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ABSTRACT

Haapala, Amanda F. Ph.D., Purdue University, December 2014. Trajectory Design in
the Spatial Circular Restricted Three-Body Problem Exploiting Higher-Dimensional
Poincaré Maps. Major Professor: Kathleen C. Howell.

In this investigation, the role of higher-dimensional Poincaré maps in facilitat-

ing trajectory design is explored for a variety of applications. To begin, existing

strategies to implement Poincaré maps for applications in the spatial CR3BP are

evaluated. New applications for these strategies are explored, including an analysis

of the natural motion of Jupiter-family comets that experience temporary capture

about Jupiter, and the search for periodic orbits in the vicinity of the primary bod-

ies. Because current strategies to represent higher-dimensional maps, generally, lead

to a loss of information, new approaches to represent all information contained in

higher-dimensional Poincaré maps are sought.

The field of data visualization offers many options to visually represent multi-

variate data sets, including the use of glyphs. A glyph is any graphical object whose

physical attributes are determined by the variables of a data set. In this investigation,

the role of glyphs in representing higher-dimensional Poincaré maps is explored, and

the resulting map representations are demonstrated to search for maneuver-free and

low-cost transfers between libration point orbits. A catalog of libration point orbit

transfers is developed in the Earth-Moon system, and observations about the cata-

log solutions yields insight into the existence of these transfers. The application of

Poincaré maps to compute transfers between libration point orbits in different three-

body systems is additionally considered. Finally, an interactive trajectory design en-

vironment that incorporates Poincaré maps into the design process is demonstrated.
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Such an environment offers a unique opportunity to explore the available trajectory

options and to gain intuition about the solution space.
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1. PROBLEM AND MOTIVATION

The natural dynamics that emerge in the three-body problem yield a complex solu-

tion space and an expanded range of trajectory options. In particular, the symme-

try properties and analytical insight available in the Circular Restricted Three-Body

Problem (CR3BP) produce an effective framework for preliminary trajectory design

in a multi-body force environment. Within this context, an infinite number of peri-

odic and quasi-periodic orbits exist, both in the vicinity of equilibrium or libration

points, and centered on the primary bodies. Many of these orbits are unstable and,

therefore, possess stable and unstable invariant manifolds that offer a means of free

transport. Solutions, such as libration point orbits and their associated invariant

manifolds, have been incorporated into trajectory design scenarior in support of var-

ious missions. In the Sun-Earth system, observatories delivered to the vicinity of

L1 include ISEE-3 [1], SOHO [2], ACE [3], WIND [3], Genesis [3]. Missions to the

Sun-Earth L2 point have also been demonstrated, including WMAP [4] as well as

the Herschel and Planck Space Observatories [5]. ARTEMIS was the first libration

point mission in the Earth-Moon system; two spacecraft were maintained in large

quasi-periodic orbits about the Earth-Moon L1 and L2 points before entering long-

term lunar orbits [6]. While the available solutions within the CR3BP are generally

well understood, the process to incorporate them into the trajectory design concept

in support of a mission is nontrivial. Thus, new strategies to explore and represent

the design space are essential to improve the mission design process.

A map on a Poincaré surface of section is a powerful tool both to analyze and

represent the solution space, as well as to locate and compute trajectories with spec-

ified behavior. Incorporation of maps into trajectory design strategies improves the

tractability of mission design in multi-body regimes and offers the opportunity for im-
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plementation within an interactive mission design environment. Poincaré maps are

frequently higher-dimensional and are difficult to represent visually. Thus, strategies

to represent higher-dimensional maps are required.

1.1 Historical Overview of the Three-Body Problem

With the publication of the Principia in 1687, Sir Isaac Newton inspired a search

for an analytical solution to the problem of n-bodies moving under the Newtonian

Universal Law of Gravitation. Newton had supplied a geometrical solution to the

relative two-body problem (2BP) and, in 1710, Johann Bernoulli demonstrated that

all relative motions of two bodies are described by a conic sections. Interest was

refocused toward an understanding of the motion of the Moon in the Sun-Earth-Moon

three-body problem (3BP), offering a framework for formulation of the problem of

lunar theory.

In 1722, Leonhard Euler, a student of Bernoulli, proposed the formulation of the

restricted three-body problem (R3BP) in which one of the bodies is assumed massless

and the remaining ‘primary’ bodies are assumed to move on conic sections. Euler

approached the R3BP from the perspective of a synodic, or rotating, coordinate frame

for application to his lunar theories. This synodic frame later became essential for the

qualitative exploration of behavior in the 3BP. In the same year, the existence of five

equilibrium solutions in the restricted Sun-Jupiter 3BP was demonstrated by Joseph

Louis Lagrange. Lagrange’s findings predicted the existence of the Trojan asteroids

in the vicinity of the linearly stable equilateral libration points in the Sun-Jupiter

system. It was not until 1906, however, that the first of the Trojan asteroids, 588

Achilles, was discovered near the L5 point. Currently, 6075 Jupiter Trojan asteroids

have been catalogued [7]. In addition, one Earth Trojan, four Mars Trojans, one

Uranus Trojan, and nine Neptune Trojans have been discovered. By framing the

3BP within a synodic frame, Carl Gustav Jacob Jacobi demonstrated in 1836 that
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an integral of the motion exists. This integral is known as the Jacobi integral or

Jacobi constant and is the only known quantity that is conserved for the circular

restricted three-body problem. The existence of the Jacobi constant has qualitative

implications for solutions in the 3BP. One consequence of the existence of this integral

is the zero-velocity surfaces (ZVSs) and zero-velocity curves (ZVCs) which define the

regions of space that are accessible to the third body. In 1877–1878, George William

Hill considered a simplified version of the Sun-Earth 3BP in which the assumptions

of zero solar parallax, zero solar eccentricity, and zero lunar inclination were imposed

to search for particular solutions [8]. All solutions within this simplified system are

symmetric with respect to the x- and y-axes in the rotating coordinate frame. Hill

discovered one periodic solution, identified as Hill’s variation orbit, with period equal

to that of the Moon. Prior to Hill’s discovery, all solutions in the 3BP were obtained

by solving the 2BP and adding perturbations to the conic solution. A significant

contribution from Hill is his introduction of the zero-velocity curves, derived using

the Jacobi integral, to define limiting boundaries in the solution space. Through the

use of the ZVCs, Hill could demonstrate that there exist limits on the radius of the

Moon’s orbit, thereby demonstrating that the Moon cannot escape its orbit about

the Earth.

The first-return map, or Poincaré map, was introduced in 1881, by Jules Henri

Poincaré as a tool to examine the stability of periodic orbits [9]. Later, in 1899,

Poincaré completed the three volume set Les Méthodes Nouvelles de la Mécanique

Céleste. Within the second volume, Poincaré proved that no new transcendental, or

nonalgebraic, integrals of the motion exist in the R3BP. Two years prior, Heinrich

Bruns had proved the nonexistence of any new algebraic integrals of motion for the

general 3BP. Also within the second volume, Poincaré then applied the theory of

asymptotic solutions to the R3BP, and produced doubly asymptotic solutions that

he would later label as homoclinic solutions [9, 10]. The behavior of these homo-

clinic connections was difficult to describe and was sensitive to perturbations in the
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initial conditions, thereby prompting Poincaré’s discussion of chaos. In 1912, Karl

Sundman, a Finnish mathematical astronomer, produced a solution in the 3BP in

terms of a convergent power series. However, computing solutions using this conver-

gent series is not computationally practical and, because the solution does not supply

any qualitative intuition about the problem, further study of the problem is clearly

warranted.

1.2 Motion in the Vicinity of the Collinear Libration Points

In 1968, Charles C. Conley demonstrated the existence of several classifications of

trajectories in the vicinity of the collinear libration points within the context of the

Circular Restricted Three-Body Problem (CR3BP), where the two primary bodies are

assumed to move on circular orbits about their barycenter [11]. A proof is developed

that implicates the stable and unstable invariant manifolds, asymptotic to solutions

in the center subspace associated with the collinear libration points, as separatrices

that distinguish two distinct classifications of trajectories: transit orbits that cross

through the equilibrium region between adjoining regions of the ZVCs, in the planar

problem, and nontransit orbits that are bounded to their region of origin. Building

on the results of Conley, Koon et al. (2000) and Gómez et al. (2004) demonstrate

the application of these invariant manifolds for trajectory design [12,13].

1.3 Trajectory Design Employing Poincaré Maps

The successful use of Poincaré maps has been demonstrated for trajectory design

and analysis by various researchers. Employing a Poincaré map, in combination

with a constraint on the energy level, i.e., the value of the Jacobi constant, offers a

reduction in dimension by two. In the planar CR3BP, the system is, thus, reduced

to two dimensions and the map is fully represented by the projection onto a plane.
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In the spatial problem, however, Poincaré maps are at least four-dimensional and

strategies to facilitate their application to trajectory design are required.

In 2000, Koon et al. explored the application of Poincaré maps for the design of

transit trajectories in the planar CR3BP by exploiting the separatrix structure of the

invariant manifolds asymptotic to the center manifold associated with the collinear

points [12]. These authors additionally employed maps to investigate the temporary

capture and transit of the comet Oterma in the Sun-Jupiter system. In 2003, Villac

and Scheeres employed the periapse Poincaré map to identify regions of escape and

capture in the planar Hill three-body problem (H3BP). Haapala [14] and Davis [15]

later investigate these regions in the CR3BP, and demonstrate the relationship be-

tween the escape/capture regions and the invariant manifold structures. While these

investigations represent analyses in problems with two degrees-of-freedom, the ap-

plication of Poincaré maps in the three degree-of-freedom (spatial) problem has also

been explored.

To employ Poincaré maps for trajectory design in the full spatial CR3BP, strate-

gies to employ higher-dimensional Poincaré maps are necessary. These strategies

generally either serve to reduce the dimension of the map, or to offer strategies for

visually representing the higher-dimensional data set. As a third option, the map may

be projected into a lower-dimensional space so that, while some information is lost, in-

sight into the solution space might still be gained. Early work with higher-dimensional

maps generally employed this latter method, where various orthographic projections

are employed to gain insight into the higher dimensional space, e.g. Froeschlé [16,17],

Martinet and Magnenat [18] as well as Contopoulos et al. [19]. Froeschlé [17] addi-

tionally considers “slices” of the three-dimensional projection of a map. Here, he plots

numerous stereoscopic projections, each of which include only the crossings of the map

within some tolerance of a prescribed value of one of the state variables. Later, Patsis

and Zachilas employ rotation of a three-dimensional image so that all projections may

be considered, and include color to represent the fourth dimension [20]. Geisel [21]
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applies this method to investigate structures within the CR3BP. While the strategies

employed by Patsis, Zachilas, and Geisel serve to represent the full map, rotation of

the view is required to consider all possible orthographic projections.

Alternatively to considering projections of a higher-dimensional map, the dimen-

sion of the map may be reduced by applying additional constraints. For example,

Jorba and Masdemont [22] as well as Gómez et al. [23] demonstrate the use of Poincaré

maps to represent the crossings of periodic and quasi-periodic orbits that exist within

the center manifold associated with a collinear point. These authors develop a higher-

order normal form expansion of the Hamiltonian in the vicinity of the equilibrium

point to decouple the stable and unstable motion. A change in variables allows for the

removal of the unstable behavior via a reduction to the center manifold and yields a

system with two degrees of freedom. Thus, two-dimensional Poincaré maps associated

with periodic and quasi-periodic orbits in the spatial problem, for a particular energy

level, are represented using two nonphysical coordinates. In 2001, Gómez et al. [24]

define multiply constrained surfaces of section to reduce the dimension of Poincaré

maps in the spatial problem. For a surface of section defined by three constraints,

a three-dimensional map may be computed. Including a constraint on the value of

the Jacobi constant, the dimension is reduced to two, and the maps are fully repre-

sented using two state variables. While the application of multiple constraints yields

a reduction in the dimension of the map, it may not be obvious which additional

constraints are most useful. In addition, only the subset of the higher-dimensional

map that satisfies the selected constraints is considered using this strategy. Thus,

techniques to represent the entire map are sought to facilitate an exploration of the

entire solution space.

Strategies to visualize the full higher-dimensional map include the afore mentioned

techniques employing three-dimensional scatter plots including color to represent the

fourth dimension by Patsis and Zachilas [20], as well as Geisel [21]. Alternatively

to the use of scatter plots, new symbols may be employed to represent crossings
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of the map. Paskowitz and Scheeres [25] classify trajectory behavior in the spatial

H3BP problem using periapse maps. These authors represent the region of periapses

corresponding to immediate escape from the vicinity of the smaller primary using

a vector. The basepoint of the vector represents the position in three-dimensional

configuration space, and the length and orientation of the vector indicate the velocity

magnitude and direction at periapsis. Thus, the full six-dimensional state is repre-

sented for each crossing of the map. Again, while the use of vectors allows the full

map to be represented, rotation of the view is required to consider all possible ortho-

graphic projections. In this investigation, alternative representations are considered

for higher-dimensional maps that allow the map to be viewed in one plane. Thus, all

of the information is represented in a single image without requiring rotation of the

view.

1.4 Present Work

In this investigation, the role of higher-dimensional Poincaré maps in facilitating

trajectory design is explored for a variety of applications. To begin, existing strategies

to implement Poincaré maps for trajectory design applications in the spatial CR3BP

are evaluated. New applications for these strategies are explored, including an analy-

sis of the natural motion of Jupiter-family comets that experience temporary capture

about Jupiter, and the search for periodic orbits in the vicinity of the primary bodies

in the spatial problem. Because current strategies tend to be computationally inten-

sive, new approaches to represent the information contained in higher-dimensional

Poincaré maps are sought. The field of data visualization offers many options to

visually represent multivariate data sets, including the use of glyphs. A glyph is any

graphical object whose physical attributes are determined by the variables of a data

set. For example, the vectors employed by Paskowitz and Scheeres [25] to represent

crossings of the periapse map in the spatial Hill’s problem are a glyph representation.
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In this investigation, the role of glyphs in representing higher-dimensional Poincaré

maps is explored, and the resulting map representations are demonstrated to search

for maneuver-free and low-cost transfers between libration point orbits. A catalog of

libration point orbit transfers is developed in the Earth-Moon system, and observa-

tions about the catalog solutions yields insight into the existence of these transfers.

The application of Poincaré maps to compute transfers between libration point or-

bits in different three-body systems is additionally considered. Finally, interactive

trajectory design environments incorporating Poincaré maps into the design process

are demonstrated. Such design environments offer a unique opportunity to explore

the available trajectory options and to gain intuition about the solution space.

The organization of this study is as follows:

� Chapter 2: Background — Circular Restricted Three-Body Problem

In this chapter, the equations of motion are derived for the CR3BP. The single

integral of the motion, as well as the zero-velocity surfaces, and equilibrium

solutions are discussed.

� Chapter 3: Fundamental Motion in the Restricted Problem

Examination of the variational system in the vicinity of the three collinear points

reveals the existence of periodic and quasi-periodic, as well as hyperbolic, solu-

tions. Invariant manifold theory is introduced in connection with the collinear

libration points, and the role of the invariant manifolds in determining the evo-

lution of nearby solutions is developed. Finally, the state-transition matrix is

defined and is utilized in the development of targeting algorithms.

� Chapter 4: Poincaré Maps and Trajectory Design

Poincaré maps are discussed as a means of representing higher-dimensional sys-

tems, and their role in trajectory design is evaluated. The representation of
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invariant manifolds using maps is introduced, and proves useful in the location

of heteroclinic and homoclinic trajectories.

� Chapter 5: New Applications for Existing Design Techniques

Trajectory design techniques demonstrated by previous researchers are applied

for new scenarios. The paths of comets Oterma and Helin-Roman-Crockett

during temporary capture about Jupiter are analyzed, and temporary capture

events are demonstrated to be facilitated by the stable and unstable invariant

manifolds asymptotic to the center manifold associated with the L1 and L2

libration points.

� Chapter 6: Representing Higher-Dimensional Poincaré Maps

Tools from the field of data visualization are discussed and their relevance to tra-

jectory design strategies is explored. In particular, the role of glyphs as a visual

tool to display crossings of higher-dimensional Poincaré maps is demonstrated.

� Chapter 7: Exploring the Role of Poincaré Maps in an Interactive Trajectory

Design Environment

Trajectory design tools employing Poincaré maps within a visual environment

are demonstrated for a the design of transfers between periodic libration point

orbits. Graphical environments prove useful to explore the available solution

space and to locate an initial guess for a transfer. An interactive differential cor-

rections environment is demonstrated to locate feasible solutions and to apply

constraints on any maneuvers.

� Chapter 8: Catalog of Free and Low-Cost Transfers Between Libration Point

Orbits in the Earth-Moon System

A visual design environment, demonstrated in Chapter 6, is employed to com-

pute a catalog of available maneuver-free and low-cost transfers between various

libration point orbits in the Earth-Moon system. The constraints on the cata-
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log are defined, and the computed trajectories are displayed. Observations are

offered about the relationship between the primary system mass ratio and the

available transfers.

� Chapter 9: Concluding Remarks and Recommendations for Future Work

The results of this investigation are summarized, and a proposal for future work

is discussed.
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2. BACKGROUND — CIRCULAR RESTRICTED

THREE-BODY PROBLEM

Within the context of the Circular Restricted Three-Body Problem (CR3BP), the

motion of a particle, P3, in the vicinity of two primary bodies, P1 and P2, is inves-

tigated. While no closed-form solution is known to exist in the CR3BP, qualitative

observations and numerical exploration offer much insight into the problem. To fa-

cilitate numerical integration, the equations of motion are derived for the CR3BP.

The equations of motion admit a single integral of the motion, that is, the Jacobi

integral. The existence of the Jacobi integral allows the definition of zero-velocity

surfaces, from which qualitative observations about the accessible solutions are avail-

able. Five equilibrium points exist, in the CR3BP, including three collinear points

and two equilateral points. The three collinear points are determined to be linearly

unstable, with a four-dimensional center manifold, a one-dimensional stable manifold

and a one-dimensional unstable manifold. Thus, a study of the variational system in

the vicinity of the collinear points reveals the existence of periodic and quasi-periodic,

as well as hyperbolic, solutions.

2.1 Equations of Motion Relative to an Inertial Observer

Derivation of the differential equations governing the motion of P3 as viewed by

an inertial observer is based on Newton’s second law. Assuming that P3 is too small

to influence the motion of P1 and P2, the primary orbits are conics, assumed to

be circular for the CR3BP. In the spatial problem, P3 is free to move with respect

to the rotating primary system in all three spatial dimensions. Define the distance

between the primary bodies as `∗, and the masses of the larger and smaller primary
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bodies as m1 and m2, respectively. Let X̂, Ŷ , Ẑ represent inertial unit vectors. The

inertial X̂-Ŷ plane is defined as the plane of primary motion and Ẑ is parallel to

the angular momentum vector associated with the primary system. Consistent with

circular orbits, the mean motion, N , of the primary system is defined such that

N =

√
G(m1 +m2)

`∗3
, and the angle orienting the rotating line connecting P1 and P2

with respect to the inertial X̂-axis is N · τ , where τ is the independent time variable.

Let R̄i be defined as the position vector that locates Pi relative to the inertially

fixed barycenter, B, and Ri = ||R̄i||. The distances between each primary and the

system barycenter are evaluated as R1 =
m2l

∗

(m1 +m2)
and R2 =

m1l
∗

(m1 +m2)
. The

position vector representing the location of P3 relative to B is defined as R̄3 = R̄,

where, written in terms of inertial unit vectors, R̄ = XX̂ + Y Ŷ + ZẐ. The vectors

that represent the positions of the third body relative to the primaries are defined in

terms of the inertial unit vectors as

R̄13 = (X −R1 cos(N · τ))X̂ + (Y −R1 sin(N · τ))Ŷ + ZẐ, (2.1)

R̄23 = (X +R2 cos(N · τ))X̂ + (Y +R2 sin(N · τ))Ŷ + ZẐ, (2.2)

where the relative position vectors are defined as R̄ij = R̄j − R̄i. The equations of

motion as viewed by an inertial observer are derived using Newton’s second law. As a

consequence, the acceleration of the third particle, P3, is derived from the gradient of

the gravitational potential function, such that R̄
′′
I = ∇̄U , where the scalar potential

function U is defined as U = −G
(
m1

R13

+
m2

R23

)
. Thus, the acceleration is evaluated

as

R̄
′′

I = −Gm1

R13
3 R̄13 −

Gm2

R23
3 R̄23, (2.3)

where a prime indicates the time derivative with respect to time τ and subscript

I indicates that the derivative is with respect to the inertial frame. Note that the

line connecting P1 and P2 is oriented such that its angle with respect to X̂ is N · τ .
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Decomposing the vector equation (2.3) into its scalar components, the scalar equations

of motion relative to the inertial frame become:

X
′′

I =
m1(X −R1 cos(N · τ))

R13
3 +

m2(X +R2 cos(N · τ))

R23
3 , (2.4)

Y
′′

I =
m1(Y −R1 sin(N · τ))

R13
3 +

m2(Y +R2 sin(N · τ))

R23
3 , (2.5)

Z
′′

I =
m1Z

R13
3 +

m2Z

R23
3 , (2.6)

where Rij = ||R̄ij||. The equations of motion with respect to the inertial frame

in equations (2.4)–(2.6) are nonautonomous. Because, in the restricted three-body

problem, the total energy of the system is not conserved, the system of differential

equations is not Hamiltonian and, therefore, possesses an energy integral which is

time-varying. Describing the motion of P3 from the perspective of a synodic frame

rotating with the primary system produces autonomous equations of motion that are

Hamiltonian in nature and yield a constant integral of the motion.

2.2 Equations of Motion Relative to the Rotating Frame

The concept of a synodic or rotating coordinate system was first introduced by

Euler in 1772 for application to his lunar theory. Because the equations of motion in

the CR3BP possess a constant integral of the motion when written with respect to a

synodic reference frame, it is advantageous to define such a synodic frame and derive

the associated equations of motion. The second-order vector differential equation

(2.3) is rewritten to exploit the rotating frame defined by unit vectors x̂, ŷ, ẑ. The

rotating frame is illustrated in Figure 2.1. The rotating x̂-axis is defined to be di-

rected from the larger primary to the smaller, the ẑ-axis is parallel to the direction of

the orbital angular velocity of the primary system with respect to the inertial frame,

and the ŷ-axis completes the dextral, orthonormal triad. To remove the dependence

of the differential equations on system quantities such as the distance between pri-

maries or the specific primary masses, characteristic quantities are defined for use in
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Figure 2.1. Rotating coordinate frame

nondimensionalization. If the total mass of the two primary bodies, m∗ = m1 + m2,

the distance between the two primaries, l∗ = R1 + R2, and the independent time

variable, t∗ =

√
l∗3

Gm∗
=

1

N
, are defined as characteristic quantities, then

µ = m2/m
∗,

1− µ = m1/m
∗,

t = τ/t∗.

The system mass parameter, µ, varies between 0 and 1
2
, and solutions of the CR3BP

vary qualitatively for differing values of µ. The angular frequency of the primary

system is 2π/t∗, and the nondimensional system completes one revolution in t = 2π.

The nondimensional mean motion, n = Nt∗, is normalized to unity. Due to the

assumption of circular orbits for the primary bodies, `∗ is a constant. The values of

the constants for the systems employed in this investigation appear in Table 2.1. The
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Table 2.1 System Constants and Characteristic Quantities

System µ m∗ (kg) `∗ (km) 2πt∗

Earth-Moon 1.21506× 10−2 6.04680× 1024 3.85693× 105 27.4223 days

Sun-Jupiter 9.53816× 10−4 1.99042× 1030 7.78412× 108 1.88833 years

Sun-Earth 3.00390× 10−6 1.98853× 1030 1.49598× 108 1.00009 years

nondimensional position vectors are defined in terms of rotating coordinates as

r̄1 = R̄1/`
∗ = −µx̂, (2.7)

r̄2 = R̄2/`
∗ = (1− µ)x̂, (2.8)

r̄13 = R̄13/`
∗ = (x+ µ)x̂+ yŷ + zẑ, (2.9)

r̄23 = R̄23/`
∗ = (x− 1 + µ)x̂+ yŷ + zẑ, (2.10)

r̄ = R̄3/`
∗ = xx̂+ yŷ + zẑ. (2.11)

Equation (2.3) may then be rewritten in its nondimensional form:

¨̄rI = −1− µ
r13

3
r̄13 −

µ

r23
3
r̄23, (2.12)

where, for some quantity q, q̇ represents the derivative of q with respect to nondi-

mensional time, t. To express the left side of equation (2.12) as a derivative relative

to the rotating frame, the kinematic expansion for acceleration ¨̄rI is required. The

kinematic expansion relates derivatives as viewed by different observers, that is,

¨̄rI = (ẍR − 2ẏR − x)x̂+ (ÿR + 2ẋR − y)ŷ + z̈Rẑ,
1 (2.13)

1See Appendix A for details.
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where subscript R indicates a derivative with respect to the rotating frame. Thus,

the three second-order nondimensional scalar equations of motion are expressed in

terms of rotating coordinates as

ẍ− 2nẏ − n2x = −(1− µ)(x+ µ)

r13
3

− µ(x− 1 + µ)

r23
3

, (2.14)

ÿ + 2nẋ− n2y = −(1− µ)y

r13
3
− µy

r23
3
, (2.15)

z̈ = −(1− µ)z

r13
3
− µz

r23
3
, (2.16)

where n = 1 and subsripts R have been removed.

While the general three-body problem is conservative, the restricted problem is

not. In the inertial frame, there exists a potential function U = −G
(
m1

R13

+
m2

R23

)
,

such that R̄
′′
I = ∇̄U . Because, R13 and R23 vary with time, the total energy of the

system is not constant. In the rotating frame it is not possible to write the equations

of motion in terms of the gradient of a potential function. However, a similar quantity,

Ω, exists such that

Ω(x, y, z) =
1− µ
r13

+
µ

r23

+
1

2
n2(x2 + y2), (2.17)

and is typically labeled the pseudo-potential function. Note that Ω is a function of

the position of P3 only, and is independent of the velocity of P3. The pseudo-potential

can be used to simplify the equations of motion (2.14)–(2.16). The partial derivatives,

Ωx = n2x− (1− µ)(x+ µ)

r13
3

− µ(x− 1 + µ)

r23
3

, (2.18)

Ωy = n2y − (1− µ)y

r13
3
− µy

r23
3
, (2.19)

Ωz = −(1− µ)z

r13
3
− µz

r23
3
, (2.20)
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where Ωq =
∂Ω

∂q
are substituted into the differential equations, resulting in the nondi-

mensionalized equations of motion for the CR3BP:

ẍ = 2nẏ + Ωx, (2.21)

ÿ = −2nẋ+ Ωy, (2.22)

z̈ = Ωz. (2.23)

It is convenient to rewrite equations (2.21)–(2.23) in first-order form. Let x̄ be de-

fined as the six-dimensional state vector, that is, x̄ = [ x y z ẋ ẏ ż ]T . Then,

the second-order scalar equations (2.21)–(2.23) are rewritten as a first-order vector

equation of motion,

˙̄x = f̄(x̄), (2.24)

where

f̄ =
[
ẋ, ẏ, ż, 2nẏ + Ωx, −2nẋ+ Ωy, Ωz

]T
. (2.25)

Written with respect to rotating coordinates, these nonlinear equations of motion are

now autonomous and Hamiltonian. Note that for an initial state that is solely in the

x-y plane, the trajectory evolves with time to remain solely in the x-y plane. Thus,

the planar Circular Restricted Three-Body Problem (PCR3BP) may be explored

independently of the spatial problem (SCR3BP).

Because no closed-form solution for the CR3BP is available, trajectories are com-

puted via numerical integration of the first-order equations of motion (2.24). Given

an initial state x̄0 = x̄(t0), an explicit integration scheme is employed to propagate

the associated trajectory for a given time interval or until a desired stopping con-

dition is met. In this investigation, all numerical propagation is acheived with a

Prince-Dormand (8, 9) method via the publicly available GNU Scientific Library [26].
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2.3 Symmetry Properties

Inherent in the CR3B equations of motion is a symmetry in time. Given a solution

[x(t), y(t), z(t), ẋ(t), ẏ(t), ż(t)]T ,

the symmetry properties of the system equations also yield a solution of the form

[x(−t), −y(−t), z(−t), −ẋ(−t), ẏ(−t), −ż(−t)]T .

This result is apparent if the equations are allowed to evolve in negative time, that is,

t→ −t. Consider the second-order equations (2.21)–(2.23). The time transformation

yields
d

d(−t)
= − d

dt
, and

d2

d(−t)2
=

d2

dt2
, thus,

d2x

d(−t)2 = 2
d(−y)

d(−t)
+
∂Ω

∂x
, (2.26)

d2(−y)

d(−t)2 = −2
dx

d(−t)
+

∂Ω

∂(−y)
, (2.27)

d2z

d(−t)2 =
∂Ω

∂z
. (2.28)

The form of these solutions is exactly the same as the previously derived equations

of motion, equations (2.21)–(2.23), with suitable substitutions. Therefore, given any

solution, a second solution, reflected across the x̂-axis, also exists. This symmetry

property is frequently exploited in trajectory design. One consequence of this sym-

metry property is the mirror theorem:

Theorem 2.3.1 (The Mirror Theorem) If n point masses are acted upon by their

mutual gravitational forces only, and at a certain epoch each radius vector from the

center of mass of the system is perpendicular to every velocity vector, then the orbit

of each mass after that epoch is a mirror image of its orbit prior to that epoch. Such

a configuration of radius and velocity vectors is called a mirror configuration [29].

If a mirror configuration occurs at two distinct times along a trajectory in the CR3BP,

the trajectory must be periodic. The mirror theorem is frequently employed in the

search for periodic solutions in the CR3BP.
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2.4 Integral of the Motion

In 1836, Jacobi formulated the restricted three-body problem in terms of a synodic

coordinate frame to derive what is now labeled the Jacobi integral or the Jacobi

constant. The Jacobi integral is the only integral of the motion that is known to

exist in the CR3BP. The Hamiltonian for a time-independent system represents an

integral of the dynamical system [10]. The Hamiltonian, H, for the system described

by equations (2.21)–(2.23) is written in terms of rotating coordinates as

H =
1

2

(
ẋ2 + ẏ2 + ż2

)
− 1

2

(
x2 + y2

)
− (1− µ)

r13
3
− µ

r23
3
, (2.29)

and represents an energy-like quantity associated with the motion of P3 relative to

the rotating frame. The Jacobi constant is related to the Hamiltonian as C = −2H,

(see Appendix B.1 for details) and is, thus, represented as

C = 2Ω(x, y, z)− v2, (2.30)

where v =
√
ẋ2 + ẏ2 + ż2. The Jacobi constant provides a relationship between the

speed of P3 and its position. While there is no closed-form solution for the behavior

in the CR3BP, the Jacobi constant yields much qualitative insight into the available

solutions. Because the Jacobi constant is defined as a negative quantity, increasing

C corresponds to decreasing the energy of P3 in the rotating frame.

2.5 Equilibrium Solutions

The search for particular solutions to the equations of motion (2.21)–(2.23) yields

five equilibrium points. These equilibrium points, often denoted the libration or La-

grange points, are locations in the rotating system where the combined gravitational

forces of the two primary bodies exactly equal the centripetal force required for the

third body to rotate with the primary system. The libration points are, therefore,

stationary from the perspective of a rotating observer, and placing P3 at any of the
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five equilibrium points, with zero velocity and acceleration relative to the rotating

frame, results in zero motion relative to the rotating system.

The five libration points are frequently categorized into two types. The collinear

points lie along the rotating x̂-axis, and the triangular or equilateral points are po-

sitioned off the x̂-axis. To compute the locations of the libration points, solutions

of the form x(t) = x(0), y(t) = y(0), z(t) = z(0) are sought. Such solutions occur

when the rotating velocities and accelerations are zero, thus, the equilibrium solu-

tions are located where Ωx = Ωy = Ωz = 0. Recall equations (2.18)–(2.20). Because(
(1− µ)

r13
3

+
µ

r23
3

)
is nonzero, z must be zero for all equilibrium solutions. Thus, all

five equilibrium points lie in the x-y plane.

To determine the positions of the libration points, begin with the second equilib-

rium condition, that is, Ωy = 0. There are three solutions to this condition, namely

y = 0, corresponding to the three collinear points, and y = ±
√

3/2, reflecting the

y-coordinates of the two equilateral points. Selecting y = 0, Ωx is reduced and the

three solutions to the first equilibrium condition, Ωx = 0, are the roots of the following

expressions,

xL1 −
1− µ

(xL1 + µ)2 +
µ

(xL1 − 1 + µ)2
= 0, (2.31)

−xL2 +
1− µ

(xL2 + µ)2 +
µ

(xL2 − 1 + µ)2
= 0, (2.32)

−xL3 −
1− µ

(xL3 + µ)2 −
µ

(xL3 − 1 + µ)2
= 0. (2.33)

The solutions to these three equations define the positions, xL1 , xL2 , and xL3 , corre-

sponding to the collinear libration points, L1, L2, and L3. Solving equations (2.31)–

(2.33) for a given value of µ yields the locations of the collinear libration points for a

particular system. Given y = ±
√

3/2 and solving the second equilibrium condition,

Ωy = 0, produces the locations of the two triangular libration points, L4 and L5, as

follows,

xL4,L5 =
1

2
− µ yL4,L5 = ±

√
3

2
. (2.34)
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The relative positions of the five libration points in the rotating frame are displayed

in Figure 2.2. The collinear libration points appear in red along the rotating x-axis,

Figure 2.2. Libration points in the rotating frame.

and the triangular points are plotted in green. As evidenced by equations (2.31)–

(2.33), the positions of each of the collinear libration points vary with the system

mass parameter, µ. The nondimensional (nd) locations of the collinear points for the

systems that appear in this analysis are listed in Table 2.2. The values of the Jacobi

Table 2.2 Locations of the Collinear Libration Points of Various Systems

System xL1(nd) xL2(nd) xL3(nd)

Earth-Moon 0.836915 1.155682 -1.005063

Sun-Jupiter 0.932367 1.068829 -1.000397

Sun-Earth 0.990026 1.010035 -1.000001

constant (CLi
) associated with each libration point for the three systems that appear

in this investigation are included in Table 2.3. Clearly, the value of Jacobi constant

varies across the different libration points. This variation is not unexpected because,

while relative velocity is zero at all equilibrium points, the positions of the libration
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Table 2.3 Jacobi Constant Values for the Libration Points in Various Systems

System CL1 CL2 CL3 CL4 = CL5

Earth-Moon 3.188341 3.172160 3.012147 2.987997

Sun-Jupiter 3.038759 3.037487 3.000954 2.999047

Sun-Earth 3.000891 3.000887 3.000003 2.999997

points differ. The values of Jacobi constant, CLi
, corresponding to the individual

libration points additionally vary as a function of the system parameter µ. However,

a relationship among the various values of Jacobi constant for the different libration

points is maintained regardless of the system . Values for CLi
descend as i increases

from 1 to 4, and are equal for i = 4, 5, i.e., CL1 ≥ CL2 ≥ CL3 ≥ CL4 = CL5 .
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2.6 Zero-Velocity Surfaces

While an analytical solution for the behavior of P3 does not exist, its motion

is bounded under certain conditions. From the expression for Jacobi constant in

equation (2.30), a rearrangement, such that v2 = 2Ω(x, y, z) − C, suggests possible

restrictions on the allowable positions of P3. Clearly, when C > 2Ω(x, y, z), the speed,

v, is imaginary. The position components, x, y, z, are therefore constrained such that

2Ω(x, y, z) ≥ C. The inaccessible regions where the speed of P3 is imaginary are

denoted the forbidden regions. The boundary of the forbidden region in position

space is a set of three-dimensional zero-velocity surfaces that vary as a function of

C. Through a projection of the zero-velocity surfaces onto the x-y plane, the zero-

velocity curves (ZVCs) emerge. The ZVCs were first introduced by Hill and applied

to a special case of the R3BP known as Hill’s problem [10]. An example of the ZVCs

in the Earth-Moon system, for a value of Jacobi constant such that CL3 < C < CL2 ,

appears in Figure 2.3. From these curves, the delineation of different available regions

is apparent. Here, the region surrounding the larger primary is defined as the interior

region, the region in the vicinity of the smaller primary is labeled the P2 region,

and the region beyond the ZVCs is denoted the exterior region. The entire three-

dimensional zero-velocity surface in the Earth-Moon system appears in Figure 2.4,

with the ZVCs plotted as the dashed black line. Inner surfaces that bound the interior

and P2 regions are apparent. The outer surface serves as the boundary of the exterior

region. The volume between the inner and outer surfaces is the forbidden region.

For a given system, as the Jacobi constant value decreases, the qualitative char-

acteristics of the ZVCs in the plane of motion of the primaries evolve. Higher values

of C correspond to lower energies, and a larger volume of space is restricted as the

forbidden region expands. Some examples of ZVCs for varying values of Jacobi con-

stant in the Earth-Moon system appear in Figure 2.5. At the greatest values of C,

the regions surrounding P1 and P2 are bounded such that P3 cannot pass between
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Figure 2.4. Zero-velocity surfaces in for CL2 < C < CL1

the primary bodies, as seen in Figure 2.5(a). As C decreases, the ZVCs open at L1

and the L1 gateway emerges, through which P3 may pass between the interior and

P2 regions. Further decreasing C, the ZVCs open at L2, and eventually C reaches a
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value such that the L2 gateway opens and P3 may pass between the P2 and exterior

regions. Once a value of C is achieved such that C ≤ CL2 , P3 may access all regions,

excluding, of course, the forbidden region. For C < CL4,L5 , the zero-velocity surfaces

are entirely out-of-plane.
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Figure 2.5. Zero-velocity curves for varying values of Jacobi constant.
(Earth and Moon 2× actual size)

While no closed-form solution is known to exist in the CR3BP, the Jacobi integral

and zero-velocity surfaces provide a great deal of qualitative insight into the behavior

of P3. Further, analysis of the five equilibrium points yields information about the

behavior near these points. In the upcoming chapter, the variational equations are ex-

plored to determine the available solution types in the vicinity of the libration points,

and techniques to extend these solutions to the nonlinear problem are discussed.
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3. FUNDAMENTAL MOTION IN THE RESTRICTED

PROBLEM

A rich solution space exists in the vicinity of the equilibrium points of the CR3BP,

offering a number of solution types that are valuable for mission design. To under-

stand the behavior of solutions in the vicinity of the libration points, it is useful to

investigate the stability of the equilibrium points via linearization relative to any of

the five Lagrange solutions. From an examination of the behavior in the linearized

system, a phase portrait of the flow in the vicinity of a particular solution may be

developed for the nonlinear system.

3.1 Linearized Motion near the Libration Points

To develop a phase portrait of the flow in the vicinity of the libration points,

it is useful to consider the variational equations of motion. Consider a general n-

dimensional system for which the dynamics are governed by a nonlinear, autonomous,

continuous-time, first-order vector differential equation,

˙̄x = f̄(x̄). (3.1)

Here, f̄ is a smooth function that defines a vector field in Rn. For the CR3BP,

the function f̄ is defined as in equation (2.25). The flow, φt, as the differential

equation evolves is defined by f̄ so that φt(x̄) = φ(x̄, t) is smooth and
d

dt
(φ(x̄, t))|t=τ =

f̄(φ(x̄, τ)).

Let x̄r represent the state along some reference solution, and consider a lineariza-

tion relative to x̄r such that the linear vector variational equation is

δ ˙̄x = A(t)δx̄, (3.2)
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where the variation, δx̄ = x̄− x̄r = [ δx δy δz δẋ δẏ δż ]T , is an n-dimensional

perturbation from the reference solution. Here, A(t) = Df̄(x̄r) is the n× n Jacobian

matrix of first partial derivatives of f̄ , and is not constant, in general. The general

solution to equation (3.2), obtained through integration via separation of variables,

is of the form

δx̄(t) = Φ(t, t0)δx̄(t0), (3.3)

where the state transition matrix, Φ(t, t0), is defined as

Φ(t, t0) ≡ eA(t−t0). (3.4)

Defining the reference solution to be an equilibrium point of the CR3BP, the state

along a nearby trajectory is written as follows,

x̄ = x̄eq + δx̄, (3.5)

where x̄eq represents the state associated with the libration point. Linearization of

the system relative to the equilibrium point yields equation (3.2), where

A =

 A1 A2

A3 A4

 (3.6)

is a constant matrix. The submatrices, Ai, are defined as follows: A1 = 03×3 is the

3× 3 submatrix of zeroes, A2 = I3×3 is the 3× 3 identity matrix, and

A3 =


Ωxx0 Ωxy0 0

Ωyx0 Ωyy0 0

0 0 Ωzz0

 , A4 =


0 2 0

−2 0 0

0 0 0

 , (3.7)

where Ωpq =
∂2Ω

∂p∂q
are the second partial derivatives (listed in Appendix B.2), and

Ωpq0 = Ωpq|x̄eq indicates that the expression is evaluated at the libration point. Note

that Ωxz0 = Ωyz0 = Ωzx0 = Ωzy0 = 0. The resulting set of linear differential equations
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relative to the equilibrium point and with constant coefficients represents the varia-

tional equations of motion for the CR3BP. Expressing these equations in second-order

form yields

δẍ− 2δẏ = Ωxx0δx+ Ωxy0δy, (3.8)

δÿ + 2δẋ = Ωyx0δx+ Ωyy0δy, (3.9)

δz̈ = Ωzz0δz. (3.10)

It is clear that, for the linearized system, the out-of-plane motion is decoupled from

the planar motion. The term Ωzz0 is negative for each of the five libration points. The

motion in ẑ is therefore simple harmonic with frequency ω =
√
|Ωzz0|. Submatrix A3

further reduces for the collinear libration points, where Ωxy0 = Ωyx0 = 0.

3.2 Stability of the Collinear Libration Points and Invariant Manifolds

The eigenvalues and eigenvectors of A are useful to explore the stability of the

libration point x̄eq. The linear state matrix, A, is diagonalized by exploiting the

eigenstructure of A and rewriting A in the form A = SΛS−1, where matrix S contains

columns equal to the eigenvectors, v̄i, of A, and matrix Λ is diagonal with elements

equal to the corresponding eigenvalues, λi. Then, assuming t0 = 0, equation (3.3) is

rewritten as

δx̄(t) = SeΛtS−1δx̄(0). (3.11)

For matrices A with n distinct eigenvalues, equation (3.11) is expanded as

δx̄(t) =
n∑
i=1

αie
λitv̄i. (3.12)

It is clear from this equation that the eigenvalues, λi, govern the behavior of δx̄(t)

over time and the eigenvectors determine the direction of the subsequent motion.

The eigenstructure for Hamiltonian systems is symmetric about both the real and

imaginary axes of the complex plane. Thus, for the matrix, A, eigenvalues occur
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in real pairs ±λ, purely imaginary pairs ±i|λ|, or quartets of complex eigenvalues

±Real(λ) ± iImag(λ) [30]. When Real(λ) < 0 for all eigenvalues, then, as time

progresses, each term eλit approaches zero, x̄ approaches x̄eq, and the solution is

asymptotically stable. Note that this condition is not feasible for equilibrium points

in the CR3BP as the eigenvalues of A occur in opposite pairs. If Real(λ) > 0 for

any eigenvalue, then δx̄ grows exponentially with time and the solution is unstable.

A critical point with eigenvalues, λi, λj, such that Real(λi) < 0 and Real(λj) > 0, is

nonstable and is termed a saddle point. The solution is considered neutrally stable

when Real(λ) ≤ 0 for all eigenvalues, and one or more eigenvalues possesses a zero

real part and are nondefective. In this case, the linear solution is bounded with

respect to x̄eq, but does not naturally return to equilibrium.

The eigenvectors, v̄i, associated with λi are linearly independent and span Rn.

Let nS be the number of eigenvalues λS,i with positive real parts, nU be the num-

ber of eigenvalues λU,i with negative real parts, nC be the number of eigenvalues

λC,i with zero real parts; let v̄Si , v̄Ui , v̄Ci be the associated eigenvectors. Then,

ES = span{v̄Si }
nS
i=1, EU = span{v̄Ui }

nU
i=1, EC = span{v̄Ci }

nC
i=1 are defined as the stable,

unstable, and center subspaces of dimension nS, nU , and nC , respectively. The Rn

space is defined by the union ES
⋃
EU
⋃
EC such that n = nS +nU +nC = rank(A).

These subspaces are invariant under eλit, that is, a solution originating from a point

civ̄i within one of these subspaces remains within span{v̄i} for all time [31]. The no-

tion of invariance implies that any solution which is initially in an invariant subspace

will remain in that subspace for all past and future times. From the stable, unstable,

and center subspaces, the notion of stable, unstable, and center manifolds may be

defined. An equilibrium point is said to be hyperbolic if all eigenvalues have nonzero

real parts, that is, nC = 0.

Theorem 3.2.1 (Stable Manifold Theorem) Suppose that ˙̄x = f̄(x̄) has a hy-

perbolic equilibrium point, x̄eq. Then there exist local stable and unstable manifolds,

W S
loc(x̄eq), WU

loc(x̄eq), of the same dimension, nS, nU , as the eigenspaces, ES, EU , of
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the linearized system (3.2), and tangent to ES and EU at x̄eq. W S
loc(x̄eq), WU

loc(x̄eq)

are smooth, as is function f̄ [31].

The local manifolds, W S
loc(x̄eq), W

U
loc(x̄eq), have global analogs, W S(x̄eq), W

S(x̄eq),

obtained by allowing points in W S
loc(x̄eq) to flow backward in time and points in

WU
loc(x̄eq) to flow forward in time [31], that is,

W S(x̄eq) =
⋃
t≤0

φt(W
S
loc(x̄eq) (3.13)

WU(x̄eq) =
⋃
t≥0

φt(W
U
loc(x̄eq). (3.14)

An important property of the invariant manifolds is established by the existence and

uniqueness of solutions of equation (3.1).

Theorem 3.2.2 (The Fundamental Existence-Uniqueness Theorem) Let E be

an open subset of Rn containing x̄0, and assume that f̄ ε C1(E). Then there exists an

a > 0 such that the initial value problem ˙̄x = f̄(x̄), x̄(0) = x̄0 has a unique solution

x̄(t) on the interval [−a, a] [32].

By this theorem, the stable manifolds associated with distinct equilibrium points,

x̄eq1, x̄eq2, can neither intersect one another, nor can they self-intersect. Likewise,

the unstable manifolds emanating from distinct equilibrium points, x̄eq1, x̄eq2, cannot

intersect one another or themselves. However, the stable manifold and the unstable

manifold associated with two distinct equilibrium points, or even with one equilib-

rium point, can intersect [31]. Such intersections yield heteroclinic and homoclinic

connections. For nonhyperbolic equilibria, nC 6= 0 and a center manifold exists.

Theorem 3.2.3 (Center Manifold Theorem) Let f̄ be a Cr vector field on Rn

vanishing at the origin so that f̄(x̄eq) = 0̄, and let A = Df̄(x̄eq). The matrix A may

be divided into its stable, center and unstable parts, nS, nC, and nU , respectively, with

Real(λ)


< 0; λ ε nS

= 0; λ ε nC

> 0; λ ε nU

 .
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Let the generalized eigenspaces be ES, EC, and EU , respectively. Then there exist

Cr stable and unstable invariant manifolds, W S and WU , tangent to ES and EU at

x̄eq, and a Cr−1 center manifold, WC, tangent to EC at x̄eq. The manifolds W S,

WU , and WC are all invariant for the flow f̄ . The stable and unstable manifolds are

unique, but the center manifold need not be. If f̄ is C∞, then there exists a Cr center

manifold for any r <∞ [31].

Thus, the notion of invariance extends to the global manifolds associated with an

equilibrium point. Any trajectory which is initially on an invariant manifold must

remain on that manifold for all past and future times. Because the manifolds are

invariant, no trajectory can ever cross such structures in the six-dimensional state

space [33].

Consider a linearization relative to a collinear libration point. Evaluating the

matrix A from equation (3.2), three eigenvalue pairs emerge. A pair of real roots,

±ρ, indicates that the collinear points are nonstable saddle points, and possess one-

dimensional stable and unstable manifolds. Two pairs of imaginary roots, ±iν and

±iω, indicate that the center subspace is four-dimensional and oscillatory behavior

exists, for the linear system, in the vicinity of the libration point. The complete set

of eigenvalues and eigenvectors from the linear matrix A are of the form

λ1 = ρ, v̄1 =
[

1 σ 0 ρ ρσ 0
]T
, (3.15)

λ2 = −ρ, v̄2 =
[

1 −σ 0 −ρ ρσ 0
]T
, (3.16)

λ4 = iν, v̄4 =
[

1 iτ 0 iν −ντ 0
]T
, (3.17)

λ5 = −iν, v̄5 =
[

1 −iτ 0 −iν −ντ 0
]T
, (3.18)

λ3 = iω, v̄3 =
[

0 0 1 0 0 iω
]T
, (3.19)

λ6 = −iω, v̄6 =
[

0 0 1 0 0 −iω
]T
, (3.20)
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where

σ = 2ρ/
(
Ωyy0 − ρ2

)
=
(
ρ2 − Ωxx0

)
/2ρ < 0, (3.21)

τ = 2ν/
(
Ωyy0 + ν2

)
=
(
Ωxx0 + ν2

)
/2ν > 0. (3.22)

Details on the derivation of these quantities appear in Appendix C.1.

3.3 Local Invariant Manifolds

The eigenvalues corresponding to the constant matrix A, as evaluated at the

collinear libration points, indicate that these points possess a topological structure of

the type saddle×center×center. This serves as a framework for the types of solutions

that exist in the vicinity of L1, L2, and L3. Expressing the general solution as a com-

bination of the eigenmodes from the linear system, such as in equation (3.12), unique

behaviors are apparent. The first term, α1e
ρtv̄1, represents the unstable eigenmode

that drives the solution, δx̄(t) from equation (3.12),to diverge from the equilibrium so-

lution. The second term, α2e
−ρtv̄2, represents the eigenmode yielding asymptotically

stable motion. The terms (α4e
iνtv̄4 + α5e

−iνtv̄5) and (α3e
iωtv̄3 + α6e

−iωtv̄6) represent

the planar and out-of-plane center eigenmodes of the solution, respectively, that pro-

duce oscillatory behavior. By proper selection of αi, it is possible to isolate specific

desired behaviors. Assuming t0 = 0, the initial conditions are represented in terms

the constants αi via the expression

δx̄(0) =
n∑
i=1

αiv̄i. (3.23)

Define the vector of constants as ᾱ =
[
α1 α2 α3 α4 α5 α6

]T
, and the matrix

with columns equal to the eigenvectors of A as

S =
[
v̄1 v̄2 v̄3 v̄4 v̄5 v̄6

]
. (3.24)

Then, equation (3.23) can be rewritten as

δx̄(0) = Sᾱ, (3.25)
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and the constants αi are determined by inverting this expression, yielding

ᾱ = S−1δx̄(0). (3.26)

The initial conditions are defined explicitly as follows,

α1 =
1

2

[
ντδx0 + δẏ0

ρσ + ντ
+
τδẋ0 − νδy0

ρτ − νσ

]
, (3.27)

α2 =
1

2

[
ντδx0 + δẏ0

ρσ + ντ
− τδẋ0 − νδy0

ρτ − νσ

]
, (3.28)

α3 =
1

2
[δz0 − iωδż0] , (3.29)

α4 =
1

2

[
ρσδx0 − δẏ0

ρσ + ντ
+ i

σδẋ0 − ρδy0

ρτ − νσ

]
, (3.30)

α5 =
1

2

[
ρσδx0 − δẏ0

ρσ + ντ
− iσδẋ0 − ρδy0

ρτ − νσ

]
, (3.31)

α6 =
1

2
[δz0 + iωδż0] . (3.32)

By careful selection of the constants ᾱ, trajectories with specific behavior in the

vicinity of the libration point are isolated.

3.3.1 Local Hyperbolic Manifold

To isolate solutions within the one-dimensional local stable or unstable manifolds

associated with a collinear point, all oscillatory motion should be eliminated. For

example, selecting the coefficients so that α2 = α3 = α4 = α5 = α6 = 0, the unstable,

divergent behavior is isolated and the solution is of the form

δx̄(t) = α1e
ρtv̄1. (3.33)

Thus, equation (3.33) represents the local unstable manifold associated with the

collinear points,

WU−
loc = α1e

ρtv̄1, α1 < 0, (3.34)

WU+
loc = α1e

ρtv̄1, α1 > 0. (3.35)



34

Likewise, by selecting α1 = α3 = α4 = α5 = α6 = 0, only stable solutions that

converge to the libration point are located and the solution is written as

δx̄(t) = α2e
−ρtv̄2. (3.36)

The result in equation (3.36) represents the local stable manifold of the collinear

points,

W S−
loc = α2e

−ρtv̄2, α2 < 0, (3.37)

W S+
loc = α2e

−ρtv̄2, α2 > 0. (3.38)

The local stable and unstable manifolds are plotted for the linear system in Figure

3.1.
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Figure 3.1. Stable and unstable manifolds asymptotic to a collinear libration point

3.3.2 Local Center Manifold

To isolate solutions within the four-dimensional local center manifold associated

with a collinear point, all unstable and asymptotically stable motion should be elim-

inated. Selection of α1 = α2 = 0 satisfies this requirement and yields oscillatory mo-
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tion in the vicinity of x̄eq. The resulting trajectories are periodic and quasi-periodic

orbits of the form

δx̄(t) = 2Real(α4e
iνtv̄4) + 2Real(α3e

iωtv̄3). (3.39)

Details of the derivation of equation (3.39) are outlined in Appendix C.2. The position

states are represented as

δx(t) = δx0 cos(νt) + (δy0/τ) sin(νt), (3.40)

δy(t) = −τδx0 sin(νt) + δy0 cos(νt), (3.41)

δz(t) = δz0 cos(ωt) + ωδż0 sin(ωt). (3.42)

Defining the initial velocities such that δẋ(0) = −δy(0)
ν

τ
, δẏ(0) = −ντδx(0), the

constants α1 = α2 = 0 and trajectories within the local center manifold are isolated.

Both periodic and quasi-periodic orbits exist within the four-dimensional center sub-

space associated with the collinear libration points. Note that selecting α3 = α6 = 0

constrains these orbits to planar oscillations only, yielding elliptical orbits centered

on the libration point, i.e., the planar Lyapunov orbits. Selecting α4 = α5 = 0 yields

orbits with oscillations only in the ẑ direction. These orbits are labeled the vertical

Lyapunov orbits. The quasi-periodic orbits that emerge when both planar and ver-

tical osciallations are introduced are denoted as Lissajous orbits. Sample planar and

vertical Lyapunov orbits (black), and a Lissajous orbit (gray) appear in Figure 3.2

for the linear system.

3.3.3 Hyperbolic Manifolds Asymptotic to the Local Center Manifold

Similar to the stable and unstable manifolds asymptotic to the libration point,

manifolds also exist that are asymptotic to the periodic and quasi-periodic orbits in

the vicinity of the libration point. These manifolds are computed by perturbing an

orbit within the center manifold in the stable or unstable direction. Perturbing in the
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Figure 3.2. Sample periodic and quasi-periodic orbits in the vicinity
of a collinear libration point

unstable direction yields the unstable manifold asymptotic to a libration point orbit

in the linear system:

WU−
LPO,loc = α1e

ρtv̄1 + 2Real(α4e
iνtv̄4) + 2Real(α3e

iωtv̄3), α1 < 0, (3.43)

WU+
LPO,loc = α1e

ρtv̄1 + 2Real(α4e
iνtv̄4) + 2Real(α3e

iωtv̄3), α1 > 0. (3.44)

Likewise, the local stable manifolds convergent to a libration point orbit are isolated

by perturbing in the stable direction:

W S−
LPO,loc = α2e

−ρtv̄2 + 2Real(α4e
iνtv̄4) + 2Real(α3e

iωtv̄3), α2 < 0, (3.45)

W S+
LPO,loc = α2e

−ρtv̄2 + 2Real(α4e
iνtv̄4) + 2Real(α3e

iωtv̄3), α2 > 0. (3.46)

To locate manifolds such that the value of Jacobi constant associated with the orbit

is preserved, α1 and α2 should be selected to be small. A sample unstable manifold

associated with a Lissajous orbit appears in red in Figure 3.3. In negative time, this

manifold approaches the quasi-periodic orbit as demonstrated by the black arc.
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Figure 3.3. Sample unstable manifold (red) departing a Lissajous orbit

3.4 Global Invariant Manifolds

To study the evolution of the invariant manifolds in the nonlinear system as they

depart the vicinity of x̄eq, it is necessary to compute the global invariant manifolds

from the local manifold approximations.

3.4.1 Global Hyperbolic Manifold

In Section 3.3.1, the local unstable and stable invariant manifolds asymptotic to

a collinear libration point are computed by perturbing the state associated with the

libration point in the direction of the unstable and stable eigendirections. The result-

ing trajectories in the linear variational model are summarized in equations (3.33)

and (3.36). Recall from equations (3.15)–(3.20) that λ1 = ρ > 0 and λ2 = −ρ are

the stable and unstable eigenvalues of the constant linear state matrix, A, and v̄1 and

v̄2 are their associated eigenvectors, computed by solving the equations Av̄1 = λ1v̄1,

Av̄2 = λ2v̄2. Define v̄+ as possessing a positive x̂ component, and v̄− as possessing a

negative x̂ component. Based on the Stable Manifold Theorem 3.2.1 and consistent

with equations (3.34), (3.37), the local half-manifolds, WU−
loc and W S−

loc , are approx-

imated by introducing a perturbation relative to the equilibrium point, x̄eq, in the
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direction of the unstable and stable eigenvector directions, v̄−U = −v̄1 and v̄−S = −v̄2,

respectively. Likewise, a perturbation relative to x̄eq in the direction of the unstable

and stable eigenvector directions, v̄+
U = v̄1 and v̄+

S = v̄2, respectively, produces the

local half-manifolds WU+
loc and W S+

loc , consistent with equations (3.35), (3.38). The

initial states from equations (3.34)–(3.35) and (3.37)–(3.38) represent perturbations

relative to the equilibrium point in the direction of the unstable and stable eigen-

vectors. Alternatively, the following procedure is employed to compute these initial

perturbations. Define the stable eigenvector as v̄+
S = [ xS yS zS ẋS ẏS żS ]T ,

where xS > 0 and v̄+
S is of unit length. Note that, from equation (3.16), zS = żS = 0.

The magnitude of the eigenvector is adjusted such that

w̄+
S,eq = v̄+

S /
√
xS2 + yS2 + zS2. (3.47)

The position components of the eigenvector w̄+
S,eq are now of unit length. Then, the

step along the direction of the eigenvector is computed as

x̄S+
eq = x̄eq + d · w̄+

S,eq, (3.48)

x̄S−eq = x̄eq − d · w̄+
S,eq, (3.49)

where d may be interpreted as a distance away from the equilibrium point. Likewise,

the unstable eigenvector is defined as v̄+
U = [ xU yU zU ẋU ẏU żU ]T , where

xU > 0 and v̄+
U is of unit length. Then, the eigenvector employed to compute the

unstable manifold direction is

w̄+
U,eq = v̄+

U /
√
xU 2 + yU 2 + zU 2, (3.50)

and the step along the direction of the eigenvector is defined as

x̄U+
eq = x̄eq + d · w̄+

U,eq, (3.51)

x̄U−eq = x̄eq − d · w̄+
U,eq. (3.52)

The result is an approximation for the local manifolds, W S+
eq,loc, W

S−
eq,loc, and WU+

eq,loc,

WU−
eq,loc, associated with the equilibrium point. The value of d is critical because it
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determines the accuracy with which the local manifolds are approximated. If d is too

large, the perturbation is not a close approximation to a state that actually exists

along the manifold. If d is too small, long integration times are required to compute

the global manifold, due to the asymptotic nature of the manifolds, leading to the

accumulation of numerical error. The local manifolds are globalized by propagating

the states x̄S+
eq and x̄S−eq in the nonlinear model. This process yields the numerical

approximation for the global manifolds W S+
eq and W S−

eq , respectively, where i = 1, 2,

or 3. The same procedure is employed to approximate the unstable global manifolds,

WU+
eq and WU−

eq . As an example, the global stable and unstable manifolds correspond-

ing to the L1 equilibrium point appear in Figure 3.4.1 in blue and red, respectively,

for the Earth-Moon system. The thick blue and red arrows in Figure 3.4(b) repre-

sent the local manifolds, and are aligned with the stable and unstable eigenvector

directions, v̄−S , v̄+
S and v̄−U , v̄+

U . The zoomed view near the libration point in Figure

3.4(b) demonstrates that the global and local manifolds are initially equivalent. As

the manifolds are propagated in the nonlinear problem, the global manifolds depart

from the approximation supplied by the local manifolds.

3.4.2 Global Center Manifold

The existence of both periodic and quasi-periodic libration point orbits is demon-

strated for the linear system in Section 3.3.2. These solutions persist in the nonlinear

model, and additional families of orbits are located via bifurcations from known fam-

ilies.

Periodic Lyapunov Orbits

From a linear analysis, the existence of both planar and vertical Lyapunov orbits

is demonstrated. Using an orbit from the linear system as an initial guess, a periodic

orbit is converged in the nonlinear model using a differential corrections or targeting
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Figure 3.4. Global stable and unstable manifolds associated with the
L1 point in the Earth-Moon system (L1-centered view)

algorithm. From the converged solution in the nonlinear model, families of the planar

and vertical Lyapunov orbits are computed via numerical continuation methods [34].

Thus, solutions within the global center manifold associated with a libration point

are located. Sample members from the families of planar and vertical Lyapunov
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orbits appear for the Earth-Moon system in Figures 3.5 and 3.6. The orbits within

the families are colored according to the associated value of Jacobi constant so that

red→blue corresponds to higher→lower values of Jacobi constant. Note that the color

mapping is not the same among the different families.
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Figure 3.5. Sample members from the families of Lyapunov orbits in
the Earth-Moon system

Stability of Periodic Orbits and the Monodromy Matrix

In addition to the families of Lyapunov orbits, the families of halo and axial

orbits also exist in the nonlinear model. These families bifurcate from the families of

Lyapunov orbits, that is, the originating member of the halo family is also a member

from the planar Lyapunov family. Two ‘originating’ members of the axial family

also exist and emerge as members of the planar and vertical Lyapunov families. To

compute bifurcations within the Lyapunov families, the stability of the orbits within

these families is assessed.

Recall the linear system defined in equation (3.2), i.e., δ ˙̄x = A(t)δx̄, where δx̄ =

x̄− x̄r, and x̄r is some reference solution, A(t) = Df̄(x̄r) and f̄ is defined by equation
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(2.25) for the CR3BP. The general solution to equation (3.2) is of the form δx̄(t) =

eA(t−t0)δx̄(t0), and the state transition matrix (STM), Φ(t, t0) ≡ eA(t−t0), is defined as

in equation (3.4). Associated with the STM are the following identities:

Φ(t0, t0) = I, (3.53)

Φ(t2, t0) = Φ(t2, t1)Φ(t1, t0), (3.54)

Φ(t0, t1) = Φ(t1, t0)−1. (3.55)

Selecting x̄r = x̄∗ to be some state along a periodic orbit and defining T = t − t0 as

the period of that orbit, then, a stroboscopic mapping PT : δx̄(kT )→ δx̄((k+ 1)T ) is

defined that maps the state δx̄(kT ) = δx̄k to δx̄((k+1)T ) = δx̄k+1, where k = 0, 1, . . .

represents subsequent intersections of the map PT . From this mapping, x̄∗ appears
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as a single fixed point at the origin δx̄ = 0̄, that is, x̄∗(kT ) = x̄∗(0) on the map PT .

The map is linearized relative to x̄∗ as

δx̄k+1 = Φ(T, 0)δx̄k. (3.56)

Equation (3.56) is a discrete time representation of the evolution of solutions nearby

x̄∗, and the matrix Φ(T, 0) is defined as the monodromy matrix associated with the

fixed point. For initial conditions originating near x̄∗ on PT , the linear map in equation

(3.56) describes the behavior of subsequent intersections of PT relative to the fixed

point. Assuming that Φ(T, 0) is not defective, the evolution of δx̄ is described as

δx̄k = Φ(kT, 0)δx̄0, (3.57)

where, by equation (3.54), Φ(kT, 0) = Φ(T, 0)k. The eigenvalues, λi, of Φ(T, 0) are

the characteristic multipliers associated with the fixed point, and v̄i are the associated

eigenvectors. Then, the general solution representing subsequent intersections of the

map is

δx̄k =
n∑
i=1

ciλi
kv̄i. (3.58)

It is clear from this equation that the characteristic multipliers, λi, govern the behav-

ior of δx̄k with time.

The eigenvalue structure of the monodromy matrix can be predicted by Lya-

punov’s theorem.

Theorem 3.4.1 (Lyapunov’s Theorem) If λ is an eigenvalue of the monodromy

matrix, Φ(t0 +T, t0), of a time-invariant system, then λ−1 is also an eigenvalue. The

spectrum of the monodromy matrix of a real time-invariant system is symmetric with

respect to both the unit circle and the real axis [35].

The monodromy matrix associated with a periodic orbit, then, possesses characteris-

tic multipliers that occur in reciprocal pairs. For a complex number with magnitude

equal to unity, the reciprocal is equal to the complex conjugate. The eigenvectors,
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v̄i, associated with λi are linearly independent and span Rn. The space is, therefore,

defined by the union of three invariant subspaces, ES, EU , and EC . Let nS be the

number of characteristic multipliers with real parts of magnitude > 1, nU be the num-

ber with real parts of magnitude < 1, and nC be the number for which |λ| = 1, so that

n = nS + nU + nC = rank(Φ(T, 0)). Then, the dimensions of the invariant subspaces

ES, EU , and EC are nS, nU , and nC , respectively. In the CR3BP, the monodromy

matrix is a real matrix that possesses three pairs of eigenvalues. The monodromy

matrix associated with any periodic solution possesses at least one unit eigenvalue.

Consequently, for Hamiltonian systems, the monodromy matrix associated with a

periodic solution possesses at least one pair of eigenvalues equal to unity, and the as-

sociated eigenvectors are tangent to the periodic solution at the fixed point [36]. That

is, for an initial state x̄(0) along the periodic orbit, the eigenvectors corresponding to

the unit eigenvalues are in the direction ˙̄x(0). Thus, for periodic solutions that exist

within the context of the CR3BP, nC ≥ 2 is always true.

The general solution for the discrete time system evolves with the term λki , as is

apparent in equation (3.58). For λi = 1, λki remains equal to unity and the general

solution neither grows nor decays with time relative to the fixed point. Stability

and boundedness for the discrete system are, therefore, determined by comparing

the magnitude of the eigenvalues to one. If all eigenvalues possess a magnitude less

than one, then, as time progresses, each term λi
k approaches zero, and subsequent

intersections of PT approach the fixed point, δx̄ = 0. The fixed point is, then, defined

as asymptotically stable. Note that a fixed point along a periodic orbit in the CR3BP

cannot be asymptotically stable, as the eigenvalues of the monodromy matrix occur in

reciprocal pairs. If any one of the eigenvalues possesses magnitude greater than one,

then δx̄ grows over subsequent iterations of the map and the fixed point is unstable.

If Φ(T, 0) possesses eigenvalues, λi, λj, such that |λi| < 1 and |λj| > 1, then the fixed

point is nonstable and is identified as a saddle point. The fixed point is considered

neutrally stable when |λ| ≤ 1 for all eigenvalues, but at least one eigenvalue has
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magnitude equal to one and is nondefective. In this case, subsequent intersections of

the map are bounded with respect to x̄∗, but will not naturally return to the fixed

point. Because x̄∗ fully represents the periodic orbit, the stability of the fixed point

determines the stability of the periodic solution [37].

A fixed point is said to be hyperbolic if all characteristic multipliers possess mag-

nitude greater than one, except for the pair of unit eigenvalues, that is, nC = 2.

Then, the following theorem defines the stable and unstable manifolds associated

with hyperbolic fixed points:

Theorem 3.4.2 (The Stable Manifold Theorem for Periodic Orbits) Consider

the n-dimensional autonomous system of equations (2.24), where f̄ ε C1(E) and E is

an open subset of Rn containing a periodic orbit, γ∗ of period T . Let φt be the flow

of the system, and γ∗(t) = φt(x̄
∗). Suppose m, 0 ≤ m ≤ n − 1, of the characteristic

multipliers of γ∗ have magnitude < 1, and n − m − 1 have magnitude > 1. Then,

the stable manifold of γ∗(t), denoted as W S
γ∗, is defined as the set of all points, x̄S,

such that P k
T (x̄S) approaches γ∗ as k → ∞. The stable manifold is of dimension

(m+ 1), is differentiable, and is positively invariant under the flow φt. The unstable

manifold of γ∗(t), denoted as WU
γ∗, is defined as the set of all points, x̄U , such that

P k
T (x̄U) approaches γ∗ as k → −∞. The unstable manifold is of dimension (n−m),

is differentiable, and is negatively invariant under the flow φt [32, 37].

For nonhyperbolic fixed points, nC ≥ 4 and a nontrivial center manifold exists.

Theorem 3.4.3 (The Center Manifold Theorem for Periodic Orbits) Consider

the n-dimensional autonomous system of equations (2.24), where f̄ ε Cr(E) with

r ≥ 1 and E is an open subset of Rn containing a periodic orbit, γ∗ of period T . Let

φt be the flow of the system, and γ∗(t) = φt(x̄
∗). If m of the characteristic multi-

pliers of γ∗ have magnitude < 1, ` have magnitude > 1, and n − m − ` have unit

magnitude, then there exits an m-dimensional center manifold, WC
γ∗, of γ∗ of class
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Cr which is invariant under the flow φt, and is tangent to the center subspace, EC,

of γ∗ at x̄∗ [32].

For stable periodic orbits in the CR3BP, nC = 6 and stable and unstable manifolds

associated with the periodic solution do not exist. For unstable periodic orbits, at

least one reciprocal pair of real eigenvalues exists and the stable and unstable man-

ifolds associated with the fixed point are defined using the same techniques as those

applied for equilibrium points in Section 3.2. Because a periodic solution can be

defined by an infinite number of fixed points along the orbit, an infinite number of

stable and unstable manifolds are associated with an unstable periodic orbit.

Periodic Halo and Axial Orbits

Stepping along the families of Lyapunov orbits in Figures 3.5 and 3.6, parameters

such as the orbital period or Jacobi constant value evolve continuously. Orbital

stability also evolves along a family and stability changes may occur. The location

at which a stability change occurs within a family of periodic orbits is identified as

a bifurcation point. Different types of stability changes are possible, and the type

of stability change determines any qualitative changes that occur as a result of the

bifurcation [38]. By tracking changes in stability along a particular family of planar

Lyapunov orbits, bifurcations to other distinct orbit families may be located. For

the planar and vertical families of Lyapunov orbits, plots depicting the stability of

individual orbits within each family appear in Figure 3.7.
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Figure 3.7. Stability information for Lyapunov orbits in the Earth-Moon system



48

For each representative orbit from Figures 3.5 and 3.6, the number of eigenvalue

pairs for which |λ| = 1/|λ| = 1 is recorded, not including the trivial pair of unit

eigenvalues that exist for any periodic orbit. When (nC − 2)/2 = 0, the orbit is

unstable with stable and unstable manifolds of dimension nS = nU = 2 and there

exists no center manifold except for that associated with the pair of unit eigenvalues.

If (nC − 2)/2 = 1, the orbit possesses stable and unstable manifolds of dimension

nS = nU = 1, and a nontrivial center manifold of dimension nC − 2 = 2. Orbits

corresponding to (nC−2)/2 = 2 are stable and possess no stable or unstable manifolds.

These orbits are associated with a center manifold of dimension nC−2 = 4. Examining

the stability of the planar Lyapunov families, the first bifurcations, labeled Ly-1, yield

out-of-plane families of orbits labeled halo orbits. Thus, the originating member of

a halo family is also a member emerging from the planar Lyapunov family and is

the bifurcating orbit linking the two families. The second bifurcation in the planar

Lyapunov families, labeled Ly-2, leads to the axial orbits. The L1 and L2 planar

Lyapunov families possess a third bifurcation, Ly-3, which corresponds to a period-

doubling bifurcation. The third bifurcation in the L3 planar Lyapunov familiy, Ly-

4, links this family to families of planar orbits that originate from the equilateral

points, L4 and L5 [34]. Examination of the stability plots for the vertical families,

several additional bifurcations are apparent. The first bifurcation in each family is

labeled V-1, and corresponds to a bifurcation to the respective axial families. Thus,

two distinct ‘originating’ members of each axial family exist and are also members

from the planar and vertical Lyapunov families. In the L1 and L2 vertical families,

the second bifurcation, labeled V-2, corresponds to a period-halving bifurcation [39].

The L3 family also experiences this bifurcation as its third bifurcation. The second

bifurcation V-3 in the L3 vertical family connects this family to the L4 and L5 families

of vertical orbits [34].

Sample orbits from northern halo families are plotted for the Earth-Moon system

in Figure 3.8. Southern families also exist and are computed by reflecting the northern
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families across the x-y plane. Portions of the axial families appear in Figure 3.9. Only

those orbits for which z > 0 at the maximal value of y are plotted and are termed the

‘northern’ axial orbits in this investigation. The southern families are computed by

reflecting these members across the x-y plane. Again, the individual orbits within the

families in Figures 3.8–3.9 are colored consistent with the associated value of Jacobi

constant, however, the color mapping is not the same among the different families.

Other families of libration point orbits exist in the nonlinear system, e.g., period

multiplying families of halo orbits [40], but are not employed in this investigation.
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Figure 3.8. Sample members from the families of halo orbits in the
Earth-Moon system

Plots representing the stability of the halo and axial families of orbits appear

in Figure 3.10. For the halo families, the number of complex eigenvalue pairs is

represented as a function of orbit amplitude ratio Az/Ay. At the points H-1, H-

2 and H-4, the L1 and L2 families experience period doubling bifurcations. The
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Figure 3.9. Sample members from the families of axial orbits in the
Earth-Moon system

bifurcations labeled H-3 and H-3 represent a stability change in the family, however,

these bifurcations do not lead to any new orbit families [40]. The L2 halo family

undergoes a period-doubling bifurcation, H-6, that yields the family of L2 butterfly

orbits [34]. Only those orbits with perilune above the surface of the Moon are included

in the plots, thus, a bifurcation from the L1 family of halo orbits to the L4 and L5

families of axials orbits does not appear in the L1 halo stability chart [34]. The

stability of the axial orbits is plotted as a function of amplitude Az. Clearly, the axial

orbits are hyperbolic for all families, that is, nC = 2 for each of these orbits.
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Figure 3.10. Stability information for halo and axial orbits in the
Earth-Moon system
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Quasi-Periodic Orbits

Quasi-periodic orbits are solutions that exist within the center manifold of a

nearby periodic orbit. These orbits are bounded, and close only as t → ∞, that

is, they are periodic solutions with an infinite period. The path traced by a quasi-

periodic orbit lies on the surface of an invariant torus of dimension two or greater.

Thus, a quasi-periodic orbit is defined by two or more frequencies, in contrast to the

single frequency associated with a periodic orbit. Quasi-periodic orbits have been

computed previously by various researchers [41–43]. In this investigation, the tori are

computed directly via the methodology demonstrated by Olikara and Scheeres [44].

Note that a similar strategy is demonstrated by Castellá and Jorba [41] and employed

by Gómez and Mondelo [24].

The path traced by a quasi-periodic orbit lies on the surface of an invariant torus

of dimension two or greater. Thus, a quasi-periodic orbit is defined by two or more fre-

quencies, in contrast to the single frequency associated with a periodic orbit. Assume

that the function ψ̄(θ0, θ1) describes a two-dimensional torus on which a quasi-periodic

orbit lies with associated frequencies ω0 = θ̇0, ω1 = θ̇1. Then, the dimension may be

reduced to one by selecting an initial value of θ0 so that an invariant circle, ū(θ1), along

the torus is defined. Integrating some initial state ū(θ1 = θ1,0) along this circle for

time Tq = 2π
ω0

yields the final state on the circle ū(θ1,0 +ρq), where ρq = ω1 ·Tq. A map,

G, is defined based on the frequencies ω0, ω1 so that propagating discretized states

along ū(θ1) for time Tq and removing the rotation by the angle ρq yields G(ū) = ū.

To compute a torus, a differential corrections algorithm is employed to determine the

values for Tq, ρq, and the discretized states along ū(θ1) that satisfy G(ū) − ū = 0̄,

while applying an additional constraint on the value of Jacobi constant. Once a torus

is constructed, pseudo-arclength continuation is employed to locate additional tori

in the family, assuming that additional phase constraints on θ0 and θ1 are incorpo-

rated. Gaps in a family of tori may occur due to resonance in the torus frequencies.
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Pseudo-arclength continuation is successful to generate the complete family of tori as

long as these resonance gaps are not too large. Given a periodic orbit, a family of

tori is initialized by employing the associated stability information to locate a linear

approximation for a nearby invariant circle. Let λC = eiρ be a complex eigenvalue

and v̄C a corresponding eigenvector associated with the monodromy matrix computed

from a fixed point x̄∗ along the periodic orbit. Then, the initial guess for an invariant

curve centered on x̄∗ is of the form ū(θ1) = k · (cos(θ1)Re(v̄C)− sin(θ1)Im(v̄C)), where

k is a small value used to scale the circle. The period T and the argument ρ of the

complex eigenvalue associated with the central periodic orbit serve as an initial guess

for the values of Tq and ρq associated with a nearby torus. A truncated Fourier series

is used to represent the invariant curve, and a Newton-Raphson method is employed

to compute Tq, ρq, and the discretized states along ū(θ1) that satisfy the constraints.

Further details on the computation of tori are available in Olikara and Scheeres [44].

For periodic orbits with a nontrivial center manifold of dimension (nC−2)/2 ≥ 1,

quasi-periodic orbits associated with the central periodic orbit may be computed. For

example, the halo orbits that exist before the bifurcations H-1 in the L1 and L2 halo

families correspond to nC = 4. Thus, in the vicinity of each these orbits there exists a

family of quasi-periodic solutions called quasi-halo orbits. These solutions correspond

to two-dimensional tori that do not self-intersect in the phase space but may appear

to be self-intersecting when projected into configuration space. Selecting the L1 halo

orbit corresponding to C = 3.15, sample members from the family of quasi-halo tori,

each also corresponding to the Jacobi constant value C = 3.15, are computed and

appear in Figure 3.11 as gray surfaces. Similarly, the vertical orbits that exist before

the bifurcations V-1 in the families of L1, L2 and L3 vertical orbits correspond to

nC = 4. Thus, there exist families of quasi-periodic solutions, commonly denoted the

Lissajous orbits, in the vicinity of the vertical orbits. These Lissajous orbits cover

two-dimensional tori. Sample tori corresponding to the L2 vertical orbit that exists

for C = 3.15 appear in Figure 3.12.
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Figure 3.11. Quasi-periodic tori associated with an L1 halo orbit in
the Earth-Moon system for C = 3.15
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Figure 3.12. Quasi-periodic tori associated with an L2 vertical orbit
in the Earth-Moon system for C = 3.15

3.4.3 Hyperbolic Manifolds Asymptotic to the Global Center Manifold

Recall that, in the linear system, local hyperbolic manifolds asymptotic to libra-

tion point orbits are computed by combining initial conditions from the local center

manifold and the stable or unstable manifold. In the nonlinear system, these mani-

folds also exist and are computed by exploiting stability information associated with

orbits within the global center manifold.

For an unstable orbit x̄(t) of period T , invariant manifold structures exist that

provide transport toward and away from the orbit. A local stable/unstable manifold

is computed by introducing a perturbation to some state, x̄∗ = x̄(τ), 0 ≤ τ ≤ T ,
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that is located along the periodic orbit. This perturbation is along the direction of

the stable/unstable eigenvector associated with the monodromy matrix, Φ(τ + T, τ),

corresponding to x̄∗. Assume that λS < 1 and λU = 1/λS are the stable and unstable

eigenvalues of the monodromy matrix associated with an unstable periodic orbit. Let

v̄U and v̄S be their associated eigenvectors, each of unit length, and define v̄U+, v̄U−,

v̄S+, v̄S− as the two directions associated with each eigenvector. Define the stable

eigenvector as v̄+
S = [ xS yS zS ẋS ẏS żS ]T , where xS > 0. The magnitude of

the eigenvector is adjusted such that

w̄+
S = v̄+

S /
√

xS2 + yS2 + zS2. (3.59)

Thus, the position components of the eigenvector w̄+
S are now of unit length and the

step along the direction of the eigenvector may be computed as

x̄S+ = x̄∗ + d · w̄+
S , (3.60)

x̄S− = x̄∗ − d · w̄+
S , (3.61)

where d represents a distance away from the fixed point. Likewise, the unstable

eigenvector is defined as v̄+
U = [ xU yU zU ẋU ẏU żU ]T , where xU > 0. Then,

the eigenvector employed to compute the unstable manifold direction is

w̄+
U = v̄+

U/
√

xU 2 + yU 2 + zU 2, (3.62)

and the step along the direction of the eigenvector is defined as

x̄U+ = x̄∗ + d · w̄+
U , (3.63)

x̄U− = x̄∗ − d · w̄+
U . (3.64)

The result is an approximation for the local manifolds associated with the fixed point

alobng the orbit. The local half-manifold, WU−
x̄∗,loc (W S−

x̄∗,loc), is approximated by in-

troducing a perturbation relative to x̄∗ along the directions w̄U− (w̄S−). Likewise,

perturbing x̄∗ in the direction w̄U+ (w̄S+) produces the local half-manifold WU+
x̄∗,loc
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(W S+
x̄∗,loc). The magnitude of the step along the direction of the eigenvector is denoted

d, and the value of d is critical because it determines the accuracy with which the local

manifolds are approximated. Selecting d too small yields manifold trajectories that

require long integration times before departure from the vicinity of the periodic orbit,

leading to accumulation of numerical error. If d is too large, then the approximation

to the local manifold is poor. In this investigation, the value of d is selected so that

propagating the initial state along the manifold back toward the periodic orbit, i.e.,

propagating x̄S−, x̄S+ in forward-time and x̄U−, x̄U+ in reverse-time, yields a manifold

trajectory that completes at least 2 revolutions of the periodic orbit. The local stable

manifolds are globalized by propagating the states x̄S+ and x̄S− in reverse-time in

the nonlinear model. This process yields the numerical approximation for the global

stable manifolds, W S+
x̄∗ and W S−

x̄∗ , and unstable manifolds, WU+
x̄∗ and WU−

x̄∗ , where −

and + indicate the left and right sets of manifolds, respectively. The collection of

all unstable manifolds forms the surfaces WU+ and WU− that reflect asymptotic flow

away from the periodic orbit. Likewise, the collection of all stable manifolds forms

the surfaces W S+ and W S− that reflect asymptotic flow toward the orbit. In Figure

3.13(a), a subset of trajectories on the unstable/stable manifold associated with an

L1 northern halo/L2 vertical orbit in the Earth-Moon system are propagated for a

fixed time interval, and are plotted in red/blue.

Several numerical schemes have been developed to locate the stable/unstable man-

ifolds asymptotic to quasi-periodic orbits [23, 45, 46]. In this analysis, families of

quasi-periodic tori and their associated manifolds are computed numerically using

techniques demonstrated by Olikara and Scheeres [44]. Recall from Section 3.4.2 that

the function ν̄(θ0, θ1) describes a two-dimensional torus on which a quasi-periodic or-

bit with associated frequencies ω0 = θ̇0, ω1 = θ̇1 lies, then, the dimension of the torus

may be reduced to one by selecting an initial value of θ0 so that an invariant circle,

ū(θ1), along the torus is defined. A map, G, is defined based on the frequencies ω0,

ω1 so that propagating discretized states along ū(θ1) for time T0 = 2π
ω0

and removing
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the rotation by angle ρ = ω1 · T0 due to frequency ω1 yields G(ū) = ū. To compute a

torus, a differential corrections algorithm is employed to locate ω0, ω1, and discretized

states along ū(θ1) that satisfy G(ū)− ū = 0, while applying an additional constraint

on the value of Jacobi constant. Once a torus is located, pseudo-arclength continua-

tion supplies a method to locate additional tori in a family, assuming that additional

phase constraints on θ0 and θ1 are included. The families of tori corresponding to

quasi-halo and Lissajous orbits are initialized from the periodic halo and vertical

orbits by employing the associated stability information to locate a linear approxi-

mation to a nearby invariant circle. Recalling that a periodic orbit represents a fixed

point under the stroboscopic map F (x̄) defined by time T , then stability information

for the periodic orbit is recovered by examining the eigenvalues associated with the

linearization of the map, i.e., the monodromy matrix Φ(T, 0) = Fx̄. Analogously, the

invariant circle, ū(θ1), represents a fixed point of the map G(ū) defined by time T0

and frequency ω1. Thus, stability of the torus is determined by the eigenvalues of

the matrix defined by the linearization of the map G, that is, Gx̄. The eigenvectors

corresponding to eigenvalues that lie off of the unit circle in the complex plane are

tangent to the stable and unstable manifolds associated with each of the discretized

states along ū(θ1) on the torus.

Examples of tori corresponding to quasi-halo (left) and Lissajous (right) orbits ap-

pear in Figure 3.13(b). For each torus, a single manifold trajectory is propagated for

a fixed time interval; propagating the manifolds back toward the quasi-periodic orbits

(i.e., in forward-time for the stable manifold and in reverse-time for the unstable man-

ifold) for 2 ·T0 yields two revolutions along the quasi-periodic orbits, plotted in black.

Alternatively, numerical methods exist to compute quasi-periodic orbits over a finite

time interval. Assuming that the orbit is nearly periodic over a particular revolution,

i.e., that the initial and final states are sufficiently close, the period, T , necessary

to compute the monodromy matrix for periodic orbits, may be approximated. For

example, T may be defined as the time elapsed between the initial state along a
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Figure 3.13. Sample stable (blue) and unstable (red) manifolds asso-
ciated with periodic orbits and quasi-periodic tori with in the Earth-
Moon system for C = 3.15

particular revolution and the closest approach to that state within one revolution of

the quasi-periodic orbit. With an approximation for the monodromy matrix com-

puted (for one revolution of the quasi-periodic orbit), approximations to the global

stable and unstable manifolds may be located using the same methodology as for

periodic orbits. Employing this alternative strategy to compute the manifolds asso-

ciated with quasi-periodic orbits yields qualitatively similar results when compared

with the method defined by Olikara and Scheeres for all results in this study.

3.5 Invariant Manifolds as Separatrices and Transit

The notion of invariance has significant implications for the behaviors of solutions

in the CR3BP. Recall the definition of invariance from Section 3.2: any solution

which is initially in an invariant subspace remains in that subspace for all past and

future times. Each of the Lagrange points is invariant, as are the periodic orbits

that exist in the CR3BP. Additionally, the stable and unstable manifolds associated

with the libration points, and with the periodic orbits, are invariant. Thus, by the
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definition of invariance, no solution of the system defined by equation (4.1) can ever

pass through a libration point, a periodic orbit, or an invariant manifold in the six-

dimensional state space [33]. An examination of the regions near the libration points

clarifies one impact of this invariance property, namely, the existence of transit and

nontransit solutions. Transit trajectories are solutions that pass through a gateway

of the zero-velocity curves in the vicinity of a collinear point. Thus, these solutions

can pass between adjoining regions of the ZVCs. For example, trajectories that pass

from the interior region, through the L1 gateway, and into the P2 region are transit

trajectories. Conversely, trajectories that do not pass through the gateway are termed

nontransit trajectories. Transit offers a means of transport throughout the space and

is a phenomenon that is experienced by some Jupiter family comets, thus, techniques

to construct and analyze transit solutions are of interest.

In the linear system, Conley [11], Wiggins et al. [33], Koon et al. [12], and Gómez

et al. [13] demonstrate that the manifolds tubes asymptotic to the center manifold

associated with a collinear libration point are separatrices that delineate two distinct

trajectory behaviors, transit and nontransit. Then, the following behavior is implied:

trajectories that lie inside these higher-dimensional stable or unstable manifold tubes

may pass between adjoining regions of the ZVCs, while trajectories that lie outside of

these manifold tubes cannot pass between the adjoining regions. While the analysis

in is for the linear system, transit and nontransit solutions in the nonlinear system

are also defined by their relationship to the invariant manifolds [12, 13]. Methods to

locate and compute these solutions are demonstrated in following chapters.
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4. POINCARÉ MAPS AND TRAJECTORY DESIGN

The Poincaré map is a valuable tool that offers insight into the complicated dynam-

ics in the three-body problem. Defining a surface of section or hyperplane, Σ, a

map is generated by propagating initial conditions and then recording and displaying

crossings of the resulting trajectories with Σ. Combining the use of a Poincaré sec-

tion with a constraint on the value of Jacobi constant reduces the dimension of the

system by two. In the planar problem, the state space is, therefore, entirely repre-

sented by the projection onto a plane. In the spatial problem, these reductions yield

a four-dimensional Poincaré map, i.e., a map that exists in R4. Thus, crossings of

Σ are no longer fully represented in two dimensions and techniques to visualize the

higher-dimensional Poincaré map are required.

4.1 Poincaré Maps

The first-return map, or Poincaré map, was introduced in 1881, by Henri Poincaré

as a strategy to explore the stability of periodic orbits [9, 32]. Today, Poincaré maps

are a relatively common tool in the analysis and visualization of the behavior of a

dynamical system as it evolves. Consider an autonomous n-dimensional continuous-

time system

˙̄x = f̄(x̄), (4.1)

and recall that the flow, φt, as the differential equation evolves, is defined by f̄ so that

φt(x̄) = φ(x̄, t) is smooth and
d

dt
(φ(x̄, t))|t=τ = f̄(φ(x̄, τ)). Define Σ1 ⊂ Rn and Σ2 ⊂

Rn as (n − 1)-dimensional hypersurfaces, or surfaces of section, that represent cross

sections of the dynamical flow, φt. While Σ1 and Σ2 are not planar, in general, they

should be transversal to φt, that is, some component of the flow must be perpendicular
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to the hypersurface [31]. A Poincaré map, P , is a mapping of φt from one surface of

section, Σ1, to the next, Σ2, that is, P : Σ1 → Σ2 [47]. The surfaces of section are

often selected such that Σ1 = Σ2, in which case, the Poincaré map is a mapping of

subsequent intersections with a single hypersurface.

For one hypersurface, Σ, there are three definitions that yield three distinct

Poincaré maps. Define Σ+ as the hypersurface for which all intersections with the

hyperplane occur such that the component of the flow normal to the surface of sec-

tion changes from negative to positive. Then, Σ− is the hypersurface that is defined

by all intersections with the surface that are in the opposite direction. Finally, the

hypersurface for which intersections may occur in either direction is denoted Σ± or,

simply, Σ. Hypersurfaces Σ+ and Σ− are one-sided surfaces of section, while Σ is

a two-sided surface of section [37]. A schematic of three trajectories intersecting a

one-sided surface of section, Σ+, is depicted in Figure 4.1.

Figure 4.1. Schematic of a one-sided Poincaré map

A Poincaré map is often useful to locate regions of distinct behavior in the solution

space. Define γ∗ as a periodic solution of minimum period T that possesses a state x̄∗

along the trajectory. Then, φt(x̄
∗) = φt+T (x̄∗) and x̄∗(t0) = x̄∗(t0+T ). The trajectory

labeled γ∗ in Figure 4.1 represents a periodic orbit that always intersects Σ in the
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same location, x̄∗. The point x̄∗ is defined as a fixed point, that is, x̄∗ = P (x̄∗) [37].

The representative periodic solution, γ∗, intersects Σ in one fixed point, however,

in general, a periodic solution may possess multiple fixed points that coincide with

the surface of section. As an example, a two-sided surface of section that bisects

γ∗ contains two fixed points. Starting with the initial condition x̄1 near x̄∗ on Σ+,

the trajectory labeled γ1 represents a solution that remains in the vicinity of γ∗,

with a second crossing of Σ that lies nearby x̄∗. The third trajectory, γ2, possesses

an initial state, x̄2, that represents the only intersection of γ2 with the map. This

trajectory escapes the vicinity of Σ+ in both forward- and reverse-time. Traditional

surfaces of section are sometimes represented as planes in configuration space, such

as Σ = {x̄| x = 1 − µ}, or Σ = {x̄| y = 0}. However, Σ may be any surface and

a physical surface is not required. Nevertheless, to visualize the flow for a surface

of section that is defined in terms of position coordinates, the Poincaré map is often

projected onto a plane in a mixed position-velocity space.

4.1.1 Identification of Structures within Poincaré Maps

Poincaré maps can be used as a tool to identify distinct qualitative behaviors

within a system. An illustrative example of a Poincaré map is demonstrated in Figure

4.2. This map is generated in the PCR3BP, so that the map, defined by constraining

the Jacobi constant value and employing a Poincaré section, is two-dimensional. In

his “Numerical exploration of the restricted three-body problem” and subsequent

papers, Michel Hénon examines the behavior of solutions based on their intersections

with the Poincaré map [48–50]. Three types of behavior are readily identifiable from

the map: periodic orbits, quasi-periodic motion, and chaotic trajectories. At least

two stable periodic solutions are represented on the map in Figure 4.2. One such

orbit, labeled “periodic orbit a”, corresponds to a single fixed point near the center of

the map, indicated by a red asterisk. A second stable orbit, “periodic orbit b”, exists
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Figure 4.2. Illustrative Poincaré map

and possesses a total of nine fixed points on the map, depicted as red dots. The orbit

does not close after a single revolution and, thus, this path includes multiple fixed

points on the map. Because these orbits are stable, quasi-periodic orbits exist within

their center subspaces. A quasi-periodic trajectory does not repeat in finite time, but

is bounded within some vicinity of the associated periodic solution, thus, it does not

intersect Σ in a single fixed point. Instead, the intersections of quasi-periodic orbits

remain bounded with respect to the central fixed point of the associated periodic

solution, such as γ1 in Figure 4.1. The concentric contours surrounding the fixed

points in Figure 4.2 are the intersections formed by quasi-periodic solutions in the

vicinity of the periodic orbits. Two distinct regions of quasi-periodic motion are

visible, corresponding to the two distinct periodic orbits. A large region of quasi-

periodic motion is readily identifiable around the central fixed point on the map.

Additionally, a chain of nine islands of quasi-periodic motion encompass the nine fixed

points belonging to the other periodic solution. These islands are identified as ergodic

regions by Hénon because they fill only a portion of the space and cannot be connected
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by a simple curve [50]. Because the quasi-periodic solutions are elements of the center

subspace of the periodic orbit, they are invariant solutions and can never cross one

another. Thus, each concentric contour belongs to a distinct quasi-periodic orbit. A

notable feature of these stable periodic and associated quasi-periodic orbits is their

“robustness,” that is, given a small perturbation in the initial state of a solution in

this regime, the resulting orbit is, generally, only slightly perturbed from the original

solution. Finally, a large region of chaotic motion is evident that surrounds the local

zones of periodic and quasi-periodic motion. The seemingly random intersections in

the chaotic region reflect trajectories for which small perturbations in the initial state

propagate to large perturbations in the final state. Crossings of unstable periodic

orbits may lie within the chaotic zones, but are, generally, not readily distinguishable.

Unstable periodic orbits may possess a nontrivial center manifold and, therefore,

may be associated with nearby quasi-periodic solutions. However, when propagating

random initial conditions nearby a fixed point associated with an unstable periodic

orbit, the unstable/stable manifold will dominate and the behavior will, generally,

appear chaotic. Thus, subsequent crossings of the map exist in chaotic regions. While

there is no apparent structure within the chaotic regions, the trajectories in this

regime share the common trait that they escape the regions of periodic and quasi-

periodic motion, similar to γ2 in Figure 4.1, rather than remaining bounded to these

regions.

4.1.2 Dimensionality of Poincaré Maps

Poincaré maps representing crossings of manifold structures with Σ are employed

throughout this investigation, thus, it is useful to define the dimensionality of the

structures (libration point orbits and their associated invariant manifolds) in the

vicinity of the collinear libration points. Details on the dimension of structures in the

vicinity of the collinear points are additionally provided by Gómez et al. [13].
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The collinear points possess a topological structure of type saddle×center×center.

Then, there exists a four-dimensional center manifold (topologically, an invariant 4-

sphere) in the vicinity of these libration points that may be reduced to a 3-sphere

via a constraint on the Jacobi constant value. The center manifold is comprised

of a combination of one-dimensional periodic orbits (e.g., Lyapunov, vertical, halo,

and axial orbits) and two-dimensional tori corresponding to families of quasi-periodic

solutions associated with the periodic orbits. The stable and unstable manifolds

form four-dimensional ‘tubes’ asymptotic to the 3-sphere of the center manifold. The

stable/unstable manifold asymptotic to a particular periodic orbit is two-dimensional,

that is, any point on the surface is defined by two parameters, (1) the departure

location on the one-dimensional orbit, and (2) the time-of-flight along the manifold.

A manifold asymptotic to a particular quasi-periodic orbit is three-dimensional and

any point on the surface is defined by three parameters, (1)–(2) the departure location

on the two-dimensional torus, and (3) the time-of-flight along the manifold. Thus, the

collection of manifolds that are asymptotic to the three-dimensional center manifold

is four-dimensional, and is parameterized by the three angles on the 3-sphere and a

time-of-flight along the manifold. Then, a Poincaré map depicting crossings of the

stable/unstable manifold in the spatial problem is three-dimensional in R4.

In the planar problem, the two-dimensional center manifold associated with a

collinear point is composed solely of planar Lyapunov orbits. For a particular value

of Jacobi constant, the center manifold consists of a single periodic orbit and is,

therefore, one-dimensional. The manifolds asymptotic to the periodic orbit are two-

dimensional, as in the spatial problem. Thus, a Poincaré map representing crossings

of the stable or unstable manifold associated with a Lyapunov orbit is one-dimensional

in R2, and the manifold crossings appear as closed contours on the map.
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4.2 Existing Design Techniques Employing Poincaré Maps in the Planar

Problem

Poincaré maps have been previously demonstrated as a useful tool for a variety

of applications in the CR3BP. Early use of Poincaré maps included the analysis of

periodic and quasi-periodic orbits as well as chaotic zones by Hénon [48,50]. More re-

cently, Koon et al. [12], Gómez et al. [23], Barrabés et al. [51,52], and Parker et al. [53]

employ a variety of types of Poincaré maps to locate heteroclinic connections, i.e.,

free transfers between periodic orbits employing invariant manifolds, linking planar

orbits in the CR3BP. Koon et al. [12] additionally demonstrates the use of invari-

ant manifolds and Poincaré maps to locate planar transit trajectories that bridge

adjoining regions of the ZVCs. Villac and Scheeres [47] as well as Paskowitz and

Scheeres [25] employ periapse maps to classify regions of immediate escape/capture

in the Hill three-body problem. Haapala [14] employs periapse maps to demonstrate

that the invariant manifolds provide the boundaries for these regions of escape from

the smaller primary in the planar CR3BP. Haapala [54–56], Davis [15, 28, 56], and

Howell [55,56] also examine these regions of escape from the perspective of invariant

manifolds.

Recall that, in the full spatial problem, the center manifold in the vicinity of the

collinear libration points is a 4-sphere that may be reduced to a 3-sphere using a

constraint on the Jacobi constant value. In the planar problem, however, only the

periodic Lyapunov orbits exist within the two-dimensional center manifold. By con-

straining the value of the Jacobi constant, the center manifold is comprised of a single

Lyapunov orbit and the manifold surface asymptotic to the Lyapunov orbit is two-

dimensional. Because the system is three-dimensional for a particular value of Jacobi

constant, these two-dimensional manifold tubes act as separatrices that distinguish

two categories of behavior: transit solutions that can pass through adjoining regions

of the ZVCs, and nontransit trajectories that are bounded to their region of origina-
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tion [11–13, 33]. The crossings of the two-dimensional manifold on a Poincaré map

generally form a closed contour in R2, and initial conditions within this contour corre-

spond to transit trajectories. Poincaré maps are, therefore, useful to identify transit

orbits that traverse adjoining regions defined by the ZVCs. Maps also prove valuable

to locate transfer trajectories that provide connections between libration point orbits.

In the following example, strategies employing Poincaré maps to compute maneuver-

free transfers and transit trajectories are demonstrated. By displaying crossings of sta-

ble and unstable invariant manifold structures associated with libration point orbits

on a map, initial conditions correspond to transit orbits may be loctated. Trajectories

that exist within the intersection of stable and unstable manifold tubes correspond

to maneuver-free (heteroclinic/homoclinic) transfers between libration point orbits.

These trajectories possess crossings on the map that lie on the intersection of two

distinct contours, one contour associated with a stable manifold and the other with

an unstable manifold. To demonstrate the use of Poincaré maps to locate hetero-

clinic connections between planar libration point orbits, consider the map in Figure

4.3. The plot in 4.3(b) depicts a projection of the crossings of the stable manifold
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tion of manifold contours on a Poincaré map for the planar problem;
Earth-Moon system for C = 3.15 (Moon-centered view)
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asymptotic to an L1 Lyapunov orbit and the unstable manifold associated with an L2

Lyapunov orbit with the surface Σ, apparent in Figure 4.3(a), defined by x = 1 − µ

for C = 3.15 in the Earth-Moon system; these intersections with Σ form contours in

the y-ẏ phase space. The map is one-sided, that is, only crossings in one direction

(ẋ > 0 in this example) are included. For each point on the map, x = 1 − µ, y and

ẏ are available from the map, and ẋ is computed from the specified value of Jacobi

constant. Thus, an intersection of the two contours in the y-ẏ plane indicates a match

in the full state space, and the existence of a heteroclinic connection between the L1

and L2 Lyapunov orbits. The contours in Figure 4.3(b) intersect in two locations,

marked by black dots on the map, yielding two distinct heteroclinic transfers that are

plotted in black in Figure 4.3(a). To compute a transit solution, initial conditions

within one of the contours are selected. The green dot in Figure 4.4(b) represents

an initial condition that is within both contours, thus, corresponds to transit in both
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Figure 4.4. A transit soltuion is computed from initial conditions
within the manifold contours on a Poincaré map for the planar prob-
lem; Earth-Moon system for C = 3.15 (Moon-centered view)

reverse- and forward-time, through the L1 and L2 gateways, respectively. The map in

the figure is the same map as in Figure 4.3(b), however, represents a close view of the

region of overlap of the red and blue contours with different axis scaling. Propagating
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this state yields the green transit trajectory in Figure 4.4(a) that enters the P2 region

through the L1 gateway from the interior, and subsequently escapes to the exterior

region through L2.

4.3 Existing Design Techniques Employing Poincaré Maps in the Spatial

Problem

While a Poincaré map associated with a particular value of Jacobi constant in the

planar CR3BP is two-dimensional (i.e., ∈ R2), maps in the spatial problem are at least

four-dimensional (∈ R4) and are difficult to display visually. Previous researchers

employ a number of approaches to represent the information contained in higher-

dimensional Poincaré maps. Generally, these methods either serve to reduce the

dimension of the map, or to offer strategies for visually representing the higher-

dimensional data set. As a third option, the map may be projected into a lower-

dimensional space so that, while some information is lost, valuable insight might still

be gained.

Early work with higher-dimensional maps generally includes orthographic projec-

tions to gain insight into the higher-dimensional space, e.g. Froeschlé [16,17], Martinet

and Magnenat [18] as well as Contopoulos et al. [19]. Froeschlé [17] additionally con-

siders “slices” of the three-dimensional projection of a map. Here, he plots numerous

stereoscopic projections, each of which include only the crossings of the map within

some tolerance of a prescribed value of one of the state variables. Later, Patsis and

Zachilas employ rotation of a three-dimensional image so that all projections may

be considered, and include color to represent the fourth dimension [20]. Geisel [21]

applies this method to investigate structures within the CR3BP. While the strategies

employed by Patsis, Zachilas, and Geisel serve to represent the full map, rotation of

the view is required to consider all possible orthographic projections.
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Alternatively to considering projections of a higher-dimensional map, the dimen-

sion of the map may be reduced by applying additional constraints. For example,

to examine the behavior in the vicinity of the collinear libration points, Jorba and

Masdemont [22] and Gómez et al. [23] obtain higher-order normal form expansions

of the Hamiltonian in the vicinity of the equilibrium points to decouple the oscil-

latory and unstable motion. A change in variables allows for the removal of the

unstable behavior via a reduction to the center manifold, and yields a system with

two degrees of freedom. Thus, two-dimensional Poincaré maps associated with pe-

riodic and quasi-periodic orbits in the spatial problem for a particular energy level

are represented using two nonphysical coordinates. Gómez et al. [13, 24] compute

the stable/unstable manifold asymptotic to the center manifold associated with a

collinear point for a particular energy level and employ a Poincaré map to reduce the

problem to four dimensions. Constraints on the values of two additional variables

are applied by considering only crossings of the map that exist within some tolerance

of those values. Thus, a Poincaré map corresponding to constraints on 3 different

variables is approximated. The resulting map is two-dimensional and may be repre-

sented by the projection onto a plane. Paskowitz and Scheeres [25] employ periapse

maps to classify trajectory behavior in the spatial problem, and represent the full

six-dimensional state associated with a perispse map crossing by plotting vectors in-

stead of points. The basepoint of each vector represents the position components in

three-dimensional configuration space, and the length and orientation of the vector

indicate the velocity at periapsis. In the following example, strategies demonstrated

by Gómez et al. [13, 24] to reduce the dimension of a Poincaré map in the spatial

problem are further exlored.

Recall that, in the spatial problem, both periodic and quasi-periodic orbits exist

within the center manifold associated with a collinear libration point and that the

hyperbolic invariant manifold tangent to this center manifold provides the separatrix

that distinguishes transit from nontransit behavior in the spatial problem. Gómez
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et al. [13, 24] exploit this information to locate transit trajectories in the spatial

problem using Poincaré maps. These authors additionally employ maps to compute

heteroclinic and homoclinic connections between libration point orbits in the spatial

problem. Because a Poincaré map displaying crossings of the four-dimensional sta-

ble/unstable manifold is a three-dimensional surface that exists in R4, the map is

reduced to a contour in R2 by constraining two additional variables. To demonstrate

the application of this method, consider an example in the Earth-Moon system for

the Jacobi constant value C = 3.15. Sample libration point orbits within the center

manifolds associated with L1 and L2 are computed, including the periodic halo and

vertical orbits as well as subsets of the families of quasi-periodic tori that are gen-

erated via the method demonstrated by Olikara and Scheeres [44]. The stable and

unstable manifolds associated with each of the periodic and quasi-periodic orbits are

additionally computed as described by Olikara and Scheeres. While both northern

and southern halo orbits exist, only the northern halo and associated quasi-halo or-

bits are actually computed numerically. The manifolds associated with the southern

orbits are obtained via a reflection across the x-y plane. A total of ∼ 106 manifold

initial conditions are generated to approximate the hyperbolic invariant manifold

asymptotic to the center subspace of each collinear point, i.e., asymptotic to the set

of sample periodic and quasi-periodic orbits in the vicinity of the libration points.

To search for transfers connecting libration point orbits in the vicinity of L1 and

L2, the unstable manifold asymptotic to the L1 center manifold and the stable mani-

fold associated with the center manifold of L2 are employed. The previously generated

initial conditions corresponding to trajectories on these manifold surfaces are propa-

gated, and crossings of the hyperplane Σ+
P2

= {x̄|x = 1−µ, ẋ > 0} are recorded. The

projection of the resulting map onto the y-z plane appears as a pair of two-dimensional

disks in Figure 4.5(a), where red and blue points correspond to the unstable and sta-

ble manifolds, respectively. Note that the surface of the Moon is also included as the

gray sphere on the plot, and that a subset of the manifold arcs impact the Moon.
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Figure 4.5. Reducing y = 0 map of invariant manifolds to 1D con-
tours in R2 for C = 3.15 in the Earth-Moon system, (a) projection of
map onto y-z plane, (b) reducing to 2D surfaces by selecting z = z0

reveals black contour defining intersection of manifolds, (c) ż = ż0

plane intersects surfaces to form contours, (d) maps reduced to 1D by
constraining z ≈ z0, ż ≈ ż0

The projection of the map onto another plane in the phase space (excluding the x-

coordinate), such as the ẏ-ż velocity plane, also appears as two-dimensional disks.

By constraining one additional variable, the Poincaré map associated with the sta-
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ble/unstable manifold is reduced to a two-dimensional surface in R3. In this example,

the constraint z = z0 = −0.0125 = −4805 km is selected and is represented by the

black line in Figure 4.5(a). Because a finite number of trajectories sampled from each

manifold surface are integrated, all points within the range (z0 − δ) ≤ z ≤ (z0 + δ)

are included, where δ ∼ 200 km for this example. Now, projecting the map into

velocity space yields the two-dimensional surfaces that appear in Figure 4.5(b). The

red and blue surfaces intersect with one another forming a contour, plotted in black,

that represents heteroclinic connections between libration point orbits in the vicinity

of L1 and L2. Selecting a black point on the map and propagating the associated

state in the CR3B model will yield a maneuver-free transfer that provides a connec-

tion between L1 and L2 orbits. By applying one additional constraint, the Poincaré

map associated with each manifold is reduced to a one-dimensional contour in R2.

Arbitrarily selecting a value of ż = ż0 = 13.2 m/s (δ ∼ 1 m/s), represented by the

gray plane in Figure 4.5(c), yields the contours plotted in Figure 4.5(d). These con-

tours are labeled γU,1z0ż0
and γS,1z0ż0

using the notation defined by Gómez et al. Here, U

or S denotes the contour as belonging to the unstable or stable manifold, the num-

ber 1 indicates that these contours correspond to the first crossings of the manifolds

with the map, and the subscripts z0ż0 indicate that the map crossings are defined for

constrained values of z = z0 and ż = ż0.

The contours on the map in Figure 4.5(d) intersect in two locations, indicated

by the two black points. The states associated with these points represent the two

heteroclinic connections that lie on the intersection of the black contour and the gray

plane in Figure 4.5(c). Analogously to the planar problem, choosing any point within

the narrow region of overlap of the red and blue contours yields a transit trajectory

that passes through the L1 and L2 gateways. The heteroclinic connections and a

sample transit orbit appear in Figure 4.6. Because the green initial condition is in close

proximity to the stable and unstable manifolds, the transit trajectory retains some

oscillatory behavior within the gateways, completing about one half of a revolution
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(a) transit trajectories and heteroclinic connections

(b) planar projection of transit trajectory

Figure 4.6. Heteroclinic connections and a transit trajectory located
using maps in the Earth-Moon system (Moon-centered views)

about L1 during entry to the lunar region and about L2 during escape. Selecting

any point within the red contour and outside of the blue contour yields a trajectory

that enters through the L1 gateway but that does not immediately escape, such as

the magenta arc in Figure 4.7. The cyan arc in Figure 4.7 corresponds to an initial

condition selected within the blue contour, but outside of the red boundary. This

trajectory immediately escapes through the L2 gateway, but does not immediately

enter from the L1 gateway when propagated in reverse-time.
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Figure 4.7. Trajectories with map crossings outside of the intersection
of the manifold contours do not transit both gateways (Moon-centered
views)
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5. NEW APPLICATIONS FOR EXISITNG DESIGN

TECHNIQUES

In the previous chapter, several of the existing techniques for trajectory design in the

CR3BP are discussed. These techniques, outlined in Section 4.3, are demonstrated

for the computation of transit trajectories and maneuver-free transfers between libra-

tion point orbits in the spatial problem. In the following sections, new applications

for these methods are explored. In this investigation, strategies to design transit tra-

jectories in the spatial problem are applied to examine the relationship between the

behavior of comets that experience temporary capture by Jupiter and the invariant

manifold structures associated with the collinear points in the Sun-Jupiter system.

Additional applications, outside of the computation and analysis of transit trajecto-

ries or heteroclinic/homoclinic connections, include the search for periodic orbits in

the spatial problem. By exploiting known symmetry properties, Poincaré maps prove

useful to search for symmetric periodic orbits.

5.1 Analysis of the Temporary Capture of Jupiter-Family Comets

The application of Poincaré maps for the analysis of temporary satellite capture

phenomena yields insight into the dynamics associated with the capture and transit

events experienced by several Jupiter-family comets. Temporary satellite capture

(TSC) about Jupiter is defined for this investigation when the osculating orbital

elements associated with the satellite relative to Jupiter become elliptical for some

period of time during encounter with Jupiter [57]. A number of Jupiter-family comets

experience TSC, including 39P/Oterma, 147P/Kushida-Muramatsu, 82P/Gehrels 3,

and 111P/Helin-Roman-Crockett [12,55,58–61]. To enter and exit the Jupiter region
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during a TSC event, these comets must transit through the L1 and/or L2 gateways.

In the CR3BP, transit phenomena are explained via the stable/unstable invariant

manifolds associated with libration point orbits. Thus, in this investigation, strategies

to employ Poincaré maps for the study of transit in the CR3BP are applied to gain

insight into the naturally occuring temporary capture of Jupiter-family comets.

5.1.1 Comet 39P/Oterma

Between 1910 and 1990, comet 39P/Oterma (OTR) experienced two distinct TSC

events. The first temporary capture occurred between 1935 and 1939, during which

time OTR entered from the exterior region and passed directly through the Jupiter

region and into an interior orbit. A single revolution about the Sun in the rotating

frame occurs in the interior region, followed by a second encounter with Jupiter. The

second TSC event took place from 1962 to 1964, during which time the comet passed

directly through the Jupiter region and returned to an exterior orbit. The path of

comet OTR between 1910 and 1990 appears in Figure 5.1 for the Sun-Jupiter rotating

frame.

The transition of OTR between the exterior/interior regions and the Jupiter region

through the L2/L1 gateways may be examined by applying the techniques demon-

strated by Gómez et al. [13,24] Poincaré maps have been previously applied to study

the motion of Jupiter-family comets (e.g., Koon et al. [12], Haapala and Howell [55].

To explore the relationship between the trajectory of OTR and the invariant mani-

folds asymptotic to the center manifold of L1 or L2, Poincaré maps associated with

the surfaces Σ−P2
= {x̄|x = 1 − µ, ẋ < 0}, Σ+

P2
= {x̄|x = 1 − µ, ẋ > 0} are employed.

The crossings of OTR with ΣP2 are observed relative to the crossings of the stable

and unstable invariant manifolds. To compute the map, a value of C = 3.02 (near the

osculating Jacobi constant value for OTR) is assumed, and a sample set of periodic

and quasi-periodic orbits within the center manifold associated with L1 and L2 are
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Figure 5.1. Ephemeris path of comet OTR as viewed in the Jupiter-
centered Sun-Jupiter rotating frame

computed. Approximately 1 × 106 initial conditions are computed for the unstable

manifold associated with the L1 and L2 libration point orbits and are integrated in

the CR3B model. The stable manifolds are determined, using symmetry properties,

by the transformation t→ −t, y → −y, ẋ→ −ẋ, ż → −ż.

In the CR3BP, trajectories that enter through the L2 gateway from the exterior lie

within the unstable manifold that departs the center manifold of L2, considering the

manifold half-tubes that are propagated into the P2 region WU−
L2

. Similarly, trajec-

tories that escape through L2 exist within the stable manifold tube W S−
L2

. Likewise,

trajectories that escape through the L1 gateway to the interior lie within the stable

manifold W S+
L1

, and trajectories that enter through L1 from the interior exist within

the unstable manifold WU+
L1

asymptotic to the center manifold of L1. Noting that
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OTR crosses ΣP2 once as it passes through the P2 region for each TSC event, it is

expected that the first crossing of OTR after entry from the exterior region lies within

the first crossing of WU−
L2

and within the first crossing of W S+
L1

. Define (y1, z1) as the

(y, z) location at the crossing of the path of OTR with Σ−P2
after entry from the exte-

rior. To locate this first crossing of the comet path relative to the manifolds WU−
L2

and

W S+
L1

, the contours γU,1y1z1
and γS,1y1z1

are computed. The velocity (ẏ1, ż1) associated with

the crossing of OTR is expected to lie within both contours γU,1y1z1
and γS,1y1z1

. Recall

from the previous discussion that the contours γU,1y1z1
and γS,1y1z1

are obtained by con-

sidering only those crossings of the manifold within some tolerance of the locations

y = y1 and z = z1. An examination of the map in Figure 5.2(a) reveals that the
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Figure 5.2. Location of OTR state relative to invariant manifolds at
ΣP2 for C = 3.02

crossing of the path of OTR indeed lies within these contours formed by the invariant

manifolds. During the second TSC event, OTR crosses Σ+
P2

once as it passes through

the P2 region after entry from the interior. The location of this crossing is defined as

(y2, z2), and the associated velocity states in the y and z directions are ẏ2 and ż2. It

is expected that the crossing of OTR with Σ+
P2

lies within the first crossing of WU+
L1

and within the first crossing of W S−
L2

. The map crossing of the comet path is located
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relative to these manifolds by considering the contours γU,1y2z2
and γS,1y2z2

on the map,

and the velocity (ẏ2, ż2) is expected to be within both contours. The map in Figure

5.2(b) indicates that the path of OTR during the second TSC event is also within the

expected invariant manifold tubes. Thus, the behavior of OTR during TSC appears

to be governed by the invariant manifold tubes asymptotic to the center manifolds

of L1 and L2. Both the type of transit (exterior-to-interior and interior-to-exterior)

and duration of the TSC event (direct pass through the P2 region) are determined by

these manifolds.

5.1.2 Comet 111P/Helin-Roman-Crockett

Shortly after the discovery of comet 111P/Helin-Roman-Crockett (HRC) in 1989,

it was determined that the comet had experienced a close approach to Jupiter. [59,61]

Transitioning from an interior orbit to the Jupiter region in 1967, the comet was

temporarily captured for until 1985, at which time HRC returned to the interior

region. Unlike the relatively brief TSC events experienced by the comet 39P/Oterma,

HRC remained captured about Jupiter for 18.5 years. The path of HRC in the vicinity

of Jupiter during TSC appears in Figure 5.3 in the Sun-Jupiter rotating frame. As
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Figure 5.3. Ephemeris path of comet HRC as viewed in the Jupiter-
centered Sun-Jupiter rotating frame; Jupiter 10× actual size
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with the analysis of the behavior of comet 39P/Oterma in the previous section, to

examine the relationship between the trajectory of HRC and the invariant manifolds

associated with the center subspace in the vicinity of L1, Poincaré maps are employed.

The four crossings of HRC with the surface Σ−P2
= {x̄|x = 1− µ, ẋ < 0} are observed

relative to the crossings of the stable and unstable invariant manifolds. A value of

C = 3.029 (near the osculating value for HRC) is assumed, and a sample set of periodic

and quasi-periodic orbits within the center manifold of L1 are computed for this Jacobi

constant value. The unstable manifold associated with the set of L1 libration point

orbits is approximated via ∼ 106 initial conditions which are numerically integrated in

the CR3B model. The stable manifold is, again, determined via symmetry properties.

Recall that, in the CR3BP, trajectories that enter through the L1 gateway from

the interior lie within the unstable manifold WU+
L1

, and trajectories that escape to

the interior through this gateway exist within the stable manifold W S+
L1

asymptotic

to the center manifold of L1. Then, it is expected that the first crossing of HRC with

Σ−P2
after entry from the interior lies within the first crossing of WU+

L1
, and that the

last crossing before escape from the Jupiter region is within the first crossing of W S+
L1

.

Define (yi, zi) as the (y, z) location at the ith, i = 1–4, crossing of the path of HRC

with Σ−P2
after entry from the interior. To locate the state along the comet path at

the ith map crossing relative to the unstable manifold, the contour γU,1yizi
is computed

for each value of i by considering only those crossings of the manifold within some

tolerance of the locations y = yi and z = zi. To check for escape back to the interior,

the contour γS,1yizi
is also located. Each of the velocities (ẏi, żi) associated with the map

crossings of HRC are expected to lie within the corresponding contour γU,iyizi
. If (ẏi, żi)

also lies within γS,1yizi
, then HRC is expected to immediately escape and transition back

to the interior region.

For i = 1–4, the contours γU,iyizi
and γS,1yizi

appear in Figures 5.4(a)–5.4(d) in red and

blue, respectively. The states (ẏi, żi) along the path of HRC are also included and are

plotted in black. As the manifolds evolve and i increases, the individual manifold arcs
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Figure 5.4. Location of HRC transit relative to invariant manifolds for C = 3.029

tend to disperse. The crossings associated with γU,iyizi
become diffuse and the manifold

structures no longer appear as contours on the map. From the map in Figure 5.4(a),

it is clear that the trajectory of HRC lies within the unstable manifold tube associated

with the center manifold of L1. This crossing of HRC does not lie within the first

cut of the stable manifold, however, and therefore cannnot yet transition back to

the interior region. Indeed, (ẏi, żi) lies outside of γS,1yizi
for i = 1, 2, 3, and the comet

remains temporarily captured in the vicinity of Jupiter. For i = 4, however, (ẏi, żi)

does fall within γS,1yizi
, as evident from Figure 5.4(d), resulting in immediate escape

through the L1 gateway back to the interior region.
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The maps in Figure 5.4, computed from strategies introduced by Gómez et al.

(2001, 2004), prove useful to gain insight into the behavior of the path of comet HRC

during temporary capture. [13,24] However, it is notable that the manifold structures

on the map become diffuse as the manifolds evolve (such as for γU,2y2z2
–γU,4y4z4

in Fig-

ures 5.4(c)–5.4(d)). The resulting lack of structure on the map presents difficulties

when attempting to locate initial conditions ‘inside’ the manifold tubes. Additionally,

the computation required to locate a sufficient number of sample members from the

families of quasi-periodic orbits that comprise the center manifold associated with a

libration point is nontrivial, and a large number of manifold arcs must be numeri-

caly integrated to obtain the Poincaré maps. Thus, alternative methods to locate

trajectories with specified behaviors are useful.

5.2 Locating Periodic Orbits in the Spatial Problem

Poincaré maps prove useful to reveal structures that indicate the existence of

nearby periodic orbits. In the planar problem, quasi-periodic orbit structures in the

vicinity of a stable periodic orbit form concentric rings on a map and the existence of

a central stable periodic orbit may be inferred when such structures appear [48, 50].

Quasi-periodic orbits in the spatial problem are higher-dimensional, however; thus,

the structures formed by crossings of quasi-periodic tori with a surface of section

are also higher-dimensional. In this section, Poincaré maps are employed in the

spatial problem to search for symmetric, stable periodic lunar orbits. To begin the

discussion, it is useful to first consider the problem of locating periodic orbits in the

planar problem. Periapse maps have been employed previously for this problem and

prove useful for this discussion.
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5.2.1 Periapse Maps

The use of periapse maps displaying crossings of invariant manifolds asymptotic

to planar Lyapunov orbits, as well as crossings resulting from numerical integration of

a grid of periapse initial conditions in the P2-region, has been demonstrated to locate

regions of quasi-periodic nontransit solutions and their central periodic orbits by

Haapala [14], as well as Davis and Howell [27,28]. Previous work employing periapse

maps includes the classification of regions of immediate escape/capture by Villac and

Scheeres [47] and by Paskowitz and Scheeres [25] in the Hill three-body problem.

The periapse map, defined for passages of perilune in the Earth-Moon system, is

computed by recording crossings of the surface of section Σr = {x̄|ṙ = ((x−1 +µ)2 +

y2 + z2)
1
2 , ṙ = 0, r̈ ≥ 0}, where r is the radial distance between P2 and P3. Recall

that, in the planar problem, the manifolds asymptotic to the planar Lyapunov orbits

bound transit trajectories that connect adjoining regions of the ZVCs. Crossings of

the inviarant manifolds with the Poincaré map yield contours that yield boundaries

for regions on the map that are associated with transit trajectories. For example,

consider the periapse map representing crossings of the unstable manifold associated

with an L1 Lyapunov orbit for C = 3.172, as depicted in Figure 5.5(a). Manifold

periapses over a 2.5-year simulation are plotted in black; the first three periapses

along L1 entry trajectories are plotted in orange, cyan, and magenta, respectively.

An analogous map of periapses along the L2 Lyapunov unstable manifold, and L2

entry trajectories appears in Figure 5.5(b). Here, orange, cyan, and magenta points

correspond to the first, second, and third passages of perilune after entry through L2.

Note that the L2 gateway is very narrow, indicating that temporary capture through

L2 is less probable, thus, the colored regions on the map are considerably smaller

when compared with the L1 transit regions. The dotted lines on the maps supply a

boundary between periapses and apoapses (i.e., r̈ = 0). These maps prove useful for

the location of long-term capture trajectories. Because trajectories that lie within the
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manifold asymptotic to a Lyapunov orbit necessarily transit to an adjoining region

of the ZVCs, it is possible to identify regions on the map that are not visited by the

manifold and that correspond to regions of long-term capture. Gridding the region

within the ZVCs with initial conditions and integrating in reverse-time, a background

map is generated. For initial conditions that lead to (reverse-time) escape through

either the L1 or L2 gateways, all subsequent crossings of the map are colored in

magenta in Figure 5.5(c). Periapses along trajectories that remain captured for the

2.5-year simulation are plotted in cyan. Map crossings along the unstable manifolds

associated with both the L1 and L2 Lyapunov orbits are also included in black. Vacant

regions, not visited by the unstable manifolds, are visible and correspond to regions

of periapses associated with long-term capture trajectories. These vacant regions are

filled by the cyan capture orbit periapses on the map in Figure 5.5(c). Concentric

contours in the cyan regions of long-term capture periapses are centered on a nearby

periodic orbit. Initial conditions within the innermost contour are useful to seed a

differential corrections algorithm to locate the periodic solution. Two sample periodic

orbits are computed using initial guesses from the map and appear in Figure 5.6 with

passages of perilune plotted as red points.

Increasing the energy level, the maps from Figure 5.5 are reproduced for C = 3.15

and appear in Figure 5.7. Clearly, the L2 gateway has expanded and the periapses

along L2 transits fill larger regions on the map. Sample transit trajectories are com-

puted by selecting a periapsis within the magenta regions on the maps in Figures

5.7(a)–5.7(b) and integrating in reverse-time; the resulting paths are overplotted in

blue with black periapses. Producing a background map, as in Figure 5.7(c), it is

apparent that the region of periapses corresponding to long-term capture is reduced

by increasing the energy level. For C = 3.15, all of the planar long-term capture

orbits impact the Moon. It should be noted that, while these long-term capture pe-

riapses correspond to orbits that remain in the vicinity of the Moon for the 2.5-year
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(a) L1 transits (b) L2 transits

(c) escapes and captures

Figure 5.5. Planar periapse map for C = 3.172 in the Earth-Moon sys-
tem, (a) first, second, and third periapses along L1 temporary capture
trajectories plotted in orange, cyan, magenta, and periapses along L1

unstable manifold plotted in black, (b) first, second, and third peri-
apses along L2 temporary capture trajectories plotted in orange, cyan,
magenta, and periapses along L2 unstable manifold plotted in black,
(c) periapses along transit (magenta) and nontransit (cyan) trajecto-
ries

reverse-time simulation, many of these trajectories may escape if integrated over a

longer time interval.
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(b) Close view of periapses

Figure 5.6. A pair of sample periodic orbits is computed via an initial
guess from the cyan region of the periapse map for C = 3.172 in the
Earth-Moon system

5.2.2 Perpendicular Crossing Maps

While periapse maps are useful for the location of periodic orbits in the pla-

nar problem, the task of locating periodic orbits using Poincaré maps in the spatial

problem is nontrivial. In the planar problem, a two-dimensional torus associated

with a quasi-periodic orbit can delineate the three-dimensional space defined for a

particular value of Jacobi constant. The crossings of these tori on the map form

concentric contours, and delineate regions of stability from regions of chaos. How-

ever, because a three-dimensional torus cannot delineate the five-dimensional space

in the spatial problem defined for a particular energy level, regions of stability on a

higher-dimensional Poincaré map may be intermingled with crossings from chaotic

trajectories. Thus, the clear structures (periodic orbits, regions of stability, chaotic

zones) that are often visible in planar Poincaré maps may not be as readily distin-

guishable in the spatial problem. Higher-dimensional Poincaré maps may still prove

useful in the search for periodic orbits in the spatial problem, however (e.g., Patsis and

Zachilas [20]). This search may be simplified by exploiting the mirror theorem, which
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(a) L1 transits (b) L2 transits

(c) escapes and captures

Figure 5.7. Planar periapse map for C = 3.15 in the Earth-Moon sys-
tem, (a) first, second, and third periapses along L1 temporary capture
trajectories plotted in orange, cyan, magenta, and periapses along L1

unstable manifold plotted in black, (b) first, second, and third peri-
apses along L2 temporary capture trajectories plotted in orange, cyan,
magenta, and periapses along L2 unstable manifold plotted in black,
(c) periapses along transit (magenta) and nontransit (cyan) trajecto-
ries

stipulates that any trajectory possessing perpendicular crossings of the x-z plane at

two distinct times is necessarily periodic [29]. To locate solutions that possess more

than one perpendicular x-z plane crossing, a grid of initial conditions on the x-z plane

is generated such that y = ẋ = ż = 0, and ẏ is selected to satisfy a particular value of
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Jacobi constant. (Note that each of these grid points is, necessarily, an apse.) Each

state on the grid is propagated for t = 210 ≈ 2.5 years. Returns to the x-z plane are

recorded, and map crossings for which |ẋ| > δ and |ż| > δ are removed from the set

of returns. The resulting map is an approximation for the map defined by crossings

of the surface Σ⊥ = {x̄|y = 0, ẋ = 0, ż = 0}, and appears in Figure 5.8(a). Here,

δ = 2 × 10−3 ≈ 2.049 m/s is selected for orbits that remain captured during the

integration time, and δ = 1 × 10−2 ≈ 10.25 m/s for those trajectories that escape.

While a single quasi-periodic trajectory in the vicinity of a stable orbit cannot cross

Σ⊥ more than once in a finite time interval, a large number of quasi-periodic solutions

may cross the surface once in the vicinity of the periodic orbit, forming visible struc-

tures of regions of increased density on the map. Even unstable periodic orbits with

small unstable eigenvalues may possess a large number of neighboring trajectories

that cross the map nearby the periodic solution before escaping. To search for peri-

odic orbits, initial conditions within the dense regions of returns on the map in Figure

5.8(a) are selected and are numerically integrated. Trajectories that are nearly closed

after a selected propagation time are employed as the initial guess for a corrections

algorithm that enforces periodicity. Perpendicular crossings along a sample set of

periodic orbits computed using this technique are plotted in Figure 5.8(b), where red

points correspond to unstable and blue points represent linearly stable orbits. Note

that several of the unstable orbits possess a maximal eigenvalue very near magnitude

one. The map crossings along the periodic orbits are sorted and displayed in Figure

5.8(c) so that each color corresponds to a particular orbit geometry. Open circles

and squares correspond to orbits whose crossing of Σ⊥ nearest to the Moon is on the

lunar far side; solid circles and squares represent crossings along orbits for which the

nearest crossing lies to the left of the Moon on the map. For a particular color of

crossing, the solid squares represent crossings along the orbit that is the reflection of

the trajectory associated with the solid circles across the x-y plane. Likewise, open

squares and circles represent crossings along two distinct orbits that are the reflection
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of one another across the x-y plane. To explore the relationship between the periodic

orbits and invariant manifolds asymptotic to the center subspaces of L1 and L2, a map

displaying the crossings of each with Σ⊥ appears in Figure 5.8(d). Crossings along the

unstable manifold associated with L1 and L2 appear in black; initial conditions from

a background grid that, when propagated in reverse-time, yield transit/nontransit

trajectories are plotted in magenta/cyan. From this representation, it is clear that

all of the computed linearly stable periodic orbits (blue points) exist within the cyan

region corresponding to nontransit solutions. Several of the blue points lie within the

cyan region, but just outside the boundary formed by the manifolds. Additionally,

several of the unstable periodic orbits possess crossings that lie within the cyan re-

gion corresponding to long-term capture. It should be noted, however, that each of

these unstable periodic orbits possess a small maximal eigenvalue (the largest being

max |Re(λ̄)| = 2.6781, where λ̄ is the vector containing all eigenvalues of the mon-

odromy matrix for a periodic orbit) indicating that trajectories in the vicinity of the

periodic orbit escape over long time scales. In fact, integrating the periodic orbits

that lie within the cyan region of the map for t = 5000 = 59.45 years in both forward-

and reverse-time, they all remain bounded in the vicinity of the Moon.

To help clarify the structures formed by the invariant manifolds on the map in

Figure 5.8(d), it is useful to consider the relationship between the surfaces of section

Σ⊥ and Σr. By the definition of a periapsis, the surface Σ⊥ is contained within the

surface Σr, i.e., points for which y = ẋ = ż = 0 correspond to periapses. Thus,

each crossing of the maps in Figure 5.8 corresponds (approximately, considering the

tolerance δ) to a passage of perilune. Where the perilune map intersects the x-z

plane, the condition that (x − 1 + µ)ẋ + zż = 0 must be met for each point on the

map. Periapse map crossings on the x-z plane must be perpendicular to this plane

when x 6= 0 and z 6= 0, unless (x − 1 + µ)ẋ = −zż 6= 0. A batch of L1 and L2

three-dimensional transit trajectories is computed, and the first passage of perilune

is recorded after entry to the P2 (Moon) region. A projection of the first crossings
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(a) (b)

(c) (d)

Figure 5.8. Maps representing perpendicular crossings associated with
periodic orbits in the Earth-Moon system, (a) returns to y = 0 surface
with |ẋ|, |ż| < δ, (b) returns to map with periodic orbit crossings over-
plotted and colored consistent with linear stability (c) sorted crossings
of sample periodic orbits, (d) crossings, colored consistent with linear
stability, displayed with crossings of invariant manifolds in black; ini-
tial conditions corresponding to transit (cyan) and long-term capture
(magenta) also displayed

of L1 and L2 entry trajectories into the x-y plane appears in Figures 5.9(a)–5.9(b).

Note that the projection into the x-y plane of the first periapses along transits in the

spatial problem closely matches the first periapses along planar transit trajectories,

plotted in Figures 5.7(a)–5.7(b). In Figures 5.9(c)–5.9(d), the intersection between
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the periapse map and the x-z plane is visible along the gray plane. The manifold

crossings of the surface Σ⊥ are included in black, and indeed appear to bound the

transit trajectories.

(a) first periapses along L1 transits (b) first periapses along L2 transits

y (dimensionless)
x (dimensionless)

(c) L1 transit periapse map intersecting x-z

plane

y (dimensionless) x (dimensionless)

(d) L2 transit periapse map intersecting x-z plane

Figure 5.9. Maps corresponding to surfaces Σ⊥ and Σr in the Earth-Moon system

Projections of sample orbits, colored consistent with the map in Figure 5.8(c), onto

the x-y and x-z planes are displayed in Figures 5.10 and 5.11. These orbits correspond

to the solid circles or squares on the map in Figure 5.8(c). The orbits associated with

the open circles or squares on the map appear essentially as the reflections of the

orbits in Figures 5.10 and 5.11 across the y-z plane, so that the nearest crossing of

Σ⊥ is on the lunar far side. The plots in Figure 5.10 span 1.225×105 km (the distance

between L1 and L2) and 6.535 × 104 km along the x- and y-axes, respectively. The
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plots in Figure 5.11 span 1.225× 105 km and 7.457× 104 km along the x- and z-axes.

The maximum real part of the eigenvalues, max|Re(λ̄)|, associated with each periodic

orbit appears in Table 5.1, in addition to the orbital period. The ‘Orbit Label’ in

Table 5.1 Properties of Periodic Orbits

Orbit Label max|Re(λ̄)| T (days)

a 1.1534 21.6943

b 1 23.3841

c 1.7027 23.5697

d 17.1942 21.0535

e 2.8059 20.3035

f 3.0344 44.2226

g 5.5439 26.9540

h 1 25.4193

the table corresponds to the subfigure labels in Figures 5.10 and 5.11. Orbits of

similar geometry to the orbit in Figures 5.10(d) and 5.11(d) are demonstrated in

Michalodimitrakis [62] as well as Lara and Russell [63], who compute these orbits by

identifying bifurcating orbits within families of planar solutions.

By exploiting existing techniques to reduce the dimension of a Poincaré map, new

trajectory design applications can be explored. Here, strategies to compute transit

trajectories in the spatial problem prove useful to examine the relationship between

the behavior of comets that experience temporary capture by Jupiter and the invariant

manifold structures associated with the collinear points in the Sun-Jupiter system.

By additionally exploiting known symmetry properties of the CR3BP, Poincaré maps

also prove useful to search for symmetric periodic orbits in the vicinity of the Moon.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.10. Projection of sample periodic orbits onto the x-y plane
in the Earth-Moon system
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.11. Projection of sample periodic orbits onto the x-z plane
in the Earth-Moon system
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6. REPRESENTING HIGHER-DIMENSIONAL

POINCARÉ MAPS

The graphical representation of multivariate data sets is examined extensively in the

field of data visualization. Strategies to represent complicated and interconnected

information facilitate the exploration of higher-dimensional data sets by exploiting

the human ability to perceive and recognize patterns in data. While search algorithms

may be employed for data analysis, the development of such algorithms often requires

a priori knowledge concerning the solutions of interest. Exploiting the capability

of human pattern recognition allows for the potential to reveal new or unexpected

solutions. From a trajectory design perpective, a visual representation of the data

allows the designer to both develop intuition about the available solution space as well

as to remember trends and conclusions, and is useful in an interactive environment.

6.1 Data Display Techniques from Multidimensional Data Visualization

Many techniques exist to aid the visualization of higher-dimensional data sets.

Parallel coordinates [64], and scatterplot matrices/trellis displays [65] are examples

of modifications to the conventional two-axis plot that enable visual inspection of

multivariate data. For example, a parallel coordinates plot of an n-dimensional data

point includes a single x-axis and n parallel y-axes distributed with equal spacing

along the x-axis. The data is often normalized or scaled, and the value of the ith

variable is plotted along the ith y-axis. The values on each vertical axis corresponding

to one particular data point are connected so that the final representation for that

data point is a series of jointed segments. While this technique does serve to represent

multivariate data, the plots can become unwieldy for large data sets. Alternatively,
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a scatterplot matrix consists of panels, organized in rows and columns, in which the

data are plotted with different combinations of the data variables represented on

the axes in each panel. Thus, the relationships between the different variables of

interest may be displayed simultaneously. This type of strategy has been previously

applied by Howell and Kakoi [66] to design transfers in the patched CR3B problem.

These authors simultaneously view various projections of a Poincaré map to locate an

intersection between stable and unstable invariant manifolds asymptotic to libration

point orbits in different systems, specifically, the Sun-Earth and Earth-Moon systems.

By locating such an intersection, transfers between libration point orbits in the two

systems are designed.

An alternative approach to represent multidimensional data is via the use of

glyphs. In data visualization, a glyph is a graphical entity whose physical character-

istics are determined by one or more variables from the data set. An infinite number

of unique graphical objects may be defined to represent a data point. A catalog of

glyphs employed by previous authors for a variety of applications is presented by

Ward [67]. Some examples include metroglyphs and stars [68,69], Chernoff faces [70],

and stick-figures [71]. The use of glyphs proves effective to enable visual inspection

of the data, aiding the viewer with the identification of trends or anomalies in a data

set. To illustrate their function for pattern recognition, the star, face, and stick-figure

glyphs are employed in Figure 6.1 to represent data associated with various Chevrolet

vehicles manufactured between 1970 and 1982. The variables represented include the

(1) engine horsepower, (2) number of engine cylinders, (3) 1/(vehicle acceleration)

(acceleration measured in seconds to accelerate from 0 to 60 miles/hour), (4) weight

(pounds), and (5) engine displacement (cubic inches). To display this information

using stars, the data is scaled and shifted so that the values for each variable are

mapped to the interval [0.1, 1]. The ith variable is represented via the length of the

ith spoke of the glyph, where i = 1 corresponds to the spoke oriented at 0◦ from the

center. Using the Chernoff faces, the data are again mapped to the interval [0.1, 1]
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(c) stick-figures

Figure 6.1. Star, face, and stick-figure representations for sample
Chevrolet vehicle data

and values for each of the 5 variables are indicated via the (i = 1) face size, (2) jaw

shape, (3) width between the eyes, (4) vertical position of the eyes, and (5) length of

the nose. To represent each data point using stick-figures, each variable of the data is

normalized to the interval [0, 1]. A glyph composed of 5 connected segments is defined

such that the orientation (between 0◦ and 90◦) of the ith segment is determined by the

ith variable. The center of the star and face glyphs, and the base point location of the

first segment in the stick-figure glyph additionally represents the year of manufacture,

and the miles-per-gallon (MPG) associated with each vehicle via the x- and y-axes

of the plot. Note that, defining a as the vehicle acceleration, the value 1/a is what is

represented for the data set so that larger values of 1/a indicate faster acceleration.

By representing 1/a instead of a, each of the variables (1)–(5) is, generally, inversely

related to the vehicle MPG.
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From the glyph representations in Figure 6.1, several trends and anomalies in the

data become visually apparent. Clearly, the vehicle MPG increases with the year of

manufacture. Additionally, a region of lower MPG vehicles (represented by the stars

with nearly equal spoke lengths, large faces with longer jaws and noses, and nearly

vertical stick-figures) emerges that is distinct from the region of higher MPG vehicles,

described by the smaller and more spear-shaped stars, smaller and rounder faces,

and nearly horizontal stick-figures. Examining the individual glyphs reveals that the

lower MPG vehicles are generally associated with greater horsepower, more engine

cylinders, shorter acceleration times, greater weight, and larger engine displacement,

all of which are intuitive observations. One glyph definition may be better suited for a

particular application than others, and the choice of glyph will be problem dependent.

In this example, the star and face glyphs may provide the more obvious distinction

between the lower and higher MPG regions. An atypical or anomalous data point is

also visually apparent from the set. Observing the graphs in Figures 6.1, the glyphs

located at the year 1979 and 28.8 MPG within the region of higher MPG vehicles

appear distinctive when compared to the surrounding data. The glyph representing

this vehicle is similar to the glyphs associated with the lower MPG vehicles — the

star glyph has a more equilateral shape, the face glyph is larger with a longer jaw,

and the stick-figure is more nearly vertical — however, it lies within the region of

higher MPG automobiles and may therefore be of interest for further investigation.

Indeed, this glyph represents the 1979 Chevrolet Citation which was among among

the first front wheel drive compact cars produced by General Motors. This vehicle

has a six cylinder engine, while most of the other vehicles in the high MPG group

have four cylinders. However, the roughly 800 pounds of weight reduction gained

by switching from rear wheel to front wheel drive allowed this car to have increased

horsepower and reduced acceleration times, while still maintaining relatively high

MPG. In 1980, the Chevrolet Citation was named Motor Trend magazine’s Car of

the Year. Of the seven vehicles evaluated, the Citation ranked within the top 3 for
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all of the testing categories, except for time to complete a 1/4 mile track, and ranked

first for vehicle MPG, shortest braking distance from 60 miles/hour, and greatest

value for the money [72]. The decision to name the Citation the Car of the Year was

later criticized due to poor production quality and low reliability [73].

Clearly, graphical representations, such as glyphs, enable visual inspection of

higher-dimensional data and are useful to identify trends and anomalies, as well

as regions of interest. In the following discussion, the use of glyphs to represent

higher-dimensional Poincaré maps is explored for trajectory design applications.

6.2 Visual Representations for Higher-Dimensional Poincaré Maps

Maps in the spatial CR3BP must depict at least four state variables to fully

represent crossings of a hyperplane for a given energy level, C. Thus, a potential

application for the use of glyphs in trajectory design is apparent. Representing the

crossings of a higher-dimensional Poincaré map using glyphs offers insight into the

available solutions and facilitates user-interaction within the design process. While

any of the glyph definitions discussed in Section 6.1 may be applied to represent the

crossings of a map, a simple glyph that offers an intuitive representation for trajectory

design applications is most useful.

The simplest glyph that represents a four-dimensional data point is, perhaps, a

single segment. As defined by Pickett and Grinstein [71], the stick-figure glyph re-

quires two segments to identify four variables associated with a particular data point.

Two variables are represented by the location of the glyph along the x- and y-axes,

and the orientation of each segment denotes the value associated with each additional

variable. However, by varying both the length and orientation of each segment, four

states are simultaneously represented. In this investigation, this alternative definition

for the stick-figure glyph is adopted: two states are indicated by the coordinates of

the segment basepoint, and two additional coordinates are represented by the length
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and orientation of the segment. Then, the points used to represent crossings of a

Poincaré map in the planar problem (e.g., Figure 4.3(b)) may be replaced with single

segments, or vectors, in the spatial problem to represent four state variables while

still employing a two-dimensional image for the visualization. One sample glyph def-

inition appears in Figure 6.2, where qi, i = 1–4 correspond to a set of selected state

Figure 6.2. Glyph representation for a four-dimensional data point

variables and k is a scaling constant. For example, as one possible representation

for crossings of Σ = {x̄|x = constant} corresponding to a specified value of Jacobi

constant, the state variables q1 = y, q2 = z, q3 = ẏ, q4 = ż are displayed on the map.

The basepoint of the vector indicates the position (y, z), and supplies the origin for

a second coordinate frame used to locate the velocity states kẏ and kż. The remain-

ing state, ẋ, is then determined by the Jacobi constant value. If two crossings of a

Poincaré map are represented by vectors for which the basepoints are nearly aligned,

and the vector segments are of roughly the same length and orientation, then the

states y, z, ẏ, and ż are assumed to be nearly the same for the pair of crossings.

If those crossings are associated with the same value of Jacobi constant, then it is

expected that the velocity ẋ is also similar in magnitude for these crossings. Note

that, for general applications, different scaling constants can be applied to q3 and q4.

Early use of vectors to represent information about a force field began with the

study of electric and magnetic fields. To visualize magnetic forces, Michael Faraday

introduced the idea of lines of force that permeate the space around a magnet. He
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“imagined space around a magnet filled with a huge bundle of lines each of which,

like a drawn arrow, had a definite direction, giving at any point the local direction of

magnetic force [74].” Building on the work of Faraday, James Clerk Maxwell notes

that, by displaying these lines of force, one would “obtain a geometrical model of the

physical phenomena, which would tell us the direction of the force, but we should still

require some method of indicating the intensity of the force at any point [75].” He

proposes that a line of force curve be instead represented as a tube of variable section,

where the cross-sectional area denotes intensity of the field along the curve [75].

Alternatively, variation of the magnitude and direction of the vectors, or the density

of the lines of force drawn allow the intensity of the field to be represented [76]. In

his investigation of behavior in the spatial CR3BP, Froeschlé [16] makes reference to

the use of a glyph similar to that defined in Figure 6.2; however, he notes that this

representation is difficult to interpret for background maps depicting crossings from

a random initial conditions grid and does not employ this method for his results.

Glyphs are first employed to represent the crossings of a periapse map by Paskowitz

and Scheeres [25]. The glyph employed by these authors is projected into three-

dimensional configuration space to represent all six state variables. Alternatively,

the glyph definition in Figure 6.2 may be viewed in a planar image, thus, a single

projection of the map provides all of the information. This glyph representation is

introduced for use with strategies to locate transfers between periodic orbits in the

spatial problem by Haapala [77]. This definition is employed to compute a variety of

maneuver-free and low-cost transfers between libration point orbits by Haapala and

Howell [77, 78]. The definiton of this glyph is modified by Haapala and Howell [55]

to represent six state variables, and is demonstrated to compute transit trajectories

in the spatial problem. Vaquero [79] later adopts the strategy of employing glyphs

to represent the crossings of a Poincaré map to compute transfers between resonant

orbits in the spatial problem.
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6.3 Employing Maps to Compute Libration Point Orbit Transfers

Poincaré maps may be applied to a variety of mission design scenarios. Employ-

ing glyphs to represent the crossings of higher-dimensional Poincaré maps, the maps

can be utilized as an interactive trajectory design tool in the spatial problem. One

design problem of interest is the computation of low-cost, short duration transfers

between libration point orbits. For example, heteroclinic and homoclinic connections

are free transfers that connect two distinct orbits, or an orbit back to itself, respec-

tively, for zero ∆v. Free transfers between quasi-periodic orbits are presented by

Gómez et al. [13, 23] and Masdemont [80]. Masdemont [80] also computes connec-

tions between quasi-periodic and periodic orbits. Here, higher-dimensional Poincaré

maps are demonstrated for the computation of low-cost and maneuver-free transfers

between periodic libration point orbits. Stuart et al. [81] employ invariant manifolds

in addition to low-thrust arcs to transfer between periodic libration point orbits in

the CR3BP. In this investigation, only impulsive maneuvers are considered.

Orbits in the vicinity of the collinear libration points have been considered for

storage depots for supplies or fueling stations for missions to Mars and the Moon.

An exploration of the available transfers between libration point orbits is useful to

assess the possibility of a network of storage orbits. Consider a sample design scenario

in which a transfer from an L1 vertical to an L2 halo orbit is sought in the Earth-

Moon system. The unstable manifold associated with the vertical orbit and the stable

manifold asymptotic to the halo orbit are useful in the search for a transfer arc. An

infinite number of transfers between members of the L1 vertical and L2 halo orbit

families are possible, each defined by: (1) the initial vertical orbit within the family,

(2) the ‘departure’ location along the vertical orbit, (3) the terminating halo orbit

within the halo family, (4) the ‘insertion’ location along the halo orbit, and (5) the

number of revolutions about the Moon that are incorporated (i.e., the time-of-flight).

Employing manifolds to locate a transfer, the ‘departure’ and ‘insertion’ locations
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along a particular orbit refer to the τ value associated with a particular manifold

arc, as defined in Chapter 3.4.3. For this example, an optimal transfer is desired

such that the ∆v required for the transfer is minimized while also maintaining a

relatively low time-of-flight. The hyperplane Σ+
P2

= {x̄ : x = 1− µ, ẋ > 0} is selected

for this example because it lies between the L1 and L2 points, although alternative

hyperplanes could also be employed and may yield different solutions. To maintain

a low time-of-flight, the manifolds are propagated only until their first crossing of

Σ+
P2

. A subset of arcs along the manifolds associated with vertical and halo orbits

for C = 3.0555 are displayed in Figure 6.3(a), in addition to the projection of Σ+
P2

into configuration space as the gray plane. Numerical integration of the manifold

arcs is terminated upon arrival at Σ+
P2

, and the projection of the resulting Poincaré

map into the y-z plane appears in Figure 6.3(b). Note that x = 1 − µ corresponds

x (104 km) y (104 km)

z 
(1

04  k
m

)

(a)

)

Moon

(b)

Figure 6.3. Manifolds are employed to search for a transfer between
L1 vertical and L2 northern halo orbits in the Earth-Moon system,
C = 3.0555

to x = 0 in Moon-centered coordinates. Inspection of the map reveals four feasible

transfer opportunities that exist, corresponding to locations on the map where the

magenta and blue contours intersect. However, no velocity information is available
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from this projection of the map, making it difficult to select the transfer that requires

minimal ∆v. Thus, the interest in strategies to display both the position states and

the associated velocity data is apparent.

The computation of a transfer between periodic orbits in the vicinity of L1 and L2

begins with the selection of the desired orbits within the orbit families. It is intuitive

to initiate the search by selecting the vertical and halo orbits near the ‘beginning’

of their respective families. The L1 vertical orbits emanate from the L1 point, and

therefore can be computed for C ≤ 3.188. The L2 halo family originates with the

bifurcating member of the Lyapunov family, which corresponds to a Jacobi constant

value near C = 3.152. Because the L2 halo family does not exist for C > 3.152, the

energy level C = 3.152 offers an initial Jacobi constant value for the search. The

Poincaré map corresponding to the manifolds associated with vertical and halo orbits

for a nearby value, C = 3.14, appears in Figure 6.4(a). Each map crossing is now

plotted using the glyph definition from Figure 6.2, such that (q1, q2) = (y, z) and

(q3, q4) = (ẏ, ż). Thus, the basepoint of each segment represents the states y and z,

and the segment length and orientation are determined by the states ẏ and ż. Here,

the velocities have been scaled by a factor of k = 10000 for clarity of the plot. All

stable and unstable manifold crossings are plotted as vectors in gray on the map,

while the stable/unstable crossings nearest to the four intersections of the magenta

and blue contours from Figure 6.3(b) are plotted in blue/magenta in Figure 6.4.

The pairs of crossings nearest the intersection of the contours in the y-z projection

are additionally labeled 1–4. Clearly, large velocity discontinuities exist for all four

transfer opportunities, indicating that the manifolds associated with the vertical and

halo orbits for C = 3.14 may not offer a globally optimal transfer. (Note that allowing

longer times-of-flight, i.e., propagating the manifolds through multiple crossings of

Σ+
P2

, could yield additional transfer options with smaller velocity discontinuities.)

Considering the values C = 3.10 and 3.06, the maps in Figures 6.4(b)–6.4(c) are

computed. Observing the behavior represented in the maps in Figure 6.4, it is evident
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that the cost associated with the transfer opportunity labeled 2 reduces with C for

this range of Jacobi constant values. The ∆vi for each transfer opportunity i = 1–4

is computed and the values are listed in Table 6.1. Each ∆vi corresponds to the

C ∆v1 (m/s) ∆v2 (m/s) ∆v3 (m/s) ∆v4 (m/s)

3.14 1182 630 906 872

3.10 649 296 924 453

3.06 265 77 885 231

Table 6.1 Approximate cost for transfers 1→4

1
4

3 2

(a) C = 3.14

1

4

3 2

(b) C = 3.10

1

4

3 2

(c) C = 3.06

Figure 6.4. Searching for transfers between L1 vertical and L2 north-
ern halo orbits in the Earth-Moon system

total ∆v in all three velocity states, and not just the discontinuity between the y-

and z-velocities as represented on the map. Note that position discontinuities also

exist for each of the transfers in the table and that these discontinuities are in the
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y- and z-coordinates only. Selecting the manifolds corresponding to the pair of map

crossings labeled 2 in Figure 6.4(c) yields an initial guess for a transfer between the

vertical and halo orbits for C = 3.06. The velocity discontinuities for the initial

guess are ∆ẋ = 65.5 m/s, ∆ẏ = 39.0 m/s, and ∆ż = 10.2 m/s. This initial guess

supplies the seed for an optimization algorithm that searches for the vertical and

halo orbits, as well as the associated manifolds, that deliver a local minimum in the

required transfer ∆v. The locally optimal solution appears in Figure 6.5 and requires

a maneuver of ∆v = 7.918 m/s to connect the magenta and blue manifold arcs. Two

−5 0 −5 0

−5

0

y (104km)x (104 km)

z 
(1

04
km

)

∆v = 7.918 m/s

5
5

5

Figure 6.5. Locally optimal transfer in the Earth-Moon system, C1 =
3.0571, C2 = 3.0468, TOF = 40.5559 days, ∆v = 7.9048 m/s

additional revolutions along the vertical/halo orbits are incorporated by integrating

the initial/final state along the unstable/stable manifold for twice the period of the

vertical/halo orbit in reverse-/forward-time. Note that, for this example, d1 = 20 km

and d2 = −20 km so that the manifolds are propagated toward the Moon. Details

on the optimization algorithm are provided in the upcoming sections. The vertical

and halo orbits are allowed to vary within the family during the optimization routine,

thus, there is a change in the Jacobi constant value between the unstable and stable

arcs. The vertical and halo orbits in the locally optimal solution correspond to the
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Jacobi constant values C = 3.0571 and C = 3.0468, respectively, and the combined

time-of-flight along the manifolds is 40.5559 days.

6.4 Differential Corrections Algorithms to Compute Transfers between

Periodic Libration Point Orbits

The trajectory arcs generated using Poincaré maps supply an initial guess for a

low-cost or maneuver-free transfer between two periodic orbits; however, this guess

is discontinuous and a differential corrections algorithm is required to enforce con-

tinuity, in addition to any other desired constraints. In this investigation, transfers

between periodic libration point orbits are sought. Targeting algorithms have been

previously employed to locate such transfers. Barrabés et al. [51] target homoclinic

connections in the planar Earth-Moon CR3BP, and implement numerical continua-

tion to expand a single solution into a family of homoclinic transfers. Haapala and

Howell [54] demonstrate the use of targeting and continuation schemes to locate a

family of heteroclinic connections between L1 and L2 Lyapunov orbits in the Sun-

Saturn system. Senent et al. [82] and Stuart et al. [81] incorporate manifold arcs

into low-thrust transfer trajectories, and Stuart et al. compute families of low-thrust

connections between libration point orbits.

In this investigation, both free (∆v = 0 m/s) and low-cost (∆v ≤ 20 m/s) transfers

are computed between periodic libration point orbits. Free transfers between libration

point orbits are termed heteroclinic/homoclinic connections and represent manifold

arcs that are shared by the stable and unstable manifolds of two, not necessarily

distinct, orbits. Define orbit 1 as the departure orbit, and orbit 2 as the arrival orbit.

For the example in Section 6.3 of this chapter, periodic orbit 1 represents an L1 vertical

orbit, while orbit 2 corresponds to an L2 halo orbit. To define a transfer that connects

orbits 1 and 2 via the unstable and stable invariant manifolds, consider the schematic

in Figure 6.6. Several points along an initial guess for a transfer trajectory from
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2
4

5

6
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orbit orbit1 2

Figure 6.6. Defining the variables employed in targeting algorithms
for transfers between periodic orbits

orbit 1 to orbit 2 are identified and numbered. Note that the numbers associated

with each point do not necessarily correspond to their sequence in time. Let the

point numbered 1 represent the initial state x̄1(t10) along periodic orbit 1, where

T1 = t1f − t10 > 0 is the orbital period. Point 2 represents the location x̄1(t10 + τ1)

along the orbit after a coast time of τ1. Departure onto the unstable manifold occurs

at this location by stepping along the unstable eigenvector direction w̄U+, as defined

in equation (3.62), associated with the fixed point x̄1(t10 +τ1). Point 3 represents this

step and is computed as x̄m1 = x̄1(t10 + τ1) + d1 · w̄U+, where d1 may be positive or

negative. The ‘initial’ state, x̄u(tu0), along the unstable manifold arc is represented as

point 5, and point 4 corresponds to the ‘final’ state, x̄u(tuf ), after a propagation time

of Tu = tuf − tu0 < 0. Note that the ‘initial’ state along the unstable manifold arc is

numerically integrated for a negative time interval. Similarly, point 6 represents the

initial state, x̄s(ts0), along the stable manifold. This state is numerically integrated in

forward-time for Ts = tsf − ts0 > 0 to obtain point 7, i.e., the final state x̄s(tsf ) along

the stable manifold arc. Orbit 2 is defined by the initial state x̄2(t20) at point 8, and

T2 = t2f − t20 > 0 is the orbit period. Finally, point 9 represents the arrival location

x̄2(t20 + τ2) along the orbit defined by the coast time τ2 from the initial state x̄2(t20).

The step from point 9 onto the stable manifold, x̄m2 = x̄2(t20+τ2)+d2 ·w̄S+, is labeled
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point 10. Here, w̄S+ corresponds to the stable eigenvector direction associated with

the fixed point x̄2(t20 + τ2). Again, d2 may be positive or negative.

As demonstrated by the example in Section 6.3, Poincaré maps prove useful to

locate the periodic orbits and associated invariant manifolds corresponding to a low-

cost transfer. The manifold initial conditions, i.e., points 5 and 6, are selected from the

Poincaré map to generate the initial guess for the transfer and the associated values

of τ1 and τ2 are recorded. Once the discontinuous baseline solution is generated,

several quantities are allowed to vary to locate a nearby solution that is continuous

in position. The quantities that define the unstable manifold ‘departure’ and stable

manifold ‘insertion’ locations along orbits 1 and 2, i.e., τ1 and τ2, are varied, in

addition to the times-of-flight, Tu and Ts, along the unstable and stable manifold arcs.

The periodic orbits are permitted to vary within the respective families. That is, x̄10

and x̄20 are allowed to vary, with the constraint that each is associated with a periodic

orbit. A discontinuity exists between the departure/insertion orbit state x̄i(τi) and

the manifold state x̄mi = x̄i(τi) + diw̄
i, where i = 1 (unstable manifold) or 2 (stable

manifold), and w̄1 = w̄U+ and w̄2 = w̄S+ represent the stable/unstable eigenvectors

associated with the fixed points x̄i(τi); however, the value of di is selected such that

propagating x̄mi for 2 · Ti in reverse-time for i = 1 or forward-time for i = 2 yields a

trajectory that remains in the vicinity of the periodic orbit for two revolutions. For

the Earth-Moon system, |di|=20 km is selected to satisfy this requirement, assuming

w̄i is normalized as defined in equations (3.59)–(3.62). Continuity in position is

enforced where the stable and unstable manifolds connect to ensure a feasible transfer.

By additionally applying constraints to satisfy continuity in velocity between the

manifold arcs, a homoclinic (orbit 1 = orbit 2) or heteroclinic (orbit 1 6= orbit 2)

connection is obtained. For cases where the transfer cannot be accomplished for ∆v =

0, the velocity discontinuity is minimized via an optimization algorithm employing

an SQP routine.
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The libration point orbits and associated invariant manifolds are highly sensitive

to perturbations. To reduce the integration times and improve convergence of the

algorithms, patch points are distributed along the periodic orbits and manifold arcs,

and multiple shooting is employed. Full state continuity is enforced between the seg-

ments defining each periodic orbit, as well as between the segments that comprise

both the unstable and stable manifold arcs. Because the periodic orbits are not prop-

agated as one continuous arc, the identity Φ(tf , t0) = Φ(tf , tn)Φ(tn, tn−1) . . .Φ(t1, t0),

where t0 < t1 < . . . < tn < tf , is employed to approximate the monodromy matrix

over one orbit during the differential corrections process. The eigenvectors of the ap-

proximated monodromy matrix are employed to define xmi. Alternatively, Barrabés

et al. [51] include the eigenvalues λi and eigenvectors w̄i associated with Φ(tf , t0) as

variables and enforce the additional constraint that Φ(tf , t0)w̄i = λiw̄
i, where λ1 = λU

and λ2 = λS.

In this investigation, two differential corrections procedures are employed to com-

pute either maneuver-free or low-cost transfers between periodic orbits. These proce-

dures may be applied to compute transfers in both the planar and spatial problems.

The details of these algorithms are provided in the following sections. In all algo-

rithms, an n-vector of free variables, X̄, and an m-vector of constraints, F̄ (X̄), is

defined so that where F̄ (X̄∗) = 0̄ when the constraints are satisfied. The feasible

transfer is then defined by the variables contained in X̄∗. Considering a first-order

Taylor expansion about an initial guess X̄0 nearby the desired feasible solution X̄∗

yields

F̄ (X̄∗) = F̄ (X̄0) +DF̄ (X̄)|X̄0
(X̄∗ − X̄0), (6.1)

where DF̄ (X̄)X̄0
is the Jacobian matrix of partial derivatives of the elements of F̄

with respect to the variables in X̄ evaluated at X̄0. Rearranging this expression yields

X̄∗ = X̄0 −
(
DF̄ (X̄)|X̄0

)−1
F̄ (X̄0), (6.2)
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assuming that n = m and a unique solution exists. Note that F̄ (X̄∗) = 0̄ is eliminated

from equation (6.1). In general, n > m and an infinite number of solutions are

available. In this case, the minimum-norm pseudo-inverse is employed to locate X̄∗

nearest the initial guess X̄0. The minimum-norm solution is given as

X̄∗ = X̄0 −DF̄ (X̄)|TX̄0

(
DF̄ (X̄)|X̄0

DF̄ (X̄)|TX̄0

)−1
F̄ (X̄0), (6.3)

where a superscript T indicates that the matrix is transposed. For a nonlinear prob-

lem, the first-order Taylor expansion is an approximation and the system must be

solved iteratively. In this case, the solution is written as

X̄j+1 = X̄j −DF̄ (X̄)|TX̄j

(
DF̄ (X̄)|X̄j

DF̄ (X̄)|TX̄j

)−1

F̄ (X̄j), (6.4)

where X̄j contains the current values for the design variables, and X̄j+1 contains the

updated values. For an initial guess near X̄∗, iteration of equation (6.4) generally

converges quadratically to a feasible solution.

6.4.1 Free Transfers Between Periodic Orbits

To compute heteroclinic and homoclinic connections, the following procedure is

employed. Define the quantities contained in X̄ as free variables, and let F̄ represent

the vector composed of the desired constraints to be applied within the corrections
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process, where F̄ = 0̄ when the constraints are satisfied. For maneuver-free transfers,

these quantities are written as

X̄f =



x̄1(t10)

T1

x̄2(t20)

T2

τ1

τ2

x̄u(tuf )

Tu

x̄s(ts0)

Ts

β1

β2



, F̄f =



x1(t1f )− x1(t10)

y1(t1f )− y1(t10)

z1(t1f )− z1(t10)

ẋ1(t1f )− ẋ1(t10)

ẏ1(t1f )− sign(ẏ1(t10)) · β2
1

ż1(t1f )− ż1(t10)

y1(t10)− 0

x2(t2f )− x2(t20)

y2(t2f )− y2(t20)

z2(t2f )− z2(t20)

ẋ2(t2f )− ẋ2(t20)

ẏ2(t2f )− sign(ẏ2(t20)) · β2
2

ż2(t2f )− ż2(t20)

y2(t20)− 0

x̄s(ts0)− x̄u(tuf )

x̄u(tu0)− x̄m1

x̄s(tsf )− x̄m2



.

The system is solved employing equation (6.4). Here, the terms xi(tif ) − xi(ti0),

yi(tif )− yi(ti0), zi(tif )− zi(ti0), ẋi(tif )− ẋi(ti0), żi(tif )− żi(ti0), i = 1, 2, are included

to enforce that orbits 1 and 2 are periodic. Because the value of C is constant along

any arc, the remaining coordinate ẏ is, necessarily, equal in magnitude for the initial

and final states along a periodic orbit; the term ẏi(tif )− sign(ẏi(ti0)) · β2
i is included

to additionally enforce that the direction of the velocity ẏ is consistent between the

initial and final states along the orbit. The terms βi are slack variable that are

incorporated to apply the inequality constraints. Note that the initial state along

each periodic orbit is defined to be an x-axis crossing such that ẏ 6= 0. The additional
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constraints yi(ti0) − 0 enforce that the initial condition remain on the x-axis. The

term x̄s(ts0)− x̄u(tuf ) is included to enforce full-state continuity between the unstable

and stable manifolds. Finally, the terms x̄u(tu0)− x̄m1, x̄s(tsf )− x̄m2 are employed to

constrain the trajectories x̄u(t) and x̄s(t) to the unstable and stable manifold surfaces

associated with orbits 1 and 2, respectively. Solutions that satisfy the equation F̄ = 0̄

represent a fully continuous transfer arc between two periodic orbits, to within the

specified tolerance. Again, a discontinuity exists between the manifold state x̄mi and

orbit state x̄i(ti0 + τi) (i = 1 or 2), however, the value of di is selected such that

propagating x̄mi for 2 · Ti in reverse-time for i = 1 or forward-time for i = 2 yields a

trajectory that remains in the vicinity of the periodic orbit.

6.4.2 Low-Cost Transfers Between Periodic Orbits

For transfers that cannot be completed for zero ∆v, a nonzero maneuver is allowed

and the previously described targeting algorithm for maneuver-free transfers must be

modified. In this investigation, a single maneuver is permitted where the unstable

manifold of orbit 1 meets the stable manifold of orbit 2. Then, the constraint x̄s(ts0)−

x̄u(tuf ) in F̄ is replaced with the scalar constraints xs(ts0)−xu(tuf ), ys(ts0)− yu(tuf ),

zs(ts0) − zu(tuf ), so that only position continuity is enforced between the manifold

arcs. Two options are employed to locate low-cost transfers in this investigation: an

upper bound is enforced on the magnitude of the ∆v, or optimization is employed to

minimize the ∆v.

Enforcing an Upper Limit on the ∆v

To formulate a differential corrections process imposing an upper bound is enforced

on the magnitude of the ∆v, the following system is considered. Again, define the
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quantities contained in X̄ as free variables, and let F̄ represent the vector composed

of the desired constraints. To enforce that ∆v ≤ ∆vmax, let

X̄v =



x̄1(t10)

T1

x̄2(t20)

T2

τ1

τ2

x̄u(tuf )

Tu

x̄s(ts0)

Ts

β1

β2

βv



, F̄v =



x1(t1f )− x1(t10)

y1(t1f )− y1(t10)

z1(t1f )− z1(t10)

ẋ1(t1f )− ẋ1(t10)

ẏ1(t1f )− sign(ẏ1(t10)) · β2
1

ż1(t1f )− ż1(t10)

y1(t10)− 0

x2(t2f )− x2(t20)

y2(t2f )− y2(t20)

z2(t2f )− z2(t20)

ẋ2(t2f )− ẋ2(t20)

ẏ2(t2f )− sign(ẏ2(t20)) · β2
2

ż2(t2f )− ż2(t20)

y2(t20)− 0

xs(ts0)− xu(tuf )

ys(ts0)− yu(tuf )

zs(ts0)− zu(tuf )

∆v −∆vmax + β2
v

x̄u(tu0)− x̄m1

x̄s(tsf )− x̄m2



,

where ∆v =
√

(ẋu0 − ẋs0)2 + (ẏu0 − ẏs0)2 + (żu0 − żs0)2 and βv is a slack variable.

The corrections algorithm proceeds employing equation (6.4).
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Finding the Locally Minimal ∆v

To locate a locally optimal transfer, the velocity discontinuity along the transfer

path is minimized via an optimization algorithm employing an SQP routine and the

MATLAB function fmincon. The free variables and constraint vector for the problem

are written as

X̄o =



x̄1(t10)

T1

x̄2(t20)

T2

τ1

τ2

x̄u(tuf )

Tu

x̄s(ts0)

Ts

β1

β2



, F̄o =



x1(t1f )− x1(t10)

y1(t1f )− y1(t10)

z1(t1f )− z1(t10)

ẋ1(t1f )− ẋ1(t10)

ẏ1(t1f )− sign(ẏ1(t10)) · β2
1

ż1(t1f )− ż1(t10)

y1(t10)− 0

x2(t2f )− x2(t20)

y2(t2f )− y2(t20)

z2(t2f )− z2(t20)

ẋ2(t2f )− ẋ2(t20)

ẏ2(t2f )− sign(ẏ2(t20)) · β2
2

ż2(t2f )− ż2(t20)

y2(t20)− 0

xs(ts0)− xu(tuf )

ys(ts0)− yu(tuf )

zs(ts0)− zu(tuf )

x̄u(tu0)− x̄m1

x̄s(tsf )− x̄m2



,

and the optimal transfer is required to satisfy F̄ (X̄o) = 0̄. The cost function

J =
√

(ẋs(ts0)− ẋu(tuf ))2 + (ẏs(ts0)− ẏu(tuf ))2 + (żs(ts0)− żu(tuf ))2, (6.5)
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defines the magnitude of the ∆v required to connect the unstable and stable manifold

arcs in the transfer. Here, the the quantities in X̄o are adjusted so that the function

J is minimized to yield a low-cost transfer between periodic orbits.

6.5 Transfers Between Libration Point Orbits in Different Systems

In the previous section, an example of how to employ glyphs to represent higher-

dimensional Poincaré maps is demonstrated to construct a transfer between orbits in

the vicinity of L1 and L2 in the Earth-Moon system. A second application for the

use of higher-dimensional maps is the design of transfers between different systems.

Transfers to the Moon that leverage solar perturbations generally require little ∆v

and have been employed for the Hiten [83], Genesis [84], and ARTEMIS [6] missions.

Transfers between libration point orbits in different three-body systems have been

previously demonstrated using Poincaré maps by a number of authors. Work to

develop transfers between libration point orbits in different systems generally proceeds

with the assumption of a patched or coupled CR3B model. In this model, the periodic

libration point orbits from the CR3BP are assumed to exist within each system of

interest, and invariant manifolds are computed as described in Section 3.4.3. Koon et

al. [85, 86] consider transfers between planar libration point orbits in the Sun-Earth

and Earth-Moon systems by propagating invariant manifolds asymptotic to these

orbits until their crossing with a surface of section defined by some angle relative

to the x-axis and centered at the Earth in each system. The map crossings are

transformed to a common frame, e.g., the Sun-Earth rotating frame. The resulting

map is three-dimensional as the Jacobi integral is not maintained as a constant value

for the transformed system. The Poincaré map is projected into the y-ẏ plane, and

locations corresponding to feasible transfers are determined by the intersections of the

contours formed by the manifolds on the map. A ∆v is required to account for any

difference in the ẋ velocity. Note that this velocity discontinuity is not represented
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on the map, but can often be eliminated via optimization by appropriate selection

of the departure and arrival orbits. Koon et al. [87] also apply this technique to

design transfers between planar orbits in the Jupiter-Europa and Jupiter-Ganymede

systems.

In the spaital problem, Gómez et al. [24] employ a coupled CR3B model to design

a transfer between libration point orbits in the Jupiter-Ganymede and Jupiter-Europa

systems. These authors consider the families of libration point orbits in the spatial

problem, and map the invariant manifolds asymptotic to these orbits to the surface

of section Σ = {x̄|y = 0}. The map crossings are transformed to a common frame,

e.g., the Jupiter-Europa rotating frame. Again, because the Jacobi integral is not

maintained as a constant value for the transformed system, the resulting map is five-

dimensional. Assuming coplanar orbits for Europa and Ganymede about Jupiter,

additional constraints on the values of z and ż may be applied for crossings of Σ to

reduce the dimension of the map to three. Finally, the map is projected into the

x-ẋ plane to determine the locations corresponding to feasible transfers. A ∆v is

generally required in the y-direction to complete the transfer. While the magnitude

of this cost is not represented on the map, the resulting ∆v is considerably reduced

compared to the expected cost of a Hohmann transfer. Parker and Lo [88] also

employ invariant manifolds from the Sun-Earth and Earth-Moon systems to reduce

the ∆v required to transfer from LEO to an Earth-Moon L2 halo orbit. Howell

and Kakoi [66] represent higher-dimensional Poincaré maps displaying crossings of

invariant manifolds using multiple projections of the map. These authors estimate

the magnitude of any required maneuver from the projections of the map, and adjust

the lunar phasing angle to reduce the ∆v to transfer between halo orbits in the Sun-

Earth and Earth-Moon frames.

In the following example, a system-to-system transfer is accomplished using Poincaré

maps and employing glyphs to represent the map crossings. To design such a transfer,
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it is useful to first define the variables that are employed in the patched CR3B model.

Let

x̄EM = [xEM , yEM , zEM , ẋEM , ẏEM , żEM ]T

represent a state associated with a trajectory in the Earth-Moon system, and

x̄SE = [xSE, ySE, zSE, ẋSE, ẏSE, żSE]T

be a state in the Sun-Earth system. Then, these states are numerically integrated

assuming the Earth-Moon and Sun-Earth CR3B models, respectively. The rate of

the Moon’s orbit about the Earth is employed to define the relative motion of the

Earth-Moon and Sun-Earth rotating frames. Recall that the characteristic quantities

for each system are summarized in Table 2.1. The Earth-Moon mass parameter,

characteristic length, and orbital period are given as µEM = 1.21506 × 10−2, `∗EM =

3.85693× 105 km, and 2πt∗EM = 27.42 days. The quantities associated with the Sun-

Earth system are µSE = 3.00390 × 10−6, `∗SE = 1.49598 × 108km, and 2πt∗SE = 1.00

years. The rate of rotation of the Moon relative to the Sun-Earth x-axis is given

as ωsyn = 1/t∗EM − 1/t∗SE, which gives a synodic lunar period of 2π
ωsyn

= 29.65 days.

Employing the synodic period, data from Earth-Moon frame is transformed to Sun-

Earth rotating coordinates as follows:

1. the x-coordinate is shifted by µEM so that the state is Earth-centered,

2. the time and state variables are scaled to be dimensional quantities using Earth-

Moon characteristic quantities,

3. the state is rotated into the Earth-centered Sun-Earth frame,

4. the time and state are nondimensionalized using Sun-Earth characteristic quan-

tities,

5. the state is shifted to barycenteric coordinates by subtracting (1 − µSE) from

the x-coordinate.
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The rotation matrix employed in step 3 is

C =

 C1 C2

C3 C4

 , (6.6)

where the submatrices, Ci, are defined as follows:

C1 =


cos(ωsynt+ φ0) − sin(ωsynt+ φ0) 0

sin(ωsynt+ φ0) cos(ωsynt+ φ0) 0

0 0 1

 , (6.7)

C2 = 03×3 is the 3 × 3 submatrix of zeroes, C3 = dC1

dt
, and C4 = C1. Here, φ0 is

the initial lunar angle relative to the Sun-Earth rotating x-axis in the Earth-centered

frame. Thus, after steps 1–2 are performed, the Earth-Moon rotating state is rotated

to the Sun-Earth frame as x̄SE = Cx̄EM .

To locate a transfer between orbits in the Earth-Moon and Sun-Earth systems,

Poincaré maps associated with the hyperplane defined by some angle from the x-axis

centered at the Earth are employed. Two different angles are defined, one angle (θ1)

for the Earth-Moon system, and one angle (θ2) for the Sun-Earth system. The surface

of section employed to generate the Poincaré map corresponds to Σθ1 = {x̄EM |θEM =

θ1} in the Earth-Moon system, and Σθ2 = {x̄SE|θSE = θ2} in the Sun-Earth system,

where Σθ1 ≡ Σθ2 when transformed to a common reference frame. Thus, in the Earth-

Moon system, tan(θEM) = xEM+µEM
yEM

so that θEM represents the angle from the Earth-

Moon x-axis centered at the Earth. For the angle in the Sun-Earth system, tan(θSE) =

xSE−1+µSE
ySE

and θSE represents the angle from the Sun-Earth x-axis centered at the

Earth. The resulting surface of section is depicted in Figure 6.7. Here, φm represents

the lunar angle associated with a particular crossing of the map. Thus, the state

corresponding to an intersection of a trajectory with the surface Σθ corresponds to

the lunar angle φm = θ2 − θ1 relative to the Sun-Earth x-axis. The lunar phasing

angle for other points along a manifold arc are determined by the time-of-flight along

the arc and ωsyn.
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Figure 6.7. Defining the lunar angle from Σθ1 and Σθ2

Consider a transfer that departs from an L2 Lyapunov orbit in the Earth-Moon

system, and connects to an L1 Lyapunov orbit in the Sun-Earth system. Three

orbits are randomly selected from the family of Earth-Moon L2 Lyapunov orbits,

corresponding to the following values of Jacobi constant and period (T ): C = 3.12653,

T = 15.2113 days; C = 3.15011, T = 14.9276 days; C = 3.16442, T = 14.7887 days.

For each orbit, 50 unstable manifold arcs, selected for even increments of τ = i·T
50

,

i = 0, . . . , 49, are propagated for 35 days each. A subset of the resulting manifold

arcs are plotted in magenta in Figure 6.8. Similarly, three sample orbits from the

Earth

Moon

x (105 km)

y 
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05  k
m

)

(a)

Moon
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y 
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04  k
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)

(b)

Figure 6.8. Unstable manifold arcs departing L2 Lyapunov orbits in
the Earth-Moon system

Sun-Earth family of L1 Lyapunov orbits are selected, corresponding to the following

values: C = 3.00089, T = 175.081 days; C = 3.00088, T = 175.578 days; C =
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3.00084, T = 177.069 days. Stable manifold arcs associated with each orbit and

corresponding to even increments of τ = i·T
100

, i = 0, . . . , 99, are propagated for 215

days each, and a subset of these trajectories appear in green in Figure 6.9. Values

x (108 km)

y 
(1

06  k
m

)

lunar orbit

Figure 6.9. Stable manifold arcs approaching L1 Lyapunov orbits in
the Sun-Earth system

for θ1 and θ2 are selected, and the invariant manifolds are propagated within the

respective three-body systems. Crossings of Σθ1 are recorded for all Earth-Moon

trajectories, and intersections with Σθ2 are captured for Sun-Earth arcs. To view

the resulting three-dimensional Poincaré map, the states associated with crossings of

the map are transformed into a common frame. For this example, the Earth-Moon

data is transformed into the Sun-Earth rotating frame. Many projections can be

considered to view the map. Here, polar coordinates are considered and the projection

of the map into the r-ṙ plane is selected, where r =
√

(xSE − 1 + µSE)2 + y2
SE and

ṙ =
(

[xSE − 1 + µSE, ySE]T [ẋSE, ẏSE]
)
/r. Because the magnitudes of r and ṙ may

be disparate, the value of ṙ is scaled by a constant factor k1. To display the third

coordinate, a modification of the glyph in Figure 6.2 is considered. For the three-

dimensional map, a vector is still employed as the glyph representing crossings of the

Poincaré map. However, now both the length and orientation of the vector represent

the remaining coordinate as pictured in Figure 6.10. The value of θ̇ is represented via



123

the length of the vector as scaled by the parameter k2. This velocity is additionally

mapped to an angle, γ, that defines the orientation of the glyph within the range [0, π].

Thus, γ = π

(
θ̇ − θ̇min

θ̇max − θ̇min

)
, where θ̇min and θ̇max are the minimum and maximum

values of θ̇ of all states on the map. Adjusting the surfaces of section to reduce the

{

Figure 6.10. Glyph representation for a three-dimensional data point

position and velocity discontinuities, the values θ1 = 316◦ and θ2 = 147◦ are selected

and the resulting map appears in Figure 6.11. For this example, k1 = 0.01 and
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Figure 6.11. Employing a Poincaré map to locate a low-cost trans-
fer between libration point orbits in the Earth-Moon and Sun-Earth
systems
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k2 = 1× 10−5. By connecting the basepoints of the vectors representing the crossings

of a particular invariant manifold on the map, a contour in the r-ṙ plane is formed.

Thus, the stable manifolds approaching the Sun-Earth Lyapunov orbits correspond

to the three green contours on the map, and the Earth-Moon Lyapunov unstable

manifolds are associated with the three magenta contours. As in the example from

the previous section, a feasible transfer requiring zero ∆v is located by identifiying

map crossings along the stable and unstable manifolds for which the basepoints of the

crossings overlap, and the length and orientation of the vectors is identical. From the

maps in Figure 6.11 it is apparent that each of the three green contours intersect each

of the three magenta contours in the r-coordinate, indicating that a feasible transfer

exists between any of the Sun-Earth and Earth-Moon orbits for the lunar angle defined

by θ1 = 316◦ and θ2 = 147◦. A portion of the velocity discontinuity is indicated

by the difference in ṙ between a green and a magenta crossing for equal values of

r. The zoomed in view of the map in Figure 6.11(b) provides additional information

about the discontinuity in θ̇. The θ̇-discontinuity is apparently reduced by considering

intersections between the outermost green and magenta contours, corresponding to

the orbits associated with the lowest values of C in each system. The crossings

nearest the intersection of these contours for which the r-discontinuity is minimal

on the map are selected and are circled in black in Figure 6.11(b). Propagating the

circled states within their respective systems yields the manifold arcs in Figure 6.12(a)

that provide an initial guess for the transfer between the libration point orbits. A

discontinuity of 312.97 km and 32.1 m/s exists where the magenta and green arcs

join. Four revolutions along both the Earth-Moon L1 and Sun-Earth L2 Lyapunov

orbits are incorporated into the design and the discontinuous transfer is plotted in

the Sun-Earth system in Figure 6.12(b), and in the Earth-Moon system in Figures

6.12(c)–6.12(d). Note that two phasing segments are also included: one arc to connect

the final state x̄1(T1) = x̄1(0) at the x-axis crossing along the Earth-Moon departure

orbit to the initial state x̄u0(0) along the unstable manifold, which is associated with
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Figure 6.12. Constructing an initial guess for the system-to-system transfer

the departure location x̄1(τ1); and one segment to bridge the discontinuity between

the final state x̄s(ts) along the Sun-Earth orbit stable manifold and the initial state

x̄2(0) at the x-axis crossing along the Sun-Earth arrival orbit.

To validate the solution obtained from the Poincaré map, the initial guess is

differentially corrected within a Sun-Earth-Moon ephemeris model. First, the so-

lution in the Sun-Earth rotating frame is discretized for multiple shooting, and the

states associated with each node are transformed to the Earth-centered inertial frame.

The resulting states are numerically integrated using the N -body equations of mo-
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tion, and full state continuity is enforced within a corrections process. The initial

lunar phasing angle is computed by considering the lunar angle φm at the epoch

associated with the final state along the unstable manifold. Assuming m arcs are

included prior to the unstable manifold arc in the design, the initial angle is given as

φ0 = φm − 2πωsyn (|Tu|+
∑m

i=1 |Ti|), where Tu is the elapsed time along the unsta-

ble manifold arc, and Ti is the time-of-flight along the i-th arc prior to the unstable

manifold arc. Thus, φ0 provides the lunar angle at the beginning of the transfer arcs

in Figures 6.12(b)–6.12(d). The initial epoch is selected consistent with this lunar

phasing angle and is employed to define the orientation of the bodies in the N -body

system. Numerical integration of these nodes in the ephemeris model proceeds via

the relative 4-body equations of motion as expressed in Earth-centered J2000 inertial

coordinates. The second-order equations of motion are written as

R̄
′′

13 = −G(m3 +m1)
R̄13

R3
13

+
∑
i=2,4

Gmi

(
R̄3i

R3
3i

− R̄1i

R3
1i

)
, (6.8)

where m1, m2, and m4 represent the masses of the Earth, Moon, and Sun, respec-

tively. The vector R̄13 locates the spacecraft relative to the Earth, and R̄ij = R̄j− R̄i

locates the ith body relative to the jth body. The respective distances are obtained

via the planetary and lunar ephemeris file DE 421 [89]. The continuous solution, com-

puted via the differential corrections process, appears in the Sun-Earth and Earth-

Moon rotating frames in Figure 6.13. For details on differential corrections within

the ephemeris model, see Pavlak [90]. Note that the distance between the primary

bodies varies with time in the ephemeris model. The pulsation in the rotating frame

is removed by normalizing the positions at each time instant using the instantaneous

P1-P2 distance and multiplying by the characteristic length associated with the ap-

propriate system.
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Figure 6.13. Converged transfer in the Sun-Earth-Moon ephemeris
model with ∆v = 0
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7. EXPLORING THE ROLE OF POINCARÉ MAPS

IN AN INTERACTIVE TRAJECTORY

DESIGN ENVIRONMENT

As mission requirements become increasingly complex, trajectory design tools that

take advantage of the available natural dynamics are essential. An interactive design

environment offers many advantages from the perspective of mission design. Many

commonly used trajectory design tools employ an ephemeris model, in which only

point solutions associated with a particular epoch can be considered. Working in an

autonomous model, such as the CR3BP, enables an examination of the global solution

space and facilitates user interaction within the design process. Tools such as point-

and-click arc selection and real time computation and propagation of solutions allow

the designer to explore the space while gaining intuition about the available solutions.

Different design options can be considered simultaneously, allowing the user to adapt

solutions based on the insight gained and to select a design that best meets the mission

requirements.

Several tools exist that exploit dynamical systems theory for mission design, in-

cluding Generator [91, 92] and LTool [93]. A tool to interactively compute libration

point orbits and their associated manifolds is demonstrated by Mondelo et al. [94]

The AUTO software enables the computation of periodic orbits and numerical con-

tinuation of orbit families, as well as bifurcation detection and analysis [95]. An in-

teractive design approach based in visual analytics has been previously demonstrated

by Schlei [96] for a variety of mission design applications in multi-body regimes. Haa-

pala et al. [97] demonstrate an Adaptive Trajectory Design© strategy that provides

interactive access to a variety of multi-body solutions for rapid design and analysis
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of trajectory options. A dynamic reference catalog, introduced by Folta et al. [98]

as well as Guzzetti et al. [99], offers an interactive environment for orbit comparison

and selection .

The focus in this chapter is on the design of transfers between libration point orbits

employing Poincaré maps within an interactive design environment. Within this en-

vironment, the user can select a three-body system and specify the desired departure

and arrival orbit types. By selecting a Jacobi constant value, the particular departure

and arrival orbits from within the families are computed and the associated invariant

manifolds may be propagated. To search for a transfer between the selected departure

and arrival orbits, a Poincaré map is employed using the techniques demonstrated in

the previous chapter. The characteristics associated with the Poincaré surface of

section are specified by the user within the design environment. For the design of

transfers in the planar problem, the user is able to specify the axes into which the

two-dimensional map is projected. In the spatial problem, the attributes associated

with the glyphs employed to represent crossings of the higher-dimensional map are

defined. Finally, the number of arcs used to discretize the stable/unstable manifold

is prescribed, in addition to the manifold propagation time, and the resulting arcs

are numerically integrated while crossings of the surface of section are recorded. The

Poincaré map is, then, displayed as designated by the user and crossings of the map

are interactively selected to view the associated manifold arcs. Once an appropri-

ate initial guess for the transfer is located, the solution is differentially corrected as

described in Chapter 6.4. To enable the functions described, two Graphical User In-

terface (GUI) environments are developed in MATLAB including a Transfer Design

Environment, and a Differential Corrections Environment. The implementation of

the design process within these environments is described in detail in the upcoming

sections.
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7.0.1 Transfer Design Environment

The first step in the transfer design procedure is the location of a suitable initial

guess for a transfer between libration point orbits. Once a guess is constructed, it

is differentially corrected to generate a feasible solution. Here, an interactive design

environment employing Poincaré maps is demonstrated to search for the initial guess.

As an alternative, the guess can be located using an automated search algorithm. An

automated strategy is considered in an upcoming section of Chapter 8.

The GUI developed to implement an interactive transfer design environment is de-

picted in Figure 7.1. Two blank plots appear and are employed to view the Poincaré

Figure 7.1. Transfer Design Environment

map and the libration point orbit transfer. The plots are populated as the user follows

the design process. To the right of the plot windows, a panel labeled “Transfer and

Map Properties” is included that allows the user to specify the desired three-body

system and energy level, as well as the transfer and Poincaré map properties. Be-
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neath the left plot appears a second panel titled “Plot Tools” that contains various

plot options. A third panel labeled “Select Map Crossings” lies beneath the right

plot window and includes the functions that enable the user to interactively select

manifold arcs of interest from the Poincaré map. Finally, a button labeled “Cor-

rect Initial Guess” is included in the lower right corner of the GUI. Once an initial

guess is located within the design environment, this button launches the Differential

Corrections Environment in which the user can construct a feasible transfer.

To demonstrate the design procedure, consider the following example in which

a maneuver-free transfer connecting northern and southern L1 halo orbits in the

Earth-Moon system is sought. To begin, the Earth-Moon system is selected from

within the drop-down menu in the “Transfer and Map Properties” panel. The other

three-body system options include the Sun-Earth system and Hill 3BP, although it is

straightforward to incorporate any additional systems of interest. Once the desired

system is designated, an appropriate energy level is identified by entering a value

within the “Jacobi Constant” text box. For this example, a value of C = 3.05 is

arbitrarily selected. Next, pressing the button labeled “Transfer Options,” the pop-

up window depicted in Figure 7.2(a) appears. Within this window, two panels allow

the user to specify characteristics associated with the departure and arrival orbits.

Here, the user is able to designate the departure and arrival orbit types, as well as

the number of manifold arcs that are employed to represent the unstable and stable

manifold associated with these orbits. The desired propagation times for the manifold

arcs is entered, and the drop-down menus labeled “Propagation Direction” allow the

user to stipulate either the left or right half-manifolds for the propagation. For this

example, the L1 northern halo family is selected as the departure orbit type, and

100 manifold arcs are designated to be propagated for 35 days each. Similarly, the

southern halo family in the vicinity of L1 is defined as the arrival orbit type, and

100 manifold arcs are specified to be integrated for 35 days. The positive direction is

selected for w̄U , indicating that the right half-manifolds will be employed to construct



132

(a)

(b)

Figure 7.2. Transfer properties are selected

the transfer. These selections are populated in the window in Figure 7.2(b). Once the

transfer orbit and manifold properties are identified, pressing the “Finished” button

returns these properties to the Transfer Design Environment.

At this stage in the design procedure, the three-body system, energy level, orbit

characteristics, and invariant manifold properties are identified. Now, the Poincaré

surface of section is selected and the method of viewing the map is specified by press-
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ing the “Poincaré Map Options” button. The pop-up window in Figure 7.3(a) appears

where the surface of section is defined in addition to the direction of crossings con-

sidered. The stopping condition is also designated to determine if the manifolds are

numerically integrated through the full specified propagation time, or if the integra-

tion is terminated upon intersection of the trajectory with the map. In this example,

the event type selected is y = y0, the event value y0 is set to zero, and the map

crossing is set to “positive,” indicating that the surface of section to be employed is

Σ+ = {x̄|y = 0, ẏ > 0}. The stopping condition is removed so that all crossings of

Σ+ are included on the map. The user-selected options appear in Figure 7.3(b). By

pressing “Finished,” the Poincaré map definitions are returned to the main Transfer

Design Environment.

The remaining step before viewing the Poincaré map is the construction of the

glyph that is employed to represent crossings of Σ+. Pressing the “Map Marker

Options” button, the pop-up window depicted in Figure 7.4(a) appears. Two buttons

at the top of the window identify the type of glyph to be employed. The button on

the left allows the map to be viewed as a puncture plot, whereas the button on the

right specifies that map crossings are plotted using the vector glyph definition from

Figure 6.2. For this example, the right button is selected and map crossings will

be displayed as vectors. The basepoint of the vector corresponds to the variables

selected in the lower left panel labeled “Basepoint 1,” which are set to the x- and

z-coordinates. Note that the variables will be displayed in dimensional coordinates

on the map. Two constants, k1 and k2, are included so that the variables defining

the basepoint can be scaled, if necessary. These constants are set equal to one, as the

basepoint coordinates are similar in magnitude for this example. Thus, q1 = x and

q2 = z for the glyph definition from Figure 6.2. By specifying “Basepoint 2,” each

vector on the map is defined as the line segment connecting the coordinates from

basepoint 1 and basepoint 2. That is, identifying the coordinates for basepoint 2 as ẋ

and ż, each vector on the map is defined by the segment (x, z)→ (x+ k3ẋ, z + k4ż).
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(a)

(b)

Figure 7.3. Poincaré map properties are defined
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The associated scaling constants are set to k3 = 5000 and k4 = 5000 to account for the

difference in magnitude between the position and velocity coordinates. The selected

glyph definition is returned to the main design GUI by pressing the “Finished” button.

Now that all transfer and map properties are defined, the manifold arcs and asso-

ciated Poincaré map may be computed. By pressing the “Compute Periodic Orbits”

button, a differential corrections process is employed to target the desired orbits

within the specified departure and arrival orbit families and associated with the Ja-

cobi constant value set by the user. For this example, the resulting northern and

southern L1 halo orbits appear in the plot on the left within the GUI in Figure 7.5.

Pressing the “Compute Poincaré Map” button, initial conditions along the invariant

manifold arcs computed and are propagated. Crossings of Σ+ are recorded and the

resulting Poincaré map is displayed in the plot axes on the right in the GUI. Unstable

manifold crossings are plotted in red, and the stable manifold is represented in blue.

The zoom and pan tools, displayed as buttons in the upper left portion of the GUI,

allow the user to inspect different regions of the map to search for an initial guess for

a transfer. The map is plotted again in Figure 7.6 with three zoomed views included

that depict the structures in various regions of the map. The zoomed view labeled

3 reveals a pair of crossings, circled in black, for which x is on the far side of the

Moon, z ≈ 0, and ẋ ≈ 0. These crossings are selected within the design environment

to reveal the corresponding manifold arcs. By pressing either of the buttons with

in the “Select Map Crossings” panel, a pair of crosshairs appears. Navigating these

crosshairs within the Poincaré map, the user is able to point-and-click on the map to

identify the manifold arcs to be employed for the transfer. Using this method, the

crossings circled in Figure 7.6 are selected and the resulting initial guess for a transfer

between the northern and southern L1 halo orbits is represented in the plot window

on the left in the GUI in Figure 7.7(a). If this transfer is satisfactory, it is passed to

the Differential Corrections Environment to compute a feasible transfer. Otherwise,
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(a)

(b)

Figure 7.4. Poincaré map display properties are specified

if further exploration is desired, the Jacobi constant value can be modified to exam-

ine the effect on the resulting on the Poincaré map. Adjusting the value of Jacobi
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Figure 7.5. Transfer orbits are computed and manifold crossings of
the Poincaré map are displayed

constant and pressing “Compute Periodic Orbits,” new halo orbits corresponding to

the updated value of Jacobi constant are computed. Pressing “Compute Poincaré

Map” reveals the map for the manifold arcs asymptotic to the halo orbits for the new

value of Jacobi constant. For example, the map associated with C = 3.07 is depicted

in Figure 7.7(b). The crossings nearest z = ẋ = 0 are selected within the equivalent

region 3 on the new map, and the associated manifold arcs are plotted in the left plot

window in Figure 7.7(b). Once a satisfactory initial guess for the transfer is located, it

is passed to the Differential Corrections Environment by pressing the “Correct Initial

Guess” button in the lower right of the design GUI. This environment is discussed in

the following section.
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(a) C = 3.05

(b) C = 3.07

Figure 7.7. Transfer arcs are interactively selected from the Poincaré map
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7.0.2 Differential Corrections Environment

Within the Transfer Design Environment, the user can explore and interact with

the design options to search for an initial guess for a transfer between the depar-

ture and arrival orbits of interest. This guess is discontinuous, in general, and must

be differentially corrected to locate a feasible transfer. Several variables are deter-

mined within the design environment that define the initial guess. These variables

are discussed in Chapter 6.4 and include the following:

� x̄10: the initial state along the departure orbit

� T1: the period of the departure orbit

� x̄20: the initial state along the arrival orbit

� T2: the period of the arrival orbit

� x̄u0: the final state along the unstable manifold arc at the intersection with the

surface of section

� Tu: the propagation time along the unstable manifold

� τ1: the time that defines the location along the departure orbit from which the

unstable manifold arc is computed

� x̄s0: the initial state along the stable manifold arc at the intersection with the

surface of section

� Ts: the propagation time along the unstable manifold

� τ2: the time that defines the location along the arrival orbit from which the

stable manifold arc is computed

When the “Correct Initial Guess” button is pressed within the Transfer Design Envi-

ronment, these variables are passed to the Differential Corrections Environment where

the algorithms described in Chapter 6.4 are employed to locate a feasible transfer.

The Differential Corrections Environment is depicted in Figure 7.8. The initial

guess designed within the Transfer Design Environment appears in the plot window,

and the list of variables on the left in the “Transfer Design Parameters” panel is
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Figure 7.8. The initial guess for the transfer is displayed in the Dif-
ferential Corrections Environment

populated with the corresponding values. Note that τu and τs in the list are equivalent

to τ1 and τ2, respectively. The discontinuity in the velocity, located where the red

and blue manifold arcs join, is included at the bottom of the list; the current value is

24.278 m/s. To begin the differential corrections process, several parameters must be

specified. At the top left of the GUI is a panel labeled “Discretize Arcs” containing

four text boxes into which integer values are entered. These values specify the number

of nodes that are employed to discretize the periodic orbits and the unstable and stable

manifold arcs. This discretization enables a multiple-shooting scheme that reduces

numerical sensitivities during the corrections process. For this example, four nodes

are employed to discretize each halo orbit, and eight nodes are distributed along each

manifold arc. By entering these values into the text boxes, the algorithm discretizes

each arc into equal time segments. If more control over the node distribution process is
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desired, the “Discretize Manually” button is employed. In addition to discretizing the

initial guess, the user selects the targeting algorithm to be employed by choosing from

the options in the “Targeting Algorithm” panel. Recall that a maneuver-free transfer

is sought for this example. Thus, the goal is to reduce the ∆v to zero employing

differential corrections. In general, it may not be possible to remove the entire ∆v

in one step. That is, it is generally useful to reduce the ∆v incrementally using a

continuation process. Thus, to begin, the second option labeled “Allow Maneuver” is

selected and a value of 10 m/s is input into the corresponding text box. The algorithm

described in the section “Enforcing an Upper Limit on the ∆v” of Chapter 6.4.2 is

employed within the corrections process. Pressing the “Correct Transfer” button, the

algorithm proceeds and the output appears in Figure 7.9(a). The solution converges

(a) Reducing ∆v to 10 m/s

(b) Reducing ∆v to 0

Figure 7.9. Output from the differential corrections algorithms

to a feasible transfer in 6 iterations, noting that the tolerance specified within the

“Correct Transfer” panel is 1 × 10−12 (nd). The corresponding tolerance values in

dimensional units are provided and are approximately 3.9 1× 10−7 km and 1× 10−12

km/s. For the corrected solution, a ∆v of 10 m/s exists where the unstable and

stable manifold arcs join. The list of variables on the right in the “Transfer Design
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Parameters” panel is now populated with the values associated with the converged

transfer. The ultimate goal is to reduce the ∆v to zero, and this is accomplished by,

next, selecting the “Free Transfer” option within the “Targeting Algorithm” panel

and pressing the “Correct Transfer” button. Now, the algorithm described in Chapter

6.4.1 is employed to remove the ∆v, and a maneuver-free transfer is computed. The

output from the algorithm is displayed in Figure 7.9(b) and the converged solution

appears in Figure 7.10. Comparing the values in the list boxes on the left and right in

Figure 7.10. A transfer corresponding to ∆v = 0 is computed

the “Transfer Design Parameters” panel, changes in the manifold departure locations

τ are evident, in addition to an increase in the value of C, and a slight decrease in the

time-of-flight TOF = |Tu|+Ts for the converged transfer. The values of the variables

associated with the corrected solution are saved to a *.mat file by entering a filename
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into the text box at the bottom of the “Correct Transfer” panel and pressing the

“Save Data” button.

The design process demonstrated here provides a method to incorporate Poincaré

maps into the mission design process. Specifically, the search for maneuver-free and

low-cost transfers is facilitated employing invariant manifolds associated with periodic

libration point orbits. With interactive access to control variables such as the energy

level and the desired libration point orbit types, the solutions space can be searched

quickly and efficiently. An interactive differential corrections environment enables

the user to apply differential corrections processes to locate feasible solutions and to

incorporate any desired constraints on the allowed ∆v. In this example, the design

process is demonstrated and a novel heteroclinic connection between northern and

southern L1 halo orbits is straightforward to locate.



145

8. CATALOG OF FREE AND LOW-COST TRANSFERS

BETWEEN LIBRATION POINT ORBITS IN THE

EARTH-MOON SYSTEM

The lunar libration points have been proposed as destinations in the next step of

the development of the human presence in space [100]. Orbits in the vicinity of

the Sun-Earth L1 and L2 points provide ideal locations for solar and cosmological

observatories, and the role of human servicing of spacecraft in these orbits for future

missions is an important consideration. Because transport between the Earth-Moon

and Sun-Earth libration points requires relatively low ∆v, such observatories could be

transferred to Earth-Moon libration point orbits to enable human servicing missions

[100]. The lunar libration points are also of interest for storage of fuel and supplies

to service future missions to the Moon and Mars, and could serve as locations to

build spacecraft to be delivered to Sun-Earth libration point orbits [100]. Thus, an

understanding of the available transfers between the lunar libration point orbits is

useful to assess transport options to, from, and between these orbits.

8.1 Catalog Taxonomy

The strategies demonstrated in the previous section prove useful to search for

maneuver-free and low-cost, in terms of ∆v, transfers between libration point orbits.

In the following sections, transfers associated with periodic libration point orbits in

the Earth-Moon system are computed and are presented in a catalog. The transfer

types considered include the following:

� V1: Homoclinic connections associated with L1 vertical orbits
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� V2: Homoclinic connections associated with L2 vertical orbits

� H1: Homoclinic connections associated with L1 halo orbits

� H2: Homoclinic connections associated with L2 halo orbits

� A1: Homoclinic connections associated with L1 axial orbits

� A2: Homoclinic connections associated with L2 axial orbits

� HH1: Heteroclinic connections connecting northern and southern L1 halo orbits

� HH2: Heteroclinic connections connecting northern and southern L2 halo orbits

� AA1: Heteroclinic connections connecting northern and southern L1 axial orbits

� AA2: Heteroclinic connections connecting northern and southern L2 axial orbits

� V1V2: Transfers between L1 and L2 vertical orbits

� H1H2: Transfers between L1 and L2 halo orbits

� A1A2: Transfers between L1 and L2 axial orbits

� V1H2: Transfers between L1 vertical orbits and L2 halo orbits

� H1V2: Transfers between L1 halo orbits and L2 vertical orbits

Because the solution space is infinite, boundaries are defined for the search and only

those transfers that exist within the prescribed constraints are sought. These bound-

aries are defined so that the catalog contains transfers that:

1. exist within the P2 region of the ZVCs,

2. require a transfer time ≤ 50 days,

3. require no maneuver for transfer types V1, V2, H2, H2, HH1, HH2, AA1, AA2,

4. require a maneuver of ∆v ≤ 20 m/s for transfer types V1V2, V1H2, H1V2,

H1H2,

5. do not impact the Moon,

6. and exist for C ≥ 3.03, with an exception for transfers of types A1, A2, AA1,

AA2, and A1A2.

The lower limit on the value of C is selected based on the observation that crossings

of the Poincaré maps grow sparse for C < 3.03 and time-of-flight (TOF) ≤ 50 days;

thus, very few transfers meeting the criteria in 1–4 are identified near this lower limit.
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This value of C corresponds to L1 and L2 vertical orbits with maximum z-amplitudes

around 76710 and 75280, respectively, and L1 and L2 halo orbits with maximum z-

amplitudes near 60350 and 72480 km. It should be noted that the value of C along the

halo family is not unique, and only those halo orbits that exist between the bifurcating

orbit from the Lyapunov family and the first orbit for which C = 3.03 are considered.

Because the L1 and L2 axial families exist for a narrow range of Jacobi constant values

(2.991 ≤ C ≤ 3.021 and 2.967 ≤ C ≤ 3.014, respectively) the transfers associated

with these orbits are not subject to the C ≥ 3.03 constraint. During the search, some

transfers with times-of-flight greater than 50 days are located and are included in the

catalog up to TOF = 75 days. While a thorough search for transfers corresponding

to TOF ≤ 50 days is completed, it is likely that some transfers corresponding to 50

days < TOF < 75 days are not included.

Heteroclinic and homoclinic connections represent maneuver-free transfers be-

tween periodic orbits. For the transfer types V1, V2, H2, H2, HH1, HH2, A1, A2,

AA1, and AA2, only free transfers are considered. However, no free transfers are

found in the Earth-Moon system within the TOF constraints for transfers of type

V1V2, H1H2, A1A2, V1H2, and H1V2. Thus, only those solutions that require a ma-

neuver of ≤ 20 m/s are considered for these transfer types. In this catalog the locally

optimal solutions are presented, however, there may exist a range of trajectories near

the optimal solution within the 0 ≤ ∆v ≤ 20 m/s and TOF≤ 50 day boundaries.

Any transfers that impact the Earth or Moon are, generally, discarded.

For all transfers computed in this catalog, associated transfer information is pro-

vided in a series of tables including a transfer label that includes the orbit type and

the transfer number (e.g., V1-1 represents the first homoclinic connection associated

with an L1 vertical orbit presented in the catalog), the Jacobi constant value asso-

ciated with the transfer, the TOF along the transfer path, and the figure number in

which the transfer is plotted. For low-cost transfers, two Jacobi constant values are

listed and correspond to the values associated with the departure (C1) and arrival
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(C2) orbits. Additionally, the maneuver (∆v) required to complete the transfer is

provided and corresponds to the location in the figures where the red and blue man-

ifold arcs join. All computed transfers that meet the defined search parameters are

cataloged in the tables and figures as outlined in Table 8.1. Note that the plots of

Table 8.1 Catalog of Libration Point Orbit Transfers

Transfer Type Table Figures

V1 8.2 8.1 – 8.18

V2 8.2 8.19 – 8.36

H1 8.3 8.37 – 8.53

H2 8.3 8.54 – 8.67

A1 8.4 8.68 – 8.69

A2 8.4 8.70 – 8.71

HH1 8.5 8.72 – 8.82

HH2 8.5 8.83 – 8.88

AA1 8.5 8.89

AA2 8.5 8.90

V1V2 8.6 8.91 – 8.98

H1H2 8.6 8.99 – 8.104

A1A2 8.6 8.105

V1H2 8.6 8.106 – 8.108

H1V2 8.6 8.109 – 8.111

the transfers appear in Moon-centered coordinates.

As a result of the generation of this catalog, some observations are made about

the transfers and their geometries. It is noted that homoclinic connections associated

with L1 orbits are often accompanied by transfers of similar geometry associated with
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an L2 orbit of the same orbit type. Likewise, for many of the heteroclinic connections

computed between northern and southern L1 halo/ axial orbits, a connection of similar

geometry is also located between northern and southern L2 halo/axial orbits. Thus,

in this catalog, all free L1 and L2 orbit transfers are grouped as “partners” and are

presented together in the tables. For clarity, define a pair of transfer partners as

consisting of two solutions: (A) a transfer associated with an L1 orbit, and (B) a

transfer associated with an L2 orbit of the same orbit type as the L1 orbit. That is, if

(A) corresponds to an L1 vertical orbit, then (B) corresponds to an L2 vertical orbit.

The L1 orbit transfers (A) are listed on the left side of the tables and their partner L2

orbit transfers (B) appear on the right. Partner transfers (A) and (B) are of similar

geometry, that is, they appear roughly as reflections of one another across the y-z

plane at x = 1−µ (i.e., x = 0 in Moon-centered coordinates). The low-cost transfers

between two distinct orbit types (V1H2 and H1V2) are also grouped according to

geometry; however, low-cost transfers between the same orbit type (V1V2 and H1H2)

are not grouped as partners because the L1 and L2 orbit types involved in the transfer

are the same. If no partner transfer is located for an L1 (L2) orbit, the entries in

the table for the L2 (L1) orbit transfer appear as dashes. The transfer cases for

which no partner transfer is computed are discussed in further detail in the upcoming

section on catalog observations and discussion. The transfer number is the same

for two transfers of the same geometry, e.g., V1-n and V2-n represent homoclinic

connections of the same geometry and associated with L1 and L2 vertical orbits,

respectively. For partner transfers, the tables are organized according to descending

values of C for the L1 orbit transfers. The L2 orbit transfers are then, generally,

organized with the L1 orbit transfers according to matching geometry. The value of

C does not necessarily decrease monotonically for these partner L2 orbit transfers

within the tables, however, the figures in all sections are organized by descending

Jacobi constant value. Recall that some transfers with times-of-flight greater than 50

days are included in the catalog up to TOF = 75 days. If a pair of partner transfers
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is computed with one partner corresponding to TOF ≤ 75 days and one to TOF > 75

days, both transfers are included in the catalog.

In the following sections, the computed transfers are cataloged as described. Dis-

cussion and observations are included in the final sections of this chapter.
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8.2 Homoclinic Connections Associated with Vertical Orbits

Table 8.2 Vertical Orbit Homoclinic Connections

Label C TOF (days) Figure No. Label C TOF (days) Figure No.

V1-1 3.1775 52.5825 8.1 V2-1 - - -

V1-2 3.1580 53.1241 8.2 V2-2 - - -

V1-3 3.1565 50.5069 8.3 V2-3 - - -

V1-4 - - - V2-4 3.1450 72.2670 8.19

V1-5 3.1389 51.1528 8.4 V2-5 3.1288 62.5025 8.22

V1-6 - - - V2-6 3.1361 61.8870 8.21

V1-7 3.1316 50.4070 8.5 V2-7 3.1416 59.5273 8.20

V1-8 3.1271 60.7297 8.6 V2-8 3.1198 63.4957 8.23

V1-9 3.1201 53.1732 8.7 V2-9 - - -

V1-10 3.1126 63.9845 8.8 V2-10 - - -

V1-11 - - - V2-11 3.1093 58.1397 8.24

V1-12 3.1060 66.0469 8.9 V2-12 3.1054 76.3231 8.25

V1-13 3.1059 39.9676 8.10 V2-13 3.1053 46.9066 8.27

V1-14 3.1008 51.4635 8.11 V2-14 3.0999 58.4020 8.28

V1-15 3.0947 67.9682 8.12 V2-15 3.1045 70.6015 8.26

V1-16 3.0897 55.3035 8.13 V2-16 3.0876 60.1932 8.29

V1-17 3.0885 38.7444 8.14 V2-17 3.0852 45.2766 8.30

V1-18 3.0870 47.0461 8.15 V2-18 3.0827 52.7960 8.31

V1-19 3.0825 51.4976 8.16 V2-19 3.0697 59.1197 8.34

V1-20 3.0768 73.6204 8.17 V2-20 3.0798 79.5223 8.32

V1-21 3.0760 72.0903 8.18 V2-21 3.0618 79.4076 8.35

V1-22 - - - V2-22 3.0707 71.3786 8.33

V1-23 - - - V2-23 3.0315 69.6960 8.36
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L1 Vertical Orbits

−6 −4 −2 0 2 4

−2

0

2

x (104 km)

y 
(1

04
km

)

−6 −4 −2 0 2 4

−1

0

1

x (104 km)

z 
(1

04
km

)

−6 −4 −2 0 2 4 −2 0 2

−1
0
1

y (104 km)x (104 km)

z 
(1

04
km

)

Figure 8.1. V1-1, C = 3.1775, TOF = 52.5825 days
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Figure 8.2. V1-2, C = 3.1580, TOF = 53.1241 days
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Figure 8.3. V1-3, C = 3.1565, TOF = 50.5069 days
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Figure 8.4. V1-5, C = 3.1389, TOF = 51.1528 days
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Figure 8.5. V1-7, C = 3.1316, TOF = 50.4070 days
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Figure 8.6. V1-8, C = 3.1271, TOF = 60.7297 days
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Figure 8.7. V1-9, C = 3.1201, TOF = 53.1732 days

−4 −2 0 2 4

−2

0

2

x (104 km)

y 
(1

04
km

)

−4 −2 0 2 4
−5

0

5

x (104 km)

z 
(1

04
km

)

−4 −2 0 2 4 −20 2
−5

0

5

y (104 km)x (104 km)

z 
(1

04
km

)
Figure 8.8. V1-10, C = 3.1126, TOF = 63.9845 days
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Figure 8.9. V1-12, C = 3.1060, TOF = 66.0469 days
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Figure 8.10. V1-13, C = 3.1059, TOF = 39.9676 days
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Figure 8.11. V1-14, C = 3.1008, TOF = 51.4635 days
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Figure 8.12. V1-15, C = 3.0947 TOF = 67.9682 days
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Figure 8.13. V1-16, C = 3.0897, TOF = 55.3035 days
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Figure 8.14. V1-17, C = 3.0885, TOF = 38.7444 days
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Figure 8.15. V1-18, C = 3.0870, TOF = 47.0461 days
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Figure 8.16. V1-19, C = 3.0825, TOF = 51.4976 days
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Figure 8.17. V1-20, C = 3.0768, TOF = 73.6204 days
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Figure 8.18. V1-21, C = 3.0760, TOF = 72.0903 days
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Figure 8.19. V2-4, C = 3.1450, TOF = 72.2670 days
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Figure 8.20. V2-7, C = 3.1416, TOF = 59.5273 days
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Figure 8.21. V2-6, C = 3.1361, TOF = 61.8870 days
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Figure 8.22. V2-5, C = 3.1288, TOF = 62.5025 days
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Figure 8.23. V2-8, C = 3.1198, TOF = 63.4957 days
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Figure 8.24. V2-11, C = 3.1093, TOF = 58.1397 days
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Figure 8.25. V2-12, C = 3.1054, TOF = 76.3231 days
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Figure 8.26. V2-15, C = 3.1045, TOF = 70.6015 days
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Figure 8.27. V2-13, C = 3.1053, TOF = 46.9066 days
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Figure 8.28. V2-14, C = 3.0999, TOF = 58.4020 days
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Figure 8.29. V2-16, C = 3.0876, TOF = 60.1932 days
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Figure 8.30. V2-17, C = 3.0852, TOF = 45.2766 days



162

−4 −2 0 2 4 6

−1

0

1

x (104 km)

y 
(1

04
km

)

−5 0 5

−6

−4

−2

0

2

4

6

x (104 km)

z 
(1

04
km

)

−5 0 5
−101

−5

0

5

x (104 km)y (104 km)

z 
(1

04
km

)

Figure 8.31. V2-18, C = 3.0827, TOF = 52.7960 days
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Figure 8.32. V2-20, C = 3.0798 TOF = 79.5223 days
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Figure 8.33. V2-22, C = 3.0707, TOF = 71.3786 days
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Figure 8.34. V2-19, C = 3.0697, TOF = 59.1197 days
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Figure 8.35. V2-21, C = 3.0618, TOF = 79.4076 days
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Figure 8.36. V2-23, C = 3.0315, TOF = 69.6960 days
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8.3 Homoclinic Connections Associated with Halo Orbits

Table 8.3 Halo Orbit Homoclinic Connections

Label C TOF (days) Figure No. Label C TOF (days) Figure No.

H1-1 3.1685 62.9075 8.37 H2-1 - - -

H1-2 - - - H2-2 3.1517 45.0669 8.54

H1-3 3.1658 44.5716 8.38 H2-3 - - -

H1-4 3.1638 69.2250 8.39 H2-4 - - -

H1-5 - - - H2-5 3.1510 57.1765 8.55

H1-6 3.1453 45.3983 8.40 H2-6 - - -

H1-7 3.1352 61.7935 8.41 H2-7 - - -

H1-8 3.1051 73.5694 8.42 H2-8 3.1013 78.4380 8.56

H1-9 3.0837 60.1211 8.43 H2-9 3.0892 65.4246 8.57

H1-10 3.0766 65.1147 8.44 H2-10 3.0746 72.0334 8.62

H1-11 3.0763 52.9703 8.45 H2-11 3.0820 58.3090 8.58

H1-12 3.0726 59.7869 8.46 H2-12 3.0775 64.9840 8.60

H1-13 3.0725 64.6227 8.47 H2-13 3.0618 78.4496 8.65

H1-14 3.0723 65.9529 8.48 H2-14 3.0687 75.1186 8.63

H1-15 3.0701 72.4875 8.49 H2-15 3.0790 74.7334 8.59

H1-16 3.0600 71.7162 8.50 H2-16 3.0764 73.6022 8.61

H1-17 3.0584 70.6021 8.51 H2-17 3.0663 75.1945 8.64

H1-18 3.0498 62.5695 8.52 H2-18 3.0616 66.4187 8.66

H1-19 3.0366 63.1381 8.53 H2-19 3.0485 65.5675 8.67
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L1 Halo Orbits
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Figure 8.37. H1-1, C = 3.1685, TOF = 62.9075 days
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Figure 8.38. H1-3, C = 3.1658, TOF = 44.5716 days
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Figure 8.39. H1-4, C = 3.1638, TOF = 69.2250 days
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Figure 8.40. H1-6, C = 3.1453, TOF = 45.3983 days
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Figure 8.41. H1-7, C = 3.1352, TOF = 61.7935 days
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Figure 8.42. H1-8, C = 3.1051 TOF = 73.5694 days; Note that this
connection impacts the Moon
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Figure 8.43. H1-9, C = 3.0837, TOF = 60.1211 days
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Figure 8.44. H1-10, C = 3.0766, TOF = 65.1147 days
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Figure 8.45. H1-11, C = 3.0763, TOF = 52.9703 days
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Figure 8.46. H1-12, C = 3.0726, TOF = 59.7869 days
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Figure 8.47. H1-13, C = 3.0725, TOF = 64.6227 days
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Figure 8.48. H1-14, C = 3.0723, TOF = 65.9529 days
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Figure 8.49. H1-15, C = 3.0701, TOF = 72.4875 days
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Figure 8.50. H1-16, C = 3.0600, TOF = 71.7162 days
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Figure 8.51. H1-17, C = 3.0584, TOF = 70.6021 days
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Figure 8.52. H1-18, C = 3.0498, TOF = 62.5695 days
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Figure 8.53. H1-19, C = 3.0366, TOF = 63.1381 days
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Figure 8.54. H2-2, C = 3.1517, TOF = 45.0669 days
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Figure 8.55. H2-5, C = 3.1510, TOF = 57.1765 days
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Figure 8.56. H2-8, C = 3.1013, TOF = 78.4380 days
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Figure 8.57. H2-9, C = 3.0892, TOF = 65.4246 days
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Figure 8.58. H2-11, C = 3.0820, TOF = 58.3090 days
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Figure 8.59. H2-15, C = 3.0790, TOF = 74.7334 days
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Figure 8.60. H2-12, C = 3.0775, TOF = 64.9840 days
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Figure 8.61. H2-16, C = 3.0764, TOF = 73.6022 days
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Figure 8.62. H2-10, C = 3.0746, TOF = 72.0334 days
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Figure 8.63. H2-14, C = 3.0687, TOF = 75.1186 days
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Figure 8.64. H2-17, C = 3.0663, TOF = 75.1945 days
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Figure 8.65. H2-13, C = 3.0618, TOF = 78.4496 days
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Figure 8.66. H2-18, C = 3.0616, TOF = 66.4187 days
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Figure 8.67. H2-19, C = 3.0485, TOF = 65.5675 days



176

8.4 Homoclinic Connections Associated with Axial Orbits

Table 8.4 Axial Orbit Homoclinic Connections

Label C TOF (days) Figure No. Label C TOF (days) Figure No.

A1-1 3.0048 71.2748 8.68 A2-1 2.9862 83.8149 8.70

A1-2 3.0028 68.6406 8.69 A2-1 2.9818 79.6937 8.71
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Figure 8.68. A1-1, C = 3.0048, TOF = 71.2748 days
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Figure 8.69. A1-2, C = 3.0028 TOF = 68.6406 days
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L2 Axial Orbits
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Figure 8.70. A2-1, C = 2.9862 TOF = 83.8149 days
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Figure 8.71. A2-2, C = 2.9818 TOF = 79.6937 days
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8.5 Heteroclinic Connections between Northern and Southern Halo/Axial

Orbits

Table 8.5 Heteroclinic Connections between Northern and Southern Orbits

Label C TOF (days) Figure No. Label C TOF (days) Figure No.

HH1-1 3.1694 74.7445 8.72 HH2-1 - - -

HH1-2 3.1635 42.3206 8.73 HH2-2 - - -

HH1-3 3.1625 51.6166 8.74 HH2-3 - - -

HH1-4 3.1589 54.2482 8.75 HH2-4 - - -

HH1-5 3.1580 57.1155 8.76 HH2-5 - - -

HH1-6 3.1422 41.5511 8.77 HH2-6 - - -

HH1-7 - - - HH2-7 3.1395 65.6368 8.83

HH1-8 3.1189 41.1956 8.78 HH2-8 3.1267 46.5733 8.84

HH1-9 3.0779 65.9390 8.79 HH2-9 3.0850 70.6057 8.85

HH1-10 3.0768 43.9812 8.80 HH2-10 3.0742 50.6271 8.86

HH1-11 3.0723 40.1881 8.81 HH2-11 3.0686 47.7498 8.87

HH1-12 3.0497 61.8061 8.82 HH2-12 3.0551 66.4160 8.88

AA1-1 3.0037 56.2121 8.89 AA2-1 2.984 66.8773 8.90
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Figure 8.72. HH1-1, C = 3.1694, TOF = 74.7445 days
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Figure 8.73. HH1-2, C = 3.1635, TOF = 42.3206 days
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Figure 8.74. HH1-3, C = 3.1625, TOF = 51.6166 days
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Figure 8.75. HH1-4, C = 3.1589, TOF = 54.2482 days

−6 −4 −2 0 2

−3

−2

−1

0

1

2

3

x (104 km)

y 
(1

04
km

)

−6 −4 −2 0 2

−1

0

1

x (104 km)

z 
(1

04
km

)

Figure 8.76. HH1-5, C = 3.1580, TOF = 57.1155 days
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Figure 8.77. HH1-6, C = 3.1422, TOF = 41.5511 days
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Figure 8.78. HH1-8, C = 3.1189, TOF = 41.1956 days
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Figure 8.79. HH1-9, C = 3.0779, TOF = 65.9390 days
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Figure 8.80. HH1-10, C = 3.0768, TOF = 43.9812 days
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Figure 8.81. HH1-11, C = 3.0723, TOF = 40.1881 days
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Figure 8.82. HH1-12, C = 3.0497, TOF = 61.8061 days
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Figure 8.83. HH2-7, C = 3.1395, TOF = 65.6368 days
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Figure 8.84. HH2-8, C = 3.1267, TOF = 46.5733 days
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Figure 8.85. HH2-9, C = 3.0850, TOF = 70.6057 days
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Figure 8.86. HH2-10, C = 3.0742, TOF = 50.6271 days
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Figure 8.87. HH2-11, C = 3.0686, TOF = 47.7498 days
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Figure 8.88. HH2-12, C = 3.0551, TOF = 66.4160 days
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Axial Orbits
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Figure 8.89. AA1-1, C = 3.0037, TOF = 56.2121 days
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Figure 8.90. AA2-1, C = 2.984, TOF = 66.8773 days
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8.6 Low-Cost Transfers

Table 8.6 Low-Cost Transfers

Label C1 C2 TOF (days) ∆v (m/s) Figure No.

V1V2-1 3.1616 3.1536 40.1034 4.7099 8.91

V1V2-2 3.1564 3.1504 39.5552 16.0344 8.92

V1V2-3 3.1265 3.1147 35.9293 7.9431 8.93

V1V2-4 3.1139 3.1073 54.9474 5.733 8.94

V1V2-5 3.0986 3.0951 41.2976 9.854 8.95

V1V2-6 3.0949 3.1039 53.0685 19.5612 8.96

V1V2-7 3.0898 3.0875 49.5468 4.653 8.97

V1V2-8 3.0849 3.0884 33.1433 5.254 8.98

H1H2-1 3.1681 3.1468 43.003 7.9742 8.99

H1H2-2 3.1469 3.1317 28.9769 18.2642 8.100

H1H2-3 3.1269 3.1158 51.0004 13.915 8.101

H1H2-4 3.0930 3.0972 59.7738 3.5776 8.102

H1H2-5 3.0698 3.0717 62.1769 5.1442 8.103

H1H2-6 3.0537 3.0795 51.1918 11.8545 8.104

A1A2-1 3.0058 2.9835 52.0105 25.7533 8.105

V1H2-1 - - - - -

H1V2-1 3.1636 3.1666 40.529 4.5 - not optimal 8.109

V1H2-2 3.1604 3.1223 37.5423 17.8769 8.106

H1V2-2 3.1327 3.1517 36.7461 11.7682 8.110

V1H2-3 3.0571 3.0468 40.5559 7.9048 8.107

H1V2-3 3.0338 3.0538 41.1473 16.5722 8.111

V1H2-4 3.0542 3.0544 62.8311 0.28067 8.108

H1V2-4 - - - - -



187

8.6.1 Transfers between L1 Vertical and L2 Vertical Orbits
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Figure 8.91. V1V2-1, C1 = 3.1616, C2 = 3.1536, TOF = 40.1034
days, ∆v = 4.7099 m/s
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Figure 8.92. V1V2-2, C1 = 3.1564, C2 = 3.1504, tof = 39.5552 days,
∆v = 16.0344 m/s
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Figure 8.93. V1V2-3, C1 = 3.1265, C2 = 3.1147, tof = 35.9293 days,
∆v = 7.9431 m/s
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Figure 8.94. V1V2-4, C1 = 3.1139, C2 = 3.1073, tof = 54.9474 days,
∆v = 5.733 m/s
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Figure 8.95. V1V2-5, C1 = 3.0986, C2 = 3.0951, tof = 41.2976 days,
∆v = 9.854 m/s

−4 −2 0 2 4 6

−1
0
1
2
3

x (104 km)

y 
(1

04
km

)

−5 0 5
−6

−4

−2

0

2

4

6

x (104 km)

z 
(1

04
km

)

−5 0 5 −10123

−5

0

5

x (104 km)

z 
(1

04
km

)

y (104 km)

Figure 8.96. V1V2-6, C1 = 3.0949, C2 = 3.1039, tof = 53.0685 days,
∆v = 19.5612 m/s
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Figure 8.97. V1V2-7, C1 = 3.0898, C2 = 3.0875, tof = 49.5468 days,
∆v = 4.653 m/s
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Figure 8.98. V1V2-8, C1 = 3.0849, C2 = 3.0884, tof = 33.1433 days,
∆v = 5.254 m/s

8.6.2 Transfers between L1 Halo and L2 Halo Orbits
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Figure 8.99. H1H2-1, C1 = 3.1681, C2 = 3.1468, TOF = 43.003 days,
∆v = 7.9742 m/s
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Figure 8.100. H1H2-2, C1 = 3.1469, C2 = 3.1317, TOF = 28.9771
days, ∆v = 18.2642 m/s
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Figure 8.101. H1H2-3, C1 = 3.1269, C2 = 3.1158, TOF = 51.0004
days, ∆v = 13.915 m/s
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Figure 8.102. H1H2-4, C1 = 3.0930, C2 = 3.0972, TOF = 59.7738
days, ∆v = 3.5776 m/s
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Figure 8.103. H1H2-5, C1 = 3.0698, C2 = 3.0717, tof = 62.1769 days,
∆v = 5.1442 m/s
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Figure 8.104. H1H2-6, C1 = 3.0537, C2 = 3.0795, tof = 51.1918 days,
∆v = 11.8545 m/s

8.6.3 Transfers between L1 Axial and L2 Axial Orbits
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Figure 8.105. A1A2-1, C1 = 3.0058, C2 = 2.9835, TOF = 52.0105
days, ∆v = 25.7533 m/s
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8.6.4 Transfers between L1 Vertical and L2 Halo Orbits
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Figure 8.106. V1H2-2, C1 = 3.1604, C2 = 3.1223, TOF = 37.5423
days, ∆v = 17.8769 m/s
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Figure 8.107. V1H2-3, C1 = 3.0571, C2 = 3.0468, TOF = 40.5559
days, ∆v = 7.9048 m/s

−5 0 5

−5

0

5

x (104 km)

y 
(1

04
km

)

−5 0 5

−6

−4

−2

0

2

4

6

x (104 km)

z 
(1

04
km

)

−5 0 5 −5 0 5

−5

0

5

y (104 km)x (104 km)

z 
(1

04
km

)

Figure 8.108. V1H2-4, C1 = 3.0542, C2 = 3.0544, TOF = 62.8318
days, ∆v = 0.24305 m/s; Note that this solution is not optimal - the
required ∆v is reduced using fmincon but an optimal solution is not
reached.
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8.6.5 Transfers between L1 Halo and L2 Vertical Orbits
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Figure 8.109. H1V2-1, C1 = 3.1636, C2 = 3.1666, TOF = 40.529
days, ∆v = 4.5 m/s; Note that this solution is not optimal - reducing
the required ∆v causes the halo orbit to approach the x − y plane,
and the vertical orbit to approach the L2 point, thus, reducing the z-
amplitude and approaching a transfer between an L1 Lyapunov orbit
and the L2 libration point.

−5 0 5

−2

0

2

x (104 km)

y 
(1

04
km

)

−5 0 5

−2

0

2

x (104 km)

z 
(1

04
km

)

−5
0

5
−202

−2

0

2

x (104 km)y (104 km)

z 
(1

04
km

)

Figure 8.110. H1V2-2, C1 = 3.1327, C2 = 3.1517, TOF = 36.7461
days, ∆v = 11.7682 m/s
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Figure 8.111. H1V2-3, C1 = 3.0338, C2 = 3.0538, TOF = 41.1473
days, ∆v = 16.5722 m/s
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8.7 Catalog Observations and Discussion

An examination of the libration point orbit transfers computed for this catalog

yields insight into the existence of these solutions. Some general observations and

resulting implications are discussed in the following sections.

8.7.1 General Observations about Heteroclinic/Homoclinic Connections

As previously noted, connections associated with L1 orbits are often accompanied

by transfers of similar geometry associated with an L2 orbit of the same orbit type, and

most of the orbit transfers presented are grouped as “partners” in the tables. In Table

8.2, homoclinic connections associated with L1 and L2 vertical orbits are listed and

are paired according to their geometry. Likewise, homoclinic connections associated

with L1 and L2 halo orbits are recorded in Table 8.3, and are partnered by matching

geometry. Finally, heteroclinic connections between northern and southern members

of the halo/axial orbit families are paired into partners and are cataloged in Table 8.5.

For the partner transfers corresponding to heteroclinic and homoclinic connections,

the time-of-flight is longer for the L2 orbit transfer for all computed connections. In

general, partner transfers appear to exist nearby one another in terms of the Jacobi

constant value (∆C ≈ 0.001–0.01), although the associated values of C are quite

different (∆C ≈ 0.05) for several of the pairs. For those transfers that do not possess

a partner, the partner entries appear in dashes in each table. An examination of these

tables indicates that the transfers appear with partners with greater prevalence as C

decreases, i.e., as the energy level increases.

8.7.2 General Observations about Low-Cost Transfers

The low-cost transfers considered in this catalog are of the types V1V2, H1H2,

A1A2, V1H2, and H1V2. These transfers are organized according to type in Table
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8.6, where types V1H2 and H1V2 are associated with distinct departure and arrival

orbits and are, therefore, grouped in partners. Two pairs of partner transfers (V1H2-2

+ H1V2-2, and V1H2-3 + H1V2-3) are computed and correspond to times-of-flight

within 1 day of each other. A direct transfer, i.e., a transfer that does not complete

a full revolution about the Moon, is located for each transfer type:

� V1V2-5: TOF = 33.14 days, ∆v = 5.25 m/s, Figure 8.98

� H1H2-2: TOF = 28.98 days, ∆v = 18.26 m/s, Figure 8.100

� A1A2-1: TOF = 52.01 days, ∆v = 25.75 m/s, Figure 8.105

� V1H2-3: TOF = 40.56 days, ∆v = 7.90 m/s, Figure 8.107

� H1V2-3: TOF = 41.15 days, ∆v = 16.57 m/s, Figure 8.111

The transfers V1V2-5 and H1H2-2 also correspond to the minimum TOF for the

transfers of their respective type, while V1H2-3 and H1V2-3 do not. Note that A1A2-

1 does not meet the TOF or ∆v boundaries for the catalog, but is included because

it is the only transfer of this type that is identified near these boundaries.

The majority of the transfers of type H1H2 are between northern and southern

members of the halo family; however, one transfer, H1H2-6, is identified that connects

two members from the northern families. Again, only one solution is identified for the

type A1A2 and requires 52.0105 days and ∆v = 25.7533 m/s to complete the transfer.

This transfer is between two northern members of the axial families, where a northern

member is defined such that the maximum z-excursion occurs for y > 0. Clearly, this

solution violates the ∆v limit defined for the low-cost transfers in this catalog and

is included because it is the only transfer located near the defined limits. As a final

note, for any locally optimal transfer associated with TOF > 50 days and ∆v < 20

m/s, it is possible that other nearby solutions may exist for which the time-of-flight

is ≤ 50 days while maintaining ∆v ≤ 20 m/s.
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8.7.3 Existence of Partner Transfers

The existence of partner transfers associated with L1 and L2 orbits of the same

type and possessing similar geometry to one another is observed within the catalog.

Recall that a pair of transfer partners consists of two solutions: (A) a transfer asso-

ciated with an L1 orbit, and (B) a transfer associated with an L2 orbit of the same

orbit type as the L1 orbit. Partner transfers (A) and (B) are of similar geometry,

that is, they appear roughly as reflections of one another across the y-z plane at

x = 1− µ (i.e., x = 0 in Moon-centered coordinates). To explain why many of these

transfers appear in pairs, it is useful to consider Hill’s three body problem (H3BP),

where the L1 and L2 families of orbits both exist for the same energy level range and

are reflections of one another across the y-axis [10]. Details on the derivation of the

equations of motion for the H3BP are available in Appendix D. Many of the transfers

presented in the catalog appear to originate from the H3BP and persist for a range

of values of µ. Evolving the solution with the mass parameter, some transfers may

become extinct at a critical value µcr. It is also possible that some solutions may

not exist for the Hill problem, but instead emerge as µ evolves away from zero. In

these cases, it is not necessarily expected that the transfers would appear in pairs

associated with L1 and L2 orbits.

Consider the homoclinic connections associated with L1 and L2 vertical orbits

paired according to their geometry and cataloged in Table 8.2. As an example, the

transfers labeled V1-4 and V1-11 do not appear to exist for the Earth-Moon system,

thus, the entries V2-4 and V2-11 do not possess a partner transfer in the Earth-

Moon system. Computing transfers of similar geometry for a small value of µ and

using a numerical continuation scheme to increase the mass parameter, these solutions

appear to die out at the critical values of µcr = 8.953× 10−4 and µcr = 3.623× 10−6,

respectively. Due to the nonlinearity of the problem, solutions with a particular
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transfer geometry computed for 0 < µ ≤ µcr, where µcr < µEM , could re-emerge for

µ > µEM .

For a homoclinic connection that does not exist as a free transfer in the Earth-

Moon system, it may be possible to locate a low-cost transfer of the same geometry.

While transfer V2-10 does not appear to exist in the Earth-Moon system, a transfer

possessing similar structure to the homoclinic connection V1-10 is computed for the

L2 vertical orbit near C = 3.1131 and requires approximately ∆v = 18 m/s and 71.51

days time-of-flight. This transfer appears in Figure 8.112 (note that this connection

is not an optimal solution). Similarly, the homoclinic connection V1-23 does not exist
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Figure 8.112. Low-cost transfer associated with an L2 vertical orbit
possessing geometry similar to V1-10, C1 = C2 = 3.1131, TOF =
71.5102 days, ∆v = 18.218 m/s

for the Earth-Moon mass parameter, however, a locally optimal transfer possessing

similar geometry to V2-23 and requiring 21.3 m/s is computed and appears in Figure

8.113. Allowing the time-of-flight to increase to TOF> 75 days, a nearby homoclinic

connection of similar geometry (but incorporating a second revolution in the vicinity

of L2 when compared with the transfer in Figure 8.113) and associated with a nearby

value of Jacobi constant is located and is plotted in Figure 8.114. Although the

Jacobi constant values associated with the departure and arrival L1 vertical orbits
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Figure 8.113. Locally optimal transfer of geometry similar to V2-23,
C1 = C2 = 3.0469, tof = 65.2842 days, ∆v = 21.3015 m/s
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Figure 8.114. Homoclinic connection possessing geometry similar to
V2-23 but incorporating an additional revolution about L2, C =
3.0492, TOF = 76.5048 days

are allowed to vary for the transfers in Figures 8.112 and 8.113, these values differ

from one another on the order of 10−6 and 10−9, respectively.

In some cases, a free transfer may exist in the planar problem, but may not exist

in the spatial problem. Consider the homoclinic connections associated with L1 and

L2 halo orbits, as cataloged in Table 8.3. The transfer H2-6 does not exist for the

Earth-Moon mass parameter, however, a transfer requiring ∆v = 20 m/s and of the

same geometry as H1-6 appears in Figure 8.115. This solution is not optimal; further

decreasing the requried ∆v reduces the z-amplitude of the halo orbit such that the
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Figure 8.115. Low-cost transfer associated with an L2 halo orbit and
of geometry similar to H1-6, C1 = 3.1496, C2 = 3.1495, TOF = 53.52
days, ∆v = 20 m/s

free transfer is a planar connection associated with a Lyapunov orbit. To further

demonstrate that the free transfer does not exist in the spatial problem, Poincaré

maps for energy levels near the Jacobi constant values (C = 3.1495–3.1496) associated

with the transfer in Figure 8.115 appear in Figure 8.116. The map in Figure 8.116(a)

is for a higher energy level (lower value of C) than C = 3.1495 and the map in Figure
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Figure 8.116. Poincaré maps at y = 0 for various energy levels

8.116(c) is for an energy level slightly greater than that associated with the bifurcation

to the planar Lyapunov family, i.e., the value for which the halo orbit collapses to

the x-y plane. The invariant manifolds associated with the northern halo orbit at
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each energy level are computed, and crossings of the manifolds with the surface of

section Σ− = {x̄|y = 0, ẏ < 0} are plotted as vectors, where the arrowheads are not

included on the vectors for clarity of the plots. Red vectors indicate unstable manifold

crossings, while blue segments represent the stable manifold. Here, the base point of

each segment indicates the (x, z) coordinate of that crossing, and the components of

the vector in the x and z directions represent the ẋ and ż values. That is, for the

vector definition in Figure 6.2, (q1, q2) = (x, z), and (q3, q4) = (ẋ, ż). The scaling

constant k is set to 30000 for this example. It should be noted that, for clarity, the

plot axes on the maps in Figure 8.116 are not scaled equally. These figures represent

a close view of the contours, formed by the projection of the manifold crossings onto

the x-z plane, employed to construct the transfer in Figure 8.115. All crossings of

the map that are not along these contours are removed from the plots. Because

the axes are not scaled equally, two black lines are included to indicate the velocity

magnitude scale in the x and z directions. Clearly, as the Jacobi constant value

approaches the bifurcating halo orbit that lies within the x-y plane, the magnitude of

the minimum velocity difference between the stable and unstable manifold crossings

decreases; however, the ∆v is nonzero for all of the maps shown, indicating that the

free transfer does not exist for any of these energy levels. Further increasing the Jacobi

constant value, the halo orbit quickly collapses to the plane. Thus, the Poincaré maps

in Figure 8.116 are useful to demonstrate that the homoclinic connection H2-6 does

not exist in the Earth-Moon spatial CR3BP. A similar discussion holds for transfer

H2-7, which also does not exist in the Earth-Moon system. Low-cost transfers of the

same geometry as connection H1-7 may be computed for L2 halo orbits; a sample

transfer is depicted in Figure 8.117. Again, reducing the magnitude of the ∆v via

differential corrections yields a planar free transfer. Thus, for H1-6 and H1-7, it

appears that these solutions do not have partner transfers in the spatial problem.

It is likely that the solutions H2-6 and H2-7 exist for other values of µ, but have

collapsed to the x-y plane for the mass parameter associated with the Earth-Moon
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Figure 8.117. Low-cost transfer associated with an L2 halo orbit and
of geometry similar to H1-7, C1 = 3.1477, C2 = 3.1478, TOF =
65.6326 days, ∆v = 20 m/s

system. Indeed, a search for H2-6 in the Sun-Earth system yields the homoclinic

connection for a value of C = 3.0007640. For the H3BP, the solution H2-6 exists at

the energy level C = 3.6051. While connection H2-7 appears to have collapsed to the

planar problem before the Sun-Earth value of mass parameter, this solution exists for

the Hill problem at the energy level C = 3.7222.

As a final note, all transfers considered in this catalog are between periodic orbits.

In the vicinity of many of these orbits, quasi-periodic solutions also exist and can

be considered when computing transfers [101]. Thus, for transfers that do not exist

between periodic orbits for the Earth-Moon mass parameter, a nearby free transfer

between quasi-periodic orbits may be available.

8.7.4 Computation of Vertical Homoclinic Transfers in the Hill Problem

To further explore the relationship between partner transfers and the Hill problem,

solutions from the catalog of vertical orbit homoclinic connections are recomputed in

the H3BP. The Jacobi constant values and nondimensional times-of-flight associated

with these transfers are provided in Table 8.7. Here, the number n corresponds to

the transfer label V1-n/V2-n from the Earth-Moon catalog. Due to the symmetry

properties of the H3BP, the values for C and TOF listed in Table 8.7 are associated
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Table 8.7 Vertical Orbit Homoclinic Connections in the Hill Problem

n C TOF (nd) n C TOF (nd)

∗1 4.2212 18.2771 13 2.9313 14.995

∗2 3.8047 18.4065 14 2.792 17.6643

∗3 - - 15 2.746 21.0201

∗4 3.9026 19.6142 16 2.5992 18.3837

5 3.4549 17.6615 17 2.5872 14.9856

∗6 - - 18 2.5313 16.8458

7 3.4223 17.1844 19 2.3794 18.0943

8 3.2489 18.8157 20 2.4241 22.8567

∗9 2.7141 19.4363 21 2.2477 22.838

∗10 3.0511 20.4187 ∗22 2.7141 19.4363

∗11 3.2283 17.1679 ∗23 - -

12 2.9328 21.3477

with both V1-n and V2-n. While the transfers are organized according to descending

Jacobi constant value for the Earth-Moon catalog, the Jacobi constant values do not

decrease monotonically as n increases in the Hill problem.

Not all transfers from the Earth-Moon catalog exist in the H3BP. For those solu-

tions that do not, the table entries are given as dashes. Starred entries in the table

correspond to transfers from the Earth-Moon catalog that do not possess a partner.

Several of the solutions that do not have partner transfers in the Earth-Moon system

do exist within the Hill problem and, therefore, originate as a pair of partner transfers.

It is likely that, as µ is transitioned away from zero, the nonlinearities of the problem

cause the L1 and L2 orbit manifolds to evolve such that the free connection becomes

extinct for either the L1 or the L2 orbit family. It should additionally be noted that,
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although a particular solution may exist in the H3BP and the Earth-Moon system,

it may not exist for all 0 < µ < µEM , where µEM is the mass parameter for the

Earth-Moon system.

While most of the solutions V1-n and V2-n appear to originate in the H3BP,

several of these transfers exist for µ = µEM but become extinct as µ→ 0. Specifically,

V1-n and V2-n do not exist as free transfers in the H3BP for n =3, 6, and 23. Because

these solutions do not originate from the Hill problem in partners, but emerge as µ is

evolved away from zero, it is not expected that they should possess partner transfers

for the Earth-Moon system. For n = 9, and 22, the entries in Table 8.7 are equivalent

because both solutions appear to collapse to the same transfer in the Hill problem.

Thus, while V1-9 and V2-22 do not appear to be (approximately) symmetric and are

associated with significantly different Jacobi constant values, they seem to evolve from

one pair of partner transfers in the Hill problem. The solution V1-9/V1-22 is plotted

for the Hill problem in Figure 8.118, where a primary body of arbitrary size is included

as the gray sphere. Note that the axis labels x, y, z in Figure 8.118 correspond to the

coordinates ξ, η, ζ, respectively, from the equations of motion (D.13)–(D.15).
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Figure 8.118. V1-9/V1-22 in the Hill problem, C = 2.7141, TOF = 19.4363 nd
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8.7.5 Groupings of Transfers of Similar Geometry

Previous discussion has focused on the existence of L1 and L2 orbit partner trans-

fers that possess similar geometry to one another. However, there also emerge group-

ings of L1 or L2 orbit transfers of similar structure that are associated with nearby

values of Jacobi constant. Recall that, for the purposes of the catalog, transfer “part-

ners” are defined to consist of two solutions: (A) a transfer associated with an L1

orbit, and (B) a transfer associated with an L2 orbit of the same orbit type as the

L1 orbit, where (A) and (B) appear roughly as reflections of one another across the

y-z plane at x = 1 − µ. Similarly, let a transfer “grouping” define a group of 2 or

more solutions that may be associated with different orbit types and different libra-

tion points. For example, a grouping of transfers could include the types V1, H2, and

V1H2. Different solutions within a grouping of transfers can have significantly differ-

ent times-of-flight, but are notable because they tend to cluster around a particular

range of Jacobi constant values and appear to exploit similar dynamics to affect the

transfer. In many cases, a transfer grouping offers evidence of the existence of other

nearby dynamical structures, as will be demonstrated in this discussion.

Transfer groupings appear throughout the catalog and include most of the transfer

types. As an example, the transfers appearing in Figures 8.119–8.123 represent hete-

roclinic and homoclinic connections associated with L1 halo orbits within the range

C = 3.0723–3.0787. Note that, because the transfer in Figure 8.123 corresponds to

TOF> 75, it was not included in the catalog of homoclinic connections of type H1.

Clearly, each of these solutions employs similar dynamics to complete the transfer,

and the geometry of these transfers suggests the existence of other solutions of interest

that may exist nearby. Specifically, these connections resemble the behavior of orbits

within the family of double-period Distant Prograde Orbits (DPOs), previously pre-

sented in Section 5.2.2. For example, the connections in Figures 8.122–8.123 appear

to complete a full revolution in the vicinity of a nearby DPO before continuing to
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Figure 8.119. HH1-11, C = 3.0723, TOF = 40.1881 days
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Figure 8.120. H1-11, C = 3.0763, TOF = 52.9703 days
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Figure 8.121. HH1-9, C = 3.0779, TOF = 65.9390 days

their respective arrival orbits. This grouping of transfers implies the existence of the

nearby DPO, as well as the possible existence of a nearby low-cost transfer between
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Figure 8.122. H1-14, C = 3.0723, TOF = 65.9529 days
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Figure 8.123. Homoclinic connection associated with an L1 halo orbit
in the Earth-Moon system, C = 3.0787, TOF = 79.0007 days

an L1 halo orbit and a member of the family of DPOs. Searching for such a transfer

reveals the locally optimal connection between an L1 halo and a DPO presented in

Figure 8.124. This transfer requires a ∆v of only 6.6609 m/s, corresponds to arrival

and departure orbit energy levels near that of the homoclinic connection in Figure

8.123, and has a time-of-flight that is roughly half of this homoclinic connection, as

the transfer back to the halo orbit is no longer included.

A second grouping, consisting of the partners to the transfers appearing in Figures

8.119–8.123, also exists. The transfer grouping in Figures 8.125–8.129 represents

heteroclinic and homoclinic connections associated with L2 halo orbits within the

range C = 3.0686–3.0865. The transfer in Figure 8.129 corresponds to TOF> 75 and
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Figure 8.124. Transfer from an L1 halo orbit to a distant prograde
orbit in the Earth-Moon system, C1 = 3.0727, C2 = 3.0776, TOF =
41.5601 days, ∆v = 6.6609 m/s
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Figure 8.125. HH2-11, C = 3.0686, TOF = 47.7498 days
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Figure 8.126. H2-11, C = 3.0820, TOF = 58.3090 days
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Figure 8.127. HH2-9, C = 3.0850, TOF = 70.6057 days
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Figure 8.128. H2-14, C = 3.0687, TOF = 75.1186 days
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Figure 8.129. Homoclinic connection associated with an L2 halo orbit
in the Earth-Moon system, C = 3.0865, TOF = 83.1477 days
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was not presented in the catalog. The existence of a nearby low-cost transfer from an

L2 halo orbit to a member of the family of DPOs is, again, inferred from the structure

of the transfers within the grouping, and a low-cost transfer between an L2 halo and

a DPO appears in Figure 8.130. This transfer requires a ∆v of 19.4659 m/s (note

that this transfer is not optimized), corresponds to departure and arrival orbit energy

levels near that of the homoclinic connection in Figure 8.129, and has a time-of-flight

that is roughly half of this homoclinic connection.
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Figure 8.130. Transfer from an L1 halo orbit to a distant prograde
orbit in the Earth-Moon system, C1 = 3.0848, C2 = 3.0898, tof =
41.3846 days, ∆v = 19.4659 m/s (not optimized)

There are many other examples of transfer groupings in the catalog. Eleven sam-

ple groupings are listed below in Tables 8.8–8.9. It is likely that any transfers that

are not associated with a grouping in this catalog would be associated with a grouping

if the boundaries of the catalog were expanded, i.e., if the TOF and ∆v limits were

increased. Several notable features of transfer groupings are apparent upon inspec-

tion of Tables 8.8–8.9. Transfer groupings generally come in “partners” (e.g., partner

groupings 8 and 9) or contain partner transfers (e.g., grouping 6). Here, the transfers

from Figures 8.119–8.123 and those in Figures 8.125–8.129 comprise “partner group-

ings” 4 and 5, respectively. Each of the transfers in grouping 4 possess a partner that

is contained within grouping 5, and vice versa. Conversely, grouping 6 is composed

of three pairs of partner transfers, in addition to one low-cost transfer.
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Table 8.8 Transfer Groupings 1–5

Grouping No. Transfer C1 C2 TOF (days) Figures

1

V1-23 (∆v = 21.3) 3.0469 3.0469 65.2842 8.113

H2-19 3.0485 3.0485 65.5675 8.67

V1H2-3 3.0571 3.0468 40.5559 8.107

2

V2-22 3.0315 3.0315 69.6960 8.36

H1-19 3.0366 3.0366 63.1381 8.53

H1V2-3 3.0338 3.0538 41.1473 8.111

3
V1-10 3.1126 3.1126 63.9845 8.8

V2-10 (∆v = 18.2) 3.1131 3.1131 71.5102 8.112

V1V2-4 3.1139 3.1073 54.9474 8.94

4

H1-11 3.0763 3.0763 52.9703 8.45

H1-14 3.0723 3.0723 65.9529 8.48

HH1-9 3.0779 3.0779 65.9390 8.79

HH1-11 3.0723 3.0723 40.1881 8.81

5

H2-11 3.0820 3.0820 58.3090 8.58

H2-14 3.0687 3.0687 75.1186 8.63

HH2-9 3.0850 3.0850 70.6057 8.85

HH2-11 3.0686 3.0686 47.7498 8.87
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Table 8.9 Transfer Groupings 6–11

Grouping No. Transfer C1 C2 TOF (days) Figures

6

V1-16 3.0897 3.0897 55.3035 8.13

V1-17 3.0885 3.0885 38.7444 8.14

V1-18 3.0870 3.0870 47.0461 8.15

V2-16 3.0876 3.0876 60.1932 8.29

V2-17 3.0852 3.0852 45.2766 8.30

V2-18 3.0827 3.0827 52.7960 8.31

V1V2-8 3.0849 3.0884 33.1433 8.98

7

V1-14 3.1008 3.1008 51.4635 8.11

V1-15 3.0947 3.0947 67.9682 8.12

V2-14 3.0999 3.0999 58.4020 8.28

V2-15 3.1045 3.1045 70.6015 8.26

V1V2-5 3.0986 3.0951 41.2976 8.95

8
H1-10 3.0766 3.0766 65.1147 8.44

HH1-10 3.0768 3.0768 43.9812 8.80

9
H2-10 3.0746 3.0746 72.0334 8.62

HH2-10 3.0742 3.0742 50.6271 8.86

10

H1-17 3.0584 3.0584 70.6021 8.51

H1-18 3.0498 3.0498 62.5695 8.52

H1-19 3.0366 3.0366 63.1381 8.53

H2-17 3.0663 3.0663 75.1945 8.64

H2-18 3.0616 3.0616 66.4187 8.66

H2-19 3.0485 3.0485 65.5675 8.67

11
H2-2 3.1517 3.1517 45.0669 8.54

H2-5 3.1510 3.1510 57.1765 8.55
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To represent all entries in the transfer catalog, each is plotted by its associated

time-of-flight and Jacobi constant value(s) and the resulting the chart is presented in

Figure 8.131. In this chart, all free transfers are plotted by colored markers, where a

Figure 8.131. Catalog transfers are represented via their associated
time-of-flight and Jacobi constant values

particular color is associated with a particular pair of partner transfers. The L1 orbit

transfers are indicated by solid colored dots, and L2 transfers by solid triangles. Each

low-cost transfer between a pair of L1 and L2 orbits is represented via a gray dot and

a gray triangle, both possessing the same TOF value. Here, the dot is associated with

the L1 orbit Jacobi constant value, and the triangle with the Jacobi constant value of

the L2 orbit. The transfers that appear within the groupings listed in Tables 8.8–8.9

are additionally outlined in black. From this representation, it is evident that the

transfers in the groupings correspond to lower values of Jacobi constant, i.e., higher

energy levels. Recall that, for the larger values of C, fewer partner transfers exist

in general. As many of the transfer groupings are associated with partner transfers,

this could be the reason that the transfers associated with lower Jacobi constant

values are more likely to be members of a transfer grouping. The transfers also

appear to cluster within TOF bands. For example, transfers generally appear to
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clump near the values TOF = 41, 46, and 51 days. One of the main distinguishing

features between two solutions is the number of revolutions incorporated about the

Moon during the transfer, which is a discrete quantity. While the TOF required to

complete a revolution about the Moon depends on the energy level of the transfer,

this TOF will generally fall within a range of values. Thus, it might be expected that

the transfers will appear to cluster densely within certain TOF bands.

As a final observation, an association between libration point orbit transfers and

periodic orbits is apparent. It was previously noted that periodic orbits from the

family of DPOs exist in the vicinity of the transfers from groupings 4 and 5 and

that the transfers from the grouping and nearby periodic orbits within the family

of DPOs are associated with similar physical attributes. In fact, periodic orbits can

be located in the vicinity of all of the transfer groupings listed in Tables 8.8–8.9.

Some sample orbits are computed and appear in blue in Figures 8.132–8.133 with

the nearby transfer included in black. For example, a member from the family of
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Figure 8.132. H1-19 Group 2, C = 3.0366, period = 31.4358 days

butterfly orbits [34] exists for the energy level corresponding to transfer V2-17 and is

plotted in Figure 8.133. It should be noted that more than one periodic orbit may

exist possessing similar geometry to a particular transfer grouping. Periodic orbits
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Figure 8.133. V2-17 Group 7, C = 3.0852, period = 18.359 days
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Figure 8.134. H1-10 Group 9, C = 3.0766, period = 42.2254 days

can also be located in the vicinity of transfers that are not associated with a grouping

in this catalog. As an example, a periodic solution with geometry similar to V1-9 is

computed and is displayed in Figure 8.137. Note again, however, that it is likely that

transfers that are not associated with a grouping in this catalog could be associated

with a grouping if the catalog boundaries are expanded.
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Figure 8.135. H1-17 Group 11, C = 3.0663, period = 43.1169 days
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Figure 8.136. H2-2 Group 12, C = 3.1518, period = 28.4862 days
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Figure 8.137. V1-9, C = 3.1201, period = 38.0188 days
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8.7.6 Charting the Solution Space to Locate Transfers

While the interactive design tool demonstrated in Chapter 7 is useful to search

the solution space for transfers between libration point oribts, automated methods

are also of interest. Mondelo et al. [94] employ Poincaré maps and invariant mani-

folds to search for free transfers between quasi-periodic libration point orbits. These

authors consider the angles, θ1 and θ2, that define the departure location along a

two-dimensional torus, as described in Chapter 3.4.2. By varying these angles along

a departure and an arrival torus, different arcs along the associated invariant mani-

folds are defined. These manifold arcs are propagated, and crossings with a surface of

section are recorded. A search algorithm is employed to locate nearest neighbors on

the map, and the magnitude of the minimum discontinuity to the nearest neighbor

is displayed for each manifold arc using a heat map. Here, the manifold arcs are

represented by their associated angles θ1 and θ2 on the torus and the locations of free

transfers are indicated by “hot spots” on the map.

Here, techniques demonstrated by Mondelo et al. are modified and are employed

to perform an automated scan for transfers between periodic libration point orbits.

Rather than parameterizing transfers by the departure location of the manifold arcs

from the periodic orbit, solutions are defined by their associated Jacobi constant

value and time-of-flight. Using these variables, a chart is made for transfers spanning

a range of energy levels and transfer times. Selecting departure and arrival orbit types,

an automated search algorithm steps through a range of C values, computes the asso-

ciated periodic orbits from within the orbit families, and defines initial conditions for

N manifold arcs along the unstable manifold associated with the departure orbit and

along the stable manifold asymptotic to the arrival orbit. The manifolds are propa-

gated for a specified time interval and all crossings of a surface of section are recorded.

In this investigation, 1000 arcs are integrated for 50 days to search for all transfers

except those of type A1, A2, AA1, AA2, or A1A2; for the axial transfers 1500 arcs are
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propagated for 50 days. Here, Σ = {x̄|x = 1−µ} is selected as the surface of section.

Define MU as the array containing all crossings of the propagated unstable manifold

arcs with Σ and MS as the array in which crossings of the stable manifold arcs are

stored, where all manifold arcs are computed for a particular value of C. The nearest

neighbor search proceeds as follows. The state x̄U,i, corresponding to the i-th row

in MU , is compared to each state x̄S,j in MS, and the position and velocity discon-

tinuities are computed by as ∆rij =
√

(xU,i − xS,j)2 + (yU,i − yS,j)2 + (zU,i − zS,j)2,

and ∆vij =
√

(ẋU,i − ẋS,j)2 + (ẏU,i − ẏS,j)2 + (żU,i − żS,j)2. For each value of i, the

minimum values of ∆rij and ∆vij are recorded, yielding vectors R̄i and V̄i containing

i entries that define the minimum discontinuity between each manifold crossing in

MU and the set of manifold crossings in MS.

To display the resulting heat map, boundaries on the magnitudes of ∆r and ∆v are

assumed. Here, ∆r = 10000 km and all recorded values in V̄i for which the associated

value R̄i > ∆r are discarded. Then, selecting ∆v = 2 m/s, the remaining transfers are

plotted in batches, where the k-th batch satisfies (k− 1)∆v ≤ V̄i ≤ (k)∆v for k = 1–

50. The batches associated with smaller→larger values of V̄i appear bluer→redder.

The resulting maps appear for transfers of type V1 and V2 in Figures 8.138–8.139.

The transfers of these types that are computed from the catalog, as listed in Table

8.2, are included as black markers overlaid on the map. The solutions of type V1

are plotted in Figure 8.138, while transfers of type V2 appear in Figure 8.139. The

homoclinic connections of types V1 and V2 clearly lie within the blue regions on the

respective maps. However, there also appear blue regions for which no homoclinic

connection appears. This is because, while low-cost transfers are available in these

regions, a maneuver-free transfer is not available. Expanding the catalog of V1 and

V2 transfers to include solutions that require maneuvers, markers would appear in

these regions. There are also, however, homoclinic connections that appear in isolated

regions of the map where a blue region does not exist. Thus, while an automated

method provides a useful guide to search for maneuver-free or low-cost transfers, a
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Figure 8.138. Heat map for transfers of type V1

Figure 8.139. Heat map for transfers of type V2

combination of automated and interactive methods is perhaps most useful to ensure

the full solution space is considered.
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8.7.7 Evolution of Low-Cost Transfers with Mass Parameter

All transfers in this catalog are computed for the Earth-Moon system, however,

many of these solutions exist for other values of the mass parameter. As a solution

evolves with µ, the shape of and time-of-flight along the transfer are modified. Any

maneuvers along the transfer may also change in magnitude. A free transfer in one

system may require a nonzero maneuver for another value of µ.

To demonstrate how solutions change with µ, the transfers H1H2-2 and V1V2-

8 from the Earth-Moon catalog are re-computed for the Sun-Earth system and for

the Hill problem. The Earth-Moon, Sun-Earth (µ = 3.0038961 × 10−6), and H3BP

(µ→ 0) solutions appear in Figures 8.100, and 8.140 for transfer H1H2-2. For transfer

V1V2-8, the Earth-Moon, Sun-Earth, and H3BP solutions appear in Figures 8.98 and

8.141. The solutions in the Earth-Moon and Sun-Earth problems are locally optimal
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Figure 8.140. H1H2-2 in the (a),(c) Sun-Earth CR3BP, C1 =
3.0007425, C2 = 3.0007387, TOF = = 401.9274 days, ∆v = 2.2331
m/s; (b),(d) Hill 3BP, C = 3.6156 TOF = 11.2451 dimensionless,
∆v = 0
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with respect to the ∆v. Clearly, the ∆v required to complete the transfer reduces

with mass parameter for these solutions. For the H3BP, where the L1 and L2 families

of orbits are symmetric across the y-z plane at the x-location of the smaller primary,

a heteroclinic (∆v = 0) connection is available. The dimensions of the coordinates in

the H3BP are Hill radii (rH = 3(−1/3) dimensionless). Note, again, that the axis labels

x, y, z in the H3BP plots correspond to the coordinates ξ, η, ζ, respectively, from the

equations of motion (D.13)–(D.15).
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Figure 8.141. V1V2-8 in the (a),(c) Sun-Earth system, C1 = 3.0005,
C2 = 3.0005, TOF = 464.4181 days, ∆v = 0.6859 m/s; (b),(d) V1V2-
8 in the Hill problem, C = 2.5296, TOF = 13.061 dimensionless,
∆v = 0

The symmetry properties of the H3BP appear to provide favorable conditions for

free transfers between L1 and L2 orbits. Given a state

ξ̄u,1 =
[
ξu, ηu, ζu, ξ̇u, η̇u, ζ̇u

]T
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along the unstable manifold associated with an L1 libration point orbit, the symmetry

properties of the system equations require that the state

ξ̄u,2 =
[
−ξu, −ηu, ζu, −ξ̇u, −η̇u, ζ̇u

]T
is associated with the unstable manifold asymptotic to the symmetric L2 orbit. To

locate the analogous state along the L2 orbit stable manifold, the symmetry in time

is exploited to yield

ξ̄s,2 =
[
−ξu, ηu, ζu, ξ̇u, −η̇u, −ζ̇u

]T
.

Considering crossings of Σ = {ξ̄|ξ = 0}, then the first elements of ξ̄u,1 and ξ̄s,2 are

both set to zero. If η̇ = ζ̇ = 0 at the crossing of Σ, then the states ξ̄u,1 and ξ̄s,2 are

identical. This condition is satisfied by the solution V1V2-8 in the Hill problem, thus,

this transfer requires zero ∆v. If the additional symmetry with respect to the ξ-η

plane is included, then the state

ξ̄−zs,2 =
[
−ξu, ηu, −ζu, ξ̇u, −η̇u, ζ̇u

]T
is along the stable manifold surface asymptotic to the L2 orbit as reflected across the

ξ-η plane. Then, if ζ = η̇ = 0 at Σ, the states ξ̄u,1 and ξ̄−zs,2 are identical. The transfer

H1H2-2 in the H3BP possesses a crossing of this configuration.
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8.8 Existence of Transfers in an Ephemeris Model

The solutions in the Earth-Moon catalog are computed in the simplified model

of the CR3BP. However, these transfers generally transition to an ephemeris model

while maintaining the significant characteristics of the orbits. To demonstrate the

effect of perturbations such as the Earth-Moon eccentricity and solar gravity, sample

solutions from the catalog are transitioned to a Sun-Earth-Moon ephemeris model.

8.8.1 Transitioning to an Ephemeris Model

To validate the trajectory design tools employed in this investigation, it is useful to

demonstrate the existence of solutions from the Earth-Moon transfer catalog within

a higher-fidelity ephemeris model. This is accomplished by first discretizing the arcs

along a transfer to enable multiple-shooting. The individual arcs are numerically

integrated in the N -body model, yielding discontinuities between subsequent arcs.

To construct a feasible solution in the ephemeris model, a differential corrections

process is employed [90].

Before transitioning a solution to the ephemeris model, the solution is modified

to include some number of revolutions along both the departure and arrival orbits,

and an initial epoch is selected to define the orientation of the bodies in the N -body

system. Sample transfers from the catalog are modified to include the following arcs:

� five revolutions along the departure and arrival orbits

� a bridge arc linking the initial condition along the departure orbit to the initial

condition along the unstable manifold

� a bridge arc linking the final state along the stable manifold to the initial con-

dition along the arrival orbit

Thus, the final solution contains the following sequence of segments:

1. five revolutions along the departure orbit

2. bridge arc linking the departure orbit to the unstable manifold
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3. unstable manifold arc

4. stable manifold arc

5. bridge arc linking the stable manifold to the arrival orbit

6. five revolutions along the arrival orbit

Each solution is continuous in the CR3BP, except for two small discontinuities that

exist between segments 2 and 3 and between segments 4 and 5. These discontinuities

are 20 km in position and are on the order of ∼ 1×10−5 km/s in velocity. To combat

numerical sensitivities, nodes are distributed along each of the segments to reduce

the integration times. Numerical integration of these nodes in the ephemeris model

proceeds via the relative 4-body equations of motion as expressed in Moon-centered

J2000 inertial coordinates. The second-order equations of motion are written as

R̄
′′

23 = −G(m3 +m2)
R̄23

R3
23

+
∑
i=1,4

Gmi

(
R̄3i

R3
3i

− R̄2i

R3
2i

)
, (8.1)

where m1, m2, and m4 represent the masses of the Earth, Moon, and Sun, respectively.

The vector R̄23 locates the spacecraft relative to the Moon, and R̄ij = R̄j− R̄i locates

the ith body relative to the jth body. The respective distances are obtained via the

planetary and lunar ephemeris file DE 421 [89]. The integrated solution possesses

discontinuities between each resulting arc, and a differential corrections process is

employed to reduce these discontinuities below a prescribed tolerance. The magnitude

of the discontinuities varies depending on the selected initial epoch. Here, the epoch

is arbitrarily chosen to be the first of the month for a particular month in the year

2020, and is allowed to vary during the differential corrections process. The month is

determined by propagating the solution in the ephemeris model and searching for the

month that minimizes the sum of the discontinuities along the initial guess, where

the discontinuities include both position and velocity states.

To determine the effect the Earth-Moon eccentricity and solar gravity on transfers

between libration point orbits, it is useful to consider both free and low-cost transfers.

Here, the transfers V1-19, HH2-11, H1H2-2, V1H2-3, and H1V2-3 are transitioned to
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the Sun-Earth-Moon model via a differential corrections process. Full-state continuity

is enforced between each arc along the transfers to within a tolerance of 1 × 10−9 =

0.39 m = 1.0× 10−6 m/s, although the converged solutions, generally, meet a tighter

nondimensional tolerance of roughly 1 × 10−11. The resulting solutions appear in

Figures 8.142–8.146, where the ephemeris path is plotted in black and the stable and

unstable manifolds along the original CR3B transfers are additionally included in

blue and red, respectively. For the solutions in Figures 8.143–8.146, the initial epoch
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Figure 8.142. V1-19 in the Sun-Earth-Moon ephemeris model for
initial epoch July 31 2020 23:37:26.4

is selected as previously described, that is, by selecting the initial epoch associated

with the smallest cummulative discontinuity along the initial guess. For the transfer

in Figure 8.142, the minimum discontinuity occurs for November 1, 2020. However,

convergence of the corrections process is improved and the general characteristics

of the CR3B solution are better maintained in the ephemeris model for V1-19 by

selecting the initial epoch (August 1, 2020) associated with the largest cummulative

discontinuity along the initial guess. For the November 1 epoch, the magnitude of

the error chatters between ∼ 10−3 and ∼ 0.1 for the first 20 iterations and requires 24

iterations to converge to a tolerance of 1.9×10−11, while, for the August 1 epoch, the

error decreases monotonically and the solution converges to a tolerance of 2.2×10−11

in 9 iterations. Clearly, the relationship between convergence and the total initial
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Figure 8.143. HH2-11 in the Sun-Earth-Moon ephemeris model for
initial epoch June 30 2020 23:23:50.5
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Figure 8.144. H1H2-2 in the Sun-Earth-Moon ephemeris model for
initial epoch December 1 2020 0:42:48.2
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Figure 8.145. V1H2-3 in the Sun-Earth-Moon ephemeris model for
initial epoch August 31 2020 23:14:58.9
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Figure 8.146. H1V2-3 in the Sun-Earth-Moon ephemeris model for
initial epoch November 1 2020 1:13:52.1

error is not linear. Again, the initial epoch is allowed to vary within the corrections

process for all solutions. Because no periodic solutions exist in the ephemeris model,

all of the converged transfers depart from nonperiodic orbits in the vicinity of the

original periodic orbits from the CR3B. For some solutions, such as V1-19 and V1H2-

3, the nonperiodic orbits remain quite close to the periodic solution while for others,

such as H1V2-3, the nonperiodic orbits spread further from the original solution. One

factor contributing to the larger difference in the orbits in H1V2-3 is that the ∆v is

also removed during the transition to the ephemeris model. Including one or more

maneuvers within the differential corrections process could help to yield final orbits

that remain more closely bound to their original periodic solutions. In general, the

solutions from the CR3BP transition to the Sun-Earth-Moon ephemeris model while

maintaining the significant characteristics of the transfer.

8.8.2 Transitioning Solutions to GMAT

For further validation and to demonstrate that catalog transfer solutions may

be accessed via the currently available mission design tools, the solutions from the

previous section are transitioned to NASA’s General Mission Analysis Tool (GMAT)
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[102, 103], version 2013a. Here, a Sun-Earth-Moon ephemeris is employed, and solar

radiation pressure (SRP) is also included.

The ephemeris paths from the previous section are transitioned to GMAT by em-

ploying the available optimization routines within GMAT. To affect this transition,

a script file is generated that defines a spacecraft object and a mission sequence in

GMAT. The spacecraft object is associated with an initial state and epoch to be

numerically integrated in the Sun-Earth-Moon ephemeris model including SRP. The

states and epochs provided to GMAT are associated with the nodes that are dis-

tributed along the final converged ephemeris paths computed in the previous section.

All states correspond to dimensional units in the Earth-Moon rotating frame. Be-

cause the rotating frame in GMAT is a pulsating frame defined for each instant along

the spacecraft trajectory, the states are dimensionalized according to their associated

instantaneous values of `∗, available from the DE 421 ephemeris file. Assume the

ephemeris path to be transitioned to GMAT is comprised of (m − 1) segments and

m nodes, where nodes 1–(m − 1) are individually propagated within the multiple-

shooting algorithm and node m defines the final state along the transfer. Then, the

mission sequence to be implemented within GMAT is specified as follows: (1) the

first node that defines the first arc along the transfer is numerically integrated for the

specified time-of-flight, (2) all subsequent arcs are propagated, and an optimization

algorithm is employed to minimize the ∆v between the current arc and the previ-

ous arc. Within (2), the initial velocities along the i-th segment (i = 2, . . . ,m − 1)

are allowed to vary to target the initial position along the (i + 1)-th segment. The

associated ∆v is computed as
√

(ẋi − ẋi−1)2 + (ẏi − ẏi−1)2 + (żi − żi−1)2 and is min-

imized within the mission sequence for each arc. The resulting solutions are plotted

in Figure 8.147–8.148, where Figure 8.147 contains the maneuver-free transfers from

the CR3BP, and the solutions in Figure 8.148 require a ∆v in the CR3BP. The con-

verged ephemeris paths are plotted in red in Moon-centered coordinates, with the

Earth appearing on the left. An orange path near the Earth is visible and indicates
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(a) V1-19, ∆v = 3.993 m/s

(b) HH2-11, ∆v = 2.444 m/s

Figure 8.147. Transfers are transitioned to GMAT assuming a Sun-
Earth-Moon ephemeris model with SRP

all positions of the Earth along the Earth-Moon line during the propagation; this

line represents the pulsation of the Earth-Moon rotating frame. Note that, in the

plots in Figures 8.142–8.146, the pulsation of the frame is removed so that the Earth

and Moon are in fixed locations. The total ∆v required for the converged solution

in GMAT with SRP is included in the figure captions. Considering the solutions

propagated without SRP, the total ∆v values are as follows: V1-19 ∆v = 3.994 m/s,

HH2-11 ∆v = 2.437 m/s, H1H2-2 ∆v = 3.280 m/s, V1H2-3 ∆v = 2.879 m/s, H1V2-3

∆v = 2.806 m/s. Clearly, the inclusion of perturbations due to solar radiation pres-

sure has a small affect on the total ∆v required to complete these transfers, and can

cause either a reduction or an increase in this cost.
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(a) H1H2-2, ∆v = 3.290 m/s

(b) V1H2-3, ∆v = 2.882 m/s

(c) H1V2-3, ∆v = 2.809 m/s

Figure 8.148. Transfers are transitioned to GMAT assuming a Sun-
Earth-Moon ephemeris model with SRP

Converging the CR3BP libration point orbit transfers within an ephemeris model

returns solutions that preserve the qualitative characteristics of the original transfer.

The ephemeris solutions are transitioned to GMAT, demonstrating that the catalog

transfers may be accessed via the currently available mission design tools. The in-
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clusion of perturbations from the Sun and SRP has a small affect on the behavior of

these transfers.
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8.9 Catalog Conclusions

As a result of the computation of the catalog of transfers in the Earth-Moon

system, observations are made about the relationships between transfers in the Earth-

Moon CR3BP and Hill 3BP that provide insight into the existence of the transfers in

the catalog. Many of the homoclinic and heteroclinic connections in the Earth-Moon

catalog emerge as partners within the limiting case as µ→ 0, and persist as µ evolves

to the Earth-Moon mass parameter value. Indeed, 66 of the 90 heteroclinic and

homoclinic connections computed correspond to partner transfers. Noting that all

transfers in the H3BP are associated with a partner, due to the symmetry properties

of the model, a search for transfers in the H3BP is performed. Those transfers without

partners in the Earth-Moon system either

1. do not exist as partners in the H3BP, and either the L1 or L2 orbit transfer

emerges as µ evolves away from 0,

2. do exist as partners in the H3BP, and either the L1 or L2 orbit transfer becomes

extinct as µ evolves away from 0, or

3. do exist as partners in the H3BP, but evolve very differntly as µ evolves away

from 0 so that they no longer appear nearly symmetric in the Earth-Moon

system.

For the cases considered, examples of all three causes are found to lead to the nonex-

istence of partner transfers in the Earth-Moon catalog, although the second cause

is the most prevalent. Likewise, maneuver-free transfers between L1 and L2 orbits

are available for low times-of-flight in the H3BP due to the inherent symmetries of

the model. Again, evolving µ toward the Earth-Moon system value, many of these

solutions persist but require a small ∆v to complete the transfer due to the loss of

symmetry.

Automated methods to search the solution space for maneuver-free and low-cost

transfers are considered in addition to a manual, interactive search. The automated
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techniques explored in this investigation prove useful as a guide in the search for

transfers; however, some transfers located via the manual search are not readily iden-

tified within the automated search. Thus, a combination of interactive and automated

search strategies is likely most useful.

Finally, to demonstrate the applicabilty of employing strategies to locate transfers

in the idealized CR3B model for real mission design scenarios, arbitrarily selected so-

lutions from the Earth-Moon catalog are transitioned to a Sun-Earth-Moon ephemeris

model. The qualitative characteristics associated with the CR3B solutions are well

maintained in the high-fidelity model, and the inclusion of solar radiation pressure ap-

pears to have a nearly negligible effect. Thus, a preliminary investigation of solutions

in the CR3BP is useful to gain insight into the available solution space. The process

to transition solutions of interest to a higher-fidelity model is straightforward.
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9. CONCLUDING REMARKS

As mission requirements become increasingly complex, tools that exploit knowledge

about the available dynamics are vital. The natural dynamics that emerge in the

three-body problem yield an expanded range of trajectory options, including libra-

tion point orbits and their associated invariant manifolds. These structures have

been employed for a number of missions; however, incorporation of these types of

solutions into a mission design is nontrivial. Poincaré maps reduce the dimension of

the problem, and the incorporation of maps into trajectory design strategies improves

the tractability of mission design in multi-body regimes. These maps are frequently

higher-dimensional, however, and are difficult to represent visually. Thus, the focus of

this investigation is an expansion of the available strategies for incorporating higher-

dimensional Poincaré maps into the mission design process. Here, the results of this

work are summarized and recommendations for future work are offered.

9.1 Incorporating Higher-Dimensional Poincaré Maps into the Trajec-

tory Design Process

Existing techniques to employ higher-dimensional Poincaré maps for trajectory

design generally serve to reduce the dimension of the map to two so that it may be

represented by the projection onto a plane. To acheive this reduction in dimension,

these strategies may require that additional constraints be placed on the data set.

Thus, data that do not satisfy these constraints are eliminated and only a subset

of the data is examined for a particular map. As an alternative, strategies to visu-

ally represent the higher-dimensional map allow the user to view the full data set

simultaneously.
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In this investigation, the currently available techniques to incorporate higher-

dimensional maps into the design process are first explored. The techniques consid-

ered are useful to facilitate the computation of transit trajectories as well as maneuver-

free transfers between libration point orbits in the spatial CR3B problem. New appli-

cations for these strategies are additionally considered. The process to design transit

trajectories in the spatial problem is applied to examine the relationship between the

behavior of comets that experience temporary capture by Jupiter and the invariant

manifold structures associated with the collinear points in the Sun-Jupiter system.

Using Poincaré maps, it is demonstrated that the behavior of these comets during

temporary capture is governed by the invariant manifolds of the CR3BP. An addi-

tional application for the approach demonstrated by previous researchers is the search

for periodic orbits in the spatial problem. By exploiting known symmetry properties,

Poincaré maps prove useful to locate for symmetric periodic orbits and to examine

their relationship to the invariant manifolds associated with libration point orbits in

the vicinity of the collinear libration points.

Several of the currently available strategies to incorporate higher-dimensional

Poincaré maps into the design process require that additional constraints be en-

forced to reduce the dimension of the map. In this investigation, techniques from

the field of data visualization are employed to develop a graphical representation for

higher-dimensional Poincaré maps, allowing the user to view the full data set simul-

taneously. Up to three coordinates may be expressed via a traditional orthographic

projection. The inclusion of color allows a fourth dimension to be represented. Alter-

natively, glyphs, graphical objects whose physical characteristics are determined by

the variables of a data set, prove useful to visualize multidimensional data. In this

investigation, glyphs that serve to represent three- and four-dimensional maps are

developed and are employed for transfer design applications. Rather than presenting

a map as a puncture plot, crossings of a map are indicated using vectors, where the

basepoint coordinates, length, and orientation of the vector serve to indicate four vari-
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ables simultaneously. Such a representation is convenient because it is viewed in one

plane, rather than considering orthographic projections. Thus, all of the information

is represented in one image without requiring rotation of the view. Representations

for higher-dimensional maps employing glyphs are demonstrated to generate transfers

between libration point orbits. System transfers, in which the spacecraft departs from

a libration point orbit in one three-body system and connects to an orbit in another

system, are also enabled.

9.2 Interactive Design Environments and a Catalog of Libration Point

Orbit Transfers

Representations for higher-dimensional Poincaré maps offer the opportunity for

implementation within an interactive mission design environment. Such an environ-

ment offers several advantages from the perspective of mission design. Real time

computation and propagation of solutions, such as invariant manifolds, enables the

designer to explore the space while gaining intuition about the available solutions.

The ability to simultaneously consider different design options and interactively select

between them allows the user to adapt solutions based on the insight gained and to

select a design that best meets the mission requirements. In this investigation, an

interactive design environment is demonstrated to construct transfers between libra-

tion point orbits. Characteristics associated with the transfer are specified by the

user, and various map definitions and representations may be explored. An initial

guess for a transfre is located using Poincaré maps within this interactive environ-

ment, and may be passed to a is differential corrections environment. A corrections

method is offered to compute a feasible transfer with a number of options available to

constrain the total required ∆v. These environments represent design modules that

can be incorporated within the ongoing effort to expand trajectory design tools, and
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are intended to demonstrate one possible implementation of Poincaré maps within an

interactive design tool exploiting multi-body dynamics.

An interactive design environment employing Poincaré maps proves useful in the

search for transfers between libration point orbits employing invariant manifolds. The

lunar libration points have been proposed as destinations in the next step of the de-

velopment of the human presence in space. Thus, an understanding of the available

transfers between the lunar libration point orbits is useful to assess transport options

to, from, and between these orbits. Employing the previously discussed interactive

design tools, a catalog of transfers between orbits in the vicinity of L1 and L2 is es-

tablished for the Earth-Moon system. Within this catalog, novel transfers, including

maneuver-free heteroclinic and homoclinic connections, are computed between libra-

tion point orbits in the vicinity of L1 and L2. Observations about the structure of

solutions within the catalog reveals insight into the dynamics responsible for many

of these transfers. Many transfers occur in “partners” consisting of one solution as-

sociated with an L1 orbit, and a second, nearly symmetric transfer associated with

an L2 orbit. These partners appear to emerge from the Hill 3BP, the limiting case in

which the system mass parameter approaches zero, where the L1 and L2 families of

libration point orbits are symmetric. As the mass parameter evolves away from zero,

many of the these transfers persist yielding partner transfers that exist for the Earth-

Moon system. In addition to partners, “groupings” of transfers emerge in which many

solutions appear to employ similar dynamical structures to affect the transfer. The

existence of nearby periodic orbits is explored, and leads to the discovery of additional

transfers between these periodic solutions and the libration point orbits considered

in the catalog.
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9.3 Recommendations for Future Work

As space exploration advances to increasingly complex dynamical regimes, con-

tinued development of tools for trajectory analysis and design is necessary. Potential

areas for future research development are as follows:

� Poincaré maps are employed to analyze the behavior of comets that experience

temporary capture in the vicinty of Jupiter. The analysis is performed from

the perspective of invariant manifolds in the CR3BP; however, the comet path

is clearly not subject to the restrictions assumed in this simplified model. For

example, the Jacobi integral is not precisely maintained along a comet path,

but fluctuates along the trajectory. In this investigation, Poincaré maps are

defined for the Jacobi constant value associated with one particular instant

along the comet path, and are employed to determine the relationship between

the invariant manifolds of the CR3BP and the behavior of the comet. It may

also be of interest to observe how the Poincaré map evolves with the osculating

Jacobi constant value associated with the comet trajectory, and to determine

if the relationship between the comet behavior and the invariant manifolds is

maintained over the entire duration of temporary capture.

� Methods to reduce the dimension of higher-dimensional maps are applied to

search for periodic orbits in the vicinity of the Moon. Specifically, a “perpen-

dicular crossing” map is employed to search for quasi-periodic structures that

indicate the existence of nearby stable periodic orbits. However, by the def-

inition of the constraints associated with the perpendicular crossing map, no

quasi-periodic orbit can intersect the map twice in finite time. Thus, clearly

defined structures are not visible on the map. While a three-dimensional torus

cannot delineate the five-dimensional space defined for a particular energy level,

alternative surfaces of section should be explored in an effort to capture the dis-
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tinct quasi-periodic structures that are commonly visible on Poincaré maps in

the planar CR3BP.

� Further development of applications for the representation of Poincaré maps

employing glyphs is of interest. The applications explored in this work include

maneuver-free and low-cost connections between libration point orbits, as well

as transfers between periodic orbits in different three-body systems. Thus, the

maps in this investigation are employed to represent the crossings of invariant

For example, glyphs are employed by Haapala and Howell [55] to represent

background maps employed for the computation of transit trajectories in the

spatial problem. New glyph definitions may prove useful to represent different

maps, depending on the initial conditions and surface of section considered.

� Methods to represent Poincaré maps in nonautonomous sytems are of interest

to observe the dynamical structures available within an ephemeris model. It

is generally beneficial to develop solutions within the context of the CR3BP

and transition these trajectories to a higher-fidelity model. With the ability to

represent higher-dimensional maps, however, it may be of interest to explore

the role of Poincaré maps in trajectory design within an ephemeris model.

� In this investigation, a catalog of maneuver-free and low-cost transfers between

libration point orbits is developed within the Earth-Moon CR3BP. Many of

these transfers are related to the existence of analogous transfers in the Hill

three-body problem. To further explore this relationship, the development of a

catalog of heteroclinic and homoclinic connections in the Hill problem would be

of interest. Comparing this catalog with the available solutions in the Earth-

Moon system may provide additional insight into the existence and emergence

of the Earth-Moon transfers.
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[101] J.M. Mondelo, M. Ollé, P.A. de Sousa-Silva, and M.O. Terra, “Families of het-
eroclinic connections Between quasi-periodic libration point trajectories,” 65th
International Astronautical Congress, Toronto, Canada, September, 2014. Paper
No. IAC-14-C1.1.9.

[102] D.J. Conway, and S.P. Hughes, “The General Mission Analysis Tool (GMAT):
Current Features and Adding Custom Functionality,” 4th International Confer-
ence on Astrodynamical Tools and Techniques, Madrid, Spain, May, 2010.

[103] General Mission Analysis Tool Wiki, [Accessed August 1, 2013].
GMATcentral.org.



APPENDICES



247

A. DERIVING THE CR3B EQUATIONS OF MOTION

In this section, the equations of motion associated with the Circular Restricted Three-

Body Problem are derived with respect to the rotating frame.

Recall the equations of motion for the Circular Restricted Three-Body Problem,

as written in the inertial frame:

R̄
′′

= −Gm1

R13
3 R̄13 −

Gm2

R23
3 R̄23, (A.1)

where R̄ = XX̂ + Y Ŷ + ZẐ = xdx̂ + ydŷ + zdẑ, and xd = x`∗, yd = y`∗, zd = z`∗,

x′d = ẋ
`∗

t∗
, y′d = ẏ

`∗

t∗
, z′d = ż

`∗

t∗
. The derivatives of R̄ with respect to the inertial and

rotating frames are related in terms of rotating frame coordinates as follows:

R̄′I = R̄′R + θ′ẑ × R̄, (A.2)

= [xd
′, yd

′, zd
′]T + [−θ′yd, θ′xd, 0]T , (A.3)

= [xd
′ − θ′yd, yd′ + θ′xd, zd

′]T , (A.4)

where θ = Nτ and θ′ = N . Similarly, the second derivatives of R̄ with respect to the

inertial and rotating frames are related as follows:

R̄
′′

I = R̄
′′

R + θ′ẑ × R̄′I , (A.5)

= [xd
′′ − θ′yd′, yd

′′
+ θ′xd

′, zd
′′
]T + θ′ · [−yd′ − θ′xd, xd′ − θ′yd, 0]T , (A.6)

= [xd
′′ − 2θ′yd

′ − θ′2x, yd
′′

+ 2θ′xd
′ +−θ′2y, zd

′′
]T . (A.7)

The expression in equation (A.1) is written in terms of rotating frame coordinates as

R̄
′′

I = −Gm1

R3
13

· [xd + µ`∗, yd, zd]
T − Gm2

R3
23

· [xd − (1− µ)`∗, yd, zd]
T . (A.8)
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Then, solving for R̄
′′
R yields the dimensional equations of motion

xd
′′ − 2θ′yd

′ − θ′2x = −Gm1

R3
13

(xd + µ`∗)− Gm2

R3
23

(xd − (1− µ)`∗), (A.9)

yd
′′

+ 2θ′xd
′ − θ′2y = −Gm1

R3
13

yd −
Gm2

R3
23

yd, (A.10)

zd
′′

= −Gm1

R3
13

zd −
Gm2

R3
23

zd. (A.11)

The nondimensional equations of motion are obtained by dividing both sides of equa-

tions (A.9) by the quantity
`∗

t∗2
as follows:

¨̄r = (ẍ− 2ẏ − x)x̂+ (ÿ + 2ẋ− y)ŷ + z̈ẑ. (A.12)

ẍ = 2θ̇ẏ + θ̇2x− (1− µ)(x+ µ)

r3
13

− µ(x− (1− µ))

r3
23

, (A.13)

ÿ = −2θ̇ẋ+ θ̇2y − (1− µ)y

r3
13

− µy

r3
23

, (A.14)

z̈ = −(1− µ)z

r13
3
− µz

r23
3
. (A.15)
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B. DERIVING THE JACOBI CONSTANT

B.1 Derivation of the Jacobi Integral

To obtain a relationship between the Jacobi constant and the Hamiltonian, it is

necessary to derive the expression for the Jacobi constant. The following derivation

is based on that presented by Szebehely [10]:

ẋẍ+ ẏÿ + żz̈ = Ωxẋ+ Ωyẏ + Ωz ż,

1

2

d

dt

(
ẋ2 + ẏ2 + ż2

)
= Ωx

dx

dt
+ Ωy

dy

dt
+ Ωz

dz

dt
,

1

2
d
(
ẋ2 + ẏ2 + ż2

)
= Ωxdx+ Ωydy + Ωzdz

1

2
v2 = Ω(x, y, z)− 1

2
C,

C = 2Ω(x, y, z)− v2.

Recall the following expression for the Hamiltonian associated with the CR3BP,

H =
1

2
v2 − Ω(x, y, z). (B.1)

Thus, the relationship between the Hamiltonian function and Jacobi constant is H =

−1
2
C.



250

B.2 Second Partial Derivatives of the Pseudo-Potential

The second partial derivatives of the pseudo-potential function are as follows,

Ωxx = 1− (1− µ)

r13
3
− µ

r23
3

+
3(1− µ)(x+ µ)2

r13
5

+
3µ(x− 1 + µ)2

r23
5

, (B.2)

Ωxy =
3(1− µ)(x+ µ)y

r13
5

+
3µ(x− 1 + µ)y

r23
5

, (B.3)

Ωxz =
3(1− µ)(x+ µ)z

r13
5

+
3µ(x− 1 + µ)z

r23
5

, (B.4)

Ωyy = 1− (1− µ)

r13
3
− µ

r23
3

+
3(1− µ)y2

r13
5

+
3µy2

r23
5
, (B.5)

Ωyx = Ωxy, (B.6)

Ωyz =
3(1− µ)yz

r13
5

+
3µyz

r23
5
, (B.7)

Ωzz = −(1− µ)

r13
3
− µ

r23
3

+
3(1− µ)z2

r13
5

+
3µ(x− 1 + µ)2

r23
5

, (B.8)

Ωzx = Ωxz, (B.9)

Ωzy = Ωyz. (B.10)

These functions are necessary to compute the linear equations of motion relative to

the libration points.
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C. EIGENSTRUCTURE ASSOCIATED WITH THE

LIBRATION POINTS

C.1 Eigenvalues Associated with the Collinear Points

From the linear system described in Section 3.1 by equation (3.2), with matrix A

defined by equations (3.6), (3.7), the following characteristic polynomial is computed,(
λ2 − Ωzz0

) (
λ4 + (4− Ωxx0 − Ωyy0)λ2 + (Ωxx0Ωyy0 − Ω2

xy0)
)

= 0. (C.1)

To gain insight into the stability of the collinear points, more information about the

terms in equation (C.1) is required. In particular, the signs of the terms Ωxx0, Ωyy0 and

Ωzz0 must be determined, where the expressions for Ωpq are summarized in equations

(B.2)–(B.10), and Ωpq0 indicates that the partial derivative
∂2Ω

∂p∂q
is evaluated at the

equilibrium point of interest. Clearly the term Ωzz0 is negative for each of the five

libration points, thus, two roots of equation (C.1) are

λ5 = iω =
√

Ωzz0, (C.2)

λ6 = −iω = −
√

Ωzz0. (C.3)

Examining the expressions for Ωxx and Ωyy, from equations (B.2), (B.5), respectively,

it is clear that, at the collinear libration points, these expressions are reduced to the

form

Ωxx(x, 0) = 1 +
2(1− µ)

r13
3

+
2µ

r23
3
, (C.4)

Ωyy(x, 0) = 1− (1− µ)

r13
3
− µ

r23
3
, (C.5)

and it is readily apparent that Ωxx0 > 0. Now, the terms Ωyy0 for each of the collinear

points are evaluated separately to determine the sign of for each. In the following



252

discussions, recall that the libration points are defined such that Ωx0 = Ωy0 = Ωz0 = 0,

where Ωq0 is the partial derivative
∂Ω

∂q
, given in equations (2.18)–(2.20), evaluated at

the equilibrium point. The subsequent results are based on discussions by Szebehely

in his Theory of Orbits: The Restricted Problem of Three Bodies [10].

The L1 and L2 Points

For collinear points L1 and L2, the radial distances to the primaries are r13 = x+µ

and r23 = x− 1 + µ < 1. Then,

Ωx0 = 0 = x− (1− µ)

r13
2
− µ

r23
2
, (C.6)

(1− µ)

r13
2

= x− µ

r23
2
, (C.7)

and Ωyy(x, 0) is expressed as follows,

Ωyy(x, 0) = 1− 1

r13

(
x− µr23

r23
3

+
µr13

r23
3

)
, (C.8)

= 1− 1

r13

(
x+

µ

r23
3

)
. (C.9)

Substituting x = r13 − µ, this expression reduces to the form

Ωyy0 =
µ

r13

(
1− 1

r23
3

)
, (C.10)

and, because r23 < 1, Ωyy < 0 at the both L1 and L2 collinear points.

The L3 Point

For L3, the radial distance to each of the primaries is r13 = −(x + µ) and r23 =

−(x− 1 + µ) > 1. Then,

Ωx0 = 0 = x+
(1− µ)

r13
2

+
µ

r23
2
, (C.11)

(1− µ)

r13
2

= −
(
x+

µ

r23
2

)
, (C.12)
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and Ωyy(x, 0) is, then, expressed as follows,

Ωyy(x, 0) = 1− 1

r13

(
−x− µr23

r23
3

+
µr13

r23
3

)
(C.13)

= 1− 1

r13

(
−x− µ

r23
3

)
. (C.14)

Substituting x = −(r13 + µ), this expression reduces to the form

Ωyy0 =
µ

r13

(
1

r23
3
− 1

)
,

and, because r23 > 1, Ωyy < 0 at L3.

Thus, Ωxx0 > 0 and Ωyy0 < 0 for each of the collinear libration points. The roots

for equation (C.1) associated with out-of-plane motion are given by equations (C.2)–

(C.3). Recalling that, for the collinear points, Ωxy0 = Ωyx0 = 0, the characteristic

polynomial of the planar variational equations of motion is written

Λ2 + (4− Ωxx0 − Ωyy0)Λ + (Ωxx0Ωyy0 − Ω2
xy0) = 0, (C.15)

where Λ = ρ2. Define the following quantities,

β1 = 2− Ωxx0 + Ωyy0

2
, (C.16)

β2 =
√
−Ωxx0Ωyy0 > 0. (C.17)

The roots of equation (C.15) are

Λ1 = −β1 +

√
β1

2 + β2
2 > 0, (C.18)

Λ2 = −β1 −
√
β1

2 + β2
2 < 0, (C.19)

and the eigenvalues associated with the collinear points are

λ1 = ρ =
√

Λ1, (C.20)

λ2 = −ρ = −
√

Λ1, (C.21)

λ3 = iν =
√

Λ2, (C.22)

λ4 = −iν = −
√

Λ2. (C.23)

Of course, the eigenvectors associated with λ1−6 are obtained by solving the equation

Av̄i = λiv̄i.
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C.2 General Solution for a Center

For a linear system, ˙̄x = Ax̄, with eigenvalues ±ρ, such that ρ ε C, consider a

solution of the form

x̄(t) = αeρtv̄ + α∗eρ
∗tv̄∗, (C.24)

where q∗ denotes the complex conjugate of q. Define α1 =Real(α), α2 =Imag(α),

a =Real(ρ), b =Imag(ρ), ū =Real(v̄), w̄ =Imag(v̄), such that α = α1 + iα2, ρ = a+ ib

and v̄ = ū+ iv̄. Then, the terms in equation (C.24) are substituted as follows,

x̄(t) = eat[(α1 + iα2)(cos(bt) + i sin(bt))(ū+ iw̄) + (C.25)

(α1 − iα2)(cos(bt)− i sin(bt))(ū− iw̄)]. (C.26)

Expanding this expression, the imaginary terms cancel yielding

x̄(t) = 2eat[α1(cos(bt)ū− sin(bt)w̄)− α2(sin(bt)ū+ cos(bt)w̄)]. (C.27)

Thus, the general solution described by equation (C.24) is equivalent to the expression

x̄(t) = 2Real(αeρtv̄), (C.28)

and is elliptical in nature.

C.3 General Solution for a Saddle Point

For an n-dimensional linear system, ˙̄x = Ax̄, with eigenvalues ±ρ, such that ρ ε R,

consider a solution of the form

x̄(t) = αeρtv̄ + α′e−ρtv̄′, (C.29)
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Define α = α1 + α2, α1,2 εR, and v̄ = ū + w̄, ū, w̄ εRn. Then, α′ = α1 − α2, and

v̄′ = ū− w̄. Then, the terms of equation (C.29) are substituted as follows,

x̄(t) = (α1 + α2)(cosh(ρt) + sinh(ρt))(ū+ w̄) + (C.30)

(α1 − α2)(cosh(ρt)− sinh(ρt))(ū− w̄)], (C.31)

= (α1 + α2)(cosh(ρt)ū− sinh(ρt)w̄ + sinh(ρt)ū+ cosh(ρt)w̄) + (C.32)

(α1 − α2)(cosh(ρt)ū+ sinh(ρt)w̄ − sinh(ρt)ū− cosh(ρt)w̄), (C.33)

= 2α1(cosh(ρt)ū+ sinh(ρt)w̄) + 2α2(sinh(ρt)ū+ cosh(ρt)w̄), (C.34)

and is hyperbolic in nature.
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D. HILL’S THREE-BODY PROBLEM

D.1 Deriving Hill’s Equations of Motion

In this section, the equations of motion associated with Hill’s three-body problem

(H3BP) are derived, following Szebehely [10]. The derivation of the H3BP equations

of motion begins from the CR3BP, where a shift in coordinates translates the rotating

frame so that it is centered at the smaller primary. Then, it proves useful to scale the

distance unit of the coordinates by a factor of µα. Selecting α = 1
3
, the gravitational

terms from the smaller primary are reduced so that they are no longer a function

of the mass parameter. Finally, allowing µ → 0, the Hill equations of motion are

obtained.

The previously derived Circular Restricted Three-Body Problem equations of mo-

tion are written as

ẍ = 2ẏ + x− (1− µ)(x+ µ)

r13
3

− µ(x− 1 + µ)

r23
3

, (D.1)

ÿ = −2ẋ+ y − (1− µ)y

r13
3
− µy

r23
3
, (D.2)

z̈ = −(1− µ)z

r13
3
− µz

r23
3
, (D.3)

where r13 =
√

(x+ µ)2 + y2 + z2 and r23 =
√

(x− 1 + µ)2 + y2 + z2. The coordi-

nates are redefined relative to the smaller primary, P2, so that x2 = x−1 +µ, y2 = y,

z2 = z. The resulting equations are

ẍ2 = 2ẏ2 + x2 + (1− µ)− (1− µ)(x2 + 1)

r13
3

− µx2

r23
3
, (D.4)

ÿ2 = −2ẋ2 + y2 −
(1− µ)y2

r13
3
− µy2

r23
3
, (D.5)

z̈2 = −(1− µ)z2

r13
3
− µz2

r23
3
. (D.6)
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Here, r13 =
√

(x2 + 1)2 + y2
2 + z2

2 and r23 =
√
x2

2 + y2
2 + z2

2 . Next, the variables are

rescaled such that ξ = x2/µ
α, η = y2/µ

α, and ζ = z2/µ
α. The scaled equations of

motion are given as

ξ̈ = 2η̇ + ξ + (1− µ)µ−α − (1− µ)(µαξ + 1)µ−α

r13
3

− µ1−3αξ

r3
, (D.7)

η̈ = −2ξ̇ + η − (1− µ)η

r13
3
− µ1−3αη

r3
, (D.8)

ζ̈ = −(1− µ)ζ

r13
3
− µ1−3αζ

r3
, (D.9)

where r13 =
√

(µαξ + 1)2 + µ2αη2 + µ2αζ2, r23 = µ3α
√
ξ2 + η2 + ζ2, and

r =
√
ξ2 + η2 + ζ2. Selecting the value of α to be 1/3, the P2 gravitational accel-

eration terms reduce to
ξ

r3
,
η

r3
, and

ζ

r3
and are no longer a function of the mass

parameter µ. Assuming α = 1
3
, the equations are written as

ξ̈ = 2η̇ + ξ + (1− µ)µ−
1
3 − (1− µ)(ξ + µ−

1
3 )

r13
3

− ξ

r3
, (D.10)

η̈ = −2ξ̇ + η − (1− µ)η

r13
3
− η

r3
, (D.11)

ζ̈ = −(1− µ)ζ

r13
3
− ζ

r3
, (D.12)

where r13 =

√
µ

2
3 r2 + 2µ

1
3 ξ + 1.

At this step in the derivation, the coordinates are shifted and scaled but no as-

sumptions are made that alter the dynamics from the original CR3BP. The final step

in the derivation is to take the limit of equations (D.10)–(D.12) as µ→ 0. The mass

parameter appears in the third and fourth terms in equation (D.10). Consider the

binomial expansion (1 + a)n =
[
1 + na+ n(n−1)

2!
a2 + n(n−1)(n−2)

3!
a3 + . . .

]
. Recalling

that r13 =

√
µ

2
3 r2 + 2µ

1
3 ξ + 1, r3

13 is representd by the expansion

r13
3 =

[
1 +

3

2
(µ

2
3 r2 + 2µ

1
3 ξ) +

3

8
(µ

2
3 r2 + 2µ

1
3 ξ)2 + . . .

]
.
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Clearly, all higher-order terms in the expansion are multiples of µ and the limit of

r3
13 is unity as µ → 0. Computing the limit of equation (D.10) as µ → 0 from the

individual terms yields

limµ→0

[
(1− µ)µ−

1
3 − (1−µ)(ξ+µ−

1
3 )

r133

]
=

limµ→0

[
− (1−µ)ξ

r133
+ (1−µ)

r133
(r133−1)

µ
1
3

]
=

limµ→0

[
− (1−µ)ξ

r133
+ (1−µ)

r133

(1+
[
3
2

(µ
2
3 r2+2µ

1
3 ξ)+ 3

8
(µ

2
3 r2+2µ

1
3 ξ)2+...

]
−1)

µ
1
3

]
=

−ξ + 3ξ.

Considering equations (D.11) and (D.12), the mass parameter appears in the third

and first terms, respectively. Taking the limit of these terms as µ→ 0 yields

limµ→0− (1−µ)η
r133

= −η,

limµ→0− (1−µ)ζ
r133

= −ζ.

Thus, the equations of motion for Hill’s problem are written as

ξ̈ = 2η̇ + 3ξ − ξ

r3
, (D.13)

η̈ = −2ξ̇ − η

r3
, (D.14)

ζ̈ = −ζ − ζ

r3
. (D.15)

D.2 Equilibrium Points and the Jacobi Constant

The search for equilibrium points of equations (D.13)–(D.15) yields two libration

points. Clearly, from equations (D.14)–(D.15), η = ζ = 0 for all equilibrium solutions.

Solving for the ξ-locations corresponding to equilibrium yields ξ = ±3(−1/3). Thus,

the L1 and L2 points are the only libration points for the H3BP and are located

at (−3(−1/3), 0, 0) and (3(−1/3), 0, 0), respectively. From the locations of the libration

points, the Hill radius is defined as rH = 3(−1/3). Note that this is a dimensionless

quantity.
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The Jacobi integral is derived for the H3BP following the same steps, demon-

strated in Appendix B.1, as for the CR3BP. Define Ω̃ =
3

2
ξ2− 1

2
ζ2 +

1

r
as the pseudo-

potential function for the Hill problem. Then, the equations of motion (D.13)–(D.15)

may be rewritten as

ξ̈ = 2η̇ + Ω̃ξ, (D.16)

η̈ = −2ξ̇ + Ω̃η, (D.17)

ζ̈ = −ζ + Ω̃ζ , (D.18)

where Ω̃q = ∂Ω̃
∂q

represents the partial derivative of the pseudo-potential function with

respect to a variable q. Following the derivation in Appendix B.1 for the H3BP

equations of motion yields

ξ̇ξ̈ + η̇η̈ + ζ̇ ζ̈ = Ω̃ξ ξ̇ + Ω̃ηη̇ + Ω̃ζ ζ̇ ,

1

2

d

dt

(
ξ̇2 + η̇2 + ζ̇2

)
= Ω̃ξ

dξ

dt
+ Ω̃η

dη

dt
+ Ω̃ζ

dζ

dt
,

1

2
d
(
ξ̇2 + η̇2 + ζ̇2

)
= Ω̃ξdξ + Ω̃ηdη + Ω̃ζdζ,

1

2
ṽ2 = Ω̃(ξ, η, ζ)− 1

2
C̃

C̃ = 2Ω̃(ξ, η, ζ)− ṽ2,

where ṽ2 =
(
ξ̇2 + η̇2 + ζ̇2

)
. Thus, The Jacobi integral is of the same form for the

H3BP and the CR3BP, with differing pseudo-potential functions.

D.3 Symmetry Properties

Inherent in the equations of motion associated with Hill’s problem is a symme-

try across the η-axis. Given a solution ξ = ξ(t), η = η(t), ζ = ζ(t), the symmetry

properties of the system equations also yield a solution of the form ξ̃ = −ξ(t), η̃ =
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−η(t), ζ̃ = ζ(t). Consider the equations of motion (D.13)–(D.15). The transforma-

tion, ξ̃ → −ξ(t), η̃ → −η(t), yields

−ξ̈ = −2η̇ − 3ξ +
ξ

r23
3
, (D.19)

−η̈ = +2ξ̇ − η

r23
3
, (D.20)

ζ̈ = −ζ − ζ

r23
3
. (D.21)

The form of these solutions is exactly the same as the previously derived equations

of motion, thus, for any solution ξ = ξ(t), η = η(t), ζ = ζ(t), there exists a symmetric

solution −ξ = −ξ(t),−η = −η(t), ζ = ζ(t). As a consequence of this symmetry, fam-

ilies of periodic orbits in the vicinity of L1 and L2 are exactly symmetric. Thus, for

an initial state ξ̄1 =
[
ξ1, η1, ζ1, ξ̇1, η̇1, ζ̇1

]T
along a T1-periodic L1 orbit, the compli-

mentary state along an L2 orbit is computed as ξ̄2 =
[
−ξ1, −η1, ζ1, −ξ̇1, −η̇1, ζ̇1

]T
.

The resulting L2 orbit corresponds to the same period and value of the Jacobi integral

C̃ as the original L1 orbit.

The H3BP also possesses a symmetry in time, consistent with the symmetry of

the CR3B equations of motion as described in Chapter 2.3. Given a solution[
ξ(t), η(t), ζ(t), ξ̇(t), η̇(t), ζ̇(t)

]T
,

the symmetry properties of the system equations also yield a solution of the form[
ξ(−t), −η(−t), ζ(−t), −ξ̇(−t), η̇(−t), −ζ̇(−t)

]T
.

This result is apparent if the equations are allowed to evolve in negative time, that

is, t → −t. Consider the second-order equations (D.13)–(D.15). The time transfor-

mation yields
d

d(−t)
= − d

dt
, and

d2

d(−t)2
=

d2

dt2
, thus,

d2ξ

d(−t)2 = 2
d(−η)

d(−t)
+ 3ξ − ξ

r3
, (D.22)

d2(−η)

d(−t)2 = −2
dξ

d(−t)
− (−η)

r3
, (D.23)

d2ζ

d(−t)2 = −ζ − ζ

r3
. (D.24)
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The form of these solutions is exactly the same as the equations of motion (D.13)–

(D.15) given suitable substitutions. Thus, for any solution, a second solution, reflected

across the ξ̂-axis, also exists.
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