
Purdue University
Purdue e-Pubs

Open Access Dissertations Theses and Dissertations

Fall 2014

Intranuclear strain measured by iterative warping in
cells under mechanical and osmotic stress
Jonathan T Henderson
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations

Part of the Biology Commons, Biomechanics and Biotransport Commons, Biophysics
Commons, and the Cell Biology Commons

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Recommended Citation
Henderson, Jonathan T, "Intranuclear strain measured by iterative warping in cells under mechanical and osmotic stress" (2014). Open
Access Dissertations. 283.
https://docs.lib.purdue.edu/open_access_dissertations/283

https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F283&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F283&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/etd?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F283&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F283&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/41?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F283&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/234?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F283&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/4?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F283&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/4?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F283&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/10?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F283&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations/283?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F283&utm_medium=PDF&utm_campaign=PDFCoverPages


Graduate School Form 30 

(Updated 11/20/2014) 

 

PURDUE UNIVERSITY 
GRADUATE SCHOOL 

Thesis/Dissertation Acceptance 

This is to certify that the thesis/dissertation prepared 

By Jonathan T. Henderson   
 

Entitled 
Intranuclear strain measured by iterative warping in cells under mechanical and osmotic stress 

 

 
For the degree of 

   Doctor of Philosophy   

 
 

Is approved by the final examining committee: 

Corey Neu Alexander Veress 
 

  

 
Joseph Wallace 

 
  

 

Young Kim 
 

  

 

Sophie Lelievre 
 

  

 

To the best of my knowledge and as understood by the student in the Thesis/Dissertation Agreement, 

Publication Delay, and Certification/Disclaimer (Graduate School Form 32), this thesis/dissertation 

adheres to the provisions of Purdue University’s “Policy on Integrity in Research” and the use of 

copyrighted material. 

 

Corey Neu 

Approved by Major Professor(s):   
 
 

 

Approved by: George R. Wodicka 11/25/2014 
 

Head of the Department Graduate Program Date 





 

 

 

 

INTRANUCLEAR STRAIN MEASURED BY ITERATIVE WARPING IN CELLS 

UNDER MECHANICAL AND OSMOTIC STRESS 

A Dissertation 

Submitted to the Faculty 

of 

Purdue University 

by 

Jonathan T. Henderson 

In Partial Fulfillment of the 

Requirements for the Degree 

of 

Doctor of Philosophy 

December 2014 

Purdue University 

West Lafayette, Indiana 

 

 

 

 

 



ii 

 

ii 

 

 

 

 

 

 

 

For my wife and kids 

and in loving memory of Doyle Dean Henderson – 

father and friend. 

 

 



iii 

 

iii 

ACKNOWLEDGEMENTS 

The race is won more often by perseverance than by pure genius. This is a quote that I 

found one late night on the confocal microscope that was hidden behind a taped up sign 

that fell down. My motivation and perseverance is not mine alone but provided by so 

many.  First, Corey – thank you for your guidance through this discovery process. Thank 

you for sending some of my images across the county to Alex to see if warping could be 

used. Alex—thank you for your tutoring and many skype calls to discuss warping.  

Without your advice and knowledge this dissertation would not be possible.  Many 

thanks to my committee members: Young Kim, Joey Wallace, and Sophie Lelievre for 

their conversations and guiding comments. Thanks to the Weldon staff that have been so 

kind to me and my family. For the treats they provide to my kids when they visit dad at 

work. Thanks to my lab mates past and present. Your comradery has made graduate 

school and the lab bearable when everything goes wrong. Thanks to the third floor late 

nighters that became my family when mine left for the summer.  Your presence on the 

third floor in the early morning hours made the madness of long hours fun and 

competitive. My deepest thanks go to my partner in this race of life, my wonderful wife 

Jessica.



iv 

 

iv
 

PREFACE 

This dissertation includes several chapters that have already been published in or are in 

final preparation for submission in peer-reviewed journals. Chapter 2 is based upon the 

published book chapter in CRC Press Handbook of Imaging in Biological Mechanics
1
. 

Chapter 3 is an edited version of the already published research paper in the Biophysical 

Journal
2
. Chapters 4, 5, and 6 are manuscripts that are under final preparation. Additional 

information that has been added for clarity in the chapters that have already published is 

italicized.  

 



v 

 

v
 

TABLE OF CONTENTS 

Page 

ABSTRACT… ................................................................................................................. viii 

CHAPTER 1. MOTIVATION FOR MEASURING INTRANUCLEAR MECHANICS . 1 

CHAPTER 2. INTRNAUCLEAR MEASURMENT OF DEFORMATION IN SINGLE 

CELLS………… ................................................................................................................ 3 

2.1 Abstract. .................................................................................................................3 

2.2 Introduction ............................................................................................................3 

2.3 The Deformed Nucleus ..........................................................................................5 

2.3.1 Connecting the nucleus to the cell and extracellular matrix ..............................5 

2.3.2 Nuclear structures: form and function ...............................................................6 

2.4 MEASURING NUCLEAR MECHANICS AND MECHANOBIOLOGY ...........6 

2.4.1 Nuclear imaging, deformation, and measurement techniques ...........................6 

2.4.2 Measuring mechanobiology ...............................................................................8 

2.4.3 Design criteria to combine nuclear mechanics and mechanobiology ................8 

2.5     HYBRID TECHNIQUE MICROSCOPY AND HYPERELASTIC WARPING ..9 

2.5.1 Strain transfer: tissue to nucleus ........................................................................9 

2.5.2 Measuring single cell 3D intranuclear time dependent strain fields ................10 

2.5.3 Detecting nascent RNA synthesis in single cells .............................................10 

2.5.4 Specificity and experimental tradeoffs ............................................................11 

2.6 CONCLUSION ....................................................................................................12 

CHAPTER 3. DIRECT MEASUREMENT OF INTRANUCLEAR STRAIN 

DISTRIBUTIONS AND RNA SYNTHESIS IN SINGLE CELLS EMBEDDED 

WITHIN NATIVE TISSUE ............................................................................................. 21 

3.1 ABSTRACT .........................................................................................................21 

3.2 INTRODUCTION ................................................................................................21 



vi 

 

v
i 

Page 

3.3 Materials and methods……………………………...……………………….…..23 

3.3.1 Tissue harvesting and sample preparations .....................................................23 

3.3.2 Mechanical loading and imaging of DNA and newly synthesized RNA ........24 

3.3.3 Calculating nucleus 3D strain maps by hyperelastic warping .........................25 

3.3.4 Measurement of error in displacement fields using simulations .....................25 

3.3.5 Nascent RNA Synthesis In Situ .......................................................................26 

3.3.6 Relationship between intranuclear strains and newly synthesized RNA .........27 

3.4    Results...................................................................................................................27 

      3.4.1    Complex intranuclear displacements and strains ……………..….….............27 

3.4.2 Interchromatin Regions and Nascent RNA Synthesis .....................................28 

3.5 Discussion………………………………………………………. .......................30 

CHAPTER 4. VALIDATION FOR MEASURING INTRANUCLEAR STRAIN WITH 

ITERATIVE WARPING USING DEFORMABLE IMAGE REGISTRATION……….46 

4.1 Abstract…………………………………………………………………………46 

4.2 Introduction……………………………………………………………………. 46 

4.3 Methods ………………………………………………………………………...48 

4.3.1 Nucleus imaging and forward known data ......................................................48 

4.3.2 Iterative warping using deformable image registration ...................................48 

4.3.3 Measurement of error in hydrostatic strain fields ............................................49 

4.3.4 Visualizing strain fields ...................................................................................49 

4.4    Results…………………………………………………………………………...50 

4.5 Discussion and Conclusions……………………………………. ........................51 

CHAPTER 5. DEDIFFERENTIATION OF CHONDROCYTES INFLUENCES 

INTRANUCLEAR STRAIN TRANSFER MEASURED BY WARPING 

DEFORMABLE IMAGE REGISTRATION ................................................................... 62 

5.1 Abstract...………………………………………………………………….……62 

5.2 Introduction……………………………………………………………………..62 

5.3 Methods………………………………………………………………………… 64 

 



vii 

 

v
ii 

Page 

5.3.1 Cell staining and imaging ................................................................................64 

5.3.2 Quantitative Real-Time PCR - qPCR ..............................................................64 

5.3.3 Device calibration ............................................................................................65 

5.3.4 Cell stretching experiments .............................................................................66 

5.3.5 Nuclear strain measurements ...........................................................................66 

5.4 Results…………………………………………………………………………...67 

5.4.1 Morphological Differences ..............................................................................67 

5.4.2 Shift in Gene expression ..................................................................................67 

5.4.3 Strain Transfer Ratios ......................................................................................68 

CHAPTER 6. CHANGES IN CELL-SUBSTRATE ADHESION AND 

INTRANUCLEAR STRAINS ARE CORRELATED DURING OSMOTIC LOADING 

OF CHONDROCYTE CELLS ......................................................................................... 77 

6.1 Abstract………………………………………………………………………… 77 

6.2 Introduction……………………………………………………………………. .77 

6.3 Methods …………………………………………………………………………78 

6.3.1 Fabrication of substrates ..................................................................................78 

6.3.2 Two Photon microscopy imaging. ...................................................................79 

6.3.3 Osmotic Loading experiments .........................................................................79 

6.3.4 Nuclear and substrate deformation measurements ..........................................80 

6.4 Results…………………………………………………………………………...81 

6.4.1 Bulk nuclear changes during osmotic loading .................................................81 

6.4.2 Cell-substrate adhesion maps correlate to morphology ...................................81 

6.4.3 Changing with time after Osmotic loading ......................................................82 

6.5 Discussion and Conclusion……………………………………………………...82 

CHAPTER 7. INTRANUCLEAR MECHANICS: SIGNIFICANCE AND 

POTENTIAL……............................................................................................................. 89 

REFERENCES ................................................................................................................. 91 

VITA…………… ........................................................................................................... 105 

PUBLICATIONS ............................................................................................................ 106 



viii 

 

v
iii 

ABSTRACT 

Henderson, Jonathan T. Ph.D., Purdue University, December 2014. Intranuclear strain 

measured by iterative warping in cells under mechanical and osmotic stress. Major 

Professor: Corey Neu. 

The nucleus is a membrane bound organelle and regulation center for gene expression in 

the cell.  Mechanical forces transfer to the nucleus directly and indirectly through specific 

cellular cytoskeletal structures and pathways. There is increasing evidence that the 

transferred forces to the nucleus orchestrate gene expression activity.  Methods to 

characterize nuclear mechanics typically study isolated cells or cells embedded in 3D gel 

matrices. Often report only aspect ratio and volume changes, measures that oversimplify 

the inherent complexity of internal strain patterns. This presents technical challenges to 

simultaneously observe small scale nuclear mechanics and gene expression levels inside 

the nuclei of cells embedded in their native extracellular environment. Therefore, a 

hybrid imaging and model based image registration technique has been developed to 

enabled us to explore links between biomechanical and biochemical signaling within 

individual cells.  The hybrid technique uses an iterative warping deformable image 

registration to measure intranuclear strain fields that are correlated to nuclear structures. 

Three cell mechanics methods were developed to examine the mechanical response of the 

nucleus under different mechanical conditions.  1) Strain transfer from tissue to nuclei in 

a cartilage tissue deformation model paired with nascent RNA expression, 2) strain 

transfer to the nucleus with different cell types on a stretchable membrane, and 3) force 

traction microscopy of cells during osmotic stress. Intranuclear strain fields provide 

spatial details of the nucleus that when paired with single cell biochemical assays will 

provide insight into how mechanical forces transferred to the nucleus influence gene 

expression. 
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CHAPTER 1. MOTIVATION FOR MEASURING INTRANUCLEAR MECHANICS  

The motivation for the work in this dissertation is to further explore the shifting paradigm 

that the nucleus is a mechanosensor and not just the large inert abstract object that is 

counter stained in cell images to provide contrast. To discover new mechanisms of how 

the nucleus is a mechanosensor new measurement techniques are needed to measure such 

small mechanics within the nucleus. Hallmark papers nearly two decades ago have shown 

that the nucleus is deformed when the extracellular matrix around it is deformed
3,4

.  This 

was state of the art technology using new confocal microscopy to measure 3D nuclear 

volumes. The nuclear mechanics were measured as change in aspect ratios and volumes 

and have been since. Much has been discovered about the connectivity of the nucleus 

through the cytoskeleton to the surrounding matrix. Through this mechanical linkage 

mechanical cues are transferred very quickly to the nucleus
5
. It is thought that these cues 

can alter the physical location of the chromatin regions, thereby regulating which genes 

are expressed. An influential paper in the field of cell mechanics discovered that 

mechanical cues can influence not just cell and nuclear shape but can reprogram cells to 

change their phenotype based on matrix rigidity
6
. In spite of all the cell mechanistic 

advances, the state of the art for measuring the nucleus has not changed, but is still to 

measure the change in aspect ratio and area.  Such antiquated measurements can be made 

by hand with images and a ruler. They provide no spatial information concerning how 

mechanical forces influence the nuclear structures and gene expression.  With the 

advances in digital image analysis and mechanical modeling, deformable image 

registration (DIR) techniques have been developed to measure tissue mechanics in the 

brain and cardiovascular tissues
7,8

.  

The significant advancement that this dissertation work has provided to the cell/nuclear 

mechanics field is an accurate intranuclear measurement technique. Based off deformable 
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image registration, iterative warping was developed to measure intranuclear strain fields 

of cell nuclei that are deformed. Briefly, the iterative warping technique uses a 3D mesh 

of the undeformed nucleus image and warps the mesh to register the undeformed image 

with the deformed image. This is how DIR works but the problem is that local minima 

can be found when deforming the mesh causing false magnitudes of deformation to be 

reported. To find the best registration, iterative warping looks for a global minimum in 

the registration process by varying the stiffness of the mesh and other warping parameters.  

Iterative warping was validated with a known forward finite element analysis and is 

discussed at length in chapter 4.   

To investigate how intranuclear mechanics of cells are influenced under different 

mechanical stimuli, several traditional cell mechanics experiments were performed.  The 

different mechanical experiments will be presented in chronological order starting with 

chapter three. Chapter two is a background of the different nuclear and cell mechanics 

techniques. Chapter three is the cartilage tissue explant shear experiments where the 

nuclei are deformed when the tissue is deformed. A biological measurement of nascent 

RNA was measured and spatially correlated to the intranuclear mechanics. The fourth 

chapter is a more detailed explanation of the validation of the iterative warping. The fifth 

chapter is with cells attached to a stretchable substrate and the intranuclear mechanics are 

measured along with the strain transfer ratio, which increased from passage zero to 

passage four chondrocytes. To conclude with the sixth chapter a non-mechanical stimulus 

was used to deform the nucleus. Hyperosmotic challenge causes the cell and nucleus to 

shrink.  To understand the how chemical and mechanical interactions can influence the 

nuclear dynamics during osmotic loading, cell-substrate adhesion fields and intranuclear 

strain maps were measured simultaneously. The validation and verification that iterative 

warping is a meaningful measurement tool was demonstrated by measuring high 

resolution intranuclear mechanics in three cell mechanics experiments that could not have 

been resolved with contemporary geometric measurements that are antiquated.  
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CHAPTER 2. INTRNAUCLEAR MEASURMENT OF DEFORMATION IN SINGLE 

CELLS 

This chapter is primarily a reproduction of a chapter in the book CRC press Handbook of 

Imaging in Biological Mechanics. A copy of the article is located in the Publications 

section for reference.  

2.1 Abstract 

Nuclear mechanics play a pivotal role in cell survival and gene expression. Mechanical 

stimulation of the cell and nucleus helps to regulate specific mechanotransduction 

pathways that aid in cell homeostasis. This chapter describes current and emerging 

methodologies that are used to study nuclear mechanics, and the subsequent mechano-

biochemical response, at the single cell level. We highlight a hybrid method based on 

confocal microscopy and hyperelastic warping, recently developed to measure 

intranuclear mechanics and newly synthesized RNAs, within individual nuclei 

maintained in cultured tissue explants. Spatial and temporal resolutions are competing 

factors in the design of methods to study nuclear mechanics and mechanobiology, and 

have thus far inhibited insight into specific nuclear mechanobiology mechanisms in the 

analysis of single cells. We discuss the implementation of methods to measure nuclear 

mechanics, as well as their potential to increase understanding of diseases involved in 

compromised nuclear structures, including laminopathies. 

2.2 Introduction 

Diseases such as osteoarthritis, laminopathies, and specific cancers are shown to have 

compromised nuclear mechanics, potentially interrupting normal mechanobiological 

processes and homeostasis, and providing an origin point for disease progression
9-12

. As a 

specific example, osteoarthritis (OA) of cartilage and articulating joints has a 

multifactorial etiology resulting in part from a mechanical and biochemical imbalance in 
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the tissue. Cartilage degradation causes an altered micromechanical environment, altering 

expression of degrading enzymes that exacerbate the disease state
13

. Alternatively, 

laminopathies compromise the rigidity of the nuclear envelope and are believed to be the 

cause of clinical symptoms such as premature ageing and muscular dystrophy. Cancer 

cells actively alter their nuclear stiffness, aiding to cell mobility to further facilitate 

metastasis
11,14

. Pluripotent cells alter their nuclear structure and stiffness prior to cell 

lineage commitment 
15

. As stated, differing mechanical environments, degrading nuclear, 

cellular, and extracellular structures, and actively altered nuclear mechanics contribute to 

several different disease states. To better understand healthy tissues, and changes 

following disease, an understanding of nuclear mechanics, and relationships to gene 

expression, is important in determining how applied mechanical forces to tissues and 

cells influence individual cell nuclei. 

The nucleus is largely occupied by chromatin, dynamic structures that are influenced by 

many chemical and mechanical signals
16,17

. Chromatin itself is a hierarchical structure 

composed of DNA sequences wrapped around histones to form nucleosomes, which are 

then further packed together to from chromatin structures. Within the nucleus, chromatin 

is often classified as heterochromatin, where tightly packed chromatin structures are 

thought to be areas of relatively silenced gene expression, or euchromatin, where a lower 

density of chromatin structures exhibit higher levels of gene expression. Gene expression 

is altered by nuclear receptors, second messengers, and other chemical cascade signaling 

that is triggered from chemical binding to cellular receptors. Recently, 

mechanoregulation of gene expression has been hypothesized to work in parallel with 

chemical signaling, with direct physical altering of the accessibility of DNA regions to 

regulate transcription activity
18,19

. 

Several methodologies have recently been developed to measure the nuclear mechanics 

under different experimental conditions and to identify the role of nuclear architectural-

mediated mechanoregulation of gene expression. Methods to measure nuclear mechanics 

include: 1) chromatin compaction measured via fluorescence anisotropy, 2) material 

properties (i.e. moduli) measured by micropipette aspiration or nanoindentation, 3) bulk 
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morphological deformations measured by changes in nuclear aspect ratios and/or volume, 

and 4) strain fields measured by texture correlation or deformable image registration 

using hyperelastic warping (Table 2.1). Understanding the limitations and strengths of 

each method will help researchers determine the method that is best suited for intended 

experiment needs and objectives. This chapter will cover different methodologies that are 

used to investigate intranuclear mechanoregulation, with special attention paid to the new 

implementation of deformable image registration using hyperelastic warping to measure 

intranuclear mechanics concurrently with single cell nascent RNA expression. 

2.3 The Deformed Nucleus 

2.3.1 Connecting the nucleus to the cell and extracellular matrix 

The nucleus is a distinct structure inside the cell that is structurally connected through 

cytoskeletal components to the extracellular matrix (ECM). Among different tissue and 

cell types, the structural configurations linking the nucleus to the extracellular 

environment can be very unique. In this chapter, we will largely focus on the primary cell 

type (chondrocyte) found in cartilage, a load-bearing tissue with significant disease 

relevance 
20,21

. In the chondrocyte, there are multiple structural elements that connect the 

chondrocyte nucleus to the ECM (Figure 2.1). The cell is anchored to the ECM with cell 

membrane proteins (e.g. integrins and CD44), which bind to collagen and proteoglycans. 

These anchoring transmembrane proteins are associated with intracellular cytoskeletal 

components such as actin, intermediate filaments, and microtubules. The microtubules 

interact with the endoplasmic reticulum (ER), which is continuous with the outer nuclear 

membrane. The microtubules, along with other cytoskeleton components are also 

connected to the nucleus through a group of nuclear transmembrane proteins called the 

Linker of Nucleoskeleton and Cytoskeleton complex (LINC). These structural 

connections from the ECM to the nucleus provide a mechanism for stress and strain to 

directly transfer to the nucleus when applied at relatively distant tissue surfaces (Figure 

2.1). 
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2.3.2 Nuclear structures: form and function 

Within the nucleus there are many specific structural components that help to regulate 

gene expression. DNA nucleotides that code for genes make up the majority of material 

in the nucleus. Nuclear function is further regulated by transcription factors
22

, nuclear 

pores
23

, and the nucleolus
24

, about which the referenced reviews provide more in-depth 

detail. Within the nucleus, distinct regions are more carefully classified as: 1) 

euchromatin, with less dense chromatin and highly transcriptionally active, 2) 

heterochromatin, with highly dense chromatin and less transcriptionally active, and 

additionally 3) the interchromatin space, where nuclear components are located, such as 

the nucleolus which synthesizes rRNA and assembles ribosomes
24,25

. Like a shell, the 

nuclear envelope membrane is made up of a network a lamins that provide structural 

rigidity to the nucleus. Distributed among the nuclear membrane, nuclear pores regulate 

the transport of molecules in and out of the nucleus (e.g. Ca
2+ 

and mRNA) (Figure 2.1). 

The integration of the nuclear components and global structures provide the biophysical 

conditions for the nucleus to maintain the integrity of the DNA and regulate cellular 

biosynthesis by modulating the shape, size, and internal patterns of deformation (e.g. 

displacements and strain). 

Local mechanical deformations within the nucleus are thought to alter early 

transcriptional activities for gene expression. One proposed mechanism is that 

intranuclear mechanical deformation alters the structure of the chromatin domains 

thereby modulating the gene expression in the cell
26

. In this mechanism the tightly bound 

DNA around the histones are mechanically strained to allow or deny access for 

transcription factors to transcribe DNA into RNA. 

2.4 MEASURING NUCLEAR MECHANICS AND MECHANOBIOLOGY 

2.4.1 Nuclear imaging, deformation, and measurement techniques 

Imaging of intranuclear mechanics in single cells is challenging. Several contemporary 

methods attempt to meet this need by performing high resolution imaging (e.g. super-

resolution microscopy, scanning electron microscopy), although visualization of cell and 

subcellular structures does not provide information describing how these structures may 
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deform under applied loading or during active cytoskeletal or chromatin remodeling. 

Typically, imaging at the micron scale involves chemical fixation of the cell, preventing a 

real-time biochemical analysis of deformation and associated mechanotransduction 

activity. Widefield and confocal microscopy are broadly used techniques to measure 

nuclei in living cells before and after applied deformations to determine the local strains 

fields under varying experimental conditions 
27

. There are a wide variety of methods used 

to mechanically deform the nuclei of isolated or tissue/matrix-embedded cells (Table 2.1). 

Typically, cells in 3D microenvironments are deformed and the nuclei are simultaneously 

imaged by an microscope-mounted deformation device
28

 (Figure 2.2). Isolated cells in 

2D culture are often placed either in a flow chamber or on a stretchable membrane, where 

forces are applied on the cell and transferred to the nucleus. A commonality among the 

deformation and measurement techniques is that the nuclei are fluorescently imaged pre- 

and post-deformation, so that motion in a current configuration can be measured from a 

reference configuration. 

Considering the variety of available methods available to measure nuclear mechanics 

(Table 2.1), there are three distinct ways to measure pre- and post-deformation of the 

nucleus (Figures 2.2 and 2.3), each with distinct strengths and weaknesses. First, changes 

in bulk morphology of the nucleus (e.g. aspect ratios, nuclear volume, or major/minor 

axes) enable a quick average mechanical response of the nuclei after mechanically 

perturbation, often using automated or semi-automated algorithms for the analysis of 

large numbers of cells in images. While bulk measurements are commonly used in 

research fields, e.g. tissue engineering, important spatial information from within the 

nucleus is not captured or described. Second, texture correlation measures intranuclear 

strain fields by tracking intrinsic high contrast areas, revealed by spatial distributions of 

fluorescent markers, in the images depicting undeformed and deformed nuclei 
27

. 

Unfortunately, the small nuclear area, coupled with large subset sizes required to help 

minimize error 
27

, limits the ability to reliably quantify intranuclear strain. Third, 

deformable image registration (e.g. hyperelastic warping) permits intranuclear strain 

measurements by iteratively deforming a three-dimensional (3D) finite element mesh 

representing the undeformed nucleus until it matches the deformed nucleus 
29

. A 3D 
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intranuclear strain field is calculated from the displaced nodes of the registered nuclear 

mesh. Bulk morphology of the nucleus, texture correlation, and hyperelastic warping 

increasingly predict known nuclear deformations applied in simulations (Figure 2.3). 

Compared to the known deformation applied, texture correlation underestimates the 

magnitude of the strain field, and the (bulk) engineering strain measured by changes in 

width fails to captures the strain distribution or magnitudes. In contrast, hyperelastic 

warping best approximated the known magnitude and spatial distribution of the applied 

known strain field, with decreased error (i.e. higher precision and minimal bias) 
29

. 

2.4.2 Measuring mechanobiology  

There are several configurations in the literature describing how cell populations are 

mechanically loaded, including in vivo animal studies of the upper or lower appendage, in 

vitro loading of isolated cells on stretchable substrates, or in situ deformation of cells 

maintained in tissue explants
30-33

. Mechanobiology experiments primarily consist of 

mechanically loading a tissue or cell population, followed by measurement of cellular 

biosynthesis assays representing average measures of the population response. The 

mechanical loading duration is often experimentally varied from either a few minutes to 

several hours repeated for one or several days, and populations of cells are typically 

harvested and processed for comparisons of mechanically loaded tissue versus unloaded 

control tissues 
30-32

. Powerful biosynthesis assays are often used at the RNA or protein 

level, such as quantitative real time polymerase chain reaction or enzyme-linked 

immunosorbant assays, respectively. Technologies developed for study at the single cell 

level minimize the variability observed in cell populations, which may better explain how 

changes in nuclear mechanics alters gene expression.  

2.4.3 Design criteria to combine nuclear mechanics and mechanobiology  

Limitations in the spatial and temporal resolution of image data, and the impact of these 

limitations on image quality (e.g. signal-to-noise ratio SNR), must be considered when 

designing techniques to study nuclear mechanics and mechanobiology in single cells. 

Trade-offs in spatial and temporal resolutions may be accepted for specific applications, 

noting that the error of intranuclear deformation depends largely the ability to track the 
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motion of structures on the organelle interior with sufficient SNR. For example, to 

capture nuclear mechanics and mechanobiology in a single cell, the measurement 

technique needs to be fast enough to capture a possible rapid gene expression response to 

the applied load. The technique also needs to have a high enough spatial resolution to 

image the nuclear shape changes due to the applied load. Spatial resolution is often 

sacrificed to improve temporal resolution, and vice versa, when designing techniques for 

the study of single cells 
33

. 

2.5 HYBRID TECHNIQUE - MICROSCOPY AND HYPERELASTIC WARPING 

A hybrid confocal and hyperelastic warping methodology was recently demonstrated to 

measure and calculate intranuclear mechanics and biophysical activities 
29

. Combining 

the high spatial resolution of optical (e.g. confocal or multiphoton) microscopy with 

hyperelastic warping to measure intranuclear strain maps has provided a methodology 

that provides detailed intranuclear strains compared to bulk measurement of nuclear 

deformation (Table 2.1). Optical microscopy also enables imaging deep within tissues to 

calculate nuclear mechanics of cells maintained in native tissue cultures. Z-stack images 

capture the full volume of the nucleus in the undeformed and deformed state. The volume 

of the nucleus is converted into a finite element mesh that is used in an iterative 

hyperelastic warping-based method, where the undeformed nuclear mesh is digitally 

systematically warped until it matches the deformed nucleus, to measure 3D intranuclear 

deformations (Figure 2.4). Hyperelastic warping has been extensively applied also in 

tissue scale biological applications 
29

. The intranuclear strain map can be spatially and 

temporally compared to any fluorescent indicator of gene expression that can be imaged 

concurrently with the nuclei stain in a second imaging channel, such as nascent RNA 

synthesis (Figure 2.4). 

2.5.1 Strain transfer: tissue to nucleus 

Strain transfer to the nucleus from an applied mechanical load at a distant tissue surface 

can be measured as amplification and attenuation in local subnuclear regions by 

microscopy and hyperelastic warping. When cartilage explants undergo shear loading, 

there is higher tissue strain in the superficial zone that diminishes in the deep zone
34
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(Figure 2.5). Nuclei in compressed cartilage explants are compressed more near the 

articulating surface (superficial zone) and progressively less in the middle and deep 

zones
35

. These bulk nuclear volumetric strain results show that there is a depth dependent 

strain transfer from the applied tissues strain to the nucleus. However, more detailed 

intranuclear strains are resolved by using hyperelastic warping that shows amplification 

and attenuation of strain, that the bulk measurement techniques do not reveal (Figures 

2.5). The combined use of optical microscopy and hyperelastic warping provides 

researchers with a new method that gives 3D local nuclear deformations that were 

previously immeasurable by bulk measurement techniques. 

2.5.2 Measuring single cell 3D intranuclear time dependent strain fields 

Single cell intranuclear strain fields show complex strains patterns with time-varying 

magnitudes being spatially correlated to DNA intensity. Confocal z-stack images of 

chondrocyte nuclei taken before and at 10 and 60 minutes after a shear load is applied to 

the articular surface of a cartilage explant show similar strain field patterns within a cell, 

although the magnitudes of the patterns at the two time points differ from cell to cell 

(Figure 2.6). The intranuclear strain field patterns are spatially complex, with brighter 

DNA intensity regions in specific cell populations studied typically corresponding to 

tensile strain regions (Figure 2.4-2.6). A current challenge is to determine strain transfer 

mechanisms, including specific cytoskeletal elements for load transmission in situ. Also, 

is it not yet known the role of directionally concentrated strains in the physical regulation 

of gene expression. However, this hybrid methodology does provide high spatial 

resolution strain maps of the intranuclear space that will allow for future investigation of 

these questions. 

2.5.3 Detecting nascent RNA synthesis in single cells 

Combining measurements of intranuclear mechanics with biosynthesis assays, e.g. 

detection of nascent RNAs, facilitates analysis of mechano-regulated gene expression 

within the nuclei of single cells. Nascent RNA detection has been measured in cells 

embedded in their native extracellular matrix 
29

 using a commercially available global 

RNA detection kit (Click-iT® RNA Alexa Fluor® 488 Imaging Kit, Invitrogen, Carlsbad, 
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CA)
36,37

. The incubation for nascent RNA detection began immediately after the 

deformation and lasted for 60 minutes, and the sample was subsequently fixed for 

fluorescent labeling (Figure 2.4). In the cell population studied, the RNA was located in 

the lower intensity DNA regions, i.e. the interchromatin space, where the DNA is less 

densely packed and thought to be highly active for transcription
25,38

 (Figure 2.7). The 

spatial location of RNA was typically correlated with the more compressive nuclear 

regions. However, the spatial correlation of mechanics and biosynthesis should be 

interpreted with cautioned because it was observed that RNA was also transported 

outside of the nucleus during the incubation period. In a control study, with no tissue 

scale deformation applied there were fewer nuclei (26%) with detectable RNA synthesis 

compared to the deformed nuclei results (59%). The mechanism for why the nuclei in the 

mechanically strained tissue had more detectable RNA nuclei has not been explained, but 

it is nevertheless important to employ methods that allow for direct spatial correlation of 

intranuclear strain fields and RNA synthesis in nuclei to help elucidate pathways for gene 

expression in single cells. 

2.5.4 Specificity and experimental tradeoffs  

There is still a need to increase the specificity of hybrid microscopy and hyperelastic 

warping methods to reveal biophysical and biosynthesis actions at even smaller spatial 

and temporal scales. Labeling of genes related to disease pathogenesis or tissue 

regeneration may allow for the discovery of local mechanical factors that can alter 

clinically-relevant gene transcription. One challenge is the development of high (e.g. 

super) resolution imaging to better reveal spatial patterns, while also not sacrificing 

temporal resolution of the desired response. For example, an experimental protocol that 

captures time consuming high resolution images of cell nuclei and fast calcium signaling 

is affected by competing spatiotemporal factors. The calcium fluxes can occur on the 

order of seconds to milliseconds, a time duration that is faster than the time required for 

image acquisition depicting nuclei at high resolution. In contrast, biosynthesis processes 

like RNA transcription can occur over longer time durations, and may be more 

appropriately combined with higher resolution imaging to simultaneously provide 

intranuclear strains fields (Figure 2.3 and Table 2.1). However, the localization of 
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specific gene activity or gene products is not often resolved in living single cells 
33

, and it 

is likely that biotechnology advances for gene expression profiling, coupled with hybrid 

microscopy, will only improve our understanding of mechanotransduction overall. 

2.6 CONCLUSION 

This chapter has demonstrated that a hybrid method combining optical microscopy and 

hyperelastic warping provides detailed subnuclear strain patterns, and represents a 

balanced approach to meet the competing acquisition factors of spatial and temporal 

resolutions. The measurement of nascent RNA synthesis was a fundamental step to show 

that intranuclear mechanics and gene expression related events can be measured within 

the same nucleus maintained in the native 3D microenvironment. As research objectives 

turn towards targeting specific genes or profiling of mRNA expression in single cells, 

new approaches will be developed and will be easily included for spatial correlation of 

strain fields measured by hyperelastic warping. 

  



13 

 

1
3

 

 Table 2.1. Common techniques for the measurement of nuclear mechanics. 

 

  

Measurement 

Technique 

 

Description 

Spatial 

Resolution 

 

Bulk or Local 

Measurement 

 

Isolated or 

Embedded 

(2D/3D) Cells 

Ref 

 

Fluorescence 

Anisotropy 

Local 

Compaction 
High Local Isolated/2D 

39-

41
 

Aspect Ratio 
Morphological 

Change 
Low Bulk Isolated/2D/3D 

42,43
 

Volume Change 
Morphological 

Change 
Low Bulk Isolated/2D/3D 

44,45
 

Micropipette 

Aspiration 

Material 

Properties 
Medium Bulk Isolated 

46,47
 

Nanoindentation 
Material 

Properties 
High 

Local 

(Surface) 
Isolated 

48,49
 

Texture 

Correlation 
Nuclear Strain Medium Local Isolated/2D/3D 

27,50
 

Hyperelastic 

Warping 

Intranuclear 

Strain 
High Local Isolated/2D/3D 

29
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Figure 2.1. Structural components for strain transfer from the tissue and extracellular matrix to 

the cell nucleus. Strain is transferred from an applied load (e.g. compression or shear) at the tissue 

surface to the cells and nuclei maintained alive within the interior. Articular cartilage is shown 

here as a model hierarchical system that normally undergoes many thousands of loading cycles 

during daily activities like walking. Multiple structural components, including integrins, 

cytoskeletal proteins, and the nuclear lamina, connect the extracellular matrix to the nucleus. 
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Figure 2.2. Common methods to measure mechanical deformation in the nucleus. Flow and 

stretch methods deform tissues and isolated cells in 2D (monolayer) or 3D (embedded) native or 

engineered microenvironments. Simple measures of nuclear shape and morphology changes are 

documented by changes in aspect ratio. Texture correlation and hyperelastic warping methods 

provide details of internal strains with different levels of error as described in Figure 2.3. 
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Figure 2.3. Comparison of three techniques to quantify nuclear deformation. A finite element 

model was used to apply a known deformation (strain) to a nucleus and create the deformed 

nucleus from the undeformed z-stack images (a). Knowing the applied intranuclear strain (a.1) 

three contemporary measurement techniques, hyperelastic warping (b.2), texture correlation (b.3) 

and major axis engineering strain (b.4), where used to measure the strain fields for comparison 

between the techniques. Results from the hyperelastic warping method best described the known 

deformation, with decreased sensitivity observed from texture correlation and engineering strain 

measures. 
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Figure 2.4. Experimental overview for methods to measure single cell intranuclear mechanics and 

RNA synthesis. For articular cartilage, a tissue explant is created as a half cylinder from a cored 

osteochondral plug and placed in an electronically controlled deformation device that allows for 

single cells to by imaged within the deforming tissue using confocal microscopy. Immediately 

after shearing, newly synthesizing RNAs are labeled using a click chemistry-based incubation. 

The deformed nucleus is imaged at 10 minutes and then at the end of the incubation time (60 

min), and the data are used for the measurement of intranuclear strain using hyperelastic warping. 

Images of the nucleus are taken from the center z-slice (red=DNA stain, green=RNA stain). 

(Scale bar = 1 µm) 



18 

 

1
8

 

 

Figure 2.5. Strain Transfer from the tissue surface to the intranuclear regions. A shear load was 

applied at the articular cartilage surface (blue arrow) and texture correlation was used to measure 

the Exy strain field for the tissue scale deformation (10×), using cells as fiducial markers. 

Hyperelastic warping was used to measure the strain fields of the nucleus highlighted by the 

smaller boxes in the 10× and 60× images. Depending on the intranuclear region, the measured 

tissue scale strain (5-6%; i.e. Tissue Texture Correlation Exy (%) strain field) was amplified or 

attenuated when compared to the Nucleus Warping Exy (%) strain field. 
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Figure 2.6. Intranuclear strain maps vary with time and among cells. Three nuclei were selected 

from the same imaging region within a cartilage explant for comparison of the strain fields of the 

deformed nucleus at 10 and 60 minutes after the applied tissue shear strain. White lines are 

overlaid as visual aids to show the DNA image intensity edges overlaid onto the strain fields. The 

strain patterns are similar between each time point but the magnitude either, remains constant (1), 

increases (2), or decreases (3). (Scale bar = 1 µm) 
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Figure 2.7. RNA images and intranuclear strain maps vary among cells. Nascent RNA was 

measured in the same nuclei in Figure 6. The same 60 min strain field is overlaid with the RNA 

edge lines above. (Scale bar = 1 µm). 
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CHAPTER 3. DIRECT MEASUREMENT OF INTRANUCLEAR STRAIN 

DISTRIBUTIONS AND RNA SYNTHESIS IN SINGLE CELLS EMBEDDED 

WITHIN NATIVE TISSUE  

This chapter is primarily a reproduction of a published article in Biophysical Journal. A 

copy of the article is located in the Publications section for reference.  

3.1 ABSTRACT 

Nuclear structure and mechanics play a critical role in diverse cellular functions, such as 

organizing direct access of chromatin to transcriptional regulators. Here, we utilized a 

new hybrid method, based on microscopy and hyperelastic warping, to determine three-

dimensional strain distributions inside the nuclei of single living cells embedded within 

their native extracellular matrix. During physiologically-relevant mechanical loading to 

tissue samples, strain was transferred to individual nuclei, resulting in submicron 

distributions of displacements, with compressive and tensile strain patterns approaching a 

five-fold magnitude increase in some locations compared to tissue-scale stimuli. 

Moreover, nascent RNA synthesis was observed in the interchromatin regions and 

spatially corresponded to strain patterns. Our ability to measure large strains in the 

interchromatin space that reveals that movement of chromatin in the nucleus may not be 

due to random or biochemical mechanisms alone, but may result from the transfer of 

mechanical force applied at a distant tissue surface. 

3.2 INTRODUCTION 

The nucleus is a membrane bound organelle and regulation center for gene expression in 

the cell 
51

. The position of a gene in the interior of the nucleus changes when it becomes 

highly expressed, and is often found to extend out of its chromosome territory into the 

interchromatin space 
52

. The accessibility of DNA regions by transcription factors may be 

driven by a variety of mechanisms, including diffusive or thermal conformational 
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changes 
53,54

, or through biochemical processes 
55

, which affects the chromatin structure 

and the complex local binding affinities of the chromatin and RNA molecules 

surrounding a gene. Less clear is the role of mechanical force transfer as a directed 

movement mechanism for DNA accessibility, due perhaps to the technical challenges in 

measuring small scale mechanics inside the nuclei of cells embedded in their native 

extracellular environment. 

Mechanical forces transfer to the nucleus directly and indirectly through specific cellular 

pathways and cytoskeletal structures 
5,56

. There is increasing evidence that mechanical 

forces are transferred to the nucleus to orchestrate transcriptional activity 
26

. Protein 

dynamics inside the nucleus are additionally important for maintaining the nuclear 

structure and in facilitating gene expression at the transcription level 
57

. Probing 

spatiotemporal relationships between distributed mechanical forces and localized gene 

expression (i.e. biophysical and biochemical interactions) in the nuclei of individual cells 

is necessary because the individual cells experience different mechanical stimuli resulting 

from variations in local cell and extracellular matrix interactions. Studies that provide 

average measures over cells in a given tissue would oversimplify the heterogeneity 

intrinsic to the population. In order to understand the inherent variability of large cell 

populations, innovative methods are therefore required for combined measurements of 

single nuclei biophysical and biochemical interactions in cells maintained in their native 

three-dimensional (3D) extracellular matrix microenvironment. 

Current methods used to simultaneously probe biophysical or biochemical interactions in 

small subcellular structures like the nucleus are lacking. Methods to characterize nuclear 

mechanics typically study isolated cells or cells embedded in 3D gel matrices, and often 

report aspect ratio and volume change measures 
28,43,58

 that do not easily reveal the 

inherent complexity of internal strain patterns. Additionally, such methods lack the 

spatial resolution necessary for the correlation of intranuclear biomechanics and 

simultaneous internal biochemical activity. Recent approaches to link nuclear mechanics 

to biochemical responses have explored unique microscopy-based experimental designs, 

including the use of photobleaching and FRET pairs 
59,60

. 
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We simulated physiologically-relevant shear loading to tissues while simultaneously 

measuring nuclear mechanics and nascent RNA synthesis. Applied dynamic or static 

tissue shear loading mimics routine activities of cartilage-to-cartilage contact in the body 

during walking or standing activities. Here, we describe detailed patterns of intranuclear 

strains and newly synthesized RNA in the nuclei of single cells in situ during static 

tissue-scale loading. The use of a new hybrid imaging technique enabled us to measure 

biomechanical and biochemical activities in the nuclei of single cells that contribute to 

our understanding of whether applied tissue mechanical force directly transfers to the 

nucleus to influence gene expression. Measured subcellular displacements and strains 

suggest that the nucleus is a complex structure that is actively deformed during 

mechanical loading at the tissue scale, with large motions and deformations that may 

regulate DNA accessibility in part by direct physical interactions. 

3.3 MATERIALS AND METHODS 

3.3.1 Tissue harvesting and sample preparations 

Articular cartilage explants with embedded cells (chondrocytes) were chosen as a model 

system due to their spatially heterogeneous mechanics and ultrastructure 
61

, with a 

mechanically-linked and significant disease relevance 
62

. This model system was 

additionally useful to closely mimic physical forces in a common daily activity, i.e. tissue 

contact during the walking cycle. Briefly, articular cartilage explants were harvested from 

juvenile bovines within 36 hours of slaughter. Using a cork borer and custom cutting jig, 

explants (diameter = 5 mm, thickness = 2 mm) were obtained under standard sterile 

conditions for tissue/organ culture. Explants and embedded chondrocytes were 

maintained in DMEM/F-12, supplemented with 0.1% bovine serum albumin, 100 

units/ml penicillin, 100 µg/ml streptomycin, 50 µg/ml ascorbate-2-phosphate, and 10% 

FBS (Invitrogen, Carlsbad, CA). After harvesting, the explants were cut along the depth 

direction to produce hemi cylinder pairs that were incubated and equilibrated for 24 hours 

before testing. 
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3.3.2 Mechanical loading and imaging of DNA and newly synthesized RNA 

A custom load application device, built for biaxial (compression and shear) loading of 

tissue samples, was used to apply a 15% simple shear strain at the surface of the cartilage 

explant while confocal (z-slice) images were captured before and at multiple time points 

during deformation (Figure 3.1). The loading apparatus included two piezoelectric motors 

with mounted magnetic encoders, and computerized displacement control in small (±61 

nm) increments (Nanos Instruments, GmbH; Hamburg, Germany). The device was 

mounted over a confocal microscope (Olympus Fluoview) to allow for simultaneous 

loading of the cartilage tissue and imaging of the chondrocyte nuclei in their native 

extracellular matrix (Figures 3.1 and 3.2). 

At the time of testing, a pair of hemi cylinders from the same explant was selected, with 

one randomly assigned for treatment (mechanical loading) and the other one used as the 

nonloaded control. The explants were exposed for 8 min to a DNA stain (DRAQ5, Cell 

Signaling Technology, Inc.). The treated sample was affixed at both ends with 

cyanoacrylate to the loading apparatus with the cut surface positioned next to the 

coverslip and near the objective, noting that cell viability was maintained throughout the 

duration of testing (Figure 3.10). Both samples were placed in respective cell culture 

dishes and covered with phosphate buffered saline. 

For imaging before and following deformation, an area of interest near the articular 

surface was visualized using a confocal microscope with a 60× water objective 

(NA=1.20). 3D (z-stack) images (matrix=1600×1600 pixel
2
; number of slices=19) were 

sequentially captured with a z step of 0.5 µm/slice and a calculated in-plane resolution of 

0.132×0.132 µm
2
. DNA was visualized by DRAQ5 staining (633 nm) prior to loading 

(Figure 3.1a). DNA was imaged again 10 and 60 min following shear loading using the 

same imaging parameters. A Click-iT® RNA Alexa Fluor® 488 Imaging Kit (Invitrogen, 

Carlsbad, CA) was used to detect RNA synthesis during the 60 min deformation period 

(described subsequently). Two channels (i.e. DNA at 633 nm and RNA at 488 nm) were 

acquired in sequential mode to eliminate cross talk. To detect the newly synthesized RNA, 

a filter bandwidth (520-600 nm) was additionally selected to exclude background from 
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the autofluorescence of collagen in the extracellular matrix (Figure 3.3). Although the 

peak of the collagen autofluorescence was around 488 nm, there was still a very weak 

signal that was detected from the tail of the collagen emissions spectrum at 520 nm, and 

which was easily removed in image post processing. The untreated control sample 

underwent the same protocol, except that shear loading was not performed. An additional 

no tissue deformation time dependent control was implemented to determine what the 

intranuclear strain maps would be in a mechanically non-perturbed state (supplemental 

information 3).  

3.3.3 Calculating nucleus 3D strain maps by hyperelastic warping 

Hyperelastic warping was used to find the displacement field of the deformed nucleus. To 

measure internal nuclear deformation, a 3D finite element mesh was created from the 

confocal images depicting DNA, and a hyperelastic warping algorithm (nike3d) was used 

to calculate displacement and strain patterns throughout the nuclear volume (Figures 3.1 

and 3.4) 
63,64

. The algorithm deformed a 3D mesh of the z-stack image of the nucleus in 

the reference configuration until it matched the target image of the nucleus in a deformed 

configuration based upon minimization of the differences in image intensities between 

the reference image and the deformed image 
7,65

. Nodal displacements were used to 

compute finite Lagrangian 3D strain fields, and principal strains and directions. 

3.3.4 Measurement of error in displacement fields using simulations 

To validate our hybrid method, in particular the use of hyperelastic warping to quantify 

strain fields in the interior of small nuclear structures, and to determine the error 

associated with the hybrid technique overall, we used extensive forward finite element 

simulations. A 3D mesh was created from the z-stack images of a nucleus that was 

deformed in a finite element simulation with known displacement and strain magnitudes 

representative of those observed in the nuclei of living cells. A deformed image data set 

was created based upon the displacements of the forward finite element model. These 

images were analyzed using hyperelastic warping, and additionally, data was also directly 

compared to well-known texture correlation techniques. Forward finite element 

stimulations were used to create a known displacement field and determine error 
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(quantified in terms of RMSE, bias, and precision) of the hyperelastic warping and 

texture correlation techniques. The forward simulation generated a known 3D 

displacement field and images of the deformed nucleus that was representative of 

experimental data. Gaussian noise was added to the image sets to vary the signal-to-noise 

(SNR) and contrast-to-noise (CNR) ratios to span the range of experimentally observed 

values. In-plane (x and y displacement) comparisons between the techniques were made 

in image slices through the center and at the edge of the image volume. Differences 

between calculated and known displacements were used to estimate the average RMSE, 

bias, and precision, over the range of simulated SNR and CNR ratios. 

3.3.5 Nascent RNA Synthesis In Situ 

A Click-iT® RNA Alexa Fluor® 488 Imaging Kit (Invitrogen) was used to tag and 

image newly synthesized RNA over a 60 minute period of deformation (Figure 3.1b). 

Nascent RNA detection was performed by a click chemistry reaction between an RNA 

incorporated 5-ethynyl uridine (EU) tag and an azide-containing dye after cell fixation 

and permeabilization 
36,37

. Briefly, after incubation during loading, the samples were 

fixed with 2% formaldehyde in PBS, permeabilized with 0.1% Triton® X-100 in PBS, 

and exposed to freshly prepared Click-iT® reaction cocktail, while still in the loading 

apparatus. 

To image nascent RNA synthesis in situ, two preliminary studies were additionally 

performed to successfully translate the RNA detection technology from its developed use 

in monolayer cells 
36,37

 into a 3D tissue environment. First, we minimized the background 

autofluorescence of collagen and the non-specific binding of the fluorescent tag. We 

selected an appropriate emissions range on the confocal detector to minimize signal from 

collagen, and in addition we applied an image enhancing blocking reagent (Image-iT FX 

Signal Enhancer, Invitrogen, Carlsbad, CA) to help minimize non-specific binding 

(Figure 3.3). To remove nonspecific background staining in our studies, a 60 min 

incubation of the blocking reagent was used prior to the final image acquisition. Second, 

we determined the duration of EU incubation to enhance RNA signal detection following 

mechanical shear loading. It should be noted that excessive incubation times resulted in 
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an observed RNA signal from the combined effects of shear deformation and routine (e.g. 

housekeeping) cellular RNA synthesis 
36

. Using time duration studies, we determined that 

routine RNA synthesis was detected above background fluorescence levels in the cells of 

tissues that were unloaded and incubated for 60 min, indicating a time duration that could 

be used to best detect RNA signal enhancement due to mechanical loading. To further 

control for sample variation in routine RNA synthesis, one half of the tissue explant (i.e. 

one half of the hemicylinder) was loaded while the second half was used as the unloaded 

control (Figure 3.3). 

3.3.6 Relationship between intranuclear strains and newly synthesized RNA 

To explore links between the internal nuclear mechanics and newly synthesized RNA, the 

intranuclear strain fields were spatially compared qualitatively and using quantitative 

correlation analyses with custom MATLAB code. The raw data consisted of strain values 

that were correlated to the image (DNA or RNA) intensity values at each voxel location 

of the nucleus. To facilitate correlations between strain and RNA or DNA image 

intensities, the data was binned according to the image intensity (bin size=0.02). The data 

was binned for each image slice, and the binned results were additionally averaged for a 

single slice and averaged z-stacks. Correlation statistics (e.g. r
2
 values) were calculated 

from the binned data sets. 

3.4 RESULTS 

3.4.1 Hybrid Microscopy Reveals Complex Intranuclear Displacements and Strains 

Intranuclear deformation, defined by displacements and strains, were found to be 

heterogeneous and complex in living cells embedded within their native extracellular 

matrix. Intranuclear strains were both amplified and attenuated compared to tissue-scale 

stimuli. During a 15% simple shear strain, intranuclear displacements overall were 

consistently sub-micron in magnitude, with differences approaching only 10s of 

nanometers depending on the size and location of the regions used for comparison 

(Figure 3.5). Strong displacement gradients resulted in large intranuclear strains, typically 

less than 75% in magnitude, depending on location in the nucleus (Figure 4, 7). 
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Microscopy and hyperelastic warping quantified heterogeneous and complex intranuclear 

strain with minimal error. Importantly, the x and y displacement fields for the middle 

slice of the nucleus showed that hyperelastic warping matched more closely to the known 

(simulated) displacements compared to conventional (1
st
 order) texture correlation 

algorithms (Figure 3.5). The known displacements were plotted versus the displacements 

measured by hyperelastic warping (slope = 1.11, r
2 

= 0.958) and texture correlation (slope 

= 0.97, r
2 

= 0.477). Hyperelastic warping and texture correlation were also compared 

using experimental data of a nucleus in undeformed and deformed states (Figure 3.5b). A 

comparison of warping and texture correlation displacement predictions with those of the 

forward model indicated similar qualitative displacement distributions. However, the 

texture correlation results were lower in magnitude than the hyperelastic warping results. 

We further noted that texture correlation displacement fields were biased by the bright 

areas in the image and around the nucleus perimeter, which was qualitatively observed in 

the known and experimental displacement fields (Figure 3.5). Hyperelastic warping 

consistently resulted in displacement data with lower error (avg. RMSE = 0.017) 

compared to texture correlation (avg. RMSE = 0.091), and without sensitive dependences 

on signal-to-noise and contrast-to-noise ratios (Figure 3.6). 

3.4.2 Interchromatin Regions and Nascent RNA Synthesis 

Nascent RNA synthesis was observed in the interchromatin regions within nuclei of 

single cells embedded in their native extracellular matrix during shear loading at the 

tissue scale. For the nucleus depicted in Figures 3.7 and 3.8, changes in chromatin 

position, defined in terms of strain, were also found to correspond to regions of nascent 

RNA synthesis. Magnitudes of principal strains and maximum shear strains approached a 

five-fold tensile increase over the 15% simple shear strain magnitude applied at the tissue 

surface in some regions of the nucleus. Different regions within the nucleus exhibited 

compressive or tensile strains, indicating that the magnitude of the applied shear at the 

tissue surface was amplified and attenuated depending on the internal region of the 

nucleus under investigation (Figure 3.7). Principal directions for Ep2 and Ep3 were 

predominately in the imaging plane (i.e. in the xy plane), while Ep1 directions were 

largely through-plane. Qualitative comparisons of the strain patterns revealed a 
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correspondence between high tensile strain regions with increased intensities of the RNA 

and DNA patterns for max shear (RNA) and Ep3 (DNA), respectively. Strain patterns 

tended to correspond visually to observed DNA and RNA patterns, suggesting that 

specific stimuli, e.g. localized maximum strain, may cause changes in the chromatin 

structure to influence newly synthesized RNA in nuclear regions with low DNA content. 

Relationships between DNA, RNA, and strain could be quantified at multiple levels, i.e. 

within a given image slice through a single nucleus (e.g. Figure 3.7), within an image 

volume representing a whole single nucleus (e.g. Figure 3.8), or among nuclei from many 

single cells (e.g. Figure 3.9). For the single image slice in Figure 7, significant 

correlations (p<0.007) were found between DNA intensities and Ep1 (r
2
=0.238), Ep2 

(r
2
=0.506), and Ep3 (r

2
=0.833), but not max shear (r

2
=0.000; p=0.984). Significant 

correlations (p<0.001) were also found between RNA intensities and Ep1 (r
2
=0.617), Ep3 

(r
2
=0.754), and max shear (r

2
=0.827), but not Ep2 (r

2
=0.214; p=0.096). Similar 

correlations were observed for a whole single nucleus (Figure 8), after pooling r
2
 values 

from each slice of the image volume, with DNA and RNA related to Ep1 (r
2
=0.543, 

r
2
=0.668), Ep2 (r

2
=0.677, r

2
=0.471), Ep3 (r

2
=0.889, r

2
=0.473), and max shear (r

2
=0.192, 

r
2
=0.694), respectively. 

Relationships between strains and DNA and RNA intensities varied among the cell nuclei 

studied (Figure 9). Nascent RNA synthesis was consistently observed in the 

interchromatin regions, although specific intranuclear statistical correlations covered a 

broader range when compared cell-to-cell. Significant statistical correlations (p<0.015) 

were found in all cells studied between DNA intensities and Ep1 (r
2
=0.575) and Ep2 

(r
2
=0.735), and between RNA intensities and Ep3 (r

2
=0.641), with aforementioned 

coefficients of determination pooled over all nuclei shown in Figure 9. Statistical 

correlations varied among cells between DNA intensities and Ep3 (r
2
=0.550, p<0.443) and 

max shear (r
2
=0.575, p<0.306), and between RNA intensities and Ep1 (r

2
=0.357, p<0.379), 

Ep2 (r
2
=0.492, p<0.295), and max shear (r

2
=0.374, p<0.954), with 6 of 20 total possible 

correlations (i.e. 5 relationships for the 4 cells shown in Figure 9) not significant 

(p>0.040). 
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3.5 DISCUSSION 

Diffusive or biochemical processes are thought to drive the movement of genes to 

different regions of the nucleus, perhaps due to changes in binding affinities in addition 

to conformational alterations in the chromatin structure. Additional studies, involving the 

use of relatively insensitive methods based on texture correlation, indicate that the 

deformation in the nucleus is minimal compared to cell and extracellular matrix strains 
66

. 

These studies imply that the relative stiffness of the nucleus is high compared to 

surrounding cellular structures, resulting in minimal internal deformation for a given 

applied load. The concept of a relatively stiff nucleus would indirectly support the idea 

that specific (e.g. diffusive) mechanisms alone may drive gene expression, since the 

nucleus interior would be more isolated from physical deformation occurring in the 

extranuclear regions, and would require alternative mechanisms for transcription and 

other regulators to access DNA. 

Here, we find that movement of the nuclear structures, quantified by strain, is highly 

heterogeneous and is both amplified and attenuated during even simple mechanical 

loading at the tissue scale. Given a reasonable compliance of chromatin, the 

heterogeneous strains would be expected to shift and reposition the relative internal 

position of genes, thereby altering the dynamics of regulation. Interestingly, the 

compliance of individual chromatin fibers has also been noted as a possible physical 

basis for DNA accessibility 
67

. However, we do not yet know the extent that either 

chromatin remodeling, or passive chromatin deformation in response to the applied load, 

explains the intranuclear strain patterns described. In light of this current limitation, and 

in contrast to single molecule studies conducted in controlled in vitro experiments, we 

overcame technical challenges in obtaining measurements within the nuclei of cells 

embedded in extracellular matrix in situ. The experimental set up and hybrid microscopy 

technique allowed us to propagate realistic and physiologically-relevant mechanical 

forces through native structures to better quantify the extent that strain transfer may 

directly influence nuclear mechanics. The hybrid method, based on microscopy and 

hyperelastic warping, allowed the measurement of internal deformation (displacements 

and strains) in small nuclear structures at high spatial resolutions, limited most by the 
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time constraints of image acquisition. Interestingly, the simultaneous detection of newly 

synthesized RNAs reveal localized expression corresponding to mechanical loading and 

patterns of principal and shear strains. The measurement of large (e.g. shear) strains in 

the interchromatin space that spatially correspond to the localization of nascent RNA 

expression supports the hypothesis that localized movement of chromatin in the nucleus 

may not be due to random or biochemical mechanisms alone, but instead can occur 

simply as a result of mechanical force transfer applied at a distant tissue surface. 

However, significant transport of RNA over the incubation time (e.g. Figure 1) indicates 

that the nascent RNAs observed may not be a true response of the nucleus to deformation. 

Additionally, RNA expression was observed in nucleus regions that were expected to be 

more naturally transcriptionally active. Nevertheless, these regions corresponded with 

unexpectedly high levels of strain, suggesting that the nucleus structure may be routinely 

regulated through a variety of casual physical activities that involve tissue loading, which 

in turn allow for transcriptional and other regulators of biological activity and gene 

expression. 

Our experimental analysis demonstrated the hierarchical transfer of strain over large 

distances and log scales from the tissue surface to the interior of individual nuclei in situ. 

In our study, simple shear strain applied at a distant tissue surface transfer to individual 

nuclei, amplifying strain up to five-fold in localized nuclear regions. Interestingly, we 

note reports of novel quantitative approaches to measure detailed internal biomechanics 

in individual cells, but these techniques largely ignore the intranuclear strain and gene 

expression 
58

. Quantification of intranuclear strains is important, because they possibly 

extend the concept of nuclear mechanics arising due to physical links to the cytoskeleton 

or extracellular matrix 
5,56

, to also include remote links through pericellular and 

extracellular molecules, e.g. type VI and type II collagens, respectively, in the 

hierarchical organization of complex tissues like cartilage. Using the hybrid method, we 

did not yet in the current configuration tease apart the relative influence of load transfer 

through solid or fluid phases 
68

, or specify candidate matrix or cytoskeletal molecules that 

result in strain transfer. However, candidate molecules may be identified and visualized 

by fluorescent tagging in subsequent studies. In the present work, it is important to 
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emphasize the nondestructive nature of the hybrid technique, coupled with the ability to 

reveal internal spatiotemporal dynamics in living cell nuclei in situ for the first time, 

which enables the study of diverse cell-laden materials, including hydrogel or polymer 

constructs, and diseased tissues, that contain unique or rare cell populations. 

The nucleus-to-nucleus variation of intranuclear strain field patterns (Figures 3.4, 3.8-3.9) 

suggested that the applied tissue load was not uniformly transferred to every nucleus, 

possibly due to the spatially heterogeneous mechanics of cartilage explants that arise 

from cell location and spatial density in the tissue 
69

. This observation indicates the 

possibility of subtle and variable underlying cell-matrix connections or other structural 

parameters that dictate how load is shared over hierarchical scales. Interestingly, newly 

synthesized RNA was also observed outside of the nuclear region of the cell, illustrating 

transport during the short incubation time, which has also been reported in other cell 

types following treatments with soluble factors 
36,37

. Further, intranuclear strain patterns 

depended on time for some of the nuclei studied (Figure 3.11), suggesting more 

complicated (e.g. viscoelastic) mechanisms may play a role in RNA expression in some 

cells. Strain maps measured from DNA images taken at 10 min and 60 min post-

deformation indicated an increase, decrease or no change in the intranuclear strain fields 

and magnitudes between the two time points. While very small differences in aspect 

ratios of the 10 and 60 minute deformed nuclei indicate no bulk deformation of the 

nucleus between the two time points (Figure 3.11). 

These data suggest that cells in situ can sense an applied load that is transferred over 

relatively large distances and log scales to alter intranuclear deformation and to possibly 

directly influence new RNA synthesis, and may regulate other actions as well, including 

the transport of mRNA or other molecules through nuclear pores. The direct 

correspondence of strain and DNA or RNA patterns may suggest specific mechanical 

stimuli, e.g. shear strain, that influence spatially-localized gene expression in individual 

cells, although it remains to be determined the extent that mechanics directly regulate 

nuclear mechanobiology in large cell populations. We expect that this hybrid method, 

based on microscopy and hyperelastic warping, will enable a wide variety of future 
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investigations into mechanotransduction mechanisms, including transcription of specific 

RNAs, and translation and control of downstream protein synthesis. 
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Figure 3.1. Combined confocal microscopy and hyperelastic warping reveals 3D strain fields and 

nascent RNA expression in the nuclei of single cells. (a) A custom tissue deformation device and 

microscope objective was used to image a cartilage explant during shear loading. (b) Projection 

images were constructed from undeformed and deformed confocal z-stack images (Red=DNA, 

Green=nascent RNA at 60 min, scale bar = 20 µm). Connected blue boxes track two nuclei to 

show tissue-scale shear deformation. Grey boxes point to a magnified middle slice of the nucleus 

volume (scale bar = 1 µm. (c) The selected nucleus from (b) is shown as a warped 3D volume 

with color maps representing principal strain fields and max shear, with the middle slice cross 

section detailed below. Importantly, the nuclei aspect ratios (undeformed = 1.08 and deformed = 

1.15) do not capture the complexity of the intranuclear deformations. 
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Figure 3.2. The tissue deformation system was validated using a fiber optic displacement 

measurement system. Motion was provided by two magnetic linear encoders (Nanos Instruments, 

GmbH; Hamburg, Germany) mounted on Piezo LEGS LL1011A motors (Micromo; Clearwater, 

FL), and verified using a MTI-2000 Fotonic Sensor (MTI Instruments; Albany, NY). (a) CAD 

representation of the loading device with encoders as well as optical sensor in their respective 

positions. (b) Plot of a representative square-wave (100 µm) displacement profile in control 

experiments (i.e. actuator motion without a sample present). There was a small, micron-scale 

offset between the encoder positioning and the Fotonic Sensor readout. (c) Plot of a square-wave 

(100 µm) displacement profile with a sample present. (d) Three square wave cycles at each 

position were averaged to produce the linear calibration curve loading a sample (diamonds) and 

without a sample (squares). 
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Figure 3.3. Control (non-deformed) tissue explants exhibited a reduce number of cells with 

nascent RNA expression compared to explants exposed to mechanical shear. The images shown 

are z projections of 20 z-slices, and the nascent RNA (green channel) was filtered to eliminate 

uneven background intensities so that a threshold could be applied to facilitate cell counting. The 

image post processing was performed with ImageJ (NIH, Bethesda, MD). The control sample 

showed 14 out of 54 cells (26%) with nascent RNA expression, while mechanical shear of the 

deformed (treated) sample resulted in 44 out of 75 (59%) cells with nascent RNA expression. 

Nuclei in Figure 3.4, and 3.7-3.9 were analyzed from this deformed image field of view (Scale 

bar = 10 µm). 
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Figure 3.4. Intranuclear strain patterns in a single cell are spatially complex in three dimensions 

and heterogeneous even during simple shear at the tissue surface. (a) Five z-slices from an 

undeformed and deformed nucleus showing nascent RNA and the merged DNA-RNA image. 

Spatial patterns of strain, and DNA and nascent RNA images, vary by slice location. (b) 

However, overlaid graphs (Figure 8) show that the relationship between strains and RNA or DNA 

intensity had very little variation between slices. (Scale bars = 2 µm) 
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Figure 3.5. Displacement fields from hyperelastic warping, but not texture correlation, match 

known simulations, thus enabling the measurement of small-scale motion in individual nuclei. (a) 

A simulated deformation was applied to a 3D nucleus, with the middle z-slice images shown. The 

x and y displacement fields are shown for the known applied deformations, followed by the 

measured results from hyperelastic warping and texture correlation. (b) The x and y displacement 

fields from experimental data of a representative nucleus are shown for hyperelastic warping and 

texture correlation methods. Hyperelastic warping describes deformation with lower bias and 

increased precision compared to texture correlation (Figure 6). (Scale bars = 2 µm) 
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Figure 3.6. Hyperelastic warping consistently provided data with low RMSE and bias, and high 

precision, compared to texture correlation. Signal-to-noise ratio (SNR) and contrast-to-noise ratio 

(CNR) were calculated for each image set after the addition of Gaussian (random) image noise. 

Three error measurements (root mean square error (RMSE), bias, and precision) were used for 

comparison between the two techniques. The most noticeable difference between the techniques 

was the increase in bias seen with texture correlation between slice 5 and 9. The other 

measurements of error show similar performance of the techniques on each image slice. (Scale 

bar = 2 µm) 
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Figure 3.7. Principal strain magnitudes and directions correspond to the intensity of DNA and 

nascent RNA. A magnification box highlights a nuclear region with heterogeneous (amplified and 

attenuated) strains. The strain direction for Ep1 was predominantly through the imaging plane, 

while the Ep2,3 directions were largely in the imaging plane. For the nucleus shown, tensile Ep3 

strains correlated with DNA image intensity regions (r
2
=0.826), whereas compressive Ep3 strains 

correlated with nascent RNA intensity regions (r
2
=0.759). While only one representative image 

slice from the middle of the nucleus is shown, the results were consistent in other z-slices (Figure 

4 and 8). A single line scan at the right of the strain maps depicts the cross sectional profiles for 

DNA (red), RNA (green) and strain magnitudes (black). White lines of the strain map are edges 

of the DNA image intensity calculated by an edge detection function in Matlab to help spatially 

visualize the high and low DNA regions. (Scale bars = 2 µm)  
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Figure 3.8. Complete 3D, DNA and RNA image intensity to strain relationship analysis for a 

single nucleus from Figure 4. The top graphs shows the image intensity vs. strain results for each 

z-slice and the bottom graphs are the averaged results.  



42 

 

4
2

 

 

Figure 3.9. Strain magnitudes and nascent RNA expression in nuclei vary among single cells 

within in a tissue volume subjected to uniform shear. (a) The undeformed DNA image, deformed 

DNA and merged DNA-RNA images are shown for four cells from the same imaging field of 

view seen in Figure 3. The nuclei were from the same region in the tissue, although there were 

several physical characteristics, such as shape, size, and long axis orientation that may influence 

how the strain was transferred from the tissue to the nucleus. (b) The average image intensity 

versus strain for the four nuclei were graphed in matching colors as boxed in (a). Three of the 

four nuclei (excluding nucleus two) exhibited similar trends in DNA and RNA intensity patterns.  

The RNA graphs also show that there were different RNA image intensities between nuclei, 

which were qualitatively observed in panel (a). (Scale bars = 2 µm) 
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Figure 3.10. Cells remained viable during the time course of experiments. Cell viability was 

determined using a live/dead imaging kit (Invitrogen) at the beginning (0 min) of the incubation 

period, and at a later time that exceeded the studies described herein (70 min). A difference image 

(third panel) demonstrates no change in fluorescence signal in cells. 
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Figure 3.11. The nuclear strain patterns for 10 and 60 minutes after the applied shear loading to 

the tissue surface varied among cells. Using hyperelastic warping, strain patterns were observed 

to increase (e.g. nucleus A), decrease (e.g. nucleus 1), or remain unchanged (e.g. nucleus 2) with 

time Hyperelastic warping measurements provides additional spatial details that the small 

differences in aspect ratios between 10 and 60 min could not resolve. The small difference in 

aspect ratio does indicate that the bulk deformation of the nucleus does not change over the 

experimental time period. The difference in aspect ratios for the slices presented above are: A (-

0.008), 1 (0.001), 2 (0.000), 3 (0.006), and 4 (0.064).  Please note that nucleus A is also depicted 

in Figure 7, while nuclei 1-4 correspond to those shown in Figure 9. The white lines were 

overlaid on the DNA image and strain maps to aid in visualizing the chromatin and 

interchromatin regions. 
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Figure 3.12.  Strain versus DNA image intensity plots. The negative control, no tissue 

deformation (red) nuclei=5, and the treatment, tissue deformation (black) nuclei=5, are plotted for 

Ex and Ey strain fields of the middle slice of the nuclei. The control nuclei plots are horizontal 

and show very little changes in strain level with respect to DNA intensity. This shows that there is 

a low level of internal deformation that the hyperelastic warping measurement technique is 

detecting in the negative control case. In the applied tissue deformation treatment case there are 

positive trends of strain to DNA, which varies cell to cell. 
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CHAPTER 4. VALIDATION FOR MEASURING INTRANUCLEAR STRAIN WITH 

ITERATIVE WARPING USING DEFORMABLE IMAGE REGISTRATION  

4.1 Abstract 

The cell nucleus is the stiffest component of the cell. Understand the local mechanics of 

the nucleus is important to understand how mechanical signal can be transduced to the 

nucleus and alter chromatin regions and gene expression. Most widely used methods for 

measuring nucleus mechanics is to measure bulk geometric changes in area and aspect 

ratios.  These values provide not local information that can be spatially correlated to 

biochemical activity in the nucleus. Iterative warping using deformable image 

registration is developed to measure local intranuclear strain patterns. A forward finite 

element analysis was built to great a known deformation “gold standard” that the iterative 

warping algorithm can be validated with. The forward analysis uses two material 

properties to represent chromatin and interchromatin regions. The regions material 

properties were varied between soft and stiff producing a strain field with corresponding 

pockets of high and low strains.  The iterative warping algorithm measured with low 

error the known deformation patterns in a repeatable way finding the global minimum in 

the image registration solution space.  

4.2 Introduction 

The cell nucleus directs the regulation of normal cellular functions as well as the 

expression of proteins required for adaption to environmental changes. The nucleus can 

be considered a composite material with the major component being DNA which is 

classified into two regions 1) heterochromatin regions which are tightly packed and have 

decreased gene expression activity and 2) euchromatin regions that are lightly packed and 

have higher gene expression activities
25,52,53

.    Mechanical forces are thought to interact 

with these DNA regions and are an important part in the gene expression process
39,40,70,71

.  
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Current methods to characterize nuclear biomechanics typically rely on bulk 

measurements. To characterize the nuclear mechanics, microscopy images are taken of 

the nucleus before and after a treatment and geometric changes in aspect ratio and area is 

measured. These measurement algorithms are found in many image analyses software 

packages and provide a quick bulk measurement of the nucleus. However, these methods 

lack the spatial sensitivity to capture the inherent structural complexity and internal 

mechanics of the nuclei.  

Digital image correlation (i.e. texture correlation) is an approach that provides strain 

patterns by tracking the unique texture of biological images
50,72,73

.  A subset search region 

of the undeformed image is correlated to a region in the deformed image. The limitation 

of this technique is that large areas of unique texture are needed. Texture correlation has 

been used to measure a bulk nuclear mechanics response to a stimulus but lacks the 

spatial resolution to provide detailed maps of the intranuclear strain
2
.  

In this study iterative warping using deformable image registration, or warping for short 

is validated to measure intranuclear deformations.  The goal of deformable image 

registration (DIR) is to match a template image with a target image and obtain a 

deformation map required to complete registration.  DIR has been used in many 

biological imaging applications such as MRI ultrasound, and microPET imaging to look 

at the mechanics of the brain and cardiovascular system
7,74

. In DIR a finite element mesh 

is made of the template image and the mesh is deformed until it matches the target image 

(Figure 4.1). The deformation or warping of the mesh is governed by the material 

properties that are assigned. To avoid the registration of getting stuck on predominate 

features in the image a blurring curve is assigned.  The limitation with the load penalty 

curve is that the registration can be over driven and the solution reaches a local minimum. 

To find the global minimum, the warping analysis is iterated with incrementing mesh 

stiffness until there is a reasonable solution found. To validate iterative warping a 

forward finite element analysis was completed to create a known intranuclear strain field. 

The objectives of this study are to 1) validate the algorithm in finding the global 

minimum in the solution space to calculate intranuclear strain fields with the smallest 
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error and 2) demonstrate the additional spatial information warping provides compared to 

bulk geometric measurements. 

4.3 Methods 

4.3.1 Nucleus imaging and forward known data 

Passage 4 chondrocyte nuclei images were collected using fluorescent microscopy with 

the DNA being stained with DRAQ5 (Cell Signaling) or Hoechst 33342 (Life 

Technologies). Z-projections of confocal or two photon microscopy nucleus images are 

used in the analysis. When the nucleus is stained the heterchromatin is brighter than the 

euchromatin due to the compaction of the DNA. For this study the brighter regions are 

referred to as chromatin and the lighter regions as interchromatin which was set by an 

arbitrary threshold.  

Four sets of images were created with a forward finite element analysis. The mesh was 

deformed in a finite element simulation with displacement and strain magnitudes 

representative of those observed in previous studies
2
. The boundary conditions of the 

model consisted of applying an equal tensile normal force on the outer perimeter. For the 

forward simulation the nucleus was segmented into chromatin and interchromatin regions 

(Figure 4.3). The four known data sets were created with chromatin being 2 and 10 times 

stiffer than the interchromatin and the inverse with the interchromatin being 2 and 10 

times stiffer. A linear elastic material model was selected for the forward and warping 

analysis.  

4.3.2 Iterative warping using deformable image registration  

The iterative warping algorithm reaches a solution by increasing mesh stiffness and load 

penalty curves. For each of the DIR iterations there is a normal or error termination 

which is recorded as a 1 or 0 as seen in Table 4.1, respectively. There are six load penalty 

curves that the warping algorithm runs in parallel and the mesh stiffness is increased until 

all six reach a normal termination which is seen as the last row for each of the nuclei in 

Table 4.1.  
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A Matlab code was written to automate and connect the software for mesh generation 

(TrueGrid), DIR (nike3D) and post processing (WarpLab  and LSprePost).  By using the 

Matlab code the above iterative optimization routine can be performed in a more 

manageable time frame, tens of minutes instead of hours for one nucleus.  Figure 4.2 

provides a visual comparison of the computer mouse movements and clicks that the user 

saves by the semi-automated Matlab algorithm.  

4.3.3 Measurement of error in hydrostatic strain fields  

The forward finite element stimulations were used to create known strain fields and 

served as the “Gold Standard” in the determination of the Root Mean Square Error 

(RMSE) for iterative warping. The error is qualitatively visualized as the known minus 

warped difference image (Figure 4.4).  Quantitatively the RMSE for known minus 

measured warped is plotted for the different load curves and mesh stiffness. Also 

measured is the RMSE of the warped template minus target images. This measure serves 

as a way to identify when the global minimum is reached (Figure 4.5). In the post 

processing of the results the total strain distribution is segmented into the percentage of 

strain carried by the chromatin or interchromatin. Also, plotted is the normalized DNA 

intensity versus strain at each pixel of the nucleus (Figure 4.5).  Lastly, the percent error 

is calculated for the average, min, and max hydrostatic strain as:         

              

     
     (Table 4.2). 

To compare the results to current methods for nuclear mechanics the engineering strain, 

change in aspect ratio and area was measured for the template and target images (Figure 

4.7). Engineering strain is calculated as the ratio of the change of the major axis over the 

original major axis length.  

4.3.4 Visualizing strain fields 

There are several was to represent the strain fields in continuum mechanics (Figure 4.1).  

Directional strains with respect to Cartesian coordinates in a 2D case are Exx, Eyy, and Exy.  

From the directional strains, strain invariants I1 and I2  are calculated and are directional 

independent. I1 =  Exx + Eyy    I2 = Exx × Eyy − Exy
2
   The hydrostatic strain (Eh) is also 
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directionally independent and is the average of Exx and Eyy or one half of I1 . The 

hydrostatic strain can be thought of as the local volumetric changes and was chosen as 

the strain that will be presented in the figures of this study.  

4.4 Results  

In the validation analysis the four nuclei deformations from the forward simulation were 

registered and qualitatively and quantitatively analyzed to determine a percent error. The 

number of stiffness iterations varied from 2 to 9, to reach 6 normal terminations for the 6 

different load curves (Table 4.1). The difference images of the known minus measured 

warped results show a very good spatial registration for each of the nuclei qualitatively 

(Figure 4.4).  The RMSE for known minus measured deceases and levels off as the mesh 

stiffness is increased (Figure 4.5). The average of the hydrostatic strain is insensitive to 

both the changes of mesh stiffness and load curve penalty. The standard deviation does 

increase with increasing penalty but decreases with increased mesh stiffness (Figure 4.5). 

The percent error for warping varies between nuclei from over-estimating the average 

hydrostatic strain by 1.42% to underestimating by 3.24 % (Table 4.2).   

To quantify the percentage of the total strain that is distributed between the 

interchromatin and chromatin components, the stain distributions were analyzed based on 

a pixel by pixel method or by chromatin segmentation. The warped images show 

intranuclear strain patterns that match the interchromatin to chromatin stiffness ratios and 

DNA intensity segmentation (Figure 4.4). The scatter plots of normalized DNA intensity 

versus hydrostatic strain show similar trends among the pair of chromatin being stiffer or 

interchromatin being stiffer (Figure 4.6). Qualitatively the strain distributions histograms 

show the total distribution as a composite of the interchromatin and chromatin portions of 

the strain. This is quantitatively reported as a stacked bar graph with nucleus chromatin to 

interchromatin ratio as 25/75 nucleus A, 7/93 nucleus B, 15/85 nucleus C and 30/70 

nucleus D (Figure 4.6).  

Comparative measurements were made between iterative warping and other bulk 

geometric measures such as engineering strain, changes are aspect ratio and area. The 

warping average strain results were nearly identical to the known averages (Figure 4.7). 
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The engineering strain of the major axis underestimated the average strain for all the 

nuclei. However, the engineering strain measure was more reasonable than the change in 

area or aspect ratio measurements which were near zero or dramatically off, respectively.    

4.5 Discussion and Conclusions 

Iterative warping using deformable image registration measured low error in the 

intranuclear strain fields created by a forward finite element analysis. Although texture 

correlation was not used in this validation study, in previous single material validation 

study, it was used and warping was found to have a lower error
2
. Using a two component 

nucleus in this validation allowed for a more complex intranuclear strain field with high 

strain pockets that theoretically better match what is known about the relative mechanics 

between euchromatin and heterochromatin
75

.  The forward simulation with the 

interchromatin being 10 times stiffer and acting as a shell with no chromatin pockets of 

high or low strains may be a reasonable estimation because the nucleus is a multi-

component material with several structural components such as lamins that are not 

considered in this validation study.  

The strengths of iterative warping are that a large amount of spatial intranuclear 

deformation is gained and the analysis is semi-automated. The automated iterative 

process has taken out the guess-and-check procedure of finding DIR parameters that 

appear like they will give a reasonable solution. It dramatically reduces the time to find a 

solution by incrementing the mesh stiffness while running in parallel the 6 warping 

analyses load curves which reproducibly behaves the same way during the stiffness 

sweep (Table 4.1). There is currently no other technique that can measure the complex 

intranuclear strain patterns that were simulated in the forward analysis at such a high 

spatial resolution. By looking at the overlaid perimeter outlines in Figure 4.3, it would 

appear that the nuclei were deformed in a very similar manner. The method comparison 

bar graphs, Figure 4.7, quantitatively show that the simple bulk geometric measurements 

cannot distinguish the complex intranuclear strain information found in the different 

nuclei. 
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The weaknesses of this approach are the large solution times and sensitivity to image 

quality issues. It takes substantially more time to process a single nucleus because a the 

FE mesh is customized for each nucleus compared to bulk image processing 

measurements that can measure hundreds of nuclei in a single run. The large amount of 

data that is gained is worth the effort if processing a relatively low number of nuclei. But 

for population responses in the thousands, this would be a very computationally 

expensive process. To get the detailed intranuclear strain fields, high resolution 

microscopy images are need of the nucleus with good textured quality. Other bulk 

measurement techniques can have very poor image quality and the results will not change 

much. A good example of this is where hundreds of nuclei are imaged at low resolution 

with a high light source that saturates the detector and the image can still be processed.  

The bulk measurements may not be altered with this imaging setup, but running a 

warping analysis would be impractical. 

A few considerations when running iterative warping is in the preprocessing of the 

nucleus and selection of the starting mesh stiffness. The warping analysis looks for large 

image gradients, so when making the mesh it has been found useful to make the mesh a 

few pixels larger than the nucleus, and this will provide a large gradient for the start of 

the registration process. Caution has to be made when interpreting the results at the edge 

of the nucleus because this is where the largest errors are seen (Figure 4.4).  As seen in 

Table 4.1, not all of the nuclei have the same stiffness sweep. To save time when running 

multiple nuclei from the same experiment, a wider stiffness sweep performed to find a 

starting point for the mesh stiffness.    

Future improvements would be to automate the mesh generation of the nucleus and to do 

other fine tuning of the post-processing of the analysis. Also, depending on the 

anticipated material response, other material types such as hyperelastic or temperature 

dependent properties could be added to the mesh material properties.   This analysis will 

be beneficial in work that focuses on the interactions between mechanical stimuli and 

biochemical reactions at the intranuclear level, potentially elucidating the 

mechanotransduction mechanisms affecting the nucleus.  
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Table 4.1. Warping image registered normal termination for max penalty and mesh 

stiffness (Pa). Image Registered Yes =1 No = 0 

Nucleus A Max penalty      

Stiffness (Pa) 1 1.5 2 2.5 3 3.5 

350 1 0 0 0 0 0 

400 1 1 0 0 0 0 

450 1 1 0 0 0 0 

500 1 1 1 0 0 0 

550 1 1 1 0 0 0 

600 1 1 1 1 0 0 

650 1 1 1 1 1 0 

700 1 1 1 1 1 0 

750 1 1 1 1 1 1 

              

Nucleus B Max penalty     

Stiffness (Pa) 1 1.5 2 2.5 3 3.5 

350 1 1 1 1 1 0 

400 1 1 1 1 1 1 

              

Nucleus C Max penalty     

Stiffness (Pa) 1 1.5 2 2.5 3 3.5 

350 1 1 1 1 0 0 

400 1 1 1 1 1 0 

450 1 1 1 1 1 1 

              

Nucleus D Max penalty     

Stiffness (Pa) 1 1.5 2 2.5 3 3.5 

350 1 0 0 0 0 0 

400 1 0 1 1 0 0 

450 1 1 1 1 1 0 

500 1 1 1 1 1 0 

550 1 1 1 1 1 1 
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Table 4.2. Hydrostatic strain error analysis statistics 

Known    

Nucleus mean min max 

A 40.93 34.75 48.73 

B 25.71 4.59 43.45 

C 33.08 21.7 42.38 

D 22.45 15.17 30.66 

    Measured 

  Nucleus mean min max 

A 39.6 19.65 49.4 

B 24.84 3.72 48.33 

C 32.89 18.22 50.62 

D 22.77 11.55 34.06 

 

  

  % Error 
 

 
 Nucleus mean min max 

A -3.24 -43.45 1.37 

B -3.38 -18.95 11.23 

C -0.57 -16.03 19.44 

D 1.42 -23.86 11.08 
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Figure 4.1. Iterative warping using deformable image registration measures the deformation 

between two nucleus images (Template and Target). An iterative procedure has been developed 

to optimize image registration through an automated algorithm that increments the mesh stiffness 

until a reasonable solution is found.  The deformation can be visualized in several ways, 1) 

directional strain fields in Cartesian coordinates (Exx, Eyy and Exy) 2), strain invariants (I1, I2) or 3) 

hydrostatic strain (Eh) both being directionally independent  and calculated from the directional 

strain fields. 
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Figure 4.2. Visual comparison of the recorded computer screen mouse movements and clicks 

during the manual analysis (left) and after the semi automation Matlab algorithm was developed 

(right). 
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Figure 4.3. Four target images (A-D) were made with a forward FE model that applied and equal 

normal force out ward on the perimeter of the mesh (arrows on mesh) to be used as the known 

standard in validating warping to measure intranuclear strains.  The nucleus was segmented into a 

chromatin region (Template Mesh-blue area) and an interchromatin region (Template Mesh-red 

area). The chromatin or interchromatin mesh stiffness was defined to be 2× or 10× stiffer, 

respectively, as shown in the figure above. The color coded target perimeters are overlaid on the 

Template Mesh image.  
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Figure 4.4. Qualitatively seen in the nearly zero difference images, the hydrostatic strain fields 

measured by iterative warping closely match the known forward analysis for all four of the 

nuclei. There are slight edge artifacts where the image was not completely registered which are 

seen as a few brighter pixels near the edge of the nucleus in the difference image.   
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Figure 4.5. Two independent variables, mesh stiffness and max load penalty, were varied to find 

the combination that minimizes the error in the hydrostatic strain measurements. The RMSE for 

known-measured hydrostatic strain and the RMSE for the warped target-template images are 

plotted to find the global minima in the solution space.  The mean of the hydrostatic strains are 

not influenced by the changes in the mesh stiffness and load penalties. Whereas, the standard 

deviation of the strains changes with mesh stiffness and load penalties. 
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Figure 4.6 Intensity versus hydrostatic strain (b) is plotted and similar trends are seen among the 

interchromatin stiffer A and D nucleus and the chromatin B and C nucleus.  Segmentation of the 

nucleus images into interchromatin and chromatin regions show how the total strain distribution, 

blue histogram (red line), is a composite of the two strain distribution chromatin (green line) and 

interchromatin (white line).  To quantify the percentage of the total strain that is distributed 

between the interchromatin and chromatin components, a stacked bar plot is shown for each of 

the four nuclei. 

 



61 

 

6
1

 

 

Figure 4.7.  With all four nuclei, the mean hydrostatic strain measured by iterative warping is 

closest to the known mean compared to the other bulk measurement techniques (engineering 

strain for the major axis, change in aspect ratio and change in area).  
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CHAPTER 5. DEDIFFERENTIATION OF CHONDROCYTES INFLUENCES 

INTRANUCLEAR STRAIN TRANSFER MEASURED BY WARPING 

DEFORMABLE IMAGE REGISTRATION  

5.1 Abstract 

Mechanical cues are important for cellular processes and in regulating gene expression by 

influencing chromatin compaction. Cellular shape, size and gene expressions are known 

to change with cells as they are passaged in 2D cell cultures. Previous cell substrate 

stretched experiments have measured minimum strain transfer to the nucleus using bulk 

measurement techniques. It is not known how strain is transferred to the intranuclear 

structures because previous measurement techniques have low resolution strain maps. 

Warping image registration provides high resolution intranuclear strain maps that can 

spatially correlate chromatin strain regions. In this study passage zero (P0) and passage 

four (P4) chondrocyte cells are subjected to equibiaxial stretch on untreated and collagen 

I treated substrates. There was an increase in strain transfer ratio as the cell 

dedifferentiated from P0 to P4 with no significant difference between treated or untreated 

substrates. Using warping to measure intranuclear strains provides new data to how strain 

is locally distributed between chromatin and interchromatin regions when under stretch 

and how it changes due to dedifferentiation.  

5.2 Introduction 

The nucleus is sometimes represented as a mechanically isolated stiff cellular organelle. 

Recent studies have started to demonstrate that the nucleus is in fact not mechanically 

isolated from the cell
76,77

.  Several proteins have been found to be nuclear membrane 

bound proteins that connect the underlining nuclear lamins and chromatin structures to 

the cytoskeleton and cytoplasmic structures. The chromatin structures can mainly be 

divided into euchromatin, lightly packed and active in gene transcription, and 
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heterochromatin, dense and less active in gene transcription. The integrity of the nuclear 

structures is important for cellular activities and the disruption of them can cause severe 

diseases such as laminopathies which is a group of genetic disorders caused by the 

disruption of nuclear lamina
77-79

.  

Several studies have focused to understand how the cell regulates mechanical cues from 

the local environment to the nucleus. With cells in deformed cartilage plugs it has been 

measured that the bulk nuclear deformation is dependent on the location of the cell in the 

depth varying cartilage structure
28,80,81

.  Mechanical properties such as stiffness have been 

measured for the nucleus with micropipette aspiration and the results were modeled to 

calculate strain transfer through the cell to the nucleus
82

  . There are also other 

experimental methods with isolated cells on stretchable substrates that measure 

intracellular and nuclear deformation with texture correlation
50

. Texture correlation is an 

image pixel passed correlation of deformed images with spatial resolution limits and 

accuracy based on size of unique texture in the image
83

. Because the intranuclear 

structures are small and lack unique image texture it is difficult to measure a high 

resolution strains. An alternative to pixel based correlation is finite element modeling 

based on deformable image registration (DIR)
64

.  With DIR the registration quality is 

related to mechanical model parameters and how the solution space is searched for the 

best deformed registration (chapter 4).   

The objective of this study is to use iterative warping deformable image registration to 

measure intranuclear strain transfer of cells on stretchable substrates. Two hypotheses 

will be tested: 1) is there a difference in strain transfer based on cell differentiation state, 

and 2) does the substrate coating affect the strain transfer. To test cellular 

dedifferentiation chondrocytes at passage zero (P0) and passage four (P4) will be used 

because it is well characterized that chondrocytes dedifferentiated into a fibroblast 

phenotype over passages
84

. The substrates tested will be an untreated and a collagen I 

coated substrate.  
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5.3 Methods 

5.3.1 Cell staining and imaging 

Primary bovine chondrocytes from the weight bearing region of the medial condyle were 

harvested from young cows less than 6 months old.  To visualize the structural 

differences between passage zero and passage four cells on the substrates coated with or 

without collagen I the following staining procedures were used. The cells were sparsely 

plated and incubated on the substrates for 24 h to allow for complete adhesion to the 

substrates. The cells were fixed with 2% paraformaldehyde, washed with 1 x PBS, and 

then permeabilized with 1% trition and washed three times with 1x PBS.  The actin 

cytoskeleton was fluorescently labeled with Alexa488-phollodin (Invitrogen, Life 

Technologies). The nucleus was labeled with Hoechst stain. Microscopy was performed 

using a Widefield Nikon inverted microscope with a 60 X 1.20 na with 1.5 magnification 

with the appropriate filters for Alexa488 and Hoechst dyes. The substrates with the fixed 

cells where inverted onto a cover slip for viewing, because the short working distance of 

60X objective was insufficient to view threw the substrates.  

5.3.2 Quantitative Real-Time PCR - qPCR 

Total RNA has been extracted from cultured primary chondrocytes using the AurumTM 

Total RNA Mini Kit (Bio-Rad Laboratories) following the user’s manual for cell cultures. 

Amount of isolated RNA has been determined by spectrometry using the NanoDrop ND-

1000 (Thermoscientific Fischer). cDNA has been synthesized via iScriptTM Reverse 

Transcription Supermix for RT-qPCR (Bio-Rad Laboratories) and the thermocycler 

CFX96 TouchTM (Bio-Rad Laboratories) using between 400 and 1000 ng RNA per 

reaction. For every sample, the concentration of cDNA was adjusted to 1 ng/μl. 

Quantitative Real-Time PCR has been performed using the SsoAdvancedTM Universal 

SYBR® Green Supermix (Bio-Rad laboratories) with a final concentration of 5 μM for 

each primer and 3 ng cDNA template per 20 μl reaction. The cycling protocol was as 

follows: 95°C for 30s, 40 cycles of 95°C for 10s and 56°C for 25s; melting curves were 

determined by raising to temperature from 65°C to 95°C with 0.5°C increments between 

read outs. A custom MATLAB code has been written to calculate initial fluorescence 
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intensities (theoretical fluorescence intensity from initial number of templates) which can 

be determined from amplifications curves using sigmoidal curve fitting analysis
85

. 

Primer pairs were designed such that at least one partner was binding to an exon-exon 

junction and/or be separated by at least one intron, if possible; exclusions: COMP, SUN2 

and LMNB2 because no exon information was available for the bovine genome and 

COL2A1 as no specific primers could be found with such premises. However, melting 

curves were specific and showed no signs of primer dimerization or genomic DNA 

contamination. All primers were specific for all known isotypes besides primer for TTN 

(titin) that were specific for the N2A-isotype. Suitable housekeeping genes have been 

found using the Genevestigator gene expression databank tool 

(https://www.genevestigator.com/gv/) by searching for stable genes between 

chondrocytes and fibroblasts, as with ongoing passages cells seem to recapitulate a 

fibroblastic phenotype. Potential candidates selected were CSNK1A1, HPRT1 and 

RPL10A of which HPRT1 showed the most stable expression with >1% change in gene 

expression between fresh isolated and passage 4 chondrocytes. All primer sequences can 

be obtained from the list below. 

5.3.3 Device calibration 

The device to deform the substrate and image the strain transferred to the nucleus is a 

modified Flexcell stage device. The StageFlexer purchased from Flexcell International 

Corp was modified in several ways. The first modification was to convert it from a 

vacuum device to a positive pressure device by placing a cap above the substrate Figure 

5.1. The second modification was to drill out the bottom support bracket under the 

loading post to allow for a 40X Olympus water dipping objective with a 3.5 mm working 

distance to fit inside the device to view the cells prior and post deformation.  The 

magnitude of the substrate stretch varied linearly with change in pressure which was 

controlled by a pressure regulator ran with program in Labview. To calculate the 

substrate deformation, a Matlab code was implemented that tracked the displacements of 

the nuclei centroids. To validate the Matlab code to accurately calculate the substrate 
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deformation fluorescent spheres were used as fiducial markers and measured by tracking 

the centroids and with digital image correlation. 

5.3.4 Cell stretching experiments 

Cells were plated on substrates 24 h prior to the stretching experiments. DNA was stained 

with Hoechst prior to loading the membranes onto the StageFlexer. A small amount of 

silicone lubrication was applied to the loading post followed by the substrate which was 

covered with 3 ml of L-15 cell culture imaging media. Two photon microscopy (740 nm 

wavelength and 250 mW power) was used to take three z stack images three minutes 

apart prior to loading using a 40X water dipping objective. Two images were captured 

the cell image, by transmitted light, and the nucleus images by the Hoechst stain. The 

substrate is stretched and the cells are relocated within 5 to 10 minutes of the applied 

stretch and three more images are taken (Figure 5.1).  Equibiaxial strain is calculated 

from the average engineering strains exx and eyy, which are measured by tracking the 

nuclei centroid as fiducial markers.   

5.3.5 Nuclear strain measurements 

To measure the nuclear strain fields, z projection of the nucleus were used in the warping 

analysis. Briefly, warping analysis uses deformable image registration to calculate the 

local deformations of the nucleus. The process to optimize the warping analysis 

parameters to minimize the error in the strain fields was determined from a blinded 

known digitally applied deformation study (chapter 4). Nuclear dynamics was established 

by observing cell movement during the three pre-stretched nuclei images. Any cells that 

were moving prior to stretching were not included in the analysis. The nuclear 

deformation due to the membrane stretch was measured between the images just prior to 

and post substrate stretch (Figure 5.1).  

Image segmentation was done by a Matlab code. The DNA nuclear image was threshold 

at 65% of max intensity for all the images.  The bright regions were called chromatin and 

lighter areas interchromatin. The threshold was arbitrary selected as seen in Figure 5.4. 

Chromatin nuclear regions are typically characterized in the literature as euchromatin and 

heterochromatin, with euchromatin being more tightly packed then heterochromatin.  
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This classification would mechanically imply that euchromatin is stiffer and therefore 

must have a lower stain than heterochromatin, which may not be the case.  

5.4 Results 

5.4.1 Morphological Differences 

To measure geometric differences P0 and P4 cells were plated on treated and untreated 

substrates. The cells were fixed and stained for actin and DNA. Cell and nuclei area and 

aspect ratio were measured and found to be significantly different between P0 and P4 on 

both substrates (n=100 to 170, p < 0.05) (Figure 5.2A-C). The cells shape for P0 were 

mostly spherical with cellular and nucleus aspect ratios near 1 and had an actin shell 

distribution around the periphery of the nucleus.  This is phenotypical for chondrocytes. 

P4 cells were non spherical and had phenotypical fibroblast focal adhesion structures.  

The actin stain showed organized actin stress fibers all throughout the cell. 

5.4.2 Shift in Gene expression 

To confirm the shift in differentiation from P0 to P4, chondrogenic and fibroblastic gen 

markers have been analyzed. Indeed, all chondrogenic expression markers (SOX9, 

ACAN, PRG4, COMP and COL2A1) were significantly reduced and all fibroblastic 

markers (COL1A2, VIM, S100A4 and Thy1) showed and high increase up to >10,000 

fold in P4 cells compared to P0 cells (Figure 5.3). To better understand the observed 

changes in nuclear area and aspect ratio, gene expression of nucleoskeleton components 

has been furthers investigated. Generally, a decrease in nucleoskeletal gene expression 

can be observed. Nuclear envelope proteins that provide nuclear stability like Lamin A/C, 

obscurin, MAN1 and titin show an high down regulation of their respective genes from 

63% (LMNA) to 95% (LEMd3). This would suggest a softening of the nucleus toward P4. 

Similarly, LINC-complex proteins Sun1 and Nesprins show significant decrease in gene 

expression from 77-86%, which leads to the expectation of a decrease strain-transfer to 

the nucleus. In contrast, LINC-complex gen Sun1 as well as the structural protein emerin 

sowed no significant decrease after passaging. Lamin B proteins are known to be 

ubiquitously expressed between various cell types and differentiation states and seem to 
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play a crucial role in cell survival, similar expression levels between P0 and P4 were 

therefore expected.   

5.4.3 Strain Transfer Ratios 

Using iterative warping intranuclear strain patterns were measured from undeformed and 

deformed nucleus images taken immediately prior and post substrate strain. The nucleus 

image was segmented into chromatin and interchromatin regions by making a mask of 

the nucleus based off of 65% max nuclear intensity, respectively. The strain field 

distribution was measured for the total area or for each of the masked regions, chromatin 

or interchromatin. Two strain fields with total and regional distributions are provided in. 

The nucleus area, and chromatin patterning differs between these two nuclei. The smaller 

nucleus is a P0 and the larger nucleus is a P4 cell.  P0 compressive regions are spatially 

correlated to the chromatin regions and the majority of the tensile regions are spatially 

correlated to the interchromatin. Between the P0 and P4 cells in Figure 5.4, the 

interchromatin and chromatin distributions switch when looking at the P4 cell. Figure 5.4 

is provided to show a visual measure of how the total strain distribution can be spatial 

correlated to the different, user defined, structures in the nuclear image. The exact 

distributions vary from cell to cell.    

Knowing the substrate strain and intranuclear strain for each nucleus a strain transfer 

ratio is measured.  For each of the experimental factors (cell passage and substrate 

coating) at least 5 substrates were stretched with 2-9 cells in the same imaging area for 

each experiment. A total of 111 nuclei were analyzed with P0, n=20 and P4, n=22 on the 

untreated substrates and P0, n=34 and P4, n=34 on the collagen treated substrates. Strain 

transfer ratios (STR) were calculated as the average intranuclear hydrostatic strain 

divided by substrate equibiaxial strain. The STR is calculated for the different areas of 

the nucleus total area, interchromatin and chromatin regions (Figure 5.5). There is a 

significant increase in STR for all the measured regions between P0 and P4 cells. With 

the P0 chromatin area on average is related to a compressed region  and interchromatin to 

tensile regions. In contrast the P4 strain transfer ratio for all the regions is tensile but as 
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seen in Figure 5.4 this does not mean there are not local compressive regions. Those 

regions are just a smaller percentage of the strain distribution.   

5.5 Discussion and Conclusion 

The primary findings of this paper are made possible because of the newly developed 

iterative warping measurement of intranuclear strain fields. By knowing the applied 

substrate strain a STR is calculated which increases from P0 to P4 and is not sensitive to 

the substrate coatings selected in these experiments. In summary of the results as seen in 

Figure 5.6, there is an increase in cell area, aspect ratio and actin organization that may 

all aid in transmitting more strain to the nucleus in P0 (chondrocyte) versus P4 

(dedifferentiated fibroblasts) by allowing the cell to attach to the substrate more firmly. 

Another possible factors contributing to a higher STR is the decrease in chromatin 

condensation, making the cell less dense. Also, the decrease in nuclear envelope gene 

expressions would mean a less stiff cell. Especially lamin A, which decreases by 63%, is 

known to be the main contributor to nuclear stiffness. In contrast, the decrease of LINC-

complex protein gene expression would theoretically indicate a lower STR.  The decrease 

in nuclear connections to the cytoskeleton might be to protect the “soft” nucleus from 

rupturing in consequence to strain transfer overload as the cell dedifferentiates and 

deformed in different mechanical environments. However, the effect of nuclear softening 

might outweigh or even be the reason of the observed increase STR. 

The strength using warping is that high spatial resolution strain fields can provide a 

higher resolution stain map of the nucleus compare to other bulk measurements. In a 

similar cell substrate stretching experiment, texture correlation was used to calculate a 

bulk STR to the nucleus by only measuring a few points in the nucleus
50

. That study 

reported STR around 0.17 to 0.38 depending on orientation of the cell because the 

uniaxial substrate stretched. Using warping to measure intranuclear strain we not only 

have an average nucleus response but can also measure interchromatin and chromatin 

STR which varied and had a much larger range even giving negative STR ratios (Figure 

5.5). The negative STR can possible be attributed to active cellular remodeling of the 

nucleus and not a passive strain transfer. In the texture correlation paper the measured 
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average nuclear strains around 2% with max values around 8%. To generally compare 

our average stains were around 2 and we had similar STR for the total nucleus, but the 

high pockets of strain measured with warping can reach max values round 10-30% tensile 

or compressive stain.  If the STR values around 1-2 would be measured if these max 

pockets are used in the analysis.  However, a measure of STR is convoluted because there 

are so many other active mechanics that can cause the nucleus to deform that the 

deformation measured might not be from the applied substrate strain. 

Some example of nuclear shape regulation is seen by regulating cell shape with 

micropatterns
86

.  Other active methods of nuclear deformation are by knocking out 

nucleoskeletal components such as lamin-A/C
87,88

.  In this study the shape and genes 

expressions changes for chondrocyte dedifferentiation are similar to previously 

results
32,84

.  Cell regulated nuclear shape or changes in gene expression for nuclear 

structures and dynamics are confounding mechanism as an explanation for why there is 

an increase STR from P0 to P4. There appear to be no difference with the selected 

substrate coatings but it is well known that some cell types are very sensitive to substrate 

stiffness and coatings for attachment
6
.  

There is large cell to cell variability even with in the same imaging area during substrate 

stretching. Some of the variability could be because of active remolding mechanics. 

However, other passive strain transfer variables such as how firmly and directionally the 

cell was attached to the substrate were not possible to measurable in this experimental 

setup. Substrate bead force traction microscopy or micro-post force experiments could 

provide a measure of cellular adhesive force explaining variability in cell populations. 

Future studies are needed to tease apart these underling mechanisms of intranuclear 

mechanics that regulate how a cell can sense and transmit local mechanical cues to the 

nucleus for gene expression and other cellular activity.  
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Figure 5.1. A) Microscope mountable device to visualize deformed nuclei of cells attached to a 

substrate that is stretched over a loading post when a positive pressure is applied. B) To watch for 

cell dynamics six images are taken (blue boxes), three before and three after the pressure is 

applied. C) An equibiaxial strain is applied to the substrate translating the cells outwards as 

visualized by the green stained nuclei. D) A calibrate curve was made to validate the device that 

with increasing the applied pressure there is an linear increase substrates mean hydrostatic strain 

(R
2 
= 0.977). 
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Figure 5.2. A) There is a distinct visual morphological difference between passage zero (P0) and 

passage four (P0) cells and nuclei (red=actin, green=nucleus, n=100 to 170, p < 0.05). However, 

there is very little difference in cell and nuclei area B) and aspect ratio C) when they are platted 

on untreated or collagen treated substrates. D)  Cell aspect ratio versus nucleus aspect ratio show 

similar trends between untreated and collagen treated substrates.    
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Figure 5.3. Change in gene expression of passage 4 chondrocytes relative to fresh isolated cells 

for A) markers of differentiation and B) nucleoskeleton components. Error bars represent SEM. 

Changes are significant from 1.0 (p<0.05) if not indicated as (ns non-significant) as verified via 

post-hoc t-test; n=4. 
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Figure 5.4. Strain distributions for two nuclei (A=P0 and B=P4) with different patterns of 

chromatin regions that are segmented according to the pink and green mask.  The histograms 

fitted with the yellow line are the total distribution of hydrostatic strains. The pink (chromatin) 

and green (interchromatin) lines correspond to the strain distribution of the pink and green areas 

in the masked nucleus (histograms not shown).  Note that the chromatin and interchromatin 

distributions switch sides of the total distribution.  
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Figure 5.5. Strain Transfer ratio is calculated as the mean hydrostatic strain for the region of 

interest divided by substrate strain.  The STR regions of interest are interchromatin, chromatin, 

and the total nucleus areas and example of two strain distributions is seen in Figure 4. There is 

significant difference in the STR between P0 and P4, but not the substrates.  The interchromatin 

STR was on the only measure that had a significant interaction between substrate and passage. 

(n=20-35, p > 0.05) 
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Figure 5.6. Changes in morphological and nucleoskeletal expressions for chondrocyte cells (P0) 

that dedifferentiates into a fibroblast phenotype (P4) will be helpful to the nuclear strain transfer 

ratio increase seen between P0 to P4 cell.  
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CHAPTER 6. CHANGES IN CELL-SUBSTRATE ADHESION AND 

INTRANUCLEAR STRAINS ARE CORRELATED DURING OSMOTIC 

LOADING OF CHONDROCYTE CELLS  

6.1 Abstract 

Cells can sense both chemical and mechanical changes in the local environment.  For a 

mechanical stimulus, the cell and nucleus are deformed by direct mechanical linkages 

from the extracellular matrix to the nucleus. The cytoskeleton is thought to be the internal 

cytoplasmic structure of the cell that transmits the mechanical stimulus to the nucleus.  In 

chemical osmotic challenges, the salt concentrations are altered and osmotic pressures 

drive water in or out of the nucleus and cell causing cytoskeletal independent 

deformation. Bulk nuclear deformations have been measured during osmotic challenges 

providing limited information about how non direct chemical stimulus can mechanically 

deform the nucleus. Iterative warping is a method that has been developed that measures 

intranuclear mechanics, providing greater detail about the nuclear mechanics during 

chemical and mechanical stimuli. Force traction microscopy is used to measure what it is 

mechanically happening during osmotic loading at the cell-substrate interface. In this 

study, intranuclear strain maps and cell-force adhesion fields will be measured 

simultaneously.  Cell-substrate adhesion is negatively linearly correlated to the 

compressive intranuclear strain for the first ten minutes after a hyperosmotic challenge of 

passage four chondrocytes. These data suggest that cell mechanical interactions with the 

substrate and the ability for the cell to maintain its nuclear shape are related to the 

internal osmotic pressure of the cell and not just the cytoskeletal components.   

6.2 Introduction 

The cell interacts with its mechanical and chemical environment in many ways that 

regulate gene expression. The nucleus is mechanically connected through the 
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cytoskeleton to the extracellular matrix 
89

. Mechanical signals translated to the nucleus 

that deform the euchromatin and heterochromatin regions are starting to be considered as 

mechano-regulators in gene expression
17,41

. In contrast to directly pulling on the cell and 

transducing signals through the cytoskeleton osmotic pressure can change the volume of 

the cell and nucleus through passive transport of water even when the cytoskeleton is 

disrupted
90,91

. Additionally osmotic loading of cells has shown to alter gene expression 

yet the mechanism of how this happens is still unknown
92,93

. It is hypothesized this 

happens because during hyperosmotic loading chromatin condensation occurs.  

Cellular force traction microscopy can be used to understand the cell-substrate interface 

by measuring the cellular adhesion force. Force maps are calculated from the 

displacements of beads in a substrate that are imaged before and after the cell is 

chemically removed. Many chemical treatments have been studied, such as adding 

chemicals to activate or disrupt the cytoskeleton to see the changes in force traction 

maps
94

. The objective of this study is to explore the use of iterative warping to measure 

intranuclear strains while simultaneously measuring cell-substrate adhesion fields during 

osmotic loading. This study will provide time course information about the mechanical 

state of both the cell-substrate interface and the intranuclear regions of cells deforming to 

better understand how gene expression can be influenced by mechanical forces 

transmitted to the nucleus.  

6.3 Methods 

6.3.1 Fabrication of substrates 

A Sylgard 184 silicone elastomer kit (Dow Corning) was used to prepare PDMS 

substrates of varying stiffness. The curing agent and silicone elastomer were measured by 

mass. Small 0.5µm red fluorescent beads were placed into the PDMS mixture.  PDMS 

droplets of 40µL per substrate were allowed to set for 20 minutes to degas. The gels were 

then cured at 70°C overnight. After the completion of curing, the glass slides were lifted 

carefully off the petri dish and coated with fibronectin for cell attachment for 1 hour.   
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6.3.2 Two Photon microscopy imaging. 

Primary bovine chondrocytes from the weight bearing region of the medical condyle 

were harvested from young cows less than 6 months old. Harvested cells were cultured 

and split around 80% confluence until passage 4. Prior to testing, cells were plated at a 

sparse density onto fibronectin coated substrates for 2 hours. For population responses to 

osmotic loading, cells were plated at low density, 5 to 9 cells per 106×106 µm imaging 

area, to minimize cell to cell interaction. For single cell bead displacement experiments 

cells were highly diluted for a very sparse plating so only one cell is in the imaging area 

to eliminate displacement of the substrate by multiple cells. The cells were stained with 

DNA Hoechst stain and incubated for 15 minutes. 

Two photon imaging was performed using an Olympus Confocal Microscope stage 

adapted with a tunable Mai Tai pulse laser that exited at a wavelength of 740nm. The 

detectors wavelength ranges were set to 430-500 nm (set as green) and 540-600 nm (set 

as red) to image the nucleus and fluorescent beads, respectively. Also detected in in the 

green channel was the shape of the nucleus. This multiplexing of images on a single 

excitation wavelength was made possible because indigenous NADH is excited by two 

photon microscopy at wavelengths below 800nm peaking near 720 nm. The gel 

substrates with stained cells were placed over a 60× water emission objective with a 

rubber annulus placed on top to ensure liquid stayed on the gel. Two z stack images 1 

minute apart were taken before treatment and 10 images, at the same time interval, after 

osmotic loading. Another image was taken of just the beads after the cells were removed 

from the substrate with the addition of TypLE
™

 Express (Life Technologies). 

6.3.3 Osmotic Loading experiments 

It is well established that hypertonic osmotic challenge causes a reduction in cellular and 

nucleus cross sectional area
18,95-97

. The substrates were removed from the staining culture 

media and the majority of the liquid was wicked off except for a thin film that wetted the 

surface. An area of interest with cells was found quickly before the liquid dehydrated and 

two z-stack images were taken. Immediately after the second image to change the 

osmolality from approximately 320 mOsm in the thin film culture medium to a 500 
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mOsm saline solution 500 µL was added by dropping it in to the well very gently.  The 

control experiment included taking images of the cells with the thin layer of culture 

medium for 12 minutes, 1 minute apart. The addition of the 500 mOsm saline solution 

was repeated exactly the same way for the population response experiment and for bead- 

single cell deformation experiments.   

6.3.4 Nuclear and substrate deformation measurements  

All image processing was done using ImageJ and custom codes written in Matlab. The 

average Z projection of the nucleus z stack for each time point was taken to calculate the 

normalized cross sectional area and engineering strain of the major axis calculated as the 

percent change in major axis. For the cell population osmotic challenge study the control 

experiment measured 27 cells from 5 substrates and the osmotic loading results are of 32 

cells from 4 substrates. Results are plotted as mean and standard error bars in figure 6.1.  

For the single cell substrate and nucleus deformation, the first image and the images 

taken at 2, 4, 6, 8 and 10 minutes after osmotic loading were used to calculate 

intranuclear strain fields using iterative warping and substrate deformation. Substrate 

displacement field images were measured using an iterative PIV (Particle Image 

Velocimetry) ImageJ plugin. Two substrate displacement fields are measured from two 

different reference points. The first displacement field is the cell-substrate adhesion field, 

which is measured by taking the last image as the reference (cell removed) and 

subtracting each time point. The first time point is then considered the stable cell-

substrate adhesion field (Figure 6.2).  The displacement field arrows point inward, which 

represents the current adhesion state of the cell pulling in on the substrate. The first image 

was used as the other reference point to measure the change in the cell-substrate adhesion 

field. The displacement field is measured by subtracting the beads at each time point 

from the first. Three cells, with different morphologies (2, 3, and 4 apexes), were selected 

to determine how cell-substrate adhesion fields change with morphology and if 

intranuclear strains correlate. To look at the time dependence of intranuclear mechanics 

and substrate interactions a 3 apexes cell was selected and result were plotted versus time.  

To measure the local bead movements at each of the apexes, 3 bead’s displacements were 
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averaged at each apex (I, II and III).  Based off of the directions of the arrows in the 

displacement fields a magnitude displacement balance is achieved by adding the average 

displacements at I and II to equal that at III (Figure 6.3D).   

6.4 Results 

6.4.1 Bulk nuclear changes during osmotic loading 

A 12 min time series images of nuclei was taken for an osmotic challenge from 320 to 

500 mOsm and for control nuclei (no osmotic challenge) (Figure 6.1). In the control 

experiment a total of 27 nuclei from 5 different replica experiments were measured. The 

control cells had on average no change in the nucleus area (slope=0.000 R
2
=0.3199) and 

a very slight decrease in the percent engineering strain of the major axis (slope=-0.08 

R
2
=0.8693).  In the osmotic loading experiment a total of 32 nuclei from 4 different 

replicas were measured. The hyperosmotic loaded cells saw a significant decrease in the 

area (slope=-0.011 R
2
=0.9761) and percent engineering strain (slope=0.46 R

2
=0.9716). 

6.4.2 Cell-substrate adhesion maps correlate to morphology  

To measure the substrate deformation when cells are osmotically challenged, the cells 

were plated sparsely as to not confound the results. Three morphological shapes were 

selected to compare the substrate displacement fields.  Cells with 2, 3, or 4 apexes were 

selected and osmotically loaded for 10 minutes. The different cell shapes showed the 

similar patterns in the stable cell-substrate adhesion field with localized deformation at 

the apexes of the cell Figure 2 A.  The changes in cell-substrate adhesion fields are taken 

at 10 minutes after osmotic loading. It shows the same patterns of displacement but that 

the cell is still slightly attached after 10 minutes. If the cell was completely released the 

displacements in Figure 6.2 A, B would be exactly the same. The change in cell-substrate 

adhesion field displacements for the 2 and 3 apex cells are 2× that of the 4 apex cell.  

This trend follows with the nuclear hydrostatic strain fields in that the compressive 

strains in the nuclei for 2 and 3 are about twice as big as with the 4 apex cell. The nuclear 

strains fields are mostly compressive with a few really large compressive regions and a 

few zero or slightly tensile pockets Figure 6.2C.   
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6.4.3 Changing with time after Osmotic loading   

In figure 6.3 time series data is presented that provides more detail about how cell-

substrate adhesion and nuclear strain change as a function of time. In the time 

measurement plots hydrostatic and percent engineering strain of the major axis are 

plotted for 10 minutes after osmotic loading. The change in nuclear strain for both 

measurements is linear with respect to time and has similar percent strain rates to that of 

warping = -0.44 percent strain/min R
2 
= 0.9842 and Engr. Strain = -0.47 percent 

strain/min, R
2 
= 0.9945. The engineering strain underestimates the average hydrostatic 

strain for all time points. The slope is linear for the average displacement versus time 

plots for all three apex locations in the change in cell-substrate adhesion field, (slopes and 

R
2 

values are in Table 6.1). Summing the displacements at apexes I and II equals III. This 

would indicate that the cell is maintaining a force balance during the osmotic challenge as 

it is releasing the substrate.  The average bead displacement rate for all three locations is 

62.8 nm/min. The bead displacement versus hydrostatic strain plot shows a linear 

correlation with a ratio of 128 nm per 1% nuclear strain (R
2 

= 0.9685).   

6.5 Discussion and Conclusion 

The average population response to hyperosmotic loading was similar to other studies 

that look at the normalized cross section area change with time. However, in a previous 

study the normalized area plateaued with in the first 40 seconds
95

. The differences in that 

study is that chondrocyte passage zero cells, that have spherical cell morphologies were 

used compared to passage four chondrocytes with fibroblast phenotype morphologies that 

were used in this study. The nuclear response measured with warping was linear over the 

10 minutes time frame (Figure 6.1). Whereas, passage zero cells, showed a nonlinear 

response for 140 seconds in a previous paper
95

. It is assumed then that if our studies had 

lasted longer we could have seen this similar nonlinear response and could have 

calculated a time constant for the osmotic response. What should be noted is that higher 

resolution images for our nuclear strain measurements and changes to the nucleus due to 

the osmotic treatment would be confounded by the longer imaging times.  
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The three cell-substrate adhesion fields for the different cell morphologies all show 

similar spatial trends of concentrated displacement at the cell apex. Local stress 

concentrations at the cell apexes are similar for other cell types and for cells on 2D and in 

3D substrates
58,98

. Among all three cell cases, there was one apex that had a larger 

deformation than the others. The pattern of cell-substrate adhesion was maintained for 10 

minutes after osmotic loading but with a decrease in magnitude. The intranuclear strain 

maps show that there are pockets of high and almost non-compressive strain. The high 

compressive areas in the nucleus are possible areas that had higher water content before 

hyperosmotic loading. This is rationalized by understanding that osmosis occurs with 

water leaving the nucleus and cell when the salt concentration is increased in the 

extracellular space (Figure 6.4). These areas would be considered as euchromatin regions 

where higher gene expression is occurring. With previous studies in the literature 

experiements have shown changes in gene expression profiles due to osmotic 

loading
91,93,99

. The nucleus compression as mapped by the warping strain fields could be 

used as a way to identify mechanical mechanism for altering gene expression.   

Measuring intranuclear strain and change in cell-substrate adhesion over time allows for 

the correlation of how the cell can mediate both. As water is leaving the cytoplasm and 

nucleus, the cell deformation of the substrate decreases as the cell and nucleus area is 

decreased. The strain in the nucleus and the substrate deformation are both linear and the 

displacement vs. strain can be plotted. This plot is similar to a stress vs. strain plot in a 

mechanics of materials tensile test experiment. The slope of the stress vs. strain curve is 

proportional to the modulus of the material, which in our case would be the nucleus 

modulus. To convert the displacements to stress would be very difficult with stress being 

force of the cell divided by the area of the cell. This conversion is difficult because the 

area where the cell is pulling is not known. Also, if we did get the stress at the cell-

substrate what portion of that stress is transferred to nucleus is still limited by not 

knowing the cell modulus.   

This study’s objective was focused on measuring intranuclear strain simultaneously with 

substrate deformation during hyperosmotic loading of cells.  Construction of the force 



84 

 

8
4

 

traction fields was attempted but because of discontinuities in the displacement field, a 

large amount of noise was calculated (results not presented).  Different smoothing 

algorithms and methods can be applied but currently were not incorporated in this work.  

However, the results presented as displacement maps provide an approximation of the 

directions, but not magnitude of the force traction maps.  It will be beneficial to know the 

traction force field values for future work where strain transfer from the substrate to the 

nucleus could be modeled and the force values could be used as a boundary condition in 

determine nucleus material properties. Understanding the change in cellular forces and 

intranuclear mechanics will help elucidate how cells sense and regulate gene actives due 

to mechanical and chemical extracellular cues.  
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Figure 6.1. No significant change in the bulk measures of normalized area and engineering strain 

of the major axis for the control study. Area (slope=0.000 R
2
=0.3199) and percent engineering 

strain (slope=-0.08 R
2
=0.8693) for 27 cells from 5 substrates.  There are liner compressive 

changes in the 320 to 500 mOsm loading for both normalized nucleus area and engineering strain 

with respect to time. With significant decrease in the area (slope=-0.011 R
2
=0.9761) and percent 

engineering strain (slope=0.46 R
2
=0.9716) for 32 cells from 4 substrates.  Mean and standard 

error bars are plotted. 
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Figure 6.2. The shape of substrate deformation matches that of the shape of the nucleus from cells 

with 2, 3, and 4 apexes. The nuclear strain compressive magnitudes are similar to the general 

magnitude of substrate displacement between the three cells. With substrate 2 and 3 being on a 

scale 2× that of cell 4 and the compressive intranuclear strains are about have as much in 4 than 

they are in 2 and 3.  
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Figure 6.3. By tracking the deformation of the nucleus D) and substrate C) after osmotic loading 

the effects of water leaving the nucleus and cell can be seen as linear correlation between bead 

displacement and %strain of the nucleus E).  There is a force balance between the three apexes (I, 

II, II marked in C) of the cell which can be seen in the adhesion maps or seen in plotting the 

displacement of the locations E). 
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Table 6.1: Linear regression slope and R
2
 values for the strain and displacement plots in 

figure 3. 

 

% Strain Rate/min R
2
 

Warping -0.44 0.9842 

Eng Strain -0.47 0.9945 

   

 

Bead Displacement rate 

(nm/ min) R
2
 

I 45.3 0.8324 

II 43.3 0.7055 

III 99.7 0.9796 

I+II 88.7 0.8175 

*Average(I,II,III) 62.8 0.9564 

 

 

Figure 6.4. An illustration of the substrate release and compression of the cell and nucleus during 

osmotic loading when the extracellular fluid goes for isotonic to hypertonic. The mechanism of 

cellular and nuclear deformation is the loss of water through osmosis.  
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CHAPTER 7. INTRANUCLEAR MECHANICS: SIGNIFICANCE AND POTENTIAL  

The three way intersection of mechanics, biochemistry and the nucleus is gaining more 

attention because of the understanding that the nucleus is a mechano-sensor.  However, 

how it works and by what mechanisms is still unknown. In diseases like laminopathies 

where patients have cells with mechanically compromised nuclear lamins, the nucleus 

acting as a mechano-senor is compromised. Using iterative warping to further study 

nuclear mechanics in disease states will provide local chromatin level mechanics that 

may causes the altered cellular activity found in many diseases and cancers
11,88,100

.  

Chapter three of this dissertation was published in 2013 and in 2014 it already has two 

citations from other labs that work on nuclear lamin mechano-responsive properties
101

 

and cytoskeleton and nucleus biomechanical responses
102

.  The findings that intranuclear 

mechanics are complex and mechanically dynamic were cited by the other researchers.  

Basic geometrical measurements simply underestimate the deformations that occur in 

many experimental settings.  

In this dissertation, three completely different cell mechanics experiments were 

performed each having its own strengths and weaknesses. The cartilage tissue shear 

experiments’ strength was that the cell was able to be in its native 3D matrix allowing for 

a close representation of what a cell will actually mechanically sense and what gene 

regulation might be like in vivo. The limitation of doing cell mechanics in tissues is that 

knowing the exact loading condition from one cell to the other can be confounded by its 

location in the microstructure of the tissue. With the applied distant force is transferred 

differently throughout the structure.  The strength of the cell stretching experiment is that 

the applied mechanical stimulus is directly applied to the cell and the confounding factors 

of the matrix are eliminated. However, the weakness is that cell’s phenotypes change 

while in cell culture and the biological relevance is lost when the cell population is not in 
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its native microenvironment. It was seen that the P4 chondrocytes were more like 

fibroblast and had different strain transfer ratios compared to P0 chondrocytes. The 

novelty of the cell-substrate adhesion and intranuclear strains measured during osmotic 

stress is that mechanical deformation measured did not have to come from a mechanical 

stimulus. A limitation is that by not controlling the cell shape, every experiment is 

different, because the cell gripping force changes based on cell shape.  

Potential future studies that would provide a mechanistic insight into how strain is 

transferred to the nucleus would be to control some parameters that are controlled in 

typical material testing experiments. One parameter would be the cross sectional area to 

be the same in the loading experiments. This could be accomplished by micro-patterning 

the substrates in both the substrate stretching experiment and osmotic force traction 

experiment. It would be the equivalence of always having the same grips and specimen 

size in a tensile test. A second parameter where error can be reduced would be in sensing 

the force that the cell is applying during experimental treatments.  Stretchable substrates 

with tracking beads have non-uniform stiffness and surface roughness and the location 

where the cell is anchored is nonspecific compared to cells on micro post.  The full 

potential of measuring intranuclear mechanics will be realized when real time individual 

genes and gene expression can be imaged. Then the loop of intranuclear mechanics and 

gene expression a can be completed and how the nucleus is a mechanosensor will become 

useful in disease treatment and cell tissue engineering.  
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