
Purdue University
Purdue e-Pubs

Open Access Dissertations Theses and Dissertations

Fall 2014

Secure platforms for enforcing contextual access
control
Aditi Gupta
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations

Part of the Computer Sciences Commons

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Recommended Citation
Gupta, Aditi, "Secure platforms for enforcing contextual access control" (2014). Open Access Dissertations. 277.
https://docs.lib.purdue.edu/open_access_dissertations/277

https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F277&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F277&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/etd?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F277&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F277&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F277&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations/277?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F277&utm_medium=PDF&utm_campaign=PDFCoverPages

*UDGXDWH�6FKRRO�)RUP�
�5HYLVHG � ��

PURDUE UNIVERSITY
GRADUATE SCHOOL

Thesis/Dissertation Acceptance

7KLV�LV�WR�FHUWLI\�WKDW�WKH�WKHVLV�GLVVHUWDWLRQ�SUHSDUHG�

%\�

(QWLWOHG��
�

)RU�WKH�GHJUHH�RI���

,V�DSSURYHG�E\�WKH�ILQDO�H[DPLQLQJ�FRPPLWWHH��

� �

�

$SSURYHG�E\�0DMRU�3URIHVVRU�V���BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB�

��������BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB�

�$SSURYHG�E\�

+HDG�RI�WKH� *UDGXDWH�3URJUDP� ���'DWH

ADITI GUPTA

To the best of my knowledge and as understood by the student in the Thesis/Dissertation Agreement,
Publication Delay, and Certification/Disclaimer (Graduate School Form 32), this thesis/dissertation
adheres to the provisions of Purdue University’s “Policy on Integrity in Research” and the use of
copyrighted material.

!
!
SECURE PLATFORMS FOR ENFORCING CONTEXTUAL ACCESS CONTROL

Doctor of Philosophy

ELISA BERTINO

MIKHAIL J. ATALLAH

NINGHUI LI

SONIA FAHMY

ELISA BERTINO

SUNIL PRABHAKAR / WILLIAM J. GORMAN 09/26/2014

SECURE PLATFORMS FOR ENFORCING

CONTEXTUAL ACCESS CONTROL

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Aditi Gupta

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

December 2014

Purdue University

West Lafayette, Indiana

ii

To my loving parents,

Anjali Gupta and Arvind Gupta,

for giving me the courage to pursue my dreams.

iii

ACKNOWLEDGMENTS

First and foremost, I would like to express my sincere thanks and gratitude to my

advisor, Prof. Elisa Bertino for her invaluable guidance while supervising this thesis.

Her extraordinary patience, support and encouragement were crucial in completion

of this dissertation. I am grateful to Prof. Mikhail J. Atallah, Prof. Ninghui Li and

Prof. Sonia Fahmy for agreeing to be on my PhD committee and providing invaluable

feedback on my doctoral work.

I would like to extend my special thanks to Dr. N. Asokan for mentoring me

during my two internships at Nokia Research and introducing me to the area of

contextual security. I thoroughly enjoyed working on the contextual security project

which eventually became a part of this dissertation. I would also like to thank Markus

Miettinen for several interesting discussions during the internship.

I would like to thank all my colleagues and collaborators at Purdue for numerous

discussions and research insights. Special thanks to Michael S. Kirkpatrick and Javid

Habibi whom I closely collaborated with on several research projects. I would like to

thank CS graduate o�ce sta↵ for their help with various administrative tasks, with

special thanks to William J. Gorman for his invaluable advice on several matters.

I would also like to thank my friends who made my stay at Purdue a truly enjoyable

experience. I am deeply grateful to my loving parents, Anjali Gupta and Arvind

Gupta, for their unconditional love, support and encouragement. I would like to thank

them for always believing in me and for providing me with the best opportunities while

growing up. I would like to thank my brother, Ankur Gupta, who always knows how

to cheer me up and made me see the bright side when life got tough. Last but not

the least, I would like to thank my loving husband, Utsaw Kumar. This thesis would

not have been possible without his encouragement and extraordinary support.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . vii

LIST OF FIGURES . viii

ABSTRACT . ix

1 INTRODUCTION . 1
1.1 Intuitive Security Policy Configuration 4
1.2 Formal Proximity Model for Access Control 6
1.3 Securing Systems against Code Reuse Attacks 7
1.4 Document Structure . 11

2 STATE OF THE ART . 12
2.1 Context Profiling and Automatic Policy Configuration 12
2.2 Contextual Access Control Models 14
2.3 Defenses against Code Reuse Attacks 15

3 INTUITIVE SECURITY POLICY CONFIGURATION 20
3.1 Concepts and Design . 20

3.1.1 Context Profiling . 20
3.1.2 Handling User Feedback . 27

3.2 System Architecture . 31
3.3 Parameter Tuning . 32
3.4 Validation of the Model . 36

3.4.1 Comparison to Ground Truth 36
3.4.2 Implementation . 39
3.4.3 E↵ect of User Feedback . 39

3.5 Discussion . 40
3.6 Limitations . 42
3.7 Conclusion . 44

4 A FORMAL PROXIMITY MODEL FOR RBAC SYSTEMS 45
4.1 Concepts and Design . 47

4.1.1 Intuition of Proximity . 47
4.1.2 Hybrid Proximity Realms 51
4.1.3 Formal Proximity Model . 51

4.2 Enforcement Architecture . 61
4.2.1 Feature Acquisition and Communication 65

v

Page
4.3 Enforcement Protocols . 66

4.3.1 Complexity Analysis . 67
4.3.2 Properties of Protocols . 69
4.3.3 Best-guess Protocols . 72

4.4 Heuristic-based Protocol Templates 72
4.5 Conclusion . 84

5 DEFENSE AGAINST CODE REUSE ATTACKS 85
5.1 Background and Related Work . 86

5.1.1 Return-oriented Programming 87
5.1.2 Enabling Factors for Code-reuse Attacks 88

5.2 Marlin Defense Technique . 88
5.2.1 Attack Assumptions . 89
5.2.2 Granularity of Randomization 90
5.2.3 Preprocessing Phase . 91
5.2.4 Randomization Algorithm 92
5.2.5 Security Evaluation . 94
5.2.6 Discussion . 96
5.2.7 Optimization Techniques . 96

5.3 Implementation Details . 97
5.3.1 Code Randomization . 97
5.3.2 System Integration . 100

5.4 Evaluation . 102
5.4.1 E↵ectiveness . 102
5.4.2 Overhead Analysis . 106
5.4.3 Comparison with Existing Defense Techniques 107

5.5 Discussion . 111
5.6 Conclusion . 112

6 RUNTIME DETECTION AND RESPONSE AGAINST CODE REUSE
ATTACKS . 113
6.1 System Overview . 114
6.2 Attack Detection and Diagnosis . 119

6.2.1 Basic Intuition . 120
6.2.2 Detection Algorithm . 121
6.2.3 Attack Diagnosis . 124

6.3 Response . 125
6.3.1 Response Actions . 127
6.3.2 Response Action: Patch Bu↵er Overflow 128
6.3.3 Response Action: Deploy Code Randomization 131

6.4 Implementation and Evaluation . 133
6.4.1 Detection and Diagnosis Component 133
6.4.2 Response Component . 135

vi

Page
6.4.3 Evaluation . 137

6.5 Conclusion . 141

7 SUMMARY . 143

REFERENCES . 145

VITA . 154

vii

LIST OF TABLES

Table Page

3.1 Classifications of place labels in ground truth data 36

3.2 Sets used in validation . 37

3.3 Metrics for “safe” situations . 38

3.4 Metrics for “unsafe” situations . 38

4.1 Mapping of realms to abstract space model 53

4.2 Example policies for various realms . 60

5.1 List of applications used in evaluation 103

5.2 Comparison with other defense techniques - Part I 109

5.3 Comparison with other defense techniques - Part II 110

6.1 Exploit summary . 138

6.2 ROPShield evaluation . 141

viii

LIST OF FIGURES

Figure Page

3.1 Familiarity-to-safety mappings . 26

3.2 Context profiling framework . 32

3.3 Behavior of aggregate familiarity score in frequent CoIs 35

3.4 Determining the low threshold . 36

3.5 Device implementation: Feedback options and inferred safety 39

3.6 E↵ect of user feedback during learning 40

3.7 Safety algorithm with variance . 41

4.1 Enforcement architecture . 62

4.2 Protocol for architecture in figure 4.1(a) 75

4.3 PCL specification for protocol Q0 . 77

4.4 Knowledge gained during execution R of protocol Q0 78

4.5 Protocol for architecture in figure 4.1(b) 82

4.6 Knowledge gained during execution R of protocol Q1 82

4.7 Protocol for architecture in figure 4.1(c) 83

5.1 Evolution of bu↵er overflow attacks . 88

5.2 Processing steps in Marlin . 89

5.3 E↵ect of function block randomization 90

5.4 CDF for number of symbols . 105

5.5 CDF for Marlin processing time . 107

6.1 System overview . 115

6.2 Example of configuration file . 116

6.3 Di↵erence in control flow between a normal execution and a ROP execution 121

6.4 Example of diagnosis report . 126

6.5 Response action: Patch bu↵er overflow 127

ix

ABSTRACT

Gupta, Aditi Ph.D., Purdue University, December 2014. Secure Platforms for En-
forcing Contextual Access Control. Major Professor: Elisa Bertino.

Advances in technology and wide scale deployment of networking enabled portable

devices such as smartphones has made it possible to provide pervasive access to sensi-

tive data to authorized individuals from any location. While this has certainly made

data more accessible, it has also increased the risk of data theft as the data may be

accessed from potentially unsafe locations in the presence of untrusted parties. The

smartphones come with various embedded sensors that can provide rich contextual

information such as sensing the presence of other users in a context. Frequent con-

text profiling can also allow a mobile device to learn its surroundings and infer the

familiarity and safety of a context. This can be used to further strengthen the access

control policies enforced on a mobile device. Incorporating contextual factors into

access control decisions requires that one must be able to trust the information pro-

vided by these context sensors. This requires that the underlying operating system

and hardware be well protected against attacks from malicious adversaries.

In this work, we explore how contextual factors can be leveraged to infer the safety

of a context. We use a context profiling technique to gradually learn a context’s pro-

file, infer its familiarity and safety and then use this information in the enforcement of

contextual access policies. While intuitive security configurations may be suitable for

non-critical applications, other security-critical applications require a more rigorous

definition and enforcement of contextual policies. We thus propose a formal model

for proximity that allows one to define whether two users are in proximity in a given

context and then extend the traditional RBAC model by incorporating these prox-

imity constraints. Trusted enforcement of contextual access control requires that the

x

underlying platform be secured against various attacks such as code reuse attacks. To

mitigate these attacks, we propose a binary diversification approach that randomizes

the target executable with every run. We also propose a defense framework based on

control flow analysis that detects, diagnoses and responds to code reuse attacks in

real time.

1

1 INTRODUCTION

Mobile devices such as smartphones and tablets are fast becoming an integral part

of life for many users. They are used for performing everyday tasks like Email and

Internet banking that involves storing sensitive data on the device. They also contain

personal data like photos and videos, communication logs, location information and

logs of monetary transactions. Earlier mobiles devices were simple feature phones with

basic functionality of making phone calls. Now these devices have gradually evolved

into powerful computational devices with embedded sensors and network connectivity.

Users can now access and process data from anywhere using their smartphones or

tablets. However, pervasive access to data implies that a user can also access data

from potentially unsafe contexts. This can lead to leakage of sensitive information.

For instance, an employee can access his corporate email from his mobile device while

sitting in a cafe. A malicious adversary or even a curious bystander may gain access

to confidential corporate information by shoulder-surfing attack. Further, if the user’s

device is connected to an untrusted or unsecured access point such as free WiFi at

the cafe, then a malicious adversary can steal user’s information such as login and

passwords by eavesdropping on the unencrypted tra�c. Thus, access control policies

that assume static unchanging context are not su�cient for mobile devices and must

incorporate contextual factors while evaluating access request.

Contextual access control incorporates various contextual factors such as location

of the user while specifying and enforcing access policies. For example, a policy based

on location may allow a doctor to access patients’ medical records only when he or

she is physically present at the hospital. Here, the location of the user determines the

context of the user. However, the notion of context is quite vague and application

dependent. In the realm of context-aware computing, Dey [1] defines context as “any

information that can be used to characterize the situation of an entity. An entity is

2

a person, place, or object that is considered relevant to the interaction between a user

and an application, including the user and applications themselves.” A context may

comprise of one or more context variables such as location of the user, other users

in proximity, time of the day, temperature, noise levels etc. Di↵erent applications

may consider a di↵erent set of contextual factors to identify a context. For example,

applications such as friend finder and deal finder consider only the location of a user as

a contextual factor while other applications such as mobile apps for public transport

schedule may consider both location and time.

Presence of other users in proximity is another contextual factor that can a↵ect

the safety of a context for access control applications. For example, in a military

setting, it may be unsafe to access a top secret document in the presence of any

civilian. Another example, would be when presence of other users, say a supervisor,

makes the context safe for certain actions. For instance, a nurse may be allowed to

access a patient’s medical data only in the presence of a doctor. That is, proximity

based access control can be considered as an instance of contextual access control

where access policies allow or deny access requests based on the presence of other

users in proximity. Specifying access policies in such settings requires a precise and

formal definition of proximity. Absence of a formal model for proximity can lead to

ambiguous interpretations while enforcing access control.

A user’s context is inherently dynamic in nature due to the constantly changing

context variables and this may a↵ect the safety of the context. If sensitive data is

accessed from an unsafe context, then the security of this data may be compromised.

This calls for strong protection mechanisms on mobile devices. Protection mecha-

nisms serve their purpose only when they are configured with sensible policies for

accessing and sharing data. However, managing a large number of policy configura-

tions can be quite overwhelming and unintuitive for a user. Application and service

designers attempt to tackle the usability problem by providing users with a default

policy configuration. But a global default policy may not be suitable for the needs

of every user. Users are therefore left with two unsatisfactory alternatives: either use

3

one-size-fits-all default policies which may not be sensible, or, su↵er through manually

configuring the bulk of policies by hand which may not be intuitive or easy-to-use.

Modern smartphones are equipped with a variety of sensors capable of continu-

ously monitoring a wide range of parameters such as location, Bluetooth and WiFi

devices in the neighborhood, temperature, ambient light, noise levels etc. These ob-

servations characterize the context of a device, and hence of its user. We argue that

by profiling contexts in terms of how the context parameters change over time, we can

infer appropriate access and sharing policies for sensitive data on the device, which

can help towards at least partially automating the process of setting sensible policies.

Even if the access request is made from a safe context, no guarantees on correct

enforcement can be provided if the device itself has been compromised. This risk is

elevated by the bring you own device (BYOD) trend where corporate organizations

allow employees to bring their personal devices to work and connect it to the corpo-

rate network. This puts the security of corporate network at a risk since a malware

infected device can infect other devices on the network and steal confidential informa-

tion. Correct enforcement of contextual access control requires that the information

received from contextual sensors is correct and the system has not been compromised.

A malicious adversary may compromise the system by exploiting some vulnerability

such as bu↵er overflow and then hijacking the control flow. Return oriented program-

ing (ROP) attack is one such attack that can execute arbitrary logic by reusing the

‘good’ code in the victim system towards malicious purposes. It is necessary to build

tools and techniques that that will protect systems against these kinds of attacks.

This work examines the feasibility of developing secure platforms for enforcing con-

textual access control. In particular, it discusses solutions to three problems. First,

how can a mobile device automatically infer the safety of a context and intuitively

configure access policies. Second, how to formally define proximity and incorporate

proximity constraints in contextual access control. Third, how to secure the un-

derlying platform against code-reuse attacks so that access control can be correctly

enforced. These are discussed in more details below.

4

1.1 Intuitive Security Policy Configuration

Configuring access control policies in mobile devices can be quite tedious and

unintuitive for users. Software designers attempt to address this problem by setting

up default policy configurations. But such global defaults may not be sensible for all

users. We conjecture that profiling a variety of contextual information can be used

to infer the familiarity and safety of a context and aid in access control decisions.

As an illustrative example, consider the case of device locks : Mobile devices have a

device lock feature similar to the screen-saver lock on PCs. When the device has been

idle for a pre-defined fixed period of time, the device lock kicks in. Thereafter the user

has to unlock the device before accessing the applications and data on the device. A

device may support multiple unlocking methods like a slider or passcode entry but a

specific unlocking method has to be chosen when the device lock feature is enabled.

In an enterprise, the enterprise system administrator may force its users to use strong

device lock if the device is capable of accessing enterprise data like corporate e-mail

or intranet websites. Suppose a user, Alice, finds it very inconvenient having to type

in a passcode several times every day. She may decide to disable the device lock

and risk the compromise of her sensitive data like e-mails, or she may opt to remove

applications like corporate e-mail that mandate the use of device lock.

Alice’s experience with device lock can be significantly improved by making the

device lock to adapt its behavior based on the context. Instead of having a fixed pre-

defined timeout for the device lock to kick-in and always using the same unlocking

method, the device lock application could use dynamic configuration of these param-

eters depending on the device context. For example, in a safe and familiar place like

her home where the likelihood of the device being stolen is low, Alice would like to

have a long timeout, and a “shallow” unlocking method like a slider (that does not

tax her too much), whereas in an unfamiliar place she would be willing to live with

a very short timeout and a “deeper” unlocking method like passcode entry.

5

The question then is “how can the device estimate the familiarity and safety for

a context at any given time?” We propose a framework to estimate the familiarity

and safety of a context at any instant and use these values to dynamically configure

security policies. In this approach, the device periodically scans its environment for

a variety of context variables like GPS readings, WiFi access points and Bluetooth

devices. Based on these scans, the device discovers contexts that are encountered

repeatedly; these are likely personal contexts of interest (CoIs) for the user. The

device then profiles these CoIs by keeping track of which WiFi and Bluetooth devices

are encountered in a given CoI and the nature of those encounters. These profiles can

be used to estimate the familiarity of a device with respect to a context. The inferred

device familiarity values can then be used to estimate the familiarity of a context

itself. The device then uses current and historically aggregated context familiarity

information to estimate the safety of the current context.

This basic approach needs to be complemented by allowing the user to provide

feedback about the perceived safety of a context. Feedback is important in two

respects: either the user wants to speed up the learning process or wants to correct

incorrectly inferred estimated safety of a context.

User privacy is an explicit design principle for our framework. We do not want

either the raw sensor data or the inferred contextual parameters to leave the user’s

device. Therefore, all of the contextual data is stored and processed locally on the

user’s device itself which enables better security and privacy protection.

Intuitive policy configuration may not be suitable for applications that require

strong security guarantees. For example, security applications in military setting may

require explicit policy configuration and precise definition of the context variables of

interest. In the next subsection, we discuss formal model for one such context variable,

that is proximity.

6

1.2 Formal Proximity Model for Access Control

To combat the threat of information leakage through pervasive access, researchers

have proposed several extensions to the popular role-based access control (RBAC)

model. Such extensions can incorporate contextual features, such as location, into

the policy decision in an attempt to restrict access to trustworthy settings. In many

cases, though, such extensions fail to reflect the true threat, which is the presence

or absence of other users, rather than absolute locations. For instance, for location-

aware separation of duty, it is more important to ensure that two people are in the

same room, rather than in a designated, pre-defined location.

Prox-RBAC [2] was proposed as an extension to consider the relative proximity

of other users with the help of a pervasive monitoring infrastructure. However, we

have identified two shortcomings with Prox-RBAC as previously proposed. First,

the model relies on an intuitive notion that “proximity” means the users are present

(or not) within the same physical space. This lack of a rigorous understanding of

proximity can lead to surprising interpretations. For instance, in Prox-RBAC, two

users at opposite ends of a building could be considered to be within proximity for

one policy; however, for another policy, two users standing in adjacent rooms on

opposite sides of the same door would not be in proximity of one another. As such,

this informal approach allows for entities to be in proximity, despite the fact that

they are not physically close.

Second, we find the exclusive focus on the spatial domain to be unnecessarily

restrictive. The intuition that proximity indicates relative closeness of two entities

can be applied in several domains with interesting results. For instance, a temporal

proximity constraint could require that two people digitally sign a document within

24 hours. In attribute-based proximity, an Assistant Professor and an Associate

Professor have professions (i.e., attributes) that are similar. Clearly, a unified and

formal definition of proximity can be applied to a wide variety of settings.

7

We have analyzed five contextual domains, or realms, namely geographic, attribute-

based, social, cyber, and temporal realms for defining proximity. In this work, we

define these realms and show how they can be mapped onto a unified abstract space

model. We then apply the calculus-based method [3] for defining topological relations

on features in order to specify a formal distance metric. We use this metric to define

two forms of proximity, specifically weak role proximity and strong role proximity. In

both forms, proximity specifies that two entities must have a distance measure (in

the abstract space) that is less than some threshold value.

It is important to emphasize the advantages of this formal approach. First, by

grounding the notion of proximity in terms of a distance and threshold values, we

ensure that our formalisms reflect the intuition of proximity as closeness. As such, the

mandatory specification of a metric reduces the likelihood of surprising interpretations

of proximity. Second, by defining proximity in terms of an abstract space model, our

approach is very flexible and simplifies the adaptation of policies for other realms

beyond the five we consider. That is, mapping the realms onto the abstract space

model allows us to define a common framework for enforcing the policy constraints;

adapting the model and policies for additional realms would only require mapping

the realm onto the abstract space model. Finally, by defining a common enforcement

architecture, it is possible to develop reusable code libraries and protocols that could

be applied to any enforcement architecture that maps onto our abstract space model.

1.3 Securing Systems against Code Reuse Attacks

Correct enforcement of contextual access control requires that the underlying plat-

forms are secure and able to defend against attacks from malicious adversaries. As

a first step, we explore the defense techniques for conventional systems such as PCs.

These techniques can then be applied to other non conventional systems such as

mobile devices and other embedded systems. In particular, we focus on code-reuse

attacks, including return-oriented programming (ROP) and jump-oriented program-

8

ming (JOP), that bypass defenses against code injection by repurposing existing ex-

ecutable code toward a malicious end.

A common feature of these attacks is the reliance on the knowledge of the layout

of the executable code. Early solutions to the problem of code-reuse based exploits fo-

cused on the introduction of randomness into the memory image of a process. Specif-

ically, by randomizing the start address of the code segment, a single exploit packet

would not be e↵ective on all running instances of an application. Although random-

ization initially seemed promising, these solutions su↵ered from the small amount of

randomization possible [4]. Consequently, successful brute-force attacks were feasible.

We propose to re-examine the granularity at which randomization is performed as a

defense against ROP attacks.

Our system, Marlin, introduces a randomization technique that shu✏es the code

blocks in an application binary. This technique is integrated into a customized bash

shell that randomizes the target binary at load time just before execution. This ran-

domization approach has many benefits. First, for any decent-sized code base with a

large number of blocks, the number of possible randomization makes brute-force ap-

proaches infeasible. Second, this approach can be applied to any ELF binary without

requiring the source code of an application. Third, the randomization is performed

at load time which means that potentially every execution of the binary results in a

di↵erent address layout. Finally, our scheme o↵ers an alternative to approaches that

dynamically monitor critical data like return addresses. Although these schemes are

e↵ective, they distribute the performance cost throughout the execution life-time of

the process. In our solution, the entire performance cost is paid once during process

setup, and is quite reasonable; after the execution begins, the code runs as originally

designed.

Attack detection or prevention techniques by themselves are not su�cient as it

is not clear what action must be taken once an attack is detected and also how to

prevent this attack from happening again. Attack diagnosis is crucial as it not only

provides input for the attack response, but also indicates which preventive measures

9

need to be applied, such as fine grained code randomization. Also, diagnosis informa-

tion provides deeper insights into the type and complexity of an attack which reflects

on the technical expertise of the attackers. This information, thus, allows organi-

zations to strengthen their defenses by selectively applying preventive measures not

just to the target process but also to other applications that respond to tra�c from

similar domains. Once an attack is detected and diagnosed, appropriate response ac-

tions must be deployed. Towards this goal, we propose ROPShield, a comprehensive

detection, diagnosis and response framework for defense against ROP attacks.

The detection component in ROPShield employs a run-time monitoring mecha-

nism to detect and respond to ROP attacks in real time. These attacks alter the

control flow of the target process and violate certain execution constraints. Our ap-

proach detects these attacks by evaluating these constraints at various points during

a program’s execution. For instance, by observing the behavior of an ROP attack, we

can see that the control flow of the exploit code is di↵erent from that of an ordinary

program. In a normal program, the instructions of a function execute from within its

own frame on the stack. However, in a ROP execution, the instructions executed due

to the attack may jump to the middle of another function and execute from another

function’s stack frame. Our technique leverages such observations to identify an ille-

gal execution flow. Since we check for only certain execution invariants, our approach

does not require a complete control flow graph of the target process.

Once an attack is detected, ROPShield performs attack diagnosis to identify the

type and cause of this attack. The type of attack is identified based on the execu-

tion constraints that are violated. Further, the process state at the time of attack

along with debugging information is used to identify the precise cause of the attack.

ROPShield generates a diagnosis report containing information about the attack and

the process state at the time of attack. The collection of such fine grained diagnosis

information is possible because of tracing based detection technique that allows us

to continuously examine the process’ execution state. An accurate diagnosis also al-

10

lows us to deploy better responses such as identifying and patching a bu↵er overflow

vulnerability.

We propose two types of response mechanisms, both of which must be deployed

to e↵ectively secure any system. The first type of response is the immediate response

that must be deployed as soon as the attack is detected to prevent further damage.

Examples of such response include terminating the process, shutting down the system

or blocking the IP address that was the source of this attack. While this type of

response o↵ers immediate protection, it does not solve the problem in the long run

as the attacker might be able to replay the original or slightly tweaked version of the

attack as soon as the system is live again.

The second type of response, long-term response, is aimed at preventing such

attacks from occurring in the future. The critical component of this response is to

identify the software vulnerability that led to the injection of ROP exploit payload and

patch this vulnerability. In current systems, this is usually done manually by security

administrators, or other specialized sta↵, that analyze the system logs to identify the

cause of the attack and the vulnerable bu↵er that led to the bu↵er overflow. This

is clearly a time consuming and error prone approach. It is desirable to automate

this type of response where the vulnerability is automatically identified and patched

without significant e↵ort from the security administrators. In this respect, our tool

leverages the diagnosis report generated during attack diagnosis phase to identify and

patch the vulnerability. Our technique uses a combination of tools and techniques

(as discussed in section 6.3) to identify the vulnerable bu↵er, fix the source code,

and then restart the application. The advantage of ROPShield is that it provides an

end-to-end defense by using fine grained diagnosis to seamlessly integrate appropriate

response techniques without requiring significant e↵ort from system administrator.

11

1.4 Document Structure

The rest of this document discusses the above topics in further detail. In the

next chapter, we survey the state of the art and present the background information

necessary to understand this work. In chapter 3, we discuss our profiling framework

that automatically infers the familiarity and safety of a context and configures security

policies accordingly. In chapter 4, we present a formal proximity model for RBAC

systems and discuss proximity in five di↵erent realms - geographical, attribute-based,

cyber, social and temporal proximity. Next, we present a fine grained randomization

technique to defend against code reuse attacks in chapter 5. In chapter 6, we present a

defense framework against ROP attacks that integrates the components for detection,

diagnosis and response against these attacks. In chapter 7, we summarize the work

done in this dissertation.

12

2 STATE OF THE ART

This chapter presents a survey of state of the art research work relevant to the topics

discussed in this document. We categorize this related work into three categories as

discussed below.

2.1 Context Profiling and Automatic Policy Configuration

Location, WiFi and Bluetooth traces provide rich context information and have

been utilized for several contextual applications. The Jyotish framework [5] utilizes

the joint WiFi and Bluetooth traces for predicting the movement of users. It clusters

the WiFi access point information to detect locations and uses Bluetooth traces to

predict the most likely future contacts. Our work uses WiFi and Bluetooth traces to

estimate context familiarity and safety.

Zhou et al. [6] and Nurmi et al. [7] use the location traces along with other

information to identify meaningful places like home and work for their user. These

meaningful places have several applications in location based services. We also exploit

similar facts to identify points of interest and build up a context familiarity profile

for these places.

The Familiar Stranger project [8] studies the properties and phenomenon of Famil-

iar Stranger relationships. A familiar stranger is a stranger that the user repeatedly

encounters but never interacts with. It uses a notion of device familiarity that is

derived from the number of encounters with the stranger’s device. The degree of

familiarity is used to visualize the number of familiar strangers present at a specific

place to the user. Unlike this work, we tie the notion of device familiarity to a given

place and use it to estimate the familiarity and safety of a context.

13

Greenstadt and Beal [9] propose that mobile devices can utilize cues from user

behavior to identify the users and make security decisions on their behalf. Jakobsson

et al. [10] emphasize on the need for authentication techniques on mobile device with

no or very limited user involvement. They utilize cues from user behavior like phone

activity, mobility etc. to implicitly authenticate the user to the device and to provide

addition assurance in sensitive transactions. Our primary focus is not on the method

for user authentication, but on how to select one out of many authentication methods

(with varying usability and strength) based on the safety of current context.

In [11], Danezis discusses how various social contexts can be automatically inferred

for users from the social graphs around them. Privacy settings for these social contexts

can be extracted based on the policy that content generated in a social context should

be accessible only in that context. We focus on using device’s context to configure

access policies.

Conti et al. [12] propose a framework, CRePe, for enforcing context-related policies

for smartphones that requires manual configuration of policies. Our system profiles

the user’s context to estimate its familiarity and automatically infer policies. Our

system can be integrated with the CRePE framework to allow a user to specify policies

based on context familiarity as a logical sensor in addition to other sensor values.

Kelley et al. [13] introduce the notion of user-controllable policy learning where

the user and system refine a common policy model in an incremental manner. Their

system benefits from user feedback to gradually learn and identify policy improve-

ments. Our model also incorporates user feedback to improve the decision making

process.

Edwards et al. [14] highlight the pitfalls of automating access control where the

control over security decisions is removed from the user’s hands and given to the

system. In our approach, we do not take away the control from a user. Instead, we

assist the user by suggesting policy decisions and also incorporating user feedback.

14

2.2 Contextual Access Control Models

Role based access control (RBAC) [15] is a permission model that grants access

based on roles that users have as a part of an organization. Several extensions to

RBAC have been proposed that attempt to incorporate various contextual factors

while making access decisions. In this section we will present an overview of these

contextual access control models.

GEO-RBAC [16] and LRBAC [17] are contextual access control models that in-

corporate location of the user requesting access as a factor in deciding access control.

Gal et al. [18] consider temporal attributes such as time of access as a factor in deci-

sion making. STARBAC [19], Lot RBAC [20] and Atluri et al. [21] incorporate both

location of the user and time of access into the access control model. While these

consider some specific contextual factors, [22–24] take a more general approach by

designing access control framework that can incorporate a variety of contextual fac-

tors. Our work incorporates the proximity to other users in various realms as a factor

in access control decisions. SRBAC [25] and Kirkpatrick et al. [26] consider spatial

and temporal constraints for mobile RBAC systems while our approach is applicable

to a more general domain.

Prox-RBAC [2] extended the notion of spatially aware RBAC to consider the

relative locations of other users within an indoor space model [27,28], and is the closest

paper to the current work. However, Prox-RBAC relied on an intuitive, informal

notion of proximity that allowed for surprising and contradictory interpretations of

proximity; furthermore, Prox-RBAC focused exclusively on the geographic realm,

whereas our own work is applicable to a wider range of contextual factors.

While Prox-RBAC is unique in combining proximity constraints with RBAC, it is

not the first work to consider contextual similarity between users when requests are

evaluated. TMAC [29] incorporates contextual information into team-based access

control by actively monitoring ongoing interactions. PBAC [30, 31] models focus on

e�ciently granting authorizing emergency service providers in time-critical settings.

15

However, all of these works restrict proximity definition to only the geographic realm,

unlike our own.

2.3 Defenses against Code Reuse Attacks

We now discuss various defense techniques that have been proposed to counter

code reuse attacks such as ROP attacks. Some defense techniques focus on detecting

and/or preventing stack overflows. By preventing a successful bu↵er overflow, these

defenses prevent the code reuse attacks to progress. Examples of such techniques in-

clude StackGuard [32], StackShield [33] and SmashGuard [34]. LibSafe [35] prevents

exploitation of vulnerable functions for bu↵er overflow by intercepting calls to these

functions and redirecting them to their substitute versions. This has limited applica-

bility since it does not prevent attacks that leverage vulnerable functions which are

not protected using LibSafe.

Address obfuscation [36] and address-space layout randomization (ASLR) (e.g.,

PaX [37]) are two well-known techniques for defending against code-reuse attacks.

Address obfuscation and ASLR on 32-bit architectures have the same short-comings

of Instruction Set Randomization (ISR) in that the small amount of randomization

leaves application vulnerable to attacks [4,38]. That is, Shacham et al. demonstrated

that existing randomization techniques can be defeated by brute-force. Also, infor-

mation leakage can allow an attacker to learn the randomized base address of libc [39].

Consequently, simply randomizing the base address does not e↵ectively block the at-

tack. [36] suggests randomizing function blocks as one of the address obfuscation

techniques; however this particular technique was neither implemented nor discussed

in detail.

In chapter 5, we propose Marlin defense technique that uses fine-grained random-

ization to break the ROP attack assumption of predictable address layout. Some

recent research works have also explored the idea of software diversification as a de-

fense against ROP attacks. ILR [40] randomizes location of every instruction in the

16

application code and and guides the execution using a fall through map. ILR relies

on a process-level virtual machine that incurs a performance cost throughout the

duration of the application. In contrast, Marlin’s performance impact is primarily

limited to the start-up cost. Pappas et al. [41] propose an in-place code random-

ization technique that probabilistically breaks 80% of the instruction sequences that

are useful for attacks. However, Marlin provides stronger guarantees by shu✏ing the

entire memory image, thus probabilistically breaking all instruction sequences. Also,

Marlin randomizes the executable with every run unlike [40] and [41] that do not

re-diversify the binary. XIFER [42] and STIR [43] apply software diversification to

an application at runtime to protect against code-reuse attacks. While [41–43] apply

diversification at the granularity of basic blocks, we randomize at function block level

and show that this is su�cient to make brute force attacks infeasible. Also, these

techniques would incur more overhead than Marlin as they randomize at a very fine

granularity. Marlin is a novel solution for thwarting ROP attacks and does not have

the limitations discussed above.

Another work that uses similar methodology as Marlin is ASLP [44]. However,

this work substantially di↵ers from our work in intent, requirements and low-level

techniques. ASLP requires user input, while Marlin works without user input. ASLP

requires relocation information, without which the program has to be recompiled and

relinked. It involves rewriting ELF header, program header and section headers and

shu✏ing around sections in addition to functions and variables. We randomize only

the function blocks within the code segment and show that it introduces su�cient

entropy to thwart ROP attacks. Thus, our approach incurs less overhead than ASLP.

Bhatkar et al. [45] also propose a randomization approach to protect against memory

error exploits. However, the technique used by them di↵ers from Marlin since they

associate a function pointer with every function and transform every function call into

an indirect function using this function pointer while we perform binary rewriting.

Also, unlike Marlin, function reordering in [45] is not done at load time.

17

Marlin can be seen as a variation on the idea of proactive obfuscation [46]. This

approach uses an obfuscating program that applies a semantics-preserving transfor-

mation to the protected server application. That is, the executable image di↵ers each

time the obfuscator runs, but the end result of the computation is identical. The

proactive aspect means that the server is regularly taken o↵-line and replaced with

a new obfuscated version, thus limiting the time during which a single exploit will

work. However, Marlin has more general applicability than to replicas in distributed

services. Some techniques such as [47, 48] reorder functions for performance opti-

mization at linking stage. Since the output of these approaches is just one optimized

binary, they do not diversify the binary and hence do not o↵er any strong protection

against ROP attacks.

DynIMA [49] combines the memory measurement capabilities of a TPM with

dynamic taint analysis to monitor the integrity of the process in execution. Other

approaches store sensitive data, such as return addresses, on a shadow stack and

validate their integrity before use [50, 51]. ROPecker [52] detects ROP attack at

runtime by checking the presence of long chain of gadgets in the past and future

execution flow. The disadvantage of these approaches is that there is a non-zero

performance cost for every checked instruction. Also, with the exception of [51],

these schemes assume gadgets end in ret instructions, and do not consider the more

general case where gadgets may end in jump instructions.

Compiler-based solutions [53, 54] that create code without ret instructions have

also been proposed. G-Free [53] is a compiler based approach that eliminates free-

branch instructions and prevents mid-instruction jumps. However, these techniques

have the obvious disadvantage that they fail to prevent attacks based on jmp in-

structions. Compiler techniques have also been proposed to generate diversity within

community of deployed code [55]. That is, instead of all users executing the same

compiled image (i.e., a monoculture), when a user downloads an application from an

“app store” model, the compiler generates a unique executable, which would stop a

single attack from succeeding on all users. While we find this approach very promis-

18

ing, it is not universally applicable, and would not stop an attacker with a singular

target. Further, it would require access to application’s source code that is not typi-

cally available.

Control flow integrity (CFI) [56] based defenses ensure that the program execu-

tion conforms to the pre-determined control flow graph (CFG) [56–58]. Instead of

checking for control violation before an instruction execution, control flow locking [58]

performs lazy checks for control flow violation after a control transfer has occurred.

[57] performs dynamic integrity checking by using binary instrumentation to detect

code reuse attacks. Total-CFI [59] detects control flow exploits by enforcing system

wide control flow integrity. CFI based approaches generally require complete CFG

information which is not always available. We have proposed a runtime detection

technique, ROPShield, that does not have this limitation. CCFIR [60] is a recently

proposed protection against control hijacking that limits indirect control transfers

to pre-collected legal targets. However, return to libc attacks are still possible on

CCFIR-protected binaries if the target function (example, system()) is a part of the

legal target. Our approach ROPShield does not require CFG information as it checks

for execution invariants that are independent of specific program behavior. Also, our

technique is based on tracing and does not perform binary instrumentation or source

transformation.

Dynamic detection techniques based on binary instrumentation have also been

proposed [50, 61]. DROP [61] is a binary monitor implemented as an extension to

Valgrind [62]. DROP detects ret instructions and initiates a dynamic evaluation

routine based on a statistical analysis of normal program behavior. When a ret

instruction would end in an address in libc, DROP determines if the current execution

routine exceeds a candidate gadget length threshold. These thresholds are based on a

static analysis of normal program behavior. The binary to be run must be compiled

with DROP enabled.

It is important to notice that all the above approaches only deal with detection

and/or prevention of control hijacking attacks. They do not provide any diagnosis

19

information or response framework. Our system, ROPShield, integrates detection, di-

agnosis and response components into a single framework, thus providing a complete

defense approach. Some other existing approaches also provide diagnosis informa-

tion. PointerScope [63] captures the key attack steps by identifying pointer misuse.

Misuse is detected as type conflicts when other types of data are used as control

pointers. However, this work does not integrate any response mechanism to show

how the attack steps that were identified can be used in deploying appropriate re-

sponse. DIRA [64], implemented as a GCC compiler extension, transforms the target

program’s source code so that it can detect a control hijacking attack, repair the mem-

ory damage and identify the attack packets. The only response mechanism deployed

by DIRA is memory repair, while ROPShield framework integrates multiple response

mechanisms. Other patching techniques [65–67] have been proposed as well that au-

tomatically identify and/or patch vulnerable bu↵ers responsible for bu↵er overflow.

Another work with similar goal to ours is SafeStack [68]. SafeStack uses memory ac-

cess virtualization technique which relocates vulnerable bu↵er to a protected memory

region. Once this patch is applied, the application survives future attacks on this

vulnerable bu↵er. Unlike ROPShield, this approach does not diagnose the type of

attack (such as ROP) and proposes a single response action, that is patching the vul-

nerability. Our approach integrates additional response mechanisms such as enabling

code randomization and these response actions are configurable. ROPShield shares

some similar goals with DIRA and SafeStack but adopts a di↵erent methodology.

20

3 INTUITIVE SECURITY POLICY CONFIGURATION

Configuring security and privacy policies in mobile devices can pose major usability

challenges for the end user. Often, the di�culty in understanding the configuration

options and choosing the correct settings for access control mechanisms discourages

users from using those mechanisms in the first place. In this chapter, we describe

the design of a context profiling framework to intuitively infer sensible access poli-

cies without user intervention, while still allowing corrective user feedback. We use

the device lock scenario as an example of applying our context profiler. However,

context-profiling based approach is not limited to device-locking and has several other

use cases as discussed in [69]. We describe the implementation architecture for the

context profiler. We then describe several experiments using a previously available

dataset based on which we select concrete parameters for our prototype of the context

profiler. We provide an evaluation of our model and discuss limitations and possible

enhancements.

3.1 Concepts and Design

3.1.1 Context Profiling

Detecting Contexts of Interest

A context of interest (CoI) represents a context that is significant to the user. In

this chapter, we limit our scope to geolocational contexts only. We use a grid-based

clustering algorithm for GPS observations to detect CoIs, which are regions where

the device has been present su�ciently often. A CoI is represented by a circular

region with a fixed radius centered at the centroid of the locational observations

contributing to the CoI. Once a CoI is detected, we update its centroid with every new

21

observation that falls within the CoI. It should be noted that the clustering module

can be replaced by other sophisticated clustering schemes (such as density based

clustering) that detect contexts of arbitrary shapes. Our profiling framework only

requires a mapping of current position to a CoI so that it can maintain a familiarity

profile of that CoI. We choose grid based clustering since it is lightweight and e�cient.

Device Familiarity

A user may observe certain devices more often than others in a given CoI. These

devices gradually become familiar to the user’s device with respect to that particular

CoI. We introduce the notion of familiarity of a device in a given CoI (hereafter

device familiarity) as a measure of how frequently and how recently a device has

been observed by the user’s device in a given CoI. If a familiar device stops appearing

in a CoI for a long time, its device familiarity should gradually decrease. Since we

do not know if the device has left the CoI permanently or is temporarily absent, the

device decay should be slow and gradual. This is achieved by growing the device

familiarity of device d in CoI C with every observation of C that includes d, but

decaying d only if it has not been observed in N0 successive observations of C, where
N0 is a suitably chosen constant. We capture this behavior of device familiarity using

a variation of exponential moving average function as represented by equation 3.1

below.

Definition 3.1.1 Device familiarity of a device d, with respect to CoI C after n

observations of C is:

DFam(d, C, n) = ↵D ⇤ occ(d, C, n) + (1� ↵D) ⇤ DFam(d, C, n� 1)

22

where,

occ(d, C, n) =

8
>>>>>><

>>>>>>:

1 if d is observed in C in the nth sample,

0 if d is not observed in C in the nth sample,

and (n�Nlast) mod N0 = 0.

DFam(d, C, n� 1) otherwise.

(3.1)

where d was last seen in the Nlast
th sample of C.

The selection of the smoothing factor ↵D determines the weight 1� ↵D assigned

to the old device familiarity value in computing the new device familiarity value. For

example, for a device present in every observation made in a CoI, higher values for

↵D would imply quicker rise in the device familiarity value.

Context Familiarity

We estimate the familiarity of a CoI using two measures: instantaneous familiarity

and aggregate familiarity. Instantaneous familiarity is an estimate of the familiarity

of the CoI the user’s device is currently in, in terms of the device familiarity values of

the devices present in the CoI at that instant. Aggregate familiarity represents the

“usual” or “typical” familiarity of a CoI over time.

Instantaneous familiarity is computed as a weighted average of the observed de-

vices with their device familiarity values constituting the corresponding weights. The

intuition is that the contribution of a device towards instantaneous familiarity of a

CoI should be proportional to its device familiarity in that CoI. We compute the in-

stantaneous context familiarity separately for each class of devices and combine them

by taking the average over all device classes. Currently we consider two classes of

devices: Bluetooth and WiFi.

Definition 3.1.2 Instantaneous familiarity of a CoI C at its nth observation can

be defined as

instFam(C, n) = 1

|T |
X

t2T

instFam(C, n, t) (3.2)

23

where T is the set of device classes,

instFam(C, n, t) = 1

|DC,n,t|
X

d2DC,n,t

DFam(d, C, n)

and DC,n,t is the set of devices of class t 2 T observed in C at its nth observation.

Aggregate familiarity of a CoI represents its “typical” familiarity and is computed as

an exponential moving average of instantaneous familiarity.

Definition 3.1.3 Aggregate familiarity of a CoI C after n observations of C is

defined as:

aggFam(C, n) = ↵C ⇤ instFam(C, n) + (1� ↵C) ⇤ aggFam(C, n� 1) (3.3)

where 0 ↵C 1 is a suitably chosen constant.

The smoothing factor ↵C determines how fast the aggregate familiarity should react

to the changes in instantaneous familiarity. A higher value implies quicker reaction.

In section 3.3, we discuss the choice of ↵D and ↵C values used in equations 3.1 and

3.3.

Notion of Null Device

An interesting question is how to interpret the instantaneous familiarity when no

device is observed in a context. We model the absence of any other device by intro-

ducing the notion of a null device for each class of devices. A null device is introduced

when no other device in that device class is observed. The device familiarity of a null

device is computed in just the same way as for a real device using equation 3.1. Thus,

in CoIs where absence of other devices is the norm, the null devices will have a high

device familiarity which in turn leads to familiarity of the CoI to be high when no de-

vices are present. On the other hand, in other CoIs, the familiarity of the null device

will be low which causes the familiarity of the CoI to drop when no other devices are

observed.

24

Inferring Context in absence of GPS Fix

Sometimes, especially indoors, the device may fail to get a GPS fix. But we still

need to infer the current context since access control has to be enforced. WiFi- and

cell-tower-based localization is typically used for positioning in the absence of GPS.

This requires the device to scan the neighborhood for WiFi access points or cell-tower

identifiers and map them to a geospatial location with the help of a central server.

Given our design principle of not allowing any context data to leave the device, we

prefer not to rely on server-assisted positioning.

Instead, we use purely local mechanisms to infer the user’s context. The snapshot

of (stationary) WiFi devices observed in a CoI is fairly static and can be used to

attribute user’s current position to a known CoI. We also leverage the fact that the

instantaneous WiFi familiarity score of a CoI represents how familiar the current

snapshot of WiFi devices is to this CoI to map a WiFi snapshot to its most familiar

CoI.

Inference of user’s context is done in two steps. First, we compute candidate

instantaneous WiFi familiarity for the current snapshot of WiFi devices with respect

to all known CoIs for the user. We use a minimum threshold for WiFi instantaneous

familiarity to discard obviously incorrect CoI choices. The current position is then

attributed to the CoI with maximum WiFi instantaneous familiarity score. If none

of the candidate instantaneous familiarity scores exceed the minimum familiarity

threshold, we use Jaccard’s distance measure to compute the distance between the

current snapshot of WiFi devices and the snapshot of WiFi devices corresponding to

the last known observation with an associated GPS reading. If the twoWiFi snapshots

are close enough, we attribute the current observation to the same location.

From Familiarity to Safety

Familiarity can have di↵erent interpretations in terms of safety for di↵erent appli-

cations. A familiar place may be considered safe by a certain application, and unsafe

25

by some other application. For example, applications where anonymity is desired

would treat a familiar place as unsafe and an unfamiliar place as safe. On the other

hand, a configurable device lock mechanism would treat an unfamiliar place as unsafe.

Perception of safety can also vary from user to user: two di↵erent users co-located

in the same context may perceive di↵erent safety levels for the exact same context.

In other words, how best to infer the safety level from the familiarity estimates is a

di�cult question. Below, we outline the current, somewhat simplistic, approach we

have taken for mapping from familiarity to safety. This remains an active area of

current work for us.

We propose a familiarity to safety mapping for device lock and other applications

with similar requirements. For device lock, we need to assess the safety level of the

current context of the device so that the appropriate locking timeout and unlocking

method can be enforced. We define the security model for device lock application as

follows. The goal is to prevent anyone other than the owner from misusing the device

in an unlocked state. This can be done either by a thief who has stolen a device or

a curious individual. Misuse of device may involve access to personal information,

installation of malware/spyware and using user’s credentials to carry out transactions

maliciously.

Studies [70, 71] in various contexts have shown that familiarity breeds trust and

reduces the risk perception. Further, statistics reported by Bureau of Justice [72] for

year 2006 indicate that at least 59.2% of theft crimes were performed by strangers.

Thus, it seems reasonable to assume that in the case of applications like device lock,

the presence of strangers implies a potentially unsafe situation. We begin with the

following intuition: a CoI that has a high familiarity both typically and currently is

probably safe; as a dual, a CoI that has a low familiarity both typically and currently

is probably unsafe.

We incorporate the above observations in our algorithm to estimate the safety

level of the current context (Figure 3.1). The algorithm uses the instantaneous and

aggregate familiarity of the current CoI to estimate the safety level as one of high

26

Figure 3.1. Familiarity-to-safety mappings

(GREEN), medium (YELLOW) or low (RED). To do this, we use two thresholds: a

high familiarity threshold (HT) and a low familiarity threshold (LT) to delimit “high”

and “low” values for familiarity (both instantaneous and aggregate). In section 3.3,

we estimate reasonable values for these thresholds.

If the current context does not correspond to a CoI, we conclude that the safety

level is low (RED). This is consistent with algorithm in Figure 3.1 because the aggre-

gate familiarity of an unknown context is zero.

Device Lock Use-case

The inferred safety level can be used to automatically configure the unlock policy

for a device lock. We map each safety level to a di↵erent unlocking method and

locking timeout. For instance, GREEN safety may correspond to “slide-to-unlock”

method which is less secure and more usable while RED safety may correspond to

a more secure PIN-based unlock method. We couple this with a low watermark

approach to decide the unlocking method: if a device is locked in a safe context, a

change in context can lock it deeper (i.e., requiring a stronger unlocking method),

but the converse is not true. The unlocking method will correspond to the safety of

the least safe context encountered since the device was locked. This low watermark

27

approach is also intended as a defense against adversarial learning: for example, if a

thief steals the device from an unsafe location but leaves it in house for a day, the

context profiler will eventually learn that the thief’s house is a “safe” place, but that

does not help the thief because he has to first unlock the device using the stronger

unlocking method.

3.1.2 Handling User Feedback

In automated access control enforcement, it is important to incorporate feedback

from the user in the decision making process. Since our context profiler’s safety

algorithm ultimately bases its computations only on a few classes of sensor inputs,

it may sometimes estimate the safety level incorrectly. User feedback is important in

such cases so that the inferencing process can be tweaked to match user’s expectations.

Similarly, user feedback can be used to shortcut the learning process so that contexts

that the user knows will become eventually familiar (like her home) can be deemed

familiar more quickly.

A user can provide feedback by specifying the safety level of a context as perceived

by him. The user may provide feedback on the long-term behavior of a CoI by marking

it as ‘Usually safe’ or ‘Usually unsafe’. Alternatively, he may want to indicate a short-

term or temporary feedback like ‘Now safe’ or ‘Now unsafe’ for the current CoI. When

a user provides ‘Usually safe’ feedback for the current CoI, he is also prompted to

provide ‘Now Safe’ feedback, if appropriate. This provides a quick boost to the short

term safety value.

Feedback classification: The safety feedback provided by a user can be broadly

classified into following categories:

1. Learning phase feedback: This feedback is provided by the user during the learn-

ing phase to shortcut learning, or to override the context profiler’s estimations

of the safety of a context until that context has been learned. We believe that

28

this would be the most frequent case where user will provide feedback. A user

may provide either short term or long term feedback during learning phase.

2. A�rmative feedback: This refers to the scenario where the user feedback matches

the context profiler’s perception of safety, that is the user just re-a�rms the con-

text profiler’s perception. For example, when user says that certain context is

‘Usually safe’ and the context profiler has already inferred the context as safe.

We can safely ignore this feedback in the computation of safety scores.

3. Corrective feedback: This refers to the scenario when the context profiler fails

to match user’s perception of safety even after it has learned the context. Cor-

rective feedback can be either short term or long term.

We base our feedback handling approach on the following two principles:

1. The e↵ect of feedback should be immediately visible to the user. However, it

should not permanently relax the safety computations, but allow for the system

to react in case of sudden drops in familiarity scores.

2. When a user provides feedback, it is regarding the safety of a context and not

its familiarity. Thus, the feedback handling mechanism should only tweak the

familiarity to safety mapping and not the familiarity scores themselves.

We extend the basic familiarity-to-safety algorithm presented in Figure 3.1 to

incorporate user feedback. To address the above principles, the instantaneous and

aggregate familiarity scores are artificially boosted according to the feedback provided.

These modified scores (referred to as instFamF and aggFamF in the discussion that

follows) replace the original familiarity scores used in Figure 3.1.

Long term feedback reflects on the ‘typical’ behavior of a context. Our intuition is

that such feedback would be provided in the learning phase to shortcut the learning

process. The e↵ect of long-term feedback should correct the safety computations until

the context has been properly learned. This can be achieved by combining long term

29

feedback and the aggregate familiarity using a dynamic weight wLT that gradually

fades away. We use a time decay curve to decay the value of wLT .

Definition 3.1.4 aggFamF is the feedback adjusted score that replaces the aggregate

familiarity score in algorithm in Fig 3.1. It is computed as:

aggFamF (C, n) = (1� wLT) ⇤ aggFam(C, n) + wLT ⇤ LT Feedback (3.4)

where LT Feedback indicates long term feedback, with value either 0 (‘Usually un-

safe’) or 1 (‘Usually safe’).

The dynamic weight wLT for long term feedback is computed as:

wLT =

8
<

:
1� (n

f

N
f

)
c

if nf Nf

0 otherwise.
(3.5)

where nf is the number of observations since the long term feedback was given,

Nf is the maximum number of observations after which the feedback e↵ect should

wear o↵ and c is a constant that determines the speed of decay.

The long term feedback weight should decay slowly in the beginning so that the

device has enough time to learn the context and then gradually fade away to 0. The

constant Nf is decided based on the length of learning period, which depends on

the ↵C and ↵D values. One may question as to why long term feedback should be

forgotten over time. Permanently overriding the profiler’s decision by user’s feedback

prevents the profiler from reacting to genuine drops in safety of a usually safe CoI

(for example, a party at home). Thus, we chose slow decay of long term feedback to

allow adaptive measures instead of permanent override.

Short term feedback reflects on the safety of current snapshot of a CoI. It indicates

a temporary change in the behavior of a CoI and should fade away after a short

time. We compute this score by combining short term feedback and instantaneous

familiarity using a dynamic weight wST .

Definition 3.1.5 instFamF is the feedback adjusted score that replaces the instanta-

neous familiarity score in algorithm in Fig 3.1. It is computed as:

instFamF (C, n) = (1� wST) ⇤ instFam(C, n) + wST ⇤ ST Feedback (3.6)

30

where ST Feedback indicates short term feedback, with value either 0 (‘Now unsafe’)

or 1 (‘Now safe’).

The short term dynamic weight wST should depend on the time elapsed and the

change in the snapshot of observed devices since the feedback was given.

wST =

8
<

:
1�max { t�t0

t
max

�t0
,Dist(St, St0)} if t tmax

0 otherwise.
(3.7)

where t0 is time at which short term feedback was given, t is the current time,

tmax is time after which short term e↵ect should wear o↵ (we use tmax = 60 mins.),

St0 is the snapshot of devices at time t0, St is snapshot of devices at time t and Dist()

is the distance metric, the definition of which is based on the following rationale:

• Familiar devices in St0 , but not St should increase the distance measure

• Unfamiliar devices in St but not in St0 should increase the distance measure

• Unfamiliar transient devices in St0 , but not in St should not increase the distance

measure

• Familiar devices in St but not in St0 should not increase the distance measure

Let n denote the number of observations of context C at current time t and

occ(d, S1, S2) = 1 if device d 2 (S1� S2) and 0 otherwise. Then we define1

Dist(St0 , St) =
1

|St0 [St| ⇥

0

BBB@

X

d
i

2S
t0

DFam(di, C, n) ⇤ occ(di, St0 , St)

+
X

d
i

2S
t

(1�DFam(di, C, n)) ⇤ occ(di, St, St0)

1

CCCA
(3.8)

The e↵ective safety level is inferred as shown in Figure 3.1 where instFamF and

aggFamF will serve the purpose of instantaneous and aggregate familiarity respec-

tively.

1We could define Dist() simply as the Jaccard distance J
�

(S
t0 , St

), but that will not distinguish
devices based on familiarity.

31

3.2 System Architecture

The system architecture for the context profiler software is described in Figure 3.2.

It consists of three main modules:

• Data Collection module is responsible for continuously sensing the current

context and collecting raw data about various context variables

• CoI Detection module periodically clusters the location data collected by the

data collection module to detect CoIs for the user, based on their significance

to the user which is determined by the amount of time the user spends in a

particular place.

• Context Analysis module is responsible for analyzing the raw data and infer

familiarity and safety scores for the current context. For each CoI, it maintains

a context profile to keep track of the devices that are observed in a CoI and

their familiarity scores with respect to that CoI. Based on the current snapshot

of the CoI, it computes instantaneous and aggregate familiarity scores using

equations 3.2 and 3.3 respectively. These familiarity scores are used to infer the

safety of the context as discussed earlier.

In our current implementation, the data collection module scans the environment

every five minutes to record the GPS co-ordinates (if available) as well as the currently

visible Bluetooth devices and WiFi access points. This information is stored in a

database on the device itself and is used by other modules to identify and analyze

CoIs. This module can be extended to sense other kinds of context variables.

For CoI detection, we used a simple grid-based clustering algorithm with a grid

cell width of 250 meters. We required a cluster to have at least 1% of all observations

within a time window of 30 days which corresponds to 8640 observations at our current

rate of sampling. Consequently, the detection threshold of 1% (⇡ 86 observations)

would correspond to roughly an equivalent of seven hours of observations of a place

in the GPS trace data for the place to become identified by our clustering algorithm

32

Context Analysis

CoI Detection

Familiarity
and Safety

scores

Data collection

Bluetooth devices

WiFi devices

GPS data

Context Profiles

CoIs

(1)

(2)

(3)

(4)

Figure 3.2. System components: (1) Data collection module collects
GPS, Bluetooth, WiFi data; (2) GPS data is clustered to detect CoIs;
(3) Context analysis module updates context-specific information and
(4) computes familiarity and safety scores for the current context.

as a CoI. We associated Bluetooth and WiFi observations having a GPS fix within

100 meters from a cluster’s centroid as belonging to that CoI. Note that a CoI is a

circle with a fixed (100m) radius and is significantly smaller than a grid cell. The

grid cells are used only to speed up clustering and do not dictate the size of a CoI.

The context analysis module periodically generates the familiarity and safety

scores for the current context. These values can be used by applications to auto-

matically configure access policies that depend on the current context. In the device

locking use case, the safety scores are used to dynamically configure the unlocking

method and the locking timeout of the device.

3.3 Parameter Tuning

We ran several experiments using traces from the Lausanne Data Collection Cam-

paign, a large-scale data collection experiment focusing on mobile device users’ be-

havioral and contextual data traces [73,74] in order to gain the insights and heuristics

33

needed to determine suitable parameters for a concrete instantiation of the context

profiler framework. The dataset contains GPS location traces and regular scans of

WiFi and Bluetooth radio environments of a large number of users.

To match our device implementation as closely as possible, we filtered the dataset

to include one Bluetooth and WiFi scan observation per five-minute observation win-

dow, if available. Each of these Bluetooth/WiFi observations was matched with the

closest GPS fix within the time window, if available. By applying our CoI identifica-

tion algorithms, we identified a total of 167 CoIs for 37 users, giving on average 5.22

CoIs per user (median 5 CoIs).

In the device lock scenario, the context profiler e↵ects visible to the end user are

(a) how long does it take for a safe CoI to be recognized as such by the context profiler

and (b) how volatile is the safety labeling of a safe CoI. As a guiding principle, we

want the context profiler to learn safe CoIs within two days. At our current sampling

frequency of every five minutes, a day consists of 288 observations. We conjectured

that a user is likely to spend about a third of a day in a given safe CoI. Thus we

need safe CoIs to be deemed safe in about 200 observations. We set this as our

approximate target. We then determined suitable values for various parameters as

discussed below.

Smoothing factor for Device familiarity ↵D: From Equation 3.1 we see that

higher values for ↵D will imply that the device familiarity DFam will grow quickly if

a device continues to appear in successive samples in a CoI. Given our rough target

of recognizing a safe CoI within 200 observations, we decided to select ↵d so that a

device that appears in about 20 consecutive samples of a CoI would have a DFam

reaching 0.9. Using Equation 3.1, we compute this value of ↵D to be 0.1. This is in

line with the standard practice of choosing a smoothing factor between 0.05 and 0.3

for processes that are locally constant (Chapter 8 of [75]).

Decay interval for Device familiarity N0: To select the value of N0 in equa-

tion 3.1, we reasoned that the familiarity of a device should decay if it did not show

up even once in consecutive samples spanning a day. Again, based on the assumption

34

that a user may spend about a third of a day (⇡ 96 observations) in a given safe CoI,

we chose N0 to be 100.

Smoothing factor for Context familiarity ↵C : In Equation 3.3 the smoothing

factor ↵C a↵ects the lag time of the smoothing applied to the aggregate familiarity

scores. The lag time determines the number of observations required for the aggre-

gate familiarity score to react to changes in the trend of the instantaneous familiarity

scores. Consequently, the choice of ↵C will impact both the user-visible e↵ects dis-

cussed above.

We presume that most users have at least two frequently visited CoIs (e.g. their

home and workplace). We further assume that the majority of such CoIs can be

presumed to be ‘familiar’ places for the users. We denote the set of the top-two most

frequently observed CoIs of each user as the set of frequent CoIs. We studied how dif-

ferent choices of ↵C a↵ects the evolution of the aggregate familiarity score in frequent

CoIs over time. Figure 3.3 shows the result: the y-axis on the left shows the average

aggregate familiarity for frequent CoIs; the y-axis on the right shows the average of

the standard deviation of the aggregate familiarity of the same, calculated over the

latest 100 observations at each point. We observed the following from Figure 3.3:

• values of ↵C greater than 0.05 have little impact in the behavior of the average

aggregate familiarity score.

• the “knee” in the graph near the 200th observation implies that most of the

frequent CoIs reach a steady state after this point.

• the average standard deviation of aggregate familiarity scores is reasonably small

(less than 5%) for all values of ↵C less than 0.05 beyond the steady state.

Based on these results, we chose ↵C as 0.05.

Long term feedback duration Nf : The number of observations for frequent

CoIs to reach steady state (200) is a suitable value for Nf in equation 3.5.

Safety thresholds HT and LT : In Figure 3.1, a natural value for HT is the

point reached by the average aggregate score of frequent CoIs at the steady state.

35

Figure 3.3. Behavior of aggregate familiarity score in frequent CoIs

From Figure 3.3, this is 0.85. To choose the value of the low threshold LT , we used

the following rationale. We expect that for most users, a familiar CoI like home

will exhibit stable behavior in the long-term. Thus we can choose LT such that the

aggregate familiarity score of most familiar CoIs will be above this value. We resort

to a 90-10 rule of thumb to assume that 90 percent of the set of frequent CoIs are

likely to be stable. Figure 3.4 shows the aggregate familiarity score of the CoI at the

lowest tenth percentile for a given number of observations. From the graph, we can

see that 0.4 appears to be a good choice for LT because at all times after reaching the

steady state (refer to Figure 3.3), all frequent CoIs in the set above the 10th percentile

have aggregate familiarity scores above this value.

36

Figure 3.4. Determining the low threshold

Table 3.1.
Classifications of place labels in ground truth data

Safe Unsafe

My home Holiday resort or vacation spot

My freetime home Shop or shopping center

My main workplace Location related to transportation (e.g. bus stop)

Place for indoor sports (e.g. gym)

Place for outdoor sports (e.g. walking)

Unclassified

Home of a friend My main school or college place

My other work place Other

I don’t know

3.4 Validation of the Model

3.4.1 Comparison to Ground Truth

Once the parameters were determined, we applied our familiarity and safety al-

gorithms to the observation data related to the frequent CoIs of each user. Ideally,

37

Table 3.2.
Sets used in validation

Sets in ground truth data #

Observations in “Safe” CoIs Gsafe 51446

Observations in “Unsafe” CoIs Gunsafe 2607

Observations in Unclassified CoIs GUC 10119

Sets identified by Context Profiler #

“Safe” observations CGREEN 55234

“Unsafe”observations CRED 2862

Neither CY ELLOW 6076

Set intersections #

True “Safe” obs. |Gsafe \ CGREEN | 47197

Other “Safe” obs. |{Gunsafe [GUC} \ CGREEN | 8037

True “Unsafe” obs. |Gunsafe \ CRED| 889

Other “Unsafe” obs. |{Gsafe [GUC} \ CRED| 1973

the evaluation of the model would be based on ground truth information indicating

the user’s perception of the safety of a CoI over time. Unfortunately the dataset we

used did not have ground truth information at this granularity. However, it did have

information where the users have labeled locations using one of several pre-defined

labels such as “My home”, “My main work place”, “Shop” etc. We grouped these

labels into “safe” and “unsafe” as shown in Table 3.1. We ignored locations with

labels whose safety classification from a user’s perspective is unclear (e.g., labels such

as “Home of a friend”). Making the simplifying assumption that the CoIs identified

by the users as “safe” or “unsafe” in the ground truth data are always safe or unsafe

respectively, we estimated the e↵ectiveness of the context profiler with the parame-

ters selected above as follows. We identified the sets as in Table 3.2. Note that this

labeling information we now use for the validation of the model was not part of the

data we used in choosing the parameters for the model in section 3.3.

38

Table 3.3.
Metrics for “safe” situations

Formula value

Precision |G
safe

\C
GREEN

|
|C

GREEN

| 0.854

Recall |G
safe

\C
GREEN

|
|G

safe

| 0.917

Fallout w.r.t. “unsafe” |G
unsafe

\C
GREEN

|
|G

unsafe

| 0.152

Fallout w.r.t. “unclassified” |G
UC

\C
GREEN

|
|G

UC

| 0.755

Table 3.4.
Metrics for “unsafe” situations

Formula value

Precision |G
unsafe

\C
RED

|
|C

RED

| 0.311

Recall |G
unsafe

\C
RED

|
|G

unsafe

| 0.341

Fallout w.r.t “safe” |G
safe

\C
RED

|
|G

safe

| 0.019

Fallout w.r.t “unclassified” |G
UC

\C
RED

|
|G

UC

| 0.096

We then calculated the figures of merit for recognizing “safe” and “unsafe” situa-

tions as shown in Table 3.3 and Table 3.4 respectively.

The precision and recall of recognizing safe situations are su�ciently high. The

fallout value reflecting the likelihood of unsafe CoIs receiving ‘safe’ classifications is

slightly higher than desirable (15%), but still in acceptable range. The fallout with

regard to ‘unclassified’ CoIs is remarkably high (75%). This may be caused by the

fact that a major fraction of the CoIs in the ‘unclassified’ set GUC actually represent

places that are familiar to the user (e.g. ‘Home of a friend’,or, ‘My other work place’

might be such places). The precision of recognizing unsafe situations is low, but

acceptable as it errs on the safe side. The recall is low, implying that the context

profiler recognized only a third of the unsafe observations as such. However, among

the 6076 YELLOW observations made by the context profiler (the set CY ELLOW),

1321 were in locations labeled as “unsafe” in the ground truth data. If we combine

39

(a.)
Feedback options

for CoI safety

(b.)
Inferred safety levels

for various CoIs

Safety level 'GREEN'

Safety level 'YELLOW'

Safety level 'RED'

Figure 3.5. Device implementation: Feedback options and inferred safety

this set with CRED, then the recall figure climbs up to 0.848. This suggests that the

YELLOW safety level should not be considered significantly safer than RED. Overall,

the figures of merit validate the choice of parameters.

3.4.2 Implementation

We have prototyped the context profiler with the chosen parameters on Linux-

based smartphones (Nokia N900 and N9). We also implemented three di↵erent un-

locking methods (passcode, draw-a-secret, and slider) which were linked to the RED,

YELLOW, and GREEN safety levels respectively. The three safety levels also cor-

responded to three di↵erent default timeout values of 1 minute, 5 minutes and 30

minutes respectively.

3.4.3 E↵ect of User Feedback

We studied the e↵ect of user feedback using our prototype context profiler. The

user can provide feedback about a CoI’s safety at any time to modify its behavior

using a GUI as shown in Figure 3.5(a.). Figure 3.6 shows the e↵ect of ‘Usually safe’

40

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50
 100

 150
 200

 250
 300

a
g
g
F

a
m

 o
r

a
g
g
F

a
m

F

Number of observations

Aggregate Familiarity with and without feedback

Without feedback
With feedback, c=1
With feedback, c=2

With feedback, c=10
ST feedback
LT feedback

Figure 3.6. E↵ect of user feedback during learning

feedback that was provided by the user for a context when the context profiler was

still in learning phase. The user provided ‘Usually safe’ feedback after approximately

20 observations of this CoI. At this point, the aggregate familiarity was artificially

boosted to a value 1 (h̃igh) and this boost was decayed slowly. As can be seen in this

figure, the e↵ective familiarity stayed high until the CoI was learnt. Thus, the user

could shortcut the learning phase by providing a long term feedback.

The graph shows the e↵ect of using di↵erent c values in equation 3.5. While a

bigger value of c provides a steady behavior until CoI has been learnt, it also reduces

the CoI’s tolerance to genuine drops in instantaneous familiarity. To address this

tradeo↵ and from the behavior of aggFamF in Figure 3.6, we decide to use c = 2.

3.5 Discussion

Alternate safety algorithm

The safety algorithm discussed in Fig. 3.1 can be further strengthened by incor-

porating volatility of the CoI as a factor. CoIs that are stable (less volatile) should

be less tolerant to changes in instantaneous familiarity. Even small changes should

41

Figure 3.7. Safety algorithm with variance

severely a↵ect the perceived safety of a stable CoI. Similarly, CoIs with high variance

should be more tolerant to fluctuations. The variance of instantaneous familiarity

can be an indicator for the volatility of a CoI. A context can be deemed volatile if

the variance is above a certain threshold. To incorporate volatility of a CoI in the

safety algorithm, we use its modified version as shown in Fig 3.7. This algorithm is

not used when the user feedback is in e↵ect, since the volatility of the CoI cannot be

reliably determined in such cases.

Privacy Considerations

Collection of user’s contextual data by di↵erent services usually raises privacy

concerns. However, in our approach this data collection is used to help users in

intuitive enforcement of access control and never leaves the device’s storage.

42

Security Considerations

The security requirements of context profiling depends on the application. An

attacker who can fake Bluetooth or WiFi addresses can influence the estimated famil-

iarity scores. This can be addressed by revising the familiarity calculations by giving

greater weights to devices whose identities are cryptographically verifiable based on

existing security associations with those devices. For the device lock application this

is not a significant concern because we target users like Alice (described in the In-

troduction chapter) who do not use any device lock in the first place. Compared to

this starting point, if the use of the context profiler improves the perceived usability

of device lock for such users, it can only improve the security!

Unknown Contexts

In the current implementation, as discussed earlier, an unknown context is treated

as unsafe. This is logical because there is no notion of aggregate familiarity for an

unknown context. However, this approach may be too pessimistic: one can plausibly

make the argument that the familiarity of an unknown context where all devices

present are highly familiar should be high. Since we already keep track of the number

of times a device has been seen in all contexts from which we can estimate the global

familiarity of a device and use those to estimate the familiarity of unknown contexts.

The exact formulation is left as future work.

3.6 Limitations

Energy Considerations

Continuous context profiling comes at a cost of increased battery consumption.

This limitation can be overcome by using intelligent sampling techniques. For ex-

ample, instead of performing frequent GPS scanning, one could use accelerometer

triggered scanning so that GPS is turned on only when motion is detected. Another

43

technique to conserve battery could be to use WiFi access points to detect geo-location

instead of GPS. Our initial prototype does not incorporate these enhancements yet.

However, intelligent sampling would be highly desirable in a usable product.

Corrective Long Term Feedback

For long term user feedback, in addition to “usually unsafe”, it is reasonable to let

the user assert “always unsafe” in a CoI so that that CoI is tagged as unsafe regardless

of the familiarity calculation. Similarly, if we can develop a metric to measure the

“similarity” of CoIs, then when a user asserts a CoI as “unsafe”, that may be a cue

to infer that the user may assert the same in “similar” CoIs.

Suitable Ground Truth Data

Although the analysis we performed in Section 3.4.1 gives us some confidence

that our approach is valid, it su↵ers from the fact that the ground truth data we had

available to us was not fine-grained enough. To get more accurate ground truth data

we would need to conduct a targeted user study.

Intelligibility

A common concern in context-aware systems is “intelligibility” [76]: they should

be able to explain to the users the bases and implications of the inferences they make.

We have taken some steps towards intelligibility of the context profiler (like showing

inferred safety level and the familiarity scores used in the inference), we need a more

thorough analysis of how to make the context profiler more intelligible.

44

3.7 Conclusion

We described a context profiler which uses location traces to detect places of

interest for a user and profiles the Bluetooth and WiFi devices in such places to

estimate the familiarity of a place. We showed how familiarity can be used to infer

safety and use this safety score to make access control decisions. Our context profiler

incorporates user feedback to shortcut learning and temporarily modify the behavior

of our system. We chose parameters of the context profiler by running experiments

using a large dataset and evaluated the e↵ectiveness of our approach using ground

truth data from the dataset. We have prototyped the context profiler on smartphones.

Although this work focuses on a particular use case, we believe that our notion

of using context profiling to infer security policies is a powerful tool. It can ease

the cognitive burden on ordinary users in setting and managing appropriate security

policies on mass-market personal devices. We believe that there are many other

applications besides device lock that can benefit from this approach: for example,

guiding the user towards context-appropriate consumption of content (e.g., warning

users when they are about to open e-mail tagged as confidential while they are in

a public place or when they are about to surf to a website labeled as not-safe-for-

work when they are at work). We hope that this work raises the discussion on such

applications and motivates fellow researchers to design them.

45

4 A FORMAL PROXIMITY MODEL FOR RBAC SYSTEMS

The rise of mobile and pervasive computing has made it possible to devise context-

aware systems that customize the computing experience to the user’s environment.

One particular application for these systems is to facilitate the design of access control

systems that aim to mitigate the threat of data loss by restricting permissions to

appropriate settings. As these concerns are more relevant to enterprise settings,

researchers often use RBAC as the foundation for designing such access control models

and systems. For instance, several models have been proposed that consider the

requesting user’s location in the policy decision [16, 19,21].

While such extensions to RBAC can provide a basis for reasoning about contex-

tual policies, they fail to reflect many of the more interesting scenarios. Specifically,

it may be more important to consider the relative locations of other users, rather

than the requesting user’s location. For instance, when preparing a financial deposit

slip in a retail setting, the presence of a supervisor in the same room as the employee

may be more important than just ensuring that the employee is present in the store

o�ce. To enable the creation of such policies, Prox-RBAC [2] was proposed to in-

corporate proximity constraints into a spatial RBAC model. That is, Prox-RBAC

policies consisted of a spatial RBAC policy with an additional clause specifying con-

straints on the locations of other users; for instance, one can specify a constraint

for a military deployment that no civilians be present. However, Prox-RBAC o↵ered

only an informal view of proximity, and unnecessarily restricted the domain to spatial

concerns.

In this work, we present a more rigorous definition of proximity based on formal

topological relations. In addition, we show that this definition can be applied to sev-

eral additional domains, such as social networks, communication channels, attributes,

46

and time; thus, our policy model and language is more flexible and powerful than the

previous work.

In addition to defining the model, we also present a number of theoretical results

and practical advice for the creation of proximity-based RBAC systems. We propose

three enforcement architectures in this work to accommodate di↵erent types of feature

acquisition and communication approaches. We also provide templates for enforce-

ment protocols for these architectures, formalize these protocols using PCL [77] and

prove security properties of these protocols. In doing so, we also highlight the the-

oretical limits of correct enforcement of proximity constraints. We show that, given

a single policy with proximity constraints, determining whether or not it can be sat-

isfied is NP-hard. Furthermore, if the mapping of users to features can be done in

polynomial time, then the problem is NP-complete. We also show that correct evalu-

ation of proximity constraints is impossible if the deployment allows for asynchronous

communication.

However, despite these results, practical deployments are still feasible. Specifically,

the NP-hard result depends on the complexity of the proximity constraints; if only

simple proximity constraints are used, evaluating the policy design becomes tractable.

The impossibility result, on the other hand, applies to the simultaneous evaluation

of the constraint for a request while another user changes features. That is, there is

a small window of time when the policy information point (PIP) has an inconsistent

view of the system. Note, though, that this is only relevant if the user who is changing

features has some impact on the proximity constraint under consideration; if that user

is not relevant to the current policy, this inconsistency has no e↵ect on the policy

decision. One can further mitigate this threat of inconsistency with redundancy; that

is, by repeating the constraint evaluation after a small window of time. Thus, while

perfect guarantees are impossible, the system may be able to enforce the policies well

enough for practical concerns.

47

4.1 Concepts and Design

We begin this section by developing an intuitive understanding of proximity and

realms. Once we have sketched these preliminary concepts, we define a formal prox-

imity model and show how to map the realms to it. In doing so, we illustrate the

flexibility of our model, which shows that one could adapt the same ideas to other

realms of interest.

4.1.1 Intuition of Proximity

The notion of proximity can be informally defined as the nearness of two entities.

These entities are active, that is they can execute actions on protected resources. Tra-

ditionally, this nearness of entities is understood in terms of physical distance, though

other frames of reference, such as time, may be used. In order to use proximity as a

foundational concept for access control, it is necessary to provide a formal definition

that is flexible enough to accommodate various application scenarios. Before provid-

ing our definition, we will first describe five types of proximity so as to illustrate the

intuition behind our formalism. Specifically, we will discuss the following types of

proximity:

Geographical proximity indicates that two entities are located within a certain

distance in the physical space.

Attribute-based proximity indicates that two entities share one or more common

attributes, or are both located in regions of physical space that share attributes.

Social proximity indicates that two entities (represented by nodes in a social net-

work graph) are less than a certain number of hops apart.

Cyber proximity indicates that two entities are co-present in the same online com-

munication session.

48

Temporal proximity indicates that two entities are present for events separated

by a limited amount of time.

Geographical Proximity

This type of proximity is perhaps the most conventional. The entities reside at

specific locations in the physical world. The distance between the entities may be

measured in traditional terms, such as Euclidean distance or Manhattan distance.

Alternatively, the distance may be measured in logical units that are defined based

on a partitioning of the reference space; for example, in an indoor space, the number

of rooms separating the two entities may quantify the distance. Regardless of the

measurement used, the notion of proximity implies that the distance is less than a

certain threshold value. To illustrate access control based on geographical proximity,

consider a policy that specifies that users must be present in the same room. A

wireless sensor network could be used to track users’ positions and verify that the

constraint is satisfied. Another policy could specify that users must be within a certain

number of meters of each other. This policy could be enforced using a technology

such as Bluetooth, which indirectly vouches for the nearness of the users.

Attribute-based Proximity

In attribute based proximity model, each entity has a set of attributes that char-

acterize certain properties or personal traits of this entity. These attributes can be

encoded in credentials such as certificates that attest their validity. Attribute based

proximity indicates the similarity of attributes of two entities. For example, a per-

son with attribute ‘Assistant Professor’ is in attribute based proximity with another

person with attribute ‘Associate professor.’ Weighting values can be associated with

both the credential (i.e., to specify its trustworthiness) or the trait itself (e.g., to

quantify the similarity between values). As another example, consider an online dat-

ing service where a user can choose to share his or her profile with similar users.

49

Potential mates with similar political views, religious backgrounds, or hometowns

could be automatically granted access; such a system would be beneficial for helping

users identify potential matches more quickly. In an alternate view, attributes can be

associated with the user’s environment, such as the type of location in the physical

world. The distance metric for proximity, then, would be an empirical measure of

the di↵erence between values, possibly weighted to reflect the veracity of credentials

presented. For instance, if two users are in restaurants, possible attributes may be

the type of restaurant or the name of the chain; if the restaurants share the same

parent company, they would be considered to be in close proximity, regardless of

their physical distance. Other attributes could be the presence of public wi-fi, the

temperature of the surrounding area, or the most popular professional sports team of

the area. Our work allows for both uses of attributes, either relative to the user or

the context.

Social Proximity

The emergent popularity of social networks introduces a new dimension to proxim-

ity. A social network is traditionally modeled as a graph where each user is represented

by a node and the connections between users are represented by edges connecting

them. In the social realm, the distance metric is based on the number of hops that

separate two entities within the social graph. Social proximity of two user indicates

that the distance between them is less than a certain number of hops. In this case, the

distance is relatively static, as changes to the distance only occur when connections

between users change. Although social connections may change often, it is intuitive

that the distance between any two users would change more frequently in the physical

world. Policies based on social proximity are quite common. The most popular is

the restriction of shared data to friends or contacts. In some cases, these restrictions

can be loosened to the next step in the network, such as friends of friends. In other

50

cases, data may be shared with other users within sub-networks; for instance, users

may share data with others from the same school or employer.

Cyber Proximity

Two users are said to be in cyber proximity if they are simultaneously involved in

an online communication session. For example, users may be on the same conference

call or may be chatting with one another. The distance metric could be binary,

indicating co-presence in the same session, or based on degrees of separation. In the

latter case, consider three users named Alice, Bob, and Charlie. If Alice and Bob are

chatting while Bob is connected to a conference call with Charlie, then the distance

from Alice to Charlie would be two. Alternatively, if the binary metric is used, Alice

and Charlie would not be in cyber proximity, as they are not present within the same

communication session.

Temporal Proximity

While the previous notions of proximity can clearly be applied to users, temporal

proximity means that two events occur within a certain relative time frame. The

most natural metric would be the passage of units of time. However, in asynchronous

systems, absolute time units may not be used or feasible. Instead, relative units,

such as vector clocks, may be used to specify the ordering of events. In that case, the

distance between two events would be the number of events that occur between them.

An example of access control based on temporal proximity would be the specification

of an expiration date on a contract signature. If another event, such as a signature

by another party, does not occur prior to the expiration date, then the first signature

is considered null and void. Another scenario where temporal proximity could be

applied would be a combination of geo-social networks with missed connections.1

1Missed connections are popular features in publications such as alternative newspapers. One person
sees another in a public place but the opportunity to meet never arises. Instead, the first person

51

When a user visits a public place, he may retrieve a token indicating his presence

at that location at that time. This token could then be used to retrieve missed

connections placed by others with the same token.

4.1.2 Hybrid Proximity Realms

Although we do not explicitly model the case, we posit that it would be possible

to create policies for hybrid realms that combine two or more of the above mentioned

realms. For instance, one could consider a realm that combines military ranks, the

bases to which the o�cers are assigned, and their connections within particular social

networks. Such a multidimensional policy model would combine elements of attribute,

geographical and social proximities. While our model is su�cient to define such a

hybrid realm (i.e., by using appropriate topological relations), crafting appropriate

distance metrics–by mapping realms to a multidimensional coordinate system–would

be application specific. We find attempts at formalizing such a meta-model to be

needlessly complex, and omit this case from further consideration for the present

work.

4.1.3 Formal Proximity Model

Our formal definition of proximity is derived from constructing an abstract space

model S from the reference space models or realms (e.g., the physical world, social net-

works, communication sessions, time) identified in the previous section. Specifically,

we apply the calculus-based method [3] that has been widely used in GIS applications.

We start by showing that this approach is su�cient for modeling non-geographic ref-

erence space models.2 We then show how it can be used for proximity-based RBAC

systems.

places a missed connection advertisement with enough contextual information in the hopes that the
other person will read the description and desire to make contact.
2While the original work only defines the method for two-dimensional geographic space, the defini-
tions of the topological relations can be extended for multi-dimensional space, as well.

52

Proximity Model

Let S denote a discrete set of closed regions, called features, of the reference space

model. For the feature �i 2 S, @�i denotes the set of boundary points while ��

denotes the interior of the feature. Table 4.1 summarizes the formal definitions of

these sets for each realm. For instance, in the geographical space, S would consist of

regions of space that may or may not overlap; e.g, if �i is a room, then @�i would

be the points that constitute the walls.3 The temporal realm would have events–

closed time intervals–as features. Attribute-based proximity is similar, but extends

the linear model to a multi-dimensional one. Features in the social realm would

consist of sub-portions of the social network.

Before we elaborate on our model with additional definitions, we must address the

complexity of the cyber realm. The di�culty lies in the fact that the most natural

reference space model would be a hypergraph, with a hyperedge connecting all of the

vertices (users) in the communication session, which cannot be directly mapped onto

our abstract space model as it introduces inconsistencies in the topological relations.

Our solution is to create a parallel hypergraph such that each vertex in the original is

replaced by distinct vertices for each connected hyperedge. The interior would include

the new vertices connected to the hyperedges of interest, and the boundary would be

the other new vertices. For instance, if a user was simultaneously communicating in a

Skype session and two chat sessions, then the feature �i containing the chat sessions

would include the new vertices for the chat sessions in the interior, and the new vertex

for the Skype session would be in the boundary.

Central to our model is the notion of feature type, which can be organized in a

hierarchical manner. Table 4.1 provides examples of types for each realm. Types allow

for system administrators to distinguish between, for instance, a physics exam and a

3Readers familiar with the calculus-based method will note that our abstract space model only
focuses on area/area relationships. This is deliberate, as defining access control policies on single
points or lines seems infeasible in general.

53

chemistry exam that occur simultaneously. Feature type can be either conceptual or

unit-based. Conceptual feature types assign a semantic label to a feature while

Table 4.1.: Mapping of realms to abstract space model

Geographical

Elements of S: Sets of points p in physical space

Sample types: Room, Building, Hospital

�
i

= {p | p is in a featured region }
��
i

= {p | p is an interior point }
@�

i

= {p | p is on the region’s boundary }
Attribute

Elements of S: Attribute vectors a = ha1, . . . , aki representing a collection of values for

considered attributes. We also write a
i

2
A

a to indicate a
i

is one of a1, . . . , ak.

Sample types: {Age, School}, {Age, Profession, Employer}, {Hometown}
�
i

= {a | 8 a
i

2
A

a, a
i

is within a specified range for that attribute}
��
i

= {a 2 �
i

| 8 a
i

2
A

a, a
i

is strictly within the specified range}
@�

i

= {a 2 �
i

| 9 a
i

2
A

a, a
i

has a borderline (maximum or minimum) value for that

attribute}
Social

Elements of S: Sets of edges e 2 E and vertices v 2 V such that G = hV,Ei forms a social

network

Sample types: Friends, Colleagues, Conference attendees

�
i

= {v 2 V | v is an individual } [{e = hv1, v2i | v1 2 �
i

_ v2 2 �
i

}
��
i

= {v 2 �
i

} [{e 2 �
i

| e = hv1, v2i ^ v1 2 �
i

^ v2 2 �
i

}
@�

i

= {e 2 �
i

| e = hv1, v2i ^ (v1 62 �
i

_ v2 62 �
i

)}
Cyber

Elements of S: Sets of hyperedges ĥ 2 bH and vertices v̂ 2 bV given a hypergraph G = hV,Hi
where h 2 H denotes a communication session and v 2 V denotes a user, where

bV , {v̂
i,j

2 bV | 9 v
i

2 V, h
j

2 H s.t. v
i

2 h
j

}
bH , {ĥ

i

= {v̂1,i, . . . , v̂k,i} 2 bH | 9 h
i

= {v1, . . . , vk} 2 H}
Sample types: VOIP, Skype

�
i

= {ĥ
i

| h
i

represents a session}[{v̂
l,i

2 ĥ
i

2 �
i

}[{v̂
l,j

2 ĥ
j

62 �
i

| 9 ĥ
i

2 �
i

s.t. v̂
l,i

2 ĥ
i

}
��
i

= {ĥ 2 �
i

} [{v̂
l,i

2 ĥ
i

2 �
i

}
Continued on next page

54

Table 4.1 – Continued from previous page

@�
i

= {v̂
l,j

2 ĥ
j

62 �
i

| 9 ĥ
i

2 �
i

s.t. v̂
l,i

2 ĥ
i

}
Temporal

Elements of S: Typed time intervals [t
i

, t
j

]

Sample types: Examination, Meeting, Football game

�
i

= {e | e is an event associated with some time interval [t
i

, t
j

]}
��
i

= {t | t � t
i

^ t t
j

}
@�

i

= {t
i

, t
j

}

unit-based feature types are defined by reference space such as meters (geographical),

hops (social), or minutes (temporal). Realms can have multiple units, but all units

would be considered to be types, and units can only be sub-types of other units;

furthermore, units would be instantiated as distinct features. For instance, in a

temporal space, a feature representing 8:00:00 – 8:00:59 would denote the first minute

at 8:00. Let types denote the set of application-specific feature types for the realm,

and let v denote a sub-typing partial order.

Definition 4.1.1 ⌧ : S ! types denotes a typing function that maps a feature in

abstract space S to feature type. If ⌧(�i) = ti, then ti is the type of �i.

The abstract space model can be restricted to only contain features that have

certain types. This may be useful for applications that are only interested in certain

types of features but not others.

Definition 4.1.2 S|t denotes the restriction of features of S ✓ S to those features

with a sub-type of tj 2 t ✓ types:

S|t = {�i 2 S | 9 tj 2 t s.t. ⌧(�i) v tj}

For instance, S|{exam,mathematics} would contain only time frames representing mathe-

matics exams in a temporal discussion. In a geographical discussion, S|{room} could

denote the rooms in a building.

55

We can now use the notion of types, in combination with topological relations, to

define our abstract distance metric. We use a set of six topological relations defined

in [3] to specify the relationships between features of the abstract space. Let T be

this set of topological relations and is defined as

T = {disjoint, in, touch, equal, cover, overlap}

We define a connectivity chain as a sequence of features where no two consecutive

features satisfy the disjoint topological relation.

Definition 4.1.3 The sequence h�0,�1, . . . ,�n�1,�ni denotes a connectivity chain

from the feature �0 to �n, such that ¬h�i�1, disjoint,�ii for 1 i n.

Let �(�i,�j) denote the set of all connectivity chains from �i to �j, and let �k 2 c

mean that �k occurs in the chain c 2 �(�i,�j).

Definition 4.1.4 �|t(�i,�j) denotes the restriction of connectivity chains con-

necting features �i and �j to include only intermediate features with a sub-type of

tk 2 t ✓ types:

�|t(�i,�j) = {c 2 �(�i,�j) | 8 �k 2 c, 9 tl 2 t s.t. ⌧(�k) v tl}

Conceptual feature types provide logical measurement (where connectivity chain

is a sequence of features). For instance, �|{room}(�i,�j) would only consist of chains

of rooms that connect the two features. Alternatively, unit types provide physical

measurement. For instance, �|{minute}(�i,�j) would contain chains whose intermedi-

ate features are the minutes that occur between the start of �i and the end of �j.

Letting c denote the length of a chain (as measured in the number of intermediate

features), we can define a basic distance metric as length of smallest connectivity

chain connecting two features.

Definition 4.1.5 �(�i,�j, t) denotes the distance metric between features �i and

�j where the intermediate feature types are restricted to t ✓ types and is defined as:

�(�i,�j, t) = min(c) 8c 2 �|t(�i,�j)

56

The final element of our proximity model is how to incorporate users. Specifically,

we require some method of mapping users to features. Let U denote the set of users.

Definition 4.1.6 µ : U ! 2S denotes a feature mapping function that maps a

user to set of features.

The power set is required for the codomain as a result of the hierarchical typing of

features. For instance, a user in the social realm may belong to a group of friends, as

well as a group of colleagues. Hence, µ(u) = {friends, colleagues}. It is important to

note that applying µ to the temporal realm is somewhat unintuitive. From a formal

perspective, µ maps that user to all events in which that user participated at any

time. This is due to the nature of the temporal realm. In practice, the temporal µ

would restrict the focus to events within a designated time frame.

Definition 4.1.7 µ|t denotes the restriction of the feature mapping function

to types t ✓ types such that

µ|t(u) = {�i 2 µ(u) | 9 tj 2 t s.t. ⌧(�i) v tj}

Based on the preceding definitions, we can define a proximity model as M = {S, T ,U , ⌧, µ, �}.

Role Proximity

Using the model M, we can define the notion of role proximity. We start with

the traditional RBAC concepts of roles (R) and users (U). When a user logs into

the system, he is associated with a new session. Let SES denote the set of sessions,

SU : SES ! U the mapping of sessions to users, SR : SES ! 2R the mapping of

sessions to possible roles that could be activated, and Act : U ! 2R the mapping of

users to active roles. Observe that, for any u 2 U

Act(u) ✓
[

s2SU�1(u)

SR(s)

57

where SU�1(u) denotes the preimage of u under SU , i.e., the set of sessions associated

with the user. That is, every one of a user’s active roles must be associated with some

session. We can define two distinct types of role proximity using these definitions.

Definition 4.1.8 A user u 2 U is said to be in (t1, d, t2)-weak role proximity

((t1, d, t2)-wrp) of a role r for t1, t2 2 types and d 2 R+ if 9û 2 U , û 6= u such that

all of these hold:

1. r 2 Act(û)

2. �i 2 µ|{t1}(u)

3. �j 2 µ|{t1}(û)

4. �(�i,�j, t2) d

Weak role proximity, then, considers only users’ active roles. Observe that two feature

types are necessary, as the unit separating the features will most likely have a di↵erent

type than the features themselves. For instance, in social proximity, a manager at one

company may be in (org, 1, friend)-wrp of the CTO of another company if there are

employees of both companies that are friends. In a temporal setting, if a user signs a

document at some meeting, (meeting, 4, hour)-wrp is satisfied if a manager signs the

document at another meeting with no more than 4 hours separating the meetings.

At this point, it is necessary to point out that the temporal realm presents a

unique complication for our definitions as written. Specifically, it is possible that r is

no longer in Act(û) at the time that the constraint needs to be evaluated for user u,

although the proximity constraint should be considered satisfied. The solution, then,

is to emphasize that Act(û) is evaluated at the time that û performs some action4.

For instance, in the preceding example, both the user and the manager must perform

the action of signing the document. This modeling choice is, in essence, syntactic

sugar that allows us to use consistent terminology.

4We note that this problem also arises in asynchronous deployments that work in di↵erent realms.
However, the timing problem is heightened within the temporal realm.

58

This interpretation presents a clear engineering challenge, which is determining

how much information about session mappings must be maintained over time. If all

temporal proximity constraints require users to perform actions, then the system must

only log events that occur. On the other hand, if the constraints are passive, i.e., at

least one of the user is not required to perform an explicit action, then the adminis-

trative overhead would be higher–possibly prohibitively high. Consequently, system

designers would have to make appropriate choices for their specific applications.

Definition 4.1.9 A user u 2 U is said to be in (t1, d, t2)-strong role proximity

((t1, d, t2)-srp) of a role r for t1, t2 2 types and d 2 R+ if 9û 2 U , û 6= u such that all

of these hold:

1. r 2 Ss2SU�1(û) SR(s)

2. �i 2 µ|{t1}(u)

3. �j 2 µ|{t1}(û)

4. �(�i,�j, t2) d

That is, strong role proximity considers roles that could be activated during some

session for the user, but may not currently be. The rationale for strong role proximity

is that it may be desirable to base policies on roles that are not currently active. For

instance, if a military environment demands that there are no civilians present, strong

role proximity can be used to meet this demand, because it does not require users to

explicitly activate the civilian role.

Proximity Constraints

Using M = {S, T ,U , ⌧, µ, �} and the definitions above, we can now define prox-

imity constraints that can be used in a policy language. Our language is similar

to that defined in [2], except we remove the assumption of geographical proximity

59

and spatial roles. The simplified grammar for a proximity constraint clause can be

written as:

C ::- C _ C

— C ^ C

— ¬C
— S Q n role unit thr

S ::- weak | strong

Q ::- at most | at least | ✏

The semantics of such a constraint dictate that satisfaction requires separate users.

That is, the semantics for the basic constraint (weak n r unit thr) dictate that there

is a set bU ✓ U such that

1. |bU | = n

2. (t, thr, unit)-wrp holds for some type t 2 types

3. 8u 2 bU r 2 Act(u)

4. 8u 62 bU r 62 Act(u)

Semantics for the strong variant would replace the last two criteria as

3. 8u 2 bU 9s 2 SU�1(u) such that r 2 SR(s)

4. 8u 62 bU 6 9s 2 SU�1(u) such that r 2 SR(s)

Semantics for the other possible constraints are straightforward variations. Note that

t is specified independently of the proximity constraint and is determined according

to the remainder of the policy. Let C denote the set of proximity constraints in this

language.5

5Observe that this syntax only supports a single realm per constraint. Intuitively, the syntax could
be extended to specify the realm and the type t within the constraint. This would allow for complex
policies that consider multiple dimensions (e.g., a policy could simultaneously have spatial, temporal,
and social constraints). As each realm would define its own distance metric �, we believe this
approach is feasible. However, we have not fully considered the implications of this approach, and
leave such composition of proximity realms for future work.

60

Table 4.2.: Example policies for various realms

Geographical

Example: An o�cer is allowed to read a secret file only if no civilian is present within 500m

and at least one senior o�cer is present in the same room.

types = {room,meters}, O = {SecretFile},
A = {read}, R = {SeniorOfficer,Officer, Civilian}
Proximity Constraints C1 = hstrong, at most, 0, Civilian,meters, 500i,
C2 = hweak, at least, 1, SeniorOfficer, room, 0i
Proximity tuple pt = hOfficer, room,C1 ^ C2i
Policy: {pt, read, SecretFile}
Attribute

Example: A dating site member can view my profile if they have same profession and are

no more than 10 years older.

types = 2{profession,age}, O = {MyProfile}, A = {view}, R = {Member, Self}
Proximity Constraints C1 = hweak, ✏, 1, Self, {profession}, 0i,
C2 = hweak, ✏, 1, Self, {age}, 10i
Proximity tuple pt = hMember, {profession, age}, C1 ^ C2i
Policy: {pt, view,MyProfile}
Social

Example: A member of IEEE network is allowed to view my conference album only if he is

a friend of a friend or closer.

types = {individual, network, hops}, O = {ConfAlbum},
A = {view}, R = {Self, IEEEMember}
Proximity Constraints C = hstrong, ✏, 1, Self, hops, 2i
Proximity tuple pt = hIEEEMember, individual, Ci
Policy: {pt, view,ConfAlbum}
Cyber

Example: A manager can edit a shared Google document only if he is in a GoogleTalk

session with a senior manager.

types = {GoogleTalk}, O = {document1},
A = {write}, R = {Manager, SeniorManager}
Proximity Constraints C = hweak, at least, 1, SeniorManager,GoogleTalk, 0i
Proximity tuple pt = hManager,GoogleTalk, Ci

Continued on next page

61

Table 4.2 – Continued from previous page

Policy: {pt, write, document1}
Temporal

Example: A supervisor can only sign an employee’s time card within 24 hours after the

employee did.

types = {hours, card signature}, O = {time card},
A = {sign}, R = {Employee, Supervisor}
Proximity Constraints C = hweak, at least, 1, Employee, hours, 24i
Proximity tuple pt = hSupervisor, card signature, Ci
Policy: {pt, sign, time card}

Proximity-based RBAC Model

We can now conclude this section with our formal definition of a proximity-based

RBAC model. Let M = {S, T ,U , ⌧, µ, �} denote a proximity model as defined pre-

viously. Policies would be based on proximity tuples pt = hr, t, ci, where c 2 C
is a proximity constraint, t 2 types is a type associated with the requesting user’s

feature, and r is the requested role. Specifically, if P denotes the set of all such tuples,

A denotes the set of actions, and O denotes the set of objects, a proximity-based

RBAC policy would be the relation Pol : P⇥A⇥O. That is, a policy specifies the

actions allowed on an object, such that the proximity constraint (which includes the

subject’s role) is satisfied. The proximity-based RBAC model � would consist

of the set of all such policies. Table 4.2 presents examples of policies for the five

proximity realms.

4.2 Enforcement Architecture

Designing a generic architecture that works across di↵erent applications and

realms is crucial but challenging task. Di↵erent types of proximity and organizational

62

(a) No FM, External portal

(b) Independent FM, No communication

(c) FM direct communication

Figure 4.1. Enforcement architecture

63

settings have di↵erent requirements and a single architecture may not work for all

cases. However, if an architecture is defined carefully then a major part of it can

be common and only a small portion of it may need to be changed across realms.

For instance, the method for acquiring feature mapping for a user is realm-specific.

While di↵erent application scenarios will employ di↵erent technologies, our goal in this

section is to highlight common features of principals and define required behaviors.

The purpose in defining such an abstract architecture is to establish a framework

for reasoning about the feasibility of designing and building proximity-based RBAC

systems. We propose a generic architecture and discuss changes that are required in it

to accommodate di↵erent types of feature acquisition and communication strategies.

For simplicity, we assume a centralized server with universal knowledge of the

user-feature mapping. In our current approach, we emphasize the necessity of cor-

rectly mapping each user to a feature (or a set of features) in the reference space

model. We refer to this process as feature attestation. Feature attestation could be

accomplished using cryptographic techniques, such as digitally signed proofs of loca-

tion, timestamps, or credentials. The central server serves as the Policy Information

Point (PIP) [78] and is responsible for evaluating the proximity constraints. The Pol-

icy Decision Point (PDP) uses the result of this constraint evaluation to facilitate the

proper functioning of the Policy Enforcement Point (PEP). The main components of

our architecture are as follows.

• User : The User represents the entity that is assigned roles and initiates access

request.

• Feature management server (FMS): This server maintains the current feature

mapping of every user in the system. Given a proximity query, in which the au-

thorization server (see below) submits a proximity constraint and the requesting

user, FMS computes the proximity distances and determines if the constraint is

satisfied. It serves as the main component of the PIP and responds to queries

from the authorization server.

64

• Feature monitor (FM): This optional component is used to communicate with

the user as a means of maintaining the feature mapping. If present, this compo-

nent may issue a feature proof to the user, such as a digital certificate avowing

the claimed feature, that the user can submit as a credential along with the

request as shown in Figure 4.1(b). In an alternate architecture (Figure 4.1(c)),

FM may pervasively monitor the user and communicate with the FMS to en-

sure the user-feature mapping is updated in a timely manner. Alternatively,

this monitor may be absent entirely, in which case the user would communicate

with an external portal that pushes feature update to FMS as discussed later

(Figure 4.1(a)).

• Authorization server (AS): This serves as PDP and is responsible for evaluating

policy. It consults FMS by issuing proximity queries. Using the results of the

queries, it evaluates the remainder of the policy and determines if the request

is to be granted.

• Resource manager (RM): The resource manager serves as the PEP and is re-

sponsible for controlling access to protected resources. The resource manager

may hold the resources itself, or it may serve as a ticket-granting service.

In some cases, an external service portal, which is a trusted third party, can replace

the FM. For instance, in social proximity, the proximity-based RBAC system may

rely on an independent social network service for feature attestation. That is, the

proximity-based RBAC system consults the external social network and overlays the

feature mapping on top of the existing network. In these types of cases, the user

interacts with the service portal to make changes, and the service portal pushes these

updates to the proximity-based RBAC system. This is the architecture shown in

Figure 4.1(a).

65

4.2.1 Feature Acquisition and Communication

Most of the interaction between principals is straightforward and functions like

a typical RBAC architecture that consists of users, PEP, PDP, and PIP. What is

unique about proximity-based RBAC is the acquisition and communication of feature

mapping that is achieved via the interaction between users and the PIP. Although

the precise interaction would be application specific, we identify three fundamental

approaches that are illustrated in Figure 4.1 and discussed below.

No FM, External Portal

In this approach, illustrated in Figure 4.1(a), the user explicitly interacts with an

external service portal (e.g., a social network website or a trusted third-party attribute

certification service) that is independent of the proximity-based RBAC system in

order to update his or her associated feature(s). This feature update is immediately

pushed by the external service portal to the FMS so that the FMS can correctly

evaluate proximity constraints.

For instance, in social proximity, the user makes changes to his or her profile

in a social network application, and these changes are pushed to the FMS by the

application. In temporal proximity, events are logged by some application, and the

FMS receives this data accordingly. This approach is applicable for all realms, though

the geographical realm is challenging, as users typically do not have to interact with a

centralized software portal in order to move. Instead, the other two approaches more

accurately describe approaches for geographical proximity.

Independent FM, No Communication

In this approach, users interact with a distributed set of entities (feature monitors)

that have no direct communication links to the FMS. These feature monitors provide

the user with a credential (feature proof) that asserts the correct feature mapping.

66

User includes this feature proof in access request and can be validated by the FMS

as shown in Figure 4.1(b).

For instance, in geographical proximity, the user may have a Bluetooth-enabled

device that exchanges data with a receiver as the user moves. As the user moves,

the credential updates are performed locally, and only pushed to the FMS when the

user makes a request. As such, in order to enforce proximity constraints correctly,

the system must force users to push their credentials su�ciently often. For instance,

in the geographic realm, doors separating rooms may be considered objects. Thus, in

order for the user to change features (i.e., move from one room to another), he must

push his credentials before the door can be unlocked.

FM Direct Communication

In this approach, a distributed sensor network (FM) continually monitors changes

to the user’s feature mapping. When the mapping changes, the sensor pushes the

updated information to the FMS accordingly (refer Figure 4.1(c)). This approach is

more appropriate for real-time geographical proximity where the location of user is

pervasively tracked. This approach is also good for temporal proximity. For instance,

the sensor may consist of a program that monitors updates to event log files and sends

updates when the file changes.

In all above communication protocols, FMS is responsible for evaluating if the

proximity constraints are satisfied. In the subsequent section, we present an algorithm

for evaluating these constraints and discuss its complexity. Further, we prove some

properties of this system and discuss its limitations.

4.3 Enforcement Protocols

In the generic architectures proposed in the previous section, the FMS serves as

PIP and evaluates the proximity constraints. We now present an algorithm (refer

Algorithm 1) that describes one approach to evaluating a single complex proximity

67

constraint. Specifically, assume the constraint c 2 C consists of m primitive weak

proximity constraints, each of the form (weak n role unit thr).6 This algorithm will

evaluate each primitive constraint to yield a Boolean value to replace the constraint.

Once all constraints are evaluated, the resulting Boolean expression is evaluated.

If the return value is true, then the constraint was satisfied. Note that handling

variations allowed by the policy language involves trivial changes that do not a↵ect

the complexity of the algorithm.7

4.3.1 Complexity Analysis

Let D denote the decision problem that answers whether or not a proximity con-

straint can be satisfied. That is, assume µ maps a user to a feature in polynomial

time. Then D takes as input M�µ (i.e., the model with no current mapping of users

to features) and a policy pol 2 �. D returns “yes” if there exists a mapping µ such

that the proximity constraint c 2 C in the tuple hr, t, ci for the policy pol is true. If

no such mapping exists, D returns “no.”

Lemma 4.3.1 Given a candidate mapping µ and a distance function � that run in

polynomial time, verifying µ satisfies pol can be done in polynomial time. That is, D
is in NP.

Proof Let n be the maximum of |U|, |R|, andm, wherem is the number of primitive

constraint clauses in pol. Executing Algorithm 1 without the mapping µ|t(t) can be

done in O(n3) time. ⇤

Theorem 4.3.1 D is NP-hard.

Proof Our proof is by reduction from Boolean satisfiability (SAT). Given an arbi-

trary Boolean expression, one can replace each independent variable with a unique

6For simplicity, we ignore the use of parentheses to shape the Boolean expression.
7For instance, supporting at most and at least requires adding else checks to the final if-then-else
block. These cases can be enumerated and do not vary with the size of n.

68

Algorithm 1: Evaluate (weak n role unit thr) constraints

Input: c 2 C: a proximity constraint, consisting of m primitive constraints,

joined using Boolean connectives ; u 2 U : the requesting user ; t 2 T :

requesting user’s feature type

Output: true or false

/* break c into its primitive constraints */

hc1, . . . , cmi c

Featureu µ|{t}(u)
ActiveRoles ;
for ci := c1 to cm do

Matches 0

foreach û 2 U � {u} do

/* weak proximity semantics */

foreach r 2 Act(û) do

if r = ci.role then

Featureo µ|t(û)
distance �(Featureu, F eatureo, ci.unit)

if distance ci.thr then

Matches Matches+ 1

if Matches = ci.n then

bi true

else

bi false

return EvaluateBoolean hb1, . . . , bmi

69

primitive proximity constraint in polynomial time. Based on the complexity of

SAT [79], D is NP-hard. ⇤

Corollary 4.3.1 Given a candidate mapping µ and a distance function � that run

in polynomial time, D is NP-complete.

Proof From Theorem 4.3.1, D is NP-hard. Under the assumption of polynomial

run time for µ and �, by Lemma 4.3.1, D is in NP. Thus, it is NP-complete. ⇤

These results illustrate a warning for building and maintaining proximity-based

RBAC systems. Clearly, the latter result shows that attempting to build an auto-

mated tool that determines if a set of policies can be evaluated would require heuristics

to be tractable. Furthermore, the complexity of Algorithm 1, while polynomial-time,

is not particularly e�cient and may present scaling challenges. Thus, designers of

proximity-based systems should plan carefully to streamline the operation of the

PIP.

4.3.2 Properties of Protocols

Before describing a general approach to constructing enforcement protocols, we

first present some theoretical results that illustrate the limitations of such systems.

In real systems, communication between various components of the architecture may

entail some delay. This communication delay may lead system into a state where the

evaluation of proximity constraints at a certain time is not consistent with the cur-

rent feature mapping of users. For example, the feature mapping of a user involved

in a proximity constraint may change while the constraint is still being evaluated by

FMS. The following results use impossibility of distributed consensus [80] to show

that correct evaluation of constraints cannot be guaranteed unless FMS has correct

mapping of all users and these mapping don’t change until FMS has completed the

evaluation of proximity constraint. Theorem 4.3.2 presents the proof for the deploy-

ment scenario illustrated in Figure 4.1(a). Corollary 4.3.1 presents this proof for the

scenario in Figure 4.1(b), while the Figure 4.1(c) case is handled by Theorem 4.3.3.

70

Theorem 4.3.2 Given a deployment with no feature monitor such that µ is updated

only through explicit interaction with a service portal. Correct proximity constraint

evaluation can be enforced only if access to the service portal (by the users and FMS)

is synchronous.

Proof Assume that evaluation can be enforced correctly. To prove that access

must be synchronous, we will map proximity constraint evaluation onto a consensus

protocol P . Specifically, let p1, . . . , pn denote asynchronous processes representing

users and the service portal would consist of a bu↵er for P . Each pi for a user would

respond with a 1 if the user’s feature has changed, 0 if unchanged, and b denotes

the request is still pending. The goal of P would be to have a response of 0 for

all users, indicating that the portal has the correct mapping of users to features.

However, if a single pi fails without notice (e.g., the user’s network connection gets

dropped), then no such P can exist [80]. Thus, if users are granted asynchronous

access to the service portal, no protocol involving the portal and FMS can exist

that guarantees constraint evaluation is correct. Therefore, by contradiction, correct

evaluation requires synchronous access. ⇤

Corollary 4.3.2 Given a deployment with asynchronous feature monitors, correct

proximity constraint evaluation cannot be enforced.

Proof Similar to the preceding. ⇤

The above results address the e↵ect of limitations of communication channel be-

tween users and FM/FMS on correct evaluation of proximity constraints. Inconsis-

tency in constraint evaluation may also stem from asynchronicity of communication

between the components of our architecture. That is, assuming that the channel be-

tween users and FM/FMS is synchronous and FMS has all correct mappings, it is still

not possible to achieve correct evaluation of proximity constraints. This is because by

the time the proximity evaluation decision reached RM and RM accepts/denies the

request, the feature mapping of some user may have changed in a way that it changes

71

the outcome of proximity constraint evaluation. The following theorem proves this

result.

Theorem 4.3.3 Assuming that the communication between RM, AS and FMS is

asynchronous, it is impossible for a deployment with feature monitors to guarantee

correct evaluation of proximity constraints, even if the monitors have synchronous

access to FMS.8

Proof Similar to the preceding Lemma, except the consensus protocol is now to

be executed between the principals of our architecture. That is, as communication

between RM, AS, and FMS is asynchronous, these three principals cannot achieve

consensus. Formally, let � = h�1, . . . , �ni denote a sequence of events in the evaluation

of the constraint and the resulting data exchange. Assume FMS completes evaluation

at �i and sends the result at �i+1 to AS, who forwards the result to RM at �i+2. Let

d�i+2 denote the reception by FMS of a message from some FM that would change

the result of the proximity evaluation. As communication between FMS and FM is

independent from communication between AS and RM, d�i+2 can occur simultaneously

as �i+2. As such, when RM grants (or denies) access at �i+3, the proximity constraint

may evaluate to a di↵erent value. Hence, the principals cannot achieve consensus,

and correct policy enforcement cannot be guaranteed. ⇤

We wish to emphasize that these impossibility results do not mean that one cannot

build a proximity-based RBAC system that functions correctly. Rather, any such

system will have brief moments when policy decisions will be incorrect. Specifically,

when a user-feature mapping changes at the same time that a related constraint is

evaluated, a race condition occurs. For instance, in geographical proximity, if a policy

that requires the presence of a supervisor is evaluated immediately after the supervisor

enters the room, it is possible that the system would have a false negative, denying

access unnecessarily, as the supervisor’s new location had not been propagated to the

8One should be careful to note that Theorems 4.3.2 and 4.3.3 are not contradictory. Rather, Theo-
rem 4.3.2 disproves, in essence, the converse of 4.3.3.

72

FMS yet. Thus, designers of proximity-based RBAC systems should account for such

cases.

4.3.3 Best-guess Protocols

Despite these impossibility results, system designers can achieve generally ac-

curate proximity constraint evaluation, provided one can tolerate brief moments of

erroneous results. We refer to this phenomenon as a best-guess assumption, and we

provide template protocols in the next section. The general approach is that commu-

nication proceeds as illustrated in Figure 4.1. In addition, FMS stores a cache of the

most recent proximity queries for continual re-evaluation over a designated period of

time. The frequency of the re-evaluation would be an application-specific parameter.

Within the designated time window, if the constraint evaluation changes, FMS would

forward this new information to PDP. If this result changes the policy decision, PDP

would inform the PEP, which would revoke access accordingly.

4.4 Heuristic-based Protocol Templates

Our aim in this section is to provide templates for enforcement protocols for

architectures defined in Section 4.2. We have designed these protocols to support a

number of enforcement goals, which we will formalize later. For now, our goals can

be enumerated as

• validate users’ claims for authorization to activate a role

• evaluate proximity constraints subject to a limited time frame

• minimize the amount of information leakage to prevent impersonation attacks

• prevent replay attacks by authorized users

• prevent improper accesses by unauthorized intruders

73

Our protocols employ standard cryptographic primitives. Specifically, let

(Gen,Enc,Dec) denote an encryption scheme that provides indistinguishable encryp-

tions under chosen plaintext attacks (IND-CPA-secure) such that Gen(1n) denotes a

probabilistic key generation algorithm with security parameter 1n, Enck(·) denotes

encryption using the key k while Deck(·) denotes the corresponding decryption. Next,
let (Gen, Sign, V er) denote a MAC scheme that is unforgeable against chosen mes-

sage attacks (CMA-secure)9.

We also adopt the standard convention that denotes probabilistic assignment,

while := denotes a deterministic assignment. Finally, while we use Enc and Dec

generically, we distinguish between symmetric and public key encryption based on

the key used. For instance, EncK
p

refers to symmetric encryption using the key Kp

for some identifier p. Encsk(p) denotes encryption using the secret key of p, while

Decpk(p) would denote the corresponding decryption using p’s public key.

In addition to standard cryptographic primitives, our protocols employ a number

of additional building blocks, as follows. Recall that U denotes the set of users, R
the set of roles, O the set of objects, A the set of actions, S the set of features in the

reference space, P the set of proximity constraints, and Pol the set of policies. In

addition, we adopt the convention that {0, 1}n denotes a binary stream encoding some

value (such as a cryptographic certificate). Lastly, as Auth (authentication primitive

as described below) may take more than two parameters (the first is always a user,

each additional is a binary-encoded value), we use ({0, 1}n)+ to denote the function

takes one or more binary parameters.

• Auth : U⇥({0, 1}n)+ ! {true, false} – a non-interactive authentication scheme

that takes a user ID and one or more binary credentials as input, returning true

or false to indicate whether the authentication succeeds

• FindPolicies : R ⇥ O ⇥ A ! 2Pol – identifies the relevant policies for the

requested role, object, action tuple

9For simplicity of notation, we use Gen to denote the key generation scheme for both encryption
and MAC.

74

• EvalTuples : (N ! 2P) ! (N ! {true, false}) – evaluates a sequence of

proximity tuples for the current feature mapping µ, returning a sequence of

truth values declaring whether or not the associated tuple was satisfied10

• Decide : 2Pol ! {true, false} – determines which policies were satisfied and

returns a Boolean indicating whether or not to grant access

• Bind : U ⇥ R ⇥ S ! {0, 1}n – a computationally binding procedure that

produces a verifiable credential (e.g., a digitally signed certificate) that ties the

user to the requested role and the claimed feature at the time requested

• GenV alidation : {0, 1}n ! ({0, 1}n ! {true, false}) – takes a digital credential
as input and returns a function that can be applied to validate the credential

at a later time

ProtocolQ0, as shown in Figure 4.2, describes the data exchanged for Figure 4.1(a).

In this architecture, the external service portal pushes updates to FMS as needed. As

this portal is considered external to our architecture, communication with it is not

modeled in Protocol Q0. Instead, Protocol Q0 shows the data exchanged when the

request is made. We use the notation poli.pt denotes the proximity tuple pt for the

given policy poli. (See Section 4.1.3.) Observe that Decide does not declare when

the decision should be made to grant access, as this is application specific. That is,

some systems may require all policies to be satisfied, while others grant access if any

policy is satisfied.

Protocol Q0 introduces several variables that may warrant additional clarification.

To start, obj 2 O denotes the object under consideration, act 2 A is the requested

action, z is a nonce, and ts denotes a timestamp. We use credfeat and credrole to

denote credentials that attest to one’s authorization to use a feature or activate a

role.
10Observe that a sequence can be modeled as a partial function from the naturals to a set of items
to be sorted. E.g., if s is a sequence, s(1) denotes the first item, s(2) the second, etc.

75

Protocol Q0 – base request protocol

0) Initialization

[U] K
r

 Gen(1n)

[U] �
kr

 Enc
pk(RM)(Kr

)

[U] �
ur

 Enc
Kr (obj, act, z, ts)

[U] �
ua

 Enc
pk(AS)(role, iduser, credrole, credfeat, z, ts)

1) Access request:

[U ! RM] �
ur

,�
ua

,�
kr

[RM] K
r

:= Dec
sk(RM)(�kr

)

[RM] (obj, act, z, ts) := Dec
Kr (�ur

)

[RM] �
r

:= Sign
sk(RM)(obj, act, z, ts)

[RM] �
ra

 Enc
pk(AS)(�ua

, obj, act, �
r

)

2) Decision request:

[RM ! AS] �
ra

[AS] (�
ua

, obj, act, �
r

) := Dec
sk(AS)(�ra

)

[AS] (role, id
user

, cred
role

, cred
feat

, z, ts) := Dec
sk(AS)(�ua

)

[AS] valid
req

:= Ver
pk(RM)({obj, act, z, ts}, �r)

[AS] auth
id

:= Auth(id
user

, {cred
role

, role})
[AS] hpol1, . . . , polmi := FindPolicies(role, obj, act)

[AS] �
af

:= Sign
sk(AS)(iduser, hpol1.pt, . . . , polm.pti, z)

[AS] �
af

 Enc
pk(FMS)(iduser, hpol1.pt, . . . , polm.pti, cred

feat

, z, �
af

, ts)

3) Proximity query:

[AS ! FMS] �
af

[FMS] (id
user

, hpol1.pt, . . . , polm.pti, cred
feat

, z, �
af

, ts) := Dec
sk(FMS)(�af

)

[FMS] valid
pol

:= Ver
pk(AS)({iduser, hpol1.pt, . . . , polm.pti, z}, �

af

)

[FMS] auth
feat

:= Auth(id
user

, cred
feat

)

[FMS] hres1, . . . , resmi := EvalTuples(hpol1.pt, . . . , polm.pti)
[FMS] �

f

:= Sign
sk(FMS)(hres1, . . . , resmi, iduser, z)

4) Proximity response:

[FMS ! AS] hres1, . . . , resmi, �f
[AS] valid := Ver

pk(FMS)({hres1, . . . , resmi, iduser, z}, �f)
[AS] res := Decide(hpol1[res1/pol1.pt], . . . , polm[res

m

/pol
m

.pt]i)
[AS] �

a

:= Sign
sk(AS)(res, obj, act, z)

5) Decision response:

[AS ! RM] res, �
a

[RM] valid
res

:= Ver
pk(AS)({res, obj, act, z}, �a)

[RM] retval := act[obj]

[RM] �
res

 Enc
Kr (retval)

6) Approve or deny:

[RM ! U] �
res

Figure 4.2. Protocol for architecture in figure 4.1(a)

76

To begin to analyze the security qualities of Protocol Q0, we can formalize the

protocol using PCL [77], as shown in Figure 4.3. In PCL notation, the protocol is re-

structured from the perspective of various roles11 that specify the behavior of various

participants within the protocol. That is, instead of looking at the global view of

the protocol, each participant’s actions are viewed in isolation. In Protocol Q0, for

instance, Init designates the initiator role. In an honest execution, the user U can

take on the role of initiator, which requires knowledge of the resource manager RM

in charge of the protected resource. Similarly, Auth is the authorization role, Pol is

the policy management role, and Eval is the proximity evaluation role.

Also, note that there is a distinction between the participant of the protocol (e.g.,

R̂) and the associated principal (e.g., RM). This distinction is important, as the

participant may be an adversary attempting an attack on the system. That is, R̂ may

actually be the adversary A. As such, the PCL specification makes this distinction

obvious.

The advantage of this formalization is that it makes explicit what data is seen by

each participant in the protocol, and we can infer what knowledge is gained during

an execution R of the protocol. Figure 4.4 shows the knowledge gained by each

participant during execution. In this notation, ✓i denotes the a priori knowledge of

principal i, while �i,R denotes the knowledge gained from execution R. We use �A,R to

denote the knowledge gained by a probabilistic polynomial-time (PPT) adversary with

only access to the public keys of the participants. We also write �i |= ⌧ to indicate that

principal i has or knows the piece of information ⌧ . Note that �i |= ⌧ implies ⌧ 2 �i[✓i
or ⌧ can be derived from some ⌧̂ 2 �i [✓i. For simplicity, we omit any encrypted

message �j from the �i,R sets, as our assumptions regarding encryption presume

that the knowledge gain from just an encrypted message is negligible. We also omit

verifications of MACs, as these are only relevant to determining the origin integrity

of a message, rather than providing true information about the data exchanged.

11This is an unfortunate collision of terminology. The term “role” in relation to PCL should not be
confused with the notion of RBAC role.

77

Init ⌘ (R̂) [Auth ⌘ (Â) [

new z; receive Û , R̂, (�
ur

,�
ua

,�
kr

);

new K
r

; K
r

:= dec �
kr

, sk(RM);

�
kr

 enc K
r

, pk(RM); (obj, act, z, ts) := dec �
ur

,K
r

;

�
ur

 enc (obj, act, z, ts),K
r

; �
r

:= sign (obj, act, z, ts), sk(RM);

�
ua

 enc (role, id
user

, cred
role

, �
ra

 enc (�
ua

, obj, act, �
r

), pk(AS);

cred
feat

, z, ts), pk(AS); send R̂, Â,�
ra

;

send Û , R̂, (�
ur

,�
ua

,�
kr

); receive Â, R̂, res, �
a

;

receive R̂, Û ,�
res

; valid
res

:= verify ({res, obj, act, z},
res := dec �

res

,K
r

; �
a

), pk(AS);

]
U() retval := act[obj];

�
res

 enc retval,K
r

;

send R̂, Û ,�
res

;

]
RM()

Pol ⌘ (F̂) [

receive R̂, Â,�
ra

;

(�
ua

, obj, act, �
r

) := dec �
ra

, sk(AS);

(role, id
user

, cred
role

, cred
feat

, z, ts) := dec �
ua

, sk(AS);

valid
req

:= verify ({obj, act, z}, �
r

), pk(RM);

auth
id

:= Auth (id
user

, {cred
role

, role});
hpol1, . . . , polmi := FindPolicies(role, obj, act);

�
af

:= sign (id
user

, hpol1.pt, . . . , polm.pti, z), sk(AS);

�
af

 enc (id
user

, hpol1.pt, . . . , polm.pti, cred
feat

, z, �
af

, ts), pk(FMS);

send Â, F̂ ,�
af

;

receive F̂ , Â, (hres1, . . . , resmi, �f);
valid := verify ({hres1, . . . , resmi, iduser, z}, �f), pk(FMS);

res := Decide(hpol1[res1/p1.pt], . . . , polm[res
m

/pol
m

.pt]i);
�
a

:= sign (res, obj, act, z), sk(AS);

send Â, R̂, (res, �
a

);

]
AS()

Eval ⌘ () [

receive Â, F̂ ,�
af

;

(id
user

, hpol1.pt, . . . , polm.pti, cred
feat

, z, �
af

, ts) := dec(�
af

), sk(FMS);

valid
pol

:= verify({id
user

, hpol1.pt, . . . , polm.pti, z}, �
af

), pk(AS);

auth
feat

:= Auth(id
user

, cred
feat

);

hres1, . . . , resmi := EvalTuples(hpol1.pt, . . . , polm.pti);
�
f

:= sign(hres1, . . . , resmi, iduser, z), sk(FMS);

send F̂ , Â, hres1, . . . , resmi, �f ;
]
FMS()

Figure 4.3. PCL specification for protocol Q0

78

✓
U

= {obj, act, role, id
user

, cred
role

, cred
feat

, ts}
✓
RM

= ;
✓
AS

= {Auth, F indPolicies}
✓
FMS

= {Auth, (U ⇥ S)}
�
U,R

= {retval, z,K
r

}
�
RM,R

= {K
r

, obj, act, z, res, retval, ts}
�
AS,R

= {obj, act, role, id
user

, cred
role

, cred
feat

, z, ts, auth
id

, hres1, . . . , resmi}
�
FMS,R

= {id
user

, hpol1.pt, . . . polm.pti, cred
feat

, z, ts}
�A,R

= {hres1, . . . resmi, res}

Figure 4.4. Knowledge gained during execution R of protocol Q0

As a final note before presenting our security analysis, our analysis focuses on

a specific adversarial model. Specifically, we assume the Dolev-Yao [81] adversarial

model, in which an adversary can eavesdrop or modify any message. Furthermore, our

analysis focuses on rational attacks. That is, we assume that RM , AS, and FMS,

participate honestly unless they could benefit from deviating. In fact, as these prin-

cipals have a vested interest in protecting the resource, we find no rational attacks

by them, with the exception of violating the desired privacy guarantees. As such,

our analysis assumes honest participation by these principals, except where noted.

Instead, we focus on attacks in which an authorized user attempts to exceed his or

her privileges (e.g., eavesdropping on another user reading a file), or external adver-

saries attempting to gain illicit access to the system. In either case, the adversary

would benefit by deviating, so we find these attacks rational and focus on them in

our analysis. Lastly, for Protocol Q0, we exclude the feature portal from our analysis

and consider it to be a trusted third party.

Lemma 4.4.1 Replay attacks by an external adversary are detectable except with

negligible probability.

Proof Assume that z is nonce that is n bits in length. Then the probability that

two users select the same z in two separate runs of the protocol is 1/2n. Furthermore,

79

�ua also depends on the timestamp ts. If we let m denote the number of protocol runs

that can be initiated within ts± �, where � denotes the maximum time for which the

timestamp ts would be valid, then the probability that two randomly selected nonces

are the same would be m/2n. For moderate values of n, this probability is negligible.

Thus, by keeping a log of the most recent m nonces used, RM would detect the replay

with near certain probability.

Furthermore, even if RM fails to detect the replay, the only valid strategy for an

adversary A would be to replay the exact messages. That is, as knowledge gained by

A is �A,R 6|= iduser, credrole, credfeat, A cannot forge a message c�ua for which authid

would be successful, other than the original �ua. In such a case, the e↵ect of the

replay would be contingent upon act. If act involves a modification, the replay would

simply repeat the modification. Again, though, this succeeds with only negligible

probability. However, if act is a read, the attack cannot succeed at all, as �A,R 6|= Kr.

Thus, A cannot decrypt the object and the attack fails. ⇤

Lemma 4.4.2 Tampering by an external adversary fails except with negligible prob-

ability.

Proof This property follows from the fact that (Gen,Enc,Dec) is IND-CPA-secure

and (Gen, Sign, V er) is CMA-secure. As such, A cannot forge b�i for any of the

encrypted messages �i or b�j for any of the MACs �j. Thus, any attempt at tampering

with the messages would be detected by the honest recipient. At best, A could induce

a denial-of-service by modifying, for instance, any of the resi values, causing �f to

fail verification. However, the adversary cannot forge any message that would be

accepted as legitimate, except with negligible probability. ⇤

Theorem 4.4.1 Protocol Q0 is secure under the Dolev-Yao adversarial model.

Proof Follows from the preceding two lemmas. ⇤

Lemma 4.4.3 Protocol Q0 preserves user privacy from the RM .

80

Proof This follows from the fact that �RM 6|= iduser. That is, RM is able to receive

an authenticated evaluation of the proximity constraints without having to know the

identity of the requesting user. ⇤

Lemma 4.4.4 Protocol Q0 prevents replay by authorized users.

Proof The primary concern here is that a user may exploit the asynchronous, dis-

tributed nature of the protocol to exercise a right when the proximity constraint no

longer holds. However, �RM,R |= ts, ensuring RM has the ability to validate that the

timestamp claimed is reasonably accurate. Furthermore �AS,R |= ts and �FMS,R |= ts,

ensuring all principals see the same timestamp. Finally, �r is derived from ts, which

allows AS and (indirectly) FMS to validate that the timestamp matched the time

of request, as checked by RM . Thus, the timestamp and the MACs ensure that

messages exchanged match the time used to evaluate the proximity constraint. ⇤

Theorem 4.4.2 Protocol Q0 provides strong authentication of user credentials and

proximity claims.

Proof Note that a successful execution R of Q0 requires �AS,R |= authid. At the

same time, �AS,R |= authid � ✓U |= credrole. Thus, strong user authentication is

provided by the assumptions regarding the Auth primitive. Additionally, �FMS,R |=
authfeat � ✓U |= credfeat. As this credential is created by the centralized portal, which

is beyond the scope of attack by a PPT adversary A, the protocol integrates strong

proximity authentication. ⇤

Protocol Q0 is appropriate for proximity constraints defined for a centralized ap-

plication. That is, social proximity assumes the use of a social network application

with a global view. Similarly, cyber proximity is generally built on the assumption of

a centralized service, such as telephony, though peer-to-peer designs (e.g., Skype) also

exist; in the latter case, Protocol Q0 would be inappropriate. Temporal proximity can

be ensured assuming actions can be synchronized within the system. Applying Pro-

tocol Q0 for geographical proximity would be very challenging, as pervasive location

monitoring is di�cult.

81

Finally, note that there is a possibility for performance optimizations in certain

deployments of Protocol Q0. Specifically, if AS and FMS are hosted on the same

machine, the encryption of �af and the MAC �f are extraneous. That is, if the data

exchanged by these two principals occurs over a secure channel in which eavesdropping

is not possible, then the additional cryptographic protections are not necessary.

Figure 4.5 shows Protocol Q1, which extends the previous protocol to facilitate

communication for the architecture in Figure 4.1(b). Most of the protocol is identical,

with the exception being the generation of credfeat. In Protocol Q0, this credential is

assumed to be generated by the portal and is tangential to the protocol. In Protocol

Q1, however, the user must explicitly retrieve the credential, which binds the user to

a role and feature at a given timestamp bts. In this scenario, Bind is assumed to be a

computationally binding, perfectly hiding commitment scheme, while GenV alidation

is a non-interactive proof. For instance, the two primitives may constitute a zero-

knowledge proof-of-knowledge. The key is that U must not be able to forge such a

credential in polynomial time. The remainder of the protocol is identical, with the

exception that the proof needs to be forwarded to FMS, which verifies the credential.

The analysis of Protocol Q1 is virtually identical to Protocol Q0. Figure 4.6

shows the PCL knowledge sets for Protocol Q1. In this scenario, we are assuming

the simplest case, in which the exchange between U and FM occurs in an insecure

manner. For instance, this data may be exchanged over unencrypted Wi-Fi. Formally,

this means �A,R |= credfeat, validfeat, bts. However, the following lemmas show that

this is not a security threat. Alternatively, this point could be made moot by using

a secure channel between U and FM .

Lemma 4.4.5 Protocol Q1 remains secure against a PPT adversary under the Dolev-

Yao model.

Proof As shown in Figure 4.6, �A,R |= credfeat, validfeat, bts. However, as Bind is

assumed to be perfectly hiding, �A,R 6|= credrole. Furthermore, as Bind is computa-

tionally binding, A could not forge the credential within polynomial time, even with

82

Protocol Q1 – feature monitor with no direct communication

1) [U ! FM] id
user

, role

[FM] cred
feat

:= Bind(id
user

, role, feat)

[FM] valid
feat

:= GenValidation(cred
feat

)

2) [FM ! U] cred
feat

, valid
feat

, bts

[U] �
uf

 Enc
pk(FMS)(validfeat, bts)

3) [U ! RM] �
ur

,�
ua

,�
kr

,�
uf

4) [RM ! AS] �
ra

,�
uf

5) [AS ! FMS] �
af

,�
uf

[FMS] (valid
feat

, bts) := Dec
sk(SMF)(�uf

)

6) [FMS ! AS] hres1, . . . , resmi, �f
7) [AS ! RM] res, �

a

8) [RM ! U] �
res

Figure 4.5. Protocol for architecture in figure 4.1(b)

✓
U

= {obj, act, role, id
user

, cred
role

, ts}
✓
RM

= ;
✓
AS

= {Auth, F indPolicies}
✓
FMS

= {Auth, (U ⇥ S)}
�
U,R

= {retval, z,K
r

, cred
feat

, valid
feat

, bts}
�
RM,R

= {K
r

, obj, act, z, res, retval, ts}
�
AS,R

= {obj, act, role, id
user

, cred
role

, cred
feat

, z, ts, auth
id

, hres1, . . . , resmi}
�
FMS,R

= {id
user

, hpol1.pt, . . . polm.pti, cred
feat

, valid
feat

, bts, z, ts}
�A,R

= {hres1, . . . resmi, res, credfeat, validfeat, bts}

Figure 4.6. Knowledge gained during execution R of protocol Q1

the knowledge in �A,R. Thus, A cannot forge �ua with the stolen credential in a man-

ner that would be accepted by AS, except with negligible probability as described

previously. Therefore, the stolen credential cannot be used to create unauthorized

access. ⇤

Lemma 4.4.6 Protocol Q1 retains the privacy protection against RM as Protocol

Q0.

83

Protocol Q2 – feature monitor protocol

1) [U ! FM] id
user

, role

[FM] cred
feat

:= Bind(user, role, feat)

[FM] valid
feat

:= GenValidation(cred
feat

)

2) [FM ! FMS] valid
feat

3) [FM ! U] cred
feat

4) [U ! RM] �
ur

,�
ua

,�
kr

5) [RM ! AS] �
ra

6) [AS ! FMS] �
af

7) [FMS ! AS] hres1, . . . , resmi, �f
8) [AS ! RM] res, �

a

9) [RM ! U] �
res

Figure 4.7. Protocol for architecture in figure 4.1(c)

Proof This follows from the fact that �RM,A is identical for the two protocols. Thus,

Protocol Q1 continues to protect user privacy. ⇤

Lemma 4.4.7 Protocol Q1 continues to provide strong feature authentication for au-

thorized users.

Proof The computationally binding nature of Bind prevents forgery of credfeat by

U except with negligible probability. Thus, FMS, when validating the credential,

has probabilistic assurance that the credential has not been forged. Furthermore, as

�FMS,R |= bts, ts, FMS can determine that the request was made within an acceptable

time frame of the feature credential creation. ⇤

Finally, Figure 4.7 shows Protocol Q2, which defines an extension for the archi-

tecture in Figure 4.1(c). As in Q1, FM is responsible for issuing a computationally

binding credential. However, the binding routine in this protocol is more flexible.

That is, in Protocol Q1, validfeat must be implemented as a non-interactive tech-

nique, such as a cryptographically signed certificate. In contrast, in Protocol Q2,

FM pushes the credential validation information to FMS. For instance, FM could

84

generate a Pedersen commitment [82], sending the commitment to FMS while send-

ing the data to open the commitment to the user. Note, though, that this protocol

includes the same knowledge sets as Q1, with the exception that �U,R 6|= validfeat. As

such, the security analysis remains unchanged.

4.5 Conclusion

In this chapter we have explored various notions of proximity. Specifically, we have

discussed five types of proximity: geographical, attribute-based, cyber, social and

temporal. We have developed a formal model of proximity that is generic enough to

specify all these types of proximity. We have presented theoretical results illustrating

the challenges inherent in implementing a proximity-based RBAC system, and we

have also described approaches to overcome these di�culties. We have presented

three generic enforcement architectures and provided protocol templates for enforcing

such systems, formalized these protocols using PCL and proved security properties

of these protocols. In summary, we argue that it is feasible to deploy a practical

proximity-based RBAC system for a variety of contextual factors.

85

5 DEFENSE AGAINST CODE REUSE ATTACKS

Return Oriented Programming (ROP) attacks are an advanced form of bu↵er overflow

attacks [83] that reuse existing executable code towards malicious purposes. While

earlier exploits involved the injection of malicious code [83], the recent trend has been

to reuse executable code that already exists, primarily in the application binary and

shared libraries such as libc. These code reuse attacks can bypass traditional defenses

against code injection attacks such as W �X protection [37] that prevents execution

of arbitrary code that is injected into the memory. In a basic code reuse attack, for

instance return-into-libc attack [84,85], a bu↵er overflow corrupts the return address

to jump to a libc function, such as system. This type of attack then evolved into

a more generic ROP attack [86]. In ROP, the attacker identifies small sequences

of binary instructions, called gadgets, that end in a ret instruction. By placing a

sequence of carefully crafted return addresses on the stack, the attacker can use these

gadgets to perform arbitrary computation. These attacks continued to evolve, with

newer techniques using gadgets that end in jmp or call instructions [87].

In considering a new defensive technique, we start with two observations. First,

the main shortcoming of earlier randomization-based techniques was insu�cient en-

tropy, thus making brute-force attacks feasible. Second, executable code can naturally

be broken into many function blocks that can potentially be shu✏ed. Consequently,

the amount of possible randomization generated can be significantly increased by per-

muting these code blocks within the executable. For instance, if an application has

500 function blocks, there are 500! ⇡ 23767 possible permutations of these function

blocks which significantly increases the brute force e↵ort required from an attacker.

We are not the only researchers to have investigated software diversity for ROP

attack mitigation. As discussed in section 2.3, the other approaches su↵er from one

or more of the following limitations. First, the software diversification is not done

86

frequently enough. Second, some of the existing defenses require the source code or

other additional information that is not usually available. Third, the randomization is

not fine grained enough leaving large code chunks unrandomized. Fourth, significant

runtime overhead is incurred throughout the runtime of the application by introducing

additional data structures. Marlin addresses these limitations and provides a strong

and e�cient defense technique against ROP attacks.

With any solution, there are always costs that must also be considered. In our

proposed scheme, there is a performance impact when the process begins. We have

evaluated the time to randomize compiled binaries on a selection of commonly used

applications and Linux coreutils, showing that the performance penalty for Marlin

is reasonable in the average case. Thus, our work demonstrates that, although Marlin

imposes certain performance costs, its success in thwarting ROP attacks makes this a

feasible approach for systems that prioritize execution integrity over optimal perfor-

mance. In section 5.2 we describe techniques for minimizing this performance impact.

For instance, performing the randomization during o✏ine pre-processing significantly

reduces the startup costs.

The remainder of this chapter is structured as follows. We start by discussing

code-reuse attacks techniques in section 5.1. In section 5.2, we describe our approach

in more detail, including optimization techniques to reduce overhead. Section 5.3

discusses the implementation details of Marlin. Section 5.4 shows the results of various

experiments that were performed to evaluate our approach. In Section 5.5, we discuss

the merits and limitations of Marlin. We then conclude in Section 5.6.

5.1 Background and Related Work

The focus of our work is on ROP attacks, which are a special case of code-reuse

attacks that leverage existing code in the application binary to execute arbitrary

instructions. In this section, we start with a brief summary of these attack techniques.

87

Figure 5.1 shows the evolution of bu↵er overflow attacks. After describing the attack

techniques, we summarize critical factors of code-reuse attacks.

5.1.1 Return-oriented Programming

Return-oriented programming (ROP) is an exploit technique that has evolved from

stack-based bu↵er overflows as shown in Figure 5.1. In ROP exploits, an attacker

crafts a sequence of gadgets that are present in existing code to perform arbitrary

computation. A gadget is a small sequence of binary code that ends in a ret instruc-

tion. By carefully crafting a sequence of addresses on the software stack, an attacker

can manipulate the ret instruction semantics to jump to arbitrary addresses that

correspond to the beginning of gadgets. Doing so allows the attacker to perform ar-

bitrary computation. These techniques work in both word-aligned architectures like

RISC [88] and unaligned CISC architectures [86]. ROP techniques can be used to

create rootkits [89], can inject code into Harvard architectures [90], and have been

used to perform privilege escalation in Android [91]. Initiating a ROP attack is made

even easier by the availability of architecture-independent algorithms to automate

gadget creation [92].

While researchers were exploring defenses against return-oriented attacks, similar

techniques can manipulate other instructions, such as jmp and their variants [87, 93,

94]. While the semantics of the gadgets di↵er from ROP techniques, jump-oriented

techniques are built on the same premise: By stringing together a sequence of small

gadgets, the attacker can perform arbitrary computation without code injection. Al-

though these attacks do not require ret instructions, researchers traditionally have

included them in the category of ROP attacks.

88

RA

Buffer

Stack

Heap

Code

(a) Original layout

RA

Buffer

Stack

Heap

Code

Injected
code

(b) Injected code

RA

Buffer

Stack

Heap

Code

gadget

RA

gadget

(c) ROP attack

Figure 5.1. Evolution of bu↵er overflow attacks

5.1.2 Enabling Factors for Code-reuse Attacks

Based on our survey of ROP attacks and defenses, we have identified distinct

characteristics and requirements for a successful exploit. The fundamental assumption

and enabling factor for such attacks is as follows:

The relative o↵sets of instructions within the application’s code are constant. That

is, if an attacker knows any symbol’s address in the application code, then the location

of all gadgets and symbols in application’s codebase is deterministic.

We argue that a defensive technique that undermines these invariants will present

a robust protection mechanism against these threats.

5.2 Marlin Defense Technique

Code-reuse attacks make certain assumptions (as discussed in section 5.1.2) about

the address layout of application’s executable code. Marlin’s randomization technique

aims at breaking these assumptions by shu✏ing the code blocks in the binary’s .text

section with every execution of this binary. This significantly increases the di�culty

89

Figure 5.2. Processing steps in Marlin

of such attacks since the attacker would need to guess the exact permutation being

used in the current process execution. This shu✏ing is performed at the granularity

of function blocks as discussed in section 5.2.2. The various steps involved in Marlin

processing are shown in Figure 5.2. Marlin is integrated into a modified bash shell

that randomizes the target application just before the control is passed over to this

application for execution. Thus, every execution of the program results in a di↵erent

process memory image as illustrated in Figure 5.3(a). Figure 5.3(b) illustrates how

shu✏ing the code results in a sequence of gadgets that is not intended by the attacker.

We now present Marlin technique in detail.

5.2.1 Attack Assumptions

We start by describing the basic assumptions for a ROP attack scenario. The

vulnerable application may have a bu↵er overflow or heap overflow vulnerability that

can be leveraged by an attacker to inject an exploit payload. The system is assumed

to be protected using write or execute only policy (W �X) and the attacker can not

90

(a) Unique output with every run (b) Mitigation of ROP attack

Figure 5.3. E↵ect of function block randomization

inject arbitrary executable code in the stack or the heap. The attacker is assumed to

have access to the target binary that has not yet undergone Marlin processing. The

attacker is also assumed to be aware of the functionality of Marlin. However, the

attacker can not examine the memory dump of the running process and is unaware of

how exactly the code is randomized for the currently executing process image. Our

approach protects against both remote and local exploits as long as the attacker is

not able to examine the memory of the target process. For instance, in this threat

model, a local attacker can not attach a debugger to a process that is running as root

and obtain its memory dump.

5.2.2 Granularity of Randomization

Code can be randomized at various levels of granularity such as instruction level,

basic block level, function level, segment level or just the base address. Choosing

the right granularity of randomization is a tradeo↵ between e↵ectiveness (measure

of security o↵ered) and e�ciency (measure of overhead incurred) of the the resulting

defense scheme. While randomizing at finer granularity (such as basic block or in-

struction level) provides higher entropy, it may also incur higher overhead as it breaks

91

the principle of locality. That is, the basic blocks that comprise a function might be

moved to di↵erent pages and the system would have to load multiple memory pages to

execute a single function. Randomization at basic block also involves handling many

more types of jumps and calls which require precise control flow graph information.

Such precise control flow information typically cannot be completely extracted from

an executable. This makes basic block based randomization more di�cult to handle

in the absence of complete control flow graph information.

On the other hand, randomization at the function level granularity eases the han-

dling of several jumps and calls. As the function body remains intact during the

shu✏ing phase, relative jumps are not a↵ected as their target lies within the same

function. Same holds true for certain computed jumps. This avoids patching the

target address for near jumps that occur within a function body. Also, by keeping

all the basic blocks of a function body together, the overhead of loading multiple

pages per function can be avoided. For these reasons, we chose to implement ran-

domization at the function level granularity in Marlin. We have shown later in the

evaluation section that even with this coarse granularity, it o↵ers strong protection

against brute force attack. We now discuss the various steps involved in application

code randomization.

5.2.3 Preprocessing Phase

As mentioned above, Marlin randomizes the application binary at the granularity

of function blocks. This requires identifying the function blocks in the application

binary. In preprocessing phase, the ELF binary is parsed to extract the function

symbols and associated information such as start address of the function and length

of the function block. However, traditional binaries are typically stripped binaries

and do not contain symbol information. In such cases, we first restore the symbol

information using an external tool, Unstrip [95]. Once the symbol information is

92

restored and identified, we proceed on to the next stage of Marlin processing that

randomizes the application binary.

5.2.4 Randomization Algorithm

Once the function symbols have been identified, Marlin generates a random permu-

tation of this set of symbols. The function blocks are then shu✏ed around according

to this random permutation. Shu✏ing the function blocks in an application binary

changes the relative o↵sets between instructions that may a↵ect various jump and

call instructions. The target destination for these jumps/calls can be specified either

as an absolute address or as a relative o↵set. Relative jumps increment or decrement

the program counter by a constant value as opposed to absolute jump that directly

jump to a fixed address. When the function blocks are randomized, these jumps will

no longer point to the desired location and must be ‘fixed’ to point to the proper

locations. We achieve this by performing jump patching.

The randomization algorithm described in Algorithm 2 involves two stages. In the

first stage, the function blocks are shu✏ed according to a certain random permutation.

During this shu✏ing, we keep a record of the original address of the function and also

the new address where the function will reside after the binary has been completely

randomized. This information is stored in a jump patching table. Note that this jump

patching table is discarded before the application is given control, thus preventing

attacker from utilizing this information to de-randomize the memory layout. In the

second stage, the actual jump patching is done where the jump patching table is

examined for every jump that needs to be patched. Whenever a relative jump is

encountered, the algorithm executes PatchRelativeJump() method to redirect the

jump to the correct address in the binary. PatchRelativeJump() method takes the

current address of the jump and the address of the jump destination to determine

the new o↵set and patch the jump target. The second case is the computed jumps

where the contents of a register specify the absolute address of the destination, for

93

Algorithm 2: Code randomization algorithm
Input : Original program, P

Output: Randomized program, PR

L = All symbols in P

F = A list of forbidden symbols that should not be shu✏ed

L = L� F

OL = Ordered sequence of symbols in L

S.AddrP = Address of symbol S in program P

J.AddrP = Address of jump instruction J in program P

J.DestP = Destination address of jump J in program P

J.Sym = Symbol that J is jumping into

/* Permutation stage */

for Every symbol S 2 L do

R = Randomly select another symbol in L

Swap S and R in OL

PR = Permuted program according to symbol order in OL

/* Jump patching stage */

for Every symbol S 2 L do

for Every jump J 2 S do

if J is a relative jump to within S then

/* No action needed */

else if J is a relative jump to outside S then
J.DestP

R

=

J.DestP +(J.Sym.AddrP
R

� J.Sym.AddrP)� (S.AddrP
R

�S.AddrP)

PatchRelativeJump(J.AddrP
R

, J.DestP
R

)

else if J is an absolute jump then

PatchAbsoluteJump(J.AddrP
R

, J.DestP
R

)

94

example call to function pointers. We handle these cases by doing a backward analysis

and fixing the instruction where the function address is being loaded into a register.

If the destination address is obtained from .data section (for example, in case of

global function pointers), then we patch the .data section with the new value. This

processing is done in PatchAbsoluteJump() method shown in Algorithm 2.

The run-time shu✏ing of the function blocks prevents multiple instances of the

same program from having the same address layout. Thus, to defeat Marlin, an

attacker would need to dynamically construct a new exploit for every instance of

every application which is not possible since the randomized layout is not accessible

to attacker. We now discuss the security guarantees o↵ered by Marlin.

5.2.5 Security Evaluation

We now show that our randomization technique significantly increases the brute

force e↵ort required to attack the system. In a brute force attack, the attacker

will randomly assume a memory layout and craft exploit payload according to that

address layout. A failed attempt will usually cause a segmentation fault due to illegal

instruction and the crashed process or thread will need to be restarted. We now

compute the average number of attempts required by an attacker to succeed. A

successful attack is assumed to be equivalent to guessing the correct permutation

used for randomization.

In the discussion that follows, let n denote the number of symbols (excluding for-

bidden symbols) in an application binary. The total number of possible permutations

that can be generated for this application is N = n!. Let P (k) denote the probability

that the attack is successful for the first time at the kth attempt. Let X be a random

variable denoting the number of brute force attempts after which the attack is suc-

cessful for the first time (that is, the attacker guesses the correct permutation). We

will now estimate the average value of X. We consider the following two cases.

Case 1: A failed attempt crashes the process and causes it to be restarted.

95

In this event, the process will be restarted with a new randomization. The subse-

quent brute force attempts by an attacker will be independent since he would learn

nothing from the past failed attempts. That is, the probability of success at kth at-

tempt is constant and independent of k. Let p = 1
N

denote the probability of success

at any attempt. Then, the average number of attempts before the attack is successful

for the first time is

E[X] = (p ⇤ 1) + (1� p) ⇤ (1 + E[X]) =
1

p

) E[X] = n!

Thus, the attacker would have to make an average n! number of attempts to correctly

guess the randomized layout and launch a successful ROP attack.

Case 2: A failed attempt crashes a thread of the process and causes only that

thread to be restarted.

In this event, since the process is still executing, the memory layout will remain

same. Every failed attempt will eliminate one permutation. The probability that first

success is achieved at kth attempt is

P (k) =

k�1Y

i=1

N � i

N � i+ 1

!
⇤ 1

N � k + 1
=

1

N

The average number of attempts before first success can be computed as

E[X] =
NX

x=1

x ⇤ P (x) =
NX

x=1

x ⇤ 1

N
=

N + 1

2

) E[X] =
n! + 1

2

So, the attacker will need an average n!
2 number of brute attempts to correctly

guess the randomization and launch successful ROP attack. Given enough time and

resources, the attacker can try all possible permutations one after the other and will

require at most n! attempts for a successful brute force attack.

As an example, to launch a successful ROP attack against an application with 500

symbols that is protected using Marlin, an average 500! = 23767 number of attempts

96

will be required for the first case. This is clearly computationally infeasible. A more

extensive evaluation performed using coreutils applications is presented later in

Section 5.4 that demonstrates the e↵ectiveness of our technique.

5.2.6 Discussion

Having described our randomization techniques above, it is necessary to o↵er a

few words about how Marlin applies them while addressing specific implementation

challenges that have been identified [4] in regard to memory image randomization.

Against ROP attacks, randomization is, by far, the more e↵ective technique. By

significantly increasing the entropy of the application image, randomization creates

negligible probability that an adversary can craft a chain of gadgets for short-lived ap-

plications, as every new process will have a di↵erent configuration of function blocks.

Specifically, the large number of possible permutations significantly increases the

number of attempts needed for a single ROP gadget chain to work.

Shacham et al. [4] correctly point out that full randomization eliminates sharing

memory pages between processes. For strong security guarantees, eliminating sharing

is actually desirable. That is, for some critical applications, it is more important to

guarantee integrity than optimal performance. However, in other cases, such strong

security guarantees are not required. To accommodate a wide range of trade-o↵s,

several approaches are possible. First, an executable could be marked as critical,

which would then be fully randomized. Next, normal applications would first detect

if another instance of the same executable is already running. If so, the new pro-

cess would share read-only access to the shu✏ed code image. Such options can be

implemented using flags that get passed to Marlin.

5.2.7 Optimization Techniques

A straightforward performance optimization for Marlin would be to perform the

pre-processing for jump patching only once for each application and store the result

97

in a database maintained by the system. The jump patching algorithm can reuse the

information about function blocks from this database in subsequent executions. The

database would only need to be updated when the application code changes.

The impact of the code randomization can be reduced by taking the permutation

generation o↵-line. To do so, each application will have a dedicated file containing

the next instance’s permutation. When a binary is executed, the custom shell sends

a signal to a trusted daemon process that runs with low priority and returns the next

permutation. The application’s function blocks are then shu✏ed accordingly.

5.3 Implementation Details

We have implemented a Marlin prototype that can operate on any ELF binary

without requiring its source code. The implementation was done for 32-bit x86 ar-

chitecture on a system running Ubuntu operating system. Implementation of Marlin

involved two major components. First part consisted of randomizing the executable

code and generating the randomized binary. The second part dealt with integrating

this into an existing system such that binary randomization occurs seamlessly with

every execution. We discuss the details of Marlin implementation below.

5.3.1 Code Randomization

Randomizing an application’s executable code segment consists of two stages.

First is the preprocessing stage that can be done just once per binary and is inde-

pendent of subsequent executions. This stage involves disassembling a binary and

extracting information about the function blocks and also the control flow. The sec-

ond stage is the actual randomization stage when the function blocks are shu✏ed and

the jump/call targets are patched. We now discuss each of this in further detail.

98

Preprocessing Stage

Before we randomize the binary, we need to identify the function blocks. We do

this by disassembling the binary using objdump disassembler and then parsing the

dissembler output to extract the function symbols and the relevant information. For

each function symbol, we gather information about its location in the executable, the

length of the function block and the information on any jumps or calls originating

from this function. This information is collected for functions in the PLT table as

well in addition to the application defined functions.

While we use objdump disassembler, other commercial options such as IDAPro

can be used to obtain more accurate disassembly. Also, several production level bina-

ries are available only as stripped binaries, that is the symbol information has been

removed from them. We restore the symbol information using Unstrip utility [95]

before disassembling it using objdump.

Randomization Stage

In this stage, the actual shu✏ing of the function blocks is performed. The first

step is to generate a random permutation of symbols and shu✏e the list of symbols

to obtain a new order of symbols. The new binary is re-written according to this

new symbol order. In our preliminary implementation [96], we did not shu✏e certain

symbols such as start that were referred to as forbidden symbols. Our revised im-

plementation no longer has this limitation and all the symbols within .text section

are now randomized, including start symbol. This start symbol is the first in-

struction that executes after the binary is loaded into the memory by the ELF loader.

This entry address is stored in ELF header of the binary. Once the application is

randomized, we patch the ELF header with the new entry address which is the new

location of start symbol.

99

Fixing Jumps and Calls

The jump and call patching is performed in the same pass when the new ran-

domized binary is written. This is done by using the patch list information that is

generated during the preprocessing stage. For each call that needs to be patched,

the patch information consists of the name of the parent symbol, the name of symbol

being patched to and the o↵set from the beginning of the parent symbol where the

patching needs to be done.

The calls and jumps can be of the following types:

• Call instructions

– Call to an application defined function: In normal function calls (call <

f1 >), the target address of the callee function is specified as relative

address o↵set from the address of the call instruction. We fix this target

address in the call patching phase using the patch information collected

during the preprocessing phase.

– Call to a dynamically linked function: Functions in dynamically linked

libraries that are called in the application’s code appear in the PLT section

of the application’s code. Calls to these linked functions (call < f2@plt >)

are also specified as relative o↵set from the address of the call instruction to

the function’s PLT entry. These targets are also fixed in the call patching

stage by correcting the relative o↵set.

– Call to a function pointer: Call to function pointers are handled as indirect

calls, that is the absolute address of call target is loaded into a register, say

%eax, and then the call is made as call ⇤%eax. To fix these types of calls,

the absolute address of the callee should be patched at the instruction that

loads its address into the %eax register. This is done by doing a backward

analysis starting from an indirect call instruction and tracing backwards

until we reach the instruction where the value of function pointer is loaded.

In case of global function pointers, the address of function is stored in the

100

data section and eventually loaded from this data section into a register. In

these cases, the data section is patched with the corrected function address

after shu✏ing.

• Jump Instructions: In x86 architecture, jumps can be either conditional jumps

or unconditional jumps. Conditional jumps are near jumps while unconditional

jumps can be either near or far jumps. We don’t need to patch the near jumps as

they are within the same function body and specified using the function o↵set.

However, unconditional far jumps transfer program control to the target address

without a return. For example, this can happen in the case of goto statement

where the jump specifies an absolute address . If the jump destination is outside

the application’s code, for example a shared library, then this does not need

patching. However, if the destination of a far jump is within the application

code, then this will need to be patched. We patch certain far jumps, for instance

the jump tables that are created due to some switch-case blocks. These jump

tables are stored in .rodata section of the code. We patch the jump table in

this .rodata with the new jump targets after randomizing the code.

5.3.2 System Integration

Software diversification can be applied at various stages in an application’s lifecycle

ranging from compile-time diversification to runtime-diversification. In Marlin, our

goal is to randomize the target binary with each execution. That is, we want to

invoke the Marlin functionality whenever the target binary is executed. We considered

several approaches to achieve this as discussed below.

First approach that we considered was modifying the dynamic loader (ld). In

this approach, the application code that is mapped in the memory by mmap call will

be randomized just before the control is passed to the target binary. This has the

advantage that all the transformations are done in the memory and they are done

immediately before the control flow jumps to application’s start symbol. This en-

101

sures that every application is randomized with each execution and no intermediate

files are generated that can be potentially exploited by the attacker. However, this

approach incurs several complications and redundant processing. For example, the

loader library (ld-linux.so) is self contained and does not use any shared library

which makes it di�cult to integrate Marlin’s code into the loader. More importantly,

the work that the loader has done to load the normal application code (resolving

references etc) is wasted e↵ort since the functionality needs to be re-executed af-

ter randomizing the code again. For these reasons, we decided against using this

approach.

The second approach that we considered was modifying the execve system call

such that it first executes Marlin to randomize the target executable and then executes

the randomized code. However, since execve is used by almost every execution in

the system including the kernel code, modifying this function can introduce a lot

of instability into the system, especially during the testing phase. Also, to prevent

the recursive invocations of Marlin onto itself, one would need to modify the execve

definition which is not a good solution since execve is called at several places in both

user and kernel code. Thus, we decided against using this approach as well.

Finally, the third approach that we considered was a custom secure shell approach.

In this approach, we modified the normal shell code to create a secure shell that would

randomize the target binary before executing it. This is the approach that we adopted

in implementing the Marlin prototype. We modified the source code for bash shell,

specifically the shell execve function that is responsible for making a call to execve

method. We created a hook just before the execve call to randomize the code for the

target binary. This approach has the advantage that it allows us to test our system

without interfering with the existing system functionality. In the deployment of the

production version, one can easily replace the normal bash shell with our secure shell

to ensure that all the executions invoked by this shell are randomized.

Further, we implemented a whitelist that allows for selectively randomizing only

certain application binaries. For example, one may wish to randomize only those

102

applications that have user interaction, that is they accept input from a user (can

be a remote user). Our implementation supports specifying the whitelist entries in

three di↵erent ways. First, the entry can be an absolute path of a directory in which

case all the files contained in this directory and its sub-folders will be randomized.

Second, the entry can be specified as the absolute path of an application in which

case this application is randomized whenever it is executed using secure shell. Finally,

the entry can be specified just using the name of the executable in which case any

executable with the specified name, irrespective of its path, will be randomized before

execution. This whitelist is protected and can only be modified by the superuser.

5.4 Evaluation

We now describe various experiments that were performed to evaluate Marlin

technique. These experiments test the e↵ectiveness of Marlin technique and also

the performance overhead incurred due to randomization. The experiments were

performed on a Linux virtual machine with 2 processor cores and 4GB RAM (host

machine processor was Intel Core i5 2.4GHz with 6GB RAM). This VM had ASLR

and W �X protection enabled while the experiments were being performed. We used

coreutils binaries, some commonly used application binaries (see Table 5.1) and

byte-unixbench [97] benchmarks to conduct various experiments. To launch attacks

against Marlin-protected binary, we use ROPgadget (v3.3.3) [98], an attack tool that

automatically creates exploit payload for ROP attacks by searching for gadgets in an

application’s executable section.

5.4.1 E↵ectiveness

First, we tested the e↵ectiveness of Marlin using a test application that has a

bu↵er overflow vulnerability. This application, ndh rop, was included as a part of the

ROPgadget test binaries. We used ROPgadget on this target application and found

162 unique gadgets. These were su�cient to craft a shell code exploit payload. When

103

Table 5.1.
List of applications used in evaluation

Application Version

Apache 2.4.7

Bash 4.20

Brasero 3.11.0

Cups 1.7.0

Coreutils (105 applications) 8.22.1

Dhclient 4.2.5

Emacs 24.3

Gcc 4.8.1

Gedit 3.8.3

Ghex 3.8.1

Gimp 2.80

Git 1.8.5

Gnome-terminal 3.0.1

Gtkpod 2.1.4

Gzip 1.60

Lame 3.99.5

Make 3.81

Mono –

Nano 2.3.2

OpenSSH 6.4

Qemu 1.7.0

Subversion 1.8.5

Tar 1.27

Vim 7.4

Vlc 2.1.2

Wine 1.1.27

Wireshark 1.11.2

104

this exploit payload was provided as an input to the unprotected binary, it gave us

a shell. Next, we randomized this application using Marlin technique and tried to

attack it using the same input payload. The attack did not succeed and failed to

provide us with a shell.

This highlights the sensitivity of these attacks to slight changes in the address lay-

out. ROP attacks operate under the strong assumption of a static address layout of

executable code. In our threat model, the attacker only has access to the unprotected

binary and is not aware of the exact permutation that has been used for randomiza-

tion. So he can only run ROPgadget tool on the unprotected test application.

Brute Force E↵ort

In section 5.2.5, we computed the average number of attempts required to suc-

cessfully attack a randomized binary. This brute force e↵ort is approximately n!

where n is the number of symbols in a binary. We performed an extensive evaluation

of this using 131 ELF binaries corresponding to 105 coreutils applications and 26

commonly used applications. Figure 5.4 shows the CDF of number of symbols present

in these applications. We noticed that around 97.7% of these applications have more

than 80 symbols (indicating an e↵ort of 80! attempts). We observed an average of

470 symbols and a median of 130 symbols present in these applications. Thus, the

number of brute force attempts in a general case can be approximated to 130! ⇡ 2730

attempts which is quite significant. Also, on an average, we observed the time to

compute one attack payload is 15.48 seconds.

It is interesting to note that the e↵ectiveness of protection o↵ered by Marlin de-

pends on the modularity of the program. An application that has several function

modules will be more secure against brute force attempts when protected with Mar-

lin. If the entire code of an application is organized in few functions, then irrespective

of the size of the binary, it will still be quite susceptible to brute force attacks since

it would contain large chunks of unrandomized code. Randomizing at finer granu-

105

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.2

0.4

0.6

0.8

1

Number of Symbols

C
D

F

CDF of Number of Symbols

Figure 5.4. CDF for number of symbols

larity, for example at the granularity of basic blocks or instructions, will solve this

issue. However, we believe that randomization breaks the locality principle and the

randomized binary may su↵er a performance hit. Thus, as a trade o↵, we chose to

randomize at the granularity of function block.

Gadget Displacement

Next, we studied the entropy introduced by our randomization approach by mea-

suring the gadget displacement. That is, we measured how many gadgets are moved

due to randomization by Marlin technique. To measure this, we extend the ROPgad-

get tool to compare the original binary with the randomized binary and compute the

number of unique gadgets that were found in former and are no longer present at the

same address in latter. This experiment was also performed on the same set of 131

application binaries as used in section 5.4.1 with 20 iterations per binary.

We measure two types of gadget displacement. First, we measure the displacement

of unique gadgets that are found by ROPgadget in the executable sections of the target

binary. Note that these gadgets are not necessarily from .text section and may belong

to other executable sections such as .plt section. In this case, we observed an average

of 71.8% and a median of 72.5% gadgets were displaced in the randomized binaries.

Since we randomize only .text section, the gadgets found in other executable sections

were unmoved. Next, we restricted the search for unique gadgets to only .text section

and measured the number of gadgets that were displaced by randomization. In this

106

case we observed an average of 99.78% gadget displacement (with median as 100%

displacement). Thus, nearly all gadgets in the .text section are displaced.

We can conclude from above observations that randomizing at function level gran-

ularity leads to high gadget displacement which is quite e↵ective against ROP attacks.

This eliminates the need for randomizing at a more finer granularity such as basic

blocks or instruction level.

5.4.2 Overhead Analysis

We evaluated the e�ciency of Marlin by measuring two variables. First, we mea-

sured the processing cost incurred by Marlin while loading an application as discussed

in section 5.4.2. Second, we measured the runtime overhead of the randomized bina-

ries. This is discussed in more detail in section 5.4.2.

Marlin Processing Overhead

When an application is loaded, Marlin identifies the function blocks and records

information about them (such as start address, length) that is used later in jump

patching. This computation is independent of the individual randomizations. Next

phase involves shu✏ing the function blocks and patching the jumps. Marlin processing

cost is the combined overhead of these two phases. We measure Marlin processing

overhead for the same set of 131 ELF binaries used in above experiments with 20

randomizations per binary.

Figure 5.5 shows the CDF of processing cost for Marlin for these 131 applications.

We notice that 95% of these applications incurred less than 1.43 seconds processing

time. This is quite reasonable since this is a one time overhead incurred only at the

application load time. We observed that applications with larger number of symbols

incur more processing overhead. For instance, the application gimp took significantly

longer time to process (8.13 seconds). This is because it contained 10760 symbols in

107

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

Marlin Processing Time (sec)

C
D

F

 CDF of Processing Time

Figure 5.5. CDF for Marlin processing time

contrast to a median of 130 symbols by other applications. The average time taken

by Marlin processing was 0.87 seconds with a median of 0.53 seconds.

Thus, we observe that the processing overhead due to Marlin is very minimal.

Also, the performance hit is incurred only at the load time of the application. Once

the application binary has been randomized, it executes like a normal application

binary.

Runtime Overhead

We measured the runtime overhead of randomized binaries to see if shu✏ing the

functions a↵ects the execution time of a binary. For this purpose we use the byte-

unixbench benchmarks. We used the execution time of un-randomized benchmarks as

a baseline to compare with randomized benchmarks. We performed 20 randomizations

per benchmark and took the average of these values. We observed that the execution

time of the benchmarks was same before and after randomization and was not a↵ected

due to Marlin. This supports our initial hypothesis that the overhead is incurred only

during the randomization phase of Marlin and after that the binary executes as a

normal binary with no runtime overhead.

5.4.3 Comparison with Existing Defense Techniques

Tables 5.2 and 5.3 compare Marlin with other approaches with respect to the

defense techniques, the properties, and the metrics. We compared these approaches

108

based on nine comparison dimensions. First, we looked at the types of code reuse

attacks mitigated by these techniques. Marlin defends against both return-based and

jump-based attacks, unlike [50,61] that can stop only return-based attacks. Next we

look at the techniques adopted by these defense approaches. These techniques employ

either some form of diversification or use execution monitoring. For diversification

based approaches that use code randomization, the randomization can be performed

at various granularities. While randomizing at finer granularity such as instruction

level [40, 43] increases entropy, it decreases the runtime performance by breaking

memory locality. Control flow integrity [58,60] and other approaches [50,52,61] that

monitor runtime execution also incur significant runtime overhead. Marlin adopts a

tradeo↵ approach by using a coarse-granularity of randomization that achieves high

entropy with no runtime overhead.

These defense techniques can be applied at di↵erent stage of software cycle such as

installation, loading, execution stage etc. Marlin is applied at application load time

which provides the advantage of frequent randomization without a↵ecting runtime

performance. Techniques such as [40,50,52,58,60,61] that are deployed at execution

stage incur a runtime overhead as shown in column 4 (in Table 5.2) and column 3 (in

Table 5.3). Techniques that use runtime data structures also incur memory overhead

in addition to runtime overhead. As shown in column 6 (in Table 5.3), [40,50,52] use

runtime data structure, while Marlin technique does not require any such additional

data structure. Thus, Marlin incurs no runtime or memory overhead.

109

T
ab

le
5.
2.

C
om

p
ar
is
on

w
it
h
ot
h
er

d
ef
en
se

te
ch
n
iq
u
es

-
P
ar
t
I

D
e
fe
n
se

R
O
P

ty
p
e
s

T
e
ch

n
iq
u
e

S
ta

g
e

P
la
tf
o
rm

m
it
ig
a
te
d

M
ar
li
n

R
O
P
,
JO

P
F
u
n
ct
io
n
sh
u
✏
in
g

L
oa
d
ti
m
e

L
in
u
x
(x
86

E
L
F
)

IL
R

[4
0]

R
O
P
,
JO

P
In
st
ru
ct
io
n

In
st
al
la
ti
on

,
L
in
u
x
(x
86

E
L
F
)

sh
u
✏
in
g

E
xe
cu
ti
on

S
T
IR

[4
3]

R
O
P
,
JO

P
B
as
ic
-b
lo
ck

L
oa
d
ti
m
e

L
in
u
x
(x
86

E
L
F
),

sh
u
✏
in
g

W
in
d
ow

s
(P

E
)

X
IF

E
R

[4
2]

R
O
P
,
JO

P
C
od

e
p
ie
ce

L
oa
d
ti
m
e

L
in
u
x
(x
86

E
L
F
),

sh
u
✏
in
g

A
R
M

IP
R

[4
1]

R
O
P
,
JO

P
In
st
ru
ct
io
n
re
or
d
er
in
g,

O
✏
in
e
to
ol

W
in
d
ow

s
(P

E
)

E
qu

iv
.
in
st
ru
ct
io
n

su
b
st
it
u
ti
on

D
R
O
P

[6
1]

R
O
P

on
ly

C
h
ec
k
ga
d
ge
t

E
xe
cu
ti
on

L
in
u
x
(x
86

E
L
F
)

se
qu

en
ce

le
n
gt
h

w
it
h
th
re
sh
ol
d

R
O
P
D
ef
en
d
er

[5
0]

R
O
P

on
ly

In
st
ru
m
en
ta
ti
on

to
E
xe
cu

ti
on

L
in
u
x,

ch
ec
k
re
tu
rn

ad
d
re
ss

W
in
d
ow

s

R
O
P
ec
ke
r
[5
2]

R
O
P
,
JO

P
C
h
ec
k
fo
r
lo
n
g

In
st
al
la
ti
on

,
L
in
u
x
(x
86

E
L
F
)

ga
d
ge
t
ch
ai
n

E
xe
cu
ti
on

C
C
F
IR

[6
0]

R
O
P
,
JO

P
R
es
tr
ic
t
ju
m
p
ta
rg
et

In
st
al
la
ti
on

,
W

in
d
ow

s
(x
86

P
E
)

u
si
n
g
w
h
it
e-
li
st

E
xe
cu
ti
on

C
F
L
[5
8]

R
O
P
,
JO

P
C
on

tr
ol

fl
ow

C
om

p
il
at
io
n
,

L
in
u
x
(x
86

E
L
F
)

lo
ck
in
g

E
xe
cu
ti
on

110

T
ab

le
5.
3.

C
om

p
ar
is
on

w
it
h
ot
h
er

d
ef
en
se

te
ch
n
iq
u
es

-
P
ar
t
II

D
e
fe
n
se

B
e
n
ch

m
a
rk

R
u
n
ti
m
e

S
p
a
c
e

G
a
d
g
e
t

R
u
n
ti
m
e

o
v
e
rh

e
a
d

o
v
e
rh

e
a
d

D
is
p
la
c
e
m
e
n
t

d
a
ta

-s
tr
u
c
tu

re
s

M
ar
li
n

L
in
u
x
co
re
u
ti
ls
,

0%
0%

99
.7
8%

N
o

by
te
-u
n
ix
b
en

ch
,

C
O
T
S

IL
R

[4
0]

S
P
E
C

C
P
U

20
06

13
-1
6%

14
M
B

-
26
4M

B
99
.9
6%

Y
es

(F
al
l-

th
ro
u
gh

m
ap

)

S
T
IR

[4
3]

S
P
E
C

C
P
U

20
00
,

4.
6%

(S
P
E
C
)

73
%

(fi
le

si
ze
)

99
.9
9%

N
o

L
in
u
x
co
re
u
ti
ls
,

0.
3%

(c
or
eu
ti
ls
)

37
%

(p
ro
ce
ss

si
ze
)

C
O
T
S

1.
6%

(o
ve
ra
ll
)

X
IF

E
R

[4
2]

S
P
E
C

C
P
U

20
06

1.
2-
5%

1.
76
%

(fi
le

si
ze
),

10
0%

N
o

5%
(a
t
ru
nt
im

e)

IP
R

[4
1]

W
in
e
te
st

su
it
e

0%
N
/A

76
.9
%

N
o

D
R
O
P

[6
1]

C
O
T
S

43
0%

N
/A

N
/A

N
o

R
O
P
D
ef
en
d
er

[5
0]

S
P
E
C

C
P
U

20
06

11
7%

(S
P
E
C
in
t)

Y
es

(S
ta
ti
st
ic
s

N
/A

Y
es

(s
h
ad

ow

49
%

(S
P
E
C
fp
)

n
ot

re
p
or
te
d
)

st
ac
ks
)

R
O
P
ec
ke
r
[5
2]

S
P
E
C

C
P
U

20
06
,

2.
6%

(S
P
E
C

C
P
U
)

21
0M

B
N
/A

Y
es

(i
n
st
ru
ct
io
n

B
on

n
ie
+
+
,

1.
5%

(d
is
k
I/
O
)

an
d
ga
d
ge
t

A
p
ac
h
e

0.
08
-9
.7
2%

(A
p
ac
h
e)

d
at
ab

as
e)

C
C
F
IR

[6
0]

S
P
E
C

C
P
U

20
00

3.
6%

(S
P
E
C
in
t
20
00
)

Y
es

(s
ta
ti
st
ic
s

N
/A

Y
es

(

0.
59
%

(S
P
E
C
fp

20
00
)

n
ot

re
p
or
te
d
)

S
p
ri
n
gb

oa
rd
)

4.
2%

(S
P
E
C
in
t
20
06
)

C
F
L
[5
8]

S
P
E
C

C
P
U

20
00
,

0-
21
%

Y
es

(S
ta
ti
st
ic
s

N
/A

N
o

S
P
E
C

C
P
U

20
06
,

n
ot

re
p
or
te
d
)

C
O
T
S

111

These overheads for other approaches are indicated in columns 3 and 4 in Ta-

ble 5.3. Some of the defense approaches such as [43, 50] use binary instrumentation

to integrate their technique and this results in a increase in file size (see column 4 in

Table 5.3). Marlin does not use any instrumentation and does not incur any space

overhead.

We also compared Marlin with other approaches based on gadget displacement

which measures how many gadgets are displaced in the target binary after apply-

ing diversification techniques. This metric is not applicable for techniques such as

[50,52,58,61] that do not diversify the binary, hence the gadget displacement is zero.

Marlin displaces 99.78% of the gadgets in .text section by using function level ran-

domization. Thus, we show that the coarse granularity randomization is su�cient

and finer granularity randomization such as instruction level or basic block level ran-

domization does not o↵er any additional benefits and in some cases may lead to

unnecessary overheads.

5.5 Discussion

Our proposed solution to defend against code-reuse attacks was to increase the

entropy by randomizing the function blocks. One may apply this randomization

technique at various levels of granularity - function level, block level or gadget level.

The level of granularity to choose is a trade o↵ between security and performance. In

our implementation, we implemented the randomization at the function level which is

the most coarse granularity amongst the three mentioned above. However, we show

that even this coarse level of granularity provides substantial randomization to make

brute force attacks infeasible.

Our prototype implementation requires the binary disassembly to contain symbol

information, i.e. a non-stripped binary. In practice however, binaries may be stripped

and not contain the symbol information. We address this by using external tools

such as Unstrip [95] that restore symbol information to a stripped binary. Another

112

approach to process stripped binaries is to randomize at the level of basic blocks

since they don’t require function symbols to be identified. However, randomizing at

basic block granularity will likely incur higher runtime overhead as it would break

the principle of locality.

One limitation of Marlin is that it is unable to correctly rewrite certain binaries

if these target binaries have certain compiler optimizations enabled or if they are

obfuscated. This is because Marlin requires the .text section in the target binary to

be organized as function blocks and for these function block to be clearly identifiable

using a disassembler.

5.6 Conclusion

In this work, we proposed a fine-grained randomization based approach to defend

against code reuse attacks. This approach randomizes the application binary with

a di↵erent randomization for every run. We have implemented a prototype of our

approach and demonstrated that it is successful in defeating real ROP attacks crafted

using automated attack tools. We have integrated this into a custom bash shell that

randomizes a binary before executing it. We have also evaluated the e↵ectiveness

of our approach and showed that the brute force e↵ort to attack Marlin is signifi-

cantly high. Based on the results of our analysis and implementation, we argue that

fine-grained randomization is both feasible and practical as a defense against these

pernicious code-reuse based attack techniques.

113

6 RUNTIME DETECTION AND RESPONSE AGAINST CODE REUSE

ATTACKS

While several defense techniques have been proposed to detect and/or prevent ROP

attacks, they fail to provide a complete defense system that also diagnoses and re-

sponds to these attacks in real time. Attack diagnosis is a critical part of a defense

framework as it provides useful information for deploying response and preventive

measures. We propose ROPShield, a defense framework that integrates detection,

diagnosis and response against ROP attacks. The detection component uses a run-

time monitoring mechanism to continuously verify execution constraints and raise an

alarm if these constraints are violated. Based on the execution constraints that are

violated, ROPShield diagnoses the type of attack and generates a report containing

fine-grained diagnosis information. This diagnosis report is then leveraged by the re-

sponse component to deploy appropriate response action such as generating a patch

for bu↵er overflow. We evaluated ROPShield prototype using nine code reuse exploits

collected from various sources and found it to be e↵ective in defending against these

exploits.

While attack detection or prevention techniques are e↵ective against ROP attacks,

they are not without their limitations. Firstly, they provide little or no diagnostic

information about the attack. In absence of diagnostic information, very limited re-

sponse actions, such as, shutdown processes, can be executed. Second, in the event

of an attack, most of these techniques, such as [4, 42, 43, 96], either crash or halt

the current process. The crash reports then need to be analyzed by system admin-

istrators and responses are applied manually. This may introduce significant delays

in deployment of responses and the integrity of the system might have already been

compromised by that time. Also, human errors such as oversight of some data may

reduce credibility of the diagnosis.

114

A strong defense framework against ROP attacks must thus integrate compo-

nents for detection, diagnosis as well as response against these attacks. The main

contributions of this work are as follows.

• We propose a complete defense framework, ROPShield, for detection, diagnosis

and response against ROP attacks.

• We present a novel detection technique for ROP attacks that is based on evalu-

ating certain execution constraints instead of the complete control flow graph.

• We demonstrate how the diagnosis information generated by ROPShield can be

integrated into response mechanisms.

• We present a prototype implementation of ROPShield for 32-bit x86 architec-

ture.

This chapter is organized as follows. Section 6.1 presents a high level overview of

the ROPShield framework. Section 6.2 discusses the detection and diagnosis compo-

nent of ROPShield. Next, we present the details of response component in section 6.3.

Section 6.4 discusses the details of the prototype implementation and presents the

evaluation of our approach. Finally, we discuss limitations and advantages of our

approach and conclude in section 6.5.

6.1 System Overview

Figure 6.1 shows a high level view of ROPShield and of the interactions between

its components. The first component is the detection and diagnosis component that

is responsible for detecting ROP attacks. It uses run-time tracing to monitor the

execution of the target application and detect illegal execution. In addition to ROP

attacks, ROPShield can also detect some other similar attacks such as return to libc

and code injection (using stack smashing). A configuration file is used to specify

the type of attacks that should be detected. By default, ROPShield will monitor and

115

Detection and Diagnosis

Configuration
File

Tracer

Attack
Detection

Logic

Attack
Diagnosis

Report

Target
Process

Response

Response
definition file

Attack
Diagnosis

Report

Compute
Response

Deploy
Response

Attack
definition file

+

Configuration
File

+

Figure 6.1. System overview

stop all supported types of attacks. ROPShield not only detects an attack, but it also

identifies the type of attack based on the execution constraints that are violated. Once

an attack is detected, ROPShield generates an attack diagnosis report and invokes

the response mechanism. This diagnosis report contains more information about the

attack such as the type of attack, and the vulnerable function, and serves as an

input to the response component. The response component computes the response

according to a set of predefined response rules and deploys the response actions.

116

<config>
 <attack id="CODE_INJECTION">
 <response id="KILL_PROCESS"
 mode="AUTOMATIC" >
 </response>
 <response id="ENABLE_W_XOR_X"
 mode="AUTOMATIC" >
 </response>
 </attack>

 <attack id="ROP">
 <response id="KILL PROCESS"
 mode="AUTOMATIC" >
 </response>
 <response id="PATCH_BUFFER"
 mode="AUTOMATIC" >
 </response>
 <response id="ENABLE_CODE_RANDOMIZATION
 mode="MANUAL" >
 </response>
 </attack>
</config>

Figure 6.2. Example of configuration file

Attack Definition File

This file specifies the attacks that are supported by ROPShield. These attacks are

described in terms of various execution constraints as explained later in section 6.2.2.

The current implementation supports code injection attacks, that use stack smashing,

return to libc and ROP attacks. The attack definition file is write protected to prevent

unauthorized modification and can only be modified by the root user. The DTD for

this XML file is specified below.

<!ELEMENT attackdefs (attack)*>

<!ELEMENT attack (id, constraint+)>

<!ELEMENT id (#PCDATA)>

<!ELEMENT constraint (#PCDATA)>

117

Configuration File

This file configures the operation of ROPShield according to the specific target

application. This is required because di↵erent applications may have di↵erent security

requirements and would need to respond di↵erently in the event of an attack. If two

or more applications have similar security requirements, then they can use the same

configuration file. The configuration file to be used with the target application is

specified as an input argument to ROPShield while invoking this application. If no

configuration file is specified, then ROPShield uses the default configuration file.

The configuration file specifies the following information:

• The type of control flow hijacking attacks to check for a given target application.

By default, all supported attacks are checked by ROPShield.

• The response to deploy for each type of attack. The default response action is

to shutdown the target application when an attack is detected.

• The mode of response deployment. This can be either manual or automatic. In

manual mode, the response is manually deployed by the system administrator,

where as in automatic mode the response is deployed automatically without any

human intervention.

The DTD for this configuration file is specified below.

<!ELEMENT config (attack)*>

<!ELEMENT attack (response)*>

<!ELEMENT response EMPTY>

<!ATTLIST attack

id CDATA #REQUIRED>

<!ATTLIST response

id CDATA #REQUIRED

mode (AUTOMATIC|MANUAL) #REQUIRED>

118

An example of configuration file is shown in Figure 6.2. This specifies that ROP-

Shield should check for code injection and ROP attacks while monitoring the target

application. If a code injection attack is detected, then the response deployed ac-

cording to this configuration file would be to first kill the process and then enable

W �X protection. If ROP attack is detected, then the responses deployed automat-

ically would be to kill the process and patch the bu↵er overflow. The response action

ENABLE CODE RANDOMIZATION is marked as manual indicating that some interaction

on behalf of the security administration, such as confirm action, may be required to

deploy this response action.

Tracer

This component is responsible for monitoring the target process at run-time. The

tracer is attached to the target process and monitors its execution at a very fine

granularity, that is, at instruction level. It continuously feeds the trace information

to the attack detection logic for verifying the execution constraints.

Attack Detection Logic

This is the algorithm that detects and identifies control hijacking by verifying

execution constraints at every step of the target process’ execution. The execution

constraints to be evaluated are derived from the attack definition file and the attacks

specified in the configuration file. The intuition and details of this detection logic are

discussed in sections 6.2.1 and 6.2.2.

Diagnosis Report

If an attack is detected by the attack detection logic, then a diagnosis report

is generated. This diagnosis report contains information about the type of attack

detected, the vulnerable function, and other process state information at the time

119

of attack detection. This diagnosis information can then be used by the response

component to compute and deploy the response. An example of diagnosis report

generated for a ROP attack is shown later in Figure 6.4.

Response Definition File

This file contains a list of responses that are supported by ROPShield. Each

response is specified as a 3-tuple that consists of a response identifier, the command to

be executed as response action, and the arguments to be passed to this command. The

response identifier uniquely identifies a response action and is used in the configuration

file to indicate the response to be deployed for a given attack.

Response Computation Logic and Deployment

If an attack is detected, the response computation logic identifies the appropriate

response identifiers according to the configuration file. Once the appropriate response

has been computed, it needs to be deployed. The response actions to be invoked are

identified from the response definition file using the response identifiers. If the config-

uration file has specified automatic deployment, then the response action command

is invoked immediately. However, if the deployment mode has been marked manual,

an alarm is raised and the security administrator is notified.

ROPShield is designed as an extensible framework, that is, it can be extended to

include additional types of attacks and response.

6.2 Attack Detection and Diagnosis

We now discuss the attack detection logic in further detail. We start by providing

the basic intuition behind our detection algorithm and then delve deeper into the

details of detection logic and attack diagnosis.

120

6.2.1 Basic Intuition

The basic intuition behind our detection logic is that the control flow of a normal

execution di↵ers from the control flow of a subverted program where the latter violates

certain execution constraints. For example, consider a ROP attack. ROP attack logic

works by chaining together multiple gadgets to achieve the desired functionality. Our

detection technique for ROP attacks is based on the following key observations. First,

the gadgets required for an exploit payload are often scattered across di↵erent function

blocks. This causes the attack execution to jump across multiple function boundaries.

Second, a unique combination of instructions identify the prologue and epilogue of

a function. This limits the number of gadgets that can appear in the beginning of

a function which leads to our next observation. Third, most of the gadgets required

in an exploit payload do not start at the entry point of a function. That is, the

control flow from a compromised stack jumps to some instruction in the middle of

an arbitrary function instead of the start of callee function or return address in the

caller function (See Figure 6.3).

The key takeaway from these observations is that the control flow for a ROP

execution di↵ers from a normal execution in that it violates certain execution con-

straints. In a normal execution, when a function is called, a frame is allocated on

the stack that stores the local data of the function. This stack frame represents the

execution context of the function. The current instruction that is being executed in

a process must belong to the function which has its frame on the top of the stack.

In a ROP execution, the compromised stack contains a series of return addresses

that point to instructions (or unintended instructions) in the middle of an arbitrary

function. When these gadgets are executed, they do not have their own context on

the stack and they are executed from a di↵erent function’s stack frame rather than

from their own. So, if the system starts executing instructions that do not belong

to the current function context, this generally indicates that an illegal execution is

taking place due to an ongoing ROP attack. There are exceptions to this rule where

121

<Function1>:
 …
 call <Function7>
 mov $0x1,%eax
 …

<Function7>:
 push %ebp
 mov %esp, %ebp
 …
 ret

NORMAL EXECUTION

<Function1>:
 …
 call <Function7>
 mov $0x1, %eax
 …

<Function7>:
 push %ebp
 mov %esp, %ebp
 …
 ret

<Function3>:
 push %ebp
 mov %esp, %ebp
 …
 add $0x4, %eax
 …

ROP EXECUTION

C
al

l t
o

Fu
nc

tio
n7

R
et

ur
n

to

Fu
nc

tio
n1

C
al

l t
o

Fu
nc

tio
n7

Ill
eg

al
 ju

m
p:

R

et
ur

n
to

 m
id

dl
e

of
 F

un
ct

io
n3

Figure 6.3. Di↵erence in control flow between a normal execution and
a ROP execution

some small functions do not establish a frame on stack. Such functions are identified

during preprocessing stage and handled as a special case by our technique.

6.2.2 Detection Algorithm

We leverage the previous observations to develop a detection technique that can

detect ROP attacks in real time. This technique uses a process tracing based approach

to monitor and analyze the execution of the target process. The detection algorithm

proceeds as follows.

122

Preprocessing Step

The first step is the preprocessing step that is used to identify the functions and

related information in the target binary. In this step, the target binary is disassembled

using a disassembler such as objdump. The output of the dissembler is then parsed

to identify the function blocks and their bounds, that is, the start and end addresses.

This information is used to associate the current instruction with its corresponding

function. During the preprocessing step, we also identify those functions that do not

set up a stack frame. This information is useful in detection logic to avoid incorrect

detection.

Process Monitoring

The next step is tracing where the target process is traced and monitored by our

detection system. The tracing functionality is achieved by using the ptrace call to

trace the target process at instruction level granularity. We single step through each

instruction and examine various variables such as current instruction pointer (%eip),

current stack pointer (%esp) and the instruction being executed. We also maintain a

stack of functions that correspond to the function frames currently on the stack. For

each instruction that is about to be executed, we identify the function to which it

belongs using the function bounds information gathered during preprocessing phase.

A change in function context can be identified by checking if this function does not

correspond to the function frame on the top of the stack.

Our detection logic evaluates certain execution constraints before each instruction

execution to detect ROP attacks. These constraints are based on identifying illegal

jumps during the process execution. The execution constraint violations that are

checked by ROPShield are as follows.

C1 Execute from Stack: This check aims at detecting code injection attacks

where the shell code is injected on the stack and the control flow is transferred

123

to it. Note that this constraint is relevant only for code injection attacks and

not for ROP attacks which are code reuse attacks.

C2 Return to Middle: This checks for illegal control transfer where the callee

function returns to the middle of a function that is not the caller function. This

is a common behavior in ROP attacks.

C3 Return to Start: This checks for illegal control transfer where a function

returns to the start of a function. Control transfer to beginning of a function

is legal only when the preceding instruction is a jump or call to this function.

This constraint is useful in detecting ROP as well as return to libc attacks.

The evaluation for constraints C2 and C3 is done only when a change of function

context is detected. We assume that the jumps that occur within the boundaries of a

function are legal. While this may not always be true, it is a reasonable assumption

for detecting meaningful attacks since the gadgets required to craft a shell code exploit

are usually not present entirely within a single function body and are typically spread

across di↵erent functions.

When the next instruction to be executed belongs to a function di↵erent from the

current function context on stack, we check if this is an illegal context change. A

legal change of function context occurs due to one of the two reasons:

1. The callee function has finished the execution and has returned. The top of the

stack will now contain the stack frame for the caller function.

2. The current function has made a function call that pushes the stack frame for

the callee function on the top of the stack and change the current function

context to the callee function.

In bu↵er overflow based control hijacking, the attacker exploits the first case by

overwriting the return address to return to somewhere else instead of to the caller.

This unintended control flow is detected as follows. ROPShield checks if the current

instruction belongs to the middle of a function or the beginning of a function. If the

124

former is true and this function is not the caller function (constraint C2), then this

is flagged as illegal execution. If the instruction belongs to the start of a function

and the previous instruction was not a call or jump to this function (constraint C3),

then this is also flagged as illegal execution. In all other cases, the function context

change is passed as legal and the execution is allowed to continue to the next instruc-

tion. However, if an illegal execution is flagged, an alarm is raised and the response

mechanism is deployed.

As the process tracing and detection is done in real time, our approach is e↵ective

in stopping a ROP attack before it can achieve privilege escalation. A typical shell

code exploit requires multiple gadgets to construct the attack logic. All of the required

gadgets are unlikely to exist in a single function and are usually spread out over

multiple functions. Thus, to execute the attack logic, instructions from multiple

functions must be executed from within the stack frame of the function that has

the vulnerable bu↵er. This violates the execution constraint that is checked by our

algorithm and our detection scheme is able to stop the ROP attack before it can

achieve privilege escalation.

6.2.3 Attack Diagnosis

In addition to detecting the attack, ROPShield also identifies the type of attack

based on the execution constraints that were violated. The current design supports

three types of attacks as discussed below. ROPShield can be extended to support

more types of control hijacking attacks by identifying the relevant execution con-

straints violated by an attack and adding this information to the attack definition

file.

Attacks identified by ROPShield’s diagnosis component are:

1. ROP attacks: These attacks are code reuse attacks that subvert the control

flow by overwriting the return address and jump to multiple arbitrary locations

125

to execute desired attack logic. These attacks are identified if constraints C2

and/or C3 are violated.

2. Return to libc: This attack is a specific instance of ROP attack where con-

trol jumps to a function in libc after subverting the return address. This can

be identified if the execution constraint C3 is violated and the target of jump

belongs to dynamically mapped libc library.

3. Code injection on stack: While this attack can be prevented by using W � X

protection, it can still occur for systems that do not enforce this protection.

These attacks can easily be detected by identifying the stack boundaries using

the /proc/[pid]/maps file and checking if the instruction pointer %eip is fetch-

ing the instruction from this memory range. This corresponds to the execution

constraint C1.

Once our framework detects and identifies the attack, it generates a diagnosis

report. This report contains detailed information about the attack, namely: the

type of attack detected, the input arguments, the saved state of program at time

of crash (such as %esp, %eip), the vulnerable function. Tracing the target process

at instruction level granularity allows ROPShield to collect good quality diagnosis

information that is useful in deploying appropriate response mechanisms. Once the

response actions have been deployed, the corresponding information is also appended

to the diagnosis report. An example of diagnosis report generated by ROPShield is

shown in Figure 6.4.

6.3 Response

There are many possible ways in which the system may respond to ROP attacks.

One interesting approach is to let the illegal execution proceed and observe informa-

tion that the attacker is trying to gather or the actions that the attacker is trying

to execute. While this may be a good solution for systems that are set up as hon-

126

[DIAGNOSIS_REPORT] ./scpy1-bad-report.txt
[PROCESS_NAME] ./scpy1-bad
[PROCESS_PID] 21001
[ATTACK_DETECTED] ROP
[VULN_METHOD] test
[STACK_BOUNDARY] ff94c000 - ff96d000
[PREV_STATE_EIP] 8048efd
[PREV_STATE_ESP] ff96b0cc
[PREV_STATE_FUNC_NAME] test
[PREV_STATE_FUNC_START] 8048ed0
[PREV_STATE_FUNC_END] 8048efd
[CURR_STATE_EIP] 80e3042
[CURR_STATE_ESP] ff96b0d0
[CURR_STATE_FUNC_NAME] __EH_FRAME_BEGIN__
[CURR_STATE_FUNC_START] 80de4c4
[CURR_STATE_FUNC_END] 80ec8e9
[RESPONSE_DEPLOYED] KILL PROCESS
[RESPONSE_DEPLOYED] PATCH BUFFER
[SOURCE_FILE] /home/alice/Exploits/scpy1-bad.c
[VULN_FUNC_LINE_START] 34
[VULN_FUNC_LINE_END] 39
[UNSAFE_LIB_FUNC] strcpy
[UNSAFE_LIB_FUNC_LINENUM] 37
[OLD_SRC_LINE] strcpy(buf, str);
[CORRECTED_SRC_LINE] strlcpy(buf,str,sizeof(buf));

Figure 6.4. Example of diagnosis report

eypots, this is clearly not a viable solution for production level and mission critical

systems. This is due to the fact that allowing these attacks to proceed may lead to

privilege escalation and the attacker will be able to subvert the defense and response

mechanism of the system.

Di↵erent response mechanisms may be desirable for di↵erent scenarios. For ex-

ample, for remote attacks against network applications such as a web server, an ap-

propriate response would be to block the remote IP address. However, if the attacker

is a local user on a system attempting privilege escalation, then blocking remote IP

address will not help and the system must respond by restricting access to the appli-

cation until it has been fixed, patch the vulnerability and redeploy the application.

Also, the type of response deployed depends on the type of attack and the applica-

tion being attacked. For example, an appropriate response for code injection attacks

127

Response action: patch buffer

1. Identify source
code for vulnerable

function

2. Run static
analysis tool on

these source lines

Attack
Diagnosis

Report

3. Generate patch
to replace unsafe

functions

4. Compile and
relaunch process

Figure 6.5. Response action: Patch bu↵er overflow

would be to turn on W �X protection, but this response will not be e↵ective against

a code reuse attack. To allow for this flexibility, ROPShield uses a configuration file

that allows one to specify the response rules that determine the response actions to be

deployed when a certain type of attack is detected. These response rules also indicate

whether the response should be deployed manually or automatically.

6.3.1 Response Actions

When an attack is detected, a post-attack response must be deployed. As men-

tioned earlier, this can be either short term response or long term response. In this

section, we present two long term response actions - patch bu↵er overflow and deploy

code randomization in further detail. We do not discuss short term response actions

(such as kill target process) as their implementation is quite straightforward and does

not pose any interesting challenges.

128

6.3.2 Response Action: Patch Bu↵er Overflow

This long term response action aims at patching the bu↵er overflow vulnerability

that is exploited by the ROP attack. Our approach targets unsafe library functions

such as strcpy that copies char data from a source bu↵er to a destination bu↵er

until it encounters a null character. strcpy does not do any bounds check while

copying this data. This allows a malicious entity to overflow the destination bu↵er

and overwrite return address to hijack the control flow of victim application.

This response action leverages the fine grained diagnosis information generated

during the diagnosis phase to identify and patch the bu↵er. Figure 6.5 indicates the

various steps involved in deploying this response action.

Running Example

In the discussion that follows, we use the following running example to illustrate

our approach.

36 void vuln (char* buff) {

37 char tmp[8] = { ‘\0’ };

38 strcpy(tmp, buff);

39 printf("-> %s\n", tmp);

40 }

In this example, vuln is a vulnerable function with bu↵er overflow vulnerability. It

declares a char bu↵er, tmp, that is statically allocated with 8 bytes (line 37). This

function calls the unsafe library function strcpy in line 38 that copies the contents of

bu↵er buff to bu↵er tmp. The strcpy function does not perform any bounds check

while copying the bu↵er. Thus, if buff is longer than 8 bytes and does not contain a

null terminating character, then the execution of the function will overwrite the data

on the stack. This can be used to craft malicious attack where the attacker supplies

129

a carefully crafted buff to overwrite the return address on stack and redirect control

to the first gadget of the ROP exploit code.

Identifying the Vulnerability

The first step of this response action is to identify the exact vulnerability in the

source code of the application. When ROPShield detects an illegal control flow due

to ROP, it also identifies the function that contains the vulnerable bu↵er. At this

stage, only the address in the ELF binary and the corresponding symbol name are

known. In our running example ROPShield would produce the following diagnosis

information:

...

[Vulnerable function] vuln()

[Start address] 0x08048ef6

[End address] 0x08048f31

...

This diagnosis information indicates that ROPShield detected a vulnerability in the

vuln function between addresses 0x08048ef6 and 0x08048f31. These addresses are

the function boundaries.

This information along with the debugging information in the ELF binary is used

to identify the corresponding line numbers in the source file. Specifically, the response

action invokes the addr2line tool to extract this information from the ELF binary.

addr2line tool translates the addresses into source file names and line numbers. For

the above example, this tool would produce the following output:

0x08048ef6: vuln at /home/alice/test/example.c:37

0x08048f31: vuln at /home/alice/test/example.c:42

This means that the vulnerable function vuln is contained between lines 37 and 42

in the source file example.c.

130

Once this information is obtained, the response action analyzes these line numbers

by invoking a static analysis tool which identifies unsafe library functions and static

bu↵ers that are used in this line number range. The advantage of using analysis tools

on these line numbers rather than the entire source is that this will be more accurate

and e�cient. The modular design of ROPShield allows integration of various static

analysis tools to perform this step. For our implementation, we chose to integrate

flawfinder tool [99] in this static analysis step.

Flawfinder analyzes the source code according to an existing set of rules to

find the potential vulnerability. Using this tool on the source files and line numbers

identified in the above step gives the following output:

test/ndh_rop.c:40: [4] (buffer) strcpy: Does not check for buffer

overflows when copying to destination. Consider using strncpy or

strlcpy (warning, strncpy is easily misused).

test/ndh_rop.c:38: [2] (buffer) char: Statically-sized arrays can be

overflowed. Perform bounds checking, use functions that limit length,

or ensure that the size is larger than the maximum possible length.

This information indicates that the unsafe library function strcpy is used in line 38

and can lead to potential bu↵er overflow. Further, it also identifies the bu↵er tmp

in line 37 as a statically allocated bu↵er that can be overflown. Once these unsafe

functions have been identified, the response action proceeds to the next step, that is,

generating the source patch as discussed below.

Generating the Source Patch

The next step after the unsafe function is identified is to patch the source code

with the safe variant of this function. The safe variant of this function takes the length

of the destination bu↵er as input to perform bounds checking. Before replacing the

unsafe function with its safe variant, the response action must estimate the destination

bu↵er size. If the destination bu↵er is a statically allocated char bu↵er, then the

131

bu↵er size is computed using the sizeof(.) function on the destination bu↵er.

However, if the destination bu↵er is a char pointer, then one needs to perform a

backward analysis to identify the statically allocated char bu↵er that it points to

before applying the sizeof operator. Following is an example of this scenario.

400 void func (char *src) {

401 char dest[25] = { ‘\0’ };

...

410 char *destptr = dest;

...

417 strcpy (destptr, src);

418 }

The response action now replaces the unsafe libc function with its safe variant. In

our example above, strcpy is replaced with strlcpy that performs bounds checking

while copying to the char bu↵er. The function call in line 38 of our working example

is now replaced with:

38 strlcpy(tmp, buff, sizeof(tmp));

After this patch is applied to the source code, the source code is recompiled and

the application is restarted. Since all the above steps are performed automatically

by ROPShield’s response component, the availability of the victim application is

significantly improved when compared to the traditional approach where a security

administrator has to manually examine log files and application code to identify the

vulnerability and fix it.

6.3.3 Response Action: Deploy Code Randomization

Another long term response action is to deploy preventive security mechanisms

that will strengthen a system against ROP attacks. One such mechanism is code

randomization which defends against ROP attacks even in the presence of bu↵er

overflow vulnerability.

132

The underlying assumption behind any ROP attack is that the attacker is aware

of the entire layout of the process. That is, he/she knows the exact address of each

instruction in the executable code. This is used to identify useful gadgets and craft

the exploit payload. A code randomization-based ROP defense technique called Mar-

lin [96] can be used to break this assumption and thwart ROP attacks. Marlin

randomizes an application’s code by shu✏ing around the code blocks according to

a random permutation. This randomization is performed at run-time, that is, the

application executes with a di↵erent code layout with every execution. This denies

attacker any knowledge of the addresses where various instructions are loaded, thus

making it impossible to craft a valid ROP exploit.

Marlin uses a whitelist to specify which applications to randomize with every

execution. This whitelist serves as the integration point for using Marlin as a re-

sponse action within ROPShield. When ROPShield detects an ROP attack against

an application, the application is terminated, added to Marlin’s whitelist and then

restarted. This new execution of the vulnerable application uses a randomized layout,

thus thwarting future ROP attempts.

Integrating the Marlin randomization approach with ROPShield has multiple ad-

vantages. First, it enables a selective application of the Marlin technique on a demon-

strated need basis. Security mechanisms are often considered prohibitive which leads

to these mechanisms to not be used in the first place. However, applying such de-

fense mechanisms in response to detected attacks can improve the adoption of such

techniques. Second, ROPShield can be deployed on both randomized (according to

Marlin) and unrandomized binaries. While running ROPShield on a Marlin-processed

binary provides an extra degree of security, using only Marlin without ROPShield can

provide better e�ciency. Depending on the application requirements, the administra-

tor can choose to turn o↵ ROPShield once the randomization based response using

Marlin has been deployed.

133

6.4 Implementation and Evaluation

We have implemented a prototype of ROPShield for 32-bit x86 architecture on

Ubuntu 12.04 operating system. We now discuss the implementation details of ROP-

Shield.

6.4.1 Detection and Diagnosis Component

The first step of the ROPShield detection component is the preprocessing step

that is responsible for identifying the function block boundaries in the executable

code. We use the objdump utility to disassemble the binary and parse symbol infor-

mation along with the start and end address of each symbol. Another information

retrieved during this stage is the identification of functions that execute without es-

tablishing their own stack frame. We noticed that some small functions in libc such

as libc read demonstrated this behavior. Since these functions do not establish

their own stack frame, they execute from the function context of the caller function.

Since ROPShield identifies this as illegal execution, this resulted in false positives.

To address this issue, we identify and mark such functions during preprocessing stage

to exempt these functions from the constraint evaluation. This identification is ex-

ecuted by searching for instruction sequence push %ebp; mov %ebp, %esp which is

the standard instruction sequence to establish a stack frame for a function. This pre-

processing step needs to be executed just once per application and can be performed

o✏ine. The information generated during this phase can be used for future runs of

the application.

To protect an application using ROPShield, we need the ability to continuously

monitor its execution. This is implemented by invoking the target application using a

wrapper that allows ROPShield to trace it, that is, the target application is forked as

a child process of ROPShield and tracing is executed by invoking the PTRACE TRACEME

request. For the tracing functionality, we decided to write our own tracer instead of

using the available trace utilities or debuggers such as ltrace, strace, gdb. The

134

reason is that we need to control and monitor the execution at a much finer granu-

larity without incurring significant overhead. Our implementation of tracer uses the

ptrace system call that is the foundation of several tracing and debugging tools in-

cluding ltrace, strace and gdb. We introduce a breakpoint just before the main()

function call which is the point after which the process execution needs to be care-

fully monitored. Once the main() function is encountered, we single step through

the instructions using the PTRACE SINGLESTEP mode of the ptrace method.

At each instruction execution, we monitor the following variables: the stack

pointer (%esp), the instruction pointer (%eip), and the current instruction being

executed. The current instruction being executed is retrieved from /proc/[pid]/mem

file for the target process. We also maintain a stack of functions that corresponds

to the function frames on the real stack. This is used for verifying the execution

constraints C2 and C3.

In our initial implementation we used distorm3 [100], a disassembler library, to

disassemble and decode the instructions retrieved in each step. This can lead to

unnecessary overhead as we are only interested in knowing the instruction type of

an instruction to identify whether it is a control flow instruction (such as jump, call

or ret). To get this information from distorm3, we had to disassemble the complete

instruction. To eliminate this overhead, we wrote our own lightweight disassembler

that only looks at instruction opcodes to determine the type of instruction without

disassembling it completely.

While implementing the prototype for ROPShield, we had to handle some special

cases that are exceptions to typical control flow or use uncommon coding conven-

tions. Functions that execute without a stack frame is one example of this. Another

exception is a special return sequence, repz ret that is used instead of just ret for

performance reasons.

ROPShield uses various files such as configuration file and attack definition file to

configure its behavior. If an attacker can modify these files, he/she can easily bypass

ROPShield protection. Thus it is important that these files be stored securely. In

135

our current implementation, these files are stored in the installation directory of

ROPShield and are write-protected so that they can be modified only by root user.

6.4.2 Response Component

ROPShield integrates various response actions that are specified in the response

definition file. The structure of response definition file (see section 6.1) makes it

trivial to add new response actions which can be implemented as separate modules

and then invoked from ROPShield.

The current implementation of ROPShield supports various response actions such

as process termination, process restart, patch bu↵er overflow, and code randomiza-

tion. Each response is implemented as a separate perl script that extracts the required

information from the diagnosis report to process its response logic. The command to

invoke this perl script along with its arguments is specified in the response definition

file. This response definition file is also write-protected and is writable only by the

root user. When ROPShield detects an attack, it reads the configuration file to iden-

tify the responses to be deployed, their mode of deployment (automatic or manual)

and the order according to which responses must be deployed. If a response action

in this response sequence is marked with manual deployment, ROPShield raises an

alarm for security administrator and continues deploying the remaining automatic

responses.

One of the response actions, patch bu↵er overflow, is a long term response that

aims at permanently fixing the vulnerability in the source code. Figure 6.5 provides

an overview of this response action. The first step, that is, the identification of the

source file requires debug headers to be present in the ELF executable. This requires

that the source code is compiled using the debug flag (-g). We use the addr2line

utility to get the source file and line number mapping for a given instruction address.

We provide the start and end address of the function symbol (as obtained during

preprocessing stage, see section 6.4.1) as input to addr2line to get the line numbers

136

corresponding to the source of vulnerable function. Once we have this information,

we use flawfinder, a static analysis tool, on this source file and extract only those

hits that correspond to the lines in this function’s source. This helps in eliminating

several false positives that are detected by flawfinder. Next, we analyze the hit

list to identify the use of unsafe library functions and statically allocated bu↵ers.

These functions are then replaced with their safe variants that use the estimated

destination bu↵er size to prevent bu↵er overflow. All these steps are integrated into

one perl script that is invoked by ROPShield while deploying this response action.

The substitution of unsafe library functions with their safe variants is done ac-

cording to a set of replacement rules. The functions strcpy, strcat and sprintf

are replaced with strlcpy, strlcat and snprintf, respectively, that take an addi-

tional argument which is the destination bu↵er size. The vulnerable function gets

is replaced with fgets that takes two additional arguments – the destination bu↵er

size and input stream (in this case, stdin). Further, for functions such as strncpy

or snprintf that already take a size argument as input, the size argument may be

incorrectly specified by the developer. If such a function is detected, then the size

parameter is replaced with a ternary expression that takes the minimum of original

size argument and the estimated size of destination bu↵er. Also, for cases where the

substituted function is either strlcpy or strlcat, the patched program needs to be

compiled with libbsd since these functions are not a part of standard libc on Linux

systems.

Our design leverages existing analysis tools such as flawfinder to identify vulner-

able function. Thus, the accuracy of our diagnosis and response components depends

from the accuracy of the external tools that we integrate. However, the fine grained

diagnosis information generated by ROPShield reduces the scope of search, thus in-

creasing the accuracy of the tool. The flawfinder tool can be replaced by other

analysis tools as well that may provide more precise information. One advantage in

using flawfinder is that all vulnerable functions identified in our search scope will

137

be fixed, rather than just fixing one vulnerable function that was responsible for the

overflow.

To fix the bu↵er overflow automatically, an obvious requirement is that the source

code be available on the system on which ROPShield is executing. However, in some

scenarios (for example, proprietary code) it may not be possible to make the source

code available on the deployed system. The response action for fixing bu↵er overflow,

as discussed above, only takes the diagnosis report as input. Thus, in such scenar-

ios, one can consider an architecture where the response component will send this

diagnosis report to an application maintenance server as feedback. The application

maintenance server, that contains the source code will fix the bu↵er overflow vulner-

ability in source, recompile the software and then push the updated application over

the network. That is, when the source code is unavailable, the patch can be generated

remotely and deployed to multiple systems at once.

6.4.3 Evaluation

We evaluated the e↵ectiveness of detection, diagnosis and response components

of ROPShield by testing it with various exploits (see section 6.4.3). The tests were

performed on a 32-bit x86 machine with Ubuntu 12.04 operating system.

Exploit dataset

To evaluate the e↵ectiveness of our approach, we tested ROPShield against 9

code-reuse exploits that were collected from di↵erent sources. These exploits are

summarized in Table 6.1. The first two exploits, RG1 and RG2, are from the test

cases that were included with the ROPgadget attack tool v4 [98]. ROPgadget is a

ROP attack tool able to automatically find relevant gadgets and create the attack

payload. The first attack payload (referred to as ‘shellcode 1’ in Table 6.1) spawned

a shell while the second attack made a bind shell code to listen at a specified port.

138

Table 6.1.
Exploit summary

ID Exploit Source Vulnerability cause Exploit Payload

Type

RG1 ROPgadget v4 testcase Unsafe function strcpy ROP shellcode 1

RG2 ROPgadget v4 testcase Unsafe function strcpy ROP bind port

EDB1 Exploit-DB#17286(a) [101] Unsafe function strcpy Ret-to-libc shellcode 2

EDB2 Exploit-DB#17286(b) [101] Unsafe function strcpy Ret-to-libc shellcode 3

SRD1 NIST SRD Testcase #1563 Unsafe function gets ROP shell code 1

SRD2 NIST SRD Testcase #1600 Unsafe function strcpy ROP shellcode 1

SRD3 NIST SRD Testcase #1616 Incorrect size in snprintf ROP shellcode 1

SRD4 NIST SRD Testcase #1636 Unsafe function sprintf ROP shellcode 1

SRD5 NIST SRD Testcase #2081 Unsafe function strcat ROP shellcode 1

Both these attacks bypass ASLR protection as the gadgets were constructed from

application’s code and not library code.

The next two attacks, EDB1 and EDB2, are from Exploit Database (EDB) [102]

which is a repository for exploits and vulnerable software. For the EDB exploits, we

followed the instructions in the documentation to manually create our own vulnerable

application and exploit. These EDB exploits that we used are advanced return to

libc attacks that bypass ASCII armor protection. The two variants of this attack use

di↵erent shell code. The first one (referred to as ‘shellcode 2’ in Table 6.1) uses a

hardcoded address of “/bin/sh” string from shell environment. The second variant

(referred to as ‘shellcode 3’ in Table 6.1) is more robust as it uses calls to strcpy

to dynamically create the “/bin/sh” string by copying each ASCII character from a

di↵erent location.

The next five attacks, SRD1-SRD5, were constructed for vulnerable code samples

taken from the NIST SAMATE’s Reference dataset [103]. We selected five test cases

with weakness CWE-121, that is, Stack based bu↵er overflow. Not all code samples

with this vulnerability are usable for our evaluation since in some cases the bu↵er

overflow can only be used to crash a program and not to hijack the control flow.

Examples of such test cases include incorrect length checking such as o↵-by-one error.

139

We only selected the test cases that could be exploited to launch a meaningful ROP

attack. Also, as can be seen in column 3 of Table 6.1, we selected test cases with

di↵erent vulnerable functions. For each of these test cases, we used the ROPgadget

v4 attack tool to craft the exploit payload (‘shellcode 1’) to spawn a shell.

We evaluated ROPShield on these exploits and the results are summarized in

Table 6.2

Exploit Detection

For each of these test cases, we executed the vulnerable program with ROPShield

tracing enabled and provided exploit payload as input. As shown in Table 6.1, our test

cases used 4 di↵erent type of exploit payloads amongst 9 test cases to test ROPShield

with di↵erent exploit payloads. ROPShield was successful in detecting and stopping

all of the nine attacks. All of these attacks violated the execution constraints by

returning to another function that was not in the call stack. We also tested ROPShield

with some non-malicious inputs and did not find any false positives.

Exploit Diagnosis

Once ROPShield detected these exploits, it also generated a diagnosis report for

each exploit. The diagnosis report generated by one of these test cases, SRD2 is

shown as an example in Figure 6.4. As shown in column 3 of Table 6.2, ROPShield

correctly diagnosed the type of attack that was stopped. In addition, it also correctly

identified other diagnosis information such as the vulnerable function. We also tested

these samples with random long strings as input that overflow the bu↵er and crash the

program but do not have any attack logic encoded in them. In these cases, ROPShield

halts the execution of target application and does not label this as an attack. Hence,

this information can be used to di↵erentiate between an attack payload and a random

crash due bu↵er overflow.

140

Response Evaluation

The response component of ROPShield uses the diagnosis report generated in pre-

vious step as input to deploy appropriate response. We evaluated the correctness of

response component that is responsible for fixing bu↵er overflow. In all of the nine

test cases discussed above, ROPShield was able to correctly identify the source code

line responsible for overflow and correctly patch it. Most of these patches involved

replacing an unsafe library function with its safe variant that performs bounds check-

ing. A summary of these substitutions in presented in last column of Table 6.2. One

interesting case was SRD3 that was using snprintf with a size parameter, but the

size argument passed to this function call was incorrect. Following is a code snippet

from this test case where line 37 allows at most 1024 bytes to be copied to bu↵er buf

that has a maximum capacity of 40 bytes.

31 #define MAXSIZE 40

33 void test(char *str)

34 {

35 char buf[MAXSIZE];

...

37 snprintf(buf,1024, "%s", str);

...

39 }

In the above test case, the response action replaced line 37 with the corrected

bu↵er size as shown below:

37 snprintf(buf,((sizeof(buf)<1024)?sizeof(buf):1024), "%s", str);

After the response action fixed the vulnerabilities in these 9 test cases, we restarted

these test cases and tested them again with the exploit code. All the patched pro-

grams truncated the exploit code to the size of bu↵er and prevented bu↵er overflow.

Thus, the response action was able to correctly identify and fix the bu↵er overflow

vulnerabilities in these test cases.

141

Table 6.2.
ROPShield evaluation

ID Detected by Diagnosis of Identification of Response deployed:

ROPShield Exploit Type Unsafe Function Fix bu↵er overflow

RG1 Yes ROP strcpy Replace strcpy with strlcpy

RG2 Yes ROP strcpy Replace strcpy with strlcpy

EDB1 Yes Ret-to-libc strcpy Replace strcpy with strlcpy

EDB2 Yes Ret-to-libc strcpy Replace strcpy with strlcpy

SRD1 Yes ROP gets Replace gets with fgets

SRD2 Yes ROP strcpy Replace strcpy with strlcpy

SRD3 Yes ROP snprintf Correct size parameter for snprintf

SRD4 Yes ROP sprintf Replace sprintf with snprintf

SRD5 Yes ROP strcat Replace strcat with strlcat

6.5 Conclusion

In this work we have proposed a comprehensive framework for detecting, diag-

nosing and responding against ROP attacks. The detection component uses a novel

technique for identifying ROP execution based on evaluating certain execution con-

straints. The diagnosis component is responsible for identifying the type of attack

and collecting diagnostic information to pass on to the response component. We have

implemented a prototype of ROPShield framework and present an evaluation of our

approach using this prototype implementation.

Our detection approach o↵ers several advantages over existing defense techniques.

First, the detection component operates directly on the executable and does not re-

quire the source code of the target application. The source code is only required when

the response action needs to generate a patch for source code. Second, unlike other

control flow analysis approaches, our technique does not require the complete control

flow graph (CFG) of the application as we check for certain execution constraints

instead of verifying the control flow integrity against the complete CFG. Third, our

technique does not require any code instrumentation or modification in the execution

semantics. Thus, the target process executes normally and our technique observes it

142

without modifying its execution path. Fourth, our technique detects and stops ROP

attacks in real time. This is very important as it makes it possible to diagnose the

cause of the attack and respond to it in a suitable manner. Diversification based

techniques that randomize the target binary will crash the application when ROP

attack fails. These diversification based approaches do not provide enough diagnostic

information and the diagnosis cannot be done in real time.

While our approach promises several advantages, it also has certain limitations.

Correct identification of function blocks is an important requirement for our detection

technique. Thus, our detection technique may not work with obfuscated code and

stripped binaries where it is not possible to distinguish the function boundaries. Also,

our technique requires the code for target binary to be modular. If the vulnerable

bu↵er is present in a very large function, then the attacker might be able to build

an exploit payload using addresses within that function itself without the need to

switch function contexts during attack execution. Lastly, since the implementation of

ROPShield’s detection component uses tracing technique based on ptrace, the traced

application will incur a performance hit during runtime. However, this overhead can

be reduced by using alternate tracing techniques [104,105] that are more e�cient.

143

7 SUMMARY

In this dissertation, we have discussed various aspects of enforcing contextual access

control in a secure manner. First, we proposed a context profiling framework to

automatically infer contexts of interest for a user and intuitively configure access

control policies. Since presence of other users in proximity is an important contextual

factor for access control applications, we proposed a formal proximity model for RBAC

systems. We applied this proximity model to realms other than just geographical

proximity such as social proximity and cyber proximity.

For securing the policy enforcement system against code reuse attacks, we pro-

posed a fine grained randomization based technique that diversifies a binary with

every execution. Our proposed solution is applicable for various systems based on

x86 architecture, but can be extended to other architecture as well, for instance ARM

and AVR architectures. Embedded systems such as those based on Harvard archi-

tecture have been shown to be vulnerable to code reuse attacks [90]. Extending our

approach to secure these systems against code reuse attacks will involve architecture

specific implementation and tackling unique challenges posed by these systems such

as adapting our approach for constrained resources.

We also proposed ROPShield defense framework that uses run-time monitoring

to detect a ROP attack in real time and generates an attack diagnosis report to

identify the type and cause of the attack. It uses this diagnosis report to deploy

appropriate response such as patching the bu↵er overflow vulnerability. Runtime

attack diagnosis is a novel approach with several interesting research directions. For

instance, diagnostic information can be used to perform attack forensics, that is,

understand the purpose of an attack. This type of attack forensics allows deploying

appropriate responses to protect the sensitive data that is the target of the attack.

Attack diagnosis can also be used to apply preventive responses to applications that

144

have not yet been attacked. For example, response actions can automatically be

applied to applications that are similar to the application that was attacked. This

would require understanding how to identify similar applications. Our current work

focuses on bu↵er overflow attacks but future research directions can include extending

this attack diagnosis to other types of attacks as well, such as heap overflow and

integer overflow attacks.

REFERENCES

145

REFERENCES

[1] Anind K. Dey. Understanding and using context. Personal and Ubiquitous
Computing, 5(1):4–7, January 2001.

[2] Michael S. Kirkpatrick, Maria Luisa Damiani, and Elisa Bertino. Prox-
RBAC: A proximity-based spatially aware RBAC. In Proceedings of 19th ACM
SIGSPATIAL International Conference on Advances in Geographic Information
Systems (GIS), pages 339–348, 2011.

[3] Eliseo Clementini, Paolino Di Felice, and Peter van Oosterom. A small set of
formal topological relationships suitable for end-user interaction. In Proceedings
of 3rd International Symposium on Advances in Spatial Databases (SSD), pages
277–295, London, UK, 1993. Springer-Verlag.

[4] Hovav Shacham, Matthew Page, Ben Pfa↵, Eu-Jin Goh, Nagendra Modadugu,
and Dan Boneh. On the e↵ectiveness of address-space randomization. In Pro-
ceedings of the 11th ACM Conference on Computer and Communications Se-
curity, CCS ’04, pages 298–307, New York, NY, USA, 2004. ACM.

[5] Long Vu, Quang Do, and Klara Nahrstedt. Jyotish: A novel framework for con-
structing predictive model of people movement from joint wifi/bluetooth trace.
In 9th IEEE International Conference on Pervasive Computing and Communi-
cations (PerCom), 2011.

[6] Changqing Zhou, Dan Frankowski, Pamela Ludford, Shashi Shekhar, and Loren
Terveen. Discovering personally meaningful places: An interactive clustering
approach. ACM Transactions on Information Systems (TOIS), 25, July 2007.

[7] Petteri Nurmi and Sourav Bhattacharya. Identifying meaningful places: The
non-parametric way. In Proceedings of the 6th International Conference on
Pervasive Computing, Pervasive ’08, pages 111–127. Springer-Verlag, 2008.

[8] Eric Paulos and Elizabeth Goodman. The familiar stranger: Anxiety, comfort
and play in public places. In CHI ’04: Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, pages 223–230. ACM, 2004.

[9] Rachel Greenstadt and Jacob Beal. Cognitive security for personal devices. In
Proceedings of the 1st ACM Workshop on AISec, pages 27–30. ACM, October
2008.

[10] Markus Jakobsson, Elaine Shi, Philippe Golle, and Richard Chow. Implicit
authentication for mobile devices. In Proceedings of the 4th USENIX Confer-
ence on Hot Topics in Security, HotSec’09, Berkeley, CA, USA, 2009. USENIX
Association.

146

[11] George Danezis. Inferring privacy policies for social networking services. In
Proceedings of the 2nd ACM Workshop on Security and Artificial Intelligence,
AISec ’09, pages 5–10, New York, NY, USA, 2009. ACM.

[12] Mauro Conti, Vu Thien Nga Nguyen, and Bruno Crispo. Crepe: Context-
related policy enforcement for Android. In Proceedings of the 13th International
Conference on Information Security, ISC’10, pages 331–345. Springer-Verlag,
2011.

[13] Patrick Gage Kelley, Paul Hankes Drielsma, Norman Sadeh, and Lorrie Faith
Cranor. User-controllable learning of security and privacy policies. In Proceed-
ings of the 1st ACM Workshop on AISec, AISec ’08, pages 11–18, New York,
NY, USA, 2008. ACM.

[14] W. Keith Edwards, Erika Shehan Poole, and Jennifer Stoll. Security automation
considered harmful? In NSPW ’07: Proceedings of the 2007 Workshop on New
Security Paradigms, pages 33–42. ACM, 2008.

[15] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E. Youman.
Role-based access control models. IEEE Computer, 29(2):38–47, February 1996.

[16] Maria Luisa Damiani, Elisa Bertino, Barbara Catania, and Paolo Perlasca.
GEO-RBAC: A spatially aware RBAC. ACM Transactions on Information and
System Security (TISSEC), 10(1), February 2007.

[17] Indrakshi Ray, Mahendra Kumar, and Lijun Yu. LRBAC: A location-aware
role-based access control model. In Proceedings of International Conference on
Information Systems Security (ICISS), pages 147–161, 2006.

[18] Avigdor Gal and Vijayalakshmi Atluri. An authorization model for temporal
data. In Proceedings of the 7th ACM Conference on Computer and Communi-
cations Security, CCS ’00, pages 144–153, New York, NY, USA, 2000. ACM.

[19] Subhendu Aich, Shamik Sural, and Arun K. Majumdar. STARBAC: Spatiotem-
poral role based access control. In OTM Conferences, 2007.

[20] S. Chandran and J. Joshi. LoT RBAC: A location and time-based RBAC
model. In Proceedings of 6th International Conference on Web Information
Systems Engineering (WISE), pages 361–375. Springer-Verlag, 2005.

[21] Vijayalakshmi Atluri and Soon Ae Chun. A geotemporal role-based authorisa-
tion system. In International Journal of Information and Computer Security,
volume 1, pages 143–168, 2007.

[22] Michael J. Covington, Wende Long, Srividhya Srinivasan, Anind K. Dev, Mus-
taque Ahamad, and Gregory D. Abowd. Securing context-aware applications
using environment roles. In Proceedings of 6th ACM Symposium on Access
Control Models and Technologies (SACMAT ’01), pages 10–20, 2001.

[23] Devdatta Kulkarni and Anand Tripathi. Context-aware role-based access con-
trol in pervasive computing systems. In Proceedings of the 13th ACM Sympo-
sium on Access Control Models and Technologies, SACMAT ’08, pages 113–122,
New York, NY, USA, 2008. ACM.

147

[24] Guangsen Zhang and Manish Parashar. Context-aware dynamic access control
for pervasive applications. In Proceedings of the Communication Networks and
Distributed Systems Modeling and Simulation Conference, pages 21–30, 2004.

[25] Frode Hansen and Vladimir Oleschuk. SRBAC: A spatial role-based access
control model for mobile systems. In Proceedings of 8th Nordic Workshop on
Secure IT Systems (NORDSEC), pages 129–141, October 2003.

[26] Michael S. Kirkpatrick and Elisa Bertino. Enforcing spatial constraints for
mobile RBAC systems. In Proceedings of 15th ACM Symposium on Access
Control Models and Technologies (SACMAT), pages 99–108, New York, NY,
USA, 2010. ACM.

[27] Christian S. Jensen, Hua Lu, and Bin Yang. Indoor: A new data management
frontier. IEEE Data Engineering Bulletin, 33(2):12–17, June 2010.

[28] Christian S. Jensen, Hua Lu, and Bin Yang. Graph model based indoor tracking.
In 10th International Conference on Mobile Data Management (MDM), pages
122–131, 2009.

[29] Christos K. Georgiadis, Ioannis Mavridis, George Pangalos, and Roshan K.
Thomas. Flexible team-based access control using contexts. In Proceedings of
6th ACM Symposium on Access Control Models and Technologies (SACMAT),
pages 21–27, New York, NY, USA, 2001. ACM.

[30] S. M. Didar-Al-Alam, Hasan Mahmud, and Md. Abdul. Mottalib. Modifica-
tions in proximity based access control for multiple user support. International
Journal of Engineering Science and Technology, 2:3603–3613, 2010.

[31] Sandeep K. S. Gupta, Tridib Mukherjee, Krishna K. Venkatasubramanian, and
T. B. Taylor. Proximity based access control in smart-emergency departments.
In Proceedings of 4th Annual IEEE International Conference on Pervasive Com-
puting and Communications Workshops (PERCOMW), pages 512–, Washing-
ton, DC, USA, 2006. IEEE Computer Society.

[32] Crispin Cowan, Calton Pu, Dave Maier, Heather Hinton, Jonathan Walpole,
Peat Bakke, Steve Beattie, Aaron Grier, Perry Wagle, and Qian Zhang. Stack-
Guard: Automatic adaptive detection and prevention of bu↵er-overflow attacks.
In Proceedings of the 7th USENIX Security Symposium, pages 63–78, 1998.

[33] Vendicator. StackShield: A “stack smashing” technique protection tool for
linux. http://www.angelfire.com/sk/stackshield/.

[34] Hilmi Ozdoganoglu, T. N. Vijaykumar, Carla E. Brodley, Benjamin A. Kuper-
man, and Ankit Jalote. Smashguard: A hardware solution to prevent security
attacks on the function return address. IEEE Transactions on Computers,
55(10):1271–1285, October 2006.

[35] Timothy K. Tsai and Navjot Singh. Libsafe: Protecting critical elements of
stacks. 2001.

[36] Sandeep Bhatkar, Daniel C. Duvarney, and R. Sekar. Address obfuscation:
An e�cient approach to combat a broad range of memory error exploits. In
Proceedings of the 12th USENIX Security Symposium, pages 105–120, 2003.

148

[37] PaX Team. PaX. http://pax.grsecurity.net/.

[38] Ana Nora Sovarel, David Evans, and Nathanael Paul. Where’s the FEEB? The
e↵ectiveness of instruction set randomization. In Proceedings of the 14th Con-
ference on USENIX Security Symposium – Volume 14, pages 10–10, Berkeley,
CA, USA, 2005. USENIX Association.

[39] Giampaolo Fresi Roglia, Lorenzo Martignoni, Roberto Paleari, and Danilo Br-
uschi. Surgically returning to randomized lib(c). In Proceedings of the 2009
Annual Computer Security Applications Conference, ACSAC ’09, pages 60–69,
Washington, DC, USA, 2009. IEEE Computer Society.

[40] Jason Hiser, Anh Nguyen-Tuong, Michele Co, Matthew Hall, and Jack W.
Davidson. ILR: Where’d my gadgets go? In Proceedings of the 2012 IEEE
Symposium on Security and Privacy, SP ’12, pages 571–585, Washington, DC,
USA, 2012. IEEE Computer Society.

[41] Vasilis Pappas, Michalis Polychronakis, and Angelos D. Keromytis. Smash-
ing the gadgets: Hindering return-oriented programming using in-place code
randomization. In IEEE Symposium on Security and Privacy, pages 601–615,
2012.

[42] Lucas Vincenzo Davi, Alexandra Dmitrienko, Stefan Nürnberger, and Ahmad-
Reza Sadeghi. Gadge me if you can: Secure and e�cient ad-hoc instruction-
level randomization for x86 and ARM. In Proceedings of the 8th ACM SIGSAC
Symposium on Information, Computer and Communications Security, ASIA
CCS ’13, pages 299–310, New York, NY, USA, 2013. ACM.

[43] RichardWartell, Vishwath Mohan, Kevin W. Hamlen, and Zhiqiang Lin. Binary
stirring: Self-randomizing instruction addresses of legacy x86 binary code. In
Proceedings of the 2012 ACM Conference on Computer and Communications
Security, CCS ’12, pages 157–168, New York, NY, USA, 2012. ACM.

[44] Chongkyung Kil, Jinsuk Jun, Christopher Bookholt, Jun Xu, and Peng Ning.
Address space layout permutation (ASLP): Towards fine-grained randomization
of commodity software. In Proceedings of the 22nd Annual Computer Security
Applications Conference, ACSAC ’06, pages 339–348, Washington, DC, USA,
2006. IEEE Computer Society.

[45] Sandeep Bhatkar, R. Sekar, and Daniel C. DuVarney. E�cient techniques for
comprehensive protection from memory error exploits. In Proceedings of the 14th
Conference on USENIX Security Symposium – Volume 14, SSYM’05, pages 17–
17, Berkeley, CA, USA, 2005. USENIX Association.

[46] Tom Roeder and Fred B. Schneider. Proactive obfuscation. ACM Transactions
on Computer Systems (TOCS), 28:4:1–4:54, July 2010.

[47] MSDN Microsoft. /ORDER (Put Functions in Order). http://msdn.
microsoft.com/en-us/library/00kh39zz.aspx.

[48] MSDN Microsoft. Profile-guided Optimizations. http://msdn.microsoft.
com/en-us/library/e7k32f4k.aspx.

149

[49] Lucas Davi, Ahmad-Reza Sadeghi, and Marcel Winandy. Dynamic integrity
measurement and attestation: Towards defense against return-oriented pro-
gramming attacks. In Proceedings of the 2009 ACM Workshop on Scalable
Trusted Computing, STC ’09, pages 49–54, New York, NY, USA, 2009. ACM.

[50] Lucas Davi, Ahmad-Reza Sadeghi, and Marcel Winandy. ROPdefender: a
detection tool to defend against return-oriented programming attacks. In Pro-
ceedings of the 6th ACM Symposium on Information, Computer and Commu-
nications Security, ASIACCS ’11, pages 40–51, New York, NY, USA, 2011.
ACM.

[51] Ping Chen, Xiao Xing, Hao Han, Bing Mao, and Li Xie. E�cient detection of the
return-oriented programming malicious code. In Proceedings of the 6th Interna-
tional Conference on Information Systems Security, ICISS’10, pages 140–155,
Berlin, Heidelberg, 2010. Springer-Verlag.

[52] Yueqiang Cheng, Zongwei Zhou, Miao Yu, Xuhua Ding, and Robert Deng.
ROPecker: A generic and practical approach for defending against ROP attacks.
In Symposium on Network and Distributed System Security (NDSS), 2014.

[53] Kaan Onarlioglu, Leyla Bilge, Andrea Lanzi, Davide Balzarotti, and Engin
Kirda. G-free: Defeating return-oriented programming through gadget-less
binaries. In Proceedings of the 26th Annual Computer Security Applications
Conference, ACSAC ’10, pages 49–58, New York, NY, USA, 2010. ACM.

[54] Jinku Li, Zhi Wang, Xuxian Jiang, Michael Grace, and Sina Bahram. Defeating
return-oriented rootkits with “return-less” kernels. In Proceedings of the 5th
European Conference on Computer Systems, EuroSys ’10, pages 195–208, New
York, NY, USA, 2010. ACM.

[55] Michael Franz. E unibus pluram: Massive-scale software diversity as a defense
mechanism. In Proceedings of the 2010 Workshop on New Security Paradigms,
NSPW ’10, pages 7–16, New York, NY, USA, 2010. ACM.

[56] Mart́ın Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. Control-flow
integrity principles, implementations and applications. ACM Transactions on
Information and System Security (TISSEC), 13(1):4:1–4:40, November 2009.

[57] Reiner Sailer, Trent Jaeger, Xiaolan Zhang, and Leendert van Doorn.
Attestation-based policy enforcement for remote access. In ACM Conference
on Computer and Communications Security (CCS), pages 308–317. ACM Press,
2004.

[58] Tyler Bletsch, Xuxian Jiang, and Vince Freeh. Mitigating code-reuse attacks
with control-flow locking. In Proceedings of the 27th Annual Computer Security
Applications Conference, ACSAC ’11, pages 353–362, New York, NY, USA,
2011. ACM.

[59] Aravind Prakash, Heng Yin, and Zhenkai Liang. Enforcing system-wide control
flow integrity for exploit detection and diagnosis. In Proceedings of the 8th ACM
SIGSAC Symposium on Information, Computer and Communications Security,
ASIA CCS ’13, pages 311–322, New York, NY, USA, 2013. ACM.

150

[60] Chao Zhang, Tao Wei, Zhaofeng Chen, Lei Duan, Laszlo Szekeres, Stephen
McCamant, Dawn Song, and Wei Zou. Practical control flow integrity and ran-
domization for binary executables. In Proceedings of the 2013 IEEE Symposium
on Security and Privacy, SP ’13, pages 559–573, Washington, DC, USA, 2013.
IEEE Computer Society.

[61] Ping Chen, Hai Xiao, Xiaobin Shen, Xinchun Yin, Bing Mao, and Li Xie.
DROP: Detecting return-oriented programming malicious code. In Proceedings
of the 5th International Conference on Information Systems Security, ICISS
’09, pages 163–177, Berlin, Heidelberg, 2009. Springer-Verlag.

[62] Valgrind Team. Valgrind. http://www.valgrind.org/.

[63] Mingwei Zhang, Aravind Prakash, Xiaolei Li, Zhenkai Liang, and Heng Yin.
Identifying and analyzing pointer misuses for sophisticated memory-corruption
exploit diagnosis. In Proceedings of the 19th Annual Network and Distributed
System Security Symposium (NDSS’12), 2012.

[64] Alexey Smirnov and Tzi-cker Chiueh. DIRA: Automatic detection, identifica-
tion and repair of control-hijacking attacks. In Proceedings of the Network and
Distributed System Security Symposium, NDSS 2005, San Diego, California,
USA, 2005.

[65] Alexey Smirnov and Tzi-cker Chiueh. Automatic patch generation for bu↵er
overflow attacks. In Proceedings of the Third International Symposium on In-
formation Assurance and Security, IAS ’07, pages 165–170, Washington, DC,
USA, 2007. IEEE Computer Society.

[66] Stelios Sidiroglou and Angelos D. Keromytis. Countering network worms
through automatic patch generation. IEEE Security and Privacy, 3(6):41–49,
November 2005.

[67] Zhiqiang Lin, Xuxian Jiang, Dongyan Xu, Bing Mao, and Li Xie. AutoPaG:
Towards automated software patch generation with source code root cause iden-
tification and repair. In ASIACCS ’07: Proceedings of the 2nd ACM Symposium
on Information, Computer and Communications Security, pages 329–340, New
York, NY, USA, 2007. ACM.

[68] Gang Chen, Hai Jin, Deqing Zou, Bing Bing Zhou, Zhenkai Liang, Weide Zheng,
and Xuanhua Shi. Safestack: Automatically patching stack-based bu↵er over-
flow vulnerabilities. IEEE Transactions on Dependable and Secure Computing,
10(6):368–379, 2013.

[69] Markus Miettinen and N. Asokan. Towards security policy decisions based
on context profiling. In Proceedings of the 3rd ACM Workshop on Artificial
Intelligence and Security, AISec ’10, pages 19–23. ACM, 2010.

[70] Abigail Barr. Familiarity and trust: An experimental investigation. CSAE
Working Paper Series 1999-23, Centre for the Study of African Economies,
University of Oxford, 1999.

[71] Jie Zhang. Familiarity and trust: Measuring familiarity with a web site. In
Proceedings of the 2nd Annual Conference on Privacy, Trust and Security (PST
2004, pages 23–28, 2004.

151

[72] Patsy A. Klaus and Cathy T. Maston. Criminal victimization in the united
states, 2006, statistical tables. National Crime Victimization Survey, 2008.

[73] Niko Kiukkonen, Jan Blom, Olivier Dousse, and Juha.K Laurila. Towards rich
mobile phone datasets: Lausanne data collection campaign. In ICPS 2010: The
7th International Conference on Pervasive Services, 2010.

[74] Nokia Research Center Lausanne. Lausanne data collection campaign. http:
//research.nokia.com/page/11367, 2011.

[75] Robert Goodell Brown. Smoothing, Forecasting and Prediction of Discrete Time
Series. Dover Phoenix Edition, 2004.

[76] Victoria Bellotti and Keith Edwards. Intelligibility and accountability: Human
considerations in context-aware systems. Human-Computer Interaction, 16:193–
212, 2001.

[77] Anupam Datta, Ante Derek, John C. Mitchell, and Arnab Roy. Protocol compo-
sition logic (PCL). Electronic Notes in Theoretical Computer Science, 172:311–
358, April 2007.

[78] Oasis. OASIS extensible access control markup language (XACML). Spring,
2009(May 5):1–16, 2004.

[79] Stephen A. Cook. The complexity of theorem-proving procedures. In Proceed-
ings of 3rd Annual ACM Symposium on Theory of Computing, STOC ’71, pages
151–158, New York, NY, USA, 1971. ACM.

[80] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of
distributed consensus with one faulty process. Journal of the ACM (JACM),
32:374–382, April 1985.

[81] Danny Dolev and Andrew C. Yao. On the security of public key protocols.
IEEE Transactions on Information Theory, 2, 1983.

[82] Torben P. Pedersen. Non-interactive and information-theoretic secure verifi-
able secret sharing. In Proceedings of 11th Annual International Conference
on Advances in Cryptology, CRYPTO ’91, pages 129–140, London, UK, 1992.
Springer-Verlag.

[83] Aleph One. Smashing the stack for fun and profit. Phrack Magazine, 49(14),
November 1996.

[84] Solar Designer. Getting around non-executable stack (and fix). http://
seclists.org/bugtraq/1997/Aug/63, August 1997.

[85] Nergal. The advanced return-into-lib(c) exploits (pax case study). Phrack
Magazine, 58(4), December 2001.

[86] Hovav Shacham. The geometry of innocent flesh on the bone: Return-into-libc
without function calls (on the x86). In Proceedings of the 14th ACM Conference
on Computer and Communications Security, CCS ’07, pages 552–561, New
York, NY, USA, 2007. ACM.

152

[87] Stephen Checkoway, Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza Sadeghi,
Hovav Shacham, and Marcel Winandy. Return-oriented programming without
returns. In Proceedings of the 17th ACM conference on Computer and commu-
nications security, CCS ’10, pages 559–572, New York, NY, USA, 2010. ACM.

[88] Erik Buchanan, Ryan Roemer, Hovav Shacham, and Stefan Savage. When
good instructions go bad: Generalizing return-oriented programming to RISC.
In Proceedings of the 15th ACM Conference on Computer and Communications
Security, CCS ’08, pages 27–38, New York, NY, USA, 2008. ACM.

[89] Ralf Hund, Thorsten Holz, and Felix C. Freiling. Return-oriented rootkits:
Bypassing kernel code integrity protection mechanisms. In Proceedings of the
18th Conference on USENIX Security Symposium, SSYM’09, pages 383–398,
Berkeley, CA, USA, 2009. USENIX Association.

[90] Aurélien Francillon and Claude Castelluccia. Code injection attacks on harvard-
architecture devices. In Proceedings of the 15th ACM Conference on Computer
and Communications Security, CCS ’08, pages 15–26, New York, NY, USA,
2008. ACM.

[91] Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza Sadeghi, and Marcel
Winandy. Privilege escalation attacks on Android. In Proceedings of the 13th In-
ternational Conference on Information Security, ISC’10, pages 346–360, Berlin,
Heidelberg, 2011. Springer-Verlag.

[92] Thomas Dullien, Tim Kornau, and Ralf-Philipp Weinmann. A framework for
automated architecture-independent gadget search. In Proceedings of the 4th
USENIX Conference on O↵ensive Technologies, WOOT’10, pages 1–, Berkeley,
CA, USA, 2010. USENIX Association.

[93] Ping Chen, Xiao Xing, Bing Mao, and Li Xie. Return-oriented rootkit without
returns (on the x86). In Proceedings of the 12th International Conference on
Information and Communications Security, ICICS’10, pages 340–354, Berlin,
Heidelberg, 2010. Springer-Verlag.

[94] Tyler Bletsch, Xuxian Jiang, and Vince Freeh. Jump-oriented programming:
A new class of code-reuse attack. Technical Report TR-2010-8, North Carolina
State University, 2010.

[95] Paradyn Project. UNSTRIP. http://paradyn.org/html/tools/unstrip.
html, 2011.

[96] Aditi Gupta, Sam Kerr, Michael S. Kirkpatrick, and Elisa Bertino. Marlin: A
fine grained randomization approach to defend against ROP attacks. In The
7th International Conference on Network and System Security (NSS 2013), June
2013.

[97] Unixbench. Byte-unixbench: A unix benchmark suite. https://code.google.
com/p/byte-unixbench/.

[98] Jonathan Salwan. ROPgadget Tool. http://shell-storm.org/project/
ROPgadget/, 2011.

[99] David Wheeler. Flawfinder website. http://www.dwheeler.com/flawfinder/.

153

[100] Gil Dabah. Distorm3: Powerful disassembler library for x86/AMD64. http:
//code.google.com/p/distorm/, 2012.

[101] Sickness. Linux exploit development part 4 – ASCII armor bypass +
return-to-plt. http://www.exploit-db.com/wp-content/themes/exploit/
docs/17286.pdf.

[102] O↵ensive Security. The Exploit Database (EDB). http://www.exploit-db.
com/.

[103] NIST. NIST SAMATE reference dataset project. http://samate.nist.gov/
SRD/.

[104] ERESI. The embedded ELF tracer : Etrace. http://www.eresi-project.
org/wiki/TheEmbeddedELFtracer.

[105] Sanjay Bhansali, Wen-Ke Chen, Stuart de Jong, Andrew Edwards, Ron Murray,
Milenko Drinić, Darek Mihočka, and Joe Chau. Framework for instruction-
level tracing and analysis of program executions. In Proceedings of the 2nd
International Conference on Virtual Execution Environments, VEE ’06, pages
154–163, New York, NY, USA, 2006. ACM.

VITA

154

VITA

Aditi Gupta was born and raised in Ranchi, India. She completed her PhD from

Purdue University in 2014, where her major advisor was Prof. Elisa Bertino. She

received her bachelor’s and master’s degrees from Indian Institute of Technology, Kan-

pur in 2008 where she majored in computer science and engineering. Her primary

research interests include system security, context aware applications and mobile se-

curity. During her stay at Purdue, she pursued internships with Nokia Research Cen-

ter in Helsinki (June-December 2010, May-August 2011) and Amazon (May-August

2012).

	Purdue University
	Purdue e-Pubs
	Fall 2014

	Secure platforms for enforcing contextual access control
	Aditi Gupta
	Recommended Citation

	Blank Page

