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ABSTRACT

Ding, Chuan Ph.D., Purdue University, December 2014. Thermal Efficiency and
Emission Analysis of Advanced Thermodynamic Strategies in a Multi-cylinder Diesel
Engine Utilizing Valve-train Flexibility . Major Professor: Dr. Gregory M. Shaver,
School of Mechanical Engineering.

Stringent emission regulations and a growing demand for fossil fuel drive the de-

velopment of new technologies for internal combustion engines. Diesel engines are

thermally efficient but require complex aftertreatment systems to reduce tailpipe

emissions of unburned hydrocarbons (UHC), particulate matter (PM), and nitrogen

oxides (NOx). These challenges require research into advanced thermodynamic strate-

gies to improve thermal efficiency, control emission formation and manage exhaust

temperature for downstream aftertreatment. The optimal performance for different

on-road conditions is analyzed using a fully flexible valve-train on a modern diesel

engine. The experimental investigation focuses on thermal management during idling

and high-way cruise conditions. In addition, simulation are used to explore the fuel

efficiency of Miller cycling at elevated geometric compression ratios.

Thermal management of diesel engine aftertreatment is a significant challenge,

particularly during cold start and extended idle operation. For instance, to be ef-

fective, NOx-mitigating selective catalytic reduction (SCR) systems require bed and

gas inlet temperatures of at least 200◦C, and diesel oxidation catalysts coupled with

upstream fuel injection require inlet temperatures of at least 300◦C in order to raise

diesel particulate filter inlet temperatures to at least 500◦C for active regeneration.

However, during peak engine efficiency idle operation, the exhaust temperatures only

reach 120 and 200◦C for unloaded (800 rpm/ 0.26 bar BMEP) and loaded (800 rpm/

2.5 bar BMEP) idle, respectively, for a typical modern-day diesel engine. For this

and other engines like it, late injections or throttling (for instance via an over-closed
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variable geometry turbocharger) can be used to increase exhaust temperatures above

200◦C (unloaded idle) and 300◦C (loaded idle), but result in fuel consumption in-

creases in excess of 100% and 67%, respectively. Fortunately, and as this thesis

describes, cylinder deactivation can be used to increase exhaust temperatures above

300◦C at the loaded idle condition without increasing fuel consumption. Further,

at the unloaded idle condition, the combination of cylinder deactivation and flexible

valve actuation on the activated cylinders allows 200◦C exhaust temperatures with-

out a fuel consumption penalty. At both operating conditions the primary benefits

are realized by reducing the airflow through the engine, directly resulting in higher

exhaust temperatures; and as good, or better, open cycle efficiencies compared with

conventional 6 cylinder operation. In all cases, comparisons are made with strict

limits on engine out NOx, unburned hydrocarbons, and particulate matter emissions.

Internal exhaust gas recirculation (iEGR), late intake valve closure (LIVC) and

cylinder deactivation (CDA) were experimentally investigated as methods for fuel

economy and thermal management at 1200 RPM and 7.58 bar brake mean effective

pressure (BMEP), which corresponds to the highway cruise condition for over the road

trucks. These strategies were compared with conventional operation on the basis of

optimized fuel consumption, exhaust temperature, and exhaust power at three NOx

targets. Physical constraints and emission limits were set to ensure realistic engine

operation and emission regulations. The results show that conventional valve profiles

lead to the best fuel economy, but iEGR, LIVC and CDA increase achievable exhaust

temperature by 57-216 ◦C. iEGR increases exhaust temperatures by eliminating the

heat rejection that occurs when using external EGR. Both LIVC and CDA increase

combustion temperature by reducing the air to fuel ratio.

Advanced thermodynamic strategies such as the Miller cycle and Atkinson cycles

have been realized on production spark ignition engine through variable valve timing.

However, fewer efforts have been directed to compression ignition engines. Increases

in geometric compression ratio typically lead to increased thermal efficiency, but the

application is constrained by physical limits including peak cylinder pressure and tur-
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bine inlet temperature. An experimentally validated model was used to obtain the

trade-off between fuel economy and NOx emissions in order to thoroughly investigate

Miller cycling at elevated geometric compression ratio. The results demonstrate the

expected improvement in thermal efficiency, however, as expected, the maximum in-

cylinder pressure and temperature violate the physical constraints at elevated power

conditions. These challenges can be addressed through the use of Miller cycling via

a reduced effective compression ratio through the modulation of intake valve closure.

Miller cycling enables the engine operation with elevated geometric compression ra-

tio at maximum power condition and further improves fuel economy by advancing

combustion. The results present a 5% fuel economy improvement at operating con-

ditions without EGR and equivalent fuel consumption when EGR is incorporated.

Brake thermal efficiency (BTE) is improved by 0.1%-2% using Miller cycle at elevated

GCR. Although EGR was able to achieve very low NOx emissions, fuel economy was

sacrificed at medium load condition. Moreover peak cylinder pressure (PCP) and tur-

bine inlet temperature (TIT) exceeded the upper limits at maximum power condition

using EGR with elevated geometric compression ratio.
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1. INTRODUCTION

1.1 Motivation

Stringent emission regulations and a growing demand for fossil fuel drive the de-

velopment of new technologies for internal combustion engines. Diesel engines are

thermally efficient but require complex aftertreatment systems to reduce engine-out

emissions including unburned hydrocarbons (UHC), particulate matter (PM), and

nitrogen oxides (NOx). Strategies such as diesel oxidation catalysts (DOC) for UHC,

diesel particulate filters (DPF) for PM, and selective catalytic reduction (SCR) for

NOx have been developed and implemented to convert harmful emissions to innocuous

species [1]. The efficiencies of these aftertreatment systems are heavily temperature

dependent and generally require temperatures between 250 ◦C and 450 ◦C to provide

required performance. Moreover, periodic passive DPF regenerations require temper-

ature in excess of 500 ◦C [2]. Therefore it is critical to manage the temperature and

power of exhaust gases and to do so in a fuel efficient way [3, 4].

Current regulations for heavy duty diesel engines after 2010 require BS (Brake

specific) NOx ≤ 0.2 g/hp-hr, UHC ≤ 1.3 g/hp-hr, idle CO ≤ 0.5 % of exhaust flow

and PM ≤ 0.01 g/hp-hr by Environmental Protection Agency (EPA). In 2014 new

regulations for the green house gas decrease the CO2 limit below 502 g/hp-hr [5]. The

strict emission regulations necessitate the investigation for new technologies which

continuously make diesel engine efficient and clean. The following section introduces

several strategies to improve engine performance and emission reduction.

1.2 Internal Exhaust Gas Recirculation

Exhaust gas recirculation (EGR) systems are widely used to reduce NOx emissions

in diesel engines. When burned gases are recirculated into the intake manifold, the
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primarily inert species of exhaust gases serve to displace excess oxygen, decreasing

flame temperatures and NOx production. However, EGR requires a pressure differen-

tial between the exhaust manifold and intake manifold which can result in pumping

penalty losses and reduced engine efficiency [6]. In addition, heat rejected from the

EGR loop decreases turbine out temperatures [7].

An alternative to external EGR is internal EGR (iEGR), which can be achieved

by trapping or re-inducting burned gases via off-nominal valve events. These methods

do not require, or allow, an external cooling system. Compared with external EGR,

iEGR usually results in higher exhaust temperatures which could be beneficial in

thermal management of aftertreatment systems. Fessler et al. investigated iEGR

during engine warm-up and concluded that iEGR can globally reduce emissions and

quickly increase the temperature dependent efficiency of aftertreatment system [7].

Trajkovic et al. explored iEGR via negative valve overlap (NVO) and utilized it

to stabilize combustion and reduce hydrocarbon (HC) and CO emissions [8–11]. In

addition, iEGR was widely used in the research of Homogeneous charge compression

ignition (HCCI) for high efficient combustion and emission reduction on gasoline

engine [12–14].

iEGR can be realized by opening the intake valves during a portion of the exhaust

stroke (per Fig. 1.1), exhaust re-induction by opening the exhaust valve during a

intake stroke [15, 16] (per Fig. 1.2) and NVO [8, 17, 18] (per Fig. 1.3). NVO and

exhaust re-induction were used to introduce iEGR for NOx control at idle and cruise

conditions in Chapters 3 and 4.

1.3 Cylinder Deactivation

Cylinder deactivation (CDA) is a method to increase exhaust temperatures by

reducing the air-fuel ratio (AFR), and in some cases can also result in improved brake

thermal efficiency (BTE). An lean-burn engine operating with deactivated cylinders

must inject more fuel per activated cylinder relative to an engine operating at the
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Figure 1.1. Valve profiles with re-induction (IV reopen).

Figure 1.2. Valve profiles with re-induction (EV reopen).

same load with all cylinders activated. The displaced volume is reduced by half when

half of the cylinders are deactivated, resulting in a reduction in the AFR. Cylinder
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Figure 1.3. Valve profiles with negative valve overlap.

deactivation has been studied as a method for efficiency improvement in spark ignited

(SI) engines and is implemented in several production vehicles equipped with SI

engines. In SI engines, CDA reduces the amount of throttling required at low loads

to stay at stoichiometric conditions, enabling a reduction in pumping penalty [19].

However, few studies have been conducted regarding the use of CDA in diesel engines

[20] as a method for improving fuel economy or aftertreatment thermal management.

The analytical study of light-duty diesel engine conducted by K. Edwards et al. [21]

simulated cylinder deactivation in a GM 1.9-L four-cylinder, light duty diesel engine

in GT-Power. Only one cylinder was deactivated and the intake valves remained

open throughout the cycle while the exhaust valves remained closed. The exhaust

temperature increased by only 15◦C while brake specific fuel consumption (BSFC)

increased by 14 g/kw-hr. The increase in fuel consumption was attributed to increased

heat transfer and residual friction losses in the deactivated cylinder.

Foster et al. [22] simulated CDA using a model of a 6 cylinder compression ignition

engine equipped with a turbocharger operating at 1800 rpm and a brake mean effective
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pressure (BMEP) of 9 bar. The results showed that deactivating three of the six

cylinders increased exhaust gas temperatures at the exit of the turbocharger by 320◦C.

The authors concluded that these increased temperatures could be used to improve

NOx absorption, NOx reduction, diesel particulate trap purging, and desulfation of

the NOx absorber.

1.4 Miller Cycle

The Miller Cycle is a thermodynamic cycles patented by Ralph Miller in 1957.

More research focused on the application of Miller Cycling on a spark ignition engine

equipped with supercharger of turbo-charging [23–26] and showed efficiency improve-

ment. Relevant research has extended to compression ignition engine recently.

Miller Cycling utilizes late or early intake valve closure (IVC) to reduce the amount

of piston motion induced compression resulting in a lower effective compression ratio

(ECR). Fig. 1.7 and 1.5 show late IVC (LIVC) and early IVC (EIVC) strategies to

achieve Miller Cycling. These valve profiles also reduce the volumetric efficiency of

the engine, increasing exhaust temperatures due to the reduction in airflow. Gehrke

et al. showed that LIVC enabled exhaust temperature increase at a relatively low fuel

consumption on a single cylinder heavy-duty engine [27]. Murata et al. demonstrated

elevated exhaust gas temperature with reduced flow rate via LIVC on a single cylinder

light-duty engine [28].

Previous research explored LIVC on diesel engines in 1-D and 3-D simulations.

Deng and Stobart investigated BSFC benefit in simulation and reported 2% to 6%

BSFC benefit with LIVC on a Caterpillar C6.6 heavy duty diesel engine [29].

Besides fuel economy, LIVC reduces NOx via reduced in-cylinder pressure and

temperature by lower piston-motion induced compression [30, 31]. Bo and Philip

analyzed fuel economy and NOx emission of a diesel engine in simulation and found

24% NOx reduction and 1% fuel economy benefit from LIVC with variable geometry

turbocharger (VGT) [32]. Munnannur et al. used KIVA-3V to optimize a heavy duty
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Figure 1.4. Valve profiles with late intake valve closure.

Figure 1.5. Valve profiles with early intake valve closure.
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diesel engine and demonstrated a 82% reduction in NOx and HC, 48% reduction of

soot and 7.4% better fuel efficiency with LIVC [33]. Murata et al. showed that LIVC

coupled with EGR and supercharging reduced NOx and smoke emissions, but with

penalties on CO and HC in computational fluid dynamics (CFD) simulations [34] [28].

Su et al. showed the concept of low temperature combustion with LIVC and controlled

NOx and PM emissions with less usage of EGR using CFD model [35]. Fessler and

Genova experimentally demonstrated 6% BSFC improvement on a 3.0L diesel engine

with EIVC [7]. He et al. presented that a single cylinder engine with LIVC satisfied

Tier 2 Bin 5 regulation without aftertreatment systems [36]. Gurney et al. tested

LIVC on a 2.0L diesel engine and showed soot reduction at low speed and load

conditions [37].

Compared with simulation based efforts, experimental investigations of LIVC have

just begun. In general, previous efforts have focused on fuel economy and raw emission

reduction but not thermal management of aftertreatment systems. Moreover, the

previous experimental efforts were limited to small displacement multi-cylinder diesel

engines (2 to 3 liters) or single cylinder engines.

1.5 Elevated Geometric Compression Ratio

Geometric compression ratio (GCR) is one of the key factors of combustion effi-

ciency and is usually fixed when engine is produced. Elevated GCR increases the com-

bustion efficiency with longer expansion ratio reducing the fuel consumption [26,38].

However the elevated GCRs increases the pressures and temperatures at the end of

the compression stroke resulting in auto-ignition on spark ignition engines. Previous

research used the variable compression ratio (VCR) technique to improve efficiency

without causing auto-ignition on gasoline engines [39]. One way to vary the compres-

sion ratio is using additional mechanism [40,41], such as adjustable stroke length [42].

Another way to realize VCR is adjusting the amount of charged air by valve motions

on an elevated GCR engine [16, 43]. Akihisa et al. varied the effective compression
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ratio using EIVC on an elevated GCR (24.8) engine. It resulted in a 5.3% improve-

ment in thermal efficiency on a 4 cylinder SI engine [44]. In addition the production

gasoline engine on Pruis produced by Toyota has applied the VCR technique, which

is 12 % to 14 % more efficient than normal Otto cycle engine.

In comparison, research on diesel engines have not been thoroughly investigated

due to the concern over physical constraints such as in-cylinder peak pressure and

temperature. Miller cycling is investigated to enable elevated GCR on a diesel engine

within physical constraints at high load conditions and improve thermal efficiency at

medium load under simulation environment in Chapter 5.

1.6 Variable Valve Lift and Open Timing

Variable valve profiles provide flexibility in AFR control which is beneficial in

thermal management. The reduction in AFR are consistent with higher exhaust

temperature because of aggressive combustion. One of the AFR control strategies is

reduced intake valve lift (Fig. 1.6). The intake valve lift is largely reduced to throttle

the engine resulting in lower AFR.

Another strategy of AFR control is “over shutting” the variable geometry tur-

bocharger (VGT) which results in an increase in the pumping penalty as a result of

increased exhaust manifold pressure. Higher pumping penalties increase the required

fueling to maintain the same torque decreasing the AFR. Similarly, delayed exhaust

valve open (EVO) and reduced valve lift (Fig. 1.7) throttle the exhaust process

increasing the pumping penalties, which result in lower AFR.

1.7 Contributions

The work presented here seeks to understand thermal efficiency and thermal man-

agement benefit of valve-train flexibility including iEGR, CDA and Miller cycling on

a multi-cylinder diesel engine. Contributions include:
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Figure 1.6. Valve profiles with reduced intake valve lift.

Figure 1.7. Valve profiles with small exhaust valve profile.
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1.7.1 Model Calibration and Variable Valve Actuation (VVA) Function

Implementation

A GT-power engine model was carefully calibrated to predict the gas exchange and

combustion processes with support from Mark Magee, Leighton Roberts and Akash

Garg. It provided a simulation platform to explore the impact of valve motion, opti-

mal gas exchange process and different strategies to improve efficiency and emission

control. A valve control algorithm was implemented to realize exhaust re-induction

using a dSPACE system with support from David Fain.

1.7.2 Thermal Management Analysis using CDA and VVA Functions at

Idle Conditions

CDA and flexible valve profiles were investigated to enables engine operating with

elevated turbine outlet temperature (TOT) at unloaded and loaded idle conditions.

During peak engine efficiency idle operation, the exhaust temperatures only reach

120 and 200◦C for unloaded (800 rpm/ 0.26 bar BMEP) and loaded (800 rpm/ 2.5

bar BMEP) conditions, respectively, for a typical modern-day diesel engine. For

this and other engines like it, late injections or throttling (for instance via an over-

closed variable geometry turbocharger) can be used to increase exhaust temperatures

above 200◦C (unloaded idle) and 300◦C (loaded idle), but result in fuel consumption

increases in excess of 100% and 67%, respectively. Fortunately, and as this paper

describes, cylinder deactivation can be used to increase exhaust temperatures above

300◦C at the loaded idle condition without increasing fuel consumption. Further,

at the unloaded idle condition, the combination of cylinder deactivation and flexible

valve actuation on the activated cylinders allows 200◦C exhaust temperatures without

fuel consumption penalty. At both operating conditions the primary benefits are re-

alized by reducing the airflow through the engine, directly resulting in higher exhaust

temperatures; and as good, or better, open cycle efficiencies compared to conven-

tional 6 cylinder operation. The increased exhaust temperatures offset exhaust flow
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reductions, resulting in higher exhaust gas-to-catalyst heat transfer rates, resulting

in superior aftertreatment warm-up performance with CDA in comparison to no-

CDA operation. In all cases, comparisons are made with strict limits on engine-out

emissions.

1.7.3 Fuel Economy and Thermal Management Analysis using CDA and

VVA Functions at Cruise Condition

The cruise condition is critical for fuel economy and thermal management. iEGR,

LIVC and CDA were experimentally investigated as methods for aftertreatment ther-

mal management and fuel economy improvement. Optimization-targeted fuel econ-

omy, TOT results at three selected NOx levels were determined using a calibrated

model. The analysis shows that iEGR, LIVC and CDA bring no benefit in engine-

specific fuel economy over conventional valve profiles at 1.5, 3 and 4 g/hp-h BSNOx

levels. The valve profiles of iEGR and LIVC are optimized back to conventional valve

profiles and fuel economy is worse with CDA due to higher heat losses and delayed

combustion. This result is not surprising as efficiency maximized at “highway cruise”

conditions is a primary focus of conventional engine design. Conventional operation

increases TOT from 350◦C to 450◦C with delayed SOI resulting in a 23% increase of

fuel consumption. iEGR via re-induction or NVO reduces the fuel consumption by

10% at same TOT due to lower total heat losses and AFR. LIVC increase TOT up

to 550◦C with 5% less fuel used compared with conventional valve profiles at 450◦C.

CDA further maximizes TOT above 550◦C with additional 3% fuel used due to lower

AFR. iEGR via re-induction and NVO will warm-up the catalysts more quickly, and

can sustain bed temperatures of ∼450◦C, whereas the baseline case will cool down the

catalysts when above ∼350◦C. LIVC and CDA promote a better heat transfer rate

at bed temperature above 150◦C for 1.5 g/hp-hr BSNOx compared with the highest

heat transfer rate with conventional valve profiles using delayed SOI. Both LIVC and
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CDA can keep catalyst bed temperature of ∼550◦C and LIVC has relatively lower

fuel cost.

1.7.4 Simulation Investigation of Miller Cycling with Elevated GCR

Elevated GCR increases thermal efficiency with higher in-cylinder pressure, how-

ever, the application is constrained by physical limits including peak cylinder pressure

(PCP) and turbine inlet temperature (TIT). Simulation investigations were conducted

to enable engine operating at elevated GCR with Miller cycling using GT-power. The

investigation incorporated constrained optimization considering the physical limit of

engine operation as well as emission control. Trade-offs between fuel economy and

NOx emission were analyzed at five operating conditions. Miller cycling reduces

piston-motion induced compression which allows advanced combustion to improve

thermal efficiency. Elevated GCR generates more power and increases brake thermal

efficiency due to longer expansion and higher closed cycle efficiency. Miller cycling

enables engine operating at rated condition (maximum power) without physical con-

straints violated although the solutions are limited. It also allows the usage of elevated

GCR at low-moderate loads for efficiency improvement. EIVC with GCR of 23 re-

duces fuel consumption by 0.7%∼5% corresponding to 0.1%∼2% increase of BTE at

medium speed and low-moderate load conditions.

1.8 Thesis Outline

The previous section outlines the author’s primary contributions to the research

groups’ overall goal of investigating fuel economy and emission reduction in a modern

diesel engine. The following chapters detail the efforts in which the author is the lead

investigator.

Chapter 2: METHODOLOGY details the methods in model based optimiza-

tion, 1-D engine simulation and experimental work. This preparation work provides
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a foundation for future analytical and experimental work of optimized engine perfor-

mance with flexible valve profiles.

Chapter 3: FUEL EFFICIENT EXHAUST THERMAL MANAGE-

MENT AT IDLE details the potential strategies to increase exhaust temperature

with valve train flexibility at 800 RPM 0.26 bar and 2.5 bar BMEP conditions.

Chapter 4: FUEL ECONOMY AND THERMAL MANAGEMENT AT

HIGH WAY CRUISE CONDITION details the analysis of optimized results

using analytical model as well as experimental validation with valve train flexibility

at 1200 RPM 7.58 bar BMEP condition.

Chapter 5: SIMULATION EXPLORATION OF MILLER CYCLE WITH

ELEVATED GCR details the analysis of optimized results from analytical models

for miller cycling with elevated GCR. Five operating conditions have been analyzed

including the maximum power condition.

Chapter 6: SUMMARY AND FUTURE WORK revisits conclusions from

the previous chapters and presents possibilities for future work.
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2. METHODOLOGY

2.1 BSFC vs BSNOx Trade-off

BSFC is used to evaluate fuel consumption per unit brake power as shown in Eq.

(2.1).

Brake Specific Fuel Consumption =
Engine Fuel Rate

Brake Power
. (2.1)

BSNOx presents the NOx emission per unit brake power as shown in Eq. (2.2).

Brake Specific NOx =
NOx production

Brake Power
. (2.2)

Fuel consumption and NOx usually cannot be optimized at the same time [7, 32,

45]. An example trade-off curve between BSFC and BSNOx is shown in Fig. 2.1.

BSFC increases when the NOx constraint is low and decreases when NOx emission is

high.

2.2 TOT vs BSFC Trade-off and Thermal Management

Thermal management is another key issue to be addressed in advanced power-

trains. Besides normal fuel injection into the cylinders, extra fuel can be dosed ahead

of the DOC and DPF to increase exhaust temperature to improve emission conver-

sion efficiencies [46]. It is beneficial to improve the exhaust temperature at a specific

fuel consumption, which reduces the fuel or urea usage in the aftertreatment system.

An example of a TOT/BSFC trade-off is shown in Fig. 2.2. The increases of TOT

usually require more fuel energy resulting in less fuel efficient operation.



15

Figure 2.1. BSFC vs BSNOx trade-off.

Figure 2.2. TOT vs BSFC trade-off.
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2.3 BTE Analysis

Brake thermal efficiency (BTE) is another measure for fuel economy. BTE and

BSFC have an inverse relationship for a specific type of fuel (i.e., diesel). as shown

in Eq. (2.3).

Brake Thermal Efficiency =
1

BSFC
× Unit Diesel Fuel Mass

Lower Heating Value
=

0.1375

BSFC
. (2.3)

Cycle efficiency analysis was used to understand the impact of CDA and valve-

train flexibility. The brake thermal efficiency of the engine can be decomposed into

closed cycle efficiency, open cycle efficiency, and mechanical efficiency (per Eq. (2.4)-

Eq. (2.7)). The calculations of mean effective pressure (MEP) including gross indi-

cated MEP (GIMEP), net indicated MEP (NIMEP) and brake MEP (BMEP) are

based on in-cylinder pressure [38]. Closed cycle efficiency is impacted by combus-

tion completeness, piston expansion work, and heat transfer. Open cycle efficiency

quantifies the efficiency of the gas exchange and is impacted by turbine and compres-

sor efficiencies, and pressure differences between the intake and exhaust manifold.

Mechanical efficiency captures losses from friction and parasitic loads.

BTE = ηclosed cycle × ηopen cycle × ηmechanical. (2.4)

ηclosed cycle =
GIMEP

Fuel Equivalent Work
. (2.5)

ηopen cycle =
GIMEP+PMEP

GIMEP
=

NIMEP

GIMEP
. (2.6)

ηmechanical =
BMEP

BMEP+FMEP
=

BMEP

NIMEP
. (2.7)
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2.4 Experimental Setup

The experimental test bed used in this study is a multi-cylinder direct injection

diesel engine with a static geometric compression ratio of 17.3:1 outfitted with high

pressure, cooled EGR regulated with an electronically-controlled EGR valve, a sliding

nozzle type variable geometry turbocharger (VGT), an air-to-water charge air cooler

(CAC), and a common rail injection system as shown in Fig. 2.3. Kistler 6067C

and AVL QC34C in-cylinder pressure transducers in tandem with an AVL 365C

crankshaft position encoder are used with an AVL 621 Indicom module for high-

speed indicating data acquisition. Fresh air flow is measured with a laminar flow

element (LFE). Two channels of a Cambustion NDIR Fast CO/CO2 analyzer are

utilized, with one in the intake manifold and the other in the exhaust pipe. Also

used are California Analytical Instruments NDIR, and HFID analyzers for exhaust

CO2, and total unburned hydrocarbons, respectively. A wide-band O2 sensor is also

present in the exhaust, as is an AVL 483 photo-acoustic transient particulate matter

analyzer [47–49].

In addition, the multi-cylinder test bed is outfitted with a fully flexible electro-

hydraulic variable valve actuation (VVA) system that enables cylinder-independent,

cycle-to-cycle control of the engine’s valve events. Figure 2.4 presents a schematic

of the VVA system for a given intake or exhaust valve pair. Currently both the

intake and exhaust valve pairs are driven by the VVA system, such that it is pos-

sible to change the valve opening timing, valve closing timing, valve lift, and the

ramp rates/velocity of the profile on a cycle-to-cycle basis. High pressure hydraulic

fluid powers the system. The servo valve position determines the pressure differ-

ence between the upper and lower face of the piston actuator. The piston actuator

acts directly on the crosshead and actuates a valve pair. Linear variable differential

transformers (LVDT) are integrated into the piston actuator and are used to provide

feedback signals which allow the valves to be controlled to a desired profile.
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Figure 2.3. Schematic of engine.

Figure 2.4. Schematic of variable valve actuation system.

To realize iEGR, LIVC, and CDA, valve control algorithms were developed in

SIMULINK/MATLAB and communicated to the VVA system through dSPACE in
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real time. The motion of valves were monitored during the engine test. An example

of iEGR via re-induction is shown in Fig. 2.5. Besides the nominal valve profiles the

exhaust valve reopened during the intake stroke. The measured profiles closely match

the desired profiles.

Figure 2.5. Control of intake and exhaust valve profiles (re-induction).

In the experimental testing, CDA is realized by using the VVA system to deac-

tivate the valve-train for half of the cylinders. The fueling to these cylinders is also

deactivated. The intake valve is opened every 100 cycles to recharge the cylinders in

order to minimize the amount of oil drawn into the cylinders.

2.5 Analytical Model Calibration in GT-power

Engine testing is a time consuming way to evaluate combustion recipes and control

techniques. Moreover, the results can be affected by fuel quality, sensor and actuator

accuracy. Engine simulation tests provide an efficient and low cost way for new

strategy exploration. Especially simulation supports data analysis with informations
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which cannot be measured on the test bed such as residuals inside the cylinder.

Furthermore, models provide the theoretical basis for hypothesis development and

guide the experimental work.

Common 1-dimensional simulation tools for engine research include GT-power,

Simulink by MATLAB or in-house codes [32,50]. Others use code generated based on

thermodynamic principles with 3-D models to describe particular physical processes,

such as KIVA and Simulink+FLUENT [28,34,35].

2.5.1 Gas Exchange Model

The model is built based on the Cummins diesel engine in Ray W. Herrick Lab-

oratories. The calibration included two major stages: the air handling system and

the combustion model. The air path includes (in order): the compressor, charge air

cooler, intake manifold, cylinders, exhaust manifold, turbine and exhaust pipes. Part

of the exhaust gases recirculate from exhaust manifold to intake manifold through

the EGR loop.

The intake and exhaust manifold models were built to correspond to the 3-D CAD

models (i.e., exhaust manifold model in Fig. 2.6). The flow area in the 3-D model was

separated into small flow sections based on the changes of flow direction and cross

section area. Each small flow area was transformed into 1-D model distinguished as

a pipe, bend pipe or flow split (the basis of the engine model) as shown in Fig. 2.7.

In addition the long pipes could be further discretized to improve the accuracy in

predicting the physical process.

The intake and exhaust valves were calibrated using the flow bench data. The flow

rate was calculated using forward and reverse flow coefficients with swirl numbers to

capture the turbulence effect. The cylinders were modeled based on engine physical

geometry. Turbine and compressor maps from the turbo manufacturer were imple-

mented to capture the pressure drop and flow rate. A tabulated data of turbo shaft

friction was used to capture the non-linear relationship between friction and turbo
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Figure 2.6. Flow area separation (exhaust manifold).

Figure 2.7. Exhaust manifold model in GT-power.

speed. EGR cooler and charge air cooler were discretized into 600 and 300 identical

small pipes based on the physical structure.
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Above all, the air handling system was built based on physical geometries of

different components.

2.5.2 Combustion Model

The combustion model chosen in this study was the DIpulse model framework

[51]. This combustion model predicts the instantaneous burned rate of injected fuel

based on estimated in-cylinder pressure and temperature. The model characterize

the combustion process with four parameters including entrainment rate of fuel spray,

ignition delay, premixed combustion rate and diffusion combustion rate. Coupled with

the combustion model, the fuel injector was modeled using interpolation of injection

maps with corresponding rail pressure and engine speed. The hydraulic delay and

electric delay of the injectors were calibrated using a previous effort [52] for this

specific engine.

2.5.3 Parameter Calibration

Detailed parameter calibration was performed based on experimental data. The

calibration procedure is:

- Data screening

- Three pressure analysis (TPA)

- Single cylinder model

- Adding intake and exhaust manifold

- Adding CAC and EGR loop

- Adding turbine and compressor

- Complete gas exchange model calibration

- Combustion model calibration
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The first step is data screening, which guarantees the quality of data used for

model calibration, eliminating incomplete data or non-steady state data. The carbon

balance was calculated for each case comparing the carbon atoms before and after the

combustion. A reasonable assumption is made such that the fuel has been completely

consumed. Carbon balance error within 5% was considered as good quality data in

this step. In addition data were selected widely spread on the engine speed and load

map to capture various operating conditions.

The calibration of the air handling system was performed in fixed heat release

rate (FHRR) mode when the fuel burned rate is calculated from the experimental in-

cylinder pressure traces. The in-cylinder heat transfer model and compression ratio

were calibrated in three pressure analysis (TPA) which uses in-cylinder, intake and

exhaust manifold pressures to predict the engine operation. The burned rate was

generated in the single cylinder model with necessary in-cylinder information from

TPA including volumetric efficiency, residual fraction, wall temperatures in different

zones and swirl number. In addition, another round of data screening was proceed in

this step to remove cases with noisy in-cylinder pressure trace.

The engine model was assembled part by part from single cylinder to the complete

model in the FHRR mode. The friction model of the crankshaft was calibrated

in multi-cylinders model with intake and exhaust manifolds added. A check was

performed here to guarantee pressures and temperatures within 3 % error and air

flows within 5 % error. Then CAC, EGR and turbocharger were added to the model,

one component at a time. The calibrated parameters included pipe numbers inside

the EGR cooler, heat transfer coefficient, turbine and compressor coefficients. Model

check is performed every time when new component was integrated. The last step

is combustion model calibration in the single cylinder mode. Four parameters were

calibrated using design of experiment (DOE) to match the experimental P-V diagram.

A final check of model accuracy was completed when the combustion model was

integrated into the air handling system model.
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A well-calibrated GT-power model of a multi-cylinder diesel engine is obtained,

which can predict BSFC within 5%, BSNOx within 25%, charge flow within 5%,

temperatures and pressures within 3%.

2.6 Optimization

Figure 2.8. Optimization method.

Systematic optimization was performed to find optimal BSFC and TOT values

using the GT-power model or experimental results (Fig. 2.8). The optimization

process started with a design of experiment (DOE) with independent variables of

valve timing, EGR valve diameter, the rack position of the VGT, start of injection,

and rail pressure. The identified independent variables varied in a reasonably wide

range. For instance, EGR valve diameter was varied from fully closed to fully open
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in order to explore all the possible operating conditions. The DOE can be generated

using a fully factorial with all the possible combinations or central composite design

with reduced number of cases. A trade-off of model accuracy and computing time

exists in different methods to creat a DOE.

DOE results include engine informations such as pressure, temperature and flow

rate which can be used to generate regression models including BSFC, BSNOx, AFR,

as well as the mechanical and emission constraints. Iteration is necessary to improve

the accuracy of the regression models compared with simulation results. The regres-

sion models are used in the optimization of the minimum BSFC and maximum TOT,

at specific BSNOx targets. The optimization uses the multi-start constrained nonlin-

ear multivariable function in Matlab to obtain a global minimum value. Finally the

optimized results were validated in the experiment.

The uncertain analysis at high-way cruise condition is based on the daily repeated

cases with conventional valve profiles. This analysis provides the error bars on all the

plots of one standard deviation of each variable measured.

2.7 Emission Constraints

The emission and mechanical constraints used for all optimizations and analysis

in this thesis are shown in Table 2.1 and 2.2, respectively. These emission constraints

were set such that tail pipe regulations could reasonably be met with current af-

tertreatment technology. In simulation the lowest AFR allowed was 18 as a proxy for

meeting UHC and PM constraints. The mechanical engine constraints (Table 2.2)

were provided by Cummins.

2.8 Summary

In this chapter the analysis methods for fuel economy, thermal management and

emission control are introduced. 1-D engine simulation, model based optimization,

and experiment setup are detailed. The analysis in the following chapters will mainly
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Table 2.1. Emission Limit.

Operating Condition NOx UHC PM

Unloaded Idle (800 RPM, 0.26 bar BMEP) ≤ 20 g/hr ≤ 15 g/hr ≤ 1 FSN

Loaded Idle (800 RPM, 2.5 bar BMEP) ≤ 1.5 g/hp-hr ≤ 15 g/hr ≤ 1 FSN

Cruise Condition (1200 RPM, 7.58 bar) ≤ 1.5, 3, 4 g/hp-hr ≤ 100 ppm ≤ 1.5 FSN

Table 2.2. Mechanical constraints.

Mechanical Parameter Unit Limit

Turbine Inlet Temperature ◦C 760

Compressor Outlet Temperature ◦C 230

Turbo Speed kRPM 193

Peak Cylinder Pressure psi 2500

Exhaust Manifold Pressure kPa 500

Pressure Rise Rate bar/sec 100

Air-fuel Ratio – 18

focus on BSFC vs BSNOx trade-off and TOT vs BSFC trade-offs at various operating

conditions.
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3. FUEL EFFICIENT EXHAUST THERMAL MANAGEMENT AT IDLE

The experimental efforts described in this chapter focus on fuel economy and exhaust

thermal management of a turbocharged multi-cylinder diesel engine utilizing cylinder

deactivation and variable valve actuation at both “unloaded” idle (800 RPM, 0.26

BMEP) and “loaded” idle (800 RPM 2.5 bar BMEP) conditions. The emphasis is

on the idle conditions given the low engine exhaust temperatures for, and significant

amount of time spent at, these conditions. Traditional strategies, such as late injec-

tion, over-closing a variable geometry turbocharger or intake throttling can increase

exhaust temperatures but lead to significant increase in fuel consumption. The effort

described here will demonstrate how CDA and valve-train flexibility can be used to

achieve thermal management in a more efficient manner.

3.1 CDA at Unloaded Idle

The results of turbine outlet temperature (TOT) and fuel consumption are shown

in Fig. 3.1. CDA improves the trade-off between TOT and fuel consumption as

less fuel is needed to achieve a particular TOT. Different valve profiles coupled with

CDA (labeled as “CDA + VVA” in Fig. 3.1) have also been investigated to further

increase TOT and reduce fuel consumption. Three consecutive cases were taken for

each operating condition (loaded and unloaded idle) and each operation (no-CDA and

CDA), which is used in measurement uncertainty analysis. This analysis provides the

error bars on all the plots of one standard deviation of each variable measured. The

results discussed in this chapter are all from engine test.

The baseline condition (a black square in all figures) corresponds to the lowest fuel

consumption of the engine with all cylinders activated (i.e., “no-CDA”). As shown,

the TOT at this condition is only 120◦C. No-CDA engine operation can achieve TOTs



28

Figure 3.1. Turbine outlet temperature vs fuel consumption at un-
loaded idle (* labels cases with over-closed VGT and delayed fuel
injection).

above 200◦C at the cost of a 100% increase in fuel consumption with late injections

and throttling via an over-closed VGT (black circles in all figures). Over-closing the

VGT significantly decreases the open cycle efficiency as shown in Fig. 3.2 (due to

an increase in pumping work brought on by restricting flow through the turbine),

necessitating an increase in fueling to maintain brake torque. This increase in fueling

decreases the AFR as shown in Fig. 3.3, resulting in the increase in TOT. For these

cases the start of injection (SOI) is delayed to stay within the NOx constraint.

The lowest fuel consumption during CDA with conventional valve profiles used

for the activated cylinders is shown as a red, rightward pointing triangle in all the

plots. This operating mode results in a 13% reduction in fuel consumption and a 20◦C

increase of TOT relative to the baseline, as shown in Fig. 3.1. TOT increases as a

result of a decrease in the AFR (per Fig. 3.3) brought on by a reduction in the air

flow (Fig. 3.4) caused by cylinder deactivation. CDA increases closed cycle efficiency

(combustion efficiency) and open cycle efficiency (less pumping work) resulting in a
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Figure 3.2. Normalized open cycle efficiency vs fuel consumption at
unloaded idle (* labels cases with over-closed VGT and delayed fuel
injection).

Figure 3.3. Air-fuel ratio vs fuel consumption at unloaded idle (*
labels cases with over-closed VGT and delayed fuel injection).
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reduction of fuel consumption. The closed cycle efficiency (Fig. 3.5) increase is due

to aggressive combustion with almost doubled fueling per activated cylinder in the

CDA mode. Open cycle efficiency (Fig. 3.2) increases as the air flow is lower when

half of the cylinders are deactivated. Mechanical efficiency decreases by 15% with

CDA as shown in Fig. 3.6 due to the higher in-cylinder pressure. Taken together, the

increases in open and closed cycle efficiencies and reduction in mechanical efficiency

lead to an increase in brake thermal efficiency (per Fig. 3.7).

Figure 3.4. Air flow vs fuel consumption at unloaded idle (* labels
cases with over-closed VGT and delayed fuel injection).

As expected, over-closing the VGT and delaying SOI while in the CDA mode

increases TOT and fuel consumption relative to the best efficiency CDA point, as

shown with red diamonds in Fig. 3.1. Furthermore this combination allows a TOT

of ∼180◦C (a 63◦C increase) with a 3% fuel consumption increase relative to the

no-CDA baseline (again, the black square in Fig. 3.1). A further increase to a TOT

of 207◦C is possible while realizing only a 14% fuel consumption increase relative to

the no-CDA baseline. In addition, as shown in Fig. 3.1, the CDA point at 207◦C has
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Figure 3.5. Normalized closed cycle efficiency vs fuel consumption at
unloaded idle (* labels cases with over-closed VGT and delayed fuel
injection).

Figure 3.6. Normalized mechanical efficiency vs fuel consumption at
unloaded idle (* labels cases with over-closed VGT and delayed fuel
injection).
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Figure 3.7. Normalized brake thermal efficiency vs fuel consumption
at unloaded idle (* labels cases with over-closed VGT and delayed
fuel injection).

a 44% lower fuel consumption than that achieved by the no-CDA case achieving a

similar TOT.

3.2 CDA with Variable Valve Profiles at Unloaded Idle

As described previously, and shown in Fig. 3.1, the combination of CDA with

valve-train flexibility (i.e., CDA+VVA) improves the TOT/fuel consumption trade-

off and allows higher TOTs. A subset (the most promising) of these points in Fig.3.1

are shown in Fig. 3.8, and will now be discussed in more detail. These cases are

shown as blue triangles: downward pointing for the “LIVC+iEGR” case, leftward

pointing for the “valve throttling+EIVC” cases, and upward pointing for the “valve

throttling+LIVC+iEGR” case.

CDA with LIVC+iEGR increases TOT to 160 ◦C with 15% less fuel consumption

compared with the baseline, and exhibits a ∼20◦C TOT increase compared with the

CDA only case at a similar BSFC (the open, mechanical and closed cycle efficiencies
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Figure 3.8. Turbine outlet temperature vs fuel consumption at un-
loaded idle (selected cases) (* labels cases with over-closed VGT and
delayed fuel injection).

are similar resulting in a similar BTE and BSFC). Fig. 3.9 show the valve profiles

for this case, which includes: (i.) negative valve overlap (NVO) to generate “internal

EGR” (iEGR) by trapping a portion of the combustion gases, and (ii.) late intake

valve closure (LIVC) to further reduce the amount of air inducted from the intake

manifold, and to reduce the amount of in-cylinder compression. Relative to the CDA

only point (which uses cooled external EGR and conventional valve profiles for the

activated cylinders), the implementation of LIVC allows further reduction in the

air flow (Fig. 3.4), resulting in a decrease in AFR (per Fig. 3.3) which causes an

additional increase in TOT.

“CDA with valve throttling+EIVC” results in a ∼200◦C TOT with nearly equiva-

lent fuel consumption compared with the no-CDA baseline and CDA* cases as shown

in Fig. 3.8. The smaller intake and exhaust valve profiles (per Fig. 3.10) effectively

throttle the engine, resulting in a reduction in the air flow (per Fig. 3.4) compared

with the other two cases at similar BSFC. The reduced air flow results in lower AFR
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Figure 3.9. Valve profiles of CDA with LIVC+iEGR.

(per Fig. 3.3), increasing TOT to 200◦C (per Fig.3.8). This operating condition also

corresponds to a 50% reduction of fuel consumption compared with the non-CDA

case with late SOI and over-closed VGT that has a similar TOT of ∼200◦C.

Early IVC reduces the amount of in-cylinder compression (a NOx reducer) allow-

ing earlier injection timing leading to earlier heat release (per Fig. 3.11) compared

with the CDA* case, which causes (i.) an increase in closed cycle efficiency (Fig.

3.5), and (ii.) a decrease in mechanical efficiency (Fig. 3.6) from higher in-cylinder

pressure. Together these changes result in similar BTE/BSFC.

“CDA with valve throttling+LIVC+iEGR” (Fig. 3.12) increases TOT up to

260◦C, the maximum TOT at the unloaded idle condition, with an over-closed VGT

and delayed SOI. NVO enables iEGR instead of cooled external EGR. Together with

the LIVC, which reduces the amount of in-cylinder compression, this results in less

heat rejected from the engine in comparison to the high TOT no-CDA case (Fig.

3.13). LIVC also reduces the volumetric efficiency of the engine, decreasing airflow

(Fig. 3.4) and AFR (Fig. 3.3). Reduced heat losses and lower AFR increases the
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Figure 3.10. Valve profiles of CDA with valve throttling+EIVC.

Figure 3.11. Heat release rate for selected three cases at unloaded idle.
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Figure 3.12. Valve profiles of CDA with valve throttling+LIVC+iEGR.

TOT. An additional benefit of the reduction in heat losses and AFR is that a less

aggressive decrease in open cycle efficiency is required for AFR reduction (Fig. 3.2),

allowing a lower BSFC with slightly higher TOT compared with the high TOT, no-

CDA case (Fig. 3.8).

3.3 Impact of Results for Thermal Management at Unloaded Idle

Sections 3.1 and 3.2 have focused on improving the trade-off between exhaust tem-

perature and fuel consumption for thermal management considerations. However, the

heat transfer between the exhaust gas and catalyst beds is a more complex process,

which does not only rely on TOT, but also the exhaust flow rate. As an approxima-

tion, consider the heat transfer rate within round pipes - which is determined by a

convective heat transfer coefficient, geometric structure of the pipes (constant) and

the temperature difference between the bed and the exhaust gas as shown in eqn.

3.1 [53]. The convective heat transfer coefficient is determined by the Nusselt number
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Figure 3.13. Total engine heat losses vs fuel consumption at unloaded
idle (* labels cases with over-closed VGT and delayed fuel injection).

Nu, the diameter of the pipe (constant) and thermal conductivity. The Nusselt num-

ber can be calculated using the Prandtl number Pr (assumed constant) and Reynolds

number which is determined by the mass flow rate and dynamic viscosity. The con-

vective heat transfer can be simplified (Eq. (3.2)) depending on the exhaust flow

rate and difference between turbine out and bed temperatures, and a coefficient C.

Both thermal conductivity and dynamic viscosity slightly increases with temperature

resulting in little variation of C at specific engine speed and load condition. Assum-

ing C is constant the normalized heat transfer rate can be estimated using measured

turbine outlet temperature and exhaust flow rate at different bed temperature using

this simplified heat transfer model of aftertreatment system.
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q = h× Asurface × (TOT − Tbed),

h = NuD
× k/D,

NuD
= 0.023 ×ReD

4/5 × Prn,

ReD = ρ× v ×D/µ = ṁ×D/(µ× A),

P r = µ× Cp/k.

(3.1)

q = C × ṁ4/5 × (TOT − Tbed),

C = 0.023 × Asurface × 1/D1/5 × 1/A4/5 × Prn × k/µ4/5.
(3.2)

As shown in Fig. 3.14, the estimated exhaust gas-to-catalyst heat transfer, calcu-

lated using eqn. 3.2, is given for different bed temperatures for the three cases with

similar BSFCs corresponding to the “no-CDA (baseline)”, “CDA*” and “CDA with

valve throttling+EIVC” conditions. Of greatest importance, note that the CDA con-

ditions outperform the no-CDA case for the entire range of relevant catalyst bed tem-

peratures. In other words, CDA operation will warm-up the catalysts more quickly,

and sustain higher temperatures (120 vs. ∼180 or ∼200◦C).

3.4 Summary of Results at Unloaded Idle

Key findings at unloaded idle, presented in Sections 3.1-3.3, demonstrate that

CDA enables a 64◦C increase in TOT with only a 3% increase in fuel consumption

compared with the most efficient no-CDA operation (Fig. 3.1). The TOT can further

be increased to 196◦C with no fuel economy penalty (Fig. 3.8) by combining CDA with

intake/exhaust valve-based throttling and early IVC through valve-train flexibility.

This strategy also allows for a 50% reduction in fuel consumption compared with

conventional no-CDA strategies at a similar TOT of ∼200◦C (Fig. 3.8). The thermal

management potential of CDA is also directly demonstrated in Figure 3.14, which

shows that for all catalyst bed temperatures of interest, CDA will out perform no-

CDA operation at the same fuel consumption levels. As such, there is a significant
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Figure 3.14. Estimated exhaust gas-to-catalyst heat transfer rate
(equal BSFC) at unloaded idle (* labels cases with over-closed VGT
and delayed fuel injection).

thermal management and efficiency benefit of both CDA and valve-train flexibility at

the unloaded idle condition.

3.5 CDA at Loaded Idle

The no-CDA baseline condition corresponds to the lowest fuel consumption at

loaded idle, with a TOT of 190◦C (black square in Fig. 3.15). Relative to the

baseline, no-CDA engine operation with delayed SOI and an over-closed VGT can

increase TOT to 320 ◦C at the cost of a 67% increase in fuel consumption as shown

in Fig. 3.15. As was also the case for the unloaded idle case, the over-closed VGT

decreases the open cycle efficiency, requiring more fuel to maintain the same torque.

This increased fueling decreases the AFR (per Fig. 3.16) resulting in the increase of

TOT to 320◦C (Fig. 3.15). SOI is delayed to maintain the NOx target.

The lowest fuel consumption during CDA with conventional valve profiles used

for the activated cylinders leads to a TOT increase of 118◦C (to 308◦C) with only a



40

Figure 3.15. Turbine outlet temperature vs fuel consumption at
loaded idle (1.5 g/hp-hr NOx) (* labels cases with over-closed VGT
and delayed fuel injection).

2% fuel consumption increase relative to the baseline, as shown in Fig. 3.15. TOT

increases as a result of a decrease in the air flow (per Fig.3.17) and AFR (per Fig. 3.16)

as a result of CDA. The fuel consumption slightly increases due to lower mechanical

efficiency (Fig. 3.18) with higher in-cylinder pressure from the aggressive combustion.

The closed cycle efficiency (Fig. 3.19) increases only slightly, by 2.5%, due to efficiency

canceling effects of more aggressive heat release (Fig. 3.20) (due to more fuel injected

per activated cylinder) and later heat release (to maintain the NOx constraint). Open

cycle efficiency (Fig. 3.21) increases as the air flow is lower when half of the cylinders

are deactivated. The open cycle efficiency of the no-CDA operation was already quite

high, such that there was little improvement possible with CDA at this speed/load

point. Taken together, the small increases in open and closed cycle efficiencies and

reduction in mechanical efficiency lead to slightly lower brake thermal efficiency (per

Fig. 3.22).
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Figure 3.16. Air-fuel ratio vs fuel consumption at loaded idle (* labels
cases with over-closed VGT and delayed fuel injection).

Figure 3.17. Air flow vs fuel consumption at loaded idle (* labels
cases with over-closed VGT and delayed fuel injection).
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Figure 3.18. Normalized mechanical efficiency vs fuel consumption
at loaded idle (* labels cases with over-closed VGT and delayed fuel
injection).

Figure 3.19. Normalized closed cycle efficiency vs fuel consumption
at loaded idle (* labels cases with over-closed VGT and delayed fuel
injection).
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Figure 3.20. Heat release rate for selected two cases at loaded idle.

Figure 3.21. Normalized open cycle efficiency vs fuel consumption
at loaded idle (* labels cases with over-closed VGT and delayed fuel
injection).
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Figure 3.22. Normalized brake thermal efficiency vs fuel consumption
at loaded idle (* labels cases with over-closed VGT and delayed fuel
injection).

Over-closing the VGT and delaying SOI in CDA mode increases TOT to 390◦C

(as shown with a red diamond in Fig. 3.15), the highest temperature realized during

loaded idle conditions. This increase of TOT corresponds to the lowest AFR, close

to the stoichiometric condition, per Fig. 3.16. This low AFR results in higher com-

bustion temperature and heat losses as shown in Fig. 3.23. Higher in-cylinder heat

losses decrease the closed cycle efficiency as shown in Fig. 3.19. Moreover SOI is

delayed to balance the NOx emission increase with elevated combustion temperature,

also reducing the closed cycle efficiency. Open cycle efficiency decreases with over-

closed VGT as the engine is throttled (per Fig. 3.21). Mechanical efficiency is 7%

lower than the baseline (per Fig. 3.18) due to higher in-cylinder pressure from the

aggressive heat release with CDA. In short, CDA with delayed SOI and an over-closed

VGT allows an increase in TOT to 390◦C (exceeding what is possible with no-CDA

operation, which also has a higher fuel consumption, per Fig. 3.15). This could be
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considered as a short term strategy to quickly warm up the aftertreatment system, if

required, during loaded idle operation.

Figure 3.23. Total engine heat losses vs fuel consumption at loaded
idle (* labels cases with over-closed VGT and delayed fuel injection).

3.6 CDA with Variable Valve Profiles at Loaded Idle

Flexible valve profile utilization during CDA operation does not further improve

the trade-off between TOT and fuel consumption due to the low AFR (close to stoi-

chiometric) that occurs during CDA at loaded idle (Fig. 3.16). In other words, unlike

CDA operation during unloaded idle operation which still has elevated AFRs (Fig.

3.3), there is no more “margin” to reduce AFRs at loaded idle.

3.7 Impact of Results for Thermal Management at Loaded Idle

The normalized heat transfer rate (per Fig. 3.24) is calculated using eqn. 3.2

at different bed temperatures for the “no-CDA (baseline)” and “CDA*” cases. As

was also the case at unloaded idle, CDA operation outperforms no-CDA operation
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for all relevant catalyst bed temperatures. Specifically, CDA operation will warm-up

the catalysts more quickly, and can sustain bed temperatures of 300◦C, whereas no-

CDA operation will cool down the catalysts when above ∼200◦C. Also note that the

disparity in the warm-up benefit of CDA increases as the bed temperatures increase.

For instance, the heat transfer rates for CDA are ∼60% and ∼180% higher than

no-CDA operation for bed temperatures of 100 and 150◦C, respectively.

Figure 3.24. Estimated exhaust gas-to-catalyst heat transfer rate
(equal BSFC) at loaded idle.

3.8 Summary of Results at Loaded Idle

CDA enables a TOT increase of 118◦C (to 308◦C) with a minor increase in BSFC

compared with the no-CDA baseline (Fig. 3.15). This operating condition also ex-

hibits a 39% fuel consumption reduction in comparison to a no-CDA condition at a

similar TOT (Fig.3.15). As shown in Figure 3.24, CDA outperforms no-CDA opera-

tion, from a catalyst warm-up point of view, across all relevant catalyst bed temper-

atures. Due to the low AFR achieved during CDA at loaded idle (Fig.3.16), there is
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much less merit relative to unloaded idle to combine CDA with valve-train flexibility

on the activated cylinders. In short, there is a significant thermal management and

efficiency benefit of CDA at loaded idle condition.

3.9 NOx, UHC and PM

The NOx, UHC and PM emissions of the cases analyzed in this chapter are shown

in Fig. 3.25-3.30. UHC and PM are within the 15 g/hr and 1 FSN limit separately.

NOx is between 18 g/hr and 23 g/hr beside one “no-CDA*” case at unloaded idle.

BSNOx is between 0.9 g/hp-hr and 1.5 g/hp-hr at loaded idle.

Figure 3.25. NOx vs fuel consumption at unloaded idle (* labels
cases with over-closed VGT and delayed fuel injection).

3.10 Summary

The effort described above concentrated on determining the trade-off between

exhaust temperature and fuel consumption of cylinder deactivation (CDA) and valve-

train flexibility at unloaded and loaded idle conditions. These results would be useful
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Figure 3.26. UHC vs fuel consumption at unloaded idle (* labels
cases with over-closed VGT and delayed fuel injection).

Figure 3.27. PM vs fuel consumption at unloaded idle (* labels cases
with over-closed VGT and delayed fuel injection).
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Figure 3.28. BSNOx vs fuel consumption at loaded idle (* labels
cases with over-closed VGT and delayed fuel injection).

Figure 3.29. UHC vs fuel consumption at loaded idle (* labels cases
with over-closed VGT and delayed fuel injection).
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Figure 3.30. PM vs fuel consumption at loaded idle (* labels cases
with over-closed VGT and delayed fuel injection).

in the thermal management of aftertreatment system as the efficiencies of DOC,

DPF and SCR are heavily temperature dependent and generally require temperatures

between 250◦C and 450◦C to provide required performance. Specifically the lowest

exhaust gas temperature required to activate SCR is 200◦C to avoid urea deposit.

The key observations are:

Unloaded idle (800 RPM, 0.26bar BMEP)

1. CDA enables a 64◦C increase in TOT (to 180◦C) with only 3% fuel consumption

increase compared with the most efficient no-CDA operation;

2. Valve-train flexibility enables a TOT of ∼200◦C with no fuel economy penalties

by combining CDA with intake/exhaust valve based throttling and EIVC;

3. CDA with valve throttling, LIVC and iEGR maximize TOT up to 260◦C at

unloaded idle.

Loaded idle (800 RPM, 2.5 bar BMEP)

4. CDA enables TOT to 308◦C with 39% lower fuel consumption than that

achieved with no-CDA operation at same TOT. This corresponds to a 118◦C TOT
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increase and nearly no fuel penalty compared with the most efficient no-CDA opera-

tion;

5. CDA coupled with an over-closed VGT and delayed fuel injection maximizes

TOT up to 390◦C at loaded idle.

Both conditions

6. The exhaust gas-to-catalyst heat transfer for CDA operation outperforms no-

CDA operation across all relevant catalyst bed temperatures. As such, there is a

significant thermal management impact of CDA at both conditions.
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4. FUEL ECONOMY AND THERMAL MANAGEMENT AT HIGH-WAY

CRUISE CONDITION

The analytical and experimental efforts described here focus on fuel economy and

exhaust thermal management at 1200 rpm, 7.58 bar BMEP, a speed and load con-

sistent with cruise conditions for over the road trucks. With conventional valve-train

operation the exhaust temperature at the turbine exit is 350 ◦C . Higher exhaust tem-

peratures are necessary to more quickly heat up the SCR and periodically regenerate

the DPF. Three strategies enabled by flexible actuation are investigated to increase

exhaust gas temperature and power.

4.1 BSFC vs BSNOx Trade-offs

Constrained optimization and experimental validation were conducted to find the

minimum fuel consumption that each variable valve actuation (VVA) strategy could

provide. Optimization and validation was also performed with conventional operation

to provide a baseline for comparison. The trade-off between fuel consumption and

NOx emissions with conventional operation, iEGR via re-induction, LIVC, and CDA

are shown in Fig. 4.1. Engine operation with CDA has an increase in BSFC while op-

eration with iEGR and LIVC has fuel consumption levels comparable to conventional

operation. The results discussed in this chapter are all from experimental validation

of optimized results.

The durations of the re-induction profiles for the exhaust valves were optimized to

a value of 2-3 crank angle degrees (CAD), a very short duration. This indicates that

hot, re-inducted, burned gases bring essentially no benefit to fuel efficiency relative to

cooled external EGR at the highway cruise condition. As the profiles are close to the

nominal operation of the exhaust valves, it is not surprising that fuel consumption
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Figure 4.1. BSFC vs BSNOx trade-offs between conventional valve
profiles and VVA functions.

remains comparable to that of baseline operation. Similarly, for the optimization of

the LIVC function the intake valve closing timing was only retarded by around 10

CAD for the three BSNOx targets. This change in duration of intake valve opening

had very little impact on the gas exchange and fuel consumption relative to baseline

operation. In short, from a BSFC minimization point of view there is no reason

to implement iEGR, LIVC or CDA at the 1200 RPM, 7.58 bar BMEP operating

condition for this engine. In general, it is not necessarily surprising that VVA enabled

functions did not improve fuel efficiency at this operating condition, since highly

efficient operation at the “cruise” point is a direct focus of engine design.

4.1.1 Closed Cycle Efficiency

The fuel consumption for CDA is approximately 16 % worse than baseline oper-

ation, as shown in Fig. 4.1, which is consistent with lower BTE as shown in Fig.
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Figure 4.2. Normalized BTE vs BSNOx.

Figure 4.3. Normalized closed cycle efficiency vs BSNOx.
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4.2. BTE can be broken down into cycle efficiencies to understand the losses in fuel

efficiency associated with the operation of CDA. Fig. 4.3 shows the closed cycle ef-

ficiency and NOx emissions for the four functions. CDA has a reduced closed cycle

efficiency which is the major cause of lower BTE.

Figure 4.4. Heat release rate with conventional valve profiles.

Figure 4.5. Heat release rate with CDA.
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Figure 4.6. In-cylinder heat losses vs BSNOx.

Cylinder deactivation studied in this work is realized by deactivating half of the

cylinders based on firing order. The fueling amount per active cylinder in CDA

cases are nearly doubled to maintain the same 7.58 bar BMEP relative to nominal

operation. As a result, combustion duration is longer and the centroid of heat release

is further after TDC than nominal operation as shown in Figs. 4.4 and 4.5. The

centroid of heat release is approximately 10 ATDC with conventional valve profiles

and 15 ATDC with CDA. This heat release delay causes a reduction in power during

the expansion stroke and results in lower closed cycle efficiency. In addition, the

longer combustion duration with CDA increases heat losses through the cylinder

walls and combustion chamber as shown in Fig. 4.6. The longer combustion process

per cylinder increases temperature and residence time of hot burned gases resulting

in higher convective heat losses.
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4.1.2 Open Cycle and Mechanical Efficiency

As shown in Fig. 4.7 iEGR via re-induction and LIVC have very similar open

cycle efficiency as the baseline since the optimizations identify the baseline to be the

optimal fuel efficient operation. CDA slightly reduces open cycle efficiency by 1 % ∼2

% as the compressor is operating less efficiently. The AFR at the cruise condition

is usually close to 25 as shown in Fig. 4.8. CDA reduces engine displacement by

50% resulting in lower AFR close to stoichiometric. The VGT is set to maximize the

air flow and the compressor is operating close to the surge line. It results in lower

compressor efficiency as well as open cycle efficiency.

Figure 4.7. Normalized open efficiency vs BSNOx.

The mechanical efficiency of iEGR via re-induction and LIVC are very similar

with the baseline as shown in Fig.4.9. The major reason is that the valve motions

are driven by external hydraulic power. The valve profiles have no direct influence

in mechanical efficiency. The mechanical efficiency is largely depend on in-cylinder

pressure and parasitic losses such as high pressure fuel pump. Operations with CDA
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Figure 4.8. Air-fuel ratio vs BSNOx.

generally have longer combustion process and higher in-cylinder pressure, which result

in greater frictional losses.

Above all, flexible valve train does not reduce the fuel consumption at cruise

condition due to the fact that the engine is calibrated very efficient. However the well

calibrated operation focuses on fuel consumption and may not necessarily consider

the thermal mangement for aftertreatment system.

4.2 Maximum TOT vs BSNOx Trade-offs

Elevated exhaust temperatures are important for aftertreatment efficiencies. Con-

strained optimization and experimental validation were conducted to find the maxi-

mum TOT that each strategy could provide at three BSNOx levels.

Figure 4.10 presents the trade-off between TOT and BSNOx for conventional op-

eration, iEGR via re-induction, iEGR via NVO, LIVC, and CDA. The TOT achieved

with conventional valve profiles optimized for BSFC, indicative of what temperatures
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Figure 4.9. Normalized mechanical efficiency vs BSNOx.

would result from normal operation, are shown as a point of reference, the “baseline”

in Figs. 4.10 - 4.16.

With conventional valve profiles, the TOT can be increased up to 400◦C with

retarded combustion as shown in Fig. 4.10. The main injection pulse is delayed from

1.5 to 6.5 ATDC corresponding to a 50◦C increase relative to conventional operation

optimized to minimize BSFC. Further delaying SOI to 15 ATDC results in higher

TOT ∼450◦C which is the maximum TOT achieved with conventional valve profiles.

Delaying SOI increases exhaust temperature, however, it results in a ∼23% additional

fuel cost as shown in Fig. 4.11.

The increase of fuel consumption is mainly due to reduced closed cycle efficiency

(per Fig. 4.12) with the delayed fuel injection from baseline (the best BSFC), con-

ventional valve profiles (SOI = 5 ATDC) and conventional valve profiles (SOI =

15 ATDC). Open cycle and mechanical efficiencies (Fig. 4.13 and 4.14) have little

variation in these cases.
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Figure 4.10. Maximum TOT vs BSNOx (500◦C represent the mini-
mum temperature for DPF active regeneration).

Figure 4.11. Maximum TOT vs BSFC (500◦C represent the minimum
temperature for DPF active regeneration).
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Figure 4.12. Closed cycle efficiency (max TOT).

Figure 4.13. Open cycle efficiency (max TOT).
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Figure 4.14. Mechanical efficiency (max TOT).

Internal EGR sufficiently meets NOx targets with the external EGR loop shut,

except for the NVO case at the 1.5 g/hp-hr BSNOx due to a safety threshold set to

limit the amount by which the duration of the intake and exhaust valve profiles could

be reduced. This threshold prevented the required amount of residual burned gases

from being trapped.

iEGR via re-induction and trapping (NVO) increases TOT to the 450◦C cor-

responding to a ∼10% reduction in fuel consumption (Fig. 4.11) compared with

the same temperature achieved by conventional valve profiles and delayed SOI (15

ATDC). iEGR reduces the fuel consumption to achieve the same 450◦C due to less

heat losses (Fig. 4.15) and higher closed cycle efficiency (Fig. 4.12). iEGR reduces

NOx using hot burned gases instead of cooled EGR and delayed SOI. Relative early

SOI allows heat release closer to TDC resulting in higher closed cycle efficiency than

conventional valve profiles (SOI = 15ATDC). Open cycle efficiency and mechanical
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efficiencies (Fig.4.13 and 4.14) are close to the cases using conventional valve profiles.

Together iEGR reduces the fuel cost required to achieve 450◦C by 10%.

Figure 4.15. Total heat losses vs BSNOx.

LIVC increases TOT by 80◦C (above 550◦C) with 5% less fuel compared with

conventional valve profiles (SOI=15ATDC) as shown in Fig. 4.11. The elevated

TOT is due to reduced volumetric efficiency and AFR (per Fig. 4.16). LIVC also

decreases the ECR, lowering the in-cylinder pressure and combustion temperature

which reduces NOx emission. As such, LIVC allows a selectively early heat release

resulting in higher closed cycle efficiency (Fig. 4.12). LIVC throttles the engine by

pushing part of the inducted gases pushed back into the intake manifold which leads

to slightly lower open cycle efficiency (Fig. 4.13). In addition open cycle efficiency

decreases at low NOx levels as IVC timing is further delayed to reduce NOx emission

with lower ECR. Mechanical efficiency changes little with IVC modulation (Fig. 4.14).

Together these changes result in lower fuel consumption, but higher TOT, exceeding

the passive DPF regeneration threshold at approximately 500◦C (Fig. 4.10). In
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short, LIVC provides another way to reduce NOx and improves the TOT/FC trade-

off relative to late injection with conventional operation and the iEGR strategies.

Figure 4.16. Air-fuel ratio vs BSNOx (max TOT).

Similar to LIVC, CDA results in an increase in TOT, which, in general, is above

the temperature to start passive DPF regeneration [2]. Using only half of the cylinders

reduces the displaced volume as well as AFR (Fig. 4.16) resulting in TOTs up to

560◦C (90◦C TOT increase) with only ∼3% more fuel compared with conventional

valve profiles with delayed SOI (per Fig. 4.11). Compared with LIVC, CDA has

relatively lower closed cycle efficiency (Fig. 4.12) due to longer combustion process

and higher heat losses (Fig. 4.15). Both open cycle and mechanical efficiencies are

slightly reduced (Fig. 4.13 and 4.14) due to lower compressor efficiency and increased

in-cylinder pressure and friction. Previous optimized BSFC with CDA actually has

TOTs around 540◦C (Fig. 4.1) with 5% less fuel used compared with conventional

valve profiles and delayed SOI. This indicates that the TOT benefit is diminishing

with losses in fuel efficiency at elevated TOT.
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4.3 Estimated exhaust gas-to-catalyst heat transfer rate

Elevated turbine outlet temperature (TOT), as discussed in Section 4.2, are im-

portant for keeping aftertreatment devices hot. However it is convective heat transfer

between the exhaust gas and catalyst beds to be the main driver for “heating up” the

catalyst material. Using Eq. (3.2) the normalized heat transfer can be plotted as a

function of catalyst temperature.

The normalized heat transfer rate increases as the fuel injection is delayed with

conventional valve profiles at 1.5 g/hp-hr BSNOx as shown in Fig. 4.17. Case with de-

layed SOI will warm-up the catalysts more quickly, and can sustain bed temperatures

of 400◦C, whereas the baseline case will cool down the catalysts when above ∼350◦C.

This increase of heat transfer rate is consistent with the increased fuel consumption.

The heat transfer rates for “conventional valve profiles (SOI = 15 ATDC)” are ∼75%

and ∼200% higher than the baseline operation for bed temperatures of 100 and

300◦C, respectively.

The normalized heat transfer rate is also calculated at different bed temperatures

for the “iEGR via re-induction”, “iEGR via NVO”, “LIVC” and “CDA” cases as

shown in Fig. 4.18. Cases with iEGR will warm-up the catalysts more quickly, and

can sustain bed temperatures of 450◦C. The increase of heat transfer rate corresponds

to an 11%-14% increase of fuel consumption. LIVC further increases the heat transfer

rate across different catalyst bed temperature and can sustain temperature of 550◦C.

The heat transfer rates for “LIVC” are ∼65% and ∼240% higher than the base-

line operation for bed temperatures of 100 and 300◦C, respectively. “CDA” slightly

improves the heat transfer rate but the fuel consumption increases by 9% with this

diminishing return compared with LIVC case.

A comparison is made in cases of “conventional valve profiles (SOI = 15 ATDC)”,

“LIVC” and “CDA”, which have relatively high heat transfer rates with different

bed temperatures. The delayed fuel injection strategy without VVA functions allows

higher heat transfer rate at bed temperature below 150◦C (Fig. 4.19). Both LIVC and
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Figure 4.17. Estimated exhaust gas-to-catalyst heat transfer rate
with conventional valve profiles (1.5 g/hp-hr BSNOx).

Figure 4.18. Estimated exhaust gas-to-catalyst heat transfer rate
with VVA functions (1.5 g/hp-hr BSNOx).
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Figure 4.19. Estimated exhaust gas-to-catalyst heat transfer rate
with LIVC and CDA (1.5 g/hp-hr BSNOx).

CDA promote a better heat transfer rate at bed temperature above 150◦C. The heat

transfer rates for LIVC are ∼50% and ∼560% higher than the delayed SOI strategy

for bed temperatures of 300 and 400◦C, respectively. Similarly the heat transfer

rates for CDA are ∼60% and ∼650% higher than the delayed SOI strategy for

bed temperatures of 300 and 400◦C, respectively. In addition the fuel consumption

using LIVC is lower than CDA and conventional valve profiles with delayed SOI.

And as such, the LIVC based strategy is the most effective way to “warm-up” the

aftertreatment at the “high-way cruise” operating condition.

Cases at 3 and 4 g/hp-hr BSNOx generally follow the same trend of 1.5 g/hp-

hr case as shown in Fig. 4.20-4.23. iEGR via re-induction and NVO will warm-up

the catalysts more quickly, and can sustain bed temperatures of ∼450◦C, whereas

the baseline case will cool down the catalysts when above ∼350◦C. LIVC and CDA

further increase the heat transfer rate and can keep bed temperature of ∼550◦C.
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Figure 4.20. Estimated exhaust gas-to-catalyst heat transfer rate
with conventional valve profiles (3 g/hp-hr BSNOx).

Figure 4.21. Estimated exhaust gas-to-catalyst heat transfer rate
with VVA functions (3 g/hp-hr BSNOx).
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Figure 4.22. Estimated exhaust gas-to-catalyst heat transfer rate
with conventional valve profiles (4 g/hp-hr BSNOx).

Figure 4.23. Estimated exhaust gas-to-catalyst heat transfer rate
with VVA functions (4 g/hp-hr BSNOx).
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4.4 UHC and PM

Figure 4.24. Unburned hydrocarbon.

The limit of UHC is 100 ppm and most of the cases especially those using flexible

valve train are below or close to 100 ppm as shown in Fig.4.24.

Figure 4.25. Particulate matter.
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The constraint for PM measured from AVL analyzer is 1.5 FSN. Most of the cases

satisfy this emission constraint with the exception of the 1.5 g/hp-hr BSNOx point in

CDA operation as shown in Fig.4.25. The AFR with CDA is significantly lower than

points where all cylinders are used. AFR is even lower for the 1.5 g/hp-hr BSNOx

case where more EGR is required for NOx reduction as shown in Fig. 4.8 and 4.16.

Soot is a big issue at low AFR conditions. Even with VGT, AFR is still around 16

with CDA at lowest NOx cases. With priority given to BSNOx the EGR valve and

VGT actuators could not be set such that 1.5 FSN limit for PM could be met with

CDA at 1.5 g/hp-hr BSNOx.

4.5 Model and Experiment Comparison

The experimental work in this chapter was guided from optimization using the

simulation tools. The model was calibrated to predict the steady state engine oper-

ation on the test bed. The comparison between simulation and experiment results

are shown in Fig. 4.26. The horizontal error bars represent error observed in repeat

points taken at the beginning and end of each experiment. Generally the model is

consistent with experimental results in fuel economy (BSFC), BSNOx and exhaust

temperature (TOT). The model provides a convenient and efficient way to find the op-

timal operation with different strategies using flexible valve-train. The experimental

validations demonstrate the solid proof of optimized results and support the analysis

in this chapter.

4.6 Summary

This chapter investigated potential benefits of utilizing flexible valve actuation on

a diesel engine at an operating condition consistent with highway cruise. The key

findings include:

1. iEGR, LIVC and CDA bring no benefit in engine-specific fuel economy over

conventional valve profiles at 1.5, 3 and 4 g/hp-h BSNOx levels. The valve profiles of
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iEGR and LIVC are optimized back to conventional valve profiles and fuel economy

is worse with CDA due to higher heat losses and delayed combustion. This result is

not surprising as efficiency maximized at “highway cruise” conditions is a primary

focus of conventional engine design.

2. Conventional operation increases TOT from 350◦C to 450◦C with delayed SOI

resulting in a 23% increase of fuel consumption. iEGR via re-induction or NVO

reduces the fuel consumption by 10% at same TOT due to lower total heat losses

and AFR. LIVC increase TOT up to 550◦C with 5% less fuel used compared with

conventional valve profiles at 450◦C. CDA further maximizes TOT above 550◦C with

additional 3% fuel used due to lower AFR.

3. iEGR via re-induction and NVO will warm-up the catalysts more quickly, and

can sustain bed temperatures of ∼450◦C, whereas the baseline case will cool down

the catalysts when above ∼350◦C. LIVC and CDA promote a better heat transfer

rate at bed temperature above 150◦C for 1.5 g/hp-hr BSNOx compared with the

highest heat transfer rate with conventional valve profiles using delayed SOI. Both

LIVC and CDA can keep catalyst bed temperature of ∼550◦C and LIVC has lower

fuel cost.
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Figure 4.26. GT-power and Engine data comparison.
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5. SIMULATION EXPLORATION OF MILLER CYCLE WITH ELEVATED GCR

Elevated geometric compression ratio (GCR) typically leads to better thermal effi-

ciency, however, the application is constrained by physical limits such as peak cylinder

pressure (PCP) and turbine inlet temperature (TIT), particularly at, or near, rated

condition. Miller cycling reduces the amount of effective compression which is a

promising method to enable the engine running on the torque curve without violat-

ing mechanical constraints. Miler cycling can improve the BSNOx/fuel consumption

trade-off by allowing early combustion event. In addition, the reduction in the effec-

tive compression ratio can enable the use of higher GCR, even at the rated engine

condition. This chapter explores both potential benefit of Miller cycling with elevated

GCR. Five operating conditions were selected and analyzed using simulation method

as shown in Fig. 5.1.

Figure 5.1. Operating conditions selected for Miller cycling at ele-
vated GCR analysis.



75

5.1 Miller Cycling with Variable GCR

The stock geometric compression ratio of the engine is 16.9. Higher GCR were

investigated to explore thermal efficiency and emission control of a diesel engine that

also includes the ability to modulate IVC via EIVC or LIVC.

5.1.1 GCR 16.9, 20 and 23

GCR 16.9, 20 and 23 were selected to analyze fuel economy at 1200 RPM and 400

ft-lbf operating condition. Figure 5.2 shows that BSFC decreases as GCR increases

through BSNOx between 4 g/hp-h and 10 g/hp-h. The highest GCR of 23 reduces

the fuel consumption by 3% and 1.5% compared with the baseline (GCR of 16.9) at

4 g/hp-hr and 8 g/hp-hr BSNOx separately.

The brake thermal efficiency (Fig. 5.3) increases with high GCR, which is con-

sistent with the BSFC results (Fig. 5.2). The BTE improvement is the result of

higher closed cycle efficiency (Fig. 5.4) due to centralized heat release profiles with

high GCR (Fig. 5.5) for three points picked at 3.9 g/hp-h BSNOx on trade-off curve

(Fig. 5.2). Moreover the piston work increases with higher expansion ratio, which

also results in higher closed cycle efficiency.

The open cycle efficiency (Fig. 5.6) has little variation with variable GCR. Theo-

retically mechanical efficiency decreases as GCR increases because of higher friction

losses associated with elevated in-cylinder pressure. Chen-Flynn model is used to

capture this effect in Eq. (5.1). The friction mean effective pressure (FMEP) is re-

lated with peak cylinder pressure (PCP) and mean piston speed (which is constant

at a certain engine speed). Elevated GCR realized by reducing clearance volume at

top of the cylinders does not influence the motion of piston. The FMEP is dominated

by PCP in this simulation which is a reasonable approximation. Elevated GCR has

slightly higher friction losses due to higher PCP resulting in a decrease of mechanical

efficiency as shown in Fig. 5.7. The model captures the effect of elevate GCR as

GCR16.9 has higher mechanical efficiency than GCR20 and GCR23.
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Figure 5.2. GCR varying BSFC vs BSNOx trade-off.

Figure 5.3. GCR varying BTE.

FMEP = A+B × (PCP) + C(mean piston speed) +D(mean piston speed)2,

A B C D are coefficients.
(5.1)
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Figure 5.4. GCR varying closed cycle efficiency.

Figure 5.5. GCR varying heat release rate.

Together, the balance in increased closed cycle efficiency, similar open cycle effi-

ciency and reduced mechanical efficiency results in higher BTE and better fuel econ-
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Figure 5.6. GCR varying open cycle efficiency.

Figure 5.7. GCR varying mechanical efficiency.

omy with elevated GCR. The best scenario is GCR of 23, which increases BTE by

1.2% at 3.9 g/hp-h BSNOx.
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5.1.2 Miller Cycling with Variable IVC Timing

Figure 5.8. Miller cycling BSFC vs BSNOx trade-off curves.

Figure 5.9. Miller cycling heat release at 3 g/hp-h BSNOx.

Miller cycling reduces NOx with lower piston-motion induced compression which

decreases in-cylinder temperature (a BSNOx reducer), allowing earlier heat release

(which decreases BSFC) at same BSNOx.
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Figure 5.8 shows three BSFC and BSNOx trade-off curves corresponding to “EIVC”,

“LIVC” and the nominal case with conventional IVC timing. Miller cycling via

EIVC/LIVC reduces the ECR resulting in lower in-cylinder pressure and temper-

ature. The reduced temperature decreases NOx formation rate, thus the amount

of NOx produced in the combustion process. Miller cycling, without increase NOx

emissions, enables earlier combustion timing strategy to improve the closed cycle ef-

ficiency. EIVC/LIVC is able to advance the heat release profile closer to TDC than

the nominal case (Fig. 5.9) at 3 g/hp-h BSNOx. Moreover, the reduced in-cylinder

pressure and temperature will help elevated GCRs meet with physical constraints at

high load conditions.

5.1.3 Variable IVC Timing at High GCR

The optimization of BSFC at certain BSNOx levels were performed for three GCRs

separately at the 1200 RPM and 400 ft-lbf operating condition, as shown in Table 5.1.

The table details the optimized range for each independent variables including IVC

timing and other production actuators to control the air handling and fuel injection

systems. The nominal IVC timing is 565 CAD and varies between 520 CAD and 620

CAD. EIVC and LIVC are optimized separately to avoid multiple optimal results in

the design of experiment. The fuel injection timing (SOI) is optimized near the top

dead center (TDC) where fuel energy is mostly efficient in generating power.

Cases with GCR at 16.9 (Fig. 5.10) provides the baseline for a fair comparison

among different GCRs. As expected, BSFC decreases as GCR increases from 16.9

to 20 and 23 at a fixed BSNOx. Longer expansion ratio associated with high GCR

increases the piston work reducing the fuel consumption. EIVC has slightly better

BSFC/NOx trade-off compared with LIVC at both GCR20 and GCR23 as EIVC is

more efficient in reducing NOx. LIVC increases the temperature of charged air as hot

residual gases are pushed back into the intake manifold. The temperature increase of

charged air results in higher NOx emission. EIVC/LIVC reduces the lowest achievable
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Table 5.1. Optimized Parameters of Variable IVC Timing at Elevated GCR.

Parameter Name Unit GCR16.9 GCR20 GCR23

EIVC ATDC 565 520 – 556 520 – 551

LIVC ATDC 565 578 – 620 578 – 620

ECR 17.6 18.5 – 20.7 21.2 – 23.8

VGT Closed % 0 (full open) – 61 13 – 58 6 – 61

Main SOI ATDC -3.1 – 2.8 -2.5 – -0.6 -1.5 – 0.8

Rail Pressure bar 700 – 762 700 – 991 700 – 1154

BSNOx ∼2 g/hp-hr with reduced ECR. The best BSFC/NOx trade-off in these cases

is EIVC with highest GCR23 which increases BSFC by 5% (per Fig. 5.10) and BTE

by 2% (per Fig. 5.11) compared with the baseline (GCR16.9) at 3.9 g/hp-hr BSNOx.

Figure 5.10. BSFC vs BSNOx trade-off of variable IVC timing at elevated GCR.
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Figure 5.11. BTE of variable IVC timing at elevated GCR.

Figure 5.12. Variable IVC timing at high GCR closed cycle efficiency.
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Figure 5.13. Variable IVC timing at high GCR heat release rate.

The improvement of BSFC and BTE is mainly due to increased closed cycle ef-

ficiency with elevated GCR as shown in Fig. 5.12. Closed cycle efficiency increases

with elevated GCR and Miller cycling due to early and centralized heat release. Miller

cycling (EIVC/LIVC) reduces NOx via a reduced ECR allowing an earlier heat re-

lease closer to TDC (Fig. 5.13) resulting in higher closed cycle efficiency. Higher

GCR increases piston work via longer expansion ratio also resulting in higher closed

cycle efficiency. EIVC with GCR23 has the highest closed cycle efficiency (Fig. 5.12)

corresponding to the highest BTE (Fig. 5.11) among the five scenarios.

Open cycle efficiency has little variation among cases explored at this operating

condition as shown in Fig. 5.14. The similar open cycle efficiencies are the result of

optimized gas exchange process. For instance, VGT is squeezed to boost air flow com-

pensating the reduced air flow with Miller cycling. Mechanical efficiency decreases

with elevated GCR as shown in Fig. 5.15. Together the increased closed cycle effi-

ciency (Fig. 5.12) and lower mechanical efficiency (Fig. 5.15) result in higher BTE

with Miller cycling at elevated GCR.
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Figure 5.14. Variable IVC timing at high GCR open cycle efficiency.

Figure 5.15. Variable IVC timing at high GCR mechanical efficiency.
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5.1.4 EIVC and LIVC

Miller cycling is realized by advancing or retarding the IVC timing to reduce ECR.

Although both EIVC and LIVC can effectively reduce ECR lowering NOx emission,

LIVC is not as efficient as EIVC in NOx control perspective due to higher charged

gas temperatures which increase the NOx formation rate.

Effective compression ratio is defined as the effective volume at intake valve closure

over clearance volume when the piston reaches the top dead center position as shown

in Eq. (5.2). This pressure based ECR calculation takes into account the piston-

motion induced compression. The corresponding ECRs at difference IVC timing

between 520 CAD and 620 CAD are shown in Fig. 5.16. The peak ECR is 24 at

nominal IVC, 565 CAD. EIVC advances IVC by 45 degrees (to 520 CAD) reducing

ECR to 20.6. LIVC delays IVC by 45 CAD (to 610 CAD) reduces ECR to 22. The

results demonstrate that EIVC is more effective in reducing ECR with same distance

from the nominal IVC compared with LIVC.

ECR =
Vivceff
Vtdc

. (5.2)

EIVC/LIVC reduces the temperature and pressure before combustion occurrs as

shown in Fig. 5.17 and 5.18, resulting in lower NOx emission as the formation rate of

NOx is strongly related with the combustion temperature. LIVC has slightly higher

temperature compared with EIVC due to the back flow into the intake manifold.

LIVC delayed the IVC timing allowing part of trapped air flow back into the intake

manifold. This back flow is relatively hot compared with fresh air due to hot residual

gases included from last combustion event and heat absorption from the cylinder

wall. The phenomenon results in relatively higher charged air temperature with

LIVC compared with EIVC, which is less efficient in NOx reduction.
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Figure 5.16. Effective compression ratio of variable IVC timing (GCR = 23).

5.2 EIVC at Elevated GCR

As the best scenario for Miller cycling with elevated GCR is EIVC and GCR23,

more operating conditions were investigated for better fuel economy including 1600

RPM/250 ft-lbf, 1200 RPM/100 ft-lbf and 2000 RPM/400 ft-lbf.

5.2.1 1600RPM 250ft-lbf

GCR16.9 shows the baseline of BSFC/NOx trade-off at 1600 RPM/250 ft-lbf as

shown in Fig. 5.19. It uses EGR as a method to reduce NOx and is able to achieve

almost zero emissions. Elevated GCR at 23 decreases the fuel consumption by 1%

with either EGR or EIVC. The minimum NOx with EIVC and elevated GCR is close

to 2 g/hp-hr, which is not as effective as EGR in NOx reduction perspective. The

usage of both EGR and EIVC slightly improves the BSFC/NOx trade-off compared

with using single function only.
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Figure 5.17. Temperature at firing TDC of variable IVC timing (GCR = 23).

Figure 5.18. Pressure at firing TDC of variable IVC timing (GCR = 23).

Cycle efficiencies are analyzed using four points selected at ∼2.5 g/hp-hr BSNOx

(per Table 5.2) from four BSFC/NOx trade-off curves (Fig. 5.19). The columns in

order shows the “baseline (GCR16.9)”, “EGR at GCR 23”, “EIVC at GCR23” and

“EGR + EIVC at GCR 23”. The rows represent the optimized independent variables

and results.
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Figure 5.19. 1600 RPM / 250 ft-lbf BSFC vs BSNOx trade-off curve.

Elevated GCR with EGR increases BTE by 0.3% (corresponding to an 1% BSFC

decrease). The BTE improvement is mainly from increased closed cycle efficiency.

The “EGR at GCR23” case (the second column in Table 5.2) has increased closed

cycle efficiency (due to elevated GCR), same open cycle efficiency and decreased

mechanical efficiency (due to elevated in-cylinder pressure with GCR23) compared

with the baseline (the first column in Table 5.2). Together these changes result in

higher BTE and BSFC.

Instead of EGR, EIVC reduces NOx emission resulting in a BTE increase of 0.3%

(corresponding to an 1% BSFC decrease), which is very similar as the EGR case at

GCR23. EIVC reduces the effective compression lowering peak cylinder pressure and

friction losses resulting in higher mechanical efficiency compared with the EGR case.

However, lower in-cylinder pressure offsets the benefit of elevated GCR in reduced

closed cycle efficiency. The balance between mechanical efficiency and closed cycle

efficiency result in the same BTE using EGR or EIVC at elevated GCR(second and

third column in Table 5.2).
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Table 5.2. Optimization Results at 1600 RPM / 250 ft-lbf.

Parameter Unit Parameter Value

GCR - 16.9 23 23 23

IVC CAD 565 565 515 515

EGR % 18.5 17.2 0 10.0

VGT Closed % 48.5 43.7 18.2 33.8

Pilot SOI ATDC -12.6 -8.7 -11.5 -9.5

Main SOI ATDC -2.8 1.1 -1.7 0.3

Post SOI ATDC 11.5 15.4 12.5 14.6

Rail Pressure bar 1700 1700 759 1700

BSFC lb/hp-h 0.361 0.358 0.357 0.356

BSNOx g/hp-hr 2.6 2.4 2.6 2.3

BTE % 38.2 38.5 38.5 38.6

Closed Cycle Efficiency % 48.4 49.3 48.8 49.0

Open Cycle Efficiency % 96.3 96.3 96.4 96.5

Mechanical Efficiency % 81.8 81.2 81.8 81.7

Air Fuel Ratio - 25.8 26.2 25.9 23.1

Charge Flow g/s 110 108.52 89 88

The combination of EGR and EIVC further improves BTE by 0.1% (fourth column

in Table 5.2) at elevated GCR. The open cycle efficiency slightly improved compared

with the baseline case due to reduced air flow. The closed cycle and mechanical

efficiency is between EIVC and EGR cases. Together these changes result in a small

improvement of thermal efficiency.
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5.2.2 1200RPM 100ft-lbf

A low load operating condition is selected at 1200 RPM/100 ft-lbf with BSNOx

around 8 g/hp-hr for conventional operation. This is a no EGR operating condition

with single injection pulse. EIVC at elevated GCR slightly improves the BSFC/NOx

trade-off as shown in Fig. 5.20.

Figure 5.20. 1200 RPM / 100 ft-lbf BSFC vs BSNOx trade-off curve.

Cycle efficiencies are analyzed using two points selected around 6 g/hp-hr BSNOx

from Fig. 5.20 as shown in Table 5.3. The columns in order shows the baseline at

“GCR16.9” and “EIVC at GCR23”. The rows represent the optimized independent

variables and results.

EIVC with elevated GCR increases BTE by 0.2% (corresponding to 0.7% decrease

of BSFC). Closed cycle efficiency increases with elevated GCR although the start of

injection (main SOI) is slightly delayed for NOx reduction besides reduced ECR with

EIVC. The open cycle efficiency is very similar between these two cases. Mechanical

efficiency slightly reduces with elevated GCR. Together these changes result in little
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Table 5.3. Optimization Results at 1200 RPM / 100 ft-lbf.

Parameter Name Unit Parameter Value

GCR - 16.9 23

IVC CAD 565 515

EGR % 0 0

VGT Closed % 0 (full open) 26.4

Main SOI ATDC 3.1 4.6

Rail Pressure bar 1800 1800

BSFC lb/hp-h 0.419 0.416

BSNOx g/hp-h 5.9 5.6

BTE % 32.9 33.1

Closed Cycle Efficiency % 49.9 50.5

Open Cycle Efficiency % 95.8 95.9

Mechanical Efficiency % 68.8 68.3

Air Fuel Ratio - 62.6 54.6

Charge Flow g/s 75 65

improvement in BTE and BSFC. In addition the excess oxygen and higher air to fuel

ratio lead to relatively higher BSNOx at this low load condition.

5.2.3 2000RPM 400ft-lbf

Another operating condition was selected and investigated at high speed and high

load condition (2000 RPM/400 ft-lbf, with EGR usage). Miller cycling with elevated

GCR23 improves BSFC at BSNOx below 4 g/hp-hr as shown in Fig. 5.21. The

increase of fuel consumption at higher NOx levels is mainly due to decreased turbine

and compressor efficiencies. The AFR is relatively lower at high load condition which

required squeezed VGT to drive enough air for combustion. The more closed VGT
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results in lower turbine and compressor efficiencies. This phenomenon is more obvious

at high NOx levels increasing the fuel consumptions.

Figure 5.21. 2000 RPM / 400 ft-lbf BSFC vs BSNOx trade-off curve.

Cycle efficiencies are analyzed using selected two cases ∼2 g/hp-hr BSNOx as

shown in Table 5.4. The columns in order shows the baseline with “GCR16.9” and

“EIVC at GCR23”. The rows represent the optimized independent variables and

results. EIVC with elevated GCR increases BTE by 0.8% (corresponding to a 2%

reduction in BSFC). The elevated GCR increases closed cycle efficiency and decreases

mechanical efficiency due to higher in-cylinder pressure. The turbo efficiency with

EIVC decreases from 52% to 47% as the VGT closed from 37.8 % to 66.6% resulting

in lower open cycle efficiency. Together the increased closed cycle efficiency balances

the decrease of open cycle and mechanical efficiencies resulting in higher BTE.

In summary, Miller cycling with elevated GCR 23 brings 0.2% - 0.8% BTE ben-

efit (corresponding to a 0.7% - 2% decrease in BSFC) at three operating conditions

without increasing NOx emission. Miller cycling with elevated GCR 23 outperforms
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Table 5.4. Optimization Results at 2000 RPM / 400 ft-lbf.

Parameter Name Unit Parameter Value

GCR - 16.9 23

IVC CAD 565 515

EGR % 16.7 13.7

VGT Closed % 37.8 66.6

Pilot SOI ATDC -12.6 -12.6

Main SOI ATDC -7.0 -4.4

Post SOI ATDC 19.3 19.3

Rail Pressure bar 1702 1800

BSFC lb/hp-h 0.349 0.341

BSNOx g/hp-h 2.0 1.9

BTE % 39.5 40.3

Closed Cycle Efficiency % 48.1 50

Open Cycle Efficiency % 96.0 95.2

Mechanical Efficiency % 85.5 84.7

Air Fuel Ratio - 21.0 20.9

Turbo Efficiency % 52 47

Charge Flow g/s 169 158

conventional operation at no-EGR conditions. As a BSNOx reducer, Miller cycling

is approximately equivalent to EGR in BSFC/NOx trade-off.

5.3 Rated Point Analysis with Elevated GCR

Elevated GCR improves fuel economy and BTE without increasing NOx emissions,

however, the challenge of operating at maximum power conditions is critical. The



94

rated condition (maximum 360 horsepower at 2400 RPM and 788 ft-lbf) was analyzed

with elevated GCR enabled by Miller cycling.

5.3.1 Elevated GCR at Rated Condition

A design of experiment was performed at GCR23 with independent variables (in-

cluding EGR, VGT closed%, SOI and rail pressure) varying in a wide range to find

the possible solution satisfying the physical constraints (Miller cycling not involved).

The physical constraints of current engine are shown in Table 2.2. Peak cylinder pres-

sure (PCP) and turbine inlet temperature (TIT) are the key constraints preventing

the engine running at higher speed, torque and GCR. Figure 5.22 shows the DOE

results with elevated GCR and PCP is above 2500 psi for all the cases. It indicates

that current engine setup is not feasible to run at GCR23 and rated condition. It is

not a surprising conclusion as the engine is designed for GCR close to 17.

Figure 5.22. 2400 RPM / 788 ft-lbf PCP limit at GCR = 23.
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Figure 5.23. 2400 RPM / 788 ft-lbf BSFC vs BSNOx trade-off curve.

5.3.2 Miller Cycling with Elevated GCR

Miller cycling is used to enable rated engine operation with a GCR of 23. EIVC

with elevated GCR achieves 6 g/hp-hr BSNOx with little fuel economy benefit as

shown in Fig. 5.23. Two cases with similar BSFC are selected for detailed analysis

as shown in Table 5.5.

The first column in Table 5.5 shows the baseline result with GCR16.9 and the

second column corresponds to EIVC with elevated GCR. Both of these cases satisfy

all the physical constraints. EIVC reduces NOx via lower ECR 18.6 (reduced from 24)

which is still higher than the baseline. It results in relatively higher NOx emission at

5.9 g/hp-hr. Further advancing IVC could reduce NOx emission but it cannot satisfy

TIT constraint (will be discussed in the next section). EIVC with EGR has also been

tested at elevated GCR as previous results revealed that EGR is more effective in

reducing NOx. However this strategy breaks one or more engine constraints due to

an AFR close to stoichiometric.
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Table 5.5. Results at 2400 RPM / 788 ft-lbf.

Parameter Name Unit Nominal Elevated GCR

GCR - 16.9 23

IVC CAD 565 515

ECR - 17.6 18.6

EGR % 14.8 0

VGT Closed % 20 40

Main SOI ATDC -10 -3.0

Post SOI ATDC 31.8 38.8

Rail Pressure bar 1800 1800

BSFC lb/hp-h 0.350 0.346

BSNOx g/hp-hr 4.6 5.9

BTE % 39.3 39.7

Closed Cycle Efficiency % 46.2 46.6

Open Cycle Efficiency % 94.6 94.8

Mechanical Efficiency % 90.0 90.0

Air Fuel Ratio - 19.0 20.6

Charge Flow g/s 346 322

Peak Cylinder Pressure (PCP) psi 2469 2495

Turbine Inlet Temperature (TIT) ◦F 1321 1337

Turbine Inlet Pressure psi 40.2 47

Maximum Turbine Speed kRPM 108 117

Compressor Outlet Temperature ◦F 375 424

Closed cycle efficiency increases with elevated GCR as well as open cycle efficiency

as shown in Table 5.5. The increase of open cycle efficiency is due to reduced charge

flow with lower ECR. Mechanical efficiency is the same because EIVC decreases in-

cylinder pressure results in same PCP right below 2500 psi as the baseline. In general
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the engine is enabled to run without violating PCP and TIT limits and the BTE is

improved by 0.4 % corresponding to a 1% decrease of BSFC.

5.3.3 PCP and TIT Limits

The optimized solutions of EIVC with elevated GCR are limited to high NOx due

to PCP and TIT constraints. Two actuator sweeps (VGT and fuel injection timing

(SOI) sweep) were performed to assist the analysis. A VGT sweep is performed with

rail pressure maximized at 1800 bar and SOI fixed at -3 ATDC. The dot in Fig. 5.24

and Fig. 5.25 corresponds to the lowest BSNOx case with EIVC at GCR23 in Fig.

5.23.

PCP (Fig. 5.24) is 2495 psi right below 2500 psi limit (per Table 2.2). PCP

increases with closing the VGT driving more air into the cylinders. Contrarily PCP

decreases as VGT is less squeezed reducing the air flow. It results in lower AFR

(Fig. 5.25) closer to stoichiometric condition for diesel fuel combustion. Lower AFR

increases the combustion temperature resulting in higher TIT exceeding the physical

constraint. Generally AFR below 20 could result in TIT higher than 1350 ◦F at rated

condition. Above all, VGT closed% is constrained between 35% to 40% to keep both

PCP and TIT within the limits.

The results of another sweep indicate that SOI is limited between -4 ATDC and -3

ATDC to keep PCP and TIT under physical constraint as shown in Fig. 5.26 and Fig.

5.27. Rail pressure is fixed at 1800 bar and VGT is 40% closed in this SOI sweep. The

dot corresponds to the lowest achievable BSNOx using EIVC at elevated GCR (per

Fig. 5.23). TIT is 1337 psi right below 1350 ◦F as shown in Fig. 5.26. TIT increases

with delayed SOI as more fuel energy is left in the exhaust gases. Advancing SOI

closer to TDC reduces TIT as more piston work generated per fuel energy. However

heat release towards TDC (aggressive combustion) increases in-cylinder pressure and

peak pressure as shown in Fig. 5.27. The constraints of PCP and TIT limit SOI

between -4 ATDC and -3 ATDC at rated condition with EIVC and elevated GCR.
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Figure 5.24. 2400 RPM / 788 ft-lbf VGT sweep in EIVC with GCR = 23.

Figure 5.25. 2400 RPM / 788 ft-lbf AF ratio vs VGT.

The sweep of engine actuators demonstrate the limited solution using EIVC with

elevated GCR at rated condition due to physical constraints.
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Figure 5.26. 2400 RPM / 788 ft-lbf TIT vs SOI.

Figure 5.27. 2400 RPM / 788 ft-lbf SOI sweep in EIVC with GCR = 23.

5.3.4 Variable IVC

IVC timing is also limited around 515 CAD to keep engine running without vio-

lating the physical constraints. Fig. 5.28 demonstrates optimized results with EIVC
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Figure 5.28. 2400 RPM / 788 ft-lbf variable IVC.

varying from 490 to 525 CAD. EIVC 490 CAD and 500 CAD lower PCP with re-

duced ECR but the compressor outlet temperature is 524 ◦F exceeding the physical

constraint at 450 ◦F (Table 2.2). EIVC 490 CAD also violates the turbo speed limit

as VGT is overly squeezed to back up the charge flow. Retarded IVC (EIVC 525)

was also investigated at elevated GCR (per Fig. 5.28). It does not improve the

BSFC/NOx trade-off due to less Miller cycling benefit. It hardly satisfies the physi-

cal constraints as ECR is higher resulting in higher NOx emission.

Above all, conventional engine actuators and IVC timing are limited in a small

range in order to keep physical constraints not violated. It indicates that elevated

GCR at 23 may be aggressive for current engine set-up. The suggestion would be

to reduce GCR below 23 a little to ensure the engine constraints not violated while

achieving a more reasonable NOx level. If GCR 23 is preferred for higher thermal

efficiency, an update of hardware will be needed to relax physical constraints or the

rated condition will need to be redefined to a lower power level.
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5.4 Summary

This chapter investigated the benefit utilizing Miller cycling at elevated GCR on a

modern diesel engine equipped with variable valve actuation system for fuel economy

and emission reduction considerations. BSFC vs BSNOx trade-offs were obtained

using experiment validated model and constrained optimization at five operating

conditions. Miller cycling does not improve efficiency at moderate loads when cooled

EGR is available. Miller cycling can allow higher GCR operation at rated condition,

enabling GCRs at low-moderate loads for efficiency improvement.
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6. SUMMARY

Advanced thermodynamic strategies were investigated to improve fuel economy, emis-

sion control and thermal management. The analytical and experimental work focused

on unloaded idle, loaded idle and cruise conditions to find the optimal solution with

flexible valve-train. Model based analysis explored the possibility and benefit of Miller

cycling with elevated geometric compression ratio at five operating conditions.

CDA and valve-train flexibility were investigated to improve thermal management

on a diesel engine at unloaded and loaded idle conditions. These results would be

useful in the thermal management of aftertreatment system as the efficiencies of DOC,

DPF and SCR are heavily temperature dependent and generally require temperatures

between 250◦C and 450◦C to provide required performance. Specifically the lowest

exhaust gas temperature required to activate SCR is 200◦C to avoid urea deposits.

CDA enables a 64◦C increase in TOT (to 180◦C) with only 3% fuel consumption

increase compared with the most efficient no-CDA operation at unloaded idle (800

RPM, 0.26bar BMEP). Valve-train flexibility enables TOT ∼200◦C with no fuel

economy penalties by combining CDA with intake/exhaust valve based throttling

and EIVC. CDA with valve throttling, LIVC and iEGR maximizes TOT up to 260◦C.

CDA enables TOT to 308◦C with 39% lower fuel consumption than that achieved with

no-CDA case at loaded idle (800 RPM, 2.5 bar BMEP). This corresponds to an 118◦C

TOT increase and nearly no fuel penalty compared with the most efficient no-CDA

operation. CDA coupled with over-closed VGT and delayed fuel injection maximizes

TOT up to 390◦C at loaded idle.

Strategies using flexible valve actuation (I-EGR, LIVC and CDA) were investi-

gated to optimize fuel economy (BSFC) and exhaust temperature (TOT) at three

NOx levels at cruise condition (1200 RPM, 7.58 bar BMEP). I-EGR, LIVC and CDA

bring no benefit in fuel economy over conventional valve profiles as efficiency maxi-
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mized at a “highway cruise” condition. Conventional operation increases TOT from

350◦C to 450◦C with delayed SOI resulting in a 23% increase of fuel consumption.

iEGR via re-induction or NVO reduces the fuel consumption by 10% at same TOT

due to lower total heat losses and AFR. iEGR via re-induction and NVO will warm-

up the catalysts more quickly, and can sustain bed temperatures of ∼450◦C, whereas

the baseline case will cool down the catalysts when above ∼350◦C. LIVC increase

TOT up to 550◦C with 5% less fuel used compared with conventional valve profiles at

450◦C. CDA further maximizes TOT above 550◦C with additional 3% fuel used due

to lower AFR. LIVC and CDA promote a better heat transfer rate at bed temperature

above 150◦C for 1.5 g/hp-hr BSNOx compared with the highest heat transfer rate

with conventional valve profiles using delayed SOI. Both LIVC and CDA can keep

catalyst bed temperature of ∼550◦C and LIVC has lower fuel cost.

Miller cycling with elevated geometric compression ratio was investigated for fuel

economy and emission reduction using a experimentally validated model. Fuel econ-

omy and NOx trade-offs were obtained through optimizations at five operating con-

ditions. Miller cycling reduces piston-motion induced compression which allows ad-

vanced combustion to improve thermal efficiency. Elevated GCR generates more

power and increases brake thermal efficiency due to longer expansion and higher

closed cycle efficiency. Miller cycling enables engine operating at rated condition

(maximum power) with elevated GCR although the solutions are still quite limited.

It also allows the usage of elevated GCR at low-moderate loads for efficiency improve-

ment. EIVC with GCR of 23 reduces fuel consumption by 0.7%∼5% corresponding

to 0.1%∼2% increase of BTE at medium speed and low-moderate load conditions.
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