using EOM-CC for ionization
potentials (EOM-IP-CCSD)46,47 in the 6-311+G(d,p) basis.48,49

Vertical excitation energies for the D1 and D2 states were further
refined by adding perturbative triple corrections as in the EOM-
IP-CCSD(dT) method.50 The EOM-CC method for excitation
energies with single and double excitations (EOM-EE-
CCSD)42−44,51 in the aug′-cc-pVDZ basis (aug-cc-pVDZ52,53

without diffuse p functions on hydrogen atoms and diffuse d
functions on carbon atoms) was also employed. EOM-EE-
CCSD calculations used an open-shell doublet reference, while
all IP calculations used the closed shell anion state as the
reference determinant.
In order to determine the preferred methyl rotor orientation

in α-MeBz, the ground state and the D1 excited state geom-
etries were determined for the (fixed) anti and syn orientations
of the methyl rotor with respect to the aromatic ring. CCSD
and EOM-EE-CCSD (for the ground and excited states,
respectively) in aug′-cc-pVDZ and the ionization potential
configuration interaction with single and double excitations
(IP-CISD) method54 in aug-cc-pVDZ were used for the geometry
optimizations. Calculations with more accurate EOM-IP-CCSD

Figure 1. 2C-R2PI spectrum of α-MeBz radical (m/z 105). The inset
displays the low-frequency region of the LIF spectrum.
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and EOM-IP-CC(2,3) (EOM-IP method with single and
double excitations for the reference state and single, double,
and triple excitations for the excited state)55 were additionally
performed at the IP-CISD optimized geometries of the D0 and
D1 states.
Additionally, a set of multiconfigurational calculations with

multiconfigurational self-consistent field (MCSCF)56 and
multiconfigurational quasi-degenerate perturbation theory
(MCQDPT)57 were performed using the GAMESS electronic
structure software.58,59 Equilibrium geometries of the D0 and
D1 states in anti and syn orientations were optimized at the
MCSCF/6-31G*60,61 level of theory. Single-point energy
calculations at the optimized geometries were performed at
the MCSCF/cc-pVTZ52 and MCQDPT/cc-pVTZ levels. Seven
active orbitals (six π orbitals at the benzene ring and a radical
π orbital on the CH2 moiety) with seven electrons comprised
the active space for the benzyl radical. σ and σ* CH orbitals on
the methyl rotor were added to the active space of α-MeBz,
bringing the active space to nine orbitals and nine electrons.
State averaging of the three lowest states (D0, D1, and D2) was
employed in the MCSCF and MCQDPT energy calculations.
Finally, geometry optimizations of the α-MeBz cation in anti

and syn configurations of the methyl rotor were performed at
the B3LYP/6-311+G**39,48,49 level. Single point energies at
these geometries were obtained at the coupled CCSD(T)62/
cc-pVTZ level of theory.

III. SPECTROSCOPIC BACKGROUND

A. Symmetry Considerations. Throughout much of what
follows, the benzyl radical will serve as a point of comparison
for the present results on α-MeBz. Previous studies of the
vibronic spectroscopy of benzyl radical uncovered the presence
of two close-lying excited states. The rotational structure from
these vibronic transitions was analyzed to determine the TDM
directions63,64 of the origin and a triad of vibronic bands above
the origin. The D0−D1 origin has a pure B-type band contour,
while the vibronic transitions are A-type, confirming that
vibronic coupling to the D2 state was responsible for their
intensity. Based on the C2v symmetry of the benzyl radical, the
D0−D1 and D0−D2 transitions were inferred to have TDMs
perpendicular and parallel to the 2-fold symmetry axis (xz
plane), respectively. By virtue of methyl substitution on the
benzyl radical site, the symmetry of α-MeBz is lowered to Cs if
the methyl group is in a configuration in which one methyl CH
bond is in the plane of the aromatic ring. However, in the
presence of methyl internal rotation, the permutations and
permutation inversions of the methyl hydrogens must be
considered.65 Accordingly, methyl rotor transitions must be cast
into the G6 molecular symmetry group, which is isomorphic
with the C3v point group.
In the G6 molecular symmetry group, the D0, D1, and D2

electronic states for α-MeBz are all of 2A2 symmetry, equivalent
to 2A″ in Cs, making the D0−D1 transition allowed and
polarized to form a hybrid AB-type band. Additionally, the
methyl rotor levels are given the symmetry labels a1, a2, and e in
which the symmetry-allowed transitions follow a1 ↔ a1, a2 ↔
a2, and e ↔ e selection rules. The nuclear spin symmetries of
the three methyl group hydrogens are different for ‘a’ and ‘e’
symmetry internal rotor levels. Under the conditions of a jet-
cooled environment, the population is funneled toward the
lowest possible energy levels of each nuclear spin symmetry
type (0a1 and 1e levels), which have identical nuclear spin

statistical weights and do not interconvert efficiently via
collisions on the time scale of the expansion cooling.

B. Torsional Simulations and Fitting to Spectral Data.
The methyl torsional structure found in the excitation and DFL
spectra is governed by Franck−Condon factors involving the
torsional rotor levels in D0 and D1 states, which, in turn, reflect
the methyl rotor potentials for the two electronic states. These
potentials were simulated according to the procedure used by
Laane and co-workers,66 in which overall rotation and torsion-
rotation coupling are neglected, and the one-dimensional,
hindered rotor Hamiltonian is written as

φ
φΨ = − ∂

∂
+ Ψ = Ψ

⎡
⎣⎢

⎤
⎦⎥H F V E( )v v v v

2

2
(1)

where φ is the torsional angle about which the methyl group
rotates. We define φ = 0 (π or ± π/3) when a methyl CH is in-
plane, anti (syn) to the phenyl ring. In order to emphasize the
switch in direction of the in-plane CH group, we will refer to
φ = π as the syn configuration from this point forward. The
methyl rotational constant F is given by

π
=F

h
cI8 2

r (2)

with Ir as the reduced moment of inertia as defined by Pitzer.67

Using the calculated geometries for D0 and D1, the internal
rotational constants were determined to be F = 5.540 cm−1 for
D0 and 5.527 cm−1 for D1. The potential form V(φ) and thus
the barrier to internal rotation can be approximated from the
Fourier expansion of the form

∑φ φ= −
=

V V n( )
1
2

(1 cos )
n

n
6

1

(3)

which for 3-fold symmetric internal rotors only requires Vn with
n = 3,6,... to be considered.
The set of free rotor wave functions {ψi} is then used as a

basis set for variational diagonalization of the hindered rotor
Hamiltonian to obtain eigenvalues Ev and eigenfunctions

∑ ψΨ =
=

cv
N

i

iv i

1

(4)

To ensure the eigenvalues converged, a basis set size of
N = 200 was employed although convergence was achieved for
N = 50. Agreement between the simulated and experimental
eigenvalues was optimized by minimizing a linear least-squares
fitting function. Finally, the fit to experiment was checked by
calculating the intensities of the hindered rotor transitions,
and comparing the results with the intensities observed in
the excitation and DFL spectra. To that end, the Franck−
Condon factors for individual hindered rotor transitions were
computed as

ψ φ ψ φ φ= |⟨ ″ | ′ + Δ ⟩|I ( ) ( )j l
2

(5)

where Δφ is the phase shift between the ground and excited
state potential energy forms, V(φ).

IV. RESULTS AND ANALYSIS
A. 2C-R2PI and LIF Excitation Spectra. As a first step in

characterizing α-MeBz, a mass-resolved two-color resonant
two-photon ionization spectrum (2C-R2PI) was recorded.
The first 1900 cm−1 of this spectrum is shown in Figure 1.
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The spectrum displays a prominent D0−D1 origin at 21884
cm−1, −115 cm−1 from the corresponding benzyl radical origin
(21999.8 cm−1).2 Additionally, extensive Franck−Condon
activity in several ring modes is also present, as expected for
a π−π* transition. Table 1 shows the observed positions and
assignments of the main D0−D1 ring mode transitions for
α-MeBz, comparing these results with those in ethylbenzene.68

Vibronic effects appear to be less pronounced in α-MeBz
than they are in the benzyl radical, where vibronic coupling
involving the ν6a/ν6b modes dominates the spectrum. The inset
in Figure 1 portrays a magnified version of the low-frequency
portion of the LIF spectrum, highlighting the fact that a non-
harmonic progression is built off of the origin. This structure is
also observed built off of the ring mode fundamentals, marking
it as potentially ascribable to methyl internal rotor transitions.
Their large intensity points to a change in the orientation of the
methyl group between ground and excited states.
B. Rotational Band Contours. In order to analyze the low-

frequency internal rotor structure further, RBCs taken at higher
resolution were obtained for the origin and the +61/+63 cm−1

peaks. In both cases, these RBCs have complicated band pro-
files arising from overlapping transitions. Using the predicted
D0−D1 TDM direction from EOM-IP-CCSD calculations (see
Section V), the origin and +61/+63 cm−1 band contours were
simulated using the JB9569 program for a rigid rotor. A com-
parison with the experimental spectra is shown in Figure 2a,b,

demonstrating close agreement between the two. The
calculated rotational constants are given in Table S1. The
band contours of individual a and e internal rotor transitions
are shown in blue and green, while the sum of the components
shown as the red trace is displayed underneath the respective
experimental spectra. The close correspondence between
experiment and calculation establishes that the first transitions
in the excited state spectra involve transitions to the D1
electronic state, producing a 53%:47% a:b hybrid band. By
comparison, the corresponding D0−D2 transition would be
pure a-type, inconsistent with the experimental data. The RBC
for the +41 cm−1 (1e″−2e′) transition is shown in Figure S1. It
was not fit due to the presence of internal rotation/overall
rotation coupling.
The significant change in TDM direction in the D0−D1

transition of α−-MeBz radical (53:47 a:b hybrid) relative to the
benzyl radical (pure b-type) cannot be accounted for simply by
inertial effects, since the inertial axes rotation under methyl
substitution by only 20°. As a result, electronic effects are also
at play, as is discussed further in Section V.

C. Origin Dispersed Fluorescence Spectrum. Figure 3
presents the first 1200 cm−1 of the DFL spectrum of the D1
0°0(0a1/1e). The spectrum bears some resemblance to the
excitation spectrum, displaying irregular structure in the low-
frequency region, which is also built off of each of the ring
mode fundamentals. The observed ring modes are tabulated

Table 1. Ring-Mode Transitions in the First Excited (D1) and Ground (D0) Electronic States with a Comparison to S1 and S0
Frequencies in Ethylbenzene, Respectively

D1 D0

assignment expt. freqa ethylbenzene (S1)
b assignment expt. freqa ethylbenzene (S0)

c

6a10 389.9 - 6a01 549.0 560
6b10 522.7 530.3 6b01 617.4 627
110 754.0 727.7/739.6 1°1 785.3 778
1210 969.2 931.9 12°1 971.6 1016
18a10 1138.6 970.6 18a01 - 1042

aWavenumber shifts relative to the 0a1−0a1 transition, in cm−1. bReference 68. cReference 70.

Figure 2. RBCs of the (a) origin and (b) +61/63 cm−1 transitions. The black trace shows the experimental results with the simulated results given
underneath. The individual simulated RBC transitions are shown as blue and green traces, which are combined as the red trace and compared to
experiment.
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and compared to ethylbenzene70 in Table 1, which are in
relatively good agreement with each other. The lack of mirror
symmetry with respect to the excitation spectra is also
consistent with a change in the preferred methyl conformation
between ground and excited states.
D. Methyl Rotor Torsional Potentials. The internal rotor

structure was simulated for both the ground and first electronic
states using the torsional formalism described in Section III.B.
Figure 4 compares the 2C-R2PI spectrum with the best-fit

methyl rotor simulation, with the relative wavenumber posi-
tions and internal rotor labels attached to individual transitions.
The optimized wavenumber positions of the simulation are
compared with experimental frequencies in Table 2, yielding
the best fit excited state potential parameters V3′ = 72 cm−1 and
V6′ = 15 cm−1. The predicted intensities using a phase shift of
Δφ = π are in good overall agreement with experiment,
although the predicted intensity for the 0a1″−3a1′ transition is
somewhat overestimated. However, such anomalous internal
rotor intensities have been observed in previous work,71,72

where they were assigned based on a careful analysis to Coriolis
coupling between the 3a1 and 3a2 levels. In the G6 molecular

symmetry group, the Coriolis selection rules73 are met with
Γ(ψ3a2) × Γ(ψ3a1) → Γ(Jρ), where Jρ is the torsional
momentum operator with the correct symmetry to mix 3a1
and 3a2.

65 This mixing between methyl rotor levels manifests
itself experimentally in the appearance of the 0a1″−3a2′
transition as a peak with a fraction of the 0a1″−3a1′ intensity,
in a manner similar to that in the ortho-fluorotoluene isomer.72

The broad rotational envelope of the +61/+63 RBC indicates
that the 0a1″−3a2′ transition lies just on the low-frequency edge
of the dominant 0a1″−3a1′ transition leading to the composite
rotational band contour shown in Figure 2b. Furthermore,
contained in the low-frequency structure located at −75, −37,
−24 and +17 cm−1 with respect to the origin are “hot bands”
that are attributed to the 2e″-1e′, 2e″-2e′, 3a1″-0a1′, and 2e″-4e′
methyl rotor transitions, respectively.
Figure 5a−d shows the DFL spectra taken from the origin,

2e′, 3a2′, and 3a1′ torsional levels in the excited state,
respectively. Due to symmetry restrictions, only those levels
that share the same spin-state symmetry of the excited state
rotor level are visible in the spectrum. As a result of their partial
overlap in the excitation spectrum, the 0a1′/1e′ DFL spectrum
(Figure 5a) has contributions both from a and e levels. Since
the DFL spectrum was recorded with excitation laser fixed at a
wavelength where both 0a1′ and 1e′ levels contribute, the relative
intensities of the 0a1′ and 1e′ components of the spectrum were
adjusted to match experiment. The best fit was obtained with 1e′
intensities multiplied by a factor of 0.4. All four spectra contain
contributions from scattered laser light at the resonance frequency,
which masks the intensity of this band. In order to assess the inten-
sities in the absence of such interference, Figure 5e presents the
0a1′/1e′ spectrum in the region of the 6a01 transition (−549 cm−1

from resonance), where no such interference occurs. Using the
same phase shift (Δφ = π) as deduced from the excitation
spectrum, the simulated DFL spectra are in good agreement with
the experimental spectra, with the best-fit internal rotor energy
levels shown in Table 2. From the analysis, the ground state
potential terms are V3″ = 151 cm−1 and V6″ = 34 cm−1. The best-
fit internal rotor potentials in ground and excited states are shown
pictorially in Figure 6.
While methyl rotor transitions account for most of the

observed transitions, there are two transitions at −213 and

Figure 3. DFL spectrum of the D0−D1 origin of α-MeBz radical. The
spectrum contains contributions from the 0a1′ and 1e′ excited state
levels.

Figure 4. Close-up view of the 2C-R2PI spectrum near the D0−D1
origin. The experimental spectrum is compared with the best-fit
simulations of the internal rotor structure, shown as a stick diagram in
red. See text for further discussion.

Table 2. Best Fit between the Experimental and Simulated
Internal Rotor Results in the First Excited (D1) and Ground
(D0) Electronic States

excitation spectrum dispersed fluorescence

assignment
expt.
freqa

sim.
freq.a assignment

expt.
freqa sim. freq.a

2e″−1e′ −75 −79 0a1′−0a1″ 0 0
2e″−2e′ −37 −37.3 1e′−1e″ 0 0
3a1″−0a1′ −24 −23.9 1e′−2e″ −79.4 −79
0a1″−0a1′ 0 0 0a1′−3a2″ −84 −88.7
2e″−4e′ 17 21.8 0a1′−3a1″ −117.4 −113.6
1e″−1e′ 1.5 1.7 1e′−4e″ −136.8 −138
1e″−2e′ 41.3 41.4 1e′−5e″ −174.9 −184.3
0a1″−3a2′ 60.5 63.3 0a1′−6a1″ −247.6 −243.4
0a1″−3a1′ 63.4 67.9 0a1′−6a2″ −247.6 −244.4
1e″−4e′ 100.1 100.8 44°2 −229.3 2 × −121.2
1e″−5e′ 134.9 149.8 30°1 −212.7 −210.5
0a1″−6a1′ 196.2 211.9
0a1″-6a2′ 196.5 212
aWavenumber shifts from the 0a1-0a1 transition in cm−1.
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−229 cm−1 that are not assignable as such. Based on the
calculated ground state frequencies for α-MeBz, we tentatively
assign the band at −213 cm−1 as an in-plane fundamental
(30°1), while the band at −229 cm−1 has a wavenumber
position consistent with assignment as the first overtone of the
out-of-plane vibration ν44; that is, 44°2. The forms of these
vibrations are shown in Figure S2.
E. Photoionization Efficiency Scans. The adiabatic

ionization threshold of α-MeBz was determined from a PIE
scan recorded with the D1 zero-point level as the intermediate
state. The results are shown in Figure 7. A sharp onset was
observed at 6.835 ± 0.002 eV, indicating that there is little
geometry change from D1 to the radical cation ground state
(S0). Since the PIE scans were carried out in an extraction
field of only 70 V/cm, the ionization threshold is likely to
underestimate the true adiabatic threshold by no more than
20 cm−1 (0.002 eV). The calculated ionization potential (IP =
6.764 eV) agrees well with the experimental value. As we shall
see in Section V, the calculations also predict that the methyl
group prefers a syn orientation in the cation, the same as that in
D1, consistent with the sharp ionization threshold observed.
The experimental IP of α-MeBz is lower than that obtained for
the benzyl radical (IP = 7.2477 ± 0.00017 eV) by 0.41 eV,
as one might anticipate based on hyperconjugation of the
methyl group with the π cloud, similar to the IP reduction from
benzene (9.245 eV) to toluene (8.828 eV).74

Ionization threshold scans were also obtained using the
2e′, 3a2′, and 3a1′ D1 methyl rotor levels as intermediate states.
Based on the expected near-vertical nature of the D1-ion
transition, these scans are anticipated to map out the positions
of the 2e, 3a2, and 3a1 levels of the cation. The threshold out of
the D1(2e′) intermediate state is 121 ± 15 cm−1 above the
adiabatic threshold, consistent with a significant increase in the
barrier to methyl rotation in the cation. The near-coincidence
of the 2e and 3a2 levels of the cation is consistent with this
notion. However, the similar threshold for ionization out of 3a1′
is anomalous as it should be paired with 4e′ in the high barrier
limit, well separated from the 2e′/3a2′ pair. Nevertheless, if the
Coriolis coupling involving 3a1′/3a2′ invoked to explain the
intensity of the 0a1″−3a2′ transition in the 2C-R2PI spectrum is

Figure 5. DFL spectra along with the simulated results for emission
from the (a) 0a1′/1e′, (b) 2e′, (c) 3a2′, and (d) 3a1′ excited state
levels. Scattered light masks intensities at ‘0’ relative wavenumbers. (e)
Internal rotor structure built off the 6a01 vibronic band in the 0a1′/1e′
DFL spectrum, which has no interference from scattered light. In (a)
and (e), the relative intensities of transitions out of 0a1′ and 1e′ were
adjusted to match experiment, due to overlap of these transitions at
the excitation wavelength used for the DFL spectra. Asterisks indicate
the features affected by collisional quenching verified from
fluorescence lifetime measurements.

Figure 6. Potential energy curves and eigenvalues for D0 and D1 states
based on the best-fit parameters from the methyl rotor simulations.
D0: V3″ = 151 cm−1, V6″ = 34 cm−1. D1: V3′ = 72 cm−1, V6′ = 15 cm−1,
and Δφ = π.

Figure 7. Adiabatic ionization threshold for the 0a1″−0a1′/1e″−1e′
transition (left, black) and a series of PIE scans (on right) using the
indicated D1 internal rotor levels as intermediate states. See text for
further discussion.
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correct, this mixing will produce Franck−Condon activity to
the 3a1 level of the cation, as observed. Based on the fitting of
the PIE scans taken from D1 rotor levels, a tentative methyl
internal rotor barrier of V3

+ = 360 cm−1 was deduced for the
cation.
F. State-Selected Infrared Spectra. The alkyl CH stretch

region of the infrared is particularly useful as an alternative,
complementary probe of the methyl group and its electronic
state dependent effects on the spectroscopy of α-MeBz. As a
result, both ground state (D0) and excited state (D1) RIDIR
spectra were recorded for α-MeBz in the alkyl and aromatic CH
stretch regions (2800−3150 cm−1). The results are shown in
Figures 8a,b, respectively. The changes in the IR spectrum with

electronic excitation are striking, suggesting a sensitivity of the
spectrum to the orientation of the methyl group and/or its
changed electronic environment.
The predictions of the calculations for the ground state

are included as a stick diagram in the figure, calculated at the
B3LYP/6-311+G(d,p) level of theory. There is generally good
correspondence between calculation and experiment, although
the experimental spectrum is complicated by the presence of
stretch/bend Fermi resonances. Based on the internal rotor
structure in the vibronic spectrum, the calculated CH stretch
modes give guidance as to how to interpret the methyl group’s
CH stretch spectrum. By symmetry, the methyl CH stretch
modes divide into a CH stretch mode localized on the in-plane
CH group, and a pair of out-of-plane CH stretch modes
associated with the symmetric/asymmetric motions of the out-
of-plane CH2 group. The prediction of the calculation is that
this pair of transitions appear with small at the low-frequency
end of the spectrum, while the in-plane CH is much higher in
frequency, appearing as a strong transition at 2980 cm−1. We
tentatively assign the transition at 2909 cm−1 as the out-of-
plane asymmetric CH2 stretch, while the symmetric stretch
mode is split by a Fermi resonance with a an even overtone of

the CH2 bend of the same CH2 group, which is calculated, after
scaling, to be in close proximity (1435 × 2 = 2870 cm−1). This
mixed set of levels appears at 2862 and 2876 cm−1 in the
experimental spectrum. Finally, we tentatively assign the CαH
stretch to the weak transition at 3009 cm−1. The aromatic CH
stretch region is notorious for undergoing extensive anhar-
monic mixing.44,46 In this region, the agreement between
experiment and theory is insufficient to make confident
assignments.
Full normal mode calculations at the EOM-IP-CCSD/

6-311+G(d,p) level of theory were deemed too computation-
ally intensive for the D1 excited state. Instead, the CH stretch
transitions were treated in the reduced set of internal co-
ordinates associated with stretching the three CH bonds of the
methyl group. Numerical second derivatives were calculated
using standard formulas, serving as input to a reduced-
dimension Wilson G-matrix formalism from Hab̈er et al.,32

here generalized to the less symmetric potential present in the
α-MeBz radical to compute the frequencies and forms of the
three CH stretch normal modes of D1 α-MeBz radical. More
detailed information regarding this model is given in Section
VI.C. As a check, the ground state CH stretch modes were also
calculated in this way, reproducing the normal mode result
at the B3LYP/6-311+G(d,p) level of theory, as is shown in
Figure 8a, using a scale factor of 0.9414. The parameters from
the model to obtain the ground state EOM-IP-CCSD results are
given in Table S2. In order to calculate the infrared intensities of
the normal modes, dipole derivatives along the three CH bonds
were also calculated, and used to compute the IR intensities.
Upon electronic excitation, the experimental data indicate

that the methyl group orientation rotates relative to the ground
state configuration so that the in-plane CH now points in the
opposite direction. This methyl reorientation is consistent with
an angular change Δφ = π based on the best fit to the observed
internal rotor structure in the excitation and DFL spectra.
One consequence of this change is that the excited state RIDIR
spectrum of Figure 8b is strikingly different than its ground
state counterpart, most notably in the highest frequency methyl
CH stretch (labeled “in-plane CH” in Figure 8a) being shifted
and/or reduced in intensity in the D1 state to the point that it is
difficult to locate. We tentatively assign it to the weak transition
at 3021 cm−1, although it could also be part of the clump of
transitions near 3050 cm−1. In either case, the experimental
and calculated CH stretch fundamentals retain the same pat-
tern as in D0, with two low and one high frequency CH stretch
transition, with all three shifted to higher frequency than their
ground state counterparts. We postulate that this increase in fre-
quency shifts the symmetric CH2 stretch located at 2909 cm−1

out of resonance with the bend overtones, so that they now
undergo only minor Fermi resonance coupling with the bend
overtones. The weak bands at 2850 cm−1 are therefore
tentatively assigned as the remnant of this Fermi resonance,
which is now less pronounced. The band at 2926 cm−1 is
assigned to the out-of-plane asymmetric CH2 stretch. As in the
D0 state, the aromatic ring and CαH stretch fundamentals form
a set of transitions in the 3040−3090 cm−1 region. No attempt
was made to further analyze this region.

V. COMPARISON WITH CALCULATIONS
The spectral data and analysis just presented have provided
experimentally derived shapes, barrier heights, and change in
preferred orientations for the methyl group upon electronic
excitation. However, a direct measure of the preferred

Figure 8. (a) D0-RIDIR spectrum compared to IR frequencies and
intensities calculated at the B3LYP/6-311+G(d,p) (black sticks, scaling
factor: 0.9635) and at the EOM-IP-CCSD/6-311+G(d,p) level of
theory (red sticks, scaling factor: 0.9414). (b) D1-RIDIR spectrum
compared to IR transitions calculated at the EOM-IP-CCSD/
6-311+G(d,p) level of theory (red sticks, scaling factor: 0.9414).
The EOM-IP-CCSD results were obtained upon implementing the
Wilson G-matrix formulated by Hab̈er et al. (ref 32). See text for further
discussion.
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orientation of the methyl rotor in either state is missing. Thus,
we performed a set of ab initio calculations aiming to predict
the preferred methyl orientations in D0 and D1 states. We also
sought additional insight into the methyl CH stretch region
of the infrared, and the observed changes that accompanied
electronic excitation there.
To calibrate various levels of theory, we have carried out

calculations on the excited states of the benzyl radical. Since the
TDM directions and relative oscillator strengths of the D0−D1
and D0−D2 transitions are known for the benzyl radical,63,64 it
provides a benchmark for decisions on the level of theory
needed to correctly describe the excited states of α-MeBz. In
the benzyl radical, the D0−D1 transition is known to be a very
weak, pure B-type band, while the vibronically induced
transitions are pure A-type peaks associated with the D0−D2
transition with much greater oscillator strength. Based on their
analysis of this vibronic coupling, Cossart-Magos and Leach
surmised that the D2 state is only 430−485 cm−1 above D1.

1

While MCSCF provides a qualitatively correct description of
the first two excited states in benzyl and α-MeBz (discussed
more thoroughly in Supporting Information), it misses dynamic
correlation effects which leads to the wrong order of the two
states, as shown in Table 3, consistent with the calculations of

Rice et al.75 Introducing dynamic correlation through con-
figuration interaction as was done by Negri et al.8 or using
multiconfigurational perturbation theory recovers the correct
order of the excited states (see Table 3). Even though the 12A2
state in benzyl is the second excited state at the ground state
geometry at the MCSCF level, it becomes the lowest excited
state near its own equilibrium geometry. As a result, it is
possible to find the optimized geometry of this state and its
vibrational frequencies as needed. However, it was not possible
to find an optimal geometry of the corresponding (B-type)
state in α-MeBz using MCSCF, due to a destabilizing steric
repulsion of the methyl group with the aromatic ring and
stronger mixing of the two excited states. On the contrary,
MCSCF geometry optimizations in α-MeBz always converge to
the equilibrium structure of the other (A-type) state. Since the
MCQDPT analytic gradients are not available, it becomes very
challenging to obtain accurate values of the methyl rotor barrier

and the preferred orientation for the first excited state at the
MCSCF/MCQDPT level of theory.
Not surprisingly, low-correlated single-reference methods

like CIS76 and TDDFT (our own preliminary calculations) also
fail to produce a correct ordering of the excited states in benzyl
and yield a D1-D2 energy splitting with significant error.
EOM-EE-CCSD in the aug′-cc-pVDZ basis inverts the order of
the D1 and D2 states for benzyl, but gives the correct order in
α-MeBz (see Table 3). We found, however, that EOM-EE-
CCSD produces the correct order of states adiabatically if the
larger cc-pVTZ basis is employed. Fortunately, EOM-EE-
CCSD/aug′-cc-pVDZ gives the correct state ordering both
vertically and adiabatically in α-MeBz. On the other hand, the
EOM-IP-CCSD method matches with experiment for the benzyl
radical, giving D0−D1 and D0−D2 transitions with the correct
TDM directions, relative oscillator strengths, and approximate
energy splittings (see Tables 3 and 4). The approximate vertical

D0−D1 and D0−D2 energy splittings at the EOM-IP-CCSD level
with and without perturbative triple corrections are given in
Table 3.
Additional complexity in describing D1/D2 splittings arises

due to nonadiabatic effects and vibronic interactions between
these states. While investigating these topics is beyond the
scope of this paper, we note that the vibronic couplings in
α-MeBz are stronger and the adiabatic states are more strongly
mixed than the corresponding states in the benzyl radical.
This is because D1 and D2 belong to the same symmetry
representation in α-MeBz and are allowed to mix. At the same
time, the presence of the methyl group rotates the TDMs of D1
and D2 toward each other.
We found that the orientations and magnitudes of the TDMs

for the D0−D1 and D0−D2 transitions in α-MeBz are extremely
sensitive to the electronic structure method, basis set, and
the geometry of the molecule. Tables 3 and 4 provide a
representative set of data comparing calculated properties of
the D1 and D2 states in benzyl and α-MeBz. The EOM-IP-
CCSD calculations predict greater oscillator strength (by ∼2.5
times) for the D0−D1 transition in α-MeBz than in benzyl.
The D2 state is predicted to be less than 500 cm−1 above D1 in
α-MeBz, and still carries a greater oscillator strength in its
transition from D0, with f 02 = 0.103 compared to f 01 = 0.042.
As a result, it is somewhat surprising that the effects of vibronic
coupling between D1 and D2 are not more readily apparent in
the 2C-R2PI spectrum.
Taking into account the complexity of the electronic

structure of α-MeBz and the intrinsic limitations of the suite
of computational methods used in describing its electronic
states, determining the preferred orientation of the methyl
rotor in the ground and first excited states is a challenging task.
Table 5 summarizes the rotational barriers obtained at different
levels of theory.
All methods except IP-CISD predict the ground state to be

more stable in the anti geometry than in syn, with the methyl

Table 3. Comparison of the Vertical Energy Splittings
(cm−1) between the D1 and D2 States of Benzyl and α-MeBz
Radicals Provided by Different Levels of Theorya

level of theory benzyl α-methylbenzyl

EOM-EE-CCSD/ −229.0 563.8
aug′-cc-pVDZb

EOM-IP-CCSD/ 1197.2 742.8
6-311+G(d,p)c

EOM-IP-CCSD (dT)/ 592.2 478.6
6-311+G(d,p)c

MCSCF/cc-pVTZd −1288.8 −1666.6
MCQDPT/cc-pVTZd 1209.3 1138.1

aPositive values correspond to the state with TDM along b axes (2A2
state of the benzyl radical) being the lowest one. All calculations are
performed at the ground state geometries (geometry of the anti isomer
is used for α-methylbenzyl). bG.S. geometry optimized at EOM-EE-
CCSD/aug′-cc-pVDZ. cG.S. geometry optimized at EOM-IP-CCSD/
6-311+G(d,p). dG.S. geometry optimized at MCSCF(9,9)/6-31G(d).
State averaging for the three lowest states (D0, D1, D2) was employed
for energy calculations.

Table 4. Calculated Properties of the D1 and D2 States
of Benzyl and α-MeBz Radicals at the EOM-IP-CCSD/
6-311+G(d,p) Level of Theory

parameter benzyl α-methylbenzyl

D1(μa
2:μb

2:μc
2) 0:100:0 53:47:0

D2(μa
2:μb

2:μc
2) 100:0:0 99:1:0

fD1:fD2 0.0179:0.1218 0.0416:0.1030
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rotor barrier between 120 and 190 cm−1. Rather misleadingly,
IP-CISD in diffuse basis sets gives lower energy for the syn
configuration. This suggests that even in the ground electronic
state, the molecular structure is very sensitive to the level of
theory employed.
All IP methods suggest that the anti conformation is

preferred in the first excited state (see Table 5). However,
this would imply that the methyl group is not rotated upon
excitation, in contradiction with the experimental evidence. The
calculations with EOM-EE-CCSD and multiconfigurational
methods show that the syn conformation is lower in energy for
the experimentally observed D1 (B-type) state. As discussed
above, we believe EOM-EE-CCSD provides a more balanced
description of the excited states in α-MeBz than the IP
methods. Additionally, the calculations at the ground state
geometry with MCSCF and MCQDPT also provide a hint that
the B-type state prefers the syn conformation; however, more
precise analysis was not possible due to a failure of these
methods to find the optimal geometry of the B-type state.

The experimental observation of a sharp ionization threshold
in the PIE scans suggests that the D1 state has the same
orientation as the S0 state of the cation. Optimized geometries
at the B3LYP/6-311+G** level of theory predict a syn ground
state geometry of the cation, with a barrier of 597 cm−1.
CCSD(T)/cc-pVTZ calculations of the cation (at the B3LYP/
6-311+G** geometries) are consistent with this conclusion,
with a syn structure 575 cm−1 lower than the anti configuration.
These data agree with EOM-EE-CCSD and MCSCF/
MCQDPT predictions that the methyl group is in an anti
orientation in the ground state, rotates to a syn position in the
excited state, and retains this preference for the syn orientation
in the cation. The calculated geometries for the D0, D1, and S0
electronic states are shown in Figure 9a−c.

VI. DISCUSSION
A. The Effect of the Methyl Group on the Benzyl

Radical Excited States. Given the close structural and
electronic similarity of the α-MeBz radical to its parent benzyl
radical, it is natural to compare the two in assessing the effects
of methyl substitution at the Cα position. The vibronic spec-
troscopy of benzyl radical has been studied in some detail pre-
viously.1−8 This spectrum is striking in that the D0−D1 transition,
while allowed, is quite weak, with strong vibronic coupling leading
to a triad of intense vibronic bands about 300−400 cm−1 above
the D0−D1 origin. This strong vibronic coupling is facilitated by
the close proximity of the D2 and D3 states to D1, and their
large oscillator strengths out of D0. Analysis of vibronic coupling
by Eiden et al. led to the conclusion that the ν6a fundamental
gains its intensity from vibronic coupling to D3, while the ν6b
fundamental and its Fermi resonant partner (a ν17 + ν36
combination band) are vibronically coupled to D2.

2

The vibronic spectrum of α-MeBz is, by contrast, much less
affected by vibronic coupling than benzyl radical. The vibronic
spectrum of Figure 1 is dominated by a strong origin transition,
with the most intense Franck−Condon activity involving the
methyl rotor levels built off it, which can be explained by the
change in preferred orientation of the methyl rotor, without
direct reference to higher excited states. Vibronic activity in the
ν6a, ν6b, ν12, and ν18a fundamentals (using Varsanyi notation for
substituted benzenes) is similar to what one might expect for a
substituted benzene. However, much like the benzyl radical, the
ν6a ring mode decreases by ∼100 cm−1 relative to typical ν6a
modes in the ground state.2

Table 5. The Barrier Heights between the syn and anti
Conformations of α-MeBz in the Ground and the First
Excited Statea

method geometry
D0 barrier
(cm‑1)

D1 barrier
(cm‑1) rotation

IP-CISD/ IP-CISD/ −61 336 yesb

aug-cc-pVDZ aug-cc-pVDZ
EOM-IP-CCSD/ IP-CISD/ 124 316 no
aug-cc-pVDZ aug-cc-pVDZ
EOM-IP-CC(2,3)/ IP-CISD/ 185 294 no
6-31G(d) aug-cc-pVDZ
CCSD/EOM-EE-
CCSD/

CCSD/EOM-EE-
CCSD/

146 −377 yes

aug′-cc-pVDZ aug′-cc-pVDZ
MCSCF/cc-pVTZc,d MCSCF/6-31G(d)c 179 −123 yes
MCQDPT/cc-
pVTZc,d

MCSCF/6-31G(d)c 166 −253 yes

aThe positive value of the barrier means that the anti conformation is
preferred. The rotation column indicates whether the method predicts
methyl rotation between the ground and excited state. bPredicts D0 as
syn and D1 as anti.

cThe active space comprised of 9 orbitals and 9
electrons. dState averaging for the three lowest states (D0, D1, D2) was
employed for energy calculations. D0 geometries were used for
estimating rotational barriers in the D1 state.

Figure 9. Structural parameters for the (a) D0 and (b) D1 states of the neutral radical at the EOM-EE-CCSD/aug′-cc-pVDZ level of theory, and the
(c) S0 electronic state of the ion at the EOM-EE-CCSD(T)/cc-pVTZ level of theory. Bond lengths are given in Angstroms and angles are given in
degrees.
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Despite the apparent weakening of the vibronic coupling,
it is plausible that it still may be present in the spectrum and
influencing it. Since vibronic coupling of the D1 state to D2 and
D3 occurs through the same totally symmetric ring modes (ν6a,
ν6b, ν1, ν12, ν18a) that already have Franck−Condon activity, the
effects of the vibronic coupling may manifest themselves by
modifying the intensities of these transitions. In particular, as a
totally symmetric mode (a1), the ν6a ring mode can couple D1
and D2, which are of the same symmetry (A2) in G6. The ratio
of the 6a10/0°0 intensities in the 2C-R2PI spectrum (Figure 1)
can be compared with those for 6a01 relative to resonance
fluorescence in the 0°0 DFL spectrum (Figure 3). In this and
the other Franck−Condon active modes, modest changes in
intensity are apparent, but not dramatic, pointing again to the
diminished effect of vibronic coupling in the spectrum.
Finally, it is worth noting that the excited state lifetimes of

the vibronic levels of α-MeBz (480 ns) are similar to those in
the benzyl radical (400 ns). While only a single exponential
decay is distinguishable for α-MeBz, the benzyl radical demon-
strates a biexponential decay with a fast component of 400 ns
and a slow component of 1.86 μs whose source is still under
debate.4 In the present case, we do not clearly see a weak long-
lived component to the decay.
B. Electronic State Dependence of the Internal

Rotation Barriers. In our discussion in the preceding section,
we have been considering the effect of methyl substitution on
the electronic states of the benzyl radical. In this section, we
discuss the way in which the methyl group responds to the

electronic state structure of the benzyl radical via changes in its
orientation and the barrier to its internal rotation.
In this context, it is helpful to view α-MeBz as a phenyl-

substituted ethyl radical. In the absence of substitution, the ethyl
radical has a hindered rotor ground state potential dictated by a
pure V6 term due to the symmetric nature of the −ĊH2 group
against which the methyl group internally rotates. The major
effect of phenyl substitution, then, is to break this “left/right”
symmetry, leading to a hindered rotor potential dominated by a
V3 term that distinguishes whether the methyl group has its in-
plane CH group syn or anti to the aromatic ring. As previously
summarized, the frequencies of the hindered rotor structure
present in the D0−D1 excitation and DFL spectra can be fit with
a D0 potential with V3″ = 151 cm−1 and V6″ = 34 cm−1, and a D1
potential with a barrier about half that size (V3′ = 72 cm−1 and
V6′ = 15 cm−1). Furthermore, the intensities were best fit with
Δφ = π, proving that there is a switch in the preferred
orientation between D0 and D1 states. Based on the calculations,
we surmise that the α-MeBz radical prefers the anti orientation in
D0 and syn orientation in D1.
This electronic “switch” for the methyl rotor is an effect

observed in other circumstances in which the methyl rotor is
directly bonded to the electronic chromophore. The 1- and
2-methylvinoxy radicals studied by Williams et al.77−79 are
especially instructive in this regard. Here, as in the present case,
the methyl group rocks against a planar radical framework that
is asymmetric, with the V3 term dominating and shifted be-
tween the ground and first excited state by Δφ = π. In general,

Figure 10. Illustrations depicting the NBO orbitals and their hyperconjugation in the D0 (φ = 0 and π) electronic state of the neutral radical for (a)
φ = 0 and (b) φ = π. The solid red/blue surfaces depict the radical π orbital and the light red or blue are the methyl σCH orbitals. When the in-plane
CH is anti to the aromatic ring, both σCH orbitals stabilize the configuration by interacting with the radical π orbital by 3.55 kcal/mol. In the syn
orientation, both σCH orbitals interact with the radical π orbital with 3.77 kcal/mol stabilization energy.
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the orientation for a methyl group is affected by a delicate
balance between electrostatic donor/acceptor (hyperconjuga-
tion) and steric interactions.80 If steric effects are negligible,
such is the case for the methylvinoxy radical isomers, the methyl
group consistently favors an orientation in which the in-plane
methyl CH orients syn to the vicinal bond with higher bond
order to optimize hyperconjugative overlap between occupied
and vacant orbitals. The role of hyperconjugation in dictating the
orientational preference of the methyl group was first noted in
propene,81 as explained in the seminal work of Pople and co-
workers.82

In the present case of α-MeBz, the two vicinal bonds are
the Cα−H and C1−Cα bonds, only the latter of which has
any double bond character (see Figure 9). This leads to a pre-
diction that in the ground state the in-plane methyl CH should
be syn to the ring, counter to the calculated anti configuration
(Figure 9a). Steric effects, in fact, suggest the opposite pref-
erence in the ground state because the aromatic C2−H group
and in-plane methyl hydrogen are unfavorably close in the syn
configuration (2.1 Å) relative to the sum of their van der Waals’
radii (∼2.4 Å). According to calculations, the C1−Cα−Cβ angle
also increases slightly from 124.12° in the anti configuration
(D0) to 127.50° for syn (D1, Figure 9b), consistent with the
notion that steric hindrance counteracts hyperconjugation in
the ground state. On this basis, we deduce that steric hindrance
dictates the barrier to methyl internal rotation in D0, yielding a
barrier two times that of D1.
In the D1 excited state, the in-plane CH is oriented syn to the

ring (Figure 9b). Here the in-plane methyl CH now eclipses
the vicinal C1−Cα bond since its bond order increases upon
excitation as predicted by calculations. We surmise on this basis
that hyperconjugation effects now outweigh steric hindrance.
Natural bond orbital (NBO) analysis40,41 can be used to
describe the electronic structure in terms of hyperconjugative
interactions. The NBO wave functions give a Lewis structure
picture of the localized orbitals in the molecule and describe the
donor/acceptor charge transfer contributions arising from
orbital overlap between neighboring groups. Figures 11a,b
illustrate the NBO results for the anti and syn geometries in the
ground state, depicting the methyl σCH orbitals (semi-
transparent) back-donating electron density to the partially
filled radical π orbital (solid), resulting in the syn configuration
having a slightly larger stabilization energy (3.77 kcal/mol)
than the anti geometry (3.55 kcal/mol). The conformational
change in the D1 geometry may be ascribed to the fact that
upon excitation, there is stronger overlap between the out-of-
plane σCH orbitals and the Cα π orbital. Although steric
hindrance still plays a role, albeit less pronounced, hyper-
conjugation is now suspected to control the D1 barrier height
and the preferred methyl group orientation.
While we do not have a detailed characterization of the

cation methyl rotor states, the near-vertical excitation thresh-
olds in the PIE scans point clearly to the cation having the same
preferred methyl orientation as the D1 excited state; namely,
syn. Removal of the radical π electron upon ionization
dramatically changes the local π-bonding. The calculated geom-
etry in Figure 9c suggests retention of significant C1−Cα double
bond character and a slight increase in the C1−Cα−Cβ angle to
128.87°, further reducing steric effects. Thus, the correct
prediction that the in-plane methyl CH lies toward the vicinal
C1−Cα bond agrees with calculations. As a consequence of
ionization, the delocalized positive charge induces greater
hyperconjugation between these orbitals, and the barrier to

internal rotation tentatively deduced based on the photoionization
thresholds (∼360 cm−1) reflects this overall behavior.

C. Coupling Between the Alkyl CH Stretches and
Methyl Rotation. Having characterized the methyl rotor
orientations and the detailed shapes of the methyl rotor
potentials of α-MeBz in both D0 and D1 states, we conclude the
Discussion section with an analysis of the methyl CH stretch
infrared spectrum. Particular attention is focused on the
coupling of methyl rotation with the methyl CH stretch
modes, and how the orientation and shapes of the methyl rotor
potentials manifest themselves in the methyl CH stretch results.
One of the intriguing aspects of the present work is that it
reports CH stretch spectra in both D0 and D1 states (Figure 8)
using the three-laser technique of excited state RIDIR
spectroscopy.42 In Section IV.F, the B3LYP (D0) and EOM
(D1) calculations were used to describe the pattern of
transitions observed experimentally, notably, in having the
methyl CH stretch transitions split into a pair of transitions due
to the out-of-plane CH groups at low frequency and a single CH
stretch due to the in-plane CH at higher frequency. The EOM
calculations also predicted the observed shift up in frequency of
the set of three alkyl CH bands in D1 relative to D0.
To provide a simple physical picture for the frequency

pattern and shift in the experimental IR spectra, we present
an analysis of the torsion−vibration coupling using a Wilson
G-matrix model, which treats the three CH stretches as local
harmonic oscillators with optional finite kinetic coupling.83

Figure 11. Methyl CH stretch modeling results for the D0 ground
electronic state of α-MeBz. (a) The changes to the spring constant of
CH(1) (kn=1) shown as the constituent components αhc and αst for a
single CH oscillator as a function of the torsional angle. (b) Calculated
frequencies of the CH stretch normal modes at the B3LYP/
6-311+G(d,p) level of theory (solid black traces, scaling factor:
0.9635), with the best-fit results for the diabatic local mode CH(n)
stretch frequencies shown as the broken red (ω1), blue (ω2) and green
(ω3) traces, and the adiabatic CH stretches shown as dotted gold
traces. The vertical dotted line indicates the optimized D0 geometry
torsional angle.
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This treatment generalizes that outlined in the seminal work of
Hab̈er et al. on the ethyl radical32 where hyperconjugation acts
as a stabilizing force between the partially filled radical site and
the methyl group that has implications on the methyl CH
stretch modes. For α-MeBz, the methyl CH bond force
constants kn oscillate periodically as

φ α α= − +k k( ) [1 ]n 0 hc st (6)

where

α φ π

α φ π

=
Δ

+ −

=
Δ

+ −

k
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k
k

n

sin ( ( 1) /3),
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hc
hc

0

2
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for each of the three CH(n, n = 1−3) bonds with αhc and
αst representing the hyperconjugation-induced and sterically
hindered fractional changes to the force constant k0, respec-
tively, as a function of the torsional angle φ. The αhc and αst
terms of eq 6 are plotted individually for D0 in Figure 11a with
the latter multiplied by 2 to more easily see its form. The αhc
term represents the major factor due to hyperconjugation
lowering the force constant k0, and it is maximized when a
CH(n) bond becomes parallel to the adjacent radical π orbital
(e.g., CH(n = 1) for φ = π/2). Figure 10a,b show this hyper-
conjugation in D0 for methyl group orientations φ = 0 and
φ = π providing a useful visualization of the overlap between

the methyl σCH orbitals and the respective π orbital that leads to
a reduction in the force constant for the CH bond, thereby
lowering its frequency.
The αst term provides a counteracting force that is greatest/

lowest when a CH(n) bond is eclipsed/staggered relative to
the aromatic C2−H group, leading to a “left-right” in-plane
asymmetry as the degree of steric hindrance changes. The αst
term was not included in the original model of Hab̈er et al. The
addition of this term makes it possible to include the effects of
steric crowding from the aromatic ring for different methyl
group torsional angles. Overall, both αhc and αst provide
physical insight into the electronic structure of α-MeBz and its
repercussions on the CH stretches as the methyl group rotates
about the asymmetric environment of the benzyl radical motif.
At any fixed methyl group orientation, the oscillating CH(n)

bond constants (kn) obtained from eq 6 can be incorporated
into the ethyl radical Hamiltonian,32 with the CH stretch matrix
constructed as
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where ωn are the uncoupled CH stretch frequencies (ωn =
(kn/μHC)

1/2), μHC is the reduced mass, M0 is the effective mass
of the central atom, and θ is the angle between CH groups of
approximately 109°. Upon diagonalization, the results yield the
changes in the CH stretch normal-mode frequencies with
torsional angle, which were initially generated for the diabatic
limit in the absence of kinetic coupling (or M0 = ∞).
Minimizing a linear least-squares function, the k0, αhc and αst
parameters were optimized for the best agreement between the
diabatic and ab initio CH stretch frequencies’ extrema. The
diabatic CH(n) results for D0 are plotted with their respective
broken lines (ωn) in Figure 11b and compared to the calculated
CH stretch frequencies at the B3LYP/6-311+G(d,p) level of
theory (solid black lines). However, the final fit was obtained
for the adiabatic limit by incorporating coupling between
the CH stretch modes. To do so, M0 was varied to optimize
the agreement between the adiabatic (broken gold lines) and
the full ab initio results, both of which closely agree with the
ground state experimental alkyl CH stretches for a φ = 0
configuration marked with a vertical dotted line. The final fit
parameters are tabulated in Table 6. Notably, the best-fit M0

value is 34.1 amu, close to the effective mass used for the ethyl

radical simulations (31 amu) or the mass of the CCH2 subunit.
The slight increase in M0 for α-MeBz results from the phenyl
ring adding only incrementally to the effective counter-mass to
methyl internal rotation, due to the methyl rotor axis being
oriented 120° relative to the C1−Cα axis.
As a particular simulated diabatic CH(n) stretch rotates

about the torsional angle φ, the “left-right” asymmetry leads to
a periodic representation such that a minimum and two
inequivalent maxima are obtained with a phase of π. As referred
to earlier, the minima correspond to full hyperconjugation
between the methyl σCH orbitals and the radical π orbital, and
the maxima convey the degree of steric hindrance experienced
by the in-plane methyl CH group. Relative to each other, the
local mode CH(n) stretches have a 120° phase shift between
equivalent points on the diagram. The experimentally observed
pattern of CH stretch normal modes, with two low- and one
high-frequency stretch for φ = 0 and π, is understandable
within this model in that the in-plane methyl CH encounters
no hyperconjugation so remains unperturbed and the out-of-
plane CH bonds undergo some electrostatic interaction from
the adjacent radical π orbital thereby decreasing their
vibrational frequencies. Similar to the ethyl radical, the sites

Table 6. Best Fit Parameters for Modeling the Methyl CH
Stretch Frequencies in the Ground Electronic State at the
B3LYP/6-311+G(d,p) Level of Theory

parameter D0

k0 1.269 × 104 dyn/cm
αhc 0.0811
αst 0.0043
M0 34.1 amu
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in the diagram where the CH(n) frequencies intersect are
characterized as conical intersections in the diabatic limit, but
become avoided crossings when finite kinetic coupling is
allowed (adiabatic).
However, the optimized geometry for ethyl radical orients

the methyl group at φ = π/2 with respect to its −ĊH2
neighbor, and the barrier is determined by a V6″ = 18 cm−1

term due to the torsional environment symmetry. The CH(n)
frequencies are, consequently, unaffected by different steric-
hindering locations. The phenyl substitution introduces a V3″
term in α-MeBz, which is about an order of magnitude higher
(∼151 cm−1) than the ethyl radical barrier in the ground state.
This distinction may not only be due to steric effects, but may
possibly be credited to dissimilar extents of hyperconjugation
arising from different electronic structures.
Reflecting on the analysis presented for the electronic and

infrared data sets in the ground state, we are now in a position
to directly compare how these two are connected. In D0, if one
compares the dependence of the adiabatic in-plane CH stretch
with torsional angle in the Wilson G-matrix results (Figure 11b)
with the shape of the methyl torsional potential energy curve
(Figure 6), the maxima in the model’s in-plane CH stretch
frequencies occur at the same angles as the maxima in the
torsional PES. Thus, this suggests that the steric crowding
experienced by the in-plane CH bond is primarily responsible
for the ground state barrier to internal rotation. Hyper-
conjugation may also play a role, where Figure 10a,b shows that
the stabilization energy is greater for φ = π than φ = 0. As a
result, this greater interaction between the σCH orbitals and the
radical π orbital at this particular methyl group orientation may
increase the D0 internal rotation barrier.
In the excited state for α-MeBz, the methyl group switches

orientation due to changes in the degree of steric hindrance
and/or hyperconjugation accompanying the π−π* excitation.
We anticipate with an increase in the CH stretch frequencies in
the excited state that k0 should become larger. Additionally, for
Δφ = π, we expect that αst and αhc will change in such a way as
to decrease the D1 barrier to internal rotation to half that of the
D0 barrier. More information on the modeling of the excited
state CH stretch spectrum is given in the Supporting Information.

VI. CONCLUSIONS
We have presented a multifaceted spectroscopic characteriza-
tion of the α-MeBz radical, a resonance-stabilized radical that
may form by H-atom loss from ethylbenzene or H-atom
addition to styrene. The spectra provide a unique opportunity
to study the response of a methyl group to the presence of a
radical site immediately adjacent to it, and to follow the changes
that accompany electronic excitation.
The D0−D1 π−π* transition of α-MeBz has its origin

transition at 21884 cm−1, with an extensive set of low-frequency
transitions due to hindered rotation of the methyl group. DFL
spectra help identify analogous transitions due to methyl internal
rotation in the ground electronic state. Fits to the frequencies
and intensities of these transitions have provided the form of the
methyl hindered rotor potentials in D0 and D1 states. Both
states are dominated by a V3 term, which in the excited state is
72 cm−1, and increases to 151 cm−1 in D0. Ground state calcula-
tions predict that the preferred orientation for the methyl group
is with one CH group in the plane of the aromatic ring,
pointing toward the vicinal Cα−H bond. Arguments have been
made that the major interaction dictating this choice is in
minimizing steric repulsions between the methyl CH and the

ortho ring CH group, opposing hyperconjugation which would
prefer the opposite orientation. In the D1 state, the experi-
mental data point to a switching of the methyl conformation
with minimized steric repulsions from a larger C1−Cα−Cβ

angle and from favorable hyperconjugative overlap between the
C1−Cα π orbital and the out-of-plane methyl σCH orbitals.
High-level ab initio excited state calculations support this
conclusion.
Finally, we have recorded resonant ion-dip infrared spectra of

the radical in the alkyl and aromatic CH stretch regions, varying
the timing of the IR, visible, and UV laser pulses to obtain IR
spectra in both D0 and D1 states. These spectra provide
complementary insight into the methyl group orientation and
hyper-conjugation-induced effects on the methyl CH stretch
absorptions. Extending a model first introduced by Hab̈er and
co-workers for the ethyl radical,32 we show that the pattern of
methyl CH stretch transitions and their frequency shifts with
electronic excitation reflect a change in the balance of effects
due to hyperconjugation and steric interactions.
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Abstract When an electron is scattered by a tightly

focused laser beam in vacuum, the intensity gradient is a

critical factor to influence the electron dynamics. In this

paper, we have further investigated its influence upon the

electron high-harmonic generation (HHG) by treating the

spacial gradient of the laser intensity as a ponderomotive

potential. Based upon perturbative quantum electrody-

namics calculations, it has been found that the main effect

of the intensity gradient is the broadening of the originally

line HHG spectra. A one-to-one relationship can be built

between the beam width and the corresponding line width.

Hence, this finding may provide us a promising way to

measure the beam width of intense lasers in experiments.

In addition, for a laser pulse, we have also studied the

different influences from transverse and longitudinal

intensity gradients upon HHG.

1 Introduction

Since the availability of high-power lasers, high-harmonic

generation (HHG) based upon nonlinear Compton scatter-

ing (NLCS) from free electrons in strong laser fields has

drawn considerable attention [1–14]. This is not only

because it is a fundamental non-perturbative laser-induced

phenomena, but also because it is a prospective X-ray or

gamma-ray source [15–18] with remarkable performances

in terms of tunability. Moreover, the free-electron laser

interaction is very clean without other uncontrollable

physical processes such as ionizations and collisions,

which happen in the interaction between lasers and atoms

or plasmas. In recent years, the observation of NLCS in

some experiments [19–22] also renew the interest in its

theoretical study.

The main aim of this paper is to investigate how the

effect of the laser intensity gradients change the radiation

of free electron in strong laser field. It is well-known that

there is a cycle-averaged force on a charged particle in a

spatially inhomogeneous laser field. It is associated with a

time-independent potential energy called ponderomotive

potential, which is due to the laser intensity gradient in an

oscillatory field. After the presence of such ponderomo-

tive potential was first proposed in 1957 by Boot and

Harvie [23, 24], it is well-known for the last four decades

that the potential could have a significant effect on the

matter interacting with the laser field, such as particle

acceleration [25], trapping and cooling of the atoms [26],
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high-field photoionization of atoms [27], self-focusing in

plasma [28] and HHG [29, 30]. In the classical frame-

work, the mechanical motion of electrons in a strong laser

field will be changed if the ponderomotive potential is

taken into account due to the limited spatial dimensions

of the laser focus, which leads to the ponderomotive

broadening of the radiation spectrum [29]. But, so far few

works are done to study the role of the ponderomotive

effects on the radiation spectrum based on a quantum

theory [29, 30, 37].

To gain a clear idea of the influence by the laser

intensity gradients on the HHG spectrum from free

electrons in strong laser fields, we start from the scatter-

ing of the electron Volkov state by the ponderomotive

potential of the laser beam. The corresponding cross

section is calculated as a second-order quantum electro-

dynamics (QED) laser-assisted process similar to laser-

assisted bremsstrahlung, where an charged particle scat-

ters by the field of a nucleus in a background strong laser

field [31–36].

For notations in this paper, the four-vector product is

denoted by a � b ¼ a0b0 � ab and the Feynman dagger is

=A ¼ c � A. The Dirac adjoint is denoted by u ¼ uyc0 for a

bispinor u and F ¼ c0Fyc0 for a matrix F.

The outline of this paper is the following. First, we will

introduce the scattering model and derive the theoretical

expression for the cross section of the electron radiation.

Then, the numerical estimation of the cross section and the

corresponding analyses will be provided in Sect. 3. Con-

cluding remarks are reserved for Sect. 4.

2 Theoretical derivation of the scattering cross section

We begin by introducing our scattering mode: Consider

there are two monochromatic laser pulse in space. The first

one propagates along z axis, of which the duration is long

enough and the field intensity so strong that it can be

modeled by a background classical plane wave field,

described by a four-dimension vector potential Al:

Al ¼ A0½d cos /�1
l þ ð1� d2Þ1=2

sin /�2
l�; ð1Þ

Here, with the phase factor / ¼ k � x, in which x is the

position vector, and the four wave vector is related to kl ¼
x0

c
ð1; 0; 0; 1Þ with x0 denoting the wave propagation

direction and laser frequency, respectively. The laser is

circularly polarized for d ¼ 1=
ffiffiffi
2
p

and linearly polarized

for d ¼ 0;�1. We define two polarization vectors �1, �2,

satisfying �i � k ¼ 0; �i � �j ¼ dij ði; j ¼ 1; 2Þ. The laser

intensity can be easily described by a dimensionless

parameter Q ¼ eA0=ðmc2Þ, which is usually called laser

intensity parameter. In the nonrelativistic regime, the

characteristic velocity and energy for an electron moving in

such an electromagnetic field is v� eA0=ðmcÞ and

E� e2A2
0=ðmc2Þ, so relativistic treatment is necessary if

v� c and E�mc2 is satisfied. That is to say the motion of

the electron will become relativistic for Q� 1. In the

optical regime (�hx � 1 eV), the corresponding laser

intensity is about 1018 W=cm2 for Q� 1, which has been

achieved in the last decade.

The second field is a tightly focused laser pulse

propagating opposite the first one, which can be described

by the lowest-order axicon Gaussian fields with a envelop

factor gð/Þ ¼ e �/2=ðD/Þð Þ. It is far less intense than the

first one (the intensity is described by another dimen-

sionless parameter QG) but much rapidly oscillatory. The

electron will be assumed to be moving with a momentum

p in the direction perpendicular to z axis, say, x axis.

When the electron is placed in the two laser wave field, it

will be mainly driven by the longer-wavelength laser. The

interaction of the electron with the plane wave laser will

be treated exactly by introducing the well-known Volcov

state. That is to say, the ‘‘dressed’’ electron will have an

effective momentum P ¼ pþ e2A2
0

4c2ðp�kÞ with a corresponding

effective mass m0 ¼ m

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Q2

2

q
. While the main effect of

the Gaussian laser pulse on the electron can be described

by an time-averaged potential in view of its low intensity

and fast oscillation (here, we do not care about the high-

frequency part of the radiation caused by the fast

oscillation). We assume that the relativistic electron

moves so fast that the envelop factor is almost time

independent. The effective pondermotive potential can be

described by:

Fig. 1 The scattering geometry: the incoming electron with four

momentum pi have a 90� collision with a plane laser field while

scattering by a time-independent ponderomotive potential AG. The

final electron with Pf and the emitted photon with k0 are projected

onto the xz plane in this figure; hf and h0 denotes the scattering angle

of the outgoing electron and the emitted photon, respectively
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Up ¼
mc2

4
QG

2e
�

r2
?

b0
2� z2

b1
2 ð2Þ

The corresponding four-vector potential can be written as:

Al
p ¼

Up

e
dl0 ð3Þ

where the Fourier-transformed pondermotive potential is

given by:

Al
pðqÞ ¼

mc2p3=2

4e
QG

2b0
2b1d

l0e�
b0

2

4
q2
?�

b1
2

4
q2

z ð4Þ

Here, r? and q? refers to the position and momentum in the

plane perpendicular to the propagation dirction, respec-

tively, while is related to the beam waist and is decided by

the pulse duration. Considering the high-frequency char-

acter of the pulse, which means a small wavelength, the

paraxial approximation of the laser pulse can be acceptable

confidently. Since QG 	 Q , we will treat the pondermo-

tive potential as perturbation. The whole scattering con-

figuration can be seen in Fig. 1 ,and it can be described by

two Feynman diagrams shown in Fig. 2.

It is obvious that the interaction of electron with the

intense plane laser wave will leads to discrete line at a

given harmonic on the spectrum if the second weak pulse is

absent. The scattering process is called laser-induced

Compton scattering, or NLCS for its nonlinear nature,

which has been widely studied since the invention of laser

in 1960 [13–16]. The frequencies of the emitted harmonics

are determined from the energy-momentum conservation

laws, which involve both the incident electron condition

and laser parameters. Here, we wonder the effect of the

pondermotive potential on the discrete radiation spectrum.

In order to calculate the differential cross section of the

second-order laser-assisted process, we begin by employ-

ing the well-known Volkov state to describe the initial and

final electron state:

wp;r ¼
1

V

ffiffiffiffiffiffi
mc

P0

r
fpðxÞurðpÞ ð5Þ

fpðxÞ ¼ 1þ e=k=A

2p � k

� �
eiS ð6Þ

S ¼ �P � x
�h
� e2A2

0

8�hc2ðp � kÞ ð2d2 � 1Þ sin 2/þ eA0

�hcðp � kÞ


�
dðp � �1Þ sin /� ð1� d2Þ1=2ðp � �2Þ cos /

�
:

ð7Þ

Here, urðpÞ the free Dirac spinor. Here, we employ a

box normalization with a normalization volume V.

Then, the corresponding transition amplitude can be

written as:

Sfi ¼ �
e2

�h2c2

Z
dx4dy4 �wpf ;rf

ðxÞ =AcðxÞiGðx� yÞ=AGðyÞ½

þ=AGðxÞiGðx� yÞ=AcðyÞ�wpi;ri
ðyÞ

ð8Þ

Al
c ðxÞ ¼

ffiffiffiffiffiffi
2p�h
x0

q
c�c

leik0x stands for the four momentum

of the emitted photo during the scattering process with

�c
l the photon polarization vector and k0 ¼ x0

c
ð1; ek0 Þ the

wave vector, respectively. As the previous work [34,

35], here, we use the Dirac-Volkov propagator instead

of the free-electron propagator in view of the strong

laser field:

iGðx� yÞ ¼ �
Z

dp4

ð2p�hÞ3ð2piÞ
fpðxÞ

=pþ mc

p2 � m2c2
�fpðyÞ ð9Þ

It has been proven [34] that the use of the Dirac-Volkov

propagator is crucial to obtain correct numerical result in

laser-modified QED process.

Here, we take average on the initial electron spin (i.e.,

the electron is unpolarized) and sum over the both final

electron spin and emitted photon polarization. The differ-

ential cross section is calculated with the formula:

d r
� ¼ 1

2JT

X
ri;rf ;ec

��Sfi

��2 Vd3Pf

ð2p�hÞ3
d3k0

ð2pÞ3
: ð10Þ

Here, T is the long observation time and J ¼ c
V

P
P0 stands for

the incoming particle flux. We have d3Pf ¼ jPf j2dXf

¼ jPf j2 sin hf dhf duf , d3k0 ¼ x02

c2 dX0 ¼ x02

c2 sin h0 dh0du0,

where X0 and Xf stands for the the solid angle of the emitted

photon and electron, respectively. After a long but straight-

forward deriving process, we finally write down the differ-

ential cross section as:

d r
�

dx0dX0dXf

¼ aQ4
Gb4

0

8ð4pÞ4c2

m2c2

�h2
b2

1

� �



X
n;ec

jPf j
jPij

e�
b0

2

2
q2
?�

b1
2

2
q2

z

Tr½�Rfi;nðpf þ mcÞRfi;nðpi þ mcÞ�

ð11Þ

Fig. 2 Feynman diagrams describing laser-assisted bremsstrahlung.

The laser-dressed electron and laser-dressed electron propagator are

denoted by a zigzag line on top of the straight line. The Coulomb field

photon is drawn as a dashed line, and the bremsstrahlung photon as a

wavy line

Intense laser beam
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where:

Rfi;n ¼
X

s

M�n�s Pf ;P; =�c; g
1
P;Pf

; g2
P;Pf

� 	
i

=p� mc
�M�s Pi;P; c

0; g1
P;Pi

; g2
P;Pi

� 	
þ
X

s0
M�n�s0 Pf ;P

0; c0; g1
P0;Pf

; g2
P0;Pf

� 	
i

=p0 � mc
�M�s0 Pi;P

0; =�c; g
1
P0;Pi

; g2
P0;Pi

� 	
ð12Þ

With the argument is defined as:

g1
p1;p2
¼ eA0

�hc
d

p2 � �1

k � p2

� p1 � �1

k � p1


 �

g2
p1;p2
¼ � eA0

�hc
ð1� d2Þ1=2 p2 � �1

k � p2

� p1 � �1

k � p1


 � ð13Þ

P;P0 is the four momentum of the intermediate elec-

tron in the Feynman diagrams shown in Fig. 2. They are

determined by the conservation law, together with the four

momentum q transfer from the pondermotive potential,

which is given by the corresponding functions during the

calculation process:

P ¼ pf � ðnþ sÞ�hk þ �hk0

P0 ¼ pi � s�hk � �hk0

�hq ¼ pf � pi þ �hk0 � n�hk

ð14Þ

M is a 4
 4 matrix with five arguments:

Msðp1; p2;F; g
1
p1;p2

; g2
p1;p2
Þ

¼ =F þ e2A0
2

8c2

=k=F=k

ðpi � kÞðp2 � kÞ


 �
G0

s ða; b;uÞ

þ eA0

2c
d

=�1=k=F

ðp1 � kÞ
þ =F=k=�1

ðp2 � kÞ


 �
G1

s ða; b;uÞ

þ eA0

2c
ð1� d2Þ1=2 =�2=k=F

ðp1 � kÞ
þ =F=k=�2

ðp2 � kÞ


 �
G2

s ða; b;uÞ

þ d2 � 1

2

� �
e2A0

2

4c2

=k=F=k

ðpi � kÞðp2 � kÞ
G3

s ða;b;uÞ

ð15Þ

The generalized Bessel functions are given by:

G0
s ða; b;uÞ ¼

X
n

J2n�sðaÞJnðbÞeiðs�2nÞu;

G1
s ða; b;uÞ ¼

1

2

�
G0

sþ1ða; b;uÞ þ G0
s�1ða; b;uÞ


;

G2
s ða; b;uÞ ¼

1

2i

�
G0

sþ1ða; b;uÞ � G0
s�1ða; b;uÞ


;

G3
s ða; b;uÞ ¼

1

2

�
G0

sþ2ða; b;uÞ þ G0
s�2ða; b;uÞ


:

ð16Þ

With the corresponding argument:

a ¼ ½ðg1
p1;p2
Þ2 þ ðg2

p1;p2
Þ2�1=2

b ¼ Qm2c2

8�h
ð2d� 1Þ 1

k � p1

� 1

k � p2

� �

u ¼ arctan �
g2

p1;p2

g1
p1;p2

 ! ð17Þ

The above differential cross section is related to the

spontaneous photon in the frequency interval dx0 within

the solid angle X0 and the final electron within the solid

angle Xf . But it is difficult to detect the photon and electron

in the same time during an actual experiment. So we

integrate the differential cross section over the scattering

electron direction, by which leads to the doubly differential

cross section only differential in the direction of the radi-

ated photon and its frequency:

dr

dx0dX0
¼
Z

d r
�

dx0dX0dXf

dXf ð18Þ

As one of the characteristic feature of a second-order

process, the resonance will happen when the intermediate

electron fall within the mass shell. The physical interpre-

tation, according to Roshchupkin [36], may be that the

considered second-order process effectively reduces to two

sequential first-order processes under certain resonance

condition. In the paper, the two sequential lower processes

are NLCS and static ponderomotive potential scattering,

respectively. The corresponding resonance condition may

be written as P2 ¼ m02c2 or P02 ¼ m02c2. When resonance

occurs, the scattering cross section will be divergent, which

indicates that the perturbation method is not applicable in

such situation. To avoid the problem, one has to introduce a

small imaginary part of the mass which results from the

high radiative correction, i.e., the self-energy of the laser-

dressed electron, which is determined by the total proba-

bility of the Compton scattering in a laser wave Wcðk � pÞ:
Cmðk � pÞ ¼ P0

2m
Wcðk � pÞ. Then, the shifted propagator

reads:

1

p� mc

¼ Pþ m0c

P2 � m02c2 � i m
P0

f c
ð�hx0 � ðnþ sÞ�hx0ÞCmðk �Pf Þ þ imCmð�hk � k0Þ

ð19Þ
1

p0 � mc

¼ P0 þ m0c

P02 � m02c2 þ i m
P0

f c
ð�hx0 � s�hx0ÞCmðk �PiÞ � imCmð�hk � k0Þ

ð20Þ
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The inclusion of the imaginary part of the electron mass

eliminates the resonance singularity, which enable us to

evaluate the cross section numerically. Then, the resonance

peak altitude is determined by the lifetime of the imme-

diate electron. Actually, the calculation of Cm has been

discussed in many papers, and we can easily obtain the

imaginary mass by taking advantage of the corresponding

results of our previous study.

3 Numerical results

In this section, we will present the numerical results of

the differential cross section referring to the case of 90�

laser–electron interaction geometry shown in Fig. 1. We

consider the plane wave laser to be circularly polarized

with a frequency of x ¼ 1:17 eV and the dimensionless

parameter Q = 17.8, which is related to a laser intensity of

7:58
 1022 W=cm2. It should be emphasized that the

numerical results in our presentation are more exploratory

than systematic since we shall focus on the influence of

ponderomotive potential due to the intensity gradients on

the photon radiation. First, we start with the results for a

tightly focused laser pulse with the parameters b0 = 5 lm,

b1 = 100 lm, which means the pulse duration is very long

(i.e., for a pulse with wavelength 0.1 lm , the duration is

about 0.3 ps). The corresponding differential cross section

of the radiated photon for an emission angle h0 ¼ 1� is

shown in Fig. 3. As expected, high harmonics are generated

and the positions of the resonances located in the spectrum

coincide with those for NLCS. This is due to the fact that

the resonant second-order process can effectively reduce to

two sequent lower-order processes as mentioned before

while the mechanism responsible for radiation of photons

is the NLCS process. Furthermore, the main contribution of

the cross section comes from q � 0 at a resonance, which

means there is nearly no momentum transfer between the

electron and the ponderomotive potential. It is easy to find

that the main influence due to the ponderomotive potential

is the broadened spectrum compared with that of NLCS,

which is in accordance with the conclusion based on a

classical theory [30]. The magnitude of the spectrum drops

fast when the energy of photon is away from resonance.

From a mathematical point of view, that is because the

differential cross section is subject to an exponential decay

with respect to the transfer momentum q. So the spectrum

broadening effects is determined both the parameter b0 and

b1, or the pulse duration and the beam waist size.

Now, we proceed to investigate how the broadening

effect depends on the laser pulse duration and the beam

waist size. In Fig. 4, we compare the spectrum of funda-

mental harmonics for different beam waist size with same

pulse duration. The cross section with b0 = 5 lm is

denoted by full line, whereas the dotted-dashed line denote

the cross section with b0 = 10 lm. Here, the magnitude of

the cross section near resonance is a little larger for a

broader beam waist size. This is probably because a laser

with certain intensity has a great energy with the increase

in the beam waist size. We can also see from the expression

(11) that the differential cross section is proportional to the

quartic of b0. But the peak falls off much more quickly for

a larger beam waist size. This can be understood by
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Fig. 3 The cross section for the low-order harmonics at emission

angle h0 ¼ 1�. Here, we consider an electron with initial energy

5 MeV collide with a circularly polarized laser with intensity

parameter Q ¼ 17:8 and is scattered by an effective ponderomotive

potential for a 90� geometry. The ponderomotive potential is

characterized by two parameter: b0 = 5 lm, b1 = 100 lm, describ-

ing the beam waist size and duration of the tightly focused laser pulse,

respectively
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Fig. 4 The cross section for the fundamental harmonic at emission

angle h0 ¼ 1�. The condition is same with Fig. 3 except the parameter

b0: 5 lm for full line and 10 lm for dot-dashed line
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considering that the differential cross section is determined

exponentially by b0. The physical interpretation may be

that the large beam waist leads to a less field gradient,

which means a small ponderomotive potential effect. When

the beam waist is so large that we can neglect the spatial

gradient if we consider the interaction of the electron with

laser field near its focus place, there will be almost no

ponderomotive broadening at all. In the following,we shall

refer to the spectra of different laser pulse by changing the

parameter b1, as shown in Fig. 5. The difference is so small

that it can be hardly visible. We thus find that the pulse

duration plays only a minor role in the spectrum. That is

probably because there is far less momentum transfer from

the electron onto the ponderomotive potential in the laser

propagation direction (i.e., q2
z � 0	 q2

?) for a 90� inter-

action geometry. Hence, there is almost no ponderomotive

potential scattering in this direction.

Finally, we compare the results of different laser intensity

of the circularly polarized plane wave field. The corre-

sponding spectra are displayed in Fig. 6. It shows that the

radiation for the plane wave field Q = 5 (corresponds to a

intensity of 3
 1019 W=cm2) is several magnitudes smaller

than that for Q = 17.8 (corresponds to a intensity of

7:58
 1020 W=cm2). But the broadening width of the

spectra is similar for two different laser strengths. It con-

firmed the conclusion that the broadening effect has almost

nothing to do with the plane wave field, but caused by the

ponderomotive potential.

4 Summary

In this paper, we study the role of the field intensity gra-

dients on the radiation spectrum emitting from the electron

in the laser field. The whole scattering process is calculated

as a laser-modified second-order QED process with reso-

nances addressed. Consequently, it shows that the spectrum

is broadening due to the ponderomotive effects compared

with that of NLCS, with the positions of the resonance peak

corresponding to the discrete harmonic frequencies of

NLCS. Because the broadening of the spectrum line con-

tains important information about the laser intensity gra-

dient, it might provide us a feasible way to measure the

width of the intense laser beam. In addition, the broadening

effect is determined far more by the beam waist size than

the pulse duration for the case of 90� incidence scattering

geometry. Since the parameters of the corresponding laser

field is readily accessible in the lab, it is hoped that these

results could be submitted to the experiment test in the near

future.
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Using Quantum Games To Teach Quantum Mechanics, Part 1
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ABSTRACT: The learning of quantum mechanics is contingent
upon an understanding of the physical significance of the mathematics
that one must perform. Concepts such as normalization, super-
position, interference, probability amplitude, and entanglement can
prove challenging for the beginning student. Several class activities
that use a nonclassical version of tic-tac-toe are described to introduce
several topics in an undergraduate quantum mechanics course.
Quantum tic-tac-toe (QTTT) is a quantum analogue of classical tic-
tac-toe (CTTT) and can be used to demonstrate the use of
superposition in movement, qualitative (and later quantitative)
displays of entanglement, and state collapse due to observation.
QTTT can be used to aid student understanding in several other
topics with the aid of proper discussion.

KEYWORDS: First-Year Undergraduate/General, High School/Introductory Chemistry, Upper-Division Undergraduate,
Physical Chemistry, Humor/Puzzles/Games, Hands-On Learning/Manipulatives, Quantum Chemistry, Student-Centered Learning

Classical mechanics, whose approach was developed based
on Newton’s new mathematics, was contemporaneously

formulated alongside calculus. Both topics moved from
academic investigation into undergraduate lecture halls, and
in the case of Newtonian mechanics, earlier still, with its
concepts being introduced prior to high school. Quantum
mechanics, developed in the 20th century, was required to
adequately describe such experimental phenomena as black-
body radiation, the photoelectric effect, and the atomic
spectrum of hydrogen. The development of quantum
mechanics has led to description of phenomena such as the
superposition principle, the ability of an unobserved quantum
object to exist in a superposition of multiple states
simultaneously; entanglement, spooky action at a distance
where the state of one system affects that of another without a
direct observable relationship connecting them; and interfer-
ence, as matter exists in both particle and waveform within
quantum theory, matter interactions present wave phenomenon
such as diffraction and the properties of constructive and
destructive matter−wave addition. Just as a rudimentary
understanding, at minimum, of classical mechanics became
necessary for so many fields, an introduction into the concepts
of quantum mechanics is of growing importance.
A student’s first excursion into quantum mechanics can be

both overwhelming and daunting, even to an upper-division
science student. Understanding such concepts as wave
functions, overlap integrals, and probability amplitudes are
vital in mastering the subsequent material within the course. A
typical first semester course in quantum mechanics focuses on
the Schrödinger picture and equation.1−3 Herein we present
several activities using quantum tic-tac-toe (QTTT), which is a
quantum analogue of classical tic-tac-toe (CTTT), presented by

Allen Goff,4−6 as a means of introducing and enforcing early
topics in an introductory quantum mechanics course. The
activities allow for introduction and discussion of probability
amplitude, probability density, normalization, overlap, the inner
product, and separability of states. It is the belief of the authors
that QTTT can be used as an approachable, fun, and intuitive
means of introducing these topics. It is the hope of the authors
that this tool could act as a companion throughout instruction;
after the students have been taught the game, the instructor can
use it as a stepping-stone to new topics and as an avenue for
intuitive activities.
The activities described, as well as other similar activities,

have been used to assist the understanding of various audiences
in anything from a brief understanding of concepts necessary to
quantum computing to furthering a student’s understanding of
topics in their quantum mechanics classroom. The bulk of the
material was used as assignments and Supporting Information
in an undergraduate quantum mechanics classroom to great
avail with students who did not grasp some early concepts
within the course.

■ PHYSICAL CONCEPTS AND GAME PLAY

Board

The tic-tac-toe board is square and is divided into nine square
subspaces. These subspaces will be referred to as principal
squares and will each carry a number to denote the particular
square being referenced. The numbering pattern of the
principal squares on the board is shown in Figure 1. Prior to
discussing the game play, some vocabulary and concepts are
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introduced. The following four elements are underlying
physical concepts that are necessary for game play and thus
their use is weaved within the description of the game.
Spooky Marker. Named after Einstein’s reference to

entanglement and hidden variable interactions as “spooky
action at a distance”.7 This is a direct consequence to the
system being completely described through a finite number of
basis functions of an observable. A coupled pair of electrons
exist within a 0-spin state; that is to say that the wave function
of the pair is of the form: ψ = 1/√2(|↑↓⟩ + |↑↓⟩). If one
observes the state of a single electron within the pair, say it is in
the up-state, that observer incidentally knows the state of the
other spin within the pair. Like CTTT markers, the spooky
marker represents a single move of a single player during one
turn, yet a spooky marker exists within two separate principal
squares simultaneously.
Superposition. As players have placed a pair of spooky

markers that represents their move for that turn, this move can
be said to exist as a superposition of the states (board
positions) in which it may be realized. If player one, referred to
as Alice, places spooky markers for her first move into squares 1
and 5, then the state of that move is the superposition of the
two states: square 1 and square 5. All player moves within
QTTT are superposition moves. A typical teaching example of
this is the superposition of spins separated through observation
in the Stern−Gerlach8−10 experiments, which are typically
discussed in introductory quantum mechanics courses. A
further example, to which the students may have already
been exposed, is the superposition of ammonia states by
tunneling; the students may have discussed this already in their
organic chemistry course with reference to nitrogen inver-
sions11 and the topic can be expounded through a discussion of
the MASER problem.12

Cyclic Entanglement. Entanglement is the correlation
between parts of a system, induced through an interaction and
maintained in separation, which is independent of factors such
as position and momentum.13 In QTTT this would consist of a
group of spooky markers whose board positions are all self-
referencing; as an example, Alice’s first move (X1) exists in both
squares 1 and square 5; the second player’s, referred to as Bob,
first move (O2) exists both within square 5 and square 7; and
Alice’s second move (X3) is within both square 7 and square 1.
In this way, the possible states of these moves are dependent
upon each other in a similar fashion as to the spin states of
paired electrons. The cyclic reference here is that X1 shares
principal square 1 with X3, X3 shares principal square 7 with O2,
and finally O2 shares principal square 5 with X1. This series of

moves is shown in Figure 2 and will be made clearer in a
sample game.

State Collapse. A quantum system may exist in a
superposition of several states. Only one subordinate state is
observed when the state of the system is measured. An example
of this would be a doublet spin system; the state of the single
electron would be a superposition of up-spin and down-spin,
yet when observed, a single electron will present only either an
up-spin or a down-spin state. When a state collapse occurs
through observation within the game, spooky markers collapse
into CTTT marks.
General Structure of the Game

The general structure of the game is similar to that of CTTT.
The few caveats and expansions to the rules can be most easily
fleshed-out through an example game. Game play begins as
Alice places her first pair of spooky markers on the board; any
such move within the game will be denoted by |ψi

η⟩j, where η
represents the player to whom the marker belongs and will thus
take on the values X or O, i denotes the turn when this marker
was placed, and j is the location on the board where the marker
was placed. She places her markers in principal squares 1 and 5.
This means that her first move, |ψ1

X⟩, is a super position with
the form: |ψ1

X⟩ = 1/√2(|φ1
X⟩1 + |φ1

X⟩5). Let us now have Bob
place his markers in principal squares 5 and 7; unlike the
classical tic-tac-toe game, the placement of a spooky marker in
QTTT does not prevent either player from placing subsequent
markers in a particular square. Alice retorts with markers in
principal squares 7 and 1. With this last move, our game board
is now consistent with that in Figure 2. It can now be seen that
the state of each of the spooky markers is a linear combination
of the two squares that it occupies and each position within this
linear combination is a position within a linear combination
describing another spooky marker. In Figure 2 it can now be
seen that we have generated a cyclic entanglement between
markers placed for ψ1

X, ψ2
O and ψ3

X through their possible states
(squares 1, 5, and 7).
As a cyclic entanglement has been generated, it is time for a

player to make an observation on the system that will cause a
state collapse of our spooky markers into classical markers. As
Alice’s last move was that which sealed the cyclic entanglement,
it will be Bob’s right to decide in which way the states will
collapse; this reciprocation of closure and observation was
developed in hope to generate a fair game, although it was an
ad hoc rule implemented for the sake of fair game play (a more

Figure 1. The layout of the game board for either classical or quantum
tic-tac-toe. This figure also displays the enumeration scheme that is
used throughout this paper.

Figure 2. The effect of “measurement” on the system of cyclic
entanglement can yield, at minimum, a pair of classical states
corresponding to the state in which X3 was observed.
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quantum mechanically accurate rule would be flipping a coin to
decide the collapse). When an observation is made on the
system, the states of the markers involved with the cyclic
entanglement will collapse. Unlike a spooky marker, when a
classical marker occupies a board position, no other marker
(neither classical nor quantum) may occupy that position.
The two possible pathways that an observation could take are

also shown in Figure 2. We will first state completely the logic
of the upper path and then that of the lower path. If Bob
chooses that Alice’s most recent move, |ψ3

X⟩ = 1/√2(|φ3
X⟩1 +

|φ3
X⟩7), should be observed in square 7, this would imply that

the only state that |ψ2
O⟩ = 1/√2(|φ2

O⟩5 + |φ2
O⟩7) could take is

that of square 5 and thus the only state |ψ1
X⟩ = 1/√2(|φ1

X⟩1 +
|φ1

X⟩5) can manifest is that of square 1; all this due to the fact
that this observation turns these spooky markers into classical
markers and thus exclusively occupy their observed site.
If Bob had chosen the other path, ψ3

X would collapse in
square 1 forcing ψ1

X in square 1 and finally ψ2
O in square 5. The

lower board is that which would occur if Bob chose to observe
ψ3
X in square 1. It should also be noted that if a situation arises

consistent with Figure 3, there exist a pair (or more) or spooky

markers that are entangled with the cycle without both of its
states being enveloped by the cycle. In these cases, the
observation will also effect a collapse upon the “dangling”
marker; the subsequent collapse of dangling markers can also
be seen in Figure 3.
Game play will continue in this manner until one of the

players has generated a “three-in-a-row” consisting of only
classical markers. It is possible that two players will
simultaneously win the game through the same observation.
When this occurs, the player with the most recent Spooky
Makers generating one of their winning classical markers loses;
which is, in a way, to say “first in, first out”. When playing a
volley of games, Goff4−6 does propose that the winning player
during a simultaneous victory be awarded 1 point and the loser
1/2 point.

■ ACTIVITY
We present the following work as an instructor-guided inquiry
activity14,15 with the students divided into groups of two. We
present specific board examples as a means of discussion and
instructional guidance examples, as introductory courses have
been shown to benefit from strong instructor guidance.16 A
more natural experience would be allowing the students
(postinstruction on the rules and teaching a specific

phenomenon) to play the game and come across these
phenomena on their own in an inductive learning style similar
to a lab exercise.17−20 QTTT could also be used as a
continuing-themed homework exercise as it can be used to
exemplify many of the introductory topics in quantum
mechanics.
Introducing the game rules and running a small example

game can take up to 15 min, whereas the average time to play a
single game is roughly 4 min. In the experience of these
authors, the use of quantum tic-tac-toe lowers the level of fear
associated with introducing these early concepts, as it both
builds student confidence and gives them a foothold on the
material through a familiar mechanism. Students took to the
game enthusiastically and divorced of the quantum mechanical
concepts, learning the game rules comes quickly. The most
difficult part in learning the game is recognizing the closed
loops; it is suggested that the instructor select a student to act
as a representative for all the students as the class plays against
the instructor for a game; this method seems to reveal the
present thought processes of the students, which can benefit
instruction. These authors also found that the notions to be
discussed within the following sections of this paper benefitted
from introduction through QTTT as they are, at times, early
signs of student understanding of quantum mechanics.
We will maintain the use of Alice as player X and Bob as

player O, which is appropriate as the groups are of two players.
Player names, Alice and Bob, were purposefully chosen, as
discussion of pairs entangled particles uses the notation
particles A and B; from this notation, observers at each end
of the system are often referred to as Alice (for A) and Bob (for
B).13

■ PROBABILITY AMPLITUDE, SIGN SYMMETRY, AND
PROBABILITY DENSITY

The fundamental quantity within the Schrödinger picture of
quantum mechanics is the wave function, Ψ(x). Ψ(x) are the
solutions to the second-order differential wave equation
describing the total system energy of a particle.21 The use of
either QTTT or CTTT does not lend itself to the introduction
of the Schrödinger equation as there are no intuitive nor
appropriate methods for the student to connect game play to
energy. Yet use of QTTT has proven beneficial in the
explanation and discussion of several properties of the wave
function, especially topics such as normalization and sign
symmetry of the probability amplitude.
Wave functions, as stated by the first postulate of quantum

mechanics,1 show how the state of their system evolves in time.
The use of Gaussian-type functions in the description of moves
lends itself immediately as a means of emphasizing the sign
invariance of the probability density. We will begin by defining:

α=η μ μ σ− + −g x y( , ) ej
x y[( ) ( ) ]/2j

x
j
y2 2 2

(1)

where j denotes the board space in which the Gaussian function
resides (j ∈ [1, 9]), α is the normalization constant of the
function, η denotes which player’s move is described by the
Gaussian, μ is the full width at half max of the Gaussian
function and x0,,j is the center of the board square j. Defining
each board square to be of unit length, then μj

x ∈ {0.5, 1.5, 2.5};
μj
y ∈ {0.5, 1.5, 2.5}; σ = 0.2; and α = 1/[σ (2π)1/2]. In this

scheme the center of the fifth board square would be (μ5
x, μ5

y) =
(1.5, 1.5). By using Gaussian functions to represent the wave
function describing a player’s move, we afforded an opportunity

Figure 3. The “measurement” on a specific board can have observable
ramifications even for game pieces that are not members of the cyclic
entanglement; these pieces are referred to as dangling markers.
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to teach the Gaussian integrals that are vital in quantum
chemistry22 while exploiting the ease of the integral forms.23

Students seem to take to this introduction to the use of
Gaussian functions more so than a typical introduction in
atomic or molecular calculations. This may be due to the less
intimidating or esoteric application.
One could assign to Alice a normalized wave function that is

a Gaussian-type function for her pieces with a negative (−)
leading sign and to Bob a Gaussian-type wave function with
positive (+) leading sign. Beginning a classical game of tic-tac-
toe, allow both Alice and Bob to make their first move. Both
players will recognize that the X and O represent game pieces,
yet they have opposing signs. This will frame a discussion of the
sign invariance of the wave function. During this discussion,
these authors have found it appropriate to emphasize that it is
the magnitude of the function’s displacement from zero that is
of significance and draw an analogue to waves in fluids while
pointing out that the Laplacian term of the Schrödinger
equation is used to describe fluid waves as well.
As these probability amplitudes can differ in both sign and

complexity (real vs imaginary), it is here that these authors have
introduced the magnitude (in fact, the squared magnitude) to
the students as the valuable and physically interpretable
quantity. As the function is possibly complex, one should
remind the student that magnitude of a general complex
number is given by |z| = (z·z*)1/2 and that the wave function
acts in a similar fashion. We may now introduce the probability
density, |Ψ|2, of the system as the physical quantity.
In both the quantum and classical analogues of tic-tac-toe,

the system could either be described through a series of single
player’s moves, |ψi

η⟩j or the total state of the board,Ψ. In terms
of the classical game, each move represents a complete particle
on the board. These single particles each inhabit a principal
square within the board, in this manner any function describing
a specific particle would be linearly independent of a function
describing another. This example can be seen in Figure 4A; this
linearly independent set of moves can be described through the
following function for the total state of the board:

ψ ψ ψΨ = | ⟩ | ⟩ | ⟩1
X

1 2
O

5 3
X

9 (2)

Similarly, a spooky marker represents a single particle that
exists in two different board square simultaneously and the

moves seen in Figure 4B can be described through a total board
wave function:

ψ ψ ψ

φ φ φ φ φ φ

Ψ = | ⟩| ⟩| ⟩

= | ⟩ + | ⟩ | ⟩ + | ⟩ | ⟩ + | ⟩1
8

( )( )( )

1
X

2
O

3
X

1
X

1 1
X

2 2
O

5 2
O

6 3
X

7 3
X

9

(3)

We reserve explaining the factor of 1/√8 to the student until
later.
Our decision to use Gaussian functions lends itself to

instruction of these introductory concepts through CTTT
alone; this allows the instructor to choose to reserve the use of
QTTT for times when it is more comprehendible to the
student and more necessary for the course material. The
instructor can choose to show that a classical game piece is
representable by a Gaussian function that can be of either sign.
Both signs equally represent a particle and lead to a properly
signed (+) probability density for the system. At this point it is
also at the instructor’s discretion to employ imaginary
exponents in the Gaussian functions to show a properly signed
magnitude for the probability density and proving the need for
taking the complex conjugate of the wave function.

■ THE INNER PRODUCT, NORMALIZATION, AND
OVERLAP

Extending the discussions framed within the previous section
allows for the introduction of the inner product whose general
form is:

∫τ τ τ τ τ⟨Ψ ̃ |Ψ ̃ ⟩ = Ψ* ̃ Ψ ̃ ⇀Ω
( ) ( ) ( ) ( ) d

e

(4)

where τ ̃ refers to all coordinates within the function and Ωe is
the bounds of the space defined by a specific problem. The
inner product may be exercised within the confines of the game
in ways that exemplify its two early uses: the normalization and
the overlap.
Many early students beginning their studies in quantum

mechanics find that the first hurdle to their understanding is
normalization. We have used this game and presented methods
to successfully introduce this topic to students who are
struggling in their undergraduate quantum mechanics course;
the authors feel that the student benefits from the initial
removal of the concept from atomic and molecular systems.
This allows the student to understand the concept intuitively,
learn the mathematical statement and then transplant all of this
back into quantum mechanics. Starting with the boards
expressed in Figure 5, we have used a series of activities to
test the student’s comprehension of normalization.
Students, from experience, recognize that when a classical

marker is placed in a square of the game board the marker is
completely contained within that space and does not exist
within any other space on the board. In an effort to prove that
which the student already knows, we can perform the following
inner product using the wave function for just the X in Figure
5A:

∫ψ τ ψ τ⟨ ̃ | ̃ ⟩ = *
Ω

g x y g x y x y( ) ( ) ( ( , )) ( , ) d dX X
5,5 5 5

e

(5)

The inner product will be evaluated three times for Figure
5A. For the first evaluation of eq 4 we shall define Ωe = ΩBoard;
in this instance the student’s intuition that the marker is
somewhere within the board is verified through the value of the

Figure 4. (A) Board shows a series of classical markers; by their nature
of classical markers, any wave function describing one is linearly
independent with any other marker’s wave function. (B) Board shows
a series of spooky markers. The wave function describing this series of
moves reveals that these partials are linearly independent with each
other.
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integral being 1, thus permitting the student to solve for α by
following intuition. We can further impress upon the student
this point by the reevaluation of eq 4 with Ωe = Ω5 and then
again with Ωe = Ω9 The first of these evaluations again leads the
student to accept that the marker is exactly where they think it
should be, in square 5. The later of these two activities merely
shows the student that the marker that is not in square 9.
Shifting focus to evaluations of eq 3 on the board shown in

Figure 5A, we can now generate the linear combination, ψ1
X =

1/√2(|φ1
X⟩1 + |φ1

X⟩4) describing the state of spooky marker in a
manner consistent with eq 3. Reverting to Dirac notation and
the student’s intuition, we can complete the following
simplifications and evaluations with Ωe = ΩBoard:

ψ ψ φ φ φ φ

φ φ φ φ φ φ φ φ

⟨ | ⟩ = ⟨ | + ⟨ | | ⟩ + | ⟩

= ⟨ | ⟩ + ⟨ | ⟩ + ⟨ | ⟩ + ⟨ | ⟩

= + + + =

1
4

( )( )

1
2

( )

1
2

(1 0 0 1) 1

1
X

1
X

1
X

1 1
X

4 1
X

1 1
X

4

1
X

1
X

1,1 1
X

1
X

1,4 1
X

1
X

4,1 1
X

1
X

4,4

(6)

The students by now have recognized that a spooky marker
has the same weight as a classical marker in the totality of the
board. These authors also chose to commit the inner product of
the spooky marker in Figure 5 with Ωe = Ω4, revealing that
square 4 contains half of the spooky marker.
In a similar fashion, the instructor can impress both the

meaning and mechanism of the overlap integral onto the
student through activities definable on game boards. Here, the
use of the Spooky Marker in this exercise is highlighted as they
are capable of overlapping with other spooky markers. The
provided board and marker combinations in Figure 5 hold the
potential for a variety of activities for the student. Board 5A
works as an example of the difference between spooky markers
and classical markers. Board 5B can be used to instruct overlap
of both types of markers.

■ SEPARABILITY AND ENTANGLEMENT
If an instructor wishes to introduce the concept of
entanglement within the course, as we did, they may do so
by introducing the most fundamental necessity for entangle-
ment: inseparability of wave functions.24−26 To this end, a
series of moves can be shown to the student, such as those seen

in Figure 6. As the game hinges on the generation of the
entangled cycles through generation of inseparable states

through marker placement, this is a great opportunity to
forge into this topic.
It can be shown that the moves in Figure 6 are linearly

independent as the series of moves fails to generate a state
whose collapse into classicality is forbidden. This is clarified by
example, observe Figure 6A; this series of moves can be
described by the following expression for the wave function of
the board (Ψ):

ψ ψ

φ φ φ φ

φ φ φ φ φ φ φ φ

Ψ =

= | ⟩ + | ⟩ | ⟩ + | ⟩

= | ⟩ | ⟩ + | ⟩ | ⟩ + | ⟩ | ⟩ + | ⟩ | ⟩

1
2

( )
1
2

( )

1
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( )

1
X

2
O

1
X

1 1
X

5 2
O

6 2
O

9

1
X

1 2
O

6 1
X

1 2
O

9 1
X

5 2
O

6 1
X

5 2
O

9

(7)

Here we pointed out to the students that the density of particle
X is not cohabitating with any fraction of the density of particle
O; this indicates that the classically collapsed state of particle X
has no effect on the classically collapsed state of particle O. The
expanded total state expression seen in equality 3 of eq 6 can be
recollected back into equality 2; this state function can be said
to display the property of separability imbued on systems
comprised of states that are linearly independent of each other.
This linear independence is forfeit if density fractions of the
two particles share the same state (or position on the board), as
seen in Figure 6B and whose functional description is here:

ψ ψ

φ φ φ φ φ φ

Ψ ≠

= | ⟩ | ⟩ + | ⟩ | ⟩ + | ⟩ | ⟩1
3

( )

1
X

2
O

1
X

1 2
O

5 1
X

1 2
O

9 1
X

5 2
O

9
(8)

It is clearly noted that the expanded form of the states
describing the board in eq 8 includes states that are forbidden
on the board, noted by the loss of the |φ1

X⟩5 |φ2
O⟩5 state, which is

classically forbidden. Due to the loss of this mathematical state,
the expression cannot be recollected as a product of the two
individual moves; this is referred to as inseparability of
functions is a fundamental property for systems that possess
and exhibit entanglement. Similarly, individual electrons can be

Figure 5. Boards that can be used during class activities: (A) a board
giving a brief pair of activities that can be used to enforce the concept
of normalization as the student integrates the board over each of the
markers and then the pair of spooky markers and (B) a board yielding
several activities that can be used as a means of both enforcing the
concept of overlap and allow the student to numerically evaluation the
overlap integral of Gaussian-type functions.

Figure 6. (A) A pair of moves are placed in such a way, that the overall
wave function of the board is separable; this can be shown through an
expansion of the product of the wave functions for each spooky marker
and then the subsequent concretion back to the original product. (B)
A pair of moves are placed whose total board wave function is
inseparable; there exist members of the product expansion who are
exclusionary to other members.
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in the |↑⟩ state or the |↓⟩ state, yet when in a coupled pair, the
electron system can only be in the |↑↓⟩ state or the |↓↑⟩ state,
noting the loss of the |↑↑⟩ state and the |↓↓⟩ state.

■ CONCLUSION
In summary, we have presented a series of activities that may be
used during introductory quantum mechanics and physics
courses. These activities have, through the experience of these
authors, aided students in their understanding of quantum
mechanics by providing a degree of intuition to the
mathematics of the topic. This intuition provided by both
classical and quantum versions of a children’s game with which
most student have had some experience has benefited the
instruction simple topics within the course, especially normal-
ization and simple statements described through the use of
wave functions. Furthermore, by exploiting the game we have
found this method lowers the degree of fear some students
possess toward quantum mechanics. It is the hope of these
authors that utilizing such intuitive examples may become as
widely accepted as has the use of the particle-in-a-box problem.
These authors also hope that the armory of quantum games
used in the classroom will be expanded to include other
versions of tic-tac-toe27 and furthered to a larger variety of
games.6,28 A playable online version, which includes an AI
player, for use by the students or practice for the instructor can
be found on the Web.29
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ABSTRACT: Introductory courses in computational and quantum chemistry
introduce topics such as Hilbert spaces, basis set expansions, and observable
matrices. These topics are fundamental in the practice of quantum
computations in chemistry as most computational methods rely on basis sets
to approximate the true wave function. The mechanics of these topics can easily
and intuitively be shown through the use of the game quantum tic-tac-toe
(QTTT). Herein we propose a series of activities, using the mechanics of both
classical tic-tac-toe (CTTT) and QTTT, intended to assist in the student’s
understanding of these quantum chemistry topics by exploiting their intuitive
comprehension of the game. Quantum tic-tac-toe QTTT is a quantum
analogue of CTTT and can be used to demonstrate the use of superposition in
movement, qualitative (and later quantitative) displays of entanglement, and
state collapse due to observation. QTTT can be used for the benefit of the
student’s comprehension in several other topics with the aid of proper discussion. This paper is the second in a series on the
topic published in this Journal.

KEYWORDS: First-Year Undergraduate/General, High School/Introductory Chemistry, Upper-Division Undergraduate,
Physical Chemistry, Humor/Puzzles/Games, Hands-On Learning/Manipulatives, Quantum Chemistry, Student-Centered Learning

Computational chemistry methods are of vital importance
in areas such as materials science and drug design due to

their predictive capacities, which may aid researchers in the
prevention of generating failed targets. During the advent of
quantum mechanics two schools of thought began to emerge: the
Schrödinger picture and the Heisenberg picture.1 The numerical
results and physical significance taken from these schools are
the same; however, they differ in where the time-dependency is
exhibited (operators vs states). From the Heisenberg picture,
Born and Heisenberg generated the matrix methods that are
prevalent in modern computation chemistry;2,3 methods such
as the Hartree−Fock method, density functional theory, and
configuration interaction methods.
Discussion of basis-set methods is something that is normally

avoided in undergraduate courses. This paper provides discussion
and activities by which topics in matrix methods can be approached
in undergraduate courses or as an early assessment or introduction
to computational methods in a graduate course. This paper is the
second in a series;4 for an introduction to the game, please see the
papers by Hoehn et al.4 and Goff et al.5−7

We also briefly discuss density matrices so that we may introduce
entanglement and concurrence to the students. We have chosen to
introduce entanglement as it has proved to be a vital element in the
future studies of quantum computing8,9 and quantum biology.10,11

■ ACTIVITY
We provide a series of example activities focusing on the matrix
methods commonly used within computational chemistry. The
activities presented here are not encompassing, and thus this
paper is meant to inspire the instructor to use the tools of classical

tic-tac-toe (CTTT) and quantum tic-tac-toe (QTTT) in any way
applicable to their classroom. Introduction of the game to
audience with undergraduate-level of understanding in science
has taken roughly 15 min; extending this topic to a graduate level
course should take less time. The average length of time to play a
single game is 4 min. Students take to the game enthusiastically.
Instruction in the topics below has not been tested using
quantum games, unlike those in the previous paper; but student
understanding to both concept and clarity is expected.
These activities are intended to be used in inquiry-based

classroom and take-home capacities. These authors have found
that assigning these types of problems after instructional guidance
and discussion of topics is best.12 These methods allow the student
to explore new topics after a framework has been laid, which affords
an exploration with confidence due to the student’s pre-existing
intuition for several aspects of both CTTT and QTTT. In this
manner these activities are akin to lab exercises in that they exploit
elements of inductive learning13−16 and guided inquiry.17,18

■ HILBERT SPACE AND BASIS FUNCTIONS

The matrix formulation is typically avoided in early quantum
mechanics courses geared toward undergraduate students,19

where preference is given to the Schrödinger equation due to
the Anschaulichkeit of the latter (which has historically been a
primary positive aspect of this formulation).1 Although matrix
formulations have been relegated to graduate-level courses, they
are extensively used in quantum chemistry methods.20−23
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We began by introducing the game briefly and then defining a
clear and finite set of basis vectors spanning the space of the game
board. This set can be used as a means of formulating a vector
describing any particular move within the game. Noting as a
sensible preliminary to further discussion that the basis that spans
and describes the spaces on board is the set of nine basis vectors
conforming to the completeness relation

∑ φ φ| ⟩⟨ | = I
i

i i

9

9
(1)

by noting that |φi⟩ is the ith dimensional principle Cartesian vector
where each dimension in the vector is representative of a principal
square on the board. Each player’smove can be described as a column
vector constructed of weighted basis vectors spanning the totality of
possible (finite) states within the board:

∑ψ ν φ| ⟩ = | ⟩
=i

i i
1

9

(2)

In this manner, the move X1 shown in Figure 1A can be described in
the aforementioned manner and is given by either of the following
equivalent statements:
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Noting that the coefficients provide weight to each basis vector, we
may now represent the probability amplitude of a particle in a board
space defined by the basis vector (Si).
We can now easily show students the importance of normalization

in amanner divorced of the use of integrals. In this way, the student is
exposed to the material from several vantages (as they have seen
the overlap integral method in earlier courses and coursework); this
allows the student to achieve a full perspective and decide which
picture they findmost insightful. The student needs only to recognize
that a single classical move represents a single particle placed within
the board; thus, the following statement makes the connection
between common sense and quantum mechanics:

∑ ν| | =
=

1
i

i
1

9
2

(5)

where the evaluation, at this point, can be shown to the student as the
dot product of two vectors (in this case is X1 from Figure 1):
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Just as the mathematics of normalization and overlap are nearly
identical in the Schrödinger picture, so it is in the Heisenberg picture.
The act of describing the overlap integral of two moves in vector
notation can be performed for the pair of spooky marker moves seen
in Figure 1B and yields the same solution as the use of the Gaussian
functions presented in4

ψ ψ⟨ | ⟩ = =
⎛
⎝⎜

⎞
⎠⎟

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

0 0 0 0 0 0
1
2

1
2

0

0
0
0
0
0
0
0
1
2

1
2

1
21

X
1
O

(7)

We have now shown the student how to describe a move,
normalization, and overlap integral within the matrix formulation;
nowwemay guide our discussions into the direction of observables in
quantum mechanics.

Figure 1. Boards displaying several possible activities: (A) a brief series
of exercises for the expansion of moves in terms of basis functions and
(B) several possible exercises for the topics of normalization and
overlap.
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■ CHANGEOFBASIS,PROJECTORS,ANDOBSERVATIONS
The student, now being able to describe both the board and the
individual moves in terms of vector spaces, is prepared to start
making observations within those spaces. We first introduce the
concept of change of basis. To the student the phrase, “there are
two sides to every story”, may be trite but is exemplary in the
description of basis for a vector space. The phrase merely
implores the listener to look at the problem in another
perspective; this is the fundamental concept in change of basis.
Wehaveuntil nowdescribedour vectors through aweighted sumof

Cartesian basis vectors (which are shorthanded by the s-basis for site-
basis). At this point we introduce a new basis by which to describe our
system. Victory in both classical and quantum versions tic-tac-toe can
be obtained through generating a three-in-a-row on any of the three
vertical columns defined by the board. We define a normalized set of
spanning vectors starting with a three-in-a-row in each of the columns:

−

−

−

− −

− −

− −

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞
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(8)

that is referred to as the Victory basis (v-basis). V-basis was defined by
generating the vector describing the three-in-a-row along the columns
of a board; the subsequent vectors can be solved for analytically or by
any canonical othogonalization method. The v-basis is not the only
other basis that could be defined that spans our board, so we would
encourage the reader to form any basis that is appropriate for their
class.
We are capable of constructing a matrix from this basis that

allows for vectors from one basis to be transformed to the other
basis.24 The creation of such a matrix (P) is a simple matter of
defining the target basis vectors B′, in terms of the source basis, B,
and constructing a matrix from these definitions. Consider a pair
of basis sets, B and B′, each spanning the space of a problem and
consisting of vectors u and w in basis B as well as u′ and w′ in B′:

= = ⎜ ⎟⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

a
b

c
d

u wand
(9)

where the vector elements are found from:

= ′ + ′ = ′ + ′au bw cu dwu wand (10)

These allow the construction of our P matrix:

= ⎜ ⎟⎛
⎝

⎞
⎠

a c
b d

P
(11)

whose properties are such that: Pv = v′. Following this standard
method, we can define a P′ matrix allowing the translation from
site basis to victory basis. This matrix is identical to that of eq 8.
We can now use the column vectors of the P′ matrix to start

making observations on our system. We begin by defining a
projection operator, Ξ̂ = |v⟩⟨v|, using the first column vector of
our Pmatrix to generate P′ and then employ that operator within
⟨ψ|Ξ̂|ψ⟩. We make our observation on the three moves shown in
Figure 2. Starting with the classical marker, we can see that our

observation of its state made with the projector defined from the
first vector of the victory basis would be:

ψ ψ⟨ | ⟩⟨ | ⟩ =v v
1
3

X
1 1

X

(12)

The value of 1/3 for the observation is due to the weight of the
spooky marker within the vector space of v1 being 1/3; when
summing over all the spanning vectors of the basis, the student is
able to recover the total density of the marker, 1. Completing the
same act for the spooky markers of ⟨ψ1

X|, we get the numerical
value of 2/3 because the spooky marker pair has greater weight
within v1 than has the classical marker of Figure 2.
When we complete the final example in Figure 2, that of ⟨ψ1

O|, we
can see the observation is 1/6, which is to say half that of the previous
twomeasurements because this time the particles are only half within
the space of themeasurement, v1. The sum over all the vectors within
the basis yields a density of 1, but the sum over v1, v2, and v3 yields
1/2; this value is due to only have of the superposition defining the
state being within the region of the basis defined by these vectors.
As we have nowmade ameasurement, wemay begin defining a

density matrix for our system and show the student how they can
make their first measurement of entanglement.

■ DENSITY MATRIX AND CONCURRENCE
Now, we show the student how one can make a measurement of
entanglement. Entanglement is the correlation between parts of a
system, induced through an interaction andmaintained in separation,
which is independent of factors such as position and momentum.25

Entanglement was introduced by Schrödinger26,27 and was the focus
of the famousEPRpaper.28Wedo this bymeasuring the concurrence,
which gives a measurement of pairwise entanglement of particles
within our system; the method was developed by Wooters.29,30 The
calculation of concurrence is a brief five-step process:31

1. Construction of a density matrix: ρ = |ψ⟩⟨ψ|.
2. Construction of a flipped density matrix: ρ ̃̃.
3. Product matrix: ρρ ̃.
4. Determine the eigenvalues of ρρ ̃: λ1, λ2, λ3, ....
5. Calculate concurrence: C = max[0,√λ1 − √λ2 − ...].

Figure 2. A board presenting possible exercises that may be used to
introduce the mathematics of observations of moves in several different
basis.
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We start by generating a density matrix for our system; this is
typically done by generating and subsequently diagonalizing
the Hamiltonian matrix for the system, but we have no
energies associated with our board or moves so we choose
marker location as our observable. Let us construct an
observation matrix, , by using the site basis for the board and
a projector, |ψ1

X><ψ1
X|, described by the spooky markers seen

in Figure 1A:

ψ| ⟩ =

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
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1
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0
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1
2

0
0
0
0
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1
X

(13)

ψ ψ ψ ψ

ψ ψ

= ⟨ | ⟩⟨ | ⟩

= ⟨ | ⟩⟨ | ⟩s s

i j i j

i j

, 1
X

1
X

1
X

1
X

(14)

This allows us to generate a general observation matrix over the
space of the board, not unlike a Hamiltonian matrix generated
with a finite basis set. This matrix is of the form:

=

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠
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0 0 0 0 0

0 0 0 0 0 0 0 0 0
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1
2
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1
2

0 0 0 0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 (15)

Now we construct a density matrix from the above. We first
diagonalize the matrix and select the state of the system we will
use for the generation of the density matrix. We use the first
eigenvectors of the system, the vector corresponding to the
eigenvalue of 1. This vector may be seen in eq 16 as it is being
used to generate the density matrix:

ρ = | ⟩⟨ | =

1
2

0
0
1
2

1
2

0
0
1
2

1 1

(16)

In generating ρ, we note that most of the space in which
this system lives is superfluous, and thus, we can reduce the

space of our calculations into a 4 × 4 region; this simplification
yields a ρ:

ρ =

⎛

⎝
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⎞

⎠
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0 0 0 0
0 0 0 0
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2

0 0
1
2 (17)

From the above we may now start to generate the spin-flip
density matrix, ρ ̃, for this state of the system. The generation
of ρ̃ is completed by:

ρ ρσ σ σ σ̃ = ⊗ ⊗( ) ( )y y y y (18)

where ρ is the density matrix discussed above and the σy is the
yth Pauli spin matrix. The use of the Kronecker product (⊗)
on the series of Pauli spin matrices is to generate a rotation
matrix in the same dimensions of the system. As our ρ is a 4× 4
matrix, the Kronecker product of two Pauli spin matrices is
sufficient to generate a four dimensional rotation matrix for
our system. Following the above procedural step our ρ ̃
happens to, again, generate:

ρ ̃ =

⎛

⎝
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⎞

⎠

⎟⎟⎟⎟⎟⎟⎟
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0 0
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0 0 0 0
0 0 0 0
1
2

0 0
1
2 (19)

Armed with both ρ and ρ ̃, we can now complete the fourth
procedural step: finding the Eigenvalues of the ρρ ̃ matrix-
product:

ρρ̃ =

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟

1
2

0 0
1
2

0 0 0 0
0 0 0 0
1
2

0 0
1
2 (20)

with Eigenvalues { 1, 0, 0, 0 }. Using these Eigenvalues within the
expression for concurrence: C = max[0,√1−√0−√0−√0].
This would yield a concurrence of 1; this is the maximum value
that the concurrence can yield for pairwise entanglement. The
value implies that the two parts of the spooky marker are
maximally entangled. This is a sensible finding as these markers
are entangled (as per the rules) and unencumbered by
interaction with other markers.

■ CONCLUSION
We have herein presented an introduction to the possible uses of
both classical and quantum tic-tac-toe as a means of instruction in
the matrix methods of quantum chemistry. These authors have
also found that a brief introduction in quantum entanglement is
beneficial to students and have presented a brief series of
activities using QTTT as a means of intruding entanglement. It is
the experience of these authors that students can benefit from
their previous experience in CTTT in the teaching of quantum
mechanical topics. Students also further their knowledge of these
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topics through learning and exercising with QTTT. Other
quantum games exist32−34 and their introduction into the
classroom as teaching tools and metaphors is encouraged.
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G protein-coupled receptors (GPCRs) constitute a large family of receptors that sense molecules
outside of a cell and activate signal transduction pathways inside the cell. Modeling how an agonist
activates such a receptor is important for understanding a wide variety of physiological processes
and it is of tremendous value for pharmacology and drug design. Inelastic electron tunneling
spectroscopy (IETS) has been proposed as the mechanism by which olfactory GPCRs are activated
by an encapsulated agonist. In this note we apply this notion to GPCRs within the mammalian
nervous system using ab initio quantum chemical modeling. We found that non-endogenous
agonists of the serotonin receptor share a singular IET spectral aspect both amongst each other and
with the serotonin molecule: a peak that scales in intensity with the known agonist activities. We
propose an experiential validation of this model by utilizing lysergic acid dimethylamide (DAM-57),
an ergot derivative, and its isotopologues in which hydrogen atoms are replaced by deuterium. If
validated our theory may provide new avenues for guided drug design and better in silico prediction
of ecacies.

Significance Statement
This project provides a scheme by which the activity of small molecule drugs at their target trans-
membrane receptor may be predicted. This is a vital task as it allows for the development of
new drug technologies for pharmaceuticals and suggests a mechanism by which these proteins are
activated through a quantum mechanical process.

I. INTRODUCTION

Quantum activity within biological systems and in-
formation theory applied therein have drawn much re-
cent attention1–5. Examples of systems that exploit
such phenomenon are: quantum coherence and en-
tanglement in photosynthetic complexes6–15, quantum
mutations16,17, information theory and thermodynamics
of cancers18,19,the avian magnetic compass20–23, tunnel-
ing behavior in the antioxidant breakdown of catechols
present in green tea24, enzymatic action25, olfaction26,
and genetic coding27. G Protein-Coupled Receptors
(GPCR) are the target for the greatest portion of modern
therapeutic small molecule medications28. Predictability
of pharmacological efficacy for new drugs prior to a com-
plex total synthesis can be aided by pharmacophore mod-
eling, crystal structure or a homology model. The theory
of protein/agonist binding has been described through
variants of the Lock and Key model, originally proposed
by Fischer29 and the extensions thereof30. Although this
theory has provided insight into changes of free energy
associated with the formation of the activated complex,
it has not manifested sufficient capacity for the predic-
tion ligand activity or a mechanism by which the agonist
activates the system.

Early models attempting to account for predictabil-
ity of agonist classification beyond shape were those
of odorant binding31,32; these works proposed a vibra-

tional theory of activation and effect. Vibrational theo-
ries were eventually disregarded for reasons that include
a lack of conceived mechanism and the inability of the
protein (which is vibrating) to detect the continuum of
thermally-activated, classical vibrations of the odorant.
A recently suggested a theory of olfactory activation con-
sisting of a physical mechanism closely resembling Inelas-
tic Electron Tunneling Spectroscopy (IETS)26,33,34. The
plausibility of time scales associated with this process was
verified through Marcus theory35. Electron tunneling
rates for the olfaction system have been calculated and
support the theory36. Furthermore, eigenvalue spectral
analysis of odorant molecules has shown a high correla-
tion between the vibrations and odorant classification37.

We focus on an initial examination of the viability of
the vibrational theory of protein activation in cases in-
volving protein-agonist binding within the central ner-
vous system and as a predictor of intrinsic efficacy as
defined within38. Activation of the 5-HT1A and 5-HT2A

receptors is implicated as being associated with human
hallucinogenic responses39,40. We utilize a model of in-
elastic electron tunneling to describe the protein-agonist
complex in a manner that will utilize the vibrational
frequencies of the bound agonist to facilitate electron
transfer within the activation site of the protein. The
prerequisite agonist information was collected through
molecular quantum mechanics calculations utilizing den-
sity function theory as well as normal mode analysis and
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natural bonding order methods; necessary were the har-
monic displacements, frequencies and partial charges of
each constituent atom. In Section II, we will first present
a qualitative discussion of the relationship between the
tunneling model and the protein-agonist complex. Sec-
tion III will discuss the tunneling features of several 5-
HT1A and 5-HT2A agonists, and how these correlate with
efficacy of these molecules. We conclude with a proposed
set of molecules that could be employed in experimental
validation of the vibrational theory’s applicability in the
central nervous system.

II. MAPPING THE MODELS

Application of the IETS model for the protein envi-
ronment requires mapping several aspects of the IETS
methodology to the biological system. The two-plate
setup of the tunneling junction represent the walls of the
receptor site; more explicitly, under electron transfer the
valance and conductance bands within the juncture be-
come specific HOMOs and LUMOs of the residues mak-
ing the walls of the receptor. This dictates that energy
transition detectable by the protein should be the energy
difference between electronic levels of residue side-chains
or any bound cofactors such as a metal ion. This al-
teration of IETS also localizes the source of tunneling
electrons to a single residue side-chain; the implication
is that electrons are not capable of uniformly tunneling
through the molecule. This lack of uniformity suggests
that the act of tunneling is localized to regions of the ago-
nist molecule and that not all local oscillators of a specific
mode fully contribute to the current enhancement.

Secondly, unlike the experimental IETS procedure, the
analyte is not deposited upon a surface, being encapsu-
lated by the active site. There is no externally applied po-
tential within the receptor site which would have allowed
for the scanning of energies; yet, it has been suggested
that an ionic cofactor, likely a calcium ion, could pro-
vide this driving field. The implication of this is that the
receptor is set to test the vibrational-assisted enhance-
ment to the electron tunneling rate at a specific energy.
The electrostatic interactions which govern docking ori-
entation would be a means of orienting the endogenous
agonists in such a way that the tunneling junction is ap-
propriately aligned for maximized electron transfer across
the atoms responsible for the inelastic contribution. Non-
endogenous agonists would align with residues in a man-
ner which may place energetically appropriate modes in
proximity of the tunneling junction, thus allow for the
activation of the receptor.

III. RESULTS

Generation of tunneling spectra is completed through
the procedure described in26,41, and outlined within the
Supplementary Material. This procedure was adapted

from earlier inelastic tunneling literature42,43 and simi-
larly uses arbitrary units (a.u.) for the tunneling inten-
sity. Our spectral procedure was validated by compar-
ison of the spectra of the formate ion, which is preva-
lent throughout experimental and theoretical literature
in IETS. These a.u. are proportional to the conduc-
tance enhancement, as well as the enhancement to the
probability of Coulombic interactions during tunneling.
Necessary information for implementing the calculations
outlined in the Supplementary Material was collected
through quantum chemical calculations. Computations
were performed using Density Functional theory at 6-
311G level utilizing the B3LYP functional; in contrast
to similar previous works26,41. Expanded psuedopoten-
tial correlation consistent 5-zeta basis was used for large
atoms where necessary. DFT was chosen both due to
its high accuracy in transition dipole frequencies and to
avoid encroaching error associated with dissimilarity be-
tween analyte and parameter molecules in semi-empirical
methods; inital use of Hartree-Fock theory display the
characteristic .8 factor shift to the vibrational frequen-
cies. Vibrational calculations utilize reduced modal dis-
placements, µ; proportional to the Cartesian displace-
ment through a factor of

√
µ. These arising due to the

center of mass coordinates within the classical theory af-
ter using the harmonic approximation to calculate the
normal modes. Natural bond order calculations yield the
partial charges, qi. Scaled Kronecker delta functions are
plotted at the absorbance frequency of the mode; these
functions were convolved with Gaussian functions pos-
sessing a conservative FWHM of 25 cm−1, representing
a very narrow thermal distribution. 25cm−1 to allow for
peak additions while avoiding over estimations of peak
breadth.

Assessment of vibrational bands of the 5-HT2A ago-
nists that could facilitate the inelastic transfer of elec-
trons within the protein environment is of primary im-
port. Agonists of a particular protein would share a sin-
gle spectral feature associated with the inelastic transfer,
as the same ligands would be responsible for the elec-
tron donation and acceptance in a particular protein.
Tunneling spectrum of several selected 5-HT2A agonists
have been generated. LSD, was selected as it possesses a
high potential for activation at this particular serotonin
receptor within the cortical interneurons44. DOI (2,5-
dimethoxy-4-Iodo-amphetamine) was selected due to its
high selective for the 2A-subtype receptor45. The re-
maining selected molecules are members of the 2C-X
(4-X-2,5-dimethoxyphenethylamine) class of psychedelic
phenethylamines. All compounds selected are known
hallucinogens46–48 some first characterized by Alexan-
der Shulgin in the compendia works PiHKAL and
TiHKAL49,50.

Figure 1 shows the tunneling spectra of select agonists
(above the axis). The selection of candidate peaks, possi-
bly responsible for facilitating inelastic transfer, was per-
formed using the spectral similarity index (SI), similar
to that used for comparison of mass spectra51. The SI
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FIG. 2. (a) The tunneling spectra of several DOX class agonists as well as their molecular structures. (b) The inverse of
the median effective concentration for the DOX class agonists plotted against the tunneling probability within the region in
question. The trend of tunneling intensity follows roughly the trend of the agonist’s efficacy at the 5-HT2A receptor.

FIG. 1. The tunneling spectrum of several known 5-HT2A

agonists as well as the square of the tunneling PDF reflected
below the energy axes; the square is used to highlight major
spectral aspects. The Spectral Similarity index of each plot
given in the inlay, noting that these similarity indices allude
to good spectral mapping.

was taken over the entire spectral region and repeated
for local regions. The SI is given by:

SI = 1−
√
|ai − bi|
N

(1)

Where N is the normalization constant (the numerator
performed for spectra b); bi is the value of the spectra
being analyzed at discrete location i and a is the spectra
being the reference spectra; being the most potent ago-
nist, LSD was selected as the reference spectra for our
SI calculations. The SIs associated with each of the tun-
neling spectra can be found in the provided Supplemen-
tary Material. To highlight major aspects of the tunnel-
ing PDF, we squared the function; this exaggerated as-
pects which exhibit large tunneling amplitudes within the
spectra (Figure 1 reflected below energy axis). The only
broadly shared spectral aspects were those at 1500cm−1.
For a more thorough discussion of the spectral aspects,
isotopic effects and density of states for these systems,
please see the provided Supplementary Materials.

The integral of the tunneling probability density was
taken around the 1500 ± 35cm−1 region and compared
to known EC50 data for compounds shown to activate 5-
HT2A. The effective concentrations of several phenethy-
lamines were taken from52 and compared to the local
integrals of the tunneling PDF. This comparison exposes
a possible correlation to the inverse of the EC50 data,
taken to represent the efficacy of the agonist at a recep-
tor. Results for the 1500cm−1 region are shown in Fig-
ures 2 and 3 for the DOI class and 2C-X class molecules
computed, respectively. Figures 2a and 3a give the tun-
neling spectra for each molecule, Fig. 2b and 3b compare
the integral values to the known EC50s.

As tunneling is a highly local process were the inter- action potential falls-off as r−3 for non-parallel displace-
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FIG. 3. (a) The tunneling spectra of several 2C-X class agonists as well as their molecular structures. (b) The inverse of
the median effective concentration for the 2C-X class agonists plotted against the tunneling probability within the region in
question. The trend of tunneling intensity follows roughly the trend of the agonist’s efficacy at the 5-HT2A receptor.

ments. Modes not local to the electron donor/acceptor
sites will not maximally contribute to the electron trans-
fer responsible for protein activation. Particular modes
in 2C-T-2 and in Aleph-2 reside within the thioether
(roughly 5 angstrom from the ring system); due to the
non-locality of these oscillators, tunneling probability
should be examined after having removed their contri-
butions from the spectra. Figures 2a and 3a present the
tunneling spectrum of 2C-T-2 and Aleph-2 both consider-
ing and disregarding these contributions; the additional
contribution to the tunneling probability due to these
modes is shown in orange of Fig. 2b and 3b. After cor-
rection for non-local motions, the integrals are in good
qualitative agreement with the inverse EC50.This prelim-
inary information supports a quantum mechanical origin
for the activation of these proteins, we propose an exper-
imental validation of the theory in the following section.

IV. EXPERIMENT

Early findings suggest that both the lake whitefish
and the American cockroach can identify isotopologues

of amino acids and pheromones, respectively53,54. Re-
cent experiments using the common fruit fly present
both naive bias to and potential for trained aversion to-
wards isotopologues of acetophenone55, and reposte56.
Recent works featuring human subjects shows that
naive participants cannot discern between dueterated
acetophenone57; a second study58presented evidence sug-
gesting human capability at discerning dueterated vari-
ants of musk odorants. Other works have attempted to
identify the characteristic vibrations associated with par-
ticular odors59, yet have not explicitly considered an elec-
tron tunneling mechanism.

DAM-57 (N,N-dimethyllysergamide) is an ergot
derivative with a mild hallucinogen with activity at the
5-HT2A receptor. As it activates the same receptor, the
above discussed candidate peak should, and does, appear
in the tunneling spectrum of DAM-57. Figure 4 shows
the tunneling spectra for various isotope labeled DAM-57
variants. Each spectrum is accompanied by a molecular
structure highlighting the isotope exchanges; the candi-
date peak is highlighted in yellow.

Using 1500 cm−1 as a central point, and recalling
the applied FWHM, the modes contributing to inelastic
transfer are those at 1500 ±50 cm−1. Modes within that
range have motions associated with (in order of contribu-
tion): stretching of the amide methyl hydrogen; stretch-
ing of the phenyl and indole hydrogens; and bending of
the methyl hydrogen of the tertiary amine.

Dueteration of the three phenyl hydrogens (DAM-57-
i) yields a marginal attenuation in intensity near 1500
cm−1, and small change in tunneling probability. DAM-

57-ii displays a reduction in the 3700 cm−1 region, N-H
stretch, shifting weight to 2700 cm−1. Deuteration of
the indole amine results in almost no character change
near the active region. Pro-deuteration of a single amide
methyl (DAM-57-iii) significantly decreases the tunneling
intensity in the 1500 cm−1 region. Continued deuteration
of the amide system (DAM-57-vi), reduces this peak to
roughly one-half the pro-protium intensity. DAM-57-vi
and DAM-57-v, moiety co-deuteration scenarios, present
very small alterations of the peak intensity when com-
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FIG. 4. The tunneling spectrum of several deuterium-isotopologues of DAM-57. Yellow highlights have been given to the
energy region which is assumed to be the active energy region for inelastic tunneling transfer. Specific dueterations deplete the
tunneling probability within this region, and may effectively eliminate the agonism of the molecule within the 5-HT2A receptor.

pared to DAM-57-iii and DAM-57-vi, respectively.
Within the tunneling model, dueteration of the amide

side chains should dampen the activity of the molecule at
the 5-HT2A receptor. This conclusion is supported by the
relative activity between DAM-57 and LSD. The flexible
ethyl amide of LSD has been found to be essential to
its high activity39,40,60,61, and that the methyl analogue
(DAM-57) is far less potent; the tunneling probability
at the 1500 cm−1 region of DAM-57 is depleted when
compared to that of LSD. Following this, a prediction
that further depletion of the tunneling probability within
this region should continue to diminish the efficacy at
the receptor may be entertained. The intensity of the
tunneling spectrum of DAM-57 is roughly a third the
pro-protium, and the probability density of tunneling is
roughly tenthed this implies an extreme loss of activity
associated with deuteration of the amide side-chains.

V. CONCLUSIONS

Herein we describe the agonist-protein system by an
electron tunneling junction coupled to a field of oscillat-
ing dipoles, representative of the constituent atoms of the
agonist. The oscillator field provides a secondary path for

electron transfer been the donor and acceptor states of
the junction; this secondary, inelastic path facilitates the
transfer if and only if the electron can donate a quantum
of energy to the oscillator field. Using this method we
tested classes of agonists for the 5-HT2A receptor and
found that all agonist, to varying degrees, facilitate elec-
tron transfer within the same energy region. The degree
to which this tunneling is facilitates correlates roughly
to the efficacy of the agonist within our test cases. We
examined the tunneling characteristics of isotopologues
of these agonists and predict that one could modulate
and quench their agonist properties though the isotope
exchange of specific atoms. Also included is a proposed
experimental path to text the model herein described.
We conclude that this mechanism is a candidate for the
activation step for some transmembrane proteins, allow-
ing for better prediction of candidate drug molecules and
the possible ability to control agonism of molecules.
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Supplemental Material

I. TUNNELING THEORY

Inelastic Electron Tunneling Spectroscopy is a well-founded experimental method

utilizing a simplistic laboratory set-up that can deliver the vibrational spectra of an

analyte. The mechanism of action is semi-classical and not optical, particular selec-

tion rules are derivable with IETS1 but in general this method allows for forbidden

transitions, thus all vibrational modes are addressable2. The method is implemented

by the application of a potential across a two-plate junction with a spatial separa-

tion between the plates. High energy electrons from the valence band of one plate

will tunnel across the junction into the conduction band of the other. When the

tunneling process occurs in the absence of analyte molecules, the process is elastic in

nature and electron energy is maintained throughout the process, thus the electrons

energy must be respective of the energy between the valence and conductance band.

1
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FIG. 1: Cartoon displaying the competing processes during IETS where V is potential

energy and Fe is the Fermi Level. Path A is radiative1,3, requiring the tunneling

electron to spontaneously lose energy to meet the energy of the conductive band.

Path B shows the electron losing energy via a non-radiative process; it is implicit

that the energy lost is to a normal mode of a deposited molecule within the gap -

such is our case.

Depositing an analyte molecule onto the electron source plate, as the tunneling

electrons enter the gap they may interact with the deposited analyte molecules; in

doing so they are effectively given a springboard, shortening their tunneling path.

This interaction comes at a cost of energy; the electron will lose energy to the analyte

molecule, where the amount of lost energy is equal to that of a vibrational mode of

the molecule. This process may be seen in Figure 1. This method has been well

described theoretically4–6 and expanded to include such considerations as molecular

orientation7 and short-ranged higher harmonics8. Here we shall review the theoret-

ical description of the elastic process a seen in9,10. It is a fair starting assumption

that the wave function is oscillatory in the x- and y-directions and evanescent in the

z-direction. In this manner the decay constant for such a function is spatially de-

pendent and thus the function is anisotropic; the wave functions used were described

2
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through WKB theory and are provided here:

 ψi =
(
A
L

)
eik

′
||·re−α0z

ψf =
(
A
L

)
eik||·re−α0(d−z)

(1)

From the above it should be noted that L is the dimension of the square plate.

kx, ky and kz are the wave vectors in the appropriate directions. Similarly, A is a

collection of constants, α0 is the decay rate of the evanescent wave in the z direction

and assuming cylindrical symmetry the wave vectors in the x̂ and ŷ directions are

identical and are combined into the radial wave vector k||, noting that this is the

wave vector components parallel to the plate surface.

FIG. 2: A cartoon displaying the physical relations and significance of variables

within the problem. e− is the tunneling electron with vector displacement of ~r and

Ze is the partial charge associated with a molecular mode with displacement ~R, and

d is the distance between the two plates.

We shall use the wave functions in Eq. 1 to attain the average value of the current

3
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for the system, via the current operator, Me. The elastic process yields:

< ψi|M̂e|ψf >= Me =

(
A2

L2

) L∫
0

dSeiq·r
(
~2α0

m

)
e−α0d (2)

=

(
A2~2α0

m

)
· e−α0d , (3)

where q is the difference between k′|| and k||. The inelastic process for a single

specified normal mode is governed by the following interaction potential:

U(r′) =
Zee

2

4πε0εr
· u · (R− r)

(|R− r|)3
, (4)

where all symbols retain their standard definitions, including εr being the permittiv-

ity of the generic real media, r and R are made clear by Figure 2 and u is the vector

representing the displacement of the atom within the molecule with partial charge

Ze. This potential allows us to calculate the inelastic contributions in a manner

similarly to the above:

Min =

(
A2

L2

)
e−α0deiq·R

∫ ∞
0

∫ 2π

0

∫ d

0

reiq·rU(r, θ, z)dzdθdr . (5)

Where the integral in Equation 5 can be performed analytically for cases where the

vector directions of u are either parallel or perpendicular to the plate surfaces. For

u along the z direction (parallel to gap):

M z
in = M0

1

qd

(
e−qα0 − e−q(d−α0)

)
; (6)

and for u parallel to the plates:

Mx
in = iM0

1

qd

{(
1− e−qα0

)
+
(
1− e−q(d−α0)

)}
. (7)

Where, in both the above, the quantity M0 is given by:

M0 = eiq·R−α0d

(
A2Ze2ud

L22ε0εr

)
. (8)

4
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The decay constants for each of ψi and ψf should conform with the statement:

Ec − E =
~2

2m
(α2 − k2

||) (9)

where E is the energy of the tunneling electron, Ec is the energy of the conductive

band and m is the mass of the electron (effective mass is typically used). The above

yields two unique decay constants consistent with the difference in electron energies

at the conduction band and during tunneling. With these two unique decay constants

we must append a factor of

e(αi+αf )d/2e(αi−αf )z (10)

to our matrix elements due to the difference in α’s. Carrying this factor through we

note there is a depletion of tunneling probability equivalent to:

e−q
2/4(α0d); (11)

and finally placing this into an expression for the relative conductivities associated

with the inelastic and elastic processes, ∆σ
σe

, and finally including a 2-D density of

states representative of the plate surface areas:

σin
σe

=

{
1

Me

}2 ∫ ∞
0

(M z
in)2 e−q

2/4(α0/d)

(
qL2

2π

)
dq. (12)

The above allows us to make the statement:

σin
σe
∝ Z2

eu
2
z, (13)

as those quantities on the R.H.S. of Eq. 12 are the only quantities dependent on

molecular characteristics and thus are featured in Eq. 13. As the elastic tunneling

process occurs with or without the presence of the analyte molecules, the experi-

mental observable is the ratio between the known elastic contribution, σe = M2
e ,

to the current at a given applied potential (found through a zeroing process with a

5
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non-deposited gap) and the deposited gap current at the same potential; this ratio

quantity is denoted as ∆σ
σe

. Armed with the above, the IETS intensity for a given

active mode j can be approximated by6,11:

Ij =
N∑
i=1

Ii,j =
N∑
i=1

q2
i (∆xi,j)

2, (14)

where the sum is over all atoms within the molecule, qi is the partial charge of atom

i, and ∆xi,j is the Cartesian displacement of atom i in mode j.

II. DISCUSSION OF TUNNELING SPECTRAL ASPECTS

An examination of the edrogenous agonist 5-HT is given in Figure 3. The main

spectral features are (quantities are in cm−1): the OH stretch at 3700; NH2 bend at

1700; coherent ring motions appear at both 1500 and 1150; and indole bending at

530. For reasons discussed below, we will focus our discussion on tunneling in the

1500 cm−1 region. Working within Turins theory, this implies that these motions

assist in the turnneling and that the tunneling source and sink are in proximity to

these motions. Docking studies of homology modeled 5-HT2A show that the moieties

discussed above are local to F339, F340, S159 and L229 residues12–15, alluding that

one of these residues may facilitate the tunneling process.

FIG. 3: Serotonin’s tunneling spectrum used as a comparitor throughout the discus-

sion. Here the abscissa has units of wavenumber and the ordinate has units propor-

tional to tunneling probability; this convension holds for all tunneling spectrum to

follow.

6
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The spectral indices are given for the overall spectrum and followed by regional

SI’s calculated for spans of 1000cm−1 with 500cm−1 steps, to emphasize the possible

region associated with acitvation the final column shows the SI of each compound

for 1500±100cm−1. Regions with large ranges of zero intensity have SI’s inflated by

this spectral facet, these regions have been disincluded within the table. When disin-

cluding these regions, the SI for the region spanning 1000-2000cm−1 shows enhanced

values, and includes the peak at 1500cm−1. The final column of the table gives the

SI for a 100cm−1 region about this peak to emphasis this heavily shared spectral

feature. Application of the SI to the square of the spectra yielded similar results

(not shown), yet with the expected enhancement of the SI values (not shown).

TABLE I: Table contains the SI indexes for several 5-HT2A agonists. The

procedure was applied to the total spectra, and several sections of 1000cm−1 which

march with an overlaping pattern and shifted by 500cm−1. The region of interest is

also performed with a calculated SI for the region of 1500±100cm−1

In the next few sections we have selected DOC (2,5-dimethoxy-4-C-amphetamines)

as a prototypical molecule for discussion, this selection was based on its fairly

tractable number of modes, simple geometry, symmetry and similarities to other

agonists. Energy regions associated with an assisted electron transfer would bene-

fit from a large density of vibrational states; implying a greater number of possible

states to interact with in this energy range. Figure 4 shows both the IETS and scaled

7
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FIG. 4: The tunneling spectrum of DOC (Blue) is plotting alongside a scaled,

discrete density of states for the vibrational modes of DOC. The scaling factor is

given in the inlay. Note the enhanced number of states associated with 1500cm−1

region. This large number of states reflects a large density of possible vibrational

modes within this energy range that are capable of accepting a quanta of energy

from the tunneling electron.

density of states for DOC; the spectral feature at 1500cm−1 exhibits an enhanced

number of vibrational states.

In the main body of the paper we propose an isotopolgue series for DAM-57;

the series is of variants are dueterated functional groups altering the character in

the 1500cm−1 region. We verified that isotopologues of other atoms do not to alter

tunneling character in this region. Figure 5 shows the isotope effects within several

groups of the molecule. Fig. 5 a) shows the effects of replacing the oxygens with 18O’s,

this results in little alteration near 1500cm−1; substitution of the halide has similar

results, with differences appearing at much lower energies. Fig. 5 b) displays the

effects of dueterating the hydrogens on the methoxys, this show a large attenuation

of the tunneling intensity; finally, Fig. 5 c) shows the effect of selectively dueterating

different functional groups.

8
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FIG. 5: Plots of the isotoplogues of oxygen with the DOC molecules. The isotope

exchanges has no effect on the region in question. This means that it is not

vibration of the oxygen atoms which are most heavily responsible for the tunneling

features within our candidate region.
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Attention has recently been given to a particular theory governing the activation of G-Protein
Coupled Receptors (GPCRs) within the olfactory cavity by means of an electron transfer process
across the proteins activation site. This theory prescribes mechanisms similar to those govern-
ing Inelastic Electron Tunneling Spectroscopy (IETS), a method of spectroscopic determination
of molecular vibrational and electronic transitions, to the protein/agonist complex. This theory
has been used to reassert odorant compounds within their known odor classes; agreement was es-
tablished, possibly bolstering the applicability of this theory. There are several facets within the
framework of inelastic electron tunneling theory that should be further considered and included
within future works surrounding this topic. Herein we elucidate several considerations and to what
degree these influence calculations: spatial dimensions of the activation site, orientation effects of
the odorant within the site, modulation of the geometry of docked ligands, and the importance of
both Infrared and Raman active modes.

I. INTRODUCTION

The activation of G-Protein Coupled Receptors
(GPCRs) governs many physiological activities exam-
ples of which include: olfaction1, central nervous system
regulation2 and maintaining circadian rhythm3. Roughly
half of all modern small molecule therapeutics target this
class of proteins4 and roughly 50% of all human encoded
GPCR genes encode for olfaction alone5. Understand-
ing the mechanism by which GPCRs are activated is
paramount to applications within both the pharmaceuti-
cal and the flavor/scent industries.

A recent resurgence of interest for a vibrational-based
theory of protein activation has occurred6–8, featuring
the mechanisms surrounding Inelastic Electron Tunnel-
ing Spectroscopy (IETS) as its possible means of detect-
ing the vibrational modes of the bound ligand9, while
activating the protein through an electron transfer pro-
cess. The IETS mechanism relies on a field driven elec-
tron transfer across an insulating gap situated between
two conductive metal plates. The driving field promotes
electrons to tunnel from the donor site on one side of
the gap to the acceptor site on the other side, this be-
ing the elastic process. As the intensity of the driving
field is increased, the electrons may donate a quanta of
energy to a molecule situated within the gap along their
path, this being the inelastic process. This secondary
conductive path promotes an enhancement to the cur-
rent across the gap. The donated quanta of energy is
equal to a quanta accepted by the molecules vibrational
or electronic transitions. There exist several other mech-
anisms by which electrons are conveyed across the gap in-
cluding elastic transfer, inelastic transfer, 2nd order elas-
tic transfer as well as subsequent and less contributing
modes of transport including modes displaying photon
emission10,11. Theoretical descriptions of this mechanism
were introduced by Kirtley et al12 and later elucidated

by Phillips and Adkins13.
To exemplify the effects of several factors on the mea-

surable IETS intensities, we have selected the formate ion
for our example system. This ionic system is both small
and simple enough to allow for easily observed emphasis
of effects of the IETS mechanism discussed within this
paper as it possesses a very tractable number of vibra-
tional modes and a simple geometry. This example also
has the added benefit of being a classical example within
the IETS theory and experimental literature12,14.

II. RESULTS AND DISCUSSION

Calculations of Inelastic Electron Tunneling rates
have been performed in various ways throughout the
literature12,13. Typically the Barden Transfer Hamilto-
nian method is employed to allow for the calculation of
the elastic contribution from the tunneling wavefuntions
across the barrier sides. The WKB approximation is used
to describe the wavefunction of the tunneling electrons
from each side; the following are the evanescent wave-
functions describing an electron traversing a gap of length
d defined by two conductive plates of area L2:

ϕ1 =

(
A

L

)
eik‖·re−α0z (1)

ϕ2 =

(
A

L

)
eik
′
‖·re−α0(d−z) (2)

Where a0 is the decay constant of the tunneling elec-
tron in the zth direction, kparallel and k′‖ are the momen-

tum parallel to the surfaces and A is the normalization
constant. As a reference, a cartoon description of the
formate ion within the gap is given in Figure 1a and the
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experimentally resolved spectra for this system is in Fig-
ure 1b14.

As the electrons tunnel through the barrier they may
undergo several processes including: elastic transfer, in-
elastic transfer, 2nd order elastic transfer and subsequent
less contributing modes of transfer. The inelastic modes
of transport are facilitated through interaction between
the tunneling electron and a deposited molecule within
the gap11; the tunneling electron donates of quanta of en-
ergy to the deposited molecule. In the case where there
are a non-continuum of acceptor and donor energy levels,
the donation of energy from the electron to the molecule
must obey Fermis Golden Rule:

Ti→f =
2π

~

∣∣∣
〈
ϕ2

∣∣∣Û
∣∣∣ϕ1

〉∣∣∣
2

δ (Ef − Ei ± ~ω) (3)

Where Ti→f is the probability of an electron transfer-
ring from state i to state f , with the stationary state
wavefunctions ϕi and ϕf ; Û is the interaction potential
to be discussed and δ is the Kronecker delta function
depending on the energies of the states and the quanta
absorbed by the deposited molecule. The quanta of en-
ergy is typically in the range of vibrations for IETS,
although electronic excitations have also been achieved
experimentally15. The electronic interaction between the
ligand and the molecule treats each atom of the molecule
separately; each atom is assigned a partial charge, Z,
and sits at its equilibrium positions, R, it vibrates with
a displacement u. The interaction potential is that of an
electron and single dipole:

Û (r, θ, z) =

(
Ze2

4πε0εr

)
u · (R− r)(
|R− r|3

) (4)

As the interaction is between the electron and a single
atom of the molecule, the contribution to the conductiv-
ity found through this calculation must be repeated and
summed over all atoms within the molecule.

To determine the contribution to the conductivity of
any mode of transport, one must first calculate the tun-
neling matrix element. In the case of the elastic mode the
tunneling matrix element,Me, is calculated as the overlap
of the wavefunctions from the donor and acceptor sites
over the volume of the gap since this mechanism does not
require interaction with the deposited molecule. The cal-
culation of the tunneling matrix element for the inelastic
transport to the contribution utilizes the both donor and
acceptor wavefunctions and the interaction potential:

Min=

(
A2

L2

)
e−α0deiq·R

∫ ∞

0

∫ 2π

0

∫ d

0

diq·rÛ(r, θ, z)rdzdθdr.

(5)
Within the above, q is the change in parallel momen-

tum defined as q = k′‖ − k‖.

The tunneling matrix elements act as probability fac-
tors in the calculation of the conductivity. IETSs en-
hancement in the current is related to alterations in the
conductivity through the additional transport paths as-
sociated with the inelastic transport utilizing the atomic
oscillators as energy syncs. The ratio between inelas-
tic contribution and the elastic contribution for a single
atomic interaction with the electron can be calculated
through:

σin
σe

=

[
1

Me

]2 ∫ ∞

0

M2
Ae
−q2d
4α0

L2

2π
qdq (6a)

∝
∫ ∞

0

M2
Ae
−q2d
4α0 qdq = IA (a, d)Z2

Au
2
A. (6b)

The l.h.s. of the proportionality is the integral form
proposed by Phillips and Adkins13. Whereas the r.h.s.
is a simplification through elimination of all constants
within the calculation, it is taken to be in arbitrary units,
a. u., while being proportional to the strict calculation
through multiplication of a constant.

Figure 2 is provided as a useful reference for subse-
quent sections; it gives the normal modes of the formate
ion for association with the intensities and spectra to be
discussed. Within this figure, the displacements in a.u.,
the directional unit vector and the frequency in cm−1 are
all given; oxygens are depicted in red, carbon in black and
hydrogen in grey.

A. Point Dipole Approximation

The most fundamental expression describing electro-
magnetic ineractions between an electron and a charged
dipole is given here16:

V =
zi (−zj) e2

4πε0

1

|rj − ri|
+
zizje

2

4πε0

1

|rj + pj − ri|
(7)

Where ri is the location of the electron providing a field
zie

2 and rj is location of a single side of the dipole where
both ends provide a field with the magnitude zje

2; the
second term describes the remaining, oppositely charged
side of the dipole at a distance pj from rj . Recollection
of the terms yields the expression in Eq. 8a, and a subse-
quent Taylor series expansion for the denominator yields
Eq. 8 line 2.

V =
−zizje2
4πε0

(
1
rij
− 1√

r2ij+2~rji~pj+p2j

)
(8a)

∼= zjzie
2

4πε0rji

(
1
2
~rji·~pj
r2ji

+ 1
2

p2j
r2ji
− 3

8

(
2~rji·~pj
r2ji

+
p2j
r2ji

)2)
(8b)

After the series expansion, the point dipole approxi-
mation is typically employed; this approximation states
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that the distance between the charge and the dipole is
much greater than the displacement between the dipole
termini, rji � pj . Under the point dipole approximation
all but the leading terms of Eq. 8( line 1) drop due to
minimal contribution, seen in Eq. 9.

V ≈ zje

4πε0

~rji · ~µj
r3ji

=
zjzie

2

4πε0

~rji · ~uj
r3ji

(9)

It is important to note that is has been suggested that
the spatial dimensions of the activation site within this
class of proteins is to be on the order of 15Å17. This
suggested dimension of, when compared to order of mag-
nitude of the normal mode displacement vector, does
not meet the criteria for the point dipole approximation.
Considering that the system is possibly inappropriate for
application of the point dipole approximation, we com-
pare the numerical values for the tunneling matrix ele-
ments as calculated through Eq. 5 using the interaction
potential Eq. 4 and the more complete form of the inter-
action potential in Eq. 8 (line 1). Figure 3 shows the rel-
ative error associated with using the point dipole approx-
imation with the spatial scale of the active site; it should
be noted that the error associated with this misuse of
the approximated potential is peaked in the range of the
active site length scale. Within this regime the dipole ap-
proximation eliminates terms which are dependent upon
the projection, rji ·pj , there exists an angular dependence
on the magnitude of the tunneling matrix element. This
angular dependence can be observed in Figure 3, and is
due to the projector terms which are eliminated during
application of the point dipole approximation; the mag-
nitude of the relative error is proportional to the cosine of
the angle, and then we observe an oscillatory component
to the error in the θ-dependences.

B. Polarizability

Inelastic electron tunneling, a method for obtaining
information about the vibrational modes of a molecule,
does not rely on the interactions between the molecular
dipole and the field of the electron12,13. The interaction
potential, Eq. 4, describes the interaction between an
electron and a single oscillating dipole, representing a sin-
gle vibrating atom within the molecule; this interaction
depends neither upon the polarizability of the system nor
the change in net dipole. The single-dipole nature of the
potential requires a summation over the atoms within the
molecule to account for each independent electron-atom
interaction.

The ratio given in Eq. 6b is characteristic of the en-
hancement to the conductivity due to single atom mo-
tions. If this were the only responsible contribution to
1st order inelastic conduction then the symmetric modes,
corresponding to Raman transitions, would not appear in
IETS, yet they do and with roughly the same magnitude
as Infrared active modes.

σin
σe
∝
∫ ∞

0

MAMBe
−q2d
4α0 F (qb) qdq = IAB (a, d)ZAZBuAuB

(10)
The above describes the contribution to the conduc-

tivity enhancement due to the coherent motion of two
atoms. Eq. 10 contains a phase factor, F (qb), which
is generated through the addition of matrix elements.
The advent of this phase factor comes from the addi-
tion of the eiq·R terms seen within Eq. 5. If the two
atoms are identical and their distance from the nearest
barrier is the same, the form of the phase factor becomes:(
u1 + u2e

iq·b). In the case that the displacements of each
atoms are of equal magnitude and the same direction,

u1 = u2 (IR active), the phase factor becomes cos2
(
q·b
2

)
.

In the case of Raman active modes, u1 = −u2, the phase

factor simplifies to sin2
(
q·b
2

)
.

It has been experimental observed that both IR and
Raman modes are active within IETS and scale roughly
equally. Yet some works within this field authors have
chosen to couple the oscillating dipole associated with
an entire molecular mode17, this would generate the in-
tensities associated with the infrared vibrations of the
molecule but not contributions associated with Raman
active modes.

Figure 5 shows the effects of including intensity con-
tributions of the Raman active modes (standard IETS),
blue plot. Alongside the blue plot, we have provided the
intensity expected if the coupling mechanism were to be
only with the molecular dipole moment. The two plots
are scaled to each other for convenience of comparison.
It is clear to note, by comparison between the blue plot
of Figure 5 and the experimental plot given in Figure 1,
that the inclusion of Raman mode associated intensities
has delivered a better approximation to experiment.

C. Orientation

When considering the charge-dipole interaction poten-
tials it is clear that the leading (point-dipole) term as well
as any subsequent terms rely on the projection of the har-
monic displacement vector for a specific atomic oscillator
(j),uj , onto the charge-dipole vector, rji. This projection
is of paramount importance within the calculation of the
coupling within these systems as it effectively modulates
the power of the denominator.

Orientation effects within IETS intensity calculations
have been described as being of such importance as to
practically be a selection rule for this type of vibra-
tional characterization9,12,18. Interaction potentials used
within early formulations of IETS calculations rely on
the coupling strength of the electron within the donor
site to atomic harmonic oscillators, and did not include
any dynamic interactions within the system. More dy-
namic formulations exist to deal with that rather min-
uet contribution of inelastic tunneling contributions to
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the current through molecular junctions, such as greens
functions approaches. It should be noted that in these
cases the inelastic contribution is to the molecular con-
ductance and is attributed to vibronic alteration of elec-
tronic levels within the molecule this second-order cou-
pling (electron-vibrational state-electronic state) is why
the inelastic contribution is minute in these cases19.

In maintaining the simplicity of static calculations, one
cannot ignore the contributions to the interaction poten-
tial from the vector projection. To emphasize the im-
portance of this interaction we have plotted the IETS
of the formate ion; in Figure ??a you can see the three
angular parameters and their relation to the molecular
geometry of the formate ion. The rotation about the red
(z) axis does not alter the spectrum of the formate ion
as the calculations set the origin of the tunneling junc-
tion along this axis, and thus this rotation does not alter
the projection of the electron onto any molecular modes
- merely which component (x or y) possesses the projec-
tion; it should be clearly stated that this is a facet of the
formate ions C2 rotational symmetry, not of inelastic tun-
neling. Rotation about the green (y) and blue (x) axes
will alter the projections, the effects can be seen in Fig-
ure ??b for rotation about the x-axis and Figure ??c for
rotation about the y-axis. Furthermore, without having
calculated these orientation effects one can never achieve
modes where the rate of inelastic tunneling is lower than
the rate of the elastic process, which is vital in inelastic
tunneling spectrum.

D. Docking Geometry

Specifically discussing the activation of olfactory pro-
teins under the odotope theory, the volatile odorant
molecule is hypothetically capable of maintaining some-
thing akin to its optimized geometry within the activa-
tion site20. This is due to the fact that only certain
sections of the molecule are being determined at once
suggestive of a soft or partial docking; it could be ra-
tionalized that the molecule only loosely enters and is
never fully enveloped by the activation site. This ratio-
nalization would be countered by docking studies of the
OR1A1, OR1A2 and OR1G1 human olfactory receptors
that do show envelopment of the ligands which dock with
the protein21,22.

Full ligand envelopment can lead to geometric alter-
ations of the ligand during the docking as the protein-

agonist complex reaches its energy minimum states. The
alteration of ligand geometry can lead to attenuations in
both the modal displacements and the partial charges,
which for our example system can roughly generate a
10% alteration by displacement or a 5% alteration by par-
tial charge (where partial charge was calculated through
NBO analysis) in the tunneling intensity if the molecular
geometry group is maintained. Moreover, these attenua-
tions alter the potential interaction between the electron
and the dipole through the dot product present in several
terms of the non-approximated interaction potential Eq.
8 (line 1) as well as the standard interaction potential
Eq. 4.

Figure 6a shows the geometry and alignment within
the gap of the formate ion as well as variations on the
bond angles. Fig. 6ai is the optimized for of the ion, Fig.
6aii is has altered both O-C-H bond angles equally (main-
taining both σ planes) and Fig. 6aiii has altered only one
of the O-C-H bond angles (maintaining only the σ plane
bisecting all bonds). The alterations in the frequencies,
displacements and partial charges are shown in Table I.
Figure 6b gives the inelastic tunneling intensities for the
variations of the formate ion. For obvious reasons the
frequencies are slightly displaced, and the introduction
of asymmetry in the oxygen pairs movement eliminates
much of their non-canceling contribution.

III. CONCLUSION

The feasibility of tunneling electrons being the mech-
anism behind the activation of has been the subject of
recent works. The mechanism by which the electron in-
teracts with a bound ligand has been proposed as being
IETS; for future works in this direction it is important to
consider a more complete description of the IETS model
including considerations of the angular dependence be-
tween the mode and tunneling vector, alterations in the
ligand geometry due to docking and the importance of
choosing an appropriate interaction potential consider-
ing the confines of the activation site. These facets of
the full static IETS calculations have been explored here
and these authors iterate their importance. Future works
should not only consider the aspects discussed within this
paper, as these aspects are mandatory consideration, but
could also explore mode coupling of residue chains within
the activation site itself or thermal line broadening at bi-
ological temperatures.
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FIG. 1. a) A cartoon schematic of the formate ion within its gap, distance parameters d and a are shown within the figure for
clarity. b) The IETS spectra of the formate ion taken from14, provided as reference.

FIG. 2. A display of the normal modes associated with the formate ion. Also included are a unit vector indicator as to the
direction of displacement and the magnitude is shown beside it. Distances are in a.u. Frequencies are also displayed in cm−1

beneath the mode to which it belongs.

329



7

FIG. 3. The percent relative error between variations of the interaction potential given in Eq. 4 and Eq. 8a. This was completed
for several values of θ to emphasize the angular dependence stemming from projection operations in terms eliminated through
approximation.

FIG. 4. The blue line shows the IETS of the formate ion; the maroon line shows the spectra where the interaction potential
given Eq. 4 is replaced by the interaction potential between the electron and the molecular dipole. The two plots have been
scaled so to be comparable.

330



8

FIG. 5. The blue line shows the IETS of the formate ion; the maroon line shows the spectra where the interaction potential
given Eq. 4 is replaced by the interaction potential between the electron and the molecular dipole. The two plots have been
scaled so to be comparable.

FIG. 6. Effects of alterations of the geometry of a system on the IETS. Subfigure (a) shows cartoons of the geometries of
concern: optimized geometry, symmetric alteration and asymmetric alteration, respectively. Subfigure (b) shows the IETS of
the formate ion variants
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TABLE I. Numerical Values for calculations of the geometric alterations and optimized geometry variants of the formate ions.

332


	Purdue University
	Purdue e-Pubs
	Fall 2014

	Quantum mechanics in complex systems
	Ross Douglas Hoehn
	Recommended Citation


	Blank Page

