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ABSTRACT 
 

A method for predicting building loads, such as hot water load, and utility rates, such as electricity rates, over a 

horizon into the future is presented. Building loads and utility rates prediction find application in several energy 

consumption fields, including, but not limited to, optimal control of central energy plants, peak load shaving, peak 

load shifting, etc.… In this work, the predicted load is characterized by deterministic and stochastic terms. The 

deterministic term takes into consideration the factors affecting a building load and a utility rate, such as outside air 

enthalpy. On the other hand, the stochastic term allows for the prediction of future errors using current and past 

prediction errors. The prediction method developed employs various techniques including clustering analysis, linear 

regression modeling, auto-regressive modeling, and curve-fitting. The approach taken has been applied to historical 

cold water, hot water, and electric load and electricity rates data. Simulation results show the feasibility of the 

method developed.  

 

1. INTRODUCTION 
 

The reduction of energy consumption, use of renewable energy, and preservation of natural resources are becoming 

increasingly important. Several applications in the energy efficiency field aim at minimizing energy consumption 

and/or cost. To achieve this, these applications employ optimization techniques that require future prediction of the 

performance and various loads of a facility, campus, building, or an energy plant, such as hot water, cold water, 

and/or electric load. The prediction horizon may be as short as few hours to ten days into the future, depending on 

the application at hand. Wenzel et al. (2014) implement a method for optimizing a central plant using model 

predictive control. That optimization approach makes use of campus load predictions over a horizon for determining 

the dispatch schedule of the plant. Furthermore, the minimization of utility cost requires an accurate prediction of 

utility rates, such as electricity rates, over a given horizon. Therefore, a method for predicting building loads and 

utility rates over a given horizon into the future has been developed.   

 

Building load and utility rates prediction has been addressed in the literature in various types of applications. Seem 

and Braun (1991) implemented an adaptive method for real-time forecasting of the electrical demand of a building. 

Seem’s method is based on the cerebellar model articulation controller.  Nielsen and Madsen (2006) took a grey-box 

approach in the development of a model linking the heat consumption to climate and calendar information.  Catalina 

and Iordache (2013) developed a method for the fast prediction of heating energy demand using multiple regression 

models with the building global heat loss coefficient, the south equivalent surface, and the difference between the 

indoor set point temperature and the sol-air temperature as predictor variables. Most recently, Platon et al. (2015) 

addressed the hourly prediction of a building's electricity consumption using case-based reasoning, artificial neural 

networks and principal component analysis. In this paper, the building loads and utility rates prediction method 

developed makes use of clustering analysis, curve-fitting, linear regression modeling, and auto-regressive modeling.  

 

As indicated in Seem and Braun (1991) and other publications in the literature, building loads and utility rates are 

influenced by several factors such as weather, day of week, time of day, operation schedules, etc.… It is imperative 

for any real-time load prediction method to account for as many of these factors, if not all.  In this work, the method 

developed takes into consideration the several factors contributing to building loads and utility rates. The load 

predicted consists of a deterministic term and a stochastic term. The deterministic term is calculated using linear 

regression models, whose coefficients are determined offline. These models rely on the typical load value for a 

given time of day and day-type (days with similar load profiles) and weather forecast. The latter is obtained from the 

National Oceanic and Atmospheric Administration (NOAA) through their National Digital Forecast Database 
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(NDFD) service. The stochastic term is determined using an Auto-Regressive (AR) model, whose coefficients are 

also determined offline. The AR model calculates future prediction errors based on the current prediction error. The 

stochastic term of the predicted load gives the method developed its adaptive property, and thus increases the 

accuracy of the prediction by updating the forecast using current measurements of the load. The coefficients of the 

models used in determining both, the deterministic and stochastic terms, are calculated offline using historical 

weather, building loads, and utility rates data. The model coefficients are updated in real-time adaptively using most 

recent training data.  

 

For a given set of training data, the method developed generates a set of regression models for each day-type. Day-

types are determined by a day-typing algorithm which specifies days with similar load profiles based on cluster 

analysis techniques. Outside air enthalpy and a typical load profile constitute the predictors variables in each set of 

regression models. Each day-type is characterized by a different typical load profile which is generated using an 

optimal data fitting technique. The AR model coefficients are determined using the residuals obtained from different 

sets of regression models. Given the determined models, the current load measurement, and weather forecast, the 

future load values are calculated by selecting the appropriate regression model and summing the deterministic and 

stochastic terms.  

 

This paper is divided as follows. Section 2 provides a high-level description of the load prediction method. Section 3 

introduces the techniques used to generate the pertinent linear regression models and the auto-regressive model 

offline. Section 4 introduces the approach taken to generate the predicted load online at any given time instant using 

the models generated offline. Simulation results are presented in Section 5. The paper is then concluded in Section 6.  

 

2. High Level Description of the Load Prediction Method 
 

The load prediction method developed generates an hourly load forecast at any time instant over a predetermined 

horizon into the future. The load forecast generated at time instant n consists of a deterministic term, ˆ ( )detL n , and a 

stochastic term, ˆ ( )stoL n , as shown in Equation (1).  The deterministic term accounts for the factors affecting the load 

such as time of day, day of week, weather variables, and operation schedules. Weather variables may include 

Outside Air Temperature (OAT), Outside Air Humidity (OAH), Outside Air Enthalpy (OAE), Cooling/Heating 

Degree Days (CDD), and/or Cooling/Heating Energy Days. In this paper, the weather variables used for describing 

the prediction method are OAT and OAH. Operation schedules may refer to calendar events such as federal 

holidays, manufacturing schedules of an industrial facility, in-session dates of an Academic institution, etc….The 

deterministic term is generated using linear regression models, whose coefficients are determined offline. It is 

dependent on the typical load value for a given time of day and a given day of week. It is also dependent on weather 

variables such as OAT and OAH. Forecasts of OAH and OAT are available from NOAA through their NDFD 

service.  

 

The stochastic term acounts for any factors the deterministic term is not able to capture or errors in load 

measurements. It is generated using an AR model, whose coefficients are initially determined offline and adaptively 

updated online. At any current time instant and given that current load measurements are available, a current load 

error or prediction error (residual) is calculated and future prediction error values are iteratively determined using 

the AR model. The residual forecast constitute the stochastic term of the load forecast. The stochastic term gives the 

load prediction method its adaptive property. An auto-regressive model, which is shown in more detail in the 

following section, determines future values of a time-series using its present and past values. Thus, a trend depicted 

by the past values of the time series, which in this case is the prediction errors or residuals, will affect what the 

predicted future value is. In the next section, the offline determination of the linear regression models coefficients 

and the AR model coefficients is presented.  

 

 ˆ ˆ( ) ( ) ( )forecast det stoload n L n L n   (1) 

 

3. Offline Determination of Model Coefficients 
 

As mentioned earlier, several factors contribute to the value of a load over a predetermined horizon into the future. 

These factors are time of day, day of week, weather variables such as OAT and OAH, holidays, and schedules, 
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which are specific to a given facility, building, or campus (for a university, for example, these are in-session and 

out-of-session schedules). The load prediction method developed captures these factors using historical load and 

weather data and clustering and modeling methods. The historical data is used offline as training data for 

determining day-types and the corresponding model coefficients necessary for generating a load forecast online. The 

offline determination of model coefficients consists of several steps. A high-level flow of the latter is shown in 

Figure 1.   

 

The training data is first divided into groupsn   groups based on the given schedules. Then, the data from each group is 

passed through the day-typing algorithm. The latter determines which days of the week have similar load profiles. 

Then, the training data of each group is divided into  clustern  sub-groups based on the outcome of day-typing. Thus, 

there will be group clustern n  sets of training data, to each of which a set of models and coefficients corresponds. For 

each set, in order to capture the effect of the time of day, an optimization technique is used to find the optimal 

typical load profile. The effect of weather variables is captured through linear regression techniques, where a model 

representing the deterministic term of the load for each set as a function of the weather variables and a typical load 

profile is determined. In this work, Outside Air Enthalpy (OAE) is used to capture the effect of both OAT and OAH, 

simultaneously. 

 

Training 

Load 

Data

Training 

OAT 

Data

Schedules

Group load and enthalpy data based on schedules

Determine days with similar load profiles within each group

Determine typical load profile for each day-type within each group

Determine linear regression model coefficients for each day-type within 

each group

Determine Auto-Regressive model coefficients 

Training 

OAH 

Data

 
Figure 1: High-level flow of offline determination of model coefficients 

 

After determining all the necessary coefficients pertaining to each set of data, the residuals determined by 

subtracting the predicted or estimated load from the actual load of all sets are used to train the AR model and 

determine its coefficients. Thus, for any given problem, there will be group clustern n day-type fits (typical load 

profiles), group clustern n  regression models, and an AR model. These fits and models are, then, used online when 

generating load forecasts over a predetermined horizon in the future. The next subsections provide in more detail a 

description of the aforementioned steps of the offline determination of the model coefficients. 

 

3.1 Day-Typing 
Day-typing is a pattern recognition algorithm aimed at determining days of the week with similar load profiles. Days 

having similar load profiles are referred to as one day-type. Building electric loads, for example, tend to have two 

day-types: weekday and weekend. Figure 2 shows an example of the electric load over several weeks for the 

Stanford University campus in 2011. As can be observed, the load over the weekend significantly differs from that 

over the week. Even though it is obvious graphically that there are two day-types, it is not usually the case. This is 

why a pattern recognition algorithm was developed by Seem (2005), which statistically determines days with similar 
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load profiles. Day-typing captures the effect of day of the week on a load forecast, and thus, it is essential for 

generating load forecasts. A high-level description of the pattern recognition algorithm developed by Seem (2005) is 

shown in Figure 3. Given a time series of load data, daily features are generated. The two features considered by 

Seem are the average daily load and the peak daily load over a one hour period. These features are then transformed 

in order to alleviate the effect of seasonal load changes. After transforming the feature vectors, seven clusters are 

created, where each cluster corresponds to each day of the week. Univariate and multivariate outlier identification 

procedures are then applied to each cluster in order to remove any abnormal or unusual feature vectors in each 

cluster. 
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Figure 2: Example of Day-Types 

 

Finally, days of the weeks with similar load profiles are determined using clustering analysis. For more details on 

the pattern recognition algorithm, refer to Seem (2005).  

 

In this work, the algorithm developed by Seem is used to generate the day-types of a given load. The day-types are 

used to divide the different groups of training data (historical load and OAE data) into sub-groups, where each sub-

group corresponds to a particular day-type. The load data in each sub-group is then passed through a data-fitting 

method, which finds the optimal load fit for a particular day-type. More details on determining the day-type load fit 

is presented next. 

 

Feature Vector Generation 
Load 

Data
Feature Vector Transformation

Create 7 clusters:

A cluster for each day of the week
Identify and remove outliers from the 7 clusters

Find similar clusters

Day-types: days of the week with similar 

load profiles
 

Figure 3: Major steps in pattern recognition algorithm for determining days of the week with similar load profiles. 

Seem (2005) 

 

3.2 Data Fitting 
After dividing the data into groups based on schedules and then into sub-groups based on day-typing results, the 

result is group clustern n  sets of training data, where the days in each set have similar load profiles. The task now is to 

capture the effect of the time of day factor. Figure 4 shows an example of a sub-group of cold water load training 
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data. The sub-group contains cold water load data of days with similar load profiles. As can be observed, the load 

profile has a bell curve shape, where the highest consumption takes place in the early to late afternoon. The 

objective is to find an optimal load data fit for each sub-group corresponding to a particular day-type that will best 

represent the load profile in that sub-group. This will be called a day-type fit from here on. A day-type fit is 

dependent on the time of day, therefore there is a need to find a mechanism that allows for calculating the day-type 

fit at any time of day. In order to achieve an optimal day-type fit for a sub-group and to have the capability of 

calculating the fit for any time of day, a spline is used to represent the day-type fit, where the spline knots are 

optimized. A spline is a piecewise-defined function of polynomials. A spline is defined by the knots where these 

polynomials connect. Predetermining the location of these knots (i.e. the times of day at which these knots are 

considered), an optimal value of these knots is found using an optimization technique. The location of the knots is 

fixed and the locations chosen for load prediction are the abscissae of the bold blue circles shown in Figure 4. These 

locations were chosen as to best capture the general shape of the load profile, especially where there is a change in 

the curvature. The objective function to be minimized is defined as follows: 

 

    
1

ˆ ˆmin
s

m
T

i i

i

J



 
   
 
 
y y y y y  (2) 

 

where sy is the vector of spline knots, iy is the vector of actual load values for the thi full day in a sub-group, m is 

the total number of full days in a sub-group, and ŷ is the estimated day-type fit of a sub-group. 

 

In this work, the MATLAB 2013b optimization function fminunc with the Quasi-Newton optimization algorithm 

and the function spline were used. Figure 4 shows the optimal value sy  obtained for the example sub-group shown. 

Thus, a unique day-type fit corresponds to each sub-group. The day-type fit is represented by a set of cubic-splines, 

which are used to calculate the load value, ( )fitL t , for a given time of day, t  . In the next section, the linear 

regression models, which make use of the day-type fit discussed in this section, are presented. 
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Figure 4: Daily cold water loads of the same day-type 

 

 

3.3 Linear Regression Models 

The remaining factor to be accounted for in calculating the deterministic term ˆ ( )detL t of the load value is the weather. 

Loads are dependents on OAT and OAH. The effect of OAT and OAH can be accounted for simultaneously by 

considering OAE. As shown in Figure 5, for example, hot water load is highly correlated to OAE. The same can be 

said about other loads such as cold water and electric loads. Linear regression modeling (Weisberg, 1985) is 

implemented to calculate the load value as a function of enthalpy. It is worth noting that instead of using OAE as a 

predictor variable, degree days such as CDD and HDD may also be used and may improve the performance of load 

prediction as observed from Figure 5.   
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For each of the group clustern n  sub-groups of training load data, a unique day-type fit exists. The deterministic term 

of the load value is dependent on both the day-type fit and OAE. In addition, OAE is also correlated to the day-type 

fit. Therefore, two regression models are necessary for calculating an estimated value of the load. The first 

regression model has OAE as the response or dependent variable and the day-type fit of a given sub-group as the 

predictor or independent variable as shown in Equation (3). The objective of this regression is to orthogonalize the 

predictor variables OAE and ˆ fitL  . Orthogonalization of predictor variables eliminates the correlation between 

them. 

 

 0 1
ˆk k

k kfit   OAE L w  (3) 

 

where 0
k and 1

k are the model coefficients of the thk sub-group, kOAE is the vector of enthalpy observations in the 

thk sub-group , ˆ
kfitL is the vector of day-type fit observations corresponding to those in kOAE , w is the model error, 

and 1 groups clustersk n n   . Least Squares Regression is used to estimate the value of the model coefficients. The 

model coefficient estimates and are used to calculate the estimated enthalpy as shown in Equation (4). 
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Figure 5: Example of the correlation between load and outside air enthalpy 

 

 

 0 1
ˆ ˆ ˆ ˆk k

k kfit  OAE L  (4) 

 

The actual load data kLoad is then regressed on ˆ
kfitL and ˆ

k kOAE OAE as follows: 

 

 0 1 2
ˆˆ ( )k k k

k k k kfit      Load L OAE OAE e  (5) 

 

where 0
k , 1

k , and 2
k are the model coefficients of the thk sub-group, ˆ

k kOAE OAE is the vector of enthalpy 

residuals, e is the model error, and 1 groups clustersk n n   . Least Squares Regression is used to estimate the value of 

the model coefficients. The model coefficient estimates 0
ˆ k , 1

ˆ k , and 2
ˆ k are used to calculate the estimated 

deterministic term of the load ˆ
kdetL as shown in Equation (6). 

 

 0 1 2
ˆˆ ˆˆ ˆ ˆ ( )

k

k k k
det k k kfit     L L OAE OAE  (6) 
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Each sub-group, then, is characterized by a set of coefficients 0
ˆ k , 1

ˆ k , 0
ˆ k , 1

ˆ k , and 2
ˆ k and a spline used for 

calculating the optimal day-type fit corresponding to a sub-group. These coefficients and spline are then used online 

when generating the load forecast as will be shown later.  

As mentioned earlier, the load forecast consists of two terms, a deterministic term and a stochastic term. In the 

following section, the offline determination of the AR model coefficients, which calculates the stochastic term of the 

load forecast, is presented. 

3.4 Auto-Regressive Models 
An auto-regressive model is a model representing a time series and has the following form (Haykin, 2002): 

 

 1 2( ) ( 1) ( ) ( )r n a r n a r n p v n       (7) 

 
where ( )r n is the value of the time series at instant n , 1 2, , , pa a a are the AR parameters, and ( )v n is white noise.  

An AR model is basically a regression model of the current value of a time series on its past values. An AR model 

can be used to predict the value of a time series over a horizon of length h  into the future iteratively as follows: 

 

 
1

ˆ ˆ( ) ( )        1, ,

p

i

i

r n j a r n j i j h



        (8) 

 

where ˆia are estimates of the AR parameters ia which are determined offline using training data. For more 

information on AR models refer to Chapter 1 in Haykin (2002). 

 

For the purpose of load prediction, an AR model is used to calculate the stochastic term of the load forecast over a 

horizon into the future. The time series r , in this case, is the load prediction error or residuals obtained from all the 

sub-groups and sorted in chronological order.  The unsorted AR model training residual data is shown in Equation 

(9). unsortedr is sorted in chronological order before it is used as training data for estimating the AR parameters. Since 

an AR model is characterized by its order p and its parameters, an appropriate model order needs to be chosen along 

with determining estimates of its parameters. In order to determine the order of the model, Akaike’s Information 

Criterion (AIC) may be used along the MATLAB function arx, which requires having the System Identification 

Toolbox. The order of the AR model determines how many past values of the time series are needed. Note that for 

the Stanford project, the AR model is of order 1 and a least-square estimate of the AR parameter is used. The latter 

was solution to the fact that the arx function cannot be compiled when generating an exe or a kernel.  

 

 
11

ˆ

ˆ
groups clusters n ngroups clusters

det

unsorted

n n det

r



 
 
 
 
 
 

Load L

Load L

 (9) 

 
Thus, for a given problem, the offline determination of model coefficients generates, using load training data, OAT 

and OAH training data, and schedules, a set of day-types, splines, estimates of linear model regression coefficients, 

and estimates of AR model parameters. These are then used online when generating load forecasts. The next section 

explains how a load forecast is generated online using the different models developed offline. 

 

4. Online Load Prediction 
 

Online load prediction requires a current load measurement, the current and forecast OAT and OAH, the current 

date and time, the length of the horizon in hours, the model coefficients, splines, and day-types generated offline, a 

schedule, and a vector of residuals . The vector of residuals is a persistent vector as it is also an output of the online 

load predictor. The size of the residual vector is dependent on the order of the AR model generated offline and 

contains the past residual values necessary for calculating the stochastic term of the load forecast.  
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For a given problem, day-types, day-type fits (splines), estimates of regressive model coefficients, and estimates of 

AR model parameters are generated offline. These are then used online to generate a load forecast over a 

predetermined horizon. Figure 6 shows a flow of the major steps in generating a load forecast online at a given 

instant in time. Given the current and forecast OAT and OAH obtained from NOAA, the current and forecast 

enthalpy vector (1) ( )forecast OAE OAE h   OAE is calculated, where h is the length of the horizon in hours. Each 

data point is always associated with its corresponding date and time stamp. The day-types and schedules are used to 

determine which spline and coefficients (These will be referred to from here on as models) are to be used for each 

data point. Then, the day-type fit value for each data point is calculated using the corresponding splines. This is 

followed by the calculation of the OAE estimates, ˆ ˆ ˆ(1) ( )forecast OAE OAE h 
 

OAE as shown in Equation (10). 

 

Online Load Predictor

Calculate enthalpy forecast 

from OAT and OAH forecast

Find enthalpy forecast estimate using 

the appropriate regression model based 

on current time and forecast horizon

0 1
ˆ ˆ ˆ ˆ( ) ( )

1, ,

k kOAE n Lfit n

n = h

  

Find the deterministic element of the load forecast using 

the appropriate regression model based on current time 

and forecast horizon

0 1 2
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Use AR model to calculate residuals 
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ˆ ˆ
forecast det stoload (n)= L (n)+ L (n)

 
Figure 6: Major steps in online load prediction 

 

 

 0 1
ˆ ˆ ˆ ˆ( )      1, ,k kOAE n Lfit(n) n h     (10) 

 

Then, the deterministic term of the load forecast ˆ ˆ ˆ1det det detL ( ) … L (h) 
 

L is calculated as shown in Equation (11). 

 

 0 1
ˆˆ ˆˆ ˆ ˆ( ) ( )        1, ,k k k

det 2L (n)= + Lfit n + (OAE(n)- OAE n ) n h     (11) 

 

The current residual is then calculated using the current load measurement as shown in Equation (12) and the 

stochastic term vector is generated using the AR model shown in Equation (8). Finally, the load forecast is the sum 

of the deterministic and stochastic terms. 

 

 ˆ
detr(1)= currenLoad - L (1)  (12) 



 

 3647, Page 9 
 

4th International High Performance Buildings Conference at Purdue, July 11-14, 2016 

 

5.  SIMULATIONS 
 

In this section, simulations of the load prediction method are shown. Figures 7, 8, 9, and 10 show the forecasts for 

the hot water load, cold water load, electric load, and electricity rates respectively. The models generated offline 

uses training data corresponding to the month of March. The simulations shown are at the end of day April 1st and 

the forecast horizon length is 240 hrs. The simulations show that the load prediction method is able to generate load 

forecasts that are close to the actual loads. 

 

CONCLUSION 

 

A load prediction method capable of generating accurate load forecasts is presented. The method developed is 

applicable to cold water load, hot water load, electric load, and electricity rates. It takes into consideration several 

factors affecting a load. These factors consist of schedules, time of day, day of week, and weather variables. The 

method generates a load forecasts consisting of deterministic and stochastic terms. It makes use of day-typing, 

regression modeling, and auto-regressive modeling techniques. The method developed is characterized by an 

adaptive property due to the stochastic term in the generated load forecast. Further improvements to the method is 

the use of cooling degree days and/or heating degree days instead of outside air enthalpy. 

 

 
Figure 7: Example of a 10 day-forecast of hot water load 

 
Figure 8: Example of a 10 day-forecast of cold water load 
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Figure 9: Example of a 10 day-forecast of electrical load 
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Figure 10: Example of a 10-day forecast of electricity rates 
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