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ABSTRACT 
 

Over the past years intelligent building applications that promise to dramatically reduce energy consumption, 

improve occupant comfort and streamline maintenance have been proposed. However their adoption has met a steep 

barrier in the unexpectedly high cost of mapping data from building automation systems into these applications’ data 

models. In fact the industry does not have a common convention on how to name points. Generally, names are 

correlated with the semantic of the variables they represent, but typically engineers have the freedom to set up 

variable names according to their preferences. In the last few years the research community has devoted increasing 

attention in automating the process of mapping data points from existing BAS.  In order to meet market 

requirements, an “ideal” algorithm must be accurate, able to infer complex relationships between data points, easy to 

use, and scalable. However, none of the published work meets all the market requirements.  Most need an expert 

user, some are not “easy to use” and none can automatically infer complex relationships. 

This paper presents a novel algorithm to tackle the mapping problem. This work contributes to the state-of-the-art by 

providing an algorithm that can be successfully applied to various datasets with minor or no modification to the 

algorithm (i.e. no expert in the loop). This is also the first to automatically infer complex relationships with only 

point names as input (i.e. ease of use).  

The algorithm was tested against a large and diversified dataset comprising points from five buildings, two vendors, 

three distributors and more than 20K points. The algorithm correctly mapped over 90% of the points required by a 

test application and successfully identified over 90% of VAVs and 80% of AHUs. 
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mailto:juneyoup@andrew.cmu.edu


 

 3361, Page 2 
 

4
th

 International High Performance Buildings Conference at Purdue, July 11-14, 2016 

1. INTRODUCTION 
 

There is an increasing recognition within both industry and academia (Project Haystack; Bhattacharya, Ploennigs, & 

Culler, 2015) that semantic metadata associated to points can reduce the maintenance cost of BAS and make 

software applications more portable across BAS, buildings and vendors. Semantic metadata captures knowledge 

about points, equipment and buildings. They describe information such as: point types (e.g. is a point a sensor, set-

point, control parameter, trend, alarm, etc.), the physical quantity measured/controlled (e.g. temperature, velocity, 

pressure, etc.), relationship with the physical world (e.g. is the sensor is measuring air, water, etc.), relationship 

within the system/equipment where the point belongs to (e.g. return air, return water, etc.), relationship with the 

system/equipment (e.g. to which equipment a point belongs to), relationship between equipment (e.g. hierarchy of 

an HVAC system, relationship between the physical world and the equipment/system: e.g.: the location of the sensor 

(which room in a building), list of zones served by an AHU and physical relationship between points (e.g. distance 

between sensor/actuators).  

The process of manually annotating points with semantic metadata is costly and error prone. Typical BASs have 

thousands of points and would need several times more metadata. A trained field engineer would have to spend 

many hours to fully annotate a BAS and this is cost prohibitive in many cases. This is the major driving force in the 

research for techniques and algorithms to assist in the generation of metadata from data points.  

Even though most of the knowledge required to assign the correct metadata is not explicitly represented in existing 

BAS, several algorithms have recently been developed to infer it by analyzing data point values and properties (such 

as point names).  

In order to meet market requirements, an “ideal” algorithm to infer semantic metadata would have five properties: 1) 

high accuracy and especially low false positive rate (i.e. small number of erroneously mapped points); 2) ability to 

infer complex relationships between data points (e.g. grouping points by equipment, classifying equipment, 

establishing relationship between equipment); 3) ease of use: it should leverage only readily available knowledge 

and data about the system (i.e. not requiring the installation of additional sensors); 4) minimal need of having a 

domain expert using it; and 5) scalability: the algorithm infers semantic metadata across a variety of BAS, buildings, 

and vendors with satisfactory results at most requiring minimum human involvement in adjusting settings and 

parameters. Any approach requiring extensive human effort faces a steep market resistance.  

 

1.1 State of the Art 
The last few years witnessed an increasing interest from academia in automatically inferring semantic metadata from 

points. The algorithm described in (Schumann et al., 2014) and in (Schumann et al., 2015) learns how to map point 

names to a prebuilt dictionary from a set of example point names presented by an operator. This algorithm assumes 

the existence (and the knowledge) of a naming convention of point names. The algorithm attempts to match each 

point with a definition in the dictionary. The richer the dictionary and its definitions the easier it is to find the right 

match. 

An alternative technique is presented in (Bhattacharya et al., 2014). It iteratively learns the naming schema of point 

names and associates this schema to a common semantic model like Haystack (Project Haystack). Similar to the 

previous approach the algorithm generates questions (or examples) that a user needs to answer. A characteristic of 

this solution is that the operator has to provide the “translation” between the naming schema and the semantic 

model. Therefore this approach is well suited for buildings with limited naming schemas. The problem of “transfer 

learning” i.e. the ability to learn a model in one or few building and to reuse the same model across several buildings 

to classify/label points has been addressed only recently. A promising approach is presented in (Hong et al., 2015) 

where the algorithm combines both sensor readings and point names to learn a classifier that can be applied to other 

buildings. While results are encouraging in labelling point types there is no attempt in inferring relationships 

between points. Similar conclusions can be drawn from (Balajiy et al., 2015) where an active learning algorithm can 

achieve very high accuracy in establishing point types. In the same paper it was also noted that for many practical 

uses, identifying point types is not sufficient. Invaluable information such as identifying equipment types and 

grouping points per equipment can lead to a drastic simplification in the deployment of building applications. The 

algorithm illustrated in this paper addresses this last problem. 
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2. Algorithm Description 
 

The primary intent of this inference algorithm is to reduce the effort in deploying intelligent applications on top of 

existing building automation systems by assisting in the laborious task of mapping embedded controller data to 

application data. 

 
Figure 1: Block diagram of the inference algorithm. 

 

The algorithm digests a list of point names from a building automation system as input and generates suggestions of 

the likely meaning of points as output. The overall algorithm leverages the fact that point names are usually 

correlated with the semantic of the variables they represent. The inference algorithm can be logically divided into 

three steps: Point Clustering, Equipment Identification, and Point Identification (Figure 1). The algorithm takes in a 

list of point names from a building automation system, a library 𝐷 of equipment models, and a library 𝑉 of point 

types per equipment model. Models are created offline by domain experts or by learning from samples in a training 

set (as accomplished in this paper). Customized libraries that take into consideration particular characteristics of 

vendors, distributors and regions can be adopted, trading portability for enhanced accuracy of the algorithm.  

 

2.1 Point Clustering 
In this unsupervised step the algorithm first transforms each point name into a list of its constitutive parts (i.e. 

tokens). Tokens in point names are usually delimited by special characters (e.g.:  punctuation, ‘/’, ‘\’, ‘-‘) or other 

tokens. Numbers are also considered as tokens. After this initial step, points are represented in a directed graph 

𝐺 = {𝑁, 𝐸} where each node 𝑛 ∈ 𝑁 is a token. A directed edge 𝑒𝑖𝑗 ∈ 𝐸 between two nodes (𝑛𝑖 , 𝑛𝑗) indicates that the 

nodes belong to at least one point and  𝑛𝑖 strictly precedes 𝑛𝑗 in those point names. The set of edges originating in 

node 𝑛𝑖 is denoted by 𝐸𝑖
− and ‖𝐸𝑖

−‖ represents the cardinality of this set. Set 𝐹 ⊆ N contains leaf nodes: i.e. nodes 

representing the last tokens in point names. Each path starting from a source node 𝑛𝑠 ∈ 𝑁 (i.e. a node without edges 

pointing to it) and ending on a 𝑛𝑓 ∈ 𝐹 uniquely identifies a point name.  

We introduce the function 𝑇(𝑒) that returns the label of the token of the sink node of edge  𝑒 . We define the 

equivalence function of two edges as: 

 𝜖(𝑒𝑖𝑗 , 𝑒𝑛𝑚) =  {
1 𝑖𝑓 𝑇(𝑒𝑖𝑗) = 𝑇(𝑒𝑛𝑚)

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (1) 

The similarity metric of two nodes is defined as: 

 𝑆(𝑛𝑖 , 𝑛𝑗) =

{
 
 

 
 1 𝑖𝑓  

0.5

𝑚𝑎𝑥(‖𝐸𝑖
−‖, ‖𝐸𝑗

−‖)
∑ 𝜖(𝑒, 𝑓)

𝑒∈ 𝐸𝑖
−,f∈𝐸𝑗

−

≥ 𝜗

0 𝑖𝑓 ‖𝐸𝑖
−‖  ≤ 2  𝑜𝑟 ‖𝐸𝑖

−‖ ≤ 2 

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2) 

where 𝜗 ∈ [0,1] is a parameter. When 𝑆(𝑛𝑖 , 𝑛𝑗) = 1 the two nodes are considered similar and placed in the same 

cluster. Similar nodes are likely to belong to the same equipment type (e.g. VAVs in a building are likely to have 

more or less the same point names encoded in similar naming conventions) or other logical groups (e.g. list of 

equipment, subcomponent of equipment etc.).  

The algorithm proceeds by transforming clusters into concepts. A concept is an abstraction of a cluster: it contains 

the list of tokens that are common across nodes in the cluster. Nodes in a cluster are also instances of the concept of 

the cluster. Concepts are organized in the semantic graph 𝐺̃(𝐶, 𝑅), where 𝐶 is the set of concepts and 𝑅 is the set of 

relationships between concepts. For the purpose of this paper, only the inclusion relationship is relevant. This type 

of relationship is inferred from 𝐶 and 𝐺. A concept 𝑐𝑖 is included by 𝑐𝑗 if there is a directed path connecting at least 

one instance of 𝑐𝑗 to one instance of 𝑐𝑖.  
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2.2 Equipment Identification 
The second step of the inference algorithm attempts at automatically labeling (i.e., assigning semantic meaning to 

the concepts in 𝐶. In other words, the algorithm establishes whether a concept represents HVAC equipment and the 

label of the equipment (e.g. VAV, AHU, etc.). This is accomplished in two separate stages. Stage one considers each 

individual concept; stage two leverages global knowledge of concepts present in the semantic graph 𝐺̃.  

 

2.2.1 Stage one: stage one starts by extracting features from the information present in the concepts (i.e. tokens) and 

presented in a format that is readily consumed by off-the-shelf machine-learning algorithms. Features are computed 

by comparing concepts with equipment models 𝐷. Each equipment model  𝑀𝑘 ∈ 𝐷 consists of a set of model-points: 

i.e. points that are typically present in that particular equipment type. Each model-point 𝑚 ∈ 𝑀𝑘 is identified by a 

label expressed in a formal semantic (e.g. Haystack tags, custom tags, etc.) and carries a set of possible alternative 

token representations that are usually found in the field for that point. To increase classification robustness, likely 

variations of tokens (e.g., by removing vowels) are also included. The feature for concept 𝑗 and equipment model 𝑖 
is computed according to: 

 𝑓𝑖𝑗 = (𝛽 ∑ max
𝑝∈𝑐𝑗

{𝐺(𝑚, 𝑝)}

𝑚∈𝑀𝑖

)

2

 (3) 

Where 𝑝 is a point in concept 𝑗, 𝛽 is a parameter (𝛽 = 3 in this paper) and  

 𝐺(𝑚, 𝑝) = max
𝑎∈𝐴(𝑚)

{
∑ ∑ 𝑑𝑗(𝑡𝑙

𝑎, 𝑡𝑛
𝑝
)𝑛𝑙

max(‖𝑝‖, ‖𝑎‖)
} (4) 

Where 𝑑𝑗 is the Jaro–Winkler distance, 𝑎 is an alternative token representation for model point 𝑚, 𝐴(𝑚) returns the 

alternatives for the 𝑚-th model point, 𝑡𝑙
𝑎 is the 𝑙 –th token in the alternative 𝑎, and  𝑡𝑛

𝑝
 is the 𝑛-th token of concept 

point 𝑝. ‖𝑝‖ and ‖𝑎‖ indicate the number of tokens in concept-point 𝑝 and alternative 𝑎 respectively. In general, 

any off-the-shelf classifier can be used to assign a label to a concept. In particular the results in this paper are 

obtained with a linear Support Vector Machine (SVM) classifier.  

 

2.2.2 Stage two: the output of stage one can be further refined by leveraging global knowledge of the relationships 

between concepts present in the semantic graph 𝐺̃. In particular new types of concepts (e.g. collections) can be only 

labeled at this stage. For example a concept including only concepts of one type can now be labeled as a collection. 

Similarly some classes of erroneous classifications generated at stage one can now be corrected. Two examples: a 

VAV is unlikely to include an AHU and a concept including both types of equipment is likely to be neither of them.  

 

2.3 Point Identification 
The final step in the algorithm consists in identifying points in labeled concepts. In order to achieve this, the 

algorithm finds for each point in a labeled concept the best matching point in the corresponding equipment-model in 

𝑉. Library 𝑉 is derived from 𝐷 and it can also include additional model-points that, while less common, might still 

be useful for some intelligent applications. The label of each point 𝑝 in a labeled concept 𝑐𝑖 is determined by: 

 𝐿 (𝑀𝑙
𝑣 , argmax

𝑚∈𝑀𝑙
𝑝

 

{𝐺(𝑚, 𝑝)}) (5) 

Where 𝑀𝑙
𝑣 represents the model in 𝑉 of  𝑐𝑖 and 𝐿(𝑀𝑙

𝑣 , 𝑛) returns the label of the 𝑚-th model-point in 𝑀𝑙
𝑣 . 
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3. Results 
 

This section demonstrates the performance of the algorithm on a large dataset comprising data points from 9 

buildings with BASs from multiple vendors and dealers.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

3.1 Point Clustering 
Table 1 summarizes the point clustering results. The first three columns report the building ID, vendor name, and the 

number of points in the building. Column 4 lists the number of concepts obtained by the algorithm. Column five 

represents the number of points in the semantic graph 𝐺̃. The last column summarizes the number of points that the 

algorithm is not able to assign to any cluster. The number of points per building ranges from about 1000 to 8000. 

The dataset is divided in a training set (building 1 to 4) and a test set (building 5 to 9). The first set was used to 

create library models and tune parameters. The second set was used to assess the algorithm performance. The test set 

consists of data points collected from 5 buildings with 2 BMS vendors and 3 dealers.  

Depending on the considered building, the number of clusters identified by the algorithm ranges from 26 to 93. 

More importantly the number of points in the semantic graph 𝐺̃ is on the order of 3 to 7% of the total number of 

points and the number of un-clustered points is less than 5% of the total number of points. This means that by 

assigning a semantic definition to each concept and to each concept-point it is possible to annotate most of the 

dataset. In other words clustering by itself can drastically reduce the effort required to label a dataset. 

 

3.2 Equipment Identification 
Equipment identification results are shown in Table 2. The first columns represents the building ID, columns 2 and 5 

report the ground truth (GT) of the number of VAV and AHU per building. Columns 3 and 4 summarize the number 

of false positives (FP) and false negatives (FN) of VAV classified by the algorithm. Columns 6 and 7 list similar 

results for the AHUs. The algorithm accurately recognizes more than 90% of the VAVs and more than 80% of the 

AHUs present in a building. It is worth mentioning that the classifier was unable to detect the only AHU of building 

9. This happened because of a current limitation of the clustering algorithm that requires the presence of at least two 

similar groups of points/equipment in order to create a cluster. In this case, having only one AHU, the clustering 

algorithm does not create a cluster for the AHU points and therefore the classification algorithm is unaware of it. In 

general it appears that correctly classifying AHUs is more difficult than for VAVs. A possible explanation is that the 

training set has fewer examples of AHUs and this makes it more challenging to generalize a robust classifier.  

 

 

 

 

 

 

 

 

Table 1: Dataset composition and cluster results.  

Building #BAS 

points 
#C #Points in 𝑮̃ 

#Un-clustered 

points ID Vendor 

1 JCI 1160 26 126 (10%) 0  

2 Siemens 4308 36 145 (3.3%) 121 (2.8%) 

3 JCI 3545 50 329 (9.3%) 1 

4 ALC 5015 93 432 (8.6%) 200 (4.0) 
 

5 Siemens 1808 29 101 (5.6%) 82 (4.5%) 

6 Siemens 5981 49 213(3.6%) 119(2.0%) 

7 Siemens 8247 38 205 (2.5%) 321 (3.9%) 

8 ALC 3448 44 211 (6.1%) 53 (1.5%) 

9 ALC 3428 33 143 (4.2%) 85 (2.5%) 

 

Table 2: Equipment 

identification results.  

ID #VAV #AHU 

 GT FP FN GT FP FN 

1 107 0 0 8 0 1 

2 51 1 1 - - - 

3 148 0 1 6 0 0 

4 101 0 0 7 2 0 
 

5 181 0 16 6 0 0 

6 82 0 5 - - - 

7 421 3 0 15 3 0 

8 52 3 0 2 0 0 

9 100 0 0 1 0 1 
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Table 3: Point Classification VAV 

ID 
Sns Dmpr 

Position 

Sns Flow 

Supply Air 

Air Flow 

Supply SP 

Sns Zone 

Temp 

 GT FP FN GT FP FN GT FP FN GT FP FN 

1 107 0 0 107 0 0 - - - 107 0 0 

2 51 0 1 51 0 1 51 0 1 51 1 1 

3 148 0 1 148 0 1 148 0 1 144 - 5 

4 101 0 0 101 0 0 101 0 0 4 0 0 
 

5 - - - 181 0 16 - - - 181 0 16 

6 82 0 5 82 0 5 82 0 5 82 0 5 

7 421 3 0 421 3 0 421 3 0 421 3 0 

8 52 3 0 52 3 0 52 3 0 21 0 0 

9 - - - 100 0 0 100 0 0 98 0 0 

 
Table 4: Point Classification AHU 

ID 
Sns Rtrn Air 

Temp 

Sns Mixed 

Air Temp 

Outside 

Air Dmpr 

Sns Rtrn Air 

Hum 

Sns Outside 

Air Temp 

 GT FP FN GT FP FN GT FP FN GT FP FN GT FP FN 

1 8 0 0 8 0 0 8 0 0 8 0 0 8 0 0 

2 - - - - - - - - - - - - - - - 

3 2 - - 6 0 0 6 0 0 2 4 0 - - - 

4 7 2 0 7 2 0 7 0 0 7 - - - - - 
 

5 6 0 0 - - - - - - - - - 6 0 0 

6 - - - - - - - - - - - - - - - 

7 15 0 0 15 0 0 - - - 15 0 0 - - - 

8 2 0 0 2 0 0 - - - 1 0 1 - 1 - 

9 1 0 1 1 0 1 1 0 1 1 0 1 - - - 

 

3.3 Point Identification 
Point identification results for VAVs and AHUs are reported in Table 3 and 4 respectively. The first row of both 

tables indicates some of the supported point types expressed with custom semantic tags. For each point type three 

columns summarize the number of occurrences of the point (GT), the number of false positives (FP) and false 

negatives (FN) identified by the algorithm. In most cases, the algorithm classifies points with more than 90% 

accuracy. Similar to the equipment identification, building 9 represents an exception. Since a cluster was not 

created, it is not possible to detect any of the AHU points for building 9. Additional work is required to enable the 

algorithm to properly identify clusters and points for buildings with single pieces of equipment.  
 

6. PRELIMINARY COST MODEL 
 

In order to truly understand the impact of any tool for semantic inference of BAS points, a cost model for mapping 

data points from a BAS into an application must be introduced. Assuming that an operator requires a constant 

amount of time to assign each semantic tag, a simplified cost model can be written as a function of the number of 

tags (𝜏) that need to be assigned: 

 𝜑(𝜏) = ‖𝐵‖𝜏𝐵 +∑∑𝐼(𝑒, 𝑏)

𝑒∈𝐸

(𝜏𝑒 + P(e)τp)

𝑏∈𝐵

 (6) 

Where 𝐵 represents a set of buildings, 𝜏𝐵is the number of tags that are specific to a building (examples of building 

tags are name, location, area, type, climate zone, etc.), 𝐸 is the set of equipment types that are of interest of the 

application,  function 𝐼(𝑒, 𝑏) returns the number of instances of an equipment type 𝑒  in a building 𝑏 , 𝜏𝑒  is the 

number of tag per equipment type (examples of equipment tags are type, location, relationship with zones and other 

equipment, etc.), function P(e) returns the number of points in equipment type 𝑒, and 𝜏𝑝 is the number of tag per 

point (examples of point tags are: point definition and reference to containing equipment).  
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The first term of the cost model (‖𝐵‖𝜏𝐵) is usually small compared to the second one. In fact in a typical campus 

there are many more pieces of equipment and data points than buildings and 𝜏𝐵 ≈ 𝜏𝑒. It is understandable that the 

research presented so far in the open literature attempts to minimize the number of point tags that need to be 

manually assigned. In particular most activities are directed towards automatically inferring point definition tags. A 

few papers present results on establishing the location of sensors and relationships of equipment. The algorithm 

described in these pages is the first introduction of a viable mechanism to automatically infer both point definition 

tags, references to containing equipment and equipment tags. 

 

7. CONCLUSIONS 
 

This paper presented a novel algorithm for inferring semantics of BAS data points. This algorithm is the first to 

automatically infer complex relationships with only point names as input. It can also successfully operate on data 

point from various buildings with minor or no modification to the algorithm. Results obtained from a large and 

diversified dataset comprising points from five buildings, two vendors, three distributors and more than 20K points 

indicate that the algorithm can correctly map over 90% of the points required by a test application and successfully 

identified over 90% of VAVs and 80% of AHUs.  

While knowing the equipment type and the associated points is important in many applications, there are cases 

where other relationships are relevant too. In fact, there have been attempts to infer the hierarchy of VAVs and 

AHUs (Pritoni et al, 2015) and spatial location of sensors in (Ortiz et al., 2013) and in (Koc et al., 2014). Future 

work should definitely revisit and incorporate these approaches. Future studies might also use additional knowledge 

about points (e.g. values, measurement units, etc.) to increase the robustness and the accuracy of the output as 

suggested by (Balajiy, 2015) and (Hong, 2015). 

 

NOMENCLATURE 
 

BMS Building Management System  

BAS Building Automation System  

VAV Variable Air Valve  

AHU Air Handling Unit  

HVAC Heating Ventilation Air Conditioning  

GT Ground Truth  

FP False Positive  

FN False Negative  

Sns Rtrn Air Temp Data point reporting the return air temperature   

Sns Mixed Air Temp Data point reporting the mixed air temperature  

Outside Air Dmpr Data point reporting the position of a damper for the outside air  

Sns Rtrn Air Hum Data point reporting the return air humidity  

Sns Outside Air Temp Data point reporting the outside air temperature  

Sns Dmpr Position Data point reporting the position of a damper  

Sns Flow Supply Air Data point reporting the air supply flow   

Air Flow Supply SP Data point reporting the value of the air supply flow set-point  

Sns Zone Temp Data point reporting  the temperature of a zone   
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