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ABSTRACT 
 
This paper investigates the use of a multi-level simplified linear thermal modelling approach based on the electrical 
analogy for the development of control strategies in conventional detached residential homes equipped with 
convective electric heating systems. These models are developed from parameter identification of results obtained 
through comparison with whole building measured data. Although detailed building simulation models can be used 
directly for testing control strategies, this approach can be quite computationally intense and time consuming thus 
simplified models become advantageous. The aim of this work is to present a methodology to allow a user to switch 
back and forth between thermal models representing different control levels according to the modelling objectives. 
Different control levels include, but are not limited to, community simulation studies, whole building studies, or 
zone-level studies. Zone-level models take into account inter-zonal heat transfer. From these simple models, useful 
information can be extracted without performing any simulation, and this is also explored in this paper. 
 

1. INTRODUCTION 
 
This paper presents a multi-level approach to the problem of modelling different thermal zones in a house for 
control applications. This problem has been treated before by modelling the whole house with a single, all-inclusive 
RC thermal circuit which may have different levels of resolution. The core feature of the proposed methodology 
allows the user to switch back and forth between models representing different control levels according to the 
modelling objectives. 
 
For the development of specific control algorithms for each zone, the house can be treated as a collection of 
interconnected zonal models, as opposed to a single, large model. This modelling approach has the advantage of 
maintaining a simple structure for each zone, while also taking into account the heat transfer between zones; at this 
control level, issues such as occupancy, thermal comfort or setpoint profiles can be examined in more detail. On the 
other hand, if the user is interested in a quick estimate of global variables (e.g., overall thermal load over the next 
24h) then different zones or even the entire house may be combined into a single low-order model. In summary, this 
multi-level approach allows the user to “zoom in and out” so that models at each control level remain manageable, 
easy to calibrate and easy to physically interpret. 
 
Suitable simplified multi-zone thermal models enable a rapid assessment of control strategies targeting energy 
reduction, or occupant thermal comfort (Bacher and Madsen, 2011; Candanedo et al., 2010; Lin et al., 2012; Wang 
and Xu, 2006) and advanced control strategies could greatly benefit from adequate, simple models (Sturzenegger et 
al., 2016). One common approach for simplified building modelling is grey-box RC thermal networks (Inderfurth et 
al., 2015), where system identification techniques are used to determine effective resistance and capacitance values 
for the model. Model predictions should be meaningful for energy and power results for the whole building level or 
at the zone level. Zone level detail allows for even greater potential for advanced controls. Besides energy 
conservation measures, there is interest in ways to reduce peak power demand (due to space heating or cooling) at 
critical times (Fournier and Leduc, 2014; Leduc et al., 2011). Simplified thermal models of buildings also offer 
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advantages for district modelling (Baetens et al., 2015; Lauster et al., 2014). Simplified models allow for rapid 
simulation of complex and/or large systems with acceptable accuracy and benefit from quicker calibration 
procedures (Kummert et al., 2006). 
 
This paper uses data from an existing unoccupied test house, representative of a typical family home in Québec, 
Canada, as a case study. Four zones are considered: basement, main floor, upper floor and attached garage. All 
interior doors were kept closed during experimentation and data collection, so as to minimize horizontal zonal heat 
transfer. For the most detailed analysis, these zones are modelled with four detailed interconnected zone models; 
alternative methods of connecting zones are investigated in a previous paper (Date et al. 2016). A global low-order 
whole house model is used to calculate the thermal load of the house. Results of thermal load predictions are 
compared and resolution of the global whole house model is investigated. 
 

2. METHODOLOGY 
 
The methodology employed for the identification, inspection and validation of simplified multi-zone models 
consists of the following steps: 

- Experiments were conducted at unoccupied test homes to get data for comparison with models. 
- A global low-order house model was developed and used to calculate the thermal load of the building. 
- A detailed zone-level model was developed to represent the real building and used as a benchmark. 
- A Simplified zone-level model was created and the connections between zones are studied. 
- Unknown values of parameters of the building models were identified through system identification. 
- The simplified thermal model predictions were compared with measured experimental data and the zone-

level detailed model predictions. 
 
2.1 Building Thermal Modelling Assumptions 
Thermal models based on the physics of the system (typically in the form of resistance-capacitance (RC) models) 
are useful for control studies in buildings. Values of parameters are identified through an optimization technique, 
and should be interpreted as “effective” values rather than “exact” physical parameters (Candanedo et al., 2013). 
Model details could be added or taken away depending on the needs of the user. Some important assumptions used 
to construct simplified thermal RC networks include: 

- The temperature of each surface or cross section is uniform. 
- The air in each zone is well mixed. 
- Radiative and convective heat transfers are combined and constant. 
- Air is a non-participating medium with respect to radiation. 
- Conduction between each window and window frame is neglected  

 
An optimization algorithm is used to determine unknown parameters, therefore fewer equations is helpful. Several 
methods are available to reduce the complexity of a model: merging thermal zones, reducing the discretization of the 
walls, and merging several walls to combined surfaces. 
 
2.2 Benchmark Model (Detailed Model) 
A benchmark detailed model (DM) has been developed consisting of 4 zones, with separated walls, windows, doors, 
resulting in 32 capacitances. A zone represents a level/storey of the house, shown in Figure 3. Figure 1 shows one 
zone (floor) of the detailed model (DM) for floor-level modelling. A zone model such as that in Figure 1 represents, 
for example, the main floor (Zone 2) which is connected to a model depicting the upper floor (Zone 1) and another 
model representing the basement level (Zone 3) via inter-zonal convection and conduction terms, thus creating a 
very detailed multi-zone model of the building. Several models can be connected to create a multi-zone model via 
“Tadjacent” terms. The thermal mass of the envelope is modeled as a single layer (i.e. one capacitance). This model 
can be seen as the benchmark model or used as the “real building” in MPC simulation-based studies. 
 
Models of similar detail/structure can represent either the whole building or just a section of the building (floor, 
room, etc). In this study, models are connected via inter-zonal convection and conduction terms to create a multi-
zone model at the floor-level detail with a total of four zones. This section outlines two modelling levels investigated 
in this paper: (i) the floor-level and (ii) the whole building-level.  This approach can be expanded in either direction 
of detail, to zooming out to the community-level, or with further detail at the individual room-level.  
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Figure 1: Thermal network of detailed model (DM) for one zone 

Figure 3 depicts the system inputs and outputs for the floor-level model. Each zone (floor) is modelled separately 
and these individual zone models are then connected to one another via inter-zonal convective and conductive terms 
to create a multi-zone model of the whole building. The system outputs of one zone (i.e. zone air temperature) 
effectively become system inputs to another adjacent zone. For this study, solar radiation as an input was neglected 
since the experimental setup effectively blocked the influence of solar radiation (Date et al., 2016). 
 

3. MULTI-LEVEL THERMAL MODELLING APPROACH 
 
3.1 Simplified Floor-Level Model 
The simple floor-level model combines surfaces into effective areas, creating 14 capacitances for the whole house 
model.  The thermal mass layer (gypsum board, concrete foundation etc) of the envelope is modeled as a single 
capacitance. Figure 2 shows an example for the main floor (Zone 2).  In a previous study (Date et al., 2016) it was 
found that a simple floor-level model should include a thermal mass term for the structure between zones (i.e. 
ceiling/floor material) and the convective and conductive terms should be separated, if one is interested in accuracy at 
the floor level (rather than building level). 
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Figure 2: Thermal network of floor-level model (one zone) 
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Figure 3: Inputs and outputs of all zones 

 
In all models, experimentally determined data of the zone air temperature stratification was used for the calculation of 
one-way vertical inter-zonal convective heat transfer (heat transfer driven by a temperature difference). In this case, 
the models uses a Tceiling term instead of Tadjacent temperature. Therefore, in this study, ΔT represents the average 
temperature difference between the center of the room (height = 1220mm) and the temperature measured near the 
ceiling (height = 2440mm) obtained from experimental measurements. This is used for temperature difference 
convective energy flow from vertically adjacent connected zones (i.e. Zone 1 to Zone 2, or Zone 2 to Zone 3).  This 
approach is an attempt at a simplified method for the convective heat transfer between floors in a multi-story building. 
Further work on simplified inter-zonal modelling for controls includes taking into consideration the techniques and 
correlations developed by Riffat (1989). 
 
Figure 4 shows the overall thermal network schematic of a whole building of the simple floor-level model structure. It 
shows the individual zone models (rectangles) and how each zone model is connected to adjacent zone models by 
convection and/or conduction terms. In all models, experimentally determined data of the zone air temperature 
stratification was used for the calculation of vertical inter-zonal convective heat transfer (heat transfer driven by a 
temperature difference), depicted by the ΔT source terms. Parameters are identified using the simplex algorithm. 

3.2 Whole Building-Level Model 
At the whole building-level, a first order (i.e. one capacitance) model is developed and model parameters are 
identified using the optimization algorithm. Figure 5 depicts the system inputs and outputs for the whole building 
thermal model. Figure 6 shows the thermal circuit at the whole building-level, where the building is modeled as one 
equivalent zone with one effective capacitance and one effective resistance, thus creating a 1R1C model.  

As the setpoint of each zone within the house may not be the same, an effective whole house setpoint temperature 
can be defined as: 
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
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Using equation (1) to estimate the effective setpoint for the building (when individual zones are controlled 
differently), this model structure can be useful to obtain quick estimates of whole building loads and operation or for 
district/community scale simulation studies. 
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Figure 4: Multi-zone thermal network whole building schematic 

 
Figure 5: Inputs and outputs of whole house model 
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Figure 6: 1R1C thermal network of whole house 

 
 

4. CALIBRATION OF MODELS 
 

An optimization routine is used to find the parameter values that minimize an objective function. In this case, the 
objective function chosen was the coefficient of variation of the root-mean-square error (CVRMSE) between 
measured power and the prediction at 15 minute intervals, similar to (Lavigne et al., 2014). The training data length 
was 5.4 days of data. Nelder-Mead Simplex was used for this study using the Python programming language. The 
Simplex algorithm is used here; other algorithms can replace it depending on the user’s preference. Since the 
individual results of each zone and whole building power use are of importance, the CVRSME of each individual 
zone was minimized (for the floor-level models), and then whole building results were investigated. The objective 
function (CVRMSE) used is shown in: 
 

( ) ( )∑
=

−=
n

i
ii yy

ny
yyJ

1

2ˆ11ˆ,  (2) 

where y is the experimentally measured data (thermal power) and ŷ represents the model predictions. The building 
was modeled using the fully explicit finite difference method to solve the energy balance equations. Initial values of 
model parameters are based off of the known building material properties and estimates for infiltration, inter-zonal 
convective transfer and air capacitance multipliers.  
 
4.1 Calibration of Benchmark Model and Floor-Level Model 
The parameter values of the benchmark (detailed) floor-level model and simplified floor-level model were identified 
and the power use predictions were compared. The focus was on accuracy of power prediction rather than room 
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temperature prediction, as most building simulation models are calibrated against power or energy consumption of 
the whole building. Results after calibration using 5.4 days of model training data are found in Table 1. 

Table 1: Calibration results for detailed (benchmark) and simple floor-level models 

 Detailed Model Floor Level Model 
CVRMSE – Zone 1 (Top Floor) 23% 26% 
CVRMSE – Zone 2 (Main Floor) 25% 23% 
CVRMSE – Zone 3 (Basement) 19% 26% 
CVRMSE – Zone 4 (Garage) 7% 6% 
CVRMSE – Whole Building 13% 15% 

 

4.2 Calibration of Building-Level Model 
Table 2 shows the values for the parameters R and C of the 1R1C thermal model of the whole house (Figure 6). 
Initial and second guesses were made based on geometry and material properties of the building and then an 
optimization routine was conducted to identify R and C values which results in the lowest CVRMSE, when model 
predictions are compared to experimentally measured data of 5.4 days. For the initial guess of the 1R1C model, R 
and C were determined by adding the resistances according to the series and parallel circuit laws and the 
capacitances were simply added together. In the second guess, a capacitance multiplier of 15 was chosen. 
 

Table 2: 1R1C whole building thermal network model parameter values before and after identification 

 Initial 
Guess Second Guess After 

Identification 
R (Kelvin/kW) 7.1 7.1 6.4 
C (MJ/Kelvin) 49.1 57.7 17.2 
Effective air capacitance multiplier 1 15 N/A 
CVRMSE 51% 55% 20% 
Time Constant (τ = RC) 97 Hours 114 Hours 31 Hours 

 
One interesting result from the identification process of the 1R1C model is the value of the C parameter, as it is 
much smaller (almost 3 times smaller) than what the expected “effective” C value should be based on the geometry 
and material properties of the building. These results suggest that new, revised methods are needed to estimate 
effective capacitances of buildings. Figure 7 shows the predictions of the floor-level model and experimental heating 
power data. For visual clarity, only one day of data and predictions is shown here. The predictions of each zone’s 
power demand contribution are shown, and the simple whole house 1R1C power profile is overlaid (dashed line).  

The concept of the multi-level thermal modelling approach for different control applications can be summarized as 
follows. The top benchmark model is the most detailed version of the building thermal model. From there, one can 
choose to look at optimal control at the zone level by using the simplified zone-level models or at global whole 
building operation by using the building level model. It is a simple procedure to interchange between the different 
modelling levels depending on the needs or interests of the model user. The characteristics and results of the three 
thermal modelling levels are summarized in Table 3. 
 

 
Figure 7: Model verification results of left: simplified floor-level model, and right: benchmark detailed model 
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Table 3: Summary of three thermal modelling levels 

 Benchmark 
Model 

Zone-Level 
Model 

Building-Level 
Model 

Model Order (number of capacitances) 32 14 1 
Number of Resistances 69 26 1 
Building CVRMSE 13% 15% 20% 

 
5. WHOLE-BUILDING MODEL: IS 1R1C ENOUGH?  

 
From the preceding discussion, it seems apparent that a 1R1C model provides an accurate representation of the 
heating load of the whole house over a period of several days (and when calibrated with training data of several 
days). Several questions arise: Is there a need to add more capacitances (e.g. 2 or 3) to the model? Do these models 
predict the heating load accurately in the short term (say, the next 3 hours)? How does the model training period 
affect the accuracy of the model? What kind of information can be obtained about the house dynamics from a quick 
inspection of the models (i.e. without simulation)?  
 
5.1 Alternative Whole House Models 
Three model structures for the whole house load calculation are shown below in Figure 8, Figure 9 and Figure 10. 
The first model on the left corresponds to the 1R1C presented in the previous section. As more capacitances are 
introduced, the model is more capable to capture the shorter term dynamic behavior of the system outputs based on 
inputs. CVRMSE values shown correspond to calibration using 5.4 days of training data, and evaluated over a 
prediction horizon of the same length. 
 
5.2 Effect of (i) Training Data Period and (ii) Length of Prediction Horizon 
The three whole building models were trained with datasets of different lengths: 5.4 days (the entire measurement 
period), 1 day, 6 hours and 3 hours. Different R and C parameters are found depending on the training data period. 
The predictions of the models were then evaluated in terms of their CVRSME values over different prediction 
horizons; results are shown in Figure 11. Each bar graph in Figure 11 corresponds to the different training data 
lengths and the models are then evaluated for different prediction horizon lengths shown in the four tables. 

One notable result seen in Figure 11 is that with just 3 hours of training data, two of the simple whole building 
models (3R2C and 5R3C) can predict the total 5.4 days of operation with acceptable accuracy, while the simplest 
1R1C performs poorly. In general, long training data periods result in a model that is satisfactory for long time 
scales, but not necessarily good for short term predictions (although this is largely dependent on the particular 
calibration period chosen). In a control application of a real building, simple models could prove useful when short 
lengths of training data for calibration are available, particularly if the models could be “checked” and 
systematically re-calibrated at specific times (e.g. once per week or once per day) with the buildings sensor data. 
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Figure 11: Model Error (CVRMSE) for different prediction horizons and training data lengths 

 
5.3 Frequency Domain Analysis 
Frequency domain analysis of these systems could prove useful in evaluating a model’s accuracy in a comparative 
manner, almost by inspection, without the need for a simulation. After solving for the state-space representation of 
the three models (see Candanedo et al. (2013) for procedure), the  frequency response of the indoor air temperature 
(Tin) output to the electric heating input (qHVAC) for the three whole-house models were plotted and are shown in 
Figure 12. The first graph on the left shows the results of the 1R1C model for different training period lengths, the 
middle graphs shows results for the 3R2C model and the third graph corresponds to the 5R3C model. The magnitude 
on the left axis refers to °C/Watt.  

The following example illustrates how frequency domain analysis enables a quick and simple assessment of a 
model. The 1R1C model based on 3-hour long training data predicts that, while keeping other inputs at zero, a 
continuous heating input of 1000 W would result in a steady room air temperature of roughly 16°C (Figure 12). Of 
course, it is not realistic that such little amount of heating would result in such a high air temperature; this result 
indicates that 1R1C model trained with only 3 hours of data is far from accurate to represent steady-state or low-
frequency effects phenomena.  This important result is found without performing any simulation.  

In the 1R1C models calibrated with different training periods (Figure 12) there are significant differences in the 
steady state values predicted (e.g., 16°C/kW vs 8°C/kW); nevertheless, the lines nearly overlap for training data 
periods of 6 hours and longer. For the 3R2C and 5R3C models, there is significant variation in the phase angle 
results (corresponding to different time delays) between different training data lengths. 
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Figure 12: Frequency response - indoor air temperature to heating power 

 
6. CONCLUSIONS 

 
This paper outlined a methodology for multi-level control-oriented modelling for buildings with several zones. This 
multi-level approach allows the user to “zoom in and out” so that models at each control level remain manageable, 
easy to calibrate and easy to physically interpret. A global low-order model (1R1C) is developed and used to rapidly 
calculate the thermal load of the building, while a very detailed benchmark floor-level model is developed and can 
be used for verification and MPC-based simulation studies. For the development of specific control algorithms for 
each zone, an adequate simplified zone-level model must be identified.  It was found that if zone-level accuracy is of 
importance, one must incorporate into the model the thermal mass of the structure between zones.  
 
Three building-level models were then evaluated to investigate the effect of incorporating additional capacitance 
terms. Using these three building-level models, the effects of different lengths of training data periods on the 
accuracy of different prediction horizons were explored. It was found that a 1R1C whole house model can perform 
well for either longer horizon or short ones, but not simultaneously for both. Frequency analysis was used to quickly 
evaluate the whole building models without the need to perform a simulation. Interesting differences emerged in the 
phase angle predicted by the different models. Work remains to be done on how to improve the guidelines for the 
initial guess of the grey-box model parameters. 

 
NOMENCLATURE 

 
R thermal resistance                                         (K/watt)   
C thermal capacitance                                         (Joule/K)   
T temperature                                         (K/°C) 
A floor area                                         (m2) 
J objective function                                         (-) 
τ building time constant                                         (hour) 
CVRMSE coefficient of variation of the root-mean-square error      (%) 
MPC model predictive control                                         (-) 
 
Subscript   
j zone  
i          time interval  
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