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ABSTRACT 
 

This paper presents an application of a multi-agent control approach for supervisory control of large central cooling 

plants.  The starting point for this work was a multi-agent control simulation framework developed by Cai (2015).  To 

adapt the framework to this problem, agents representing the performance of the different devices of the plant were 

developed and an optimization method capable of handling non-convex functions and discontinuous design spaces 

was developed and incorporated in the framework. A case study of an existing cooling plant was utilized to evaluate 

the approach in terms of optimality and computational resources. Simulations were carried out for different 

performance conditions to predict the performance of the plant under three different control strategies: 1) multi-agent 

control, 2) centralized optimization based on mathematical programming techniques and 3) a heuristic control strategy. 

The results showed that significant savings can be achieved through the implementation of multi-agent control. It is 

expected that, if each hardware component of the plant comes with an integrated agent that represents its behavior, 

then the proposed multi-agent framework could automatically generate the multi-agent structure and control algorithm 

after some relatively simple pre-configuration steps.  This will reduce the site-specific engineering and will provide a 

more economic and easy to configure solution for central cooling systems.   

 

INTRODUCTION 
 

A large central cooling system consists of several chillers, cooling towers and pumps that supply chilled water to 

satisfy the cooling requirements of one or more buildings.   Optimal supervisory control of such systems involves the 

determination of the mode of operation and set points that minimize operating costs while satisfying cooling and 

comfort requirements.  The problem is complicated because of the presence of both continuous and discrete control 

variables.  Most of the research related to optimal supervisory control of central cooling systems that has been 

conducted in the last three decades has focused on centralized control approaches, such as Braun et al. (1989a, b), Ahn 

and Mitchell (2001); Yao et al. (2004); Torzhkov et al. (2010), and Zhang and Turner (2012).  Although these studies 

have demonstrated the effectiveness of optimal or near-optimal control in reducing operational costs, the results have 

not been widely implemented.  Some limitations of centralized optimal control are the need for detailed information 

on the performance profiles of the cooling plant equipment in order to build a model for the optimization process, and, 

once implemented, the plant model and control sequences will need to be updated by experts every time a modification 

(such as the introduction of new equipment) is made to the plant. 

 

A promising approach that addresses limitations of earlier approaches is the implementation of distributed multi-

agent-based optimal control.  The use of intelligent agents makes it possible to solve the optimization problem in a 

distributed manner by breaking a big complex problem into smaller, more manageable pieces that can be solved 

independently and in parallel by individual agents.  The individual solutions can then be handled by a coordination 

agent that achieves some consensus.  Since intelligent agents can solve individual problems to optimize performance 

without having total knowledge of the system, they would also add adaptive capability to the control system, i.e., the 

system could be more easily reconfigured to adapt to changes such as the introduction of new equipment.  However, 

some drawbacks of this approach are the additional data transfer equipment required and the optimality traded off for 
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reduced computations.  Many approaches for distributed control and multi-agent systems have been proposed and 

demonstrated in a number of fields.  However, a review of multi-agent control shows relatively few applications in 

the HVAC field (Treado, 2010; Sun et al, 2010; Kelly and Bushby, 2012).  In these studies, results that document the 

performance of the control algorithms are very scarce and the proposed multi-agent control strategies were validated 

using simulations on small-scale HVAC systems with very simple models on the cooling plant side.   

 

This paper presents an application of a multi-agent control approach for supervisory control of large central cooling 

plants.  The work starts from a multi-agent control simulation framework developed by Cai (2015) for optimization-

based supervisory control of distributed air-conditioning systems.  In this setting, assuming that each hardware 

component of a system has an integrated agent that represents its behavior, then the framework can automatically 

generate the multi-agent structure and control algorithm after some relatively simple pre-configuration steps, reducing 

site-specific engineering.   Although the proposed framework provides good flexibility in design of control topology 

it has some limitations and it might not be directly applied to some kinds of equipment: the distributed consensus-

based algorithms utilized are conceived for convex functions and continuous design spaces.  Therefore, they are not 

good at handling discrete variables such as multiple operating modes that are often present in HVAC systems.  To 

adapt the framework to the current problem, agents representing the performance of the different devices of central 

cooling plants were developed and inserted in the framework and an optimization method capable of handling non-

convex functions and discontinuous design spaces (Genetic Algorithm) was developed and incorporated in the 

framework. A case study of a cooling plant without significant storage was addressed to conduct a simulated 

demonstration of the approach for different operating conditions.  The results in terms of optimality and computational 

resources were compared with two benchmarks: centralized optimization with conventional mathematical 

programming techniques and a heuristic control strategy.     

 

1. MULTI-AGENT APPROACH 
 

The multi-agent control approach utilized here consists of two main elements: a multi-agent simulation framework, 

which includes component agents representing the behavior of each physical component of the plant, and two 

optimization algorithms: a consensus-based distributed algorithm originally included in the framework called the 

alternating direction method of multipliers (ADMM) and a genetic algorithm (GA). The GA was developed and 

incorporated in the framework to provide an alternative for finding the global optimal operating point of a system in 

the presence of non-convex functions and discontinuous design spaces.   

 

1.1. Component Agents 
Previous work developed by Jaramillo et al. (2014) presented the development of a mathematical model of a cooling 

plant using MATLAB software. In this setting, each hardware component of the plant (i.e. chillers, cooling towers 

and pumps) was represented using semi-empirical models as a separate set of mathematical relationships with its own 

parameters, inputs and output variables.  The parameters of the models were determined from regression of 

performance data.  From there, agents representing each component behavior can be easily created.  Each agent 

consists of a cost function (power consumption in this case) and a set of constraints.  Once created, the agents can be 

incorporated into the multi-agent framework and interconnected according to the arrangement of the physical plant.   

 

1.2. Multi-agent Framework 
The multi-agent control framework developed by Cai et al. (2015) was built in MATLAB as a simulation prototype 

that can be replicated in other programming environments to support hardware implementation.  The framework 

defines a general component agent structure as well as the flow connections between agents. A general component 

agent is written as a super class from which each component class can inherit the basic agent structure. The properties 

of the agent class consist of a collection of cost functions, and linear and non-linear equality and inequality constraints 

that characterize the behavior of a specific hardware component. The cost functions could be actual power 

consumption that needs to be minimized or some other performance metrics.    Another important property of each 

component agent is the agent’s group number. This parameter is used in the setup of the distributed optimization-

based controllers: all the component agents with the same group number will be assigned to one local optimizer 

controller.  The grouping might depend on physical distances among the devices, function, network structure or other 

criteria. A centralized controller will be synthesized if all the component agents are assigned the same group number.  

In this setting, the procedure to create a multi-agent control system is straight forward: assuming that all the component 

agents are available, one can simply drag and drop them in a project canvas and then specify the inter-agent 
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connections, which are stream variables.  Figure 1 illustrates the procedure to create a multi-agent control system for 

a central cooling plant. 

   

 

Figure 1. Procedure to Set-up a Multi-agent System.  Adapted from Cai et al. (2015) 

 

Once the component agents and their connections are defined, the framework will automatically compile the code and 

compose the optimization problem according to the specified configuration.  The compilation process consists of 

several steps such as extraction of the cost functions of the different agents to construct the total cost function and the 

elimination of redundant equality constraints.  These steps will be carried out for each group of components. Then, 

for each group i the composed optimization problem takes the form of Eq. 1. 

 

𝑚𝑖𝑛𝑋𝑖
𝑓𝑖(𝑋𝑖)        𝑖 = 1, … , 𝑁 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜      𝐴𝑖𝑋𝑖 ≤ 𝐵𝑖           

𝐴𝑒𝑞,𝑖𝑋𝑖 = 𝐵𝑒𝑞,𝑖                              (1)  

𝑔𝑖(𝑋𝑖 ) ≤ 0           

ℎ𝑖(𝑋𝑖 ) = 0           

 

In the above expression Xi is a vector of the local variables of sub-problem i and N is the number of subproblems.  To 

complete the process of composing the distributed problem, consensus constraints need to be specified.  These 

constraints enforce the local copies of the same variable to match between different agents.   Taking the system in 

Figure 1 as an example, the water flow leaving the condenser pump is the same entering the chiller’s condenser.  If 

these two devices are assigned different group numbers, there will be two local variables corresponding to the same 

water flow properties.  The minimization of the variable-speed pump power will favor lower condenser water flow 

while the minimization of the chiller power will be benefited by higher condenser water flow.  So the minimization 

of power consumption of each group will drive two local variables representing the same physical quantity in opposite 

directions.  Therefore, consensus constraints of the form expressed in Eq. 2 are necessary to enforce these local 

variables to converge to the same value.  

Xi = FiZ       i = 1, …, N                                                                   (2) 

 

where Z is a vector that contains the global variables of the problem and Fi is a matrix that picks out the variables of 

Z that correspond to Xi.   

 

1.3. Multi-agent Optimization Algorithms  

Distributed Optimization: Alternating Direction Method of Multipliers 

The ADMM is an augmented Lagrangian method for solving distributed consensus problems that was introduced in 

the 1970s.  A description of the method can be found in Summers and Lygeros (2012).  The method was adapted to 
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solve problems of the form expressed in Eq. 1 and Eq. 2.  The augmented Lagrangian for these kind of problems is 

given in Eq. 3 

𝐿 =  ∑ 𝐿𝑖(𝑋𝑖 , 𝑍, 𝑌𝑖)
𝑁
𝑖=1  =   ∑ (𝑓𝑖(𝑥𝑖) + 𝑌𝑖

𝑇( 𝑋𝑖 − 𝐹𝑖𝑍)) +
𝜎

2
‖𝑋𝑖 − 𝐹𝑖𝑍‖2

2𝑁
𝑖=1                                   (3) 

 

Where Yi are vectors of the Lagrange multipliers and  is a penalty parameter.  The ADMM algorithm consists of the 

iterations 

𝑋𝑖
𝑘+1 =  𝑎𝑟𝑔𝑚𝑖𝑛𝑋𝑖

𝐿𝑖(𝑋𝑖
𝑘, 𝑍𝑘 , 𝑌𝑖

𝑘)    𝑠. 𝑡.      𝑋𝑖 ∈ 𝑪𝑖 

𝑍𝑘+1 =  𝑎𝑟𝑔𝑚𝑖𝑛𝑍𝐿𝑖(𝑋𝑖
𝑘+1, 𝑍𝑘 , 𝑌𝑖

𝑘)                        (4) 

𝑌𝑖
𝑘+1 =  𝑌𝑖

𝑘 + 𝜎(𝑋𝑖
𝑘+1 − 𝐹𝑖𝑍

𝑘+1)        
 

The method alternatively minimizes X and Z, which allows the Xi minimizations to be done in parallel.  In this 

particular form of the problem, the minimization of each variable of the vector Z reduces to an averaging of the 

equivalent local variables and Lagrange multipliers as expressed in Eq. 5. 

 

(𝑍𝑘+1)𝑗 =  
1

𝑁𝑗
∑ ((𝑋𝑖

𝑘+1)
𝑗

+
(𝑌𝑖

𝑘)
𝑗

𝜎
)𝑁

𝑖=1                           (5) 

 

With this distributed formulation, the original optimization problem is fragmented into several sub-problems with 

reduced dimensions and less constraints, which can be solved in parallel. A hardware implementation of this 

distributed decision making process is shown in Figure 2.  The bottom layer corresponds to the sensing network that 

collects the required operating conditions. Above the sensing layer is a component agent layer that includes the agents 

representing the behavior of all devices. On top of the component agent layer, there is an optimizer agent layer, which 

is responsible for solving each sub-problem. Each optimizer agent calls the related component agents iteratively to 

optimize its corresponding cost function independently and in parallel with the other optimization agents. The 

consensus requirements among the local variables are enforced by a coordination layer that collects the local copies 

of all the variables, updates the dual variables accordingly and feeds them back to the optimizer agents to let them re-

optimize with respect to the updated information. The iteration process continues until the termination criteria are met. 

 

 

Figure 2. Hardware Implementation of the Multi-agent Controller with ADMM 

 

Centralized, parallel optimization with Genetic Algorithm 

Genetic algorithms (GA) are stochastic methods based on the principles of genetics and natural selection.  A generic 

GA starts with a population of Np candidate solutions randomly generated from the search space.  An objective 

function is used to quantify the fitness of each individual and genetic operators of selection, crossover and mutation 
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are applied to produce a new generation of individuals. The process of populating new generations continues until 

certain convergence criteria are satisfied. The algorithms for the genetic operators depend on the encoding method 

and the application.  The GA conceived for optimization in the context of the multi-agent framework is real coded and 

has incorporated certain characteristics to make it suitable for solving large dimension problems in a more efficient 

way.  Some of those features, based on the work presented by Zhu et al. (2014) are the generation of the initial 

population as a uniform array of points that covers the search space delimited by bounds and linear constraints and an 

elitist strategy that combines all the individuals from the previous generation and the new population, and selects the 

fittest individuals to constitute the new generation.   One disadvantage of GAs is that their performance is not always 

satisfactory in the presence of equality constraints.  To sort this difficulty, the proposed GA was combined with 

Broyden’s method (a quasi-Newton method) to handle the non-linear equality constraints that arise from the behavior 

of the components. 

 

2. CASE STUDY 
 

The case-study considered in this work is a simplified version of the Northwest Chiller Plant at the main campus of 

Purdue University in West Lafayette, IN.  The plant delivers chilled water through 37 Km of underground piping to 

partially meet the cooling requirements of more than 150 buildings on the campus (an average of 92.4 MMTon-hr per 

year).  A schematic of the simplified plant, illustrating all the variables of interest is shown in Figure 3.   The simplified 

case-study consists of three centrifugal chillers, each one with 2000 Ton nominal cooling capacity to produce chilled 

water for the campus, an evaporative counter-flow cooling tower with three cells, and three variable speed condenser 

water pump each one with 6000 gpm nominal flow rate.  In the chilled water loop, the water returning from campus 

is cooled as it is circulated through the chiller and then returned to campus by high-pressure pumps. The chilled water 

pumps are considered part of the campus chilled water distribution systems and do not add to the costs of operation 

of the plant, therefore they will not be included in the model.  In the condenser water loop, the chillers reject heat to 

the water that is circulated through the cooling tower cells and stored in the cold well, a common reservoir with 

capacity of 90,000 gal (341m3).  From there, the water is pumped again to the chillers by the condenser water pumps.   

 

 

Figure 3. Schematic of the cooling plant 

The baseline control for the plant involves the following heuristic strategies:  (1) The chillers are sequenced based on 

the operators experience to meet the cooling load. (2) The condenser water pumps are sequenced with the chillers so 

that each chiller’s condenser operates approximately with the nominal design flow.  (3) There is feedback control of 

the tower fans to maintain a constant condenser water supply temperature set-point of 73°F, even though the minimum 

inlet water temperature for each chiller condenser is 55°F.    
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Optimal supervisory control of such a plant involves determining the values of the control variables that minimize the 

total power consumption at any time in response to uncontrolled variables (ambient dry-bulb and wet-bulb 

temperatures, and cooling load).  Three independent control variables are considered in this problem: the total cooling 

tower air flow (Airflow), the total condenser water flow (𝑚̇𝑐𝑜) and the number of active chillers (Nch) at any time.  

Other dependent optimization variables (in blue) appear as a result of the distributed formulation of the problem.  The 

boundary conditions are the underlined variables in Figure 4.  The chilled water supply set-point (Tev,o) is fixed at 

43°F, and the chilled water supply flow rate (𝑚̇𝑒𝑣) which is fixed according to the nominal chiller’s evaporator flow 

rate (3200 gpm per active chiller). 

 

2.1. Optimization problem composition 

Distributed formulation 

If the component agents are grouped according to its kind, four groups are formed and a distributed formulation is 

synthetized by the framework as shown in Eq. 6 to Eq. 10.  The functions in the expressions correspond to the cost 

functions (power consumption) and constraints related to the behavior of each device of the plant. 

 

Group 1:  Chillers 

𝑚𝑖𝑛
[𝑚̇𝑐𝑜

(1)
,𝑇𝑐𝑜,𝑖

(1)
,𝑇𝑐𝑜,𝑜

(1)
]
 {𝐶ℎ𝑖𝑙𝑙𝑒𝑟𝑝𝑜𝑤(𝑄̇𝑒𝑣 ,  𝑇𝑒𝑣,𝑜, 𝑇𝑐𝑜,𝑜 )}                                          (6) 

Subject to:   𝑇𝑐𝑜,𝑜
(1)

=  𝐶ℎ𝑖𝑙𝑙𝑒𝑟𝑇𝑐𝑜,𝑜 (𝑄̇𝑒𝑣 ,  𝑇𝑒𝑣,𝑜, 𝑚̇𝑐𝑜
(1)

, 𝑇𝑐𝑜,𝑖
(1)

) 

Group 2: Cooling tower cells   

𝑚𝑖𝑛
[𝐴𝑖𝑟𝑓𝑙𝑜𝑤(2),𝑚̇𝑐𝑜

(2)
,𝑇𝑐𝑜,𝑜

(2)
,𝑚̇𝑐𝑡,𝑜

(2)
,𝑇𝑐𝑡,𝑜

(2)
]
 {𝑃𝑜𝑤𝑒𝑟𝑐𝑡}                    (7) 

Subject to:  𝑇𝑐𝑡,𝑜
(2)

= 𝐶𝑜𝑜𝑙𝑖𝑛𝑔𝑇𝑜𝑤𝑒𝑟𝑇𝑐𝑡,𝑜
( 𝑇𝑤𝑏 , 𝑇𝑑𝑏 , 𝐴𝑖𝑟𝑓𝑙𝑜𝑤(2), 𝑚̇𝑐𝑜

(2)
, 𝑇𝑐𝑜,𝑜

(2)
) 

𝑚̇𝑐𝑡,𝑜
(2)

=  𝐶𝑜𝑜𝑙𝑖𝑛𝑔𝑇𝑜𝑤𝑒𝑟𝑚̇𝑐𝑡,𝑜 
( 𝑇𝑤𝑏 , 𝑇𝑑𝑏 , 𝐴𝑖𝑟𝑓𝑙𝑜𝑤(2), 𝑚̇𝑐𝑜

(2)
, 𝑇𝑐𝑜,𝑜

(2)
) 

 

Group 3: Condenser water pumps 

      𝑚𝑖𝑛
[𝑚̇𝑐𝑜

(3)
]
 {𝑃𝑜𝑤𝑒𝑟𝑝𝑢𝑚𝑝}                     (8) 

Group 4: Cold well  

𝑚𝑖𝑛
[𝑚̇𝑐𝑜

(4)
,𝑇𝑐𝑜,𝑖

(4)
,𝑚̇𝑐𝑡,𝑜

(4)
,𝑇𝑐𝑡,𝑜

(4)
]
 {0}                    (9) 

Subject to:   𝑇𝑐𝑜,𝑖
(4)

 =  𝐶𝑜𝑙𝑑𝑤𝑒𝑙𝑙 (𝑚̇𝑐𝑜
(4)

, 𝑚̇𝑐𝑡,𝑜
(4)

, 𝑇𝑐𝑡,𝑜
(4)

, 𝑇𝑚𝑎𝑖𝑛𝑠) 

 

The consensus constraints from this formulation are: 

 

𝐴𝑖𝑟𝑓𝑙𝑜𝑤 =  𝐴𝑖𝑟𝑓𝑙𝑜𝑤(2) 

𝑚̇𝑐𝑜 = 𝑚̇𝑐𝑜
(1)

= 𝑚̇𝑐𝑜
(2)

= 𝑚̇𝑐𝑜
(3)

= 𝑚̇𝑐𝑜
(4)

 

𝑇𝑐𝑜,𝑖 = 𝑇𝑐𝑜,𝑖
(1)

= 𝑇𝑐𝑜,𝑖
(4)

                  (10) 

𝑇𝑐𝑜,𝑜 = 𝑇𝑐𝑜,𝑜
(1)

= 𝑇𝑐𝑜,𝑜
(2)

 

𝑚̇𝑐𝑡,𝑜 =  𝑚̇𝑐𝑡,𝑜
(2)

=  𝑚̇𝑐𝑡,𝑜
(4)

 

𝑇𝑐𝑡,𝑜 =  𝑇𝑐𝑡,𝑜
(2)

= 𝑇𝑐𝑡,𝑜
(4)

 

In this distributed formulation, the original centralized problem is fragmented into four sub-problems with reduced 

dimensions and less constraints, which can be solved in parallel.   

Genetic Algorithm Formulation 

The GA is intended to be compatible with the multi-agent framework topology; therefore, the distributed formulation 

expressed in Eq. 6 to Eq. 9 can be also utilized to solve the problem with the GA.  In this context, the cost function is 
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the sum of the cost functions of each optimizer agent; therefore, the optimization problem is solved in a centralized 

manner by a coordinator agent, while the computation of the objective function and non-linear constraints is distributed 

and executed in parallel by the different optimizer agents.   

 

 

3. OPTIMIZATION RESULTS 
 

This section presents the results of the multi-agent approach applied to the case study described above. Four different 

operating conditions of the plant were considered as shown in Table 1. The optimization results are compared with 

two benchmarks: the heuristic control strategy previously described and centralized optimization with mathematical 

programming techniques.  It is important to note that the problem considered here involves a discontinuous control 

variable (number of active chillers) and the cost function (power) is non-convex.  In such cases, the convergence of 

the solution to the optimum point cannot be guaranteed.  Therefore, performance maps of the plant were elaborated 

for each of the operating conditions considered to obtain the “true optimum” operating point.  This optimum point 

was used as a baseline to assess the convergence of the different optimization methods.   Table 1 presents the total 

power consumption obtained with the heuristic control strategy, and the power consumption and savings 

corresponding to the “true optimum” operating point. The savings were evaluated with respect to the heuristic strategy.   

 

Table 1. Optimum operating point of the Cooling Plant and power savings for four Operating Conditions.    

Operating conditions Heuristics “True optimum” operating point 

Test Load Wet bulb Power Active Power Savings Savings 

Nr Ton °F kW Chillers kW kW % 

1 2000 50 1145.46 2 1028.88 116.58 11.33 

2 2000 80 1351.06 1 1302.61 48.45 3.72 

3 4000 50 2324.22 3 1989.87 334.35 16.80 

4 4000 80 2702.12 2 2612.62 89.50 3.43 

 

The optimization problem was solved using three methods: 1) Centralized optimization using mathematical 

programming techniques (MATLAB function FMINCON); 2) Multi-Agent distributed optimization with ADMM, 

and 3) Multi-Agent optimization with a GA.  Ten runs were made for each operating condition and method to account 

for the variability of the results which is caused by either the stochastic nature of the GA or the randomly generated 

initial guess used for the other methods.  The average results for each operating condition are shown in Table 2.  The 

results include average power savings (kW), average computational time (s), and the RMS error (kW) in the savings 

calculations relative to “true” savings from Table 1.  The RMSE and computational time results can be more easily 

visualized in the bubble chart presented in Figure 4. 

 

Table 2. Optimization results comparison 

Operating conditions FMINCON ADMM GA 

Test 

Nr. 

Total 

Load 

Wet 

bulb 

RMSE 

Power 

Average 

Savings 

Average 

time 

RMSE 

Power 

Average 

Savings 

Average 

time 

RMSE 

Power 

Average 

Savings 

Average 

time 

 Ton °F kW kW s kW kW s kW kW s 

1 2000 50 15.04 101.55 6.43 0.02 101.5 28.25 0.87 115.7 6.46 

2 2000 80 19.83 28.62 6.90 16.08 28.6 86.29 0.02 48.4 6.41 

3 4000 50 7.61 326.74 4.44 7.88 326.7 43.55 0.28 334.1 8.30 

4 4000 80 17.61 71.89 7.34 25.75 71.9 79.70 0.05 89.4 13.61 
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Figure 4. Optimization result comparison 

 

 

It is important to note that, since the centralized optimization based on mathematical programming techniques 

(FMINCON) and the ADMM cannot handle discontinuous variables, the optimum number of active chillers for each 

operating condition had to be specified as an input for these methods. The GA, in contrast, can handle a mixture of 

integer and continuous variables and the number of active chillers was considered as another optimization variable.   

 

The results show that the GA was able to find near-optimal solutions under all the operating conditions considered.  

This can be noted in Figure 4, where the RMSE of power (root mean square error in the power consumption compared 

to the true optimal) was much lower for the GA than the one obtained with the other methods. Further, the processing 

time for the GA was only 15% of the ADMM (average 8.7s compared to 59.5s).  Given the non-convex shape of the 

cost function, the effectiveness to reach the optimum point and convergence speed of both the conventional centralized 

optimization and the ADMM method were highly dependent on the operating conditions considered and the goodness 

of the initial guess.   

 

Comparison with the heuristic strategy, shows that significant power savings can be attained with all the optimization 

methods.  The differences in the predicted average savings are not as significant as might have been expected, except 

for the second operating condition where the savings obtained with the ADMM and the central optimization with 

FMINCON are 60% of the savings obtained with the GA. 

 

CONCLUSIONS 
 

In this paper, a multi-agent control approach was applied to a central cooling system without significant storage, such 

that quasi-steady behavior could be assumed.  The resulting non-convex optimization problem was solved for different 

operating conditions of the plant using a multi-agent simulation framework with two different algorithms: distributed 

optimization with the alternating direction of multipliers (ADMM) and centralized optimization with a genetic 

algorithm (GA).  Comparison of the results with the “true optimum” point obtained from performance maps of the 

plant and centralized optimization using mathematical programming techniques showed that the GA was able to find 

near-optimal solutions for all the cases considered, while the effectiveness of other methods was highly dependent on 

the operating conditions and the goodness of the initial guess provided for the optimization.  Other advantages of the 

GA are that it can handle a mixture of continuous and discontinuous variables and its convergence speed was much 

faster than the ADMM.    

 

Even though the GA outperformed the other optimization methods considered in this case-study, the results might be 

different for a more complex scenario involving a higher number of optimization variables.  Further, since the 
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convergence of the ADMM is highly dependent on the goodness of the initial guess it can be expected that in a real 

setting, the initial guess provided by the optimum point of the previous time step will be closer to the actual optimum 

point, and the convergence of the ADMM method will be considerably improved.  Future work will include an 

extensive simulation evaluation of the approach using a more complex model of the cooling system and one year of 

performance data.    

 

 

NOMENCLATURE 
 

Acronyms 

ADMM  Alternating direction method of multipliers 

GA  Genetic algorithm 

HVAC  Heat, ventilation and air conditioning 

RMSE  Root mean square error 

 

Symbols 

A  Matrix of coefficients of linear inequality constraints 

Aeq  Matrix of coefficients of linear equality constraints 

Airflow  Cooling tower total air flow 

B  Vector of constants terms for linear inequality constraints 

Beq  Vector of constants terms for linear equality constraints 

C  Feasible region of optimization variables 

f  Cost function to be optimized 

Fi Matrix that assigns the local variable array Xi its corresponding global variables  

g  Non-linear inequality constraint  

h  Non-linear equality constraint  

L  Augmented Lagrangian  

𝑚̇  Mass flow rate  

Power   Power consumption 

𝑄̇  Heat transfer rate     

T  Temperature 

Tmains   Cooling tower make-up water temperature 

X  Local optimization variables   

Y  Lagrange multipliers 

Z  Global optimization variables 

 

Subscripts/Superscripts 

co    Chiller’s condenser 

ct   Cooling tower cell 

cw   Cold well (condenser water reservoir) 

db   Dry-bulb  

ev   Chiller’s evaporator 

i   Inlet conditions 

i   Subproblem number 

k  Iteration number  

N  Number of subproblems for multi-agent optimization 

o  Outlet conditions 

w   Water 

wb  Wet-bulb 
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