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ABSTRACT

Haapala, Amanda F. Ph.D., Purdue University, December 2014. Trajectory Design in
the Spatial Circular Restricted Three-Body Problem Exploiting Higher-Dimensional
Poincaré Maps. Major Professor: Kathleen C. Howell.

In this investigation, the role of higher-dimensional Poincaré maps in facilitat-
ing trajectory design is explored for a variety of applications. To begin, existing
strategies to implement Poincaré maps for applications in the spatial CR3BP are
evaluated. New applications for these strategies are explored, including an analysis
of the natural motion of Jupiter-family comets that experience temporary capture
about Jupiter, and the search for periodic orbits in the vicinity of the primary bod-
ies. Because current strategies to represent higher-dimensional maps, generally, lead
to a loss of information, new approaches to represent all information contained in
higher-dimensional Poincaré maps are sought.

The field of data visualization offers many options to visually represent multi-
variate data sets, including the use of glyphs. A glyph is any graphical object whose
physical attributes are determined by the variables of a data set. In this investigation,
the role of glyphs in representing higher-dimensional Poincaré maps is explored, and
the resulting map representations are demonstrated to search for maneuver-free and
low-cost transfers between libration point orbits. A catalog of libration point orbit
transfers is developed in the Earth-Moon system, and observations about the cata-
log solutions yields insight into the existence of these transfers. The application of
Poincaré maps to compute transfers between libration point orbits in different three-
body systems is additionally considered. Finally, an interactive trajectory design en-

vironment that incorporates Poincaré maps into the design process is demonstrated.
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Such an environment offers a unique opportunity to explore the available trajectory

options and to gain intuition about the solution space.



1. PROBLEM AND MOTIVATION

The natural dynamics that emerge in the three-body problem yield a complex solu-
tion space and an expanded range of trajectory options. In particular, the symme-
try properties and analytical insight available in the Circular Restricted Three-Body
Problem (CR3BP) produce an effective framework for preliminary trajectory design
in a multi-body force environment. Within this context, an infinite number of peri-
odic and quasi-periodic orbits exist, both in the vicinity of equilibrium or libration
points, and centered on the primary bodies. Many of these orbits are unstable and,
therefore, possess stable and unstable invariant manifolds that offer a means of free
transport. Solutions, such as libration point orbits and their associated invariant
manifolds, have been incorporated into trajectory design scenarior in support of var-
ious missions. In the Sun-Earth system, observatories delivered to the vicinity of
L, include ISEE-3 [1], SOHO [2], ACE [3], WIND [3], Genesis [3]. Missions to the
Sun-Earth Ly point have also been demonstrated, including WMAP [4] as well as
the Herschel and Planck Space Observatories [5]. ARTEMIS was the first libration
point mission in the Earth-Moon system; two spacecraft were maintained in large
quasi-periodic orbits about the Earth-Moon L; and Ly points before entering long-
term lunar orbits [6]. While the available solutions within the CR3BP are generally
well understood, the process to incorporate them into the trajectory design concept
in support of a mission is nontrivial. Thus, new strategies to explore and represent
the design space are essential to improve the mission design process.

A map on a Poincaré surface of section is a powerful tool both to analyze and
represent the solution space, as well as to locate and compute trajectories with spec-
ified behavior. Incorporation of maps into trajectory design strategies improves the

tractability of mission design in multi-body regimes and offers the opportunity for im-



plementation within an interactive mission design environment. Poincaré maps are
frequently higher-dimensional and are difficult to represent visually. Thus, strategies

to represent higher-dimensional maps are required.

1.1 Historical Overview of the Three-Body Problem

With the publication of the Principia in 1687, Sir Isaac Newton inspired a search
for an analytical solution to the problem of n-bodies moving under the Newtonian
Universal Law of Gravitation. Newton had supplied a geometrical solution to the
relative two-body problem (2BP) and, in 1710, Johann Bernoulli demonstrated that
all relative motions of two bodies are described by a conic sections. Interest was
refocused toward an understanding of the motion of the Moon in the Sun-Earth-Moon
three-body problem (3BP), offering a framework for formulation of the problem of
lunar theory.

In 1722, Leonhard Euler, a student of Bernoulli, proposed the formulation of the
restricted three-body problem (R3BP) in which one of the bodies is assumed massless
and the remaining ‘primary’ bodies are assumed to move on conic sections. Euler
approached the R3BP from the perspective of a synodic, or rotating, coordinate frame
for application to his lunar theories. This synodic frame later became essential for the
qualitative exploration of behavior in the 3BP. In the same year, the existence of five
equilibrium solutions in the restricted Sun-Jupiter 3BP was demonstrated by Joseph
Louis Lagrange. Lagrange’s findings predicted the existence of the Trojan asteroids
in the vicinity of the linearly stable equilateral libration points in the Sun-Jupiter
system. It was not until 1906, however, that the first of the Trojan asteroids, 588
Achilles, was discovered near the Ls point. Currently, 6075 Jupiter Trojan asteroids
have been catalogued [7]. In addition, one Earth Trojan, four Mars Trojans, one
Uranus Trojan, and nine Neptune Trojans have been discovered. By framing the

3BP within a synodic frame, Carl Gustav Jacob Jacobi demonstrated in 1836 that



an integral of the motion exists. This integral is known as the Jacobi integral or
Jacobi constant and is the only known quantity that is conserved for the circular
restricted three-body problem. The existence of the Jacobi constant has qualitative
implications for solutions in the 3BP. One consequence of the existence of this integral
is the zero-velocity surfaces (ZVSs) and zero-velocity curves (ZVCs) which define the
regions of space that are accessible to the third body. In 18771878, George William
Hill considered a simplified version of the Sun-Earth 3BP in which the assumptions
of zero solar parallax, zero solar eccentricity, and zero lunar inclination were imposed
to search for particular solutions [8]. All solutions within this simplified system are
symmetric with respect to the x- and y-axes in the rotating coordinate frame. Hill
discovered one periodic solution, identified as Hill’s variation orbit, with period equal
to that of the Moon. Prior to Hill’s discovery, all solutions in the 3BP were obtained
by solving the 2BP and adding perturbations to the conic solution. A significant
contribution from Hill is his introduction of the zero-velocity curves, derived using
the Jacobi integral, to define limiting boundaries in the solution space. Through the
use of the ZVCs, Hill could demonstrate that there exist limits on the radius of the
Moon’s orbit, thereby demonstrating that the Moon cannot escape its orbit about
the Earth.

The first-return map, or Poincaré map, was introduced in 1881, by Jules Henri
Poincaré as a tool to examine the stability of periodic orbits [9]. Later, in 1899,
Poincaré completed the three volume set Les Méthodes Nouwvelles de la Mécanique
Céleste. Within the second volume, Poincaré proved that no new transcendental, or
nonalgebraic, integrals of the motion exist in the R3BP. Two years prior, Heinrich
Bruns had proved the nonexistence of any new algebraic integrals of motion for the
general 3BP. Also within the second volume, Poincaré then applied the theory of
asymptotic solutions to the R3BP, and produced doubly asymptotic solutions that
he would later label as homoclinic solutions [9,10]. The behavior of these homo-

clinic connections was difficult to describe and was sensitive to perturbations in the



initial conditions, thereby prompting Poincaré’s discussion of chaos. In 1912, Karl
Sundman, a Finnish mathematical astronomer, produced a solution in the 3BP in
terms of a convergent power series. However, computing solutions using this conver-
gent series is not computationally practical and, because the solution does not supply
any qualitative intuition about the problem, further study of the problem is clearly

warranted.

1.2 Motion in the Vicinity of the Collinear Libration Points

In 1968, Charles C. Conley demonstrated the existence of several classifications of
trajectories in the vicinity of the collinear libration points within the context of the
Circular Restricted Three-Body Problem (CR3BP), where the two primary bodies are
assumed to move on circular orbits about their barycenter [11]. A proof is developed
that implicates the stable and unstable invariant manifolds, asymptotic to solutions
in the center subspace associated with the collinear libration points, as separatrices
that distinguish two distinct classifications of trajectories: transit orbits that cross
through the equilibrium region between adjoining regions of the ZVCs, in the planar
problem, and nontransit orbits that are bounded to their region of origin. Building
on the results of Conley, Koon et al. (2000) and Gémez et al. (2004) demonstrate

the application of these invariant manifolds for trajectory design [12,13].

1.3 Trajectory Design Employing Poincaré Maps

The successful use of Poincaré maps has been demonstrated for trajectory design
and analysis by various researchers. Employing a Poincaré map, in combination
with a constraint on the energy level, i.e., the value of the Jacobi constant, offers a
reduction in dimension by two. In the planar CR3BP, the system is, thus, reduced

to two dimensions and the map is fully represented by the projection onto a plane.



In the spatial problem, however, Poincaré maps are at least four-dimensional and
strategies to facilitate their application to trajectory design are required.

In 2000, Koon et al. explored the application of Poincaré maps for the design of
transit trajectories in the planar CR3BP by exploiting the separatrix structure of the
invariant manifolds asymptotic to the center manifold associated with the collinear
points [12]. These authors additionally employed maps to investigate the temporary
capture and transit of the comet Oterma in the Sun-Jupiter system. In 2003, Villac
and Scheeres employed the periapse Poincaré map to identify regions of escape and
capture in the planar Hill three-body problem (H3BP). Haapala [14] and Davis [15]
later investigate these regions in the CR3BP, and demonstrate the relationship be-
tween the escape/capture regions and the invariant manifold structures. While these
investigations represent analyses in problems with two degrees-of-freedom, the ap-
plication of Poincaré maps in the three degree-of-freedom (spatial) problem has also
been explored.

To employ Poincaré maps for trajectory design in the full spatial CR3BP, strate-
gies to employ higher-dimensional Poincaré maps are necessary. These strategies
generally either serve to reduce the dimension of the map, or to offer strategies for
visually representing the higher-dimensional data set. As a third option, the map may
be projected into a lower-dimensional space so that, while some information is lost, in-
sight into the solution space might still be gained. Early work with higher-dimensional
maps generally employed this latter method, where various orthographic projections
are employed to gain insight into the higher dimensional space, e.g. Froeschlé [16,17],
Martinet and Magnenat [18] as well as Contopoulos et al. [19]. Froeschlé [17] addi-
tionally considers “slices” of the three-dimensional projection of a map. Here, he plots
numerous stereoscopic projections, each of which include only the crossings of the map
within some tolerance of a prescribed value of one of the state variables. Later, Patsis
and Zachilas employ rotation of a three-dimensional image so that all projections may

be considered, and include color to represent the fourth dimension [20]. Geisel [21]



applies this method to investigate structures within the CR3BP. While the strategies
employed by Patsis, Zachilas, and Geisel serve to represent the full map, rotation of
the view is required to consider all possible orthographic projections.

Alternatively to considering projections of a higher-dimensional map, the dimen-
sion of the map may be reduced by applying additional constraints. For example,
Jorba and Masdemont [22] as well as Gémez et al. [23] demonstrate the use of Poincaré
maps to represent the crossings of periodic and quasi-periodic orbits that exist within
the center manifold associated with a collinear point. These authors develop a higher-
order normal form expansion of the Hamiltonian in the vicinity of the equilibrium
point to decouple the stable and unstable motion. A change in variables allows for the
removal of the unstable behavior via a reduction to the center manifold and yields a
system with two degrees of freedom. Thus, two-dimensional Poincaré maps associated
with periodic and quasi-periodic orbits in the spatial problem, for a particular energy
level, are represented using two nonphysical coordinates. In 2001, Gémez et al. [24]
define multiply constrained surfaces of section to reduce the dimension of Poincaré
maps in the spatial problem. For a surface of section defined by three constraints,
a three-dimensional map may be computed. Including a constraint on the value of
the Jacobi constant, the dimension is reduced to two, and the maps are fully repre-
sented using two state variables. While the application of multiple constraints yields
a reduction in the dimension of the map, it may not be obvious which additional
constraints are most useful. In addition, only the subset of the higher-dimensional
map that satisfies the selected constraints is considered using this strategy. Thus,
techniques to represent the entire map are sought to facilitate an exploration of the
entire solution space.

Strategies to visualize the full higher-dimensional map include the afore mentioned
techniques employing three-dimensional scatter plots including color to represent the
fourth dimension by Patsis and Zachilas [20], as well as Geisel [21]. Alternatively

to the use of scatter plots, new symbols may be employed to represent crossings



of the map. Paskowitz and Scheeres [25] classify trajectory behavior in the spatial
H3BP problem using periapse maps. These authors represent the region of periapses
corresponding to immediate escape from the vicinity of the smaller primary using
a vector. The basepoint of the vector represents the position in three-dimensional
configuration space, and the length and orientation of the vector indicate the velocity
magnitude and direction at periapsis. Thus, the full six-dimensional state is repre-
sented for each crossing of the map. Again, while the use of vectors allows the full
map to be represented, rotation of the view is required to consider all possible ortho-
graphic projections. In this investigation, alternative representations are considered
for higher-dimensional maps that allow the map to be viewed in one plane. Thus, all
of the information is represented in a single image without requiring rotation of the

view.

1.4 Present Work

In this investigation, the role of higher-dimensional Poincaré maps in facilitating
trajectory design is explored for a variety of applications. To begin, existing strategies
to implement Poincaré maps for trajectory design applications in the spatial CR3BP
are evaluated. New applications for these strategies are explored, including an analy-
sis of the natural motion of Jupiter-family comets that experience temporary capture
about Jupiter, and the search for periodic orbits in the vicinity of the primary bodies
in the spatial problem. Because current strategies tend to be computationally inten-
sive, new approaches to represent the information contained in higher-dimensional
Poincaré maps are sought. The field of data visualization offers many options to
visually represent multivariate data sets, including the use of glyphs. A glyph is any
graphical object whose physical attributes are determined by the variables of a data
set. For example, the vectors employed by Paskowitz and Scheeres [25] to represent

crossings of the periapse map in the spatial Hill’s problem are a glyph representation.



In this investigation, the role of glyphs in representing higher-dimensional Poincaré
maps is explored, and the resulting map representations are demonstrated to search
for maneuver-free and low-cost transfers between libration point orbits. A catalog of
libration point orbit transfers is developed in the Earth-Moon system, and observa-
tions about the catalog solutions yields insight into the existence of these transfers.
The application of Poincaré maps to compute transfers between libration point or-
bits in different three-body systems is additionally considered. Finally, interactive
trajectory design environments incorporating Poincaré maps into the design process
are demonstrated. Such design environments offer a unique opportunity to explore

the available trajectory options and to gain intuition about the solution space.

The organization of this study is as follows:

e Chapter 2: Background — Circular Restricted Three-Body Problem
In this chapter, the equations of motion are derived for the CR3BP. The single
integral of the motion, as well as the zero-velocity surfaces, and equilibrium

solutions are discussed.

e Chapter 3: Fundamental Motion in the Restricted Problem
Examination of the variational system in the vicinity of the three collinear points
reveals the existence of periodic and quasi-periodic, as well as hyperbolic, solu-
tions. Invariant manifold theory is introduced in connection with the collinear
libration points, and the role of the invariant manifolds in determining the evo-
lution of nearby solutions is developed. Finally, the state-transition matrix is

defined and is utilized in the development of targeting algorithms.

e Chapter 4: Poincaré Maps and Trajectory Design
Poincaré maps are discussed as a means of representing higher-dimensional sys-

tems, and their role in trajectory design is evaluated. The representation of



invariant manifolds using maps is introduced, and proves useful in the location

of heteroclinic and homoclinic trajectories.

Chapter 5: New Applications for Existing Design Techniques

Trajectory design techniques demonstrated by previous researchers are applied
for new scenarios. The paths of comets Oterma and Helin-Roman-Crockett
during temporary capture about Jupiter are analyzed, and temporary capture
events are demonstrated to be facilitated by the stable and unstable invariant
manifolds asymptotic to the center manifold associated with the L, and Lo

libration points.

Chapter 6: Representing Higher-Dimensional Poincaré Maps
Tools from the field of data visualization are discussed and their relevance to tra-
jectory design strategies is explored. In particular, the role of glyphs as a visual

tool to display crossings of higher-dimensional Poincaré maps is demonstrated.

Chapter 7: Exploring the Role of Poincaré Maps in an Interactive Trajectory
Design Environment

Trajectory design tools employing Poincaré maps within a visual environment
are demonstrated for a the design of transfers between periodic libration point
orbits. Graphical environments prove useful to explore the available solution
space and to locate an initial guess for a transfer. An interactive differential cor-
rections environment is demonstrated to locate feasible solutions and to apply

constraints on any maneuvers.

Chapter 8: Catalog of Free and Low-Cost Transfers Between Libration Point
Orbits in the Earth-Moon System

A visual design environment, demonstrated in Chapter 6, is employed to com-
pute a catalog of available maneuver-free and low-cost transfers between various

libration point orbits in the Earth-Moon system. The constraints on the cata-
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log are defined, and the computed trajectories are displayed. Observations are
offered about the relationship between the primary system mass ratio and the

available transfers.

e Chapter 9: Concluding Remarks and Recommendations for Future Work
The results of this investigation are summarized, and a proposal for future work

is discussed.
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2. BACKGROUND — CIRCULAR RESTRICTED
THREE-BODY PROBLEM

Within the context of the Circular Restricted Three-Body Problem (CR3BP), the
motion of a particle, Ps, in the vicinity of two primary bodies, P; and P, is inves-
tigated. While no closed-form solution is known to exist in the CR3BP, qualitative
observations and numerical exploration offer much insight into the problem. To fa-
cilitate numerical integration, the equations of motion are derived for the CR3BP.
The equations of motion admit a single integral of the motion, that is, the Jacobi
integral. The existence of the Jacobi integral allows the definition of zero-velocity
surfaces, from which qualitative observations about the accessible solutions are avail-
able. Five equilibrium points exist, in the CR3BP, including three collinear points
and two equilateral points. The three collinear points are determined to be linearly
unstable, with a four-dimensional center manifold, a one-dimensional stable manifold
and a one-dimensional unstable manifold. Thus, a study of the variational system in
the vicinity of the collinear points reveals the existence of periodic and quasi-periodic,

as well as hyperbolic, solutions.

2.1 Equations of Motion Relative to an Inertial Observer

Derivation of the differential equations governing the motion of P3 as viewed by
an inertial observer is based on Newton’s second law. Assuming that Ps is too small
to influence the motion of P, and P,, the primary orbits are conics, assumed to
be circular for the CR3BP. In the spatial problem, Pj is free to move with respect
to the rotating primary system in all three spatial dimensions. Define the distance

between the primary bodies as ¢*, and the masses of the larger and smaller primary
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bodies as m; and mso, respectively. Let X,Y.Z represent inertial unit vectors. The
inertial X-Y plane is defined as the plane of primary motion and 7 is parallel to
the angular momentum vector associated with the primary system. Consistent with

circular orbits, the mean motion, N, of the primary system is defined such that

G(my + ma)
0+?

with respect to the inertial X-axis is N - 7, where 7 is the independent time variable.

N = , and the angle orienting the rotating line connecting P; and P,

Let R; be defined as the position vector that locates P; relative to the inertially

fixed barycenter, B, and R; = ||R;||. The distances between each primary and the
mgl* mll*

system barycenter are evaluated as Ry = ﬁ and Ry, = ﬁ The
mi + Mo my - Mo

position vector representing the location of Pj relative to B is defined as R3 = R,
where, written in terms of inertial unit vectors, R = XX +YY + ZZ. The vectors
that represent the positions of the third body relative to the primaries are defined in

terms of the inertial unit vectors as

Ris= (X — Rycos(N -7))X + (Y — Rysin(N - 7)Y + ZZ, (2.1)

Ry3 = (X + Rycos(N - 7)) X + (Y 4+ Rysin(N - 7))Y + ZZ, (2.2)

where the relative position vectors are defined as R;; = R; — R;. The equations of
motion as viewed by an inertial observer are derived using Newton’s second law. As a
consequence, the acceleration of the third particle, Ps, is derived from the gradient of

the gravitational potential function, such that RII/ = VU, where the scalar potential

function U is defined as U = —G (ﬂ + @) Thus, the acceleration is evaluated
Ri3 Ras
as
=1 Gml = GmQ —
R; = ———=Ri3 — ——= Ro;3, 2.3
"R Ry 2%

where a prime indicates the time derivative with respect to time 7 and subscript
I indicates that the derivative is with respect to the inertial frame. Note that the

line connecting P; and P, is oriented such that its angle with respect to XisN-T.
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Decomposing the vector equation (2.3) into its scalar components, the scalar equations

of motion relative to the inertial frame become:

" m1(X — Rycos(N - 7)) mo(X + Recos(N - 7))

A= Ru? - Ro® | 24)
v/ = my (Y — ]le;n(N - 7)) L ma(Y + ]ZZ;H(N . T))7 25)
A 26
where R;; = ||R;||. The equations of motion with respect to the inertial frame

in equations (2.4)—(2.6) are nonautonomous. Because, in the restricted three-body
problem, the total energy of the system is not conserved, the system of differential
equations is not Hamiltonian and, therefore, possesses an energy integral which is
time-varying. Describing the motion of P; from the perspective of a synodic frame
rotating with the primary system produces autonomous equations of motion that are

Hamiltonian in nature and yield a constant integral of the motion.

2.2 Equations of Motion Relative to the Rotating Frame

The concept of a synodic or rotating coordinate system was first introduced by
Euler in 1772 for application to his lunar theory. Because the equations of motion in
the CR3BP possess a constant integral of the motion when written with respect to a
synodic reference frame, it is advantageous to define such a synodic frame and derive
the associated equations of motion. The second-order vector differential equation
(2.3) is rewritten to exploit the rotating frame defined by unit vectors &, g, 2. The
rotating frame is illustrated in Figure 2.1. The rotating z-axis is defined to be di-
rected from the larger primary to the smaller, the z-axis is parallel to the direction of
the orbital angular velocity of the primary system with respect to the inertial frame,
and the y-axis completes the dextral, orthonormal triad. To remove the dependence
of the differential equations on system quantities such as the distance between pri-

maries or the specific primary masses, characteristic quantities are defined for use in



14

P3
R13 _ R23
R

Pl B P2

Figure 2.1. Rotating coordinate frame

nondimensionalization. If the total mass of the two primary bodies, m* = my + mo,

the distance between the two primaries, [* = R; + R, and the independent time
I

Gm*

1
variable, t* = =3 are defined as characteristic quantities, then

po= ma/m’,
1—p = my/m’,

t = 1/t

The system mass parameter, j, varies between 0 and %, and solutions of the CR3BP
vary qualitatively for differing values of p. The angular frequency of the primary
system is 27 /t*, and the nondimensional system completes one revolution in ¢ = 2.
The nondimensional mean motion, n = Nt*, is normalized to unity. Due to the
assumption of circular orbits for the primary bodies, ¢* is a constant. The values of

the constants for the systems employed in this investigation appear in Table 2.1. The
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Table 2.1 System Constants and Characteristic Quantities

System 1 m* (kg) 0* (km) 27t*
Earth-Moon | 1.21506 x 1072 | 6.04680 x 10%* | 3.85693 x 105 | 27.4223 days
Sun-Jupiter | 9.53816 x 10~% | 1.99042 x 10%° | 7.78412 x 108 | 1.88833 years

Sun-Earth | 3.00390 x 107 | 1.98853 x 10%° | 1.49598 x 10% | 1.00009 years

nondimensional position vectors are defined in terms of rotating coordinates as

Ty o= Rpft=(1-p)i, (2.8)
T3 = ng/g* = (x—i—u)i—i—yyj—i—zé, (29)
T o= Ry/l* =13+ yj+ 25 (2.11)
Equation (2.3) may then be rewritten in its nondimensional form:
. 1—p
ry = — i3 — T 2.12
rr g3 13 T3 723, ( )

where, for some quantity ¢, ¢ represents the derivative of ¢ with respect to nondi-
mensional time, t. To express the left side of equation (2.12) as a derivative relative
to the rotating frame, the kinematic expansion for acceleration #; is required. The

kinematic expansion relates derivatives as viewed by different observers, that is,

rr = (ip —2yr — )% + (Yr + 225 — y)§ + ZrZ, ! (2.13)

1See Appendix A for details.
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where subscript R indicates a derivative with respect to the rotating frame. Thus,
the three second-order nondimensional scalar equations of motion are expressed in

terms of rotating coordinates as

(I—pz+p) ple—1+4p)

. . 2 .
i—2ny—n‘r = — o — - , (2.14)
1—
jtoni—nty = ’:)y— v (2.15)
13 23
y (I—pz  pz
= — — 2.16
: 7133 7”233’ ( )

where n = 1 and subsripts R have been removed.
While the general three-body problem is conservative, the restricted problem is
m m
not. In the inertial frame, there exists a potential function U = -G (—1 + —2>,
_ _ Rz Ras
such that R; = VU. Because, ;3 and Rs3 vary with time, the total energy of the
system is not constant. In the rotating frame it is not possible to write the equations

of motion in terms of the gradient of a potential function. However, a similar quantity,

(), exists such that

1-— 1
P Egon?@®+ ), (2.17)

Q =

and is typically labeled the pseudo-potential function. Note that €2 is a function of
the position of P; only, and is independent of the velocity of P3. The pseudo-potential
can be used to simplify the equations of motion (2.14)—(2.16). The partial derivatives,

o, (=)@ +p) pla—1+p)

0, = — — , 2.18
e 7“133 7”233 ( )
1—py  py
Q, = n’y— ( — 2.19
Yy n y 7"]_33 T233’ ( )
1 _
0, = - ’;)Z - = (2.20)

13 23
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where ), = — are substituted into the differential equations, resulting in the nondi-

dq

mensionalized equations of motion for the CR3BP:

i o= 2ny+ Q. (2.21)
o= —2ni+Q, (2.22)
Po= Q. (2.23)

It is convenient to rewrite equations (2.21)—(2.23) in first-order form. Let z be de-
fined as the six-dimensional state vector, that is, z =z y 2z & ¢ 2 |T. Then,
the second-order scalar equations (2.21)—(2.23) are rewritten as a first-order vector

equation of motion,
i = (D), (2.24)

where
_ T
F=la 4 2 g+, —2mivq, 0. (2.25)

Written with respect to rotating coordinates, these nonlinear equations of motion are
now autonomous and Hamiltonian. Note that for an initial state that is solely in the
x-y plane, the trajectory evolves with time to remain solely in the z-y plane. Thus,
the planar Circular Restricted Three-Body Problem (PCR3BP) may be explored
independently of the spatial problem (SCR3BP).

Because no closed-form solution for the CR3BP is available, trajectories are com-
puted via numerical integration of the first-order equations of motion (2.24). Given
an initial state Zo = Z(o), an explicit integration scheme is employed to propagate
the associated trajectory for a given time interval or until a desired stopping con-
dition is met. In this investigation, all numerical propagation is acheived with a

Prince-Dormand (8, 9) method via the publicly available GNU Scientific Library [26].
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2.3 Symmetry Properties

Inherent in the CR3B equations of motion is a symmetry in time. Given a solution
[(), y(t), 2(8), @(t), §(t), 2(D)]",
the symmetry properties of the system equations also yield a solution of the form
[w(=t), —y(=t), 2(=t), —@(=1), §(=1), —2(=0)]".

This result is apparent if the equations are allowed to evolve in negative time, that is,

t — —t. Consider the second-order equations (2.21)—(2.23). The time transformation

yields d(d_t) = —%, and d(i—i)Q = 5_;’ thus,
2 J—
d<d—f>2 2?(—?)) * g_iz (2.26)
2(_
fz(itig B _2d(dft) t @?_Qy)’ (2.27)
di?ﬁ B %' (2.28)

The form of these solutions is exactly the same as the previously derived equations
of motion, equations (2.21)-(2.23), with suitable substitutions. Therefore, given any
solution, a second solution, reflected across the z-axis, also exists. This symmetry
property is frequently exploited in trajectory design. One consequence of this sym-

metry property is the mirror theorem:

Theorem 2.3.1 (The Mirror Theorem) If n point masses are acted upon by their
mutual gravitational forces only, and at a certain epoch each radius vector from the
center of mass of the system is perpendicular to every velocity vector, then the orbit
of each mass after that epoch is a mirror image of its orbit prior to that epoch. Such

a configuration of radius and velocity vectors is called a mirror configuration [29].

If a mirror configuration occurs at two distinct times along a trajectory in the CR3BP,
the trajectory must be periodic. The mirror theorem is frequently employed in the

search for periodic solutions in the CR3BP.
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2.4 Integral of the Motion

In 1836, Jacobi formulated the restricted three-body problem in terms of a synodic
coordinate frame to derive what is now labeled the Jacobi integral or the Jacobi
constant. The Jacobi integral is the only integral of the motion that is known to
exist in the CR3BP. The Hamiltonian for a time-independent system represents an
integral of the dynamical system [10]. The Hamiltonian, H, for the system described

by equations (2.21)—(2.23) is written in terms of rotating coordinates as

(® +y7) - St D (2.29)

)
7‘133 7“233

H—

N | —

(&% +9° + %) —

N —

and represents an energy-like quantity associated with the motion of P; relative to
the rotating frame. The Jacobi constant is related to the Hamiltonian as C' = —2H,

(see Appendix B.1 for details) and is, thus, represented as
C =20(z,y,2) — v°, (2.30)

where v = /42 + 32 + 22. The Jacobi constant provides a relationship between the
speed of P53 and its position. While there is no closed-form solution for the behavior
in the CR3BP, the Jacobi constant yields much qualitative insight into the available
solutions. Because the Jacobi constant is defined as a negative quantity, increasing

C corresponds to decreasing the energy of P3 in the rotating frame.

2.5 Equilibrium Solutions

The search for particular solutions to the equations of motion (2.21)—(2.23) yields
five equilibrium points. These equilibrium points, often denoted the libration or La-
grange points, are locations in the rotating system where the combined gravitational
forces of the two primary bodies exactly equal the centripetal force required for the
third body to rotate with the primary system. The libration points are, therefore,

stationary from the perspective of a rotating observer, and placing P; at any of the
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five equilibrium points, with zero velocity and acceleration relative to the rotating
frame, results in zero motion relative to the rotating system.

The five libration points are frequently categorized into two types. The collinear
points lie along the rotating z-axis, and the triangular or equilateral points are po-
sitioned off the z-axis. To compute the locations of the libration points, solutions
of the form z(t) = z(0), y(t) = y(0), 2(t) = 2(0) are sought. Such solutions occur
when the rotating velocities and accelerations are zero, thus, the equilibrium solu-

tions are located where 2, = Q, = Q, = 0. Recall equations (2.18)-(2.20). Because

1—
( 2 + a is nonzero, z must be zero for all equilibrium solutions. Thus, all
133 7933
five equilibrium points lie in the x-y plane.
To determine the positions of the libration points, begin with the second equilib-
rium condition, that is, 2, = 0. There are three solutions to this condition, namely
y = 0, corresponding to the three collinear points, and y = ++/3/2, reflecting the

y-coordinates of the two equilateral points. Selecting y = 0, €2, is reduced and the

three solutions to the first equilibrium condition, €2, = 0, are the roots of the following

expressions,
gy — Py P — o, (2.31)
(zr, + 1) (xr, =1+ p)
L —p f
2 (JIL2 + M)Q ($L2 -1+ M)Q ( )
1—
- S a = 0. (2.33)

(wry +p)° (22, — 1+ p)?
The solutions to these three equations define the positions, zy,, zr,, and z,, corre-
sponding to the collinear libration points, Ly, Lo, and Lj. Solving equations (2.31)-
(2.33) for a given value of i yields the locations of the collinear libration points for a
particular system. Given y = £+/3/2 and solving the second equilibrium condition,
2, = 0, produces the locations of the two triangular libration points, L, and Ls, as

follows,

1 V3
—p YLs,Ls = +—. (234)

XLy Ls =
4,15 2
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The relative positions of the five libration points in the rotating frame are displayed

in Figure 2.2. The collinear libration points appear in red along the rotating x-axis,

]
L,y

Figure 2.2. Libration points in the rotating frame.

and the triangular points are plotted in green. As evidenced by equations (2.31)-
(2.33), the positions of each of the collinear libration points vary with the system
mass parameter, y. The nondimensional (nd) locations of the collinear points for the

systems that appear in this analysis are listed in Table 2.2. The values of the Jacobi

Table 2.2 Locations of the Collinear Libration Points of Various Systems

System zr,(nd) | zr,(nd) | xp,(nd)
Earth-Moon | 0.836915 | 1.155682 | -1.005063
Sun-Jupiter | 0.932367 | 1.068829 | -1.000397

Sun-Earth | 0.990026 | 1.010035 | -1.000001

constant (C7,) associated with each libration point for the three systems that appear
in this investigation are included in Table 2.3. Clearly, the value of Jacobi constant
varies across the different libration points. This variation is not unexpected because,

while relative velocity is zero at all equilibrium points, the positions of the libration
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Table 2.3 Jacobi Constant Values for the Libration Points in Various Systems

System Cr, Cr, Cr, Cr, =Cy,
Earth-Moon | 3.188341 | 3.172160 | 3.012147 | 2.987997
Sun-Jupiter | 3.038759 | 3.037487 | 3.000954 | 2.999047
Sun-Earth | 3.000891 | 3.000887 | 3.000003 | 2.999997

points differ. The values of Jacobi constant, Cf,, corresponding to the individual
libration points additionally vary as a function of the system parameter . However,
a relationship among the various values of Jacobi constant for the different libration
points is maintained regardless of the system . Values for C}, descend as ¢ increases

from 1 to 4, and are equal for ¢ = 4,5, ie., C, > Cr, > Cr, > Cr, = C,.



23

2.6 Zero-Velocity Surfaces

While an analytical solution for the behavior of P; does not exist, its motion
is bounded under certain conditions. From the expression for Jacobi constant in
equation (2.30), a rearrangement, such that v* = 2Q(z,y,2) — C, suggests possible
restrictions on the allowable positions of Ps. Clearly, when C' > 2)(x, y, 2), the speed,
v, is imaginary. The position components, x, y, z, are therefore constrained such that
2Q0(x,y,z) > C. The inaccessible regions where the speed of P; is imaginary are
denoted the forbidden regions. The boundary of the forbidden region in position
space is a set of three-dimensional zero-velocity surfaces that vary as a function of
C. Through a projection of the zero-velocity surfaces onto the z-y plane, the zero-
velocity curves (ZVCs) emerge. The ZVCs were first introduced by Hill and applied
to a special case of the R3BP known as Hill’s problem [10]. An example of the ZVCs
in the Earth-Moon system, for a value of Jacobi constant such that Cr, < C' < Cp,,
appears in Figure 2.3. From these curves, the delineation of different available regions
is apparent. Here, the region surrounding the larger primary is defined as the interior
region, the region in the vicinity of the smaller primary is labeled the P, region,
and the region beyond the ZVCs is denoted the exterior region. The entire three-
dimensional zero-velocity surface in the Earth-Moon system appears in Figure 2.4,
with the ZVCs plotted as the dashed black line. Inner surfaces that bound the interior
and P, regions are apparent. The outer surface serves as the boundary of the exterior
region. The volume between the inner and outer surfaces is the forbidden region.

For a given system, as the Jacobi constant value decreases, the qualitative char-
acteristics of the ZVCs in the plane of motion of the primaries evolve. Higher values
of C' correspond to lower energies, and a larger volume of space is restricted as the
forbidden region expands. Some examples of ZVCs for varying values of Jacobi con-
stant in the Earth-Moon system appear in Figure 2.5. At the greatest values of C,

the regions surrounding P, and P, are bounded such that P; cannot pass between
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Figure 2.3. Regions of position space delineated by the ZVCs for
Cp, < C < Cp, (Farth and Moon 2x actual size)

Forbidden Region

Exterior Region

Figure 2.4. Zero-velocity surfaces in for Cr, < C' < Cf,

the primary bodies, as seen in Figure 2.5(a). As C decreases, the ZVCs open at L4
and the L, gateway emerges, through which P; may pass between the interior and

P; regions. Further decreasing C', the ZVCs open at L, and eventually C' reaches a



25

value such that the L, gateway opens and P; may pass between the P, and exterior
regions. Once a value of C' is achieved such that C' < Cp,, P; may access all regions,
excluding, of course, the forbidden region. For C' < C, 1., the zero-velocity surfaces

are entirely out-of-plane.

5
B
lno 0
=
-5
0 5 -5 0 5
x (10° km) X (10° km) x (10° km)
(a) CnL, <C (b) C=0CL, (C) C=0Cg,
5 5 5
E E E
‘”g 0 ° ‘ﬂe 0 ° * . V\E 0 °
= = =
-5 -5 -5
-5 0 5 -5 0 5 -5 0 5
x (10° km) x (10° km) x (10° km)
(d) C:CL3 (e) CL4,CL5<C<CL3 (f) C:CL4:CL5

Figure 2.5. Zero-velocity curves for varying values of Jacobi constant.
(Earth and Moon 2x actual size)

While no closed-form solution is known to exist in the CR3BP, the Jacobi integral
and zero-velocity surfaces provide a great deal of qualitative insight into the behavior
of P;. Further, analysis of the five equilibrium points yields information about the
behavior near these points. In the upcoming chapter, the variational equations are ex-
plored to determine the available solution types in the vicinity of the libration points,

and techniques to extend these solutions to the nonlinear problem are discussed.
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3. FUNDAMENTAL MOTION IN THE RESTRICTED
PROBLEM

A rich solution space exists in the vicinity of the equilibrium points of the CR3BP,
offering a number of solution types that are valuable for mission design. To under-
stand the behavior of solutions in the vicinity of the libration points, it is useful to
investigate the stability of the equilibrium points via linearization relative to any of
the five Lagrange solutions. From an examination of the behavior in the linearized
system, a phase portrait of the flow in the vicinity of a particular solution may be

developed for the nonlinear system.

3.1 Linearized Motion near the Libration Points

To develop a phase portrait of the flow in the vicinity of the libration points,
it is useful to consider the variational equations of motion. Consider a general n-
dimensional system for which the dynamics are governed by a nonlinear, autonomous,

continuous-time, first-order vector differential equation,

T = f(7). (3.1)

Here, f is a smooth function that defines a vector field in R™. For the CR3BP,
the function f is defined as in equation (2.25). The flow, ¢, as the differential
equation evolves is defined by f so that ¢,(Z) = ¢(Z,t) is smooth and %(gb(:p, ))|i=r =
Fo(@, 7).

Let z, represent the state along some reference solution, and consider a lineariza-

tion relative to Z, such that the linear vector variational equation is

53 = A(t)ox, (3.2)
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where the variation, 6z =z —Z, = [ 6z &y 6z d&i 6y 62", is an n-dimensional
perturbation from the reference solution. Here, A(t) = Df(%,) is the n x n Jacobian
matrix of first partial derivatives of f, and is not constant, in general. The general
solution to equation (3.2), obtained through integration via separation of variables,
is of the form

ST(t) = B(t, )87 (to), (3.3)

where the state transition matrix, ®(¢,t), is defined as
B(t, 1) = A1), (3.4)

Defining the reference solution to be an equilibrium point of the CR3BP, the state

along a nearby trajectory is written as follows,
T = Ty + 07, (3.5)

where Z., represents the state associated with the libration point. Linearization of

the system relative to the equilibrium point yields equation (3.2), where

Ar Ay
A= (3.6)
As Ay

is a constant matrix. The submatrices, A;, are defined as follows: A; = 033 is the

3 x 3 submatrix of zeroes, Ay = I35 is the 3 x 3 identity matrix, and

Qw0 Qo 0 0 20
Az =1 Quo Qo 0 |, A=|-200], (3.7)
0 0 Q.0 0 00
2
where Q,, = 9o are the second partial derivatives (listed in Appendix B.2), and
Qpgo = Qpglz., indicates that the expression is evaluated at the libration point. Note

that .0 = Q.0 = Quz0 = Qyo = 0. The resulting set of linear differential equations
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relative to the equilibrium point and with constant coefficients represents the varia-
tional equations of motion for the CR3BP. Expressing these equations in second-order

form yields

0 — 200 = Quuod® + Quyody, (3.8)
5y + 200 = nyo(SZE + ny05y, (39)
53 = Q..pbz. (3.10)

It is clear that, for the linearized system, the out-of-plane motion is decoupled from
the planar motion. The term €2, is negative for each of the five libration points. The
motion in Z is therefore simple harmonic with frequency w = /|€..0|. Submatrix A3

further reduces for the collinear libration points, where €,,0 = Q.0 = 0.

3.2 Stability of the Collinear Libration Points and Invariant Manifolds

The eigenvalues and eigenvectors of A are useful to explore the stability of the
libration point Z.,. The linear state matrix, A, is diagonalized by exploiting the
eigenstructure of A and rewriting A in the form A = SAS™!, where matrix S contains
columns equal to the eigenvectors, v;, of A, and matrix A is diagonal with elements
equal to the corresponding eigenvalues, A;. Then, assuming ¢, = 0, equation (3.3) is
rewritten as

6x(t) = SeS™167(0). (3.11)

For matrices A with n distinct eigenvalues, equation (3.11) is expanded as
dz(t) = Z e Mo, (3.12)
i=1

It is clear from this equation that the eigenvalues, \;, govern the behavior of 0Z(t)
over time and the eigenvectors determine the direction of the subsequent motion.
The eigenstructure for Hamiltonian systems is symmetric about both the real and

imaginary axes of the complex plane. Thus, for the matrix, A, eigenvalues occur
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in real pairs £\, purely imaginary pairs +i|A|, or quartets of complex eigenvalues
+Real(N\) £ ilmag(A\) [30]. When Real(\) < 0 for all eigenvalues, then, as time

progresses, each term e*i

approaches zero, ¥ approaches z.,, and the solution is
asymptotically stable. Note that this condition is not feasible for equilibrium points
in the CR3BP as the eigenvalues of A occur in opposite pairs. If Real(\) > 0 for
any eigenvalue, then 0% grows exponentially with time and the solution is unstable.
A critical point with eigenvalues, \;, \;, such that Real();) < 0 and Real();) > 0, is
nonstable and is termed a saddle point. The solution is considered neutrally stable
when Real(\) < 0 for all eigenvalues, and one or more eigenvalues possesses a zero
real part and are nondefective. In this case, the linear solution is bounded with
respect to Ty, but does not naturally return to equilibrium.

The eigenvectors, v;, associated with \; are linearly independent and span R™.

Let ng be the number of eigenvalues Ag; with positive real parts, ny be the num-

ber of eigenvalues Ay; with negative real parts, nc be the number of eigenvalues
U

Ao with zero real parts; let v7, 97, ¢ be the associated eigenvectors. Then,
ES = span{v7}15,, BV = span{o!}Y,, B¢ = span{v¢}1<, are defined as the stable,
unstable, and center subspaces of dimension ng, ny, and ne, respectively. The R”
space is defined by the union E°|J EY |J E© such that n = ng +ny +ne = rank(A).
These subspaces are invariant under e, that is, a solution originating from a point
¢;0; within one of these subspaces remains within span{v;} for all time [31]. The no-
tion of invariance implies that any solution which is initially in an invariant subspace
will remain in that subspace for all past and future times. From the stable, unstable,
and center subspaces, the notion of stable, unstable, and center manifolds may be

defined. An equilibrium point is said to be hyperbolic if all eigenvalues have nonzero

real parts, that is, nc = 0.

Theorem 3.2.1 (Stable Manifold Theorem) Suppose that © = f(z) has a hy-
perbolic equilibrium point, T.q. Then there exist local stable and unstable manifolds,

W5 (Zeq), Wi(Zeq), of the same dimension, ns, ny, as the eigenspaces, E°, EY, of
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the linearized system (5.2), and tangent to ES and EYV at Zoy. Wi(Teq), W(Teq)

are smooth, as is function f [31].

The local manifolds, W3 .(Ze,), WY.(Z.,), have global analogs, W5 (Z.,), W*(Ze,),
obtained by allowing points in W .(Z.,) to flow backward in time and points in

WY (Zeq) to flow forward in time [31], that is,

WS(Zeq) = | 61 (Wiie(Teg) (3.13)
WY (Zeg) = | ot (Wie(Zeq)- (3.14)

An important property of the invariant manifolds is established by the existence and

uniqueness of solutions of equation (3.1).

Theorem 3.2.2 (The Fundamental Existence-Uniqueness Theorem) Let E be
an open subset of R" containing g, and assume that f ¢ CY(E). Then there exists an
a > 0 such that the initial value problem x = f(z), (0) = Ty has a unique solution

Z(t) on the interval [—a, a] [32].

By this theorem, the stable manifolds associated with distinct equilibrium points,
Teql, Teq2, can neither intersect one another, nor can they self-intersect. Likewise,
the unstable manifolds emanating from distinct equilibrium points, Zeq1, Zeq2, cannot
intersect one another or themselves. However, the stable manifold and the unstable
manifold associated with two distinct equilibrium points, or even with one equilib-
rium point, can intersect [31]. Such intersections yield heteroclinic and homoclinic

connections. For nonhyperbolic equilibria, ns # 0 and a center manifold exists.
Theorem 3.2.3 (Center Manifold Theorem) Let f be a C" vector field on R™
vanishing at the origin so that f(z.,) =0, and let A = Df(Z.,). The matriz A may
be divided into its stable, center and unstable parts, ng, nc, and ny, respectively, with
<0; X eng
Real(A\) § =0: ) € ne

>0; Aengy
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Let the generalized eigenspaces be E°, EC, and EY, respectively. Then there exist
C" stable and unstable invariant manifolds, W*° and WY, tangent to E° and EY at
Teq, and a C™71 center manifold, W, tangent to EC at ZT.,. The manifolds W¥,
WY, and W€ are all invariant for the flow f. The stable and unstable manifolds are
unique, but the center manifold need not be. If f is C*°, then there exists a C" center

manifold for any r < oo [31].

Thus, the notion of invariance extends to the global manifolds associated with an
equilibrium point. Any trajectory which is initially on an invariant manifold must
remain on that manifold for all past and future times. Because the manifolds are
invariant, no trajectory can ever cross such structures in the six-dimensional state
space [33].

Consider a linearization relative to a collinear libration point. Evaluating the
matrix A from equation (3.2), three eigenvalue pairs emerge. A pair of real roots,
+p, indicates that the collinear points are nonstable saddle points, and possess one-
dimensional stable and unstable manifolds. Two pairs of imaginary roots, +iv and
+iw, indicate that the center subspace is four-dimensional and oscillatory behavior
exists, for the linear system, in the vicinity of the libration point. The complete set

of eigenvalues and eigenvectors from the linear matrix A are of the form

A =p, ’171::1 o 0 p po O}T, (3.15)
Ao = —p, @2=:1 —0 0 —p po O]T, (3.16)
Ay =11, 1742:1 it 0w —vT O}T, (3.17)
s = —iv, =1 —ir 0 —iv —vr O}T, (3.18)
N = i, =100 100 m]T, (3.19)
Ao = —iw, Tg = :o 0100 —z‘wr, (3.20)
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where

o =2p/ (Qyyo — p°) = (p° — Quwo) /2p <0, (3.21)
7 =20/ (Qyyo + ) = (Quwo + °) /20 > 0. (3.22)

Details on the derivation of these quantities appear in Appendix C.1.

3.3 Local Invariant Manifolds

The eigenvalues corresponding to the constant matrix A, as evaluated at the
collinear libration points, indicate that these points possess a topological structure of
the type saddlex center xcenter. This serves as a framework for the types of solutions
that exist in the vicinity of Ly, Lo, and L3. Expressing the general solution as a com-
bination of the eigenmodes from the linear system, such as in equation (3.12), unique
behaviors are apparent. The first term, aqe”*v;, represents the unstable eigenmode
that drives the solution, 6Z(t) from equation (3.12),to diverge from the equilibrium so-
lution. The second term, ase "7, represents the eigenmode yielding asymptotically
stable motion. The terms (aue™'vy + ase™™'v5) and (aze™tvs + age “'vg) represent
the planar and out-of-plane center eigenmodes of the solution, respectively, that pro-
duce oscillatory behavior. By proper selection of «y, it is possible to isolate specific
desired behaviors. Assuming ¢ty = 0, the initial conditions are represented in terms

the constants «; via the expression
0z(0) = ) ol (3.23)
i=1

T
Define the vector of constants as a = [ ap s a3 o4 Qs Qg } , and the matrix

with columns equal to the eigenvectors of A as
S = [ U, Ty U3 Uy Us Vg } . (3.24)
Then, equation (3.23) can be rewritten as

x(0) = Sa, (3.25)
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and the constants «; are determined by inverting this expression, yielding
a = S 'oz(0). (3.26)

The initial conditions are defined explicitly as follows,

1 [vro 0y 0ty — 10

o = L vTdzo + 0o L TO%o — v yo} (3.27)
21 po+vt pT — VO

- 1 vToT0 + 0% _ TOZo — ’/(Syo} (3.28)
2|1 po+vt pT — VO
1

a3 = 5 [(520 - ZW&ZO] s (329)
1 [podzg — oy 0y — po

0 = = pPoOTo Yo _H.U Lo —p ?/o} (3.30)
2| po+vt pT — VO
1 r _ . . _

ay = — podxo — dYo B Z.U(S'CEO P(Sy0:| (3.31)
2|1 po+vt pT — VO
1

Qg = 5 [(520 + ZCL)5Z(]] . (332)

By careful selection of the constants @, trajectories with specific behavior in the

vicinity of the libration point are isolated.

3.3.1 Local Hyperbolic Manifold

To isolate solutions within the one-dimensional local stable or unstable manifolds
associated with a collinear point, all oscillatory motion should be eliminated. For
example, selecting the coefficients so that as = a3 = a4y = a5 = ag = 0, the unstable,

divergent behavior is isolated and the solution is of the form
(S.fi’(t) = aleptﬁl. (333)

Thus, equation (3.33) represents the local unstable manifold associated with the
collinear points,
WUi = ozleptz_)l, < O, (334)

Wit = e, o > 0. (3.35)
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Likewise, by selecting a; = a3 = a4y = a5 = ag = 0, only stable solutions that

converge to the libration point are located and the solution is written as
(Si’(t) = a2€7pt1—)2' (336)

The result in equation (3.36) represents the local stable manifold of the collinear

points,

VVlS_ = Oége_th_JQ, Qo < 0, (337)

WSt = e 0, ay > 0. (3.38)

The local stable and unstable manifolds are plotted for the linear system in Figure

3.1.

200

dy (km)

—-100

—20,

—200 —100 100 200

0
0x (km)

Figure 3.1. Stable and unstable manifolds asymptotic to a collinear libration point

3.3.2 Local Center Manifold

To isolate solutions within the four-dimensional local center manifold associated
with a collinear point, all unstable and asymptotically stable motion should be elim-

inated. Selection of a; = ay = 0 satisfies this requirement and yields oscillatory mo-
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tion in the vicinity of Z.,. The resulting trajectories are periodic and quasi-periodic

orbits of the form
67(t) = 2Real(aye™ vy) + 2Real (aze™"v3). (3.39)

Details of the derivation of equation (3.39) are outlined in Appendix C.2. The position

states are represented as

dz(t) = omxgcos(vt) + (dyo/T)sin(vt), (3.40)
dy(t) = —7oxgsin(vt) + dyo cos(vt), (3.41)
dz(t) = dzpcos(wt) +wdzysin(wt). (3.42)

Defining the initial velocities such that 0%(0) = —5y(0);, 0y(0) = —v7ox(0), the
constants a; = ap = 0 and trajectories within the local center manifold are isolated.
Both periodic and quasi-periodic orbits exist within the four-dimensional center sub-
space associated with the collinear libration points. Note that selecting a3 = ag =0
constrains these orbits to planar oscillations only, yielding elliptical orbits centered
on the libration point, i.e., the planar Lyapunov orbits. Selecting ay = a5 = 0 yields
orbits with oscillations only in the Z direction. These orbits are labeled the vertical
Lyapunov orbits. The quasi-periodic orbits that emerge when both planar and ver-
tical osciallations are introduced are denoted as Lissajous orbits. Sample planar and
vertical Lyapunov orbits (black), and a Lissajous orbit (gray) appear in Figure 3.2

for the linear system.

3.3.3 Hyperbolic Manifolds Asymptotic to the Local Center Manifold

Similar to the stable and unstable manifolds asymptotic to the libration point,
manifolds also exist that are asymptotic to the periodic and quasi-periodic orbits in
the vicinity of the libration point. These manifolds are computed by perturbing an

orbit within the center manifold in the stable or unstable direction. Perturbing in the
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Figure 3.2. Sample periodic and quasi-periodic orbits in the vicinity
of a collinear libration point

unstable direction yields the unstable manifold asymptotic to a libration point orbit

in the linear system:

I/VLUP’QZOc = e”v; + 2Real(ue™'vy) + 2Real (aze™'v3), o <0, (3.43)

WgﬁO,ZOC = e’ + 2Real(aye™ vy) + 2Real (aze™'v3), a; > 0. (3.44)

Likewise, the local stable manifolds convergent to a libration point orbit are isolated

by perturbing in the stable direction:

ngo,loc = e "'y + 2Real(aue™'vy) + 2Real (aze™'v3), < 0, (3.45)

WE;OJOC = e "y + 2Real(aue™'vy) + 2Real (aze™'v3), g > 0. (3.46)

To locate manifolds such that the value of Jacobi constant associated with the orbit
is preserved, a; and ay should be selected to be small. A sample unstable manifold
associated with a Lissajous orbit appears in red in Figure 3.3. In negative time, this

manifold approaches the quasi-periodic orbit as demonstrated by the black arc.
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0z (km)

Figure 3.3. Sample unstable manifold (red) departing a Lissajous orbit

3.4 Global Invariant Manifolds

To study the evolution of the invariant manifolds in the nonlinear system as they
depart the vicinity of Z.4, it is necessary to compute the global invariant manifolds

from the local manifold approximations.

3.4.1 Global Hyperbolic Manifold

In Section 3.3.1, the local unstable and stable invariant manifolds asymptotic to
a collinear libration point are computed by perturbing the state associated with the
libration point in the direction of the unstable and stable eigendirections. The result-
ing trajectories in the linear variational model are summarized in equations (3.33)
and (3.36). Recall from equations (3.15)-(3.20) that Ay = p > 0 and Ay = —p are
the stable and unstable eigenvalues of the constant linear state matrix, A, and v; and
U are their associated eigenvectors, computed by solving the equations Av; = A\ vy,
AUy = \oTy. Define 0" as possessing a positive Z component, and 0~ as possessing a
negative & component. Based on the Stable Manifold Theorem 3.2.1 and consistent
with equations (3.34), (3.37), the local half-manifolds, W,/ and W are approx-

imated by introducing a perturbation relative to the equilibrium point, Z.,, in the
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direction of the unstable and stable eigenvector directions, v, = —v; and vg = —0s,
respectively. Likewise, a perturbation relative to Z., in the direction of the unstable
and stable eigenvector directions, vf; = v; and v = v, respectively, produces the
local half-manifolds W,/F and W3 consistent with equations (3.35), (3.38). The
initial states from equations (3.34)—(3.35) and (3.37)—(3.38) represent perturbations
relative to the equilibrium point in the direction of the unstable and stable eigen-
vectors. Alternatively, the following procedure is employed to compute these initial
perturbations. Define the stable eigenvector as v¢ = [ zg4 Ys 25 Ts UYs Zs 17,

where zg > 0 and o is of unit length. Note that, from equation (3.16), 25 = 25 = 0.

The magnitude of the eigenvector is adjusted such that

Weey = U5/ V7% + ys® + 25> (3.47)

The position components of the eigenvector w;feq are now of unit length. Then, the

step along the direction of the eigenvector is computed as

Tot =Teg +d- Wi, (3.48)
To =g —d-W0F,,, (3.49)

where d may be interpreted as a distance away from the equilibrium point. Likewise,
the unstable eigenvector is defined as vy = [ zy yy 2v duv v Zuv )’ . where
ry > 0 and 0 is of unit length. Then, the eigenvector employed to compute the

unstable manifold direction is

W og = U5/ Vw02 + y0® + 207, (3.50)

and the step along the direction of the eigenvector is defined as

To = Teg +d - W, (3.51)
Toy = Teqg— d - Wy (3.52)

. . . . S+ 5— U+
The result is an approximation for the local manifolds, WZ 7 ., W ,., and W_ 7 .,

We(éjoc, associated with the equilibrium point. The value of d is critical because it
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determines the accuracy with which the local manifolds are approximated. If d is too
large, the perturbation is not a close approximation to a state that actually exists
along the manifold. If d is too small, long integration times are required to compute
the global manifold, due to the asymptotic nature of the manifolds, leading to the
accumulation of numerical error. The local manifolds are globalized by propagating
the states a‘:fq* and ffq_ in the nonlinear model. This process yields the numerical
approximation for the global manifolds Wfff and Web;_, respectively, where ¢ = 1, 2,
or 3. The same procedure is employed to approximate the unstable global manifolds,
We(fr and We[é_. As an example, the global stable and unstable manifolds correspond-
ing to the Ly equilibrium point appear in Figure 3.4.1 in blue and red, respectively,
for the Earth-Moon system. The thick blue and red arrows in Figure 3.4(b) repre-
sent the local manifolds, and are aligned with the stable and unstable eigenvector
directions, vg, v and vy, vf;. The zoomed view near the libration point in Figure
3.4(b) demonstrates that the global and local manifolds are initially equivalent. As

the manifolds are propagated in the nonlinear problem, the global manifolds depart

from the approximation supplied by the local manifolds.

3.4.2 Global Center Manifold

The existence of both periodic and quasi-periodic libration point orbits is demon-
strated for the linear system in Section 3.3.2. These solutions persist in the nonlinear
model, and additional families of orbits are located via bifurcations from known fam-

ilies.

Periodic Lyapunov Orbits

From a linear analysis, the existence of both planar and vertical Lyapunov orbits
is demonstrated. Using an orbit from the linear system as an initial guess, a periodic

orbit is converged in the nonlinear model using a differential corrections or targeting
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y (km)

Figure 3.4. Global stable and unstable manifolds associated with the
L, point in the Earth-Moon system (L;-centered view)

algorithm. From the converged solution in the nonlinear model, families of the planar
and vertical Lyapunov orbits are computed via numerical continuation methods [34].
Thus, solutions within the global center manifold associated with a libration point

are located. Sample members from the families of planar and vertical Lyapunov
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orbits appear for the Earth-Moon system in Figures 3.5 and 3.6. The orbits within
the families are colored according to the associated value of Jacobi constant so that
red—blue corresponds to higher—lower values of Jacobi constant. Note that the color

mapping is not the same among the different families.

x (10° km) x (10° km) x (10° km)

(a) Ly family (b) Lo family (c) L3 family

Figure 3.5. Sample members from the families of Lyapunov orbits in
the Earth-Moon system

Stability of Periodic Orbits and the Monodromy Matrix

In addition to the families of Lyapunov orbits, the families of halo and axial
orbits also exist in the nonlinear model. These families bifurcate from the families of
Lyapunov orbits, that is, the originating member of the halo family is also a member
from the planar Lyapunov family. Two ‘originating’” members of the axial family
also exist and emerge as members of the planar and vertical Lyapunov families. To
compute bifurcations within the Lyapunov families, the stability of the orbits within
these families is assessed.

Recall the linear system defined in equation (3.2), i.e., § = A(t)dx, where 6T =

T —17,, and 7, is some reference solution, A(t) = Df(z,) and f is defined by equation
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2 2
x (10° km)

(a) Ly family (b) Lo family

4
50 2
5 4 42 5
x (107 km) y (107 km)

(¢) Ls family

Figure 3.6. Sample members from the families of vertical orbits in the
Earth-Moon system

(2.25) for the CR3BP. The general solution to equation (3.2) is of the form 0z (t) =
eAlt=%)§%(ty), and the state transition matrix (STM), ®(t,ty) = eAt~%) is defined as

in equation (3.4). Associated with the STM are the following identities:

D(to, to) = I, (3.53)
Dty tg) = B(ta,t1)P(t1,t0), (3.54)
D(to,t1) = ®(t1,t0) " (3.55)

Selecting z,, = * to be some state along a periodic orbit and defining T' =t — t, as
the period of that orbit, then, a stroboscopic mapping Pr : 6Z(kT) — 0z((k+1)T) is
defined that maps the state 6z (kT") = 0z to dZ((k+1)T) = 0Zy41, where k = 0,1, ...

represents subsequent intersections of the map Pr. From this mapping, z* appears
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as a single fixed point at the origin 6z = 0, that is, z*(kT) = z*(0) on the map Pr.

The map is linearized relative to z* as
0Tyl = (I)(T, O)&f’k (356)

Equation (3.56) is a discrete time representation of the evolution of solutions nearby
z*, and the matrix ®(7,0) is defined as the monodromy matriz associated with the
fixed point. For initial conditions originating near * on Py, the linear map in equation
(3.56) describes the behavior of subsequent intersections of Pr relative to the fixed

point. Assuming that ®(7',0) is not defective, the evolution of §z is described as
0z, = P(kT, 0)dZ, (3.57)

where, by equation (3.54), ®(kT,0) = ®(T,0)k. The eigenvalues, \;, of ®(T,0) are
the characteristic multipliers associated with the fixed point, and v; are the associated
eigenvectors. Then, the general solution representing subsequent intersections of the
map is

=1

It is clear from this equation that the characteristic multipliers, \;, govern the behav-
ior of 0z; with time.
The eigenvalue structure of the monodromy matrix can be predicted by Lya-

punov’s theorem.

Theorem 3.4.1 (Lyapunov’s Theorem) If )\ is an eigenvalue of the monodromy
matriz, ®(to+T,to), of a time-invariant system, then X~ is also an eigenvalue. The
spectrum of the monodromy matriz of a real time-invariant system is symmetric with

respect to both the unit circle and the real azis [35].

The monodromy matrix associated with a periodic orbit, then, possesses characteris-
tic multipliers that occur in reciprocal pairs. For a complex number with magnitude

equal to unity, the reciprocal is equal to the complex conjugate. The eigenvectors,
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U, associated with \; are linearly independent and span R"™. The space is, therefore,
defined by the union of three invariant subspaces, Eg, Ey, and Eqo. Let ng be the
number of characteristic multipliers with real parts of magnitude > 1, ny be the num-
ber with real parts of magnitude < 1, and n¢ be the number for which |A\| = 1, so that
n =ng + ny + ne = rank(®(7,0)). Then, the dimensions of the invariant subspaces
Es, Ey, and E¢ are ng, ny, and ng, respectively. In the CR3BP, the monodromy
matrix is a real matrix that possesses three pairs of eigenvalues. The monodromy
matrix associated with any periodic solution possesses at least one unit eigenvalue.
Consequently, for Hamiltonian systems, the monodromy matrix associated with a
periodic solution possesses at least one pair of eigenvalues equal to unity, and the as-
sociated eigenvectors are tangent to the periodic solution at the fixed point [36]. That
is, for an initial state Z(0) along the periodic orbit, the eigenvectors corresponding to
the unit eigenvalues are in the direction z(0). Thus, for periodic solutions that exist

within the context of the CR3BP, ngc > 2 is always true.

k

The general solution for the discrete time system evolves with the term A7, as is
apparent in equation (3.58). For \; = 1, A remains equal to unity and the general
solution neither grows nor decays with time relative to the fixed point. Stability
and boundedness for the discrete system are, therefore, determined by comparing
the magnitude of the eigenvalues to one. If all eigenvalues possess a magnitude less
than one, then, as time progresses, each term \;” approaches zero, and subsequent
intersections of Pr approach the fixed point, 0z = 0. The fixed point is, then, defined
as asymptotically stable. Note that a fixed point along a periodic orbit in the CR3BP
cannot be asymptotically stable, as the eigenvalues of the monodromy matrix occur in
reciprocal pairs. If any one of the eigenvalues possesses magnitude greater than one,
then 0T grows over subsequent iterations of the map and the fixed point is unstable.
If (T, 0) possesses eigenvalues, A;, A;, such that |A\;| < 1 and |A;| > 1, then the fixed

point is nonstable and is identified as a saddle point. The fixed point is considered

neutrally stable when |A| < 1 for all eigenvalues, but at least one eigenvalue has
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magnitude equal to one and is nondefective. In this case, subsequent intersections of
the map are bounded with respect to z*, but will not naturally return to the fixed
point. Because z* fully represents the periodic orbit, the stability of the fixed point
determines the stability of the periodic solution [37].

A fixed point is said to be hyperbolic if all characteristic multipliers possess mag-
nitude greater than one, except for the pair of unit eigenvalues, that is, ncg = 2.
Then, the following theorem defines the stable and unstable manifolds associated

with hyperbolic fixed points:

Theorem 3.4.2 (The Stable Manifold Theorem for Periodic Orbits) Consider
the n-dimensional autonomous system of equations (2.24), where f e C1(E) and E is
an open subset of R"™ containing a periodic orbit, v* of period T'. Let ¢, be the flow
of the system, and v*(t) = ¢y(z*). Suppose m, 0 < m < n — 1, of the characteristic
multipliers of v* have magnitude < 1, and n — m — 1 have magnitude > 1. Then,
the stable manifold of v*(t), denoted as WWS*, is defined as the set of all points, T°,
such that Pr(Z°) approaches v* as k — oo. The stable manifold is of dimension
(m + 1), is differentiable, and is positively invariant under the flow ¢;. The unstable
manifold of v*(t), denoted as WWU*, is defined as the set of all points, TV, such that
PE(zY) approaches v* as k — —oo. The unstable manifold is of dimension (n —m),

is differentiable, and is negatively invariant under the flow ¢, [32,37].
For nonhyperbolic fixed points, nc > 4 and a nontrivial center manifold exists.

Theorem 3.4.3 (The Center Manifold Theorem for Periodic Orbits) Consider
the n-dimensional autonomous system of equations (2.24), where f ¢ C"(E) with
r > 1 and E is an open subset of R™ containing a periodic orbit, v* of period T'. Let
¢y be the flow of the system, and ~v*(t) = ¢(z*). If m of the characteristic multi-
pliers of v* have magnitude < 1, ¢ have magnitude > 1, and n — m — { have unit

magnitude, then there exits an m-dimensional center manifold, Wﬁ, of v* of class
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C" which is invariant under the flow ¢, and is tangent to the center subspace, E€,

of v* at z* [32].

For stable periodic orbits in the CR3BP, ns = 6 and stable and unstable manifolds
associated with the periodic solution do not exist. For unstable periodic orbits, at
least one reciprocal pair of real eigenvalues exists and the stable and unstable man-
ifolds associated with the fixed point are defined using the same techniques as those
applied for equilibrium points in Section 3.2. Because a periodic solution can be
defined by an infinite number of fixed points along the orbit, an infinite number of

stable and unstable manifolds are associated with an unstable periodic orbit.

Periodic Halo and Axial Orbits

Stepping along the families of Lyapunov orbits in Figures 3.5 and 3.6, parameters
such as the orbital period or Jacobi constant value evolve continuously. Orbital
stability also evolves along a family and stability changes may occur. The location
at which a stability change occurs within a family of periodic orbits is identified as
a bifurcation point. Different types of stability changes are possible, and the type
of stability change determines any qualitative changes that occur as a result of the
bifurcation [38]. By tracking changes in stability along a particular family of planar
Lyapunov orbits, bifurcations to other distinct orbit families may be located. For
the planar and vertical families of Lyapunov orbits, plots depicting the stability of

individual orbits within each family appear in Figure 3.7.
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Figure 3.7. Stability information for Lyapunov orbits in the Earth-Moon system
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For each representative orbit from Figures 3.5 and 3.6, the number of eigenvalue
pairs for which |A| = 1/|\] = 1 is recorded, not including the trivial pair of unit
eigenvalues that exist for any periodic orbit. When (ne — 2)/2 = 0, the orbit is
unstable with stable and unstable manifolds of dimension ng = ny = 2 and there
exists no center manifold except for that associated with the pair of unit eigenvalues.
If (nc —2)/2 = 1, the orbit possesses stable and unstable manifolds of dimension
ng = ny = 1, and a nontrivial center manifold of dimension ng — 2 = 2. Orbits
corresponding to (nc—2)/2 = 2 are stable and possess no stable or unstable manifolds.
These orbits are associated with a center manifold of dimension nc—2 = 4. Examining
the stability of the planar Lyapunov families, the first bifurcations, labeled Ly-1, yield
out-of-plane families of orbits labeled halo orbits. Thus, the originating member of
a halo family is also a member emerging from the planar Lyapunov family and is
the bifurcating orbit linking the two families. The second bifurcation in the planar
Lyapunov families, labeled Ly-2, leads to the axial orbits. The L; and L, planar
Lyapunov families possess a third bifurcation, Ly-3, which corresponds to a period-
doubling bifurcation. The third bifurcation in the Ls planar Lyapunov familiy, Ly-
4, links this family to families of planar orbits that originate from the equilateral
points, Ly and Ls [34]. Examination of the stability plots for the vertical families,
several additional bifurcations are apparent. The first bifurcation in each family is
labeled V-1, and corresponds to a bifurcation to the respective axial families. Thus,
two distinct ‘originating” members of each axial family exist and are also members
from the planar and vertical Lyapunov families. In the L; and L, vertical families,
the second bifurcation, labeled V-2, corresponds to a period-halving bifurcation [39].
The L3 family also experiences this bifurcation as its third bifurcation. The second
bifurcation V-3 in the L3 vertical family connects this family to the L, and L families
of vertical orbits [34].

Sample orbits from northern halo families are plotted for the Earth-Moon system

in Figure 3.8. Southern families also exist and are computed by reflecting the northern
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families across the x-y plane. Portions of the axial families appear in Figure 3.9. Only
those orbits for which z > 0 at the maximal value of y are plotted and are termed the
‘northern’ axial orbits in this investigation. The southern families are computed by
reflecting these members across the z-y plane. Again, the individual orbits within the
families in Figures 3.8-3.9 are colored consistent with the associated value of Jacobi
constant, however, the color mapping is not the same among the different families.
Other families of libration point orbits exist in the nonlinear system, e.g., period

multiplying families of halo orbits [40], but are not employed in this investigation.
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Figure 3.8. Sample members from the families of halo orbits in the
Earth-Moon system

Plots representing the stability of the halo and axial families of orbits appear
in Figure 3.10. For the halo families, the number of complex eigenvalue pairs is
represented as a function of orbit amplitude ratio A,/A,. At the points H-1, H-
2 and H-4, the L; and L, families experience period doubling bifurcations. The
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Figure 3.9. Sample members from the families of axial orbits in the
Earth-Moon system

bifurcations labeled H-3 and H-3 represent a stability change in the family, however,
these bifurcations do not lead to any new orbit families [40]. The L, halo family
undergoes a period-doubling bifurcation, H-6, that yields the family of L, butterfly
orbits [34]. Only those orbits with perilune above the surface of the Moon are included
in the plots, thus, a bifurcation from the L; family of halo orbits to the Ly and Ls
families of axials orbits does not appear in the L; halo stability chart [34]. The
stability of the axial orbits is plotted as a function of amplitude A,. Clearly, the axial

orbits are hyperbolic for all families, that is, nc = 2 for each of these orbits.
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Quasi-Periodic Orbits

Quasi-periodic orbits are solutions that exist within the center manifold of a
nearby periodic orbit. These orbits are bounded, and close only as t — oo, that
is, they are periodic solutions with an infinite period. The path traced by a quasi-
periodic orbit lies on the surface of an invariant torus of dimension two or greater.
Thus, a quasi-periodic orbit is defined by two or more frequencies, in contrast to the
single frequency associated with a periodic orbit. Quasi-periodic orbits have been
computed previously by various researchers [41-43]. In this investigation, the tori are
computed directly via the methodology demonstrated by Olikara and Scheeres [44].
Note that a similar strategy is demonstrated by Castelld and Jorba [41] and employed
by Gémez and Mondelo [24].

The path traced by a quasi-periodic orbit lies on the surface of an invariant torus
of dimension two or greater. Thus, a quasi-periodic orbit is defined by two or more fre-
quencies, in contrast to the single frequency associated with a periodic orbit. Assume
that the function (6, 81) describes a two-dimensional torus on which a quasi-periodic
orbit lies with associated frequencies wy = 6, wy = 6. Then, the dimension may be
reduced to one by selecting an initial value of 6y so that an invariant circle, (6, ), along
the torus is defined. Integrating some initial state u(6, = 6, ) along this circle for
time Ty, = i—z yields the final state on the circle @(6; o+ p,), where p, = wy-T;,. A map,
G, is defined based on the frequencies wy, wy so that propagating discretized states
along u(6;) for time 7, and removing the rotation by the angle p, yields G(u) = u.
To compute a torus, a differential corrections algorithm is employed to determine the
values for T}, p,, and the discretized states along u(6;) that satisfy G(u) — u = 0,
while applying an additional constraint on the value of Jacobi constant. Once a torus
is constructed, pseudo-arclength continuation is employed to locate additional tori
in the family, assuming that additional phase constraints on 6, and 6, are incorpo-

rated. Gaps in a family of tori may occur due to resonance in the torus frequencies.
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Pseudo-arclength continuation is successful to generate the complete family of tori as
long as these resonance gaps are not too large. Given a periodic orbit, a family of
tori is initialized by employing the associated stability information to locate a linear
approximation for a nearby invariant circle. Let A\¢ = € be a complex eigenvalue
and v¢ a corresponding eigenvector associated with the monodromy matrix computed
from a fixed point z* along the periodic orbit. Then, the initial guess for an invariant
curve centered on z* is of the form w(#,) = k- (cos(61)Re(v¢) —sin(6y)Im(v¢)), where
k is a small value used to scale the circle. The period T and the argument p of the
complex eigenvalue associated with the central periodic orbit serve as an initial guess
for the values of T}, and p, associated with a nearby torus. A truncated Fourier series
is used to represent the invariant curve, and a Newton-Raphson method is employed
to compute T, p,, and the discretized states along @(6;) that satisfy the constraints.
Further details on the computation of tori are available in Olikara and Scheeres [44].

For periodic orbits with a nontrivial center manifold of dimension (n¢ —2)/2 > 1,
quasi-periodic orbits associated with the central periodic orbit may be computed. For
example, the halo orbits that exist before the bifurcations H-1 in the L; and L, halo
families correspond to nc = 4. Thus, in the vicinity of each these orbits there exists a
family of quasi-periodic solutions called quasi-halo orbits. These solutions correspond
to two-dimensional tori that do not self-intersect in the phase space but may appear
to be self-intersecting when projected into configuration space. Selecting the L, halo
orbit corresponding to C' = 3.15, sample members from<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>