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ABSTRACT 

 
 
Fleetwood, James D. Ph.D., Purdue University, December 2014.  Solid Oxide Fuel 
Cell Electrolytes Produced via Very Low Pressure Suspension Plasma Spray and 
Electrophoretic Deposition.   Major Professors:  Rodney W. Trice and Elliott 
Slamovich, School of Materials Engineering. 
 
 
 

Solid oxide fuel cells (SOFCs) are a promising element of comprehensive 

energy policies due to their direct mechanism for converting the oxidization of fuel, 

such as hydrogen, into electrical energy. Both very low pressure plasma spray and 

electrophoretic deposition allow working with high melting temperature SOFC 

suspension based feedstock on complex surfaces, such as in non-planar SOFC 

designs. Dense, thin electrolytes of ideal composition for SOFCs can be fabricated 

with each of these processes, while compositional control is achieved with 

dissolved dopant compounds that are incorporated into the coating during 

deposition. In the work reported, sub-micron 8 mole % Y2O3-ZrO2 (YSZ) and 

gadolinia-doped ceria (GDC), powders, including those in suspension with 

scandium-nitrate dopants, were deposited on NiO-YSZ anodes, via very low 

pressure suspension plasma spray (VLPSPS) at Sandia National Laboratories’ 

Thermal Spray Research Laboratory and electrophoretic deposition (EPD) at 

Purdue University. 
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Plasma spray was carried out in a chamber held at 320 - 1300 Pa, with the 

plasma composed of argon, hydrogen, and helium. EPD was characterized 

utilizing constant current deposition at 10 mm electrode separation, with deposits 

sintered from 1300 – 1500 °C for 2 hours. The role of suspension constituents in 

EPD was analyzed based on a parametric study of powder loading, powder 

specific surface area, polyvinyl butyral (PVB) content, polyethyleneimine (PEI) 

content, and acetic acid content. Increasing PVB content and reduction of particle 

specific surface area were found to eliminate the formation of cracks when drying. 

PEI and acetic acid content were used to control suspension stability and the 

adhesion of deposits. Additionally, EPD was used to fabricate YSZ/GDC bilayer 

electrolyte systems. The resultant YSZ electrolytes were 2-27 microns thick and 

up to 97% dense. Electrolyte performance as part of a SOFC system with screen 

printed LSCF cathodes was evaluated with peak power densities as high as 520 

mW/cm2 at 800 °C for YSZ and 350 mW/cm2 at 800 °C for YSZ/GDC bilayer 

electrolytes. 
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CHAPTER 1. INTRODUCTION 

 
 
 

1.1 Motivation for Solid Oxide Fuel Cell Research 

Worldwide energy problems are alarming because there is an ongoing rise 

in demand for energy coupled with simultaneous and continued depletion of 

energy resources. The solution to this energy crisis will require every available 

energy technology, including nuclear, solar, wind, clean burning coal, and 

hydrogen. Solid oxide fuel cells (SOFCs), which can be powered by hydrogen, are 

a promising part of the solution because they provide a direct mechanism for 

converting the oxidization of fuel into electrical energy. They have a relatively 

simple design, conducive to durability and longevity. Essentially, oxygen in the 

form of air is supplied to a cathode where O2- is catalyzed, which diffuses through 

an oxygen conducting electrolyte to the anode. Fuel, in the form of hydrogen is 

supplied to the anode where hydrogen reacts with O2- to form H2O, releasing 

electrons to complete the circuit. Advantages of SOFCs include increased 

efficiency, no moving parts of traditional competing technologies, no expensive 

platinum catalysts, and decreased emission of SOx and NOx.
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Despite success developing SOFCs in the past 15+ years, there is still need 

for improvement of current SOFC technology, particularly electrolyte materials. 

The ideal electrolyte is: (1) applied easily to non-planar shapes to take advantage 

of tubular SOFC designs, (2) both pore free and thin (<50 μm), and (3) has a large 

oxygen ion conductivity. 

 

1.2 Solid Oxide Fuel Cells (SOFCs) 

 Solid oxide fuel cells (SOFCs) are a type of hydrogen fuel cell in which the 

anode, electrolyte, and cathode are composed of oxide ceramics. SOFCs can 

achieve efficiencies of 65%, with higher efficiencies available in cogeneration 

systems, such as when combined with turbine engines [1]. A diagram of hydrogen 

fuel cell operation can be seen in Figure 1. During hydrogen fuel cell operation, O2 

is first reduced at the cathode. It then diffuses through the electrolyte and oxidizes 

the H2 at the anode, creating H2O [1,2]. The electrolyte must be gas impermeable 

and conduct only the oxygen ions, not electrons. This separates the 

electrochemical reactions, forcing the electrons to travel in a circuit between the 

electrodes, allowing for power generation. The electrode materials are both 

electronically and ionically conductive, while also serving to catalyze H2 oxidation 

at the anode and O2 reduction at the cathode [1]. The Nernst equation, seen in 

Equation 1, describes the electrochemical potential between the cathode and 

anode, where R is the gas constant, 8.314 J/mol·K, F is Faraday’s constant, 

9.649×104 °C/mol, T is temperature, and  is partial pressure of oxygen [3,4,5]. 
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Equation 1 

 

Figure 1: A basic diagram of SOFC function is shown [6]. 
 

 

1.2.1 Mechanisms of Ionic Conduction in YSZ 

 The ionic conductivity of oxygen is facilitated by the presence of mobile 

oxygen vacancies, VO**, in the lattice. Oxygen vacancies are created intrinsically 

via thermal excitation and extrinsically via charge compensation due to the 

displacement of the cation with dopant atoms of differing valence. The extrinsic 

doping effect in YSZ, is represented in Equation 2 [7,8,9,10,11]. 

 

Equation 2 
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 Doping is the source of the 99.999%+ of VO**, though thermal excitation is 

still necessary to overcome the energy barrier for vacancy motion. As temperature 

increases, intrinsic vacancy concentration increases, but this still has negligible 

contribution to ionic conductivity. It is the increased mobility of vacancies at higher 

temperatures that is the driving mechanism of increased ionic conductivity [2]. This 

necessitates operating temperatures >600 °C, but YSZ electrolyte based SOFCs 

commonly operate from 800-1000 °C due to the large thickness of the electrolyte 

relative to the mean free path of an oxygen ion [12,13]. The raised operating 

temperature increases vacancy concentration as well as the rate at which 

individual vacancy jumps occur, thus compensating for thick electrolytes, which 

have commonly been around 40 μm. Much effort in recent research has been in 

different fabrication methods to inexpensively and reliably produce <10 μm that 

allow for increased power density at lower operating temperatures 

[4,14,15,16,17,18]. 

 In choosing dopant elements, the ionic radius is an important consideration, 

after the valence necessary for vacancy creation.  With trivalent elements of larger 

radius than zirconium, 8-fold coordination of dopants is found [19]. This means 

vacancies tend to coordinate with the zirconium. However, with trivalent elements 

of smaller radius than zirconium, 6-fold coordination of dopants is found, leading 

to competition between dopant and zirconium over vacancies. Additionally, the 

coordination of oxygen vacancies affects the phase stability, with 7-fold 

coordination of Zr-O representing stabilized cubic zirconia [13,19,20,12].   
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This phase stabilizing effect of larger radius trivalent elements shifting Zr-O 

coordination leads towards stability of the tetragonal and cubic phases under lower 

dopant concentrations than with smaller radius elements, as at these lower 

concentrations, higher proportions of the vacancies are coordinated with the 

zirconium atoms relative to bulk vacancy concentration due to extrinsic charge 

compensation. However, the highest energy barrier of the oxygen diffusion path is 

around the dopant and this energy barrier increases with ionic radius. These 

effects suggest that the ideal dopant is one with a radius equal to zirconium, and 

failing that, one that is minimally larger [19]. Scandium, with an ionic radius of 88.5 

pm to zirconium’s 86 pm is the closest match and has been experimentally found 

to produce the highest ionic conductivities of stabilized zirconia. However, yttrium, 

with an ionic radius of 104 pm, is the industry standard with a much more firmly 

established research base, lower costs, and better known long term stability. 

Therefore, the majority of this research focuses on yttria stabilized zirconia. 

 

1.3 Very Low Pressure Plasma Spray (VLPPS) 

Plasma spray coating techniques are a very promising way to prepare 

electrolytes on complex surfaces. However, conventional plasma-deposited 

coatings have high porosities and cannot be applied in thin layers (<50 μm) 

suitable for electrolytes. With very low pressure plasma spray, the plasma is 

formed in a chamber held at pressures from 100 to 600 Pa (0.75 to 4.50 Torr) [15]. 

Over this pressure range, the plasma jet expands to more than 20 cm in diameter 

and 1 m in length. In a study by Dorier et al. [21], it was shown that plasma jet 
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velocity and temperature increase with decreasing pressure, while plasma jet 

density decreases. In Table 1 below, a summary of these relationships can be 

seen. 

Table 1: Measurements are shown from a study by Dorier et al. [21] 800 mm 
down the axis from the nozzle of a Sulzer Metco 03CP spray gun operated at 
1500 A and 43 V, with plasma formed of H2/Ar at 3/100 SLPM.  
 

Pressure (Pa) Plasma Velocity 
(m/s) 

Plasma 
Temperature (K) 

Plasma Density 
(kg/m3) 

200 3200 12500 0.75 x 10-4 

600 2500 11000 2.5 x 10-4 

1000 1000 7500 6.5 x 10-4 

 

Additionally, Dorier et al.[21] showed that, at 200 Pa, the velocity and 

temperature are virtually constant at radial distances up to 20 mm from the jet 

centerline. This was attributed to laminar flow of the plasma caused by limited 

interaction with the diffuse chamber atmosphere. In this environment, the mean 

free path of atoms in the plasma increases, leading to the likelihood that radiation 

increases in significance for heat transfer as the collision rate drops [15,21-26]. 

 

1.3.1 Role of Plasma Forming Gases 

Argon is the primary plasma forming gas and serves to carry the momentum 

of the plasma due to its high atomic mass. Hydrogen, being of lightest atomic 

mass, serves to increase the plasma enthalpy, via both its ionization energy 

relative to mass and the fact that it kinetically interacts with surrounding particles 

at a high rate at any given temperature. Helium acts similarly to hydrogen, adding 
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less enthalpy to the plasma, but lending greater stability to the plasma arc and thus 

increasing deposition reliability. 

 

1.4 Suspension Plasma Spray (SPS) 

 Suspension plasma spray involves the use of a liquid medium and 

dispersants to suspend a powder feedstock that can then be injected into the 

plasma stream. By using suspensions, the minimum particle size is not limited by 

van der Waals interactions, as with dry powder feedstock. Suspensions also allow 

the addition of metal salts that decompose in the plasma and are incorporated into 

the feedstock, enabling composition control [27]. Ethanol is the most common 

solvent due to its relatively low heat of vaporization, drawing 2.5 times less energy 

from the plasma than water based suspensions and resulting in almost a doubling 

of deposition efficiency [28,29]. A continuous laminar injection of suspension into 

the plasma core has been found to be the most effective method of injection 

[30,31,32]. This produces a high velocity stream, with minimal variance, as the 

suspension penetrates into the plasma core and results in increased entrainment 

in the plasma [28,33]. 

 The high velocity of the plasma relative to the surface tension of ethanol 

causes the injected suspension to fragment towards an rmin approaching 5 μm 

[34,35]. Fauchais et al [37] also calculated the vaporization time of injected 

droplets and found that vaporization predominantly occurs after fragmentation, 

with 2 orders of magnitude difference between the fragmentation and vaporization 

times. The much higher specific surface area of fragmented droplets then allows 
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for rapid vaporization and ionization of solvent molecules. When this is carried out 

in very low pressure plasma spray, the vaporization and ionization of injected 

ethanol was observed to take place within approximately 30 cm, or <  of the 

overall length of the plasma generated during the reported research. Thus, it is 

over the course of the remaining plasma stream that the individual particles must 

melt before deposition. 

 

1.5 Electrophoretic Deposition 

Electrophoretic deposition (EPD) techniques are also able to prepare 

dense, thin electrolytes on complex surfaces, while doing so at significant cost 

savings over plasma-deposited coatings. However, fine compositional control is 

more challenging with EPD. EPD uses an applied voltage between an anode and 

cathode in a suspension to drive the particles within to flow with respect to the 

electric field [38]. As particles approach the electrode of opposite charge to their 

surface charge, the local stability of the suspension changes, allowing for 

deposition [39]. The key consideration to understanding deposition is the double 

boundary layer surrounding the particles in suspension and how it changes due to 

varying electric field strength, surfactants, and local ionic concentration. A general 

diagram of this process can be seen in Figure 2. 
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Figure 2: A diagram of anodic EPD is shown. Above shows the electrostatic 
mechanism of particle motion, while below shows the electrolytic coagulation 
deposition mechanism. 
 

The most common description of electrophoretic deposition in literature is 

derived from research by Hamaker [40]. While there are multiple iterations of the 

factors involved, as well as fits to different electrode geometries, the core principle 

of Hamaker’s law is that deposit yield mass is associated with the product of 

electrophoretic mobility μ(m2/V.s), the local field strength E (V/m), electrode 

surface area S(m2), and the particle mass concentration in suspension cs (kg/m3), 

integrated over time, as in Equation 3. The product of μEscs describes the 

deposition rate in kg/s and thus a large assumption in this derivation is that the 

deposition rate is linear with respect to time. However, local field strength is 

affected by the growing deposit and electrophoresis causes a concentration 
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gradient in suspension concentration near the electrodes, with an associated 

initiation period. Much research has addressed how best to fit Hamaker’s concept 

to these constraints in varying systems [40,41,42,43,44].  

 

Equation 3 
 
 
 

1.5.1 Transport and Deposition Mechanisms 

The study of electrophoretic particle transport and deposition has primarily 

focused on differentiating between the roles of electrostatic double boundary layer 

repulsion, steric stabilization, and the effect of electrolysis at electrodes. Ideally, 

particles in a stable suspension migrate to an oppositely charged electrode, their 

boundary layer collapses upon approach to the electrode, and an adherent densely 

packed deposit is formed. The interaction of the electrical boundary layer with the 

applied electric field is the driving force for particle transport, but the mechanism 

and degree of the boundary layer collapse upon approach to the electrode is still 

under debate [45,46,47,48,49,50,51,52]. 

A distinct difference of EPD from other suspension processing methods, 

such as slip casting, is that the transport of particles in EPD is independent of the 

motion of the relatively stationary liquid carrier. Instead, the particle mobility is 

defined with a modification to the Navier-Stokes equation to include an electrical 

body force term, where μ is mobility (m2/V.s), ϵ is permittivity (C/V.m), ζ is the zeta 

potential (volts), κ is the inverse of the Debye length, η is viscosity (Pa.s), and f(κrp) 
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is the Henry coefficient, which is dependent on the double layer thickness relative 

to the particle radius [53].  

 

Equation 4 

The definition of particle mobility laid out in Equation 4 is consistent with 

particle transport through the bulk suspension, but breaks down near the 

electrodes due to the effects of electrolysis and gradients in the local electric field 

strength [52]. Electrolysis at the electrodes changes the local ionic concentration, 

affecting the boundary layer composition and volume, while the shape of the 

diffuse secondary boundary layer is distorted away from the electrode, due to the 

electric field. This effect is represented in Figure 3, below. 

 

 

Figure 3: A diagram of an idealized anodic EPD is presented, showing the 
collapse of the boundary layer on approach to the deposition electrode. 
 

The diffuse secondary boundary layer is composed of ions of the same 

charge as the depositing electrode, and the local concentration of these ions is 

expected to be lower near the electrode. This effect was modeled by De et al. [46] 
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and experimentally supported by Besra et al. [47] using measurement of pH vs. 

distance from electrode during the electrolysis of water. It was found that over the 

course of roughly 30s the pH would reach a steady state in which the cathode 

would become more basic, and the anode more acidic. In aqueous suspensions 

relying solely on electrostatic stabilization, this effect can be the most significant 

mechanism for deposition. When the pH shifts close to the isoelectric point of the 

particles in suspension, the localized stability loss leads to flocculation and thus 

deposition at the depositing electrode. It was found that the greatest deposit yields 

occurred when the pH shift was closest to the isoelectric point. However, if the shift 

to the isoelectric point occurs too far from the electrode, premature flocculation can 

occur [47]. 

As flocculation occurs farther away from the point of deposition, irregular 

coatings with greater porosity are created, until premature coagulation leads to 

Stoke’s Law settling and loss of coating development. Well controlled deposition 

of high packing density coatings relies on maintaining high inter-particle repulsion 

upon approach to the electrode. However, contact with the electrode will discharge 

a depositing particle, causing subsequent depositing particles to be attracted to 

the deposit in similar fashion to the bare electrode. This effect can be partially 

offset by the resistance of the deposit, but generally leads to lower packing density. 

Note that deposit resistance is usually greater than that of the bulk suspension, 

though it is dependent on differences between particle, dispersant, and solvent 

conductivities, as well as packing density and Debye length relative to the diameter 

of deposited particles. As deposition rate and electric current are proportional, the 
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deposition rate is greater at regions of lower resistance, with the thinnest deposit. 

This suggests that lower conductivity deposits will be more likely to form uniformly, 

in terms of thickness, though maximum deposit thickness is limited by the deposit 

conductivity.  

Steric stabilization can compensate for the effect of electrolysis at the 

electrodes, since the polymer chains are directly adsorbed onto the particle 

surface, providing inter-particle repulsion as the diffuse boundary layer collapses. 

Also, the polymer can function as a binder upon drying to increase green body 

strength of the deposit and reduce capillary stresses. Finally, since the diffuse 

boundary layer is formed around charge interaction with the polymer, the 

electrostatic repulsion in suspensions is less affected by the specific material 

properties of the depositing particle, meaning the process is more reproducible 

among varying applications. Mizuguchi et al. [52] showed this using nitrocellulose 

as a steric stabilizer in the deposition of Al203, TiO2, SiO2, and W, among many 

other systems. 

 

1.5.2 Effects of Suspension and Operating Parameters 

As deposition proceeds, the relative concentrations of all the suspension 

components change. This problem can be solved by continually cycling fresh 

suspension into the process, but efficacy would be greatly improved by instead 

adding a concentrated suspension of compensatory constituents to those lost 

during deposition. However, this first requires quantification of how the suspension 

concentration changes during deposition. Nevertheless, the general trend and 
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difference between deposition methods can be seen in Figure 4, below, showing 

 

deposition under: 1.) constant current & suspension, 2.) constant current & 

depleting suspension, 3.) constant voltage & suspension, and 4.) constant voltage 

& depleting suspension.  

 

Figure 4: A diagram is shown of EPD yield vs. time under conditions of: 1.) 
constant current & suspension, 2.) constant current & depleting suspension, 3.) 
constant voltage & suspension, and 4.) constant voltage & depleting suspension 
[47]. 
 

The properties of the electrode itself can play an important role in EPD. A 

non-reactive and highly conductive electrode is generally ideal, but in applying 

EPD to SOFC production, low conductivity substrates must be used, such as NiO-

YSZ. Research by Besra et al.[54] used suspension infiltration of NiO-YSZ 

substrates with open porosity to raise the conductivity (Figure 5). They found 

uniformity and deposit yield to have a positive correlation to substrate porosity. 
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Figure 5: A diagram is shown representing a mechanism by which a conductive 
path through a porous substrate can allow EPD, as exemplified in research by 
Besra et al.[54] 
 

Another method to deposit on low conductivity substrates is to apply a thin 

conducting layer to the low conductivity substrate’s surface. Hosomi et al.[55] used 

this technique with graphite as the conductive layer, but found the subsequently 

produced SOFC underperformed those produced via the infiltration technique. It 

was believed the resultant deposit contact was less adherent and caused an 

increase in cell contact resistance. 

 

 
1.6 Overview of the Present Study 

 
 The focus of the research presented in this thesis was on deposition of 

compositionally modified and functionally graded solid oxide fuel cell electrolytes 

via the suspension based processing methods of very low pressure plasma spray 

and electrophoretic deposition. The role of suspension constituents in deposition 
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was characterized through a parametric study. Suspensions, substrates, and 

electrophoretically deposited coatings were prepared at Purdue University; very 

low pressure plasma spray electrolyte coatings were applied at Sandia National 

Laboratories’ (SNL) Thermal Spray Research Laboratory (TSRL). The resultant 

electrolytes were characterized based on microstructure, composition, and phase 

assembly, as well as their performance as part of a complete solid oxide fuel cell, 

in button cell testing of open circuit voltage, power density, and impedance 

spectroscopy.
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CHAPTER 2. EXPERIMENTAL AND ANALYTICAL PROCEDURES 

 
 
 

This chapter describes the experimental approach utilized to fabricate and 

characterize SOFCs based on very low pressure suspension plasma spray and 

electrophoretic deposition of YSZ and GDC electrolytes on NiO-YSZ anode 

substrates. 

 

2.1 Coating Fabrication via Very Low Pressure Suspension Plasma Spray 

 The first four generations of electrolyte coatings were created at Sandia 

National Laboratories’ Thermal Spray Research Laboratory, using their very low 

pressure plasma spray system consisting of a ~3500 L stainless steel water cooled 

vacuum chamber, a Sulzer Metco 03CA plasma torch, a 2000A, 50V Halmar power 

supply, and a N2 pressurized suspension feed system, shown in Figure 6. The 

vacuum chamber could pump down to <100 mTorr while the torch was inactive. 

During deposition, the pressure would rise to 2.4 – 5 Torr depending on plasma 

power, suspension injection, and flow rates of argon, hydrogen, and helium into 

the arc chamber. See Figure 7 for the dimensions of the cathode and anode setup.
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Figure 6: An image of the vacuum chamber at the SNL’s TSRL is shown. 

 

Figure 7: A diagram of the cathode and anode plasma gun setup used at the 
TSRL is shown.  
 

All suspensions were injected orthogonally into the torch throat through a 

230 μm diameter ruby straight hole nozzle, with a back pressure of ~3900 Torr, 

resulting in an injection velocity of ~20 m/s and a flow rate of ~43 g/min. The flow 

rate and injection velocity were calculated based on logging of mass change during 

Injection 
Port 
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deposition and the nozzle diameter. A second feed supply of ethanol was also 

used to keep the injection nozzle cool before suspension injection, as well as to 

clean the feed system after deposition, as clogging would otherwise occur 

frequently. Standoff distance was varied from 89-125 cm, with one substrate fixture 

designed to simultaneously test deposition within a 15 cm range. 

Three types of substrate fixtures were used over the course of plasma spray 

research. The original design sought to characterize the stand-off distance 

sensitivity, which was found to be minimal within the 15 cm tested range from 109-

124 cm. Subsequent design generations sought to address the thermal shock 

issues associated with very low pressure plasma spray, in which an air knife 

cooling method raises the chamber pressure, interferes with the deposition, and 

convective cooling efficacy is significantly reduced. The first substrate fixture was 

a stair step design allowing for simultaneous testing of three different stand-off 

distances, spaced 7.5 cm apart, as seen in Figure 8. This design was found to heat 

up rapidly during spraying, in excess of 1200 °C, while the torch passed over it. It 

would then cool quickly enough, when the torch moved away, to cause thev 

substrates to fracture due to thermal shock. This required a reduction of plasma 

enthalpy in initial experiments via limiting gas helium composition and torch power. 
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Figure 8: An image of the stair step sample fixture, with substrates loaded is 
shown. 
 

The second substrate fixture was a water cooled copper plate, as seen in 

Figure 9, below. This fixture, which had a thermocouple inserted under the 

substrates, managed to reduce the maximum temperature of the substrates to 

<800 °C, enabling a wider range of plasma enthalpies to be tested, though it was 

insufficient to entirely resolve the substrate cracking issue in the highest enthalpy 

range of the torch as it still facilitated rapid temperature change of the substrate. 

The final and ultimately most successful sample fixture consisted of a stainless 

steel cylinder heat sink of 12.7 cm diameter and 15 cm length, implanted with a 

thermocouple, and used to maintain heating and cooling rates <20 °C/minute. 

Unfortunately, the hydrogen feed system at the TSRL failed shortly after this 

solution was proven and thus the highest enthalpy plasmas were never able to be 

utilized for electrolyte deposition research. This plasma enthalpy limitation, when 

combined with the enthalpy reduction caused by vaporizing ethanol from the 

suspension, was found to lead to insufficient melting of particles in the plasma. 
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Figure 9: An image of the cold plate sample fixture is shown. This sample fixture 
allowed for a reduction in substrate temperature and an increase in temperature 
stability over the course of a spray run. 
 

2.2 Coating Creation via Electrophoretic Deposition 

Electrophoretic deposition allowed for the same or similar suspension 

feedstock to be used for SOFC electrolyte fabrication, including the continued 

progression of nitrate-doped suspension research, while eliminating the travel and 

reliability issues faced with applying coatings with very low pressure plasma spray. 

Thus, these can serve as good comparison processes, elucidating the effects of 

the differing thermal histories, with fixtures designed to maximize the potential 

similarities between the two. The primary function of the electrophoretic deposition 

fixture was to facilitate use of the NiO/YSZ substrates as the anode, described 

previously in Figure 3, while a stainless steel plate served as the cathode. The 

fixture allowed unstressed attachment of the substrate via solvent free silicone 

sealant to a small enclosed chamber, submerged in the suspension, in which a 

graphite electrode connected the substrate to the negative power supply lead. The 

graphite electrode consisted of a graphite sheet, adhered with graphite paste, 

which is necessary to uniformly distribute the applied voltage, as the resistivity of 
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the substrate caused electric field strength to vary enough to induce patterned 

deposition otherwise. Images and diagrams of the EPD fixture can be seen in 

Figure 10.  

   

 

Figure 10: Images of the EPD fixture are shown. (a) shows the complete fixture, 
with NiO-YSZ substrate as the anode, (b.) shows a schematic view of the anode 
fixture from (a), (c.) shows an anode (in the oxidized higher resistance state), and 
(d.) shows a YSZ electrolyte deposit formed after EPD. 
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The distance between cathode and anode was held constant at 10 mm, with 

a rubber ring cut to this dimension serving as the benchmark and ensuring 

consistent parallel separation between electrodes. A Spellman SL150 power 

supply was used, with selectable constant current or constant voltage deposition. 

The majority of depositions used a constant current, as that has been found to 

produce a more linear relationship of deposit yield versus time than constant 

voltage deposition, as described in chapter 1. For any given test, the response 

current or voltage was logged with an Agilent 34401A Digital Multimeter. Each 

deposition began with a 5 minute presoak of the EPD fixture in the suspension to 

ensure the open porosity of the anode substrate was fully infiltrated with 

suspension. After deposition, the fixture was removed from the suspension and 

the fixture cap containing the anode was removed and placed in an enclosed 

chamber resting above a pool of ethanol. This slowed the otherwise rapid ethanol 

evaporation, reducing capillary stresses, and also protected the deposit. 

 

2.3 Suspension Preparation 

 Suspensions were prepared by dispersing a powder in ethanol and adding 

either polyethylinamine (PEI) or Triton QS-44 phosphate ester as a dispersant. 

Optionally, polyvinyl butyral (PVB) and or acetic acid were also added as a binder 

or electrophoresis modifier, respectively [50,56,57].  Scandium nitrate was also 

added in some suspensions to modify the composition of the finished coating, via 

either incorporation during plasma spraying or diffusion during post deposition 

sintering for EPD. The dispersed powders included: yttria-stabilized zirconia 
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(YSZ), gadolinia-doped ceria (GDC), and erbium-stabilized bismuth (ESB). The 

YSZ included a variety of particle size and specific surface area powders, including 

two 8 mole % YSZ powders and one 10 mole % YSZ powder. The two 8 mole % 

YSZ powders comprised a 40 m2/g powder from Inframat Advanced Materials and 

a 13 m2/g powder from Tosoh. The 10 mole % YSZ powder had a specific surface 

area of 6 m2/g. The GDC powder was 10 mole % gadolinia, from NexTech 

Materials, with a specific surface area of 12 m2/g. The particle size distributions of 

the YSZ powders can be seen in Figure 11 & Figure 12, below, as measured with 

a LS230 Coulter Counter. Note that the particle size distribution was measured in 

a medium of water, which likely led to less dispersion of particles and resulted in 

the bimodal distribution shown. 

 

Figure 11: Coulter Counter measurement of particle size distribution are shown 
for 40 m2/g 8 mole % YSZ from Inframat Advanced Materials. 
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Figure 12: Coulter Counter measurement of particle size distribution are shown 
for 13 m2/g 8 mole % YSZ from Tosoh 
 
 The dispersants were either the phosphate ester Triton QS-44 or a low Mn 

(~1200) polyetheleneimine (PEI), both from Sigma Aldrich. Two different 

dispersants were necessary as the Triton QS-44 went out of production a year into 

research, although the use of PEI resulted in improved suspension stability over 

Triton QS-44. Both dispersants were found to have optimal effectiveness at a 

weight fraction of 0.01 to the total suspension. The amounts of each component 

were calculated based on Equation 5 and Equation 6, where V is volume (mL), ρ 

is density (g/mL), and w is weight fraction, with subscripts T, e, d, y, representing 

total, ethanol, dispersant, and powder, respectively.  
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Equation 5 

 

 

Equation 6 
 

In select suspensions, acetic acid was added based on the ethanol content 

of suspensions up to 10-1 M, with a range within 10-2 M found to have the greatest 

utility for affecting deposition, as discussed in chapter 4. Also, Sc(NO3)-XH2O, with 

a mw of 287.1 g/mol, an amount that can vary slightly by supplier due to varying 

water content, was used as a doping agent in some suspensions, up to 16 mole 

% scandium. Dopant additions were calculated based solely on achieving the 

desired composition, with mole fraction numbers representing the scenario of 

complete diffusion into the YSZ feedstock, as they were soluble in ethanol and did 

not play a role in powder dispersion. As such, the actual volume fraction of 

feedstock in doped suspensions was marginally lower than baseline suspensions. 

This small deviation was viewed as acceptable as it allowed for batch production 

aimed at minimizing variation between suspensions. Note also that for every 1 

mole % scandium successfully incorporated into the YSZ, this represents only 0.5 

mole % scandia incorporation. 

The final step of preparation was ball milling the suspensions for 3 hours in 

500 mL baffled bottles. The suspensions were combined with 10 mm YSZ 

cylindrical milling media and milled at ~140 rpm. An overview of suspension 

preparation can be seen in Figure 13. The zeta potential, ζ, and electrophoretic 

 



27 
 

mobility, μ, of suspensions used in EPD were measured with a Malvern Zatasizer 

Nano S. Also, thermogravimetric analysis (TGA) of suspension and coating 

constituents was performed using a TA Instruments Q50 TGA. 

 

Figure 13: An overview of suspension preparation is shown. 
 

2.4 Substrate Preparation 

Substrates were designed to serve as the anode component of both a 

SOFC and an EPD electrode. They were constructed out of laminated sheets of 

tape cast 50/50 NiO-YSZ, purchased from ESL Electroscience, with each layer 

180 μm thick [58,59,60,61]. Substrates were constructed with 1, 3, 6, and 10 

layers, with the majority of research focused on the 10 layer substrates due to their 

superior mechanical strength and resistance to curvature during co-sintering with 

deposited electrolyte coatings. The sheets were laminated with a warm press and 

die, operated at 70 °C and 21 MPa, for 20 minutes. For EPD, the resultant discs 

were bisqued and reduced at 1000 °C for 2 hours in an Ar/5%H2 atmosphere, but 
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were then co-sintered after EPD at 1400 °C for 2 hours. For plasma spray 

deposition, the discs were instead sintered at 1400 °C for 2 hours before 

deposition, as this improved substrate mechanical strength and plasma sprayed 

coatings deposit at high densities that do not require co-sintering with the 

substrate. The progression from tape casting to anode substrate can be seen in 

Figure 14. 

 

Figure 14: Images of the die (left) used to laminate the anode layers as seen on 
the right image showing the progression: (a) unlaminated sheets of NiO-YSZ, (b) 
warm-pressed laminated sheets of NiO-YSZ, (c) sintered laminated sheets of 
NiO-YSZ (in oxidized state), (d) sintered laminated sheets of NiO-YSZ (in 
reduced state), (e) an example of the initial material system used: NiO-YSZ with 
a YSZ electrolyte laminated sheet on top, (f) a sintered version of (e), in which 
the electrolyte delaminated, and (g) a complete fuel cell after testing, showing the 
cathode side (the white border is the bonding cement, the dark grey is the LSM-
YSZ cathode material with platinum electrodes bonded to it, and the pearlescent 
area is exposed electrolyte) 
 

2.5 Solid Oxide Fuel Cell Performance Evaluation Methodology 

The substrate preparation and deposition processes previously described 

supplied samples of thin electrolyte coatings on NiO-YSZ substrates, which served 

as the basis for the creation of anode supported button cells, tested using four 

(a) (b) (c) (d) 

(e) (f) (g) 
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probe points, two for current, and two for voltage measurement. To these samples, 

a cathode paste of lanthanum strontium cobalt ferrite (LSCF), from NexTech 

Materials, was then applied on top of the electrolyte using screen printing and a 

mask to produce 1 cm2 contacts. A platinum mesh was then pressed on the wet 

cathode with a 100 g weight to ensure contact. After drying the cathode under a 

heat lamp, alumina paste, Cermabond 552-VFG, was applied to the edges of the 

platinum mesh and the remaining untested surface. This alumina paste served as 

a sealant, as well as to secure the electrode from pulling off during the remaining 

preparation and testing phases. After the alumina paste had dried, the 100 g 

weight was removed and each cell contact area was measured with calipers. Then 

the cells were heat treated at 1100 ⁰C for 2 hours in air to cure the LSCF. This was 

followed by a substrate reduction at 600 ⁰C for 2 hours in an Ar/5%H2 atmosphere, 

which was found to improve consistency of electrode attachment on the anode 

side of the cell.  

The electrode attachment on the anode side followed a different procedure 

from the cathode, serving also to attach the SOFC to the testing fixture. First, the 

anode was polished with a 400 grit SiC pad to remove any debris from the crucible, 

then platinum paste was screen printed in alignment with the cathode electrode. 

The cell was then placed on the top of the testing fixture, while the fixture was in a 

vertical orientation. The fixture itself is set with a platinum mesh suspended around 

the H2 inlet alumina tube, which was aligned with the cell and temporarily sticking 

out beyond the edge of the outer alumina tube sheath that contains the H2 

atmosphere. Once solid contact between the platinum mesh and the anode is 
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ensured, the H2 inlet tube is withdrawn into the fixture until the cell edges contact 

the outer alumina tube. At this point, a 100 g weight was placed atop the cell, with 

a short alumina tube of the same diameter as the outer fixture tube used to 

distribute the force and prevent contact with the cathode. The Ceramabond 

alumina paste was then used to seal the SOFCs to the outer alumina tube. After 

drying, the weight was removed and the final wire connections to the cathode side 

platinum mesh were made. The layout of fuel cells during testing can be seen in 

the diagrams in Figure 15. 
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Figure 15: A diagram is shown of a complete SOFC with electrodes attached 
using a four point method. Views of the side and bottom of the cell itself can be 
seen above, while the cell’s layout within the testing rig can be seen 
schematically below. 
 
 The fuel cell testing fixture was then placed in a tube furnace, in a horizontal 

orientation, and electrodes were connected to the Solartron equipment, with active 

recording of open circuit voltage beginning at this time. Then, the air supply tube 

was placed against the platinum mesh on the cathode, a thermocouple was 

inserted in contact with the alumina seal adjacent to the cathode, and H2 was 

hooked up at a minimum flow of 15 ml/min, through a water bubbler at 
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approximately 25 ⁰C, and exhausted through an oil bubbler into a fume hood 

intake. The furnace was programmed to cure the alumina paste and then hold at 

testing temperatures from 600 – 900 ⁰C. The heating profile was 3 ⁰C/min to 100 

⁰C, hold 3 hours, then 3 ⁰C/min to 260 ⁰C, hold 3 hours, then 5 ⁰C/min to 600, 700, 

800, & 900 ⁰C, with 30 minute holds at each temperature. Actual testing used 

manual temperature holds in addition to the allotted 30 minutes. When 600 ⁰C was 

reached, H2 flow was increased to 150 ml/min and the cell was allowed to 

equilibrate before further testing, based on stabilization of open circuit voltage. 

After testing at 900 ⁰C, the cell was held for 24 hours, with ongoing potentiostatic 

testing at the voltage measured for peak power to establish performance stability 

and any current conditioning effects. The cells were then retested on holds during 

the cooling cycle. An image of the testing rig can be seen in Figure 16. 

 

Figure 16: An image of the fuel cell testing rig outside of the furnace and fume 
hood, showing: (a) the cathode-side of the SOFC, (b) the cathode-side platinum 
electrode wires that attach to the fuel cell, (c) the cathode-side platinum wire 
measurement output connections, (d) the H2 gas input tube, (e) the exhaust gas 
tube (which feeds through an oil bubbler and out a fume hood), and (f) the 
anode-side platinum wire measurement output connections. 
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At each given testing temperature, the open circuit voltage was measured 

and allowed to equilibrate for 10 minutes, then electrochemical impedance 

spectroscopy (EIS) was performed at open circuit voltage. EIS uses a linear 

electrical perturbation, in this case a frequency sweep from 0.1 – 100 kHz of an 

AC signal with an amplitude of 10 mV, and measures the response signal 

[62,63,64]. Although the impedance measurement and corresponding electrical 

processes are represented in the time domain, electrical circuit theory has 

developed simplified equations based on transformation to the frequency domain 

[65,66]. The criterion for validity of this transformation was based on linear systems 

theory, which requires the system have linearity, with finite numbers at each 

frequency, stability, and causality. Linearity means that linear equations can 

describe the response and all response frequencies are within the finite range of 

the applied frequencies, which is achieved with the 10 mV sinusoidal perturbation 

voltage. Stability means the system is at a steady state before testing and returns 

to that state after testing is complete. Causality means the input signal is the cause 

of the output signal, the measured effect [67, 68]. 

The impedance measurement contains real and imaginary components, 

which are often represented in a Nyquist diagram as [Real(Z] versus –

[Imaginary(Z)]. Resistive processes are observed in the real domain, while 

capacitive processes are observed in the imaginary domain. A typical Nyquist 

diagram takes the form of one or more semi-circles, depending on the number of 

contributing components to the impedance and polarizable interface surfaces 

between them. This impedance spectra can be evaluated by fitting the data to an 
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equivalent circuit that represents the physical and electrochemical processes 

occurring in the cell, such as oxygen dissociation, charge transfer resistance, bulk 

ionic conduction in the electrolyte, and grain boundary ionic conduction in the 

electrolyte. An example equivalent circuit from a cell with a LSCF cathode, YSZ 

electrolyte, and NiO/YSZ anode is shown in Figure 17, where L represents the 

inductance in the platinum wire probes, RΩ the overall ohmic resistance of the 

electrodes, anode, electrolyte, and cathode, R1 the high frequency arc resistance, 

R2 the low frequency arc resistance, Q1 the high frequency arc constant phase 

element, and Q2 the low frequency arc constant phase element. The admittance, 

Y, of a given constant phase element, Q, is defined in Equation 7, where Y0 is the 

amplitude, n the exponent component, and ω the angular frequency [69].  

  
Equation 7 

 

Figure 17: An equivalent circuit representing impedance tested SOFCs is shown 
[62]. 
 

Solartron’s Zplot software was used to calculate the fitted parameters based 

on the impedance spectra and a convergence algorithm with a maximum of 100 

iterations and 10 optimization iterations, with initial values entered from estimation 

of the resistance from the impedance spectra and capacitance from literature for 

systems of the same materials, testing configuration, and similar microstructure 

L RΩ 

Q1 Q2 

R1 R2 
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[62,67,69]. Convergence was confirmed by retesting to ensure optimized values 

reoccurred, with evaluation of the fit to experimental data using least sum of 

squares (χ2) values below 10-6 to indicate a quality fit. 

The potentiodynamic testing regime allowed at least 10 minutes at open 

circuit voltage after completion of EIS, at which point the voltage was decreased 

from open circuit by 10 mV/s, with the current response measured. Power density 

was calculated from this measurement and plotted concurrently with the IV curve, 

as can be seen schematically in Figure 18. The shape of the IV curve indicates 

some of the processes and limitations in the cell, beginning with the Y intercept at 

the open circuit voltage of the fuel cell, which should be near to the theoretical 

value calculated from Equation 1, around 1.1V. 

 

Figure 18: A schematic of potentiodynamic test results is shown, with the left Y1 
axis representing voltage, the right Y2 axis representing power density, and the X 
axis representing current density. 
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At the open circuit voltage, no practical amount of current can be drawn, but 

as more current is drawn, there are voltage losses due to activation polarization, 

ohmic polarization, and concentration polarization. Activation polarization, also 

referred to as reaction rate losses, are most significant at low current densities and 

represent electronic barriers to current and ion flow. Ohmic polarization, or simply 

electrical resistance loss, is directly proportional to current flow. Concentration 

polarization, or gas transport loss, is caused by the cell reaction rate exceeding 

the rate at which gas diffuses into the cell or through a rate limiting component in 

the cell. 

 

2.6 Microstructure and Phase Characterization 

Deposit morphology was studied using a FEI Philips XL-40 scanning 

electron microscope (SEM), with Au/Pd sputtered films on samples to reduce 

charging. The field emission gun was operated at an accelerating voltage of 25 kV 

and working distance of 10mm for the majority of images, with divergences from 

this standard associated with high depth of field topographic images, which are 

individually noted. Scion Image software and stereological techniques were used 

to analyze micrographs for electrolyte thickness and density measurements. 

Energy dispersive X-ray spectroscopy (EDS) based composition analysis was 

used to confirm nitrate doping efficacy, as well as to highlight microstructural 

features using X-ray map images.  

X-ray diffraction (XRD) was used for phase characterization, with a Siemens 

D8 Focus, employing a λ = 0.15406 nm Cu Kα source, at a scan rate of 2 ⁰/min and 
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a slit size of 0.963⁰. Both the oxidized and reduced state NiO-YSZ substrates were 

characterized, as well as the source powders for the suspensions, the as-sprayed 

SPS/VLPPS electrolyte coatings, and electrolytes of each process sintered at 1400 

⁰C for 2 hours. This was necessary to differentiate between the like materials of 

the substrate and electrolyte, as well as the potential processing steps in which 

phase changes could occur. The effect of dopants on phase composition as well 

as differences between VLPSPS and EPD were thus characterized. 
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CHAPTER 3. DESCRIPTION AND ANALYSIS OF VLPSPS COATING 

EXPERIMENTS 

 
 
 

Through the experimental approach detailed in this chapter, the primary 

constraining parameters of very low pressure suspension plasma spray (VLPSPS) 

were characterized, particularly as they relate to the deposition of solid oxide 

electrolytes on anode supported substrates and the ability to modify the final 

deposit composition via metal salts dissolved within the suspension. Reliability was 

a significant issue faced in these experiments, associated with the side effects 

caused by internal suspension injection into a plasma spray nozzle combined with 

the heat and mass transfer mechanisms associated with operating in a low 

ambient pressure environment. Also, it must be noted that a separate source of 

experimental variability was due to the complex amalgamation of aging custom 

components used to create the system utilized at Sandia National Laboratories 

(SNL) Thermal Spray Research Laboratory (TSRL). Coatings were created during 

three visits in May of 2010, the summer of 2011, and March of 2012, here referred 

to as sample sets A, B, and C, respectively. A final visit in September 2012 also 

occurred, but a failure in the Hydrogen supply precluded viable coating deposition, 
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allowing only effective study in heat transfer processes. The operating parameter 

of these first three visits can be seen in Table 2, Table 3, and Table 4 in section 

3.2. 

 
 

3.1 Influence of Injection and Plasma Interaction on Coating Formation 

The ambient pressure of the plasma spray chamber is the largest controlling 

factor for the expansion and flow characteristics of the plasma torch, which in turn 

affects the energy density, feedstock residence time, and deposition profile of the 

torch [15]. The primary controlling parameters of the ambient chamber pressure 

are gun power, plasma forming gas composition, gas flow rate, feedstock injection, 

and chamber pumping capacity. A complication of using suspension feedstock in 

a very low pressure environment is the combination of plasma enthalpy loss, due 

to heating and vaporizing the suspension medium, with the resultant expansion of 

the plasma and increase in the ambient chamber pressure. This means that the 

heating of the suspended powder is delayed, occurring outside the hottest, most 

dense plasma volume, the overall plasma enthalpy is reduced, and the low 

chamber pressure allows the plasma to expand farther than in atmospheric 

suspension plasma spray, thus further reducing the plasma enthalpy. However, 

this effect is countered by the increased residence time of the expanded plasma 

plume. Due to these interactions and competing effects, it is best to control the 

chamber pressure to a fixed point for any given series of tests. Yet, the tradeoff of 

operating at a fixed chamber pressure is inevitably to operate at a higher pressure 
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than the best possible by the equipment. Ultimately, the ability to control the 

chamber pressure is the ability to select different deposition profiles [15,21,34]. 

The operating conditions have a significant effect on the minimum 

achievable chamber pressure during continuous plasma spraying. Higher power, 

gas feed rate, and powder feed rate can raise the chamber pressure by 250 Pa. In 

Figure 19, Figure 20, the difference between a low power and a high power spray 

can be seen, without any feedstock injection. This difference alone leads to a 1 

Torr pressure change. In the case of suspension plasma spray, the chamber 

pressure is raised by another 1 Torr due to ethanol vaporization. While the 

minimum steady-state chamber pressure is limited by the operating conditions, 

above this minimum the CAPS chamber can correct for these differences and 

spray at fixed pressures. In Figure 21, the plasma can be seen at operation in the 

vacuum plasma spray (VPS) regime at around 13 kPa. 

 

Figure 19: This image shows the plasma at the lowest achievable steady-state 
pressure of the TSRL’s CAPS system at low power settings. Gun amperage is at 
1000 A, with 50 slpm Ar 

 

140 Pa 

5 cm 
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Figure 20: This image shows the plasma at the lowest achievable steady-state 
pressure of the TSRL’s CAPS system at high power settings. Gun amperage is 
at 1800A, with 60 slpm Ar, 7 slpm H2, & 59 slpm He 
  

 

Figure 21: This image shows the plasma at 12800 Pa steady-state pressure in 
the TSRL’s CAPS system at high power settings. Gun amperage is at 1800A, 
with 60 slpm Ar, 7 slpm H2, & 59 slpm He 

 

 The CAPS chamber allows for ambient pressure control within tenths of a 

Torr. As chamber pressures drop to <300 Pa, even five Pa changes can have a 

clear visible effect on the plasma, as seen in Figure 22. The primary methods for 

controlling the chamber pressure are through the selection of operating vacuum 
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12800 Pa 
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pumps, a Stokes and a Kinney pump were available, six argon window blow-off 

valves, and a butterfly flow regulator valve on the stokes pump. Above 1300 Pa, 

the automated chamber pressure controls were sufficient alone to control chamber 

pressure.  

 

Figure 22: These images show the reduction in plasma expansion with small 
increases in chamber pressure. 
 

 

235 Pa 

5 cm 

267 Pa 

5 cm 

293 Pa 

5 cm 

245 Pa 

5 cm 

520 Pa 

5 cm 

240 Pa 

5 cm 



43 
 

 

3.2 Very Low Pressure Suspension Plasma Spray Coating Development 

 
This research served to refine the suspension feed system at the TSRL 

enough to eliminate clogging in spray times up to 30 minutes and powder loading 

up to 2 vol. %, with this upper limit defined by the capacity and geometry of the 

pressurized suspension feed vessels, rather than any occurrence of clogging. 

Substrate thermal management methods were compared via substrate holders 

with high surface area, internal water cooling, and high heat capacity. Fully 

adherent coatings were only achieved at pressures below 5 Torr and standoff 

distances greater than 91 cm, though these two factors were not fully isolated from 

each other, as the size of the plasma plume has a causal relationship with 

atmospheric pressure. The maximum coating thickness was limited to ~10 μm 

before delamination from residual stresses occurred, with density of adherent 

coatings up to 95%. Deposition efficiency was <10%, contributing to minimum 

coherent coating thicknesses of ~4 μm. At the thicknesses and densities produced, 

these coatings were found to be too permeable for effective use as SOFC 

electrolytes. 

Increased plasma enthalpy is a requirement brought on by suspension 

plasma spray in order to deposit fully molten feedstock. The full range of potential 

plasma enthalpy could not be tested due to the thermal shock sensitivity of the 

substrates used in this research. However, across the range of tested parameters, 

very similar microstructures were produced when coatings adhered to the 

substrates. While Helium addition did appear to increase plasma enthalpy, the 
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increased overall gas flow rate itself increased the minimum maintainable chamber 

pressure by 1 Torr, as well as the size of the plasma jet, such that substrates would 

consistently fall in hotter regions of the plasma than in corresponding Helium free 

tests. As such, it is suggested that standoff distance should increase with 

increasing gas flow rate or suspension medium injection, as the plasma plume 

expansion effect of increased gas flow rate is greater than the size reducing effect 

of the increased ambient chamber pressure. 

The competing concerns in developing VLPSPS coatings were the high 

plasma enthalpy needed to melt the powder feedstock and the low thermal shock 

resistance of the YSZ-NiO substrates, necessary for the anode supported SOFC 

design. The best results obtained were deposits of 4-10 μm, with deposition 

efficiency <10%. The first generation of coatings, sample set A, produced in May 

of 2010, varied the powder loading, between 0.25 - 1 vol. %, spray time, from 7-10 

minutes, and included a doping trial with 3 and 8 mole % Sc addition. These 

coatings were created with the relatively high surface area and low heat capacity 

substrate holder, seen in Figure 8. While tests of multiple standoff distances at a 

time were thus allowed, it was found that plasma gun power and spray time was 

limited by the rapid continual heating of the substrates, causing thermal shock. 

Within the tested standoff distance range of 109-125 cm, no variation in resultant 

coating microstructure or thickness were found, though closer standoff distances 

were more prone to thermal shock. 
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Table 2: Operating parameters for samples created in May 2010 visit to TSRL 
are shown. Note, all samples used Inframat 40 m2/g 8 mole % YSZ and 1 wt. % 
of the dispersant Triton QS-44. 
 

A A1 A2 A3 A4 A5 

Suspension 0.5 
vol.% 

0.25 
vol.% 

1 
vol.% 

3 mol. % 
Sc 

8 mol. % Sc 

Chamber Pressure 
(Torr) 

2.4 2.4 2.4 2.4 2.4 

Power (kW) 69 69 69 69 69 

Gas Mix (Ar,H) 
(SLPM) 

59, 7 59, 7 59, 7 59, 7 59, 7 

Spray Time (s) 420 602 600 420 420 

 

The second generation of coatings, sample set B, produced in the summer 

of 2011, made use of the water cooled substrate fixture, seen in Figure 9, and 

allowed operation of the plasma gun at the full effective power of 88 kW, with an 

Ar-H-He gas composition, though its use necessitated decreasing the standoff 

distance to 91 cm. The water cooled fixture reduced the substrate heating and 

allowed for steady state operation at < 800 °C, but did not fully eliminate the 

thermal shock issue. 
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Table 3: Operating parameters for samples created in summer 2011. All samples 
used 0.5 vol. % of 40 m2/g Inframat 8 mole % YSZ and 1 wt. % of PEI. 
 

B B1 B2 B3 B4 B5 B6 B7 

Chamber 
Pressure (Torr) 

2.2 2.2 3.2 3.07 5.7 3.7 3.8 

Amps 1800 1800 1800 1800 1800 1200 1500 

Volts 49 49 49 44.5 49 45 45 

Gas Mix (Ar, H, 
He) (SLPM) 

60, 7, 
56 

60, 7, 
56 

60, 7, 
56 

60, 
7, 56 

60, 
7, 56 

60, 
7, 56 

60, 
7, 56 

Stand-off 
distance (cm) 

89 89 91 91 91 91 91 

Spray Time (s) 255 200 247 181 210 433 424 

 

The third generation of coatings, sample set C, produced in March of 2012, 

also used an Ar-H-He gas composition, with the water cooled substrate fixture, but 

focused on lower plasma enthalpy testing parameters, increased deposition time, 

and the effects of ambient chamber pressure.  

Table 4: Operating parameters for samples created in March 2012 visit to TSRL 
are shown. Note, all samples used 0.5 vol. % of 40 m2/g Inframat 8 mole % YSZ. 
 

C C1 C2 C3 C4 C5 

Suspension Dispersant PEI PEI PEI QS-44 QS-44 

Chamber Pressure 
(Torr) 

2.35 3.35 5.3 3.65 3.8 

Amps 1500 1500 1500 1500 1600 

Volts 38 40 42 40 42 

Gas Mix (Ar,H,He) 
(SLPM) 

59, 7, 
19 

59, 7, 
19 

59, 7, 
19 

59, 7, 19 59, 7, 19 

Stand-off distance (cm) 91 89 91 91 91 

Spray Time (s) 486 915 513 513 513 
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Table 4 Continued: 

C C6 C7 C8 C9 C10 C11 

Suspension (vol. 
%) 

1 1 1 1 0.5 0.5 

Chamber 
Pressure (Torr) 

3.6 5.3 4.3 4.2 4 4.2 

Amps 1500 1500 1500 1500 1500 1500 

Volts 40 40.5 47 48 47 41 

Gas Mix 
(Ar,H,He) 
(SLPM) 

59, 7, 
19 

59, 7, 
19 

59, 7, 
56 

59, 7, 
56 

59, 7, 
56 

59, 7, 56 

Stand-off 
distance (cm) 

91 91 91 91 91 91 

Spray Time (S) 671 513 60-
120 

513 513 300 

 

The fourth generation of coatings, produced in September of 2012, used an 

Ar-He gas composition, with standoff at 91 and 119 cm. The final variety of 

substrate fixture was employed, a 12.7 cm diameter, 15.2 cm long stainless steel 

cylinder, which acted as a heat sink. This fixture, combined with low power 

preheating of the substrate before deposition, effectively slowed the heating of the 

substrates as well the cooling rate when the plasma gun was off the substrates, by 

maintaining chamber vacuum after deposition had ceased. A thermocouple 

attached to the bottom of the substrates measured heating and cooling at <20 

°C/min. The top surface of the substrates is expected to undergo greater 

temperature variation, but this improvement was sufficient to eliminate thermal 

shock in all tested configurations. However, as hydrogen was unavailable as a 

plasma forming gas, the highest plasma enthalpies were not able to be tested. 
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3.3 Description of Microstructure and Sc-Nitrate Doping Efficacy 

Scanning electron microscopy (SEM) was used as a basis for analysis of 

the effects of standoff distance, powder loading, spray time, and dopant 

concentration on the microstructure of SPS/VLPPS coatings. The as-sprayed 

microstructure can be seen in Figure 23, in which the presence of unmelted 

particles can be seen in the cross section as well as evidence of surface roughness 

in both micrographs. Figure 25 shows the microstructure of a complete fuel cell 

after testing, which includes a 2 hour heat treatment at 1200º C. This heat 

treatment causes some sintering of the electrolyte, though the density is still 

around 95%. 
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Figure 23: SEM images of the initial microstructures of select VLPSPS coatings 
are shown. On top is a cross-section of an un-doped 1 vol.% YSZ coating 
sprayed for 10 minutes at 117 cm standoff. On bottom is a surface image of a 3 
mole % Sc-doped 0.5 vol.% YSZ coating sprayed for 7 minutes at 109 cm. Note 
the presence of un-melted particles in the cross-section image, despite 
significant density of the coating, and the surface roughness of the bottom image. 
 

5 μm 

20 μm 
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The deposition efficiency was calculated based on the coating thickness, 

suspension powder loading, feed rate, feed time, and the approximate deposition 

area of the plasma plume, a circle of 15 cm diameter, which accounted to be <10%. 

Additionally of note is that loose un-adhered powder deposits every surface of the 

chamber after running the process and particularly collects in the shrouded area 

around the edge of the substrate. The particle size distribution, as shown in Figure 

11, of the 40 m2/g YSZ VLPSPS powder indicates that approximately 15% are 

between 0.5-2 microns, with the majority being split between 35% with a mean of 

0.1 microns and 50% with a mean of 7. It is assumed the largest particles are 

primarily agglomerates of the smaller particles, which is supported by their 

absence from the coatings and the shroud. As can be seen in Figure 24, the 

shrouded area tends to contain many smaller particles, while the deposited surface 

is made primarily of particles around 1 micron and neither surface contains 

indication of splat-like shapes. 
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Figure 24: Micrographs of the as sprayed surface of a VLPSPS coating 
deposited at a 91 cm standoff for 7 minutes, with 0.5 vol.% 40 m2/g YSZ are 
shown. The top image shows a shrouded region and the bottom image shows 
the open deposition surface. Note the scale differences between images. 
 

VLPSPS deposition is particle size selective, in a similar fashion to 

atmospheric SPS. As particle size goes down, the degree of flow with the carrier 

gas/plasma increases as momentum vs. surface area decreases. Any moving fluid 

encountering a surface generates a boundary layer, meaning any particle without 
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sufficient momentum to overcome gas flow will not deposit. Also, the pressure 

differential between the chamber and the plasma means gas is continually flowing 

out of the plume along its standoff distance. This selectivity is increased when 

there is insufficient power to deposit fully melted particles, with selectivity against 

smaller particle size decreasing with standoff distance as the substrate boundary 

layer weakens and selectivity against large particle size based on the gun power 

and suspension medium. Thus, the smallest particles are continually eliminated 

from the plume via thermophoresis and the continued expansion of the plasma into 

the vacuum chamber, the largest particles may never melt, and those that remain 

at high standoff distances are at the lowest temperature of the overall gun to 

substrate particle stream, but sufficient to both penetrate the boundary layer and 

'stick' to the substrate. This does allow for smaller particle agglomerates to melt 

and combine, but they would have to be mostly re-solidified by the point of 

deposition, based on the observed microstructures. 

The effect of standoff distance on electrolyte coating thickness was shown 

to be negligible within the tested range 109-125 cm, while surface roughness of 

the coating can be seen as the limiting factor on the minimum achievable coating 

thickness. Due to the thin geometries of these coatings, the effect of a few microns 

of surface roughness served to obfuscate the standoff distance findings. In Figure 

25, a complete fuel cell can be see. In Figure 26, a comparison of undoped 

electrolytes can be seen. In Figure 27 and Figure 28, a comparison of 8 mol. % Sc 

doped electrolytes is shown at different magnifications. In comparing all 3 sets of 

images, no distinct difference in thickness can be attributed to stand-off distance. 
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Figure 25: An SEM image of a complete fuel cell after testing is shown. The 
spray conditions were 8 mol% Sc-doped 0.5 vol% 40 m2/g YSZ, sprayed for 7 
min at 125 cm standoff. Note that in the fuel cell preparation, the coating 
undergoes a 1200º C - 2 hour heat treatment, which causes some sintering. 
 

 

Figure 26: SEM images are shown of 0.5 vol% 40 m2/g YSZ, sprayed for 7 min at 
standoff distances of 109 cm (left) and 125 cm (right). While this comparison 
suggests an increase in thickness for the closer standoff distance, this is 
attributed to the surface roughness in coating thickness associated with 
comparing any two individual sections of coatings. 
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Figure 27: SEM images are shown of 8 mol. % Sc-doped 0.5 vol. % 40 m2/g 
YSZ, sprayed for 7 min at a standoff of 109 cm (left) and 125 cm (right). This 
comparison suggests a slight increase in coating thickness caused by increasing 
standoff distance within this 16 cm range. However, as seen in Figure 26, this is 
a byproduct of the bias associated with comparing any two small sections of 
coatings. See Figure 28 for further evidence of this. 
 

 

Figure 28: SEM images are shown at higher magnification of the same coatings 
from Figure 27,  8 mol. % Sc-doped 40 m2/g 0.5 vol% YSZ, sprayed for 7 min at 
a standoff of 109 cm (left) and 125 cm (right). This comparison suggests there is 
no effect on coating thickness caused by changing standoff distance within this 
16 cm range. See Figure 26 and Figure 27 for further evidence of this. 
 

The effect of powder loading on electrolyte coating thickness showed a 

trend that can be approximated as ~1.1 μm/min*vol.%. The surface roughness was 

shown to increase somewhat with increasing thickness, the extreme of which was 

only achieved at the highest powder loading, so this effect could not be isolated 
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from powder loading. However, the surface roughness relative to overall coating 

thickness went down as coating thickness increased. A comparison between 0.25 

vol.% and 1 vol.% powder loading, showing the increased coating thickness with 

increased powder loading, can be seen in Figure 29.  

 

Figure 29: SEM images are shown of 40 m2/g YSZ at 0.25 vol.% (left) and 1 
vol.% (right), sprayed for 10 min at a standoff of 109 cm (left) and 125 cm (right). 
As expected, this comparison shows a distinct increase in coating thickness 
associated with increased powder loading. 
 

The microstructure of the 3 mol.% Sc and 8 mol.% Sc-doped electrolyte 

coatings was found to be very similar and to be relatively indistinguishable from 

the un-doped coatings, as seen in Figure 30. The true distinguisher of doping was 

found in the EDS spectrum, as evidenced in the EDS map seen in Figure 31. As 

such, it is believed that the dopant is in solid solution with the YSZ. It is important 

to note that the suspension doping does not equal the doping of the resultant 

coating. Previous doped SPS research has shown a ~50% doping rate [28]. Also, 

since the net dopant molecule formed is Sc2O3, the net doping of the coating is 

halved. For example, when a suspension is doped with 8 mol. % Sc, the likely net 

doping of the coating is around 2 mol. % Sc2O3. XRD analysis of these coatings 

can be seen in Figure 32, in which no evidence of a Sc2O3 phase can be seen. 

5 μm 
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Figure 30: SEM images are shown of 0.5 vol% 40 m2/g YSZ, sprayed for 7 min at 
a standoff of 109 cm with doping of 3 mol% Sc (left) and 8 mol% Sc (right). The 
microstructures are too similar to mark a definitive difference between the doping 
levels, though fuel cell testing has shown increasing performance with doping. 
 

 

Figure 31: An SEM image and EDS map are shown of a complete fuel cell with 
an electrolyte created with 8 mol% Sc-doped 0.5 vol% 40 m2/g YSZ, sprayed for 
7 min at 125 cm. The EDS map shows La/Mn in red and Ni in yellow, with the 
presence of scandium (blue) in the electrolyte clearly visible. 
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The XRD analysis, in conjunction with EDS measurement of scandium 

content in doped coatings, supports the supposition that scandium is incorporated 

into the zirconia lattice during VLPSPS. As seen in Figure 32, below, no Scandia 

associated peaks are present in the doped samples. The peaks did shift left slightly 

in the doped samples, as might be expected with the presence of the smaller Sc 

(in comparison to Y) in solid solution, though this was viewed to be within the error 

of measurement for these samples, due to the imperfect plane formed by the 

substrate. 

 

 

Figure 32: An XRD spectrum comparison between un-doped, 1.5 mol% Sc2O3, 
and 4 mol% Sc2O3 electrolyte coatings prepared on a NiO-YSZ substrate is 
shown. No peaks were associated with a separate Sc2O3 phase. 
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CHAPTER 4. DESCRIPTION AND ANALYSIS OF EPD COATING 
EXPERIMENTS 

 
 
 

This chapter details the processing variables evaluated and experimental 

conditions employed during successive generations of electrophoretic deposition 

trials. Analysis of coating microstructures is included when applicable to changes 

in EPD parameters during subsequent experiments. 

 

4.1. First Generation EPD: Fixture Optimization 
 

The initial fabrication of EPD coatings focused on maintaining as much 

similarity in suspension composition from the VLPSPS suspensions, while 

identifying the necessary changes to promote reliable uniform deposition of thin 

(<10 μm) crack and pore free coatings. The first step was identifying undesirable 

fabrication artifacts and adapting process fixtures to compensate. The primary 

fixture issues revolved around the relatively high resistivity of the NiO-YSZ anode 

substrates and the consequent magnification of electric field strength variability 

across the surface [70]. This electric field strength variability caused preferential 

deposition at edges as well as patterned deposition mirroring the shape of the 

electrode attached to the back of the anode substrate.  

Several adjustments were made to reduce the effects of electric field 

strength variability, centered around the dimensions and nature of the electrode 
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attached to the substrate, as well as the dimensions of the substrate, and the 

reduction state of the substrate. The electrodes tested included a nanoscale 

graphite electrode fabricated with an aerosol spray, a ~40 micron thick graphite 

paste electrode screen printed with a 320 mesh, and a 0.3 mm graphite foil 

electrode attached with graphite paste. The substrate thickness was varied from a 

140 micron 1 layer substrate sintered at 1400 °C for 2 hours to a 1.8 mm 10 layer 

substrate bisqued at 1000 °C. These tests were carried out for both the NiO and 

Ni state of the substrate. Reduction of the substrate was carried out at 1000 °C for 

2 hours in an Ar/5%H2 atmosphere. Infiltration of the substrate was done using the 

deposition suspension or by filling the inner chamber of the fixture holding the 

substrate. The immersions used for the inner chamber of the substrate fixture were 

either pure ethanol or ethanol with matching concentration of PEI and/or acetic 

acid to the external suspension. 

The best electrode was found to be the 0.3 mm graphite foil, as it never 

produced a patterned deposit. Immersion of the substrate for 5 minutes in the 

depositing suspension before applying a voltage was the best way to get 

reproducible uniform coatings, with immersion from the inner chamber of the fixture 

completely preventing deposition. Thin substrates most frequently underwent 

patterned deposition, when not using the graphite foil electrode, and would lower 

deposition voltage up to 20%. However, the mechanical strength of the thicker 

substrates was worth this minor difference, so 10 layer substrates were used as 

the standard. Reduced substrates allowed EPD at around 10% of the voltage 

required for the oxidized substrates, with more stable voltage during deposition, a 
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typical difference of a 30V to a 300V average deposition voltage, and were 

therefore more reliable for the suspension constituent study. 

The EPD operating parameters of electrode separation distance, deposition 

voltage, and deposition current were selected based on established protocols from 

a literature review and an initial series of constant current and constant voltage 

tests. Electrode separation was fixed at 1 cm, while the current and voltage 

parameters were varied within the power supply limits of approximately 0.1 – 1 

mA/cm2. While deposition rate correlates to the applied voltage during EPD, 

excess voltage is found to lead to turbulent flow near the growing deposit, which 

leads to increased porosity in the coating [48,49,71]. Therefore, as the end goal of 

this application of EPD was pore free coatings, the emphasis of this testing was to 

establish a voltage near to the minimum necessary to drive deposition. 

Additionally, since current density and voltage change during deposition and the 

suspension composition itself would be changed during subsequent tests, it was 

deemed important to set standard conditions well away from the limitations of the 

power supply [72]. Finally, constant current deposition at 0.47 mA/cm2 was 

selected due to the greater independence versus deposit thickness of the constant 

current deposition mode compared to constant voltage deposition, as discussed in 

chapter 1. 
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4.2. Second Generation EPD: Suspension Constituent Study 
 

The role of suspension constituents was analyzed based on a literature 

review and parametric study of powder loading, powder specific surface area, 

polyvinyl butyral (PVB) content, polyethyleneimine (PEI) content, and acetic acid 

content, as described in Table 5 [73,74,75,76]. The deposits formed in the 

suspension constituent analysis utilized a fixed electrode separation of 10 mm, 

with constant current deposition at 0.47 mA/cm2. Each deposition was carried out 

with 300 mL of suspension, which was calculated to result in <1% depletion of the 

suspension constituents over the course of deposition, based on measurements 

of deposit yield and thermogravimetric analysis (TGA) measurements of deposit 

constituents. A TGA plot of a coating deposited from a suspension of 0.25 vol. % 

13 m/g2 YSZ, 1 wt. % PEI, and 8 g/L PVB, can be seen in Figure 33. The TGA 

revealed that the as deposited coating is approximately 97.5 weight % YSZ, which 

amounts to approximately 88 vol. % YSZ, not counting porosity, with the remainder 

being a combination of PEI and PVB. Assuming a standard drying shrinkage of 10-

15% and a particle packing density of 60%, this means the combined PEI and PVB 

content in the liquid phase of the growing deposit is between 14 -16 vol. % and 18 

-19 wt. %, which represents a very large increase over the combined 2 wt. % they 

represent in the bulk suspension. 
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Figure 33: This figure shows thermogravimetric analysis of an electrophoretically 
deposited coating from a suspension of 0.25 volume % 13 m2/g YSZ, 1 weight % 
PEI, and 8 g/L PVB, in ethanol, after drying for 24 hours.  
 
Table 5: The EPD suspension constituent testing regime is shown. All coatings 
were created at 0.47 mA/cm2 for 10 minutes at 10 mm electrode separation, with 
the voltage response recorded with an Agilent 34401A Digital Multimeter. 
 
YSZ (vol. %) Specific 

Surface Area 
PEI (weight 
%) 

PVB (g/L) Acetic Acid 
(M) 

0.25 13 1 8 0 
0.25 13 1 8 10-2 

0.25 13 1 8 3 x 10-2 

0.25 13 1 4 0 
0.25 13 1 2 0 
0.25 13 1 0 0 
0.25 13 2 8 0 
0.25 13 0.5 8 0 
0.5 13 1 8 0 
2 13 1 8 0 
0.25 40 1 8 10-2 
0.25 40 1 8 0 
0.25 40 1 4 0 
0.25 40 1 2 0 
0.25 40 1 0.75 0 
0.5 40 1 0 0 
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The primary metrics of deposition quality analysis were crack presence, 

deposit adherence, deposit uniformity, and deposit porosity. The deposition quality 

was determined based on a tiered analysis, focusing first on the elimination of 

cracking as the most serious and obvious issue faced. Also, some suspension 

compositions either resulted in no coating formation or such limited adherence that 

the coating did not survive removal from the suspension. Another feature of poor 

deposit adherence would be striations in the coating perpendicular to the axis of 

removal from the suspension, indicating partial delamination and flow of the 

deposit while in the wet state immediately upon removal from suspension. This 

effect was distinct from “mud-crack” drying from capillary drying stresses, as the 

cracking would only occur with fast removal of the substrate from the suspension 

that could visibly be seen to cause delamination and flow of coatings. An example 

of these striations can be seen in Figure 34. Initially, these striated or cracked 

deposits were also integrated into SOFCs and their performance was tested, but 

they were found to be nonfunctional as electrolytes. These striations did not occur 

with every test, with thinner depots being more resistant. However, increased 

removal rate was qualitatively found to lead progressively from uniform deposits, 

to striated deposits, and finally to completely failed deposits in which the remnants 

of the deposit were seen to flow with the direction of the withdrawal. A removal rate 

of roughly 2 cm/min from the EPD suspension seeming to eliminate this effect, but 

acetic acid addition to the suspensions completely eliminated it without the need 

to add equipment to the EPD fixture to facilitate this slow removal and was thus 

the preferred solution. 
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Figure 34: A topographic micrograph is shown of an EPD coating formed from 
0.25 vol. % 13 m2/g YSZ, 1 wt. % PEI, and 8 g/L PVB. Note the parallel spaced 
cracks, which are an artifact of the process of removing the coating from the EPD 
suspension.  
 

In addressing deposit cracking, the key suspension properties were found 

to be the specific surface area of the particles and the presence of the binder 

polyvinyl butyral (PVB). The 40 m2/g YSZ powder based suspensions all showed 

“mud crack” surface topographies, with the incidence of cracking being reduced by 

decreasing deposit thickness and increasing PVB content, but not consistently 

eliminated, as illustrated in Figure 35 & Figure 36. 
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Figure 35: Topographical micrographs are shown of deposits from 0.25 vol. % 40 
m2/g YSZ, 0.75 g/L PVB, and 1 wt. % PEI. The top image is as deposited, while 
the bottom image is after sintering for 2 hours at 1400 °C. 

100 μm 

100 μm 
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Figure 36: Topographical micrographs are shown of deposits with 0 PVB (top) 
and 2 g/L PVB (bottom) with the remaining constituents of 0.25 vol. % 40 m2/g 
YSZ and 1 wt. % PEI. 

20 μm 

20 μm 
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With the 13 m2/g YSZ powder based suspensions, cracking was eliminated 

with the addition of 4 g/L of PVB. The 8 g/L PVB content of 13 m2/g showed the 

same effect on eliminating cracking, without any discernible change in other 

deposit properties, and was used for later testing as a safeguard against the 

increased drying stresses associated with deposition of thicker coatings. While the 

focus of this study was thin, <10 μm, deposits, deposits up to 2 mm were created 

with this suspension composition, none of which exhibited any occurrence of 

cracking. 

The role of PEI content on the suspension was first to provide suspension 

stability, but it was also found to act as a charge carrier during EPD, such that 

concentrations in excess of that necessary for stability caused reduction of 

deposition voltage and indication of preferential deposition of PEI over YSZ. At the 

highest tested concentration of 2 wt. % PEI, the deposit lacked YSZ, consisting of 

the polymer constituents of the suspension in irregular, rough deposits.  

The acetic acid content of the suspension in electrophoretic deposition 

forms part of the diffuse boundary layer around particles and also acts as a free 

ion charge carrier. In its role as a free ion charge carrier, the addition of acetic acid 

lowers the suspension resistivity, thus reducing deposition voltage, while also 

acting as a parallel circuit to that of the ions directly involved in electrophoretic 

deposition. This effectively leaches current from the deposition process, which is 

a negative factor in increasing acetic acid concentrations that can lead to 

prevention of electrophoretic deposition. Acetic acid was found to reduce the 

initiation period for deposition, allowing uniform deposits to form in as little as 1s 
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at 8 V. Without acetic acid, it took at least 2-3 minutes before an adhered coating 

would form at a deposition voltage around 30-40 V. It may be that acetic acid free 

deposits grow similarly, but that their inter-particle repulsion remains slightly too 

high after deposition and thus they have insufficient cumulative bond strength for 

adhesion outside of the suspension. As these acetic acid free deposits grow 

thicker, the relative effect of the suspension flow along their surface lessens to the 

point where they maintain adhesion or there is always some sacrificial part of the 

coating at the surface that is removed. In these thicker deposits, as seen in Figure 

37, the thickness and microstructure are virtually the same within the range of 

acetic acid tested. 
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Figure 37: Micrographs are shown of polished cross sections of EPD coatings 
deposited for 10 minutes with varying acetic acid content of none (top), 10-2 M 
acetic acid (middle), and 3 x 10-2 M acetic acid (bottom). The rest of the 
constituents of the suspensions were constant, with 0.25 vol. % 13 m2/g YSZ, 1 
w. % PEI, and 8 g/L PVB. 
 
 

20 μm 

20 μm 

20 μm 
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Another key in explaining the initiation period of EPD is related to the 

suspension concentration increase that occurs near the electrode after the onset 

of deposition, which results in an effective increase in particle loading as well as 

changes in ion concentration and thus inter-particle repulsion. Ultimately, the 

boundary between deposit and suspension is a nearly continuous one, with particle 

concentration increasing to the point of contact and continued shifting of connected 

particles near the surface towards local increased electric field strength. The 

degree to which this happens is dependent on the stability of the suspension and 

the change in stability versus distance from the electrode and the growing deposit 

surface, as shown by Sarkar et al. [73]. While the concentration of acetic acid was 

below the detectability of the TGA measurements performed, the effect of 

concentrating materials from the boundary layer confirmed by the TGA is expected 

to affect acetic acid as well. Also, the short deposition time means the suspension 

deposited from close to its equilibrium state, with minimal time allowed for 

suspension concentration to build up around the electrode, though the local shift 

in free ion concentration would occur at a faster rate than that of the particles 

themselves as their charge to mass ratio is much higher. These results indicate 

that the key effect of the acetic acid is to increase the inter-particle attraction within 

the deposit without negatively impacting the stability of the particles in the 

suspension. 

The suspension with the greatest reproducibility of uniform and well 

adhered deposits from the parametric study consisted of 0.25 vol. % YSZ, with a 

specific surface area of 13 m2/g, 1 weight % PEI, 8 g/L PVB, and 3x10-2 M acetic 
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acid. An example of EPD coatings made from this composition can be seen in 

Figure 38, depicting a 43 micron thick un-sintered EPD coating and a 27 micron 

thick EPD coating sintered at 1400 °C for 2 hours. In Figure 39, an EPD coating 

can be seen at multiple scales, comparing both polished and fractured surfaces. 

Sintered deposits reached 97% density, but coalesced pores were present after 

sintering.  
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Figure 38: Micrographs are shown of as deposited (top) and post sintering 
(bottom) of deposits formed at 0.47 mA/cm2 for 10 minutes from suspensions of 
0.25 vol. % 13 m2/g YSZ, 1 w. % PEI, 8 g/L PVB, and 3 x 10-2 M acetic acid. 
  

20 μm 

20 μm 
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Figure 39: A series of micrographs is shown, at progressive scales, of the same 
SOFC, with a-c being polished samples and d being a fracture surface. The 
sample was produced via 0.25 vol. % 13 m2/g YSZ, 1 wt. % PEI, 8 g/L PVB, and 
3 x 10-2 M acetic acid deposited for 10 minutes at 0.47 mA/cm2. 
 

The final step in preparation for deposition of bilayer YSZ-GDC was to 

further explore the deposition initiation and growth over time in order to minimize 

electrolyte thickness. Surface roughness is a key factor in establishing minimum 

deposit thickness, so topographic micrographs were taken for deposits formed 

over 1.5, 30, and 60 seconds, as seen in Figure 40. These topographic images 

showed that shorter deposition times produced less surface roughness, so the 

primary limitation on thickness is the porosity of the coating, which was found to 

lead to permeable coatings when <5 microns thick. 

200 μm 

20 μm 2 μm 5 μm 

(a) 

(b) (c) (d) 
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Figure 40: Surface topographies are shown; note increasing surface roughness 
with deposition time between 1.5s, 30s, and 60s, from top to bottom, 
respectively. Deposits formed at 0.47 mA/cm2 from suspensions of 0.25 vol. % 
13 m2/g YSZ, 1 w. % PEI, 8 g/L PVB, and 3 x 10-2 M acetic acid. 
 

100 μm 

100 μm 

100 μm 
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4.3. Third Generation EPD: Bilayer YSZ-GDC Electrolytes 

Bilayer electrolytes were produced from GDC and YSZ, with the objective 

of using the YSZ layers as barriers against the low pO2 atmosphere at the anode, 

and utilizing the lower temperature ionic conductivity of the GDC [77,78,79,80,81 

,82,83]. The GDC suspension composition was selected based on the findings 

from the YSZ suspension constituent study, though it was found that the acetic 

acid was not necessary for GDC coating adherence, so the bilayers were all 

formed with suspensions of 0.25 vol.% GDC, 1 wt. % PEI, and 8 g/L PVB. The 

ideal thickness of each layer of the bilayer was initially estimated based on a study 

of deposition time of each YSZ electrolyte versus open circuit voltage in a 

functional solid oxide fuel cell, as discussed further in chapter 5 and Table 7. From 

these results, select combinations of YSZ and GDC were then tested. The idea 

was that the best YSZ layer would be one that on its own could not provide full 

theoretical open circuit voltage. As the deposits were crack free, the lack of full 

open circuit voltage was attributed to the porosity in the coating allowing hydrogen 

permeation and thus reducing the electrical potential. This partial open circuit 

voltage was indicative of the YSZ layer operating in the lowest pO2 environment 

and thus with an additional layer of GDC, the theoretical open circuit voltage could 

be achieved without exposing the GDC to a reducing atmosphere, while also 

mitigating the effect of reduced low temperature ionic conductivity in the YSZ layer. 

Bilayer deposits were attempted via sequential wet deposition as well as 

with an intermediate bisque of the YSZ layer for 2 hours at 1000 °C in an Ar/5%H2 

environment. An example of the sequential wet deposition can be seen in Figure 
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41, with accompanying EDS map. Unfortunately, it was difficult to define the 

transition between YSZ and GDC, just their relative presence on each side of the 

electrolyte. Both methods resulted in functional SOFCs, but the intermediate 

bisque produced denser deposits, with higher power densities and open circuit 

voltage, as discussed in chapter 5. A micrograph of a YSZ-GDC bilayer produced 

with sequential wet deposition can be seen in Figure 41. 
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Figure 41: A micrograph and EDS map is shown of a YSZ-GDC bilayer. Cerium 
is shown in green, at a minimal detectable level, while Pt, La, and Ni are unique 
elements in the electrode, cathode, and anode, respectively, shown for contrast.  

Pt La Ni 

10 μm μ
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4.4. Fourth Generation EPD: Sc-Nitrate Doped Suspension Based Coatings 

The last set of SOFC electrolytes were produced to evaluate the 

effectiveness of doping electrophoretic deposits with metal salts as a means of 

composition control in the final deposit. Varying concentrations of scandium nitrate 

in the electrophoretic deposition suspensions were used as a means of evaluation. 

The main concerns over the effectiveness of this method were the yield of scandia 

in a deposit, relative to the scandium nitrate concentration in the electrophoretic 

deposition suspensions, as well as the effectiveness of the scandia incorporation 

into the YSZ lattice. The nature of electrophoretic deposition is that any scandium 

nitrate deposited must initially exist on the surfaces of the deposited particles and 

thus must decompose to scandia and diffuse into the particles via subsequent heat 

treatment. EDS of resultant deposits sintered for 2 hours at 1400° C can be seen 

in Table 6, showing a doping efficiency of 54%, representing the proportion of 

scandium in the deposit relative to the initial concentration of scandium, relative to 

YSZ, in the suspension. However, as further discussed in chapter 5, SOFC testing 

indicates that the scandium doesn’t diffuse into the YSZ enough to disperse 

evenly, so the EDS is likely over counting the predominantly surface scandium 

content. 

Table 6: EDS results for a deposit formed with a 16 mole % Sc-nitrate doped 
suspension are shown, indicating a doping efficiency of 54%.  
 

Element Wt% At% Z A F 
Y L 16.9 16.5 0.9958 0.9512 1.0004 
Zr L 78.3 74.3 0.995 1.0032 1.0005 
Sc K 4.8 9.3 1.0986 0.5711 1 
Total 100 100       
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CHAPTER 5. DISCUSSION OF SOFC PERFORMANCE AND PROCESSING 

RELATIONSHIPS 

 
 
 

In this chapter the coatings produced via very low pressure suspension 

plasma spray and electrophoretic deposition are analyzed with respect to their 

performance characteristics as electrolytes within a complete solid oxide fuel cell. 

The performance was characterized via comparison of microstructure, 

potentiodynamic response, and impedance spectroscopy. They key metrics were 

electrolyte thickness, electrolyte density, peak power density of the SOFC versus 

temperature, and total interfacial resistance of the SOFC versus temperature. The 

two deposition processes produced similar microstructures, with densities above 

95%, and were both used to fabricate <10 μm electrolytes. There were a limited 

number of viable VLPSPS samples, though the feasibility of doping with metal 

nitrates to achieve compositional mixing sufficient for electrochemically active 

electrolytes was confirmed. 

The similar nature of EPD microstructures to the VLPSPS microstructures 

allows for some extrapolation of the latter’s capabilities, if further explored, based 

on the EPD findings here reported. The two most significant distinctions between 

these two processes was found to be that (1) VLPSPS coatings achieve their 
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density in the as-sprayed state, without requiring further heat treatment, as needed 

with EPD and (2) dopants from metal nitrates in suspension are incorporated into 

the lattice structure of the host particle feedstock during VLPSPS, but are only 

present on the surface of particles within EPD coatings.  

 
5.1. Very Low Pressure Suspension Plasma Spray Electrolytes 

 
The fuel cell testing of the electrolyte coatings has shown improvement in 

power density with scandia doping, however an initial flaw in the testing 

methodology caused overly thick electrodes that resulted in low current densities, 

negating the impact of these results. Standard fuel cells, consisting of the same 

YSZ-NiO anode support, 6-10 μm 8 mole % YSZ electrolyte, and LSM based 

cathode were purchased from Fuel Cell Materials, Inc in an effort to compare 

results, given this limitation, and as a method to identify the testing flaw. This led 

to an improvement in the testing procedure, but limited access to the VLPSPS 

equipment at Sandia National Laboratories’ Thermal Spray Research Laboratory 

and mechanical breakdowns of the equipment barred further efforts in VLPSPS 

electrolyte fabrication research. However, with the improvement of the testing 

procedure came validation of the open circuit voltage (OCV) measurements of all 

tests. This consistently showed the SOFCs produced from the VLPSPS 

electrolytes to be of low quality at the evaluated thicknesses, while suggesting the 

characteristic porosity of the process would be suited for thicker electrolytes of 

around 15+ μm to achieve impermeability to hydrogen. 
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In Figure 42, the results are shown of the performance comparison of the 

standard cell and the best VLPSPS fuel cell produced, when tested using the initial 

low current density method. The standard cell that was tested was rated for 800 

mW/cm2 peak power density at 800 °C, but clearly suffers from low current density 

in these tests, with a peak power density of 40 mW/cm2. However, the open circuit 

voltage of 1.1 V matches expected results. Within this significant caveat of all 

around low current density, the power density performance of the VLPSPS 

electrolyte is comparable to the standard cell. An important point to note is the 

more accurately measured OCV, which is the y-axis intersection of the IV curve, 

representing the electromotive force of the reaction, which should be around 1.1V, 

as the standard cell is. At an OCV of 0.7 V, the VLPSPS electrolyte suffers an 

inherent disadvantage in achieving high power densities. 

 

Figure 42: Potentiodynamic testing results are shown comparing an 8 mol% Sc 
doped 0.5 vol. % 40 m2/g YSZ, sprayed for 7 min at a standoff of 125 cm, to a 
standard cell, made from similar components, including a YSZ electrolyte, 
purchased from Fuel Cell Materials, Inc. 
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The OCV of VLPSPS electrolyte SOFCs was found to be dependent on the 

electrolyte thickness, with the thickest coating, ~11 μm, having 0.93V. This 

thickness relationship is attributed to porosity in the coating allowing for electrolyte 

permeability at lower thicknesses. Attempts were made to fabricate thicker 

coatings, but delamination was a limiting factor along with increased thermal load 

due to increased deposition time that lead to thermal shock of the substrates.  

 
5.2. Electrophoretically Deposited YSZ Electrolytes 

 
Electrolyte coatings produced using electrophoretic deposition performed 

comparably to similar coatings reported by Hosomi et al. [55] and Besra et al. [54]. 

The highest stable power density achieved was approximately 440 mW/cm2 at 800 

°C for a cell consisting of a NiO/YSZ anode, screen printed LSCF cathode, and a 

7.8 μm thick YSZ electrolyte deposited for 10 minutes at 0.47 mA/cm2 from a 

suspension of 0.25 volume % YSZ, 1 weight % PEI, 8 g/L PVB, and 10-2 M acetic 

acid, in ethanol and sintered for 2 hours at 1400°C. At 800 °C, the total interfacial 

resistance of this cell, as measured via impedance spectroscopy, was 0.7 Ω·cm2. 

Another cell, fabricated under the same parameters, but resulting in a less dense 

4.7 μm thick YSZ electrolyte, as measured via SEM cross section, reached a 

power density of 520 mW/cm2 at 800 °C, with a total interfacial resistance of 0.14 

Ω·cm2, but had a poor open circuit voltage of 0.7 V and suffered performance 

degradation over the initial 24 hours of operation. While this was the highest 

measured peak power density, the low open circuit voltage and increased porosity 
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of the electrolyte indicated permeability of the electrolyte, thus the effective partial 

pressure drop across the electrolyte was decreased versus ideal. However,  

the diffusion path of oxygen ions in the electrolyte was also shorter, which may 

have compensated for the lower open circuit voltage. Micrographs of the three best 

performing cells can be seen in Figure 43. 
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Figure 43: Micrographs are shown of fracture surfaces for the 3 highest power 
density SOFCs, in increasing power density at 800°C from top to bottom, 300 
mW/cm2, 0.81 OCV, 8 μm thick, 440 mW/cm2, 7.8 μm thick, 1.03 OCV 520 
mW/cm2 0.7 OCV, 4.7 μm thick. 
 

 

5 μm 

10 μm 

2 μm 
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Overall, performance was found to correlate to electrolyte thickness, with a 

tradeoff of lower cell resistance as thickness decreased, accompanied with open 

circuit voltage loss due to gas permeation of the electrolyte porosity causing partial 

short circuiting of the electrochemical reaction. 

Electrolytes under approximately 5 μm thick tended to have increased 

porosity, while thicker electrolytes converged towards densities of around 97%. 

These thin electrolytes could only be produced with suspensions containing acetic 

acid, due to the deposit adherence issues described in chapter 4. The thinnest 

functional electrolyte was produced from a deposition time of 30s and resulted in 

a 4.7 μm porous electrolyte. The difference in porosity versus deposit thickness 

can be seen by comparing the micrographs in Figure 44 of progressively thicker 

deposits. Please note that some of the greater thickness of the final deposit shown 

in Figure 44 is due to a substrate lamination defect, a void between laminate layers, 

which limited deposition on a portion of the substrate, effectively magnifying the 

current density on the defect free portions of the substrate and thus increasing 

deposition rate. The performance of these SOFCs are reported in Table 7. 

Ultimately, open circuit voltage loss due to electrolyte porosity necessitated a 

minimum thickness for high power density electrolytes of approximately 4-5 μm. 
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Figure 44: Micrographs are shown of progressively thicker deposits of 4.7, 10.4, 
and 27 μm YSZ electrolytes, with open circuit voltages of 0.8, 1, and 1.05 V 
respectively. These deposits were formed for 30s, 60s, and 10 minutes. 

10 μm 

10 μm 

20 μm 
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Table 7: A comparison is shown of EPD electrolyte thickness versus SOFC 
performance characteristics, at 800 °C, for deposits formed from 0.25 volume % 
13 m2/g YSZ, 1 weight % PEI, 8 g/L PVB, and 3 x 10-2 M acetic acid, in ethanol 
and sintered for 2 hours at 1400°C. Note, the 30 s deposit was only stable for the 
900 °C test. 
 
Deposition 
Time 

Electrolyte 
Thickness 
(μm) 

Open Circuit 
Voltage 

Peak Power 
Density 
(mW/cm2) 

Total Interfacial 
Resistance 
(Ω·cm2) 

1 s 1.9 <0.1 n/a n/a 
30 s  4.7 0.8 200 @900 °C 0.39 @900 °C 
60 s 10.4 1.0 190 2.55 
10 min 27 1.05  75 3.15 
10 min 14  1.03 150 1.67 

 

The increased porosity of thin electrolytes is believed to be a side effect of 

the deposition mechanism, with the suggestion that the packing density increases 

initially with thickness towards a convergence point based on particle size 

distribution and the electrophoretic properties of the suspension. The driving forces 

of this initiation period appear to be the combined effect of the increasing voltage, 

at constant current deposition, needed to overcome the deposit resistance as well 

as the cumulative time under an applied voltage itself. What is known is that the 

packing density of deposits was uniform for deposits of >5 microns thick, and that 

only deposition times <60s produced such coatings. Over that time frame, voltage 

is not particularly stable, but is at its lowest. Particles in the deposit still have some 

mobility and under an applied voltage, the densest packing of particles represents 

the lowest energy state of the system. Also, during the initiation period, the 

concentration of particles near the electrode is increasing. Therefore, when both 

the driving force, the applied voltage, is increased and the amount of time is 
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increased, packing density of deposits will increase towards optimal packing. This 

does not mean that more voltage or longer deposition time universally produce 

denser coatings, as each of these has a trade of with other suspension and 

deposition parameters, as previously discussed. However, in a stable operating 

deposition process, the key trait is that the particles and their packing coordination 

are not fixed at the moment of electrode contact, but evolve over the course of 

deposition. 

In EPD deposits thicker than approximately 5 μm, it was found that 

performance of fuel cells produced thereof was not directly impacted by the 

processing parameters of acetic acid content, PEI content, PVB content, 

deposition current density, deposition voltage, or deposition time, but was only 

affected by the thickness of the resultant sintered coating and the presence of any 

cracking. While processing parameters do have an impact on deposition rate, 

deposit growth uniformity, and crack initiation, the density of sintered deposits 

showed minimal variation, based on polished and fracture cross section imagines. 

As the d90 of the particles is 1.8 μm, with the majority of particles close to the 

median particle size of 0.084 μm, deposits formed from these particles sinter well, 

with measured porosity likely to be from coalesced pores [84]. The sintered density 

could be further improved with a narrower particle size distribution, as shown by 

Sarkar et al. with 500 nm silica spheres [45]. The relative independence of SOFC 

performance to EPD processing parameters, within the range of uniform and crack 

free coatings, as well as the density uniformity between differing EPD parameters, 

supports the deposition mechanism of collapsing particle boundary layers upon 
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approach to the growing deposit and the emphasis on deposition occurring 

primarily along the shortest conductive path relative to electric field strength. As 

particle boundary layers collapse from an initial state of high repulsion, denser 

particle packing is enabled, while the electric field strength pulls particles towards 

gaps or troughs between previously deposited particles, rather than allowing 

particles to permanently attach to whatever particle they initially contact. When this 

set of steps is not met, uniform coatings do not occur and thus EPD processing 

parameters can be optimized with concern focused primarily on achieving uniform 

crack free deposit buildup of minimal thickness. 

 

5.3. Discussion of GDC/YSZ Bilayer Effectiveness 

The YSZ/GDC bilayer electrolytes were developed to provide separation of 

the GDC from low partial pressure of oxygen, which induces electrical 

conductance, while taking advantage of the higher oxygen ion conductivity of GDC 

to facilitate improved intermediate temperature SOFC performance. Open circuit 

voltage measurements of thin YSZ electrolytes were used to design YSZ layers 

that were sufficient to protect the GDC from low partial pressures of oxygen, while 

being otherwise permeable so that the YSZ contributed minimally to cell ionic 

resistance. First, the findings from YSZ deposition were applied to GDC only 

deposition, with the discovery that the GDC deposited very similarly to the YSZ, 

except at a lower voltage, an average of 16-30 V, versus the 30-40 V of YSZ. A 

micrograph of a cross section from a GDC only deposition can be seen in 
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Figure 45. Note the similarity in microstructure to the YSZ deposits previously 

shown. As mentioned in chapter 4 and Figure 41, distinguishing the GDC and YSZ 

interfaces was difficult, even with EDS mapping. However, visually they were 

easily distinguished, as YSZ is white and GDC is peach in color, though this only 

sufficed for the top coat identification of the bilayer. 

 

Figure 45: A micrograph is shown of a GDC deposit after a 1400 °C sinter for 2 
hours. The deposit was formed from 0.25 vol. % GDC, 1 wt. % PEI, and 8 g/L 
PVB. 
 

Additionally, the GDC had no adherence issues, with acetic acid addition 

instead having a negative impact on adherence. This led to multiple deposition 

methods being attempted to produce the YSZ/GDC bilayers, as the acetic acid 

content of the initial YSZ layer prevented subsequent deposition of GDC, while 

YSZ deposited without acetic acid required such thick coatings as to negate the 

20 μm 
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purpose of the GDC. These deposition methods included sequential wet deposition 

of YSZ, then GDC, mixed composition suspension deposition, and finally the 

introduction of an intermediate 1000 °C bisque for 2 hours between YSZ deposition 

with acetic acid and GDC deposition. In Table 8, the deposits that formed 

functional cells are compared based on performances at 800 °C. The mixed 

composition suspensions were completely unsuccessful as SOFCs, while the 

sequential wet deposition proved unreliable, with the successful deposits limited 

by the necessary thickness of the YSZ layer. However, the intermediate bisque 

method allowed thinner YSZ layers and showed superior low temperature 

performance. 

Table 8: An SOFC performance comparison at 800 °C of successful YSZ/GDC 
SOFCs is shown. 
 
 Open 

Circuit 
Voltage 

Peak Power 
Density 
(mW/cm2) 

Total Interfacial 
Resistance 
(Ω·cm2) 

5 minute YSZ – 10 minute GDC 
(no acetic acid) 

0.95 350 0.68 

2.5 minute YSZ – 5 minute GDC 
(no acetic acid) 

0.75 240 0.34 

60 s YSZ (3 x 10-2 M acetic acid) –
bisque – 5 minute GDC 

1.05 247 0.21 

 

Ultimately, while YSZ/GDC bilayers were successfully fabricated, their 

performance, in absolute terms, did not exceed the performance of the YSZ 

electrolytes alone. However, the intermediate temperature performance of the 

optimized YSZ/GDC bilayers, relative to their high temperature performance, 

exceeded the YSZ electrolytes intermediate temperature performance relative to 

high temperature performance. Specifically, the optimized YSZ/GDC bilayer peak 
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power density at 600 °C was 42 mW/cm2, 17% of the 800 °C peak power density 

of 247 mW/cm2. In comparison, the best performing YSZ electrolyte had a similar 

peak power density of 40 mW/cm2 at 600 °C, but that was only 9% of the 800 °C 

peak power density of 440 mW/cm2. For more detail, see Table 9 and Table 10. 

Table 9: An SOFC performance versus temperature is shown for the highest 
performing stable SOFC, a 7.8 μm thick YSZ electrolyte deposited for 10 minutes 
at 0.47 mA/cm2 from a suspension of 0.25 volume % 13 m2/g YSZ, 1 weight % 
PEI, 8 g/L PVB, and 10-2 M acetic acid, in ethanol and sintered for 2 hours at 
1400°C. 
 

Temperature (°C) Peak Power 
Density (mW/cm2) 

Total Interfacial 
Resistance 
(Ω·cm2) 

600 40 5.8 
700 190 1.9 
800 440 0.7 
900 1050 0.35 

 
Table 10: An SOFC performance versus temperature comparison for the best 
GDC/YSZ electrolyte is shown. The bilayer was formed of 0.25 vol. % 13m2/g  
YSZ, 1 wt. % PEI, and 8 g/L PVB, 3 x 10-2 M acetic acid deposited for 60s, 
followed by a 1000 °C bisque for 2 hours, and finally a 5 minute deposition of 
0.25 vol. % GDC, 1 wt. % PEI, and 8 g/L PVB. Note, at 500 °C, measurement 
quality was affected by high cell impedance, exceeding the testable frequency 
range of the equipment. 
 

Temperature (°C) Peak Power 
Density (mW/cm2) 

Total Interfacial 
Resistance 
(Ω·cm2) 

500 7 >60 
600 42 5 
700 120 0.72 
800 247 0.21 
900 480 0.09 

 

5.4 Discussion of Sc-Nitrate Suspension Doping Effectiveness 

While EDS measurements confirmed the presence of scandium in YSZ 

coatings created with scandium nitrate doped suspensions using both VLPSPS 
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and EPD, only the VLPSPS electrolytes absorbed the scandium sufficiently to 

function as an electrolyte. The VLPSPS coatings were created at a time before the 

SOFC testing procedure had been refined to improve current density, but the open 

circuit voltage measurements were in line with un-doped YSZ electrolytes, while 

the admittedly low current densities measured were nonetheless greatest of all the 

VLPSPS electrolytes. EPD coatings produced with scandium nitrate doping were 

found to be electrically conductive during SOFC testing, as evidenced by their low 

open circuit voltage combined with low interfacial resistance, as shown in Table 

11. This performance confirms that the scandium does not uniformly diffuse into 

the YSZ particles during sintering. Increasing the heat treatment temperature did 

correspond to a modest increase in performance, but with cells of this poor quality, 

comparisons are not reliable. However, it is reasonable to assume that longer and 

or higher temperature heat treatments would result in more scandium diffusion into 

the YSZ particles and improved performance. Another method of improvement 

would be to lower the initial suspension concentration, as the doping efficiency is 

as high as 54%, as discussed in chapter 4.  

Table 11: An SOFC performance comparison at 900 °C of deposits formed with 
suspensions of 0.25 vol. % 13m2/g YSZ, 1 w. % PEI, 8 g/L PVB, and 16 mole % 
Sc-nitrate, deposited 10 minutes is shown. 
 
Heat Treatment Open Circuit 

Voltage 
Peak Power 
Density (mW/cm2) 

Total Interfacial 
Resistance 
(Ω·cm2) 

1400 °C – 2 hour 0.16 25 0.03 
1500 °C – 2 hour 0.3 50 0.04 

 
 



94 
 

 

CHAPTER 6. CONCLUSIONS 

 
 
 

This document has detailed significant findings made with respect to the 

emerging processes of very low pressure plasma spray (VLPPS) and suspensions 

plasma spray (SPS), here termed very low pressure suspension plasma spray 

(VLPSPS) when combined, as well as the competing and further developed 

process of electrophoretic deposition (EPD), which shares many capabilities and 

deposit characteristics with these two processes, when combined. These 

processing characteristics have been analyzed in terms of their efficacy in 

fabrication of compositionally controlled thin and pore free solid oxide fuel cell 

(SOFC) electrolytes with the potential of complex shape deposition. The key 

results from each of these subjects is reviewed in this chapter. 

 

6.1 Process Efficacy and Coating Quality 

 
6.1.1. Very Low Pressure Suspension Plasma Spray 

 
The VLPSPS coating technology is still emerging with the capability to 

prepare coatings in thickness and density regimes not currently accessible with 

conventional thermal spray processes. By combining SPS with VLPPS, thin and 

pore free electrolytes of ideal composition for SOFCs are possible. By working at 
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pressures as low as 320 Pa, energy partitioning in the plasma and its interaction 

with the surrounding chamber atmosphere was dramatically reduced. The result 

was a significant increase in plasma mean free path length and plasma velocity. 

This caused the plasma to remain coherent longer and deposit uniformly over 

larger areas, with a cylinder of relative uniform deposition approximately 15 cm in 

diameter and at least 15 cm in length at standoff distances beyond 109 cm. This 

uniform deposition volume increased dramatically with reduction in environmental 

pressure below 600 Pa, with sensitivity to even 5 Pa changes in pressure. The 

increased plasma volume also increases the total time particles are entrained in 

the high enthalpy plasma and consequently the amount of energy these particles 

absorb. The increased residence time in the plasma ensures dopants diffuse into 

the powder before reaching the substrate.  

It has been shown in this research that compounds dissolved in the 

suspension (i.e. dopants) are incorporated into the coating during plasma spraying. 

Thus, it is possible to change the chemistry of the micron-sized powder during the 

short millisecond time the powder and dopant is in the hot spray plume. This means 

that it is possible to quickly and systematically change the composition of the 

sprayed SOFC electrolyte to optimize its oxygen-ion conductivity by simply 

adjusting the suspension composition. It also means that that an entire fuel cell 

could be created with a single piece of controlled atmosphere suspension plasma 

spray equipment, using both composition and porosity graded coatings to create 

each SOFC component in sequence. This coating control capability has the 

potential to significantly improve the state of the art in SOFC production, but 
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requires further investigation to reach that point. Important steps in that direction 

would be to have an operational deposition standoff distance window beyond 125 

cm and the capability to operate in the very low pressure regime, while maintaining 

constant chamber pressure. Also, considering the significant change in plasma 

expansion observed below 300 Pa, it may be preferable to define very low 

pressure plasma spray along this more restrictive range. 

The deposition efficiency was calculated based on the coating thickness, 

suspension powder loading, feed rate, feed time, and the approximate deposition 

area of the plasma plume, a circle of 15 cm diameter, which accounted to be <10%. 

Additionally of note is that loose un-adhered powder deposits every surface of the 

chamber after running the process and particularly collects in the shrouded area 

around the edge of the substrate. The particle size distribution, shown in Figure 

11, of the 40 m2/g YSZ VLPSPS powder indicates that approximately 15% are 

between 0.5-2 microns, with the majority being split between 35% with a mean of 

0.1 microns and 50% with a mean of 7. It is assumed the largest particles are 

primarily agglomerates of the smaller particles, which is supported by their 

absence from the coatings and the shroud. As was shown in Figure 24, the 

shrouded area tends to contain many smaller particles, while the deposited surface 

is made primarily of particles around 1 micron and neither surface contains 

indication of splat-like shapes. 

VLPSPS deposition is particle size selective, in a similar fashion to 

atmospheric SPS. As particle size goes down, the degree of flow with the carrier 

gas/plasma increases as momentum vs. surface area decreases. Any moving fluid 



97 
 

 

encountering a surface generates a boundary layer, meaning any particle without 

sufficient momentum to overcome gas flow will not deposit. Also, the pressure 

differential between the chamber and the plasma means gas is continually flowing 

out of the plume along its standoff distance. This selectivity is increased when 

there is insufficient power to deposit fully molten particles, with selectivity against 

smaller particle size decreasing with standoff distance as the substrate boundary 

layer weakens and selectivity against large particle size based on the gun power 

and suspension medium. Thus, the smallest particles are continually eliminated 

from the plume via thermophoresis and the continued expansion of the plasma into 

the vacuum chamber, while the largest particles may never melt. Those particles 

that remain at high standoff distances are at the lowest temperature of the overall 

gun to substrate particle stream, but sufficient to both penetrate the boundary layer 

and adhere to the substrate. This does allow for smaller particle agglomerates to 

melt and combine, but they would have to be mostly re-solidified by the point of 

deposition, based on the observed microstructures. 

 
6.1.2. Electrophoretic Deposition 

 
Electrophoretic deposition enables cost effective fabrication of thin and pore 

free electrolytes for solid oxide fuel cells, with the capability of deposition on 

complex shapes as well as a measure of controlled texture via patterned 

deposition through electrode application. Additionally, it was shown that metal salts 

could be incorporated into deposits at proportions greater than the relative volume 

of salt to the suspension, thus indicating the interaction of these metal salts with 
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the diffuse boundary layer around depositing particles and representing an efficient 

way to modify deposit composition. However, in the heat treatments explored, the 

resultant scandia content was found to not diffuse thoroughly into the YSZ 

particles. Further development of the process, both in heat treatment and in 

applying the process to higher specific surface area deposits should improve the 

diffusion of dopants. 

The suspension with the greatest reproducibility of uniform and well 

adhered deposits from this study consisted of 0.25 vol. % YSZ, with a specific 

surface area of 13 m2/g, 1 weight % PEI, 8 g/L PVB, and 3x10-2 M acetic acid 

deposited at 0.47 mA/cm2 at 10 mm electrode separation. Sintered deposits 

reached 97% density, but coalesced pores were present after sintering. In 

addressing deposit cracking, the key suspension properties were found to be the 

specific surface area of the particles and the presence of the binder polyvinyl 

butyral (PVB). TGA revealed the as deposited coating is approximately 97.5 weight 

% YSZ, which amounts to 88 vol. % YSZ, not counting porosity, with the remainder 

being a combination of PEI and PVB. Assuming a standard drying shrinkage of 10-

15% and a particle packing density of 60%, this means the combined PEI and PVB 

content in the liquid phase of the growing deposit is between 14 -16 vol. % and 18 

-19 wt. %, which represents a very large increase over the combined 2 wt. % they 

represented in the bulk suspension. This relative composition difference from the 

suspension to the deposit represents the degree of interaction between the PEI, 

PVB, and YSZ during deposition, as well as the suspension constituent depletion 

rate. With further study, this suspension constituent depletion rate could be 
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characterized such that it could be compensated for with the periodic or continual 

addition of a second, more concentrated, suspension. This method could be used 

to eliminate waste of depleted suspensions and facilitate steady state operation of 

EPD equipment. 

The TGA and observed effects of acetic acid content point toward 

deposition caused by changing concentration of double boundary layer 

constituents at the electrode.  The TGA showed the relative increase in double 

boundary layer constituents from the bulk suspension to the growing deposit, while 

acetic acid addition in YSZ suspensions reduced the initial deposit formation time 

and increased the adhesion thereof. It is likely that the increased concentration of 

acetic acid at the electrode degrades the local stability of the YSZ, causing 

flocculation, deposition, and the formation of well adhered deposits. 

 

6.2. Solid Oxide Fuel Cell Performance and Processing Relationships 

The open circuit voltage of VLPSPS and EPD electrolyte SOFCs was found 

to be dependent on the electrolyte thickness due to the porosity and permeability 

of the deposits. With VLPSPS, the highest OCV at 800 °C achieved was 0.93 V, 

from the thickest YSZ coating, ~11 μm. With EPD, the highest OCV at 800 °C was 

1.05 V, for a ~27 μm YSZ coating, though EPD coatings commonly exceeded 1 V 

when as thin as 7.8 μm. This thickness relationship was attributed to porosity in 

the coatings allowing for permeability of the electrolytes at lower thicknesses. 

These OCV measurements and analysis of the microstructures show that the 

sintered EPD coatings have less pores than the VLPSPS coatings, but the 
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VLPSPS coatings approach the packing density of the EPD coatings while still in 

the as-deposited state. 

While EDS measurements confirmed the presence of scandium in YSZ 

coatings created with scandium nitrate doped suspensions using both VLPSPS 

and EPD, only the VLPSPS electrolytes absorbed the scandium sufficiently to 

function as an electrolyte. The VLPSPS coatings were created at a time before the 

SOFC testing procedure had been refined to improve current density, but the open 

circuit voltage measurements were in line with un-doped YSZ electrolytes, while 

the low current densities measured were nonetheless greatest of all the VLPSPS 

electrolytes. EPD coatings produced with scandium nitrate doping were found to 

be electrically conductive during SOFC testing. Their performance in a SOFC 

confirmed that the scandium did not uniformly diffuse into the YSZ particles during 

sintering. Increasing the heat treatment temperature did correspond to a modest 

increase in performance, but the overall poor cell quality limits the significance. 

However, it is reasonable to assume that longer and or higher temperature heat 

treatments would result in more scandium diffusion into the YSZ particles and 

improved performance. 

YSZ electrolyte coatings produced using electrophoretic deposition 

performed comparably to similar coatings reported by Hosomi et al. [55] and Besra 

et al. [54]. The highest stable power density achieved was approximately 440 

mW/cm2 at 800 °C for a cell consisting of a NiO/YSZ anode, screen printed LSCF 

cathode, and a 7.8 μm thick YSZ electrolyte deposited for 10 minutes at 0.47 

mA/cm2 from a suspension of 0.25 volume % 13 m2/g YSZ, 1 weight % PEI, 8 g/L 
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PVB, and 10-2 M acetic acid, in ethanol and sintered for 2 hours at 1400°C. At 800 

°C, the total interfacial resistance of this cell, as measured via impedance 

spectroscopy, was 0.7 Ω·cm2.  

YSZ/GDC bilayers were successfully fabricated, though their performance, 

in absolute terms, did not exceed the performance of the YSZ electrolytes alone. 

However, the intermediate temperature performance of the optimized YSZ/GDC 

bilayers, relative to their high temperature performance, exceeded the YSZ 

electrolytes intermediate temperature performance relative to high temperature 

performance. Specifically, the optimized YSZ/GDC bilayer peak power density at 

600 °C was 42 mW/cm2, 17% of the 800 °C peak power density of 247 mW/cm2. 

In comparison, the best performing YSZ electrolyte had a similar peak power 

density of 40 mW/cm2 at 600 °C, but that was only 9% of the 800 °C peak power 

density of 440 mW/cm2. 

While this research was unable to thoroughly investigate the SOFC 

performance of VLPSPS electrolytes, the similarities in microstructure between the 

sintered EPD electrolytes and the as-sprayed VLPSPS electrolytes suggests the 

potential performance of VLPSPS electrolytes. Areas for further investigation of 

VLPSPS should focus on utilizing suspensions with smaller particle size, higher 

plasma gun power, and lower stable chamber pressures, ideally <300 Pa. 
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