
Purdue University
Purdue e-Pubs
International High Performance Buildings
Conference School of Mechanical Engineering

2016

A Multi-level MPC Simulation Study in a School
Building
Vahid Raissi Dehkordi
CanmetENERGY-Varennes, Canada, vahid.raissidehkordi@canada.ca

José Agustín Candanedo
CanmetENERGY-Varennes, Canada, jose.candanedoibarra@canada.ca

Follow this and additional works at: http://docs.lib.purdue.edu/ihpbc

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.
Complete proceedings may be acquired in print and on CD-ROM directly from the Ray W. Herrick Laboratories at https://engineering.purdue.edu/
Herrick/Events/orderlit.html

Raissi Dehkordi, Vahid and Candanedo, José Agustín, "A Multi-level MPC Simulation Study in a School Building" (2016).
International High Performance Buildings Conference. Paper 230.
http://docs.lib.purdue.edu/ihpbc/230

http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fihpbc%2F230&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ihpbc?utm_source=docs.lib.purdue.edu%2Fihpbc%2F230&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ihpbc?utm_source=docs.lib.purdue.edu%2Fihpbc%2F230&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/me?utm_source=docs.lib.purdue.edu%2Fihpbc%2F230&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ihpbc?utm_source=docs.lib.purdue.edu%2Fihpbc%2F230&utm_medium=PDF&utm_campaign=PDFCoverPages
https://engineering.purdue.edu/Herrick/Events/orderlit.html
https://engineering.purdue.edu/Herrick/Events/orderlit.html


 
 3654, Page 1 

 

4th International High Performance Buildings Conference at Purdue, July 11-14, 2016 

A Multi-Level MPC Simulation Study in a School Building 
 

Vahid. R. DEHKORDI 1*, José A. CANDANEDO2 
 

1CanmetENERGY-Varennes, Natural Resources Canada, 
Varennes, Québec, Canada 

 (Ph.: 450-652-3126, Fax: 450-652-5177, jose.candanedoibarra@canada.ca) 
 

* Corresponding Author 
 
 
 

ABSTRACT 
 
This paper discusses a proof of concept application of a multi-level modelling concept for the treatment of predictive 
control in an institutional building. The multi-level approach consists in tackling the control problems of a building 
hierarchically in several control layers. By setting aside internal details and focusing only on the problem at hand, it 
is possible to describe the dynamics of the system under consideration with simple low-order models; this strategy 
facilitates model calibration and the solution of predictive control problems. The case study building considered is a 
two-story school with a floor area of 24,000 m2. A benchmark model of the building, created in EnergyPlus, was 
used to generate data to identify models at three different levels: building level (one model), wing (7 models) and 
thermal zone (46 models). The multi-level representation enables an effective treatment of the different time scales 
involved. An MPC strategy was investigated by optimizing the use of two energy storage devices, one for heating 
(brick thermal energy storage) and another for cooling (ice bank). The MPC strategy enables reducing cost under a 
time-of-use tariff.  
 

1. INTRODUCTION 
The use of predictive models in control strategies has emerged as a promising path to improve energy performance, 
load management and thermal comfort in buildings. Nevertheless, significant obstacles remain regarding the 
practical implementation of the concept. For instance, the issue of model development for control applications is still 
a challenge. One possibility is to create a detailed model of the entire building with a building simulation tool (e.g., 
EnergyPlus) in order to predict the dynamic response of the building. Although in principle a building simulation 
model enables taking into account the effect of small changes in conditions (e.g., opening a window, sudden 
increase in the number of occupants in a room), in practice the difficulty of calibrating hundreds or thousands of 
parameters so as to match the real building dynamics at every scale (e.g., temperature fluctuations within a room, 
overall heating load of the building) presents nearly unsurmountable obstacles. Assuming that the calibration of a 
detailed model for control purposes is possible, the question remains of how to perform this calibration within a 
reasonable time frame and at a reasonable cost so that it is an attractive option for building operators. 
It might be helpful to reflect at this point on the role of a model. All models are imperfect representations of reality 
that help in making a prediction of a phenomenon with the purpose of finding a practical solution for a specific 
problem. Models allow comparing different “what if” scenarios, either for design (very long term planning) or 
control (short term planning) applications. In essence, this kind of cognitive reasoning is employed by human brains 
in decision-making: an approximate image of reality is used to plan actions (Battaglia et al., 2013). Thus, when 
using a model it is essential to keep in mind the question the model intends to answer. In a building, these questions 
might be phrased as “what will be the heating profile over the next 24 hours”, “how much will the temperature of 
this office rise over the next hour?”, “should the motorized blinds be closed?”, “when should I start pre-cooling this 
meeting room if the assembly is supposed to start at 2 pm?”, etc. A model may perform quite well according to one 
criterion (e.g., long term energy use) and yet be inadequate for a control application. 
The multi-level control (MLC) approach discussed in this paper (Figure 1) focuses on viewing the building in a 
hierarchy of control levels, so that a simple low-order model is enough to make useful predictions for control 
purposes (Dehkordi and Candanedo, 2014; Candanedo et al., 2014; Candanedo and Dehkordi, 2013). In this sense, 
the MLC methodology mimics human organizations. The MLC modelling approach has the following features: 
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• It is recognized that different time scales may be needed for different applications. For example, the 
building level may require prediction horizons of 48 hours at time steps of 2 hours; at a room level, the 
prediction horizon may be 1 hour, with time steps of 10 minutes. 

• Different kinds of low-order models (“grey box” or “black box”).  
• Models do not need to be of the same kind for every control level. 
• Models can be easily calibrated with measured data. 
• Significantly reduced computational burden in the solution of optimization problems. 
• Uncertainty can be incorporated relatively easily. 
• The predictions of adjacent layers (e.g., heating load) should “match” approximately, although this 

correspondence is not necessarily exact.  
• The recognition of discrepancies between predictions at different levels requires the use of “negotiation” 

algorithms. 
• The multi-level concept may be extrapolated to include a “building cluster” or “community layer”. 

 

 
Figure 1: Multi-level control structure  

In recent years, distributed MPC (a concept sharing similarities with MLC) has been used to tackle predictive 
control problems in buildings.  In this approach, information is shared between the controllers of adjacent rooms in 
order to solve the predictive control between zones more effectively (Morosan et al., 2010; Putta et al., 2014). 
Distributed MPC is associated with a “horizontal” information transfer. The concept of a hierarchical control 
structure, implying a “vertical” arrangement was applied by Lefort et al. (2013) for the predictive control of a house, 
including the idea of different horizons for two different hierarchical layers: “scheduling control”, for a long term 
horizon; “piloting control”, for a short term horizon. A similar two-tier approach (scheduling vs short time scale) 
was investigated by Touretzky and Baldea (2014). 

2. METHODOLOGY 
 
2.1 Case study building 
A two-story secondary school, one of DOE Commercial Reference Buildings (Deru et al., 2011), was used as a 
benchmark model (Figure 2). The school building has a total footprint of 24,000 m2 (258,000 ft2) with 46 thermal 
zones, with a usable floor area of about 19,600 m2 (211,000 ft2) and a glazing fraction of 33%. This building was 
chosen considering its size, the diversity of thermal spaces (classrooms, offices, gymnasia, long hallways). The 
EnergyPlus detailed model was used to perform “virtual experiments”. Output data (indoor operative temperatures) 
were used together with input signals (exterior temperature, solar gains, internal gains) in order to create simplified 
low-order models at different control levels.  

 
Figure 2: Secondary school building used as a benchmark. 

48 hr 

8 hr  

0 - 2 hr  

Time scale (example) Building 

Wing 

Thermal zone 

Building 1 

Zone 1.1.1 

Wing  1.1 

Control level 
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It is assumed that the building is located in Montreal, Canada. The corresponding EnergyPlus weather file (EPW) is 
used to create weather inputs in MATLAB. 
 
Three control levels were chosen for this case study building: building level (one model), “wing” level (7 models), 
and thermal zones level (46 models). More details about the system identification procedure are available in a 
complementary paper presented in this conference (Dehkordi and Candanedo, 2016). The control levels are also 
associated with different time scales, as shown in Table 1. The “wing models” distribution is shown in Figure 3. 
 

Table 1 

Control level Prediction 
horizon Time step Vector length Recalculation 

frequency 
Zone level         2 hours 10 min 12 samples 30 min 
“Wing” level 8 hours 1 hour 8 samples 4 hours 
Whole Building 48 hours 2 hours 24 samples 12 hours 

 

Wing #1 (1st floor), Wing #4 (2nd floor)

Wing #2 (1st floor), Wing #5 (2nd floor)

Wing #3 (1st floor), Wing #6 (2nd floor)

Wing #7 (both floors)  
Figure 3: Wing models. 

 
2.2 HVAC and heat distribution system 
To illustrate the concept of multi-level control, a simple mechanical system is assumed. Heating and cooling are 
distributed to the thermal zones by means of a piping system connected to local air handling units. It is assumed that 
two energy storage devices are available at the building level (i.e., for the entire school): a large ice bank (over 
15,000 kWh of storage capacity) for storing cooling energy, and a hot water tank (100 m3) for storage of heating 
energy. Cooling is provided by a centralized 3-stage chiller with a maximum cooling capacity of 850 kW (2,900 
kBTU/hr). The electricity power use of the chiller and its cooling output are both functions of the “partial load ratio” 
(PLR) requested by the user. Heating energy is provided, for the purposes of this exercise, with an electric furnace 
of 1,000 kW (3,410 kBTU/hr). 
The heating/cooling load is calculated independently for each of the 46 thermal zones, for the 7 wings and for the 
entire building by using the models developed through the system identification routine. For the purposes of this 
study, in which no co-simulation is conducted with a building simulation tool, the loads calculated by the 46 zonal 
models are used as the benchmarks (i.e., it is assumed that the “real loads” are those calculated by the zonal models). 
The heating/cooling is distributed to the different wings proportionally according to the loads calculated by each of 
the wing models (Figure 4).  
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CENTRAL HVAC 
(Chiller or Furnace)

Wing 1 Wing 2 Wing 6 Wing 7………..

STORAGE 
(Building level)

 
Supply Return

BUILDING  
Figure 4: Connection of central plant heating and cooling plant, thermal storage and building “wings”.  

 
2.2 Role of different control levels: negotiation rules 
The hierarchical division in control layers simplifies the optimization calculation required by predictive control, 
while at the same time there is a continuous corroboration of the comfort conditions at the zonal level. This 
facilitates calculations, and provides a mechanism to implement a negotiation between economic optimization and 
comfort requirements. The simulation can be summarized as follows: 

A. Load calculation and optimization carried out at the “building level” 
The “building level” model is used along with the weather forecast to run the optimization algorithm (see 
description in section 2.3). The prediction horizon in this case is 48 hours, and the “states” of the furnace, chiller, ice 
bank and hot water tank are calculated a 2 hour intervals, thus yielding vectors with 24 elements each. 
  
B. Wings-Zones interaction (“negotiation”) 
At this step, a negotiation takes place between the heating/cooling required by the zones and the estimate made by 
the wing models. The 46 zones are used as the calculation benchmark (i.e., the “accurate” temperature calculation). 
The order of the models depends on factors such as their exposure to neighboring zones, solar radiation, geometry, 
etc. (Dehkordi and Candanedo, 2016). The zonal models employ a prediction horizon of 2 h at 10 min intervals (also 
used as the basic simulation time step), while the wing models use a prediction horizon of 8 h at intervals of 1 hour.  
Therefore, the “time overlap” occurs only over the first two hours predicted by the wing model. 
If the difference between the heating/cooling load predicted by a wing model and the aggregated heating/cooling 
load predicted by its zones is more than a certain threshold (in this case 20 kW), then the wing model prediction is 
adjusted to match the aggregated load. If the difference is ≤ 20 kW, then this “discrepancy” is tolerated, and the 
zones having a non-zero heating or cooling load share the difference evenly. In essence this will result in some 
minor deviations from optimal comfort. The trade-off between economics and comfort can be adjusted by playing 
with the threshold value. 

 
C. Wing models used to correct building level prediction 
It is assumed that the “right value” for the heating and cooling loads is provided by the wing models as determined 
in the previous step. This corrected heating/cooling load calculation is then used to revise the scheduling of the 
operation of the main equipment.  

• In heating mode: 

o If more heating is needed, then the electric furnace provides the difference 
o If less heating is needed, then (a) first, reduce heating provided by furnace; (b) if necessary, reduce 

heat taken from the hot water tank 
• In cooling mode: 

o If more cooling is needed, then increase the cooling provided by the chiller 
o If less cooling is needed, then (a) first, reduce the contribution of the chiller; (b) if necessary, 

reduce the contribution from the ice bank. 

This algorithm is summarized in Figure 5. 
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Beginning of 
Simulation

Heating/cooling load calculated 
at the building level with a 48 
hour horizon at 2 hr intervals

|Wing - ∑(Zones) |> 20 kW ?

Use the wing model 
calculation. Distribute the 

“discrepancy” proportionally 
between the zones.

(i.e., some discomfort 
tolerated)

Use the load calculated 
by the zones to correct 

the wing calculation.

NO

YES

FIRST NEGOTIATION: 
WINGS-ZONES

Building Load Prediction > 
∑(Wings Load) ?

- In heating mode, reduce 
(a) heating provided by the 

furnace
(b) reduce the heat taken 

from the tank

Heating mode ?

Heating mode ?
- In cooling mode, reduce:

(a) chiller contribution
(b) ice bank contribution

NO

YES

BUILDING LEVEL USED
FOR OPTIMAL SCHEDULING OF 
MAIN EQUIPMENT OPERATION

Increase the auxiliary 
heating given by the 

furnace

Increase the chiller 
contribution

Every 12 hours

Run optimization with the 
calculated load at building level

SECOND NEGOTIATION: WINGS USED TO CORRECT BUILDING  

The loads calculated by 
the zones and the wings 
are compared to decide 
the amount of heating/
cooling which is actually 
delivered to the spaces.

YES

The heating/cooling required by the wings is used as 
the “right value” in order to adjust the operation of 
the equipment (chiller, furnace, storage devices and 
local heating coils)

Schedule the use of chiller, 
furnace, ice bank, hot water 
tank according to optimization.

NO

YES

NO

 
Figure 5: Summary of algorithm used in the simulation. 
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2.3 Cost function and optimization 
A time-of-use rate (TOU) profile, with 24 different hourly rates is used in the calculation of the energy cost in the 
building by using the “building level” model. The optimization problem to be solved is then: 
 

 ( ) ( )min
N

C n P n T⋅ ⋅ ∆∑  (1) 

For the cooling loop, both the latent and sensible cooling loads must be provided. The latent load is estimated based 
on some typical schedules for occupancy rate. At any given time step:  

 
bldg,c bldg,sens bldg,lat

sens lat

at any given time step

in vector form

,   

,                      

q q q= +

= +q q q
 (2) 

 

Considering that the total cost is the dot product of the hourly cost vector and the average electric power of the 
chiller, the total cost can be calculated as: 

 ( ) ( )c c c chcost , f= ⋅ =TP c P P q  (3) 

The optimization can then be written as follows: 
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 (4) 

 
The optimization constraints make sure that the cooling load is provided by the sum of the ice bank and the chiller, 
the respect of the operational limits of the chiller (maximum capacity and PLR), the positions of the three-way 
valves remain between 0 and 1. This also makes sure that the flow rates, and return and supply temperatures remain 
within realistic limits. The ice banks and chiller models used by the authors in a smaller buildign (Candanedo et al., 
2013) were properly scaled for the school building. 

Regarding the heating loop, the problem is formulated in a similar way, except that in this case an electric furnace 
linked to a hot water tank is employed. In this case, only sensible heating is considered. The total cost over a period 
of time is: 

 ( )h hcost = ⋅TP c P  (5) 

Then, the optimization problem can be written as: 
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 (6) 

At any given moment, the heating load is provided by combining the heat provided by the furnace and the hot water 
tank. The hot water tank is modeled according to the procedure presented in (Candanedo et al., 2015). Minimum and 
maximum flow rates are established for the furnace. Limits for the hot water tank temperature are also defined. 
 

3. RESULTS AND DISCUSSION 
 
3.1 Wing/zones interaction 
 
According to the algorithm presented in Figure 5, the heating/cooling load is calculated for each of the wings, and 
their corresponding zones. Figure 6 shows the results of the load calculation at Wing #2 for a period of 3 hours in 
January, and the aggregated load of the first two hours for its zones (the prediction horizon at the zone level is 2 h). 
Note that the calculations for the zone level take place at 10 min intervals, whereas the load prediction at the wing 
level yields results at hourly intervals. The wing level prediction horizon is 8 h, of which only 3 hours are shown. 

6:00 7:00 8:00 9:00

Time (h)

0

50
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T
h

e
rm

a
l l

o
a

d
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kW
)

Load calculations

at the zonal level

Load prediction at wing level

 
Figure 6: Load prediction for wing #2 and the aggregated load of its zones (before “negotiation”) 

 
These calculations for the wing/zone level are then revised according to the “negotiation” rules explained above. 
The revised calculations are shown in Figure 7. When the difference between the wing load and the aggregated load 
is larger than the 20 kW threshold, the aggregated load prevails. In contrast, when the difference is smaller than the 
threshold, the wing calculation is used as the “right value”, and the load for the zones is adjusted accordingly. 
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Figure 7. Revised calculations after “negotiation”. 

 
3.2 Building/wings interaction 
Figure 8 shows the load prediction for the building level and the aggregated load of the wings. To make it consistent 
with the previous graph, the graph is shown starting at 6:00. There is, however, a non-zero load from 4:00 to 6:00 
(preheating). The calculations at the building level are used in the optimization algorithm described in Section 2.3. 
The building load calculation extends much longer than shown, since a prediction horizon of 48 h is used. 
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Figure 8: Load calculations at the building level (before negotiation) vs aggregated load of the wings. 

 
As a result of the optimization for the building level, the optimum states of operation for the main mechanical 
equipment (total heating load, heat delivered to the hot water tank, heat taken from the hot water tank, and heat 
provided by the furnace) are given at 2-hour intervals (Figure 9).  



 
 3654, Page 9 

 

4th International High Performance Buildings Conference at Purdue, July 11-14, 2016 

 
Figure 9: State of the thermal exchanges (heating load, heat delivered to the hot water tank, heat taken from the hot 

water taken, and auxiliary heating provided by the furnace) 
 
Finally, when running the actual simulation at 10 min time steps, the load delivered to the wings is the sum of the 
load of the zones, and the actual building load is the sum of the heat delivered to the wings (Figure 10). 
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as the simulation moves forward.

 
Figure 10: Adjustment of the load according to the zonal/wing negotiation. 

 
 

6. CONCLUSIONS 
 
This paper has illustrated the concept of multi-level control as an alternative to the more conventional method of 
modeling the entire building with a high-resolution, detailed, all-encompassing representation. It has been shown 
that this multi-level approach makes it possible to use a simple model for the planning of an optimization strategy 
(predictive control) while simultaneously tackling issues at local control levels. Minor discrepancies in the 
predictions of controllers at different levels are addressed through a “negotiation” algorithm, which implements a 
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trade-off between the long-term planning intended for cost optimization, and the immediate needs of local zones to 
guarantee thermal comfort. Although, the proposed methodology works well, an issue that adds some complexity is 
the handling of the time scales; a specifically designed simulation environment could significantly simplify this task. 
 

NOMENCLATURE 
 
The nomenclature should be located at the end of the text using the following format:   
C total cost (CAN$)   
m  mass flow rate kg/s 
P electric power   
q heat flux (W) 
T temperature (°C) 
 
Subscript   
bldg building  
c          cooling, cooling power from chiller  
chwr          return water into chiller  
chws          supply water from chiller 
h          heating, heat from furnace 
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